[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016125718A1 - リチウム二次電池の電極用バインダ樹脂、リチウム二次電池用電極及びリチウム二次電池 - Google Patents

リチウム二次電池の電極用バインダ樹脂、リチウム二次電池用電極及びリチウム二次電池 Download PDF

Info

Publication number
WO2016125718A1
WO2016125718A1 PCT/JP2016/052859 JP2016052859W WO2016125718A1 WO 2016125718 A1 WO2016125718 A1 WO 2016125718A1 JP 2016052859 W JP2016052859 W JP 2016052859W WO 2016125718 A1 WO2016125718 A1 WO 2016125718A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
aromatic diamine
binder resin
containing aromatic
residue
Prior art date
Application number
PCT/JP2016/052859
Other languages
English (en)
French (fr)
Inventor
鈴木 鉄秋
周三 脇
ファン ジン ノ
スン ジュン ホン
Original Assignee
株式会社ピーアイ技術研究所
トップバッテリー・カンパニー・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ピーアイ技術研究所, トップバッテリー・カンパニー・リミテッド filed Critical 株式会社ピーアイ技術研究所
Priority to US15/549,066 priority Critical patent/US11569508B2/en
Priority to JP2016573337A priority patent/JP6649283B2/ja
Priority to CN201680008828.9A priority patent/CN107431207B/zh
Priority to KR1020177024046A priority patent/KR102504976B1/ko
Publication of WO2016125718A1 publication Critical patent/WO2016125718A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a binder resin for an electrode of a lithium secondary battery, an electrode for a lithium secondary battery manufactured using the same, and a lithium secondary battery.
  • Lithium secondary batteries are used as the power source for electronic products such as mobile phones, smartphones, tablets, and notebook computers, and the market demand is rapidly growing as a large-capacity battery for power sources and energy storage systems for electric vehicles. It has increased.
  • the electrode of a lithium secondary battery is manufactured by applying a slurry (composite material) mixed with an active material, a conductive material, a binder resin and a solvent onto a current collector, drying the solvent, and rolling to a certain thickness.
  • a slurry composite material
  • an active material having a high specific capacity and output characteristics.
  • lithium transition metal oxides lithium iron phosphates, and the like are used as positive electrode active materials for lithium secondary batteries.
  • graphite powder has been mainly used as the negative electrode active material, but the use of non-carbon high-capacity materials such as silicon and lithium titanium oxide has increased, and in order to further increase the energy density of the battery, Materials that alloy with lithium are also used.
  • the binder resin used in the manufacture of electrodes has battery characteristics such as adhesive strength with active materials, conductive materials and current collectors, active material coverage, resistance to electrolyte swell, efficiency, life, and safety.
  • the electrode manufacturability is also required to be easy.
  • PVDF polyvinylidene fluoride
  • PVDF polyvinylidene fluoride
  • SBR styrene butadiene latex
  • CMC carboxymethyl cellulose
  • a polyimide resin excellent in heat resistance and adhesive strength has been studied as a binder resin used for manufacturing an electrode.
  • polyamic acid polyimide precursor
  • polyimide precursor polyimide precursor
  • graphite powder as an active material.
  • a slurry compound is prepared, this slurry is applied on a current collector and dried, and then heat treated at 350 ° C. for 2 hours, and polyamic acid is converted to polyimide on the current collector to produce a negative electrode.
  • an aliphatic or alicyclic polyamic acid (polyimide precursor) produced by a reaction between a diamine and a carboxylic dianhydride in an NMP solvent is mixed with an active material to form a slurry (composite material). And the slurry is applied on a current collector and dried, followed by heat treatment at 250 ° C. for 1 hour to convert the polyamic acid to polyimide on the current collector to produce a negative electrode.
  • Patent Documents 3 to 6 a slurry containing an active material containing silicon and / or a silicon alloy and a polyimide precursor such as polyamic acid as a binder is applied on a current collector, and then heat-treated at a high temperature to collect the current collector.
  • a method for producing a negative electrode by converting a polyimide precursor into a specific polyimide compound is disclosed above.
  • Patent Document 5 collects, for example, a slurry containing a binder precursor solution made of a mixture of 3,3 ′, 4,4′-benzophenonetetracarboxylic acid diethyl ester and m-phenylenediamine and the active material.
  • a method is described in which a negative electrode using a binder precursor having a specific structure as a binder precursor on a current collector is described by applying to an electric body and drying the solvent, followed by heat treatment at a high temperature.
  • the adhesion between the binder resin and the active material, current collector or conductive material and the cycle characteristics of the battery are still insufficient, and polyimide precursors such as polyamide acid are still insufficient. Since the process includes a step of heat-treating the body at a high temperature, the active material or the current collector may be oxidized in the heat-treatment step, and the charge / discharge efficiency of the battery may be reduced.
  • Patent Document 8 a composite material containing a precursor of a siloxane-containing polyimide resin and a negative electrode active material is applied onto a current collector, and then the polyimide precursor is imidized on the current collector by heat treatment to thereby form a negative electrode.
  • a method for manufacturing the battery electrode is disclosed, and Patent Document 9 describes a conductive agent for a battery electrode containing a reaction product of a ⁇ -conjugated carbon material and a soluble polyimide as a main component.
  • the electrodes obtained by the methods of Patent Documents 8 and 9 are insufficient to satisfy the characteristics required for the electrode for the lithium secondary battery described above.
  • the present invention has been made in view of the above circumstances, and an object thereof is an electrode binder resin capable of improving the adhesive strength between an active material, a conductive material, and a current collector. Even when a negative electrode active material containing silicon is used, it is possible to suppress the collapse of the binder during charging and discharging, and the occurrence of peeling at the interface between the active material and the current collector and the binder resin.
  • An object of the present invention is to provide an electrode binder resin that is excellent in rapid charge / discharge characteristics, charge / discharge cycle characteristics, active material coverage, charge / discharge efficiency and safety of a secondary battery.
  • the present invention also provides an electrode for a lithium secondary battery in which a composite material containing the binder resin is deposited on a current collector, a method for producing the electrode, and a lithium secondary battery including the electrode. It is to provide.
  • the present inventors have introduced a carboxyl group or a phenylindane structure into a polyimide resin used as a binder resin for an electrode of a lithium secondary battery. It was found that the adhesive strength of the toner was remarkably improved. In addition, in the case of a polyimide having a phenylindane structure, even when a material containing silicon (silicon) is used as the negative electrode active material, the binder resin collapses or at the interface between the active material and the current collector and the binder resin. It has also been found that the occurrence of peeling is suppressed, and the battery characteristics can sufficiently follow the volume change of the active material.
  • the present invention provides a binder resin for an electrode of a lithium secondary battery, which contains a solvent-soluble polyimide having a repeating unit represented by the following general formula [I].
  • Z is an aromatic or alicyclic tetracarboxylic dianhydride residue
  • Ar is a carboxyl group-containing aromatic diamine residue and an aromatic ether bond-containing aromatic diamine residue, or A phenylindane structure-containing aromatic diamine residue
  • the present invention also provides an electrode for a lithium secondary battery in which an active material, a composite material in which the binder resin of the present invention is mixed, and a conductive material are deposited on a current collector. Moreover, this invention provides the lithium secondary battery provided with the negative electrode, the positive electrode, the separation membrane, the electrolyte, and the exterior material, wherein the positive electrode or the negative electrode is the electrode of the present invention.
  • the present invention is a dehydration condensation reaction of an aromatic or alicyclic tetracarboxylic dianhydride, a carboxyl group-containing aromatic diamine and an aromatic ether bond-containing aromatic diamine, or an aromatic or alicyclic Comprising a solvent-soluble polyimide having a repeating unit represented by the following general formula [I] by dehydration condensation reaction of a tetracarboxylic dianhydride of the above and a phenylindane structure-containing aromatic diamine.
  • a method for producing a binder resin for an electrode of a battery is provided.
  • this invention manufactures the electrode for lithium secondary batteries including apply
  • the electrode binder resin of the present invention By using the electrode binder resin of the present invention to produce an electrode for a lithium secondary battery, the binding force between the active material particles in the composite material or between the active material particles and the current collector is remarkably increased. In addition, since it is not necessary to go through a heat treatment step after applying the composite material to the current collector, the electrode can be easily manufactured. Furthermore, since the lithium secondary battery including the electrode manufactured in this way has a high specific capacity and excellent charge / discharge efficiency and cycle characteristics, the output characteristics and life of the battery can be remarkably improved.
  • FIG. 6 is a view showing an apparatus for measuring the internal resistance of the electrodes manufactured in Examples 1 to 9 and Comparative Examples 1 to 5 of the present invention.
  • a negative electrode active material silicon
  • binder resin polyimide solution
  • electrically conductive material silicon
  • solvent solvent
  • a composite material applied to a copper foil current collector in preparation of negative electrodes in Examples 1 to 6 of the present invention.
  • the binder resin for an electrode of the lithium secondary battery in the present invention contains a solvent-soluble polyimide having a repeating unit represented by the following general formula (I).
  • Z is an aromatic or alicyclic tetracarboxylic dianhydride residue
  • Ar is a carboxyl group-containing aromatic diamine residue and an aromatic ether bond-containing aromatic diamine residue. Or a phenylindane structure-containing aromatic diamine residue.
  • the characteristic of the polyimide contained in the binder resin for an electrode of the present invention is that it has at least one of the following structures (1) and (2).
  • a structure having both a repeating unit in which Ar in the general formula [I] is a carboxyl group-containing aromatic diamine residue and a repeating unit in which Ar is an aromatic ether bond-containing aromatic diamine residue (2 )
  • the polyimide structures (1) and (2) improve the adhesion between the active material, the current collector, and the conductive material, and provide a rigid structure that provides toughness, and can follow changes in volume during charge and discharge. Because of having a flexible part, the binding force between the active material particles or between the active material particles and the metal current collector is remarkably improved, and the specific capacity, charge / discharge efficiency and charge / discharge cycle characteristics of the battery are improved. be able to.
  • the aromatic ring portion having a carboxyl group is a rigid structure portion, and the aromatic ether bond portion is a flexible portion.
  • the carboxyl group is preferable in terms of excellent adhesive strength, resin stability, and moisture resistance as compared with other polar groups such as a hydroxyl group and an amino group.
  • the phenyl indan structure is a rigid structure portion that improves adhesion and imparts toughness, but the indan structure itself shown below has some flexibility.
  • the polyimide having the structure (2) may be a homopolymer as long as Ar in the general formula [I] includes a repeating unit which is a phenylindane structure-containing aromatic diamine residue, or It may be a block copolymer with a repeating unit containing a flexible structure, preferably an aromatic ether bond-containing aromatic diamine residue.
  • a polyimide containing a phenylindane structure is particularly preferable because of its excellent adhesive strength with copper, aluminum, silicon, titanium and the like.
  • the polyimide having the above structure (1) is preferably a block copolymer having a repeating unit represented by the following general formula [II] and a repeating unit represented by the following general formula [III].
  • Z 1 is an aromatic or alicyclic tetracarboxylic dianhydride residue, and Ar 1 is a carboxyl group-containing aromatic diamine residue
  • Solvent-soluble polyimide having a repeating unit represented by the above general formula (I) dehydrates aromatic or alicyclic tetracarboxylic dianhydride, carboxyl group-containing aromatic diamine and aromatic ether bond-containing aromatic diamine. It can be obtained by a condensation reaction or by a dehydration condensation reaction of an aromatic or alicyclic tetracarboxylic dianhydride and a phenylindane structure-containing aromatic diamine.
  • Examples of the carboxyl group-containing aromatic diamine (Ar 1 component) include 1,3-diaminobenzoic acid, 3,5-diaminobenzoic acid, 2,4-diaminophenylacetic acid, 2,5-diaminoterephthalic acid, 3,5- Examples include diaminoparatoluic acid, 3,5-diamino-2-naphthalenecarboxylic acid, 1,4-diamino-2-naphthalenecarboxylic acid, 3,3′-dicarboxy-4,4′-diaminodiphenylmethane, and the like. Among these, monocarboxyl group-containing aromatic diamines having one carboxyl group are preferable.
  • aromatic diamine-containing aromatic diamine examples include 2,2-bis [4- (aminophenoxy) phenyl] propane, 1,1-bis [4- (4-aminophenoxy) phenyl] cyclohexane, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 3- (3 ′-(3 ′′ -aminophenoxy) phenyl) amino-1- (3 ′-( 3 ′′ -aminophenoxy) phenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene and the like.
  • Aromatic diamines are preferred.
  • the carboxyl group-containing aromatic diamine component (Ar 1 component) constituting the block copolymer having the structure (1) is preferably 25 to 60 mol%, more preferably 27 to 50 mol% of the total aromatic diamine component. .
  • the carboxyl group-containing aromatic diamine component (Ar 1 component) is less than 25 mol%, the adhesive strength between the active material, the conductive material and the current collector is low, and when it exceeds 60 mol%, the flexibility of the binder resin layer decreases. Tend to.
  • the reaction ratio is preferably 1: 0.6 to 3.0, more preferably 1: 0.8 to 2.7, and still more preferably 1: 1 to 2.5.
  • the sum total of (Ar 1 component) and (Ar 2 component) is 100 mol%.
  • the repeating unit represented by the following general formula [III] A block copolymer containing a repeating unit represented by the following general formula [IV] is preferable.
  • Z 3 is an aromatic or alicyclic tetracarboxylic dianhydride residue, and Ar 3 is a phenylindane structure-containing aromatic diamine residue
  • the phenylindane structure is a structure in which a phenyl group which may have a substituent is substituted on the following indane skeleton, and the substituent includes a halogen atom or a carbon number of 1 to 5, preferably 1 to 3 alkyl groups.
  • a diamine residue having a structure in which a phenyl group which may have a substituent at the 1-position or 2-position of the following indan skeleton is substituted Among these, a diamine residue represented by the following general formula [V] is preferable.
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms.
  • R 4 and R 5 independently represents a hydrogen atom, a halogen atom or an alkyl group having 1 to 5 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms.
  • Phenylindane structure-containing aromatic diamines include 5-amino-1- (4′-aminophenyl) -1,3,3-trimethylindane, 6-amino-1- (4′-aminophenyl) ) -1,3,3-trimethylindane, 5-amino-6-methyl-1- (3′-amino-4′-methylphenyl) -1,3,3-trimethylindane, 5-amino-1- ( 4'-amino-Ph ', Ph'-dichloro-phenyl) -Ph, Ph-dichloro-1,3,3-trimethylindane, 6-amino-1- (4'-amino-Ph', Ph'-dichloro -Phenyl) -Ph, Ph-dichloro-1,3,3-trimethylindane, 4-amino-6-methyl-1- (3'-amino-4'-methyl-phenyl) -1,3,3-trimethyl Indan, Ph
  • the phenylindane structure-containing aromatic diamine component (Ar 3 component) constituting the block copolymerized polyimide having the structure (2) (phenylindane structure) is 25 to 90 mol%, more preferably 27 to 27% of the total aromatic diamine component. It is preferable that it is 70 mol%.
  • the phenylindane structure-containing aromatic diamine component (Ar 3 component) is less than 25 mol%, the adhesive strength between the active material, the conductive material and the current collector tends to be low.
  • the molar ratio of the phenylindane structure-containing aromatic diamine component (Ar 3 component) and the aromatic ether bond-containing aromatic diamine component (Ar 2 component) in the block copolymer is 1: 0.10 to 3.0, preferably 1: 0.13 to 2.8, more preferably 1: 0.15 to 2.5. Especially, it is preferable that the sum total of (Ar 3 component) and (Ar 2 component) is 100 mol%.
  • aromatic tetracarboxylic dianhydride for introducing the aromatic tetracarboxylic dianhydride residue represented by Z and Z 1 to Z 3 in the general formulas [I] to [IV] into the polyimide,
  • aromatic tetracarboxylic dianhydride residue represented by Z and Z 1 to Z 3 in the general formulas [I] to [IV] into the polyimide Although there is no particular limitation, pyromellitic dianhydride, 3,4,3 ′, 4′-benzophenonetetracarboxylic dianhydride, 3,4,3 ′, 4′-diphenyltetracarboxylic dianhydride, bis -(3,4-dicarboxyphenyl) ether dianhydride, 2,2-bis- (3,4-dicarboxyphenyl) hexafluoropropane dianhydride, 4,4′-oxydiphthalic acid dianhydride, etc. .
  • alicyclic tetracarboxylic dianhydride for introducing an alicyclic tetracarboxylic dianhydride residue represented by Z or Z 1 to Z 3 into polyimide, bicyclo [2.2.2 ] Oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, norbornane-2-spiro- ⁇ -cycloalkanone- ⁇ '-spiro-2 ′′ -norbornane-5,5 ′′ , 6,6 ′′ -tetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2 , 4,5-cyclohexanetetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 3,5,6-tricarboxynorbornane-2-acetic acid dianhydride,
  • the method for synthesizing the solvent-soluble polyimide may be a known method, and is not particularly limited, but the presence of a catalyst and a dehydrating agent in an organic polar solvent using substantially the same amount of the above-described tetracarboxylic dianhydride and aromatic diamine. Then, a solvent-soluble polyimide can be synthesized by reacting at 160 to 200 ° C. for several hours.
  • organic polar solvent examples include N-methylpyrrolidone (NMP), ⁇ -butyrolactone, N, N′-dimethylacetamide, N, N′-dimethylformamide, dimethyl sulfoxide, tetramethylurea, tetrahydrothiophene-1,1-oxide, etc. Is used.
  • NMP N-methylpyrrolidone
  • ⁇ -butyrolactone N, N′-dimethylacetamide, N, N′-dimethylformamide, dimethyl sulfoxide, tetramethylurea, tetrahydrothiophene-1,1-oxide, etc. Is used.
  • the water produced by the imidization reaction is removed by azeotropic distillation with a dehydrating agent such as toluene, xylene, tetrahydronaphthalene or the like.
  • a dehydrating agent such as toluene, xylene, tetrahydr
  • a random copolymer can be obtained by simultaneously mixing several tetracarboxylic dianhydrides and an aromatic diamine, followed by a condensation reaction. This random polymer is preferred. It is preferable to use the block copolymer as described above rather than the random copolymer because there are disadvantages that depend on the characteristics that are not present.
  • the block copolymer can be produced, for example, by a two-stage sequential addition reaction.
  • a polyimide oligomer is synthesized from tetracarboxylic dianhydride and an aromatic diamine, and then in the second stage, further tetra Carboxylic dianhydride and / or aromatic diamine may be added and polycondensed to obtain a block copolymerized polyimide.
  • solvent soluble in the present invention is a term used for an organic polar solvent used in the synthesis of polyimide and a solvent used in a composite material described later, and is a polyimide that dissolves 5 g or more in 100 g of a solvent. It means that there is.
  • the synthesized polyimide can be used as a binder resin in a solution in which the solid content is, for example, 10 to 30% by weight in the organic polar solvent or a solvent used for a composite material described later.
  • the proper weight average molecular weight (Mw) of the solvent-soluble polyimide is preferably 20,000 to 100,000, and the proper viscosity is preferably 2 to 10 Pa ⁇ s when the solid content is 20 to 40% by weight.
  • solvent-soluble polyimides are commercially available, and as a particularly suitable commercially available product, Q-VR-X1413 (containing a carboxyl group-containing aromatic diamine residue and an aromatic ether bond) is available.
  • Block copolymerized polyimide containing an aromatic diamine residue Q-VR-X1415 (polyimide containing a phenylindane structure-containing aromatic diamine residue), and the like.
  • a solvent-soluble polyimide having a viscosity and molecular weight in the above-mentioned proper range and being completely imidized as a binder resin for an electrode By using a solvent-soluble polyimide having a viscosity and molecular weight in the above-mentioned proper range and being completely imidized as a binder resin for an electrode, a composite material containing an active material, a conductive material and a binder resin can be obtained on both sides of the current collector. The process of coating on the top becomes easy and the electrode manufacturability becomes easy. Specifically, there is an advantage that the film thickness uniformity of the electrode layer applied to the current collector is excellent and voids are hardly generated.
  • the binder resin of the present invention is a completely imidized polyimide, it does not require heat treatment at a high temperature for imidization after the composite material is applied to the current collector. Therefore, the binder resin of the present invention is superior in electrode manufacturability compared to polyamic acid (polyimide precursor) that requires heat treatment at high temperature (300 ° C. or higher) for imidization after applying the composite material to the current collector.
  • an electrode of a lithium secondary battery can be manufactured.
  • a positive electrode using a positive electrode active material having a high potential of 3 V or higher with respect to a redox potential of lithium metal as an electrode active material, and a low potential in the range of 0 to 2.0 V A negative electrode using a negative electrode active material is used.
  • the material used for the electrode and the method for forming the electrode layer are not particularly limited, but known materials and methods used in the production of electrodes for lithium secondary batteries can be employed. Specifically, a positive electrode or negative electrode active material, the binder resin of the present invention, a conductive material, and a solvent are mixed using a mixer to prepare a composite material that is uniformly dispersed to form a slurry. It is applied to both sides of a current collector made of copper foil. Next, the solvent is dried, pressure-formed with a roll presser, and cut into a certain width, whereby a positive electrode or a negative electrode of a lithium secondary battery can be produced.
  • lithium-containing transition metal oxides or lithium-containing phosphates in powder form are preferable.
  • lithium-containing phosphate Li x CoPO 4 (0.5 ⁇ x ⁇ 1.3) and Li x FePO 4 (0.5 ⁇ x ⁇ 1.3) lithium-containing transition metal phosphate such as Is preferred.
  • the lithium-containing transition metal oxide may be coated on the surface with a metal such as aluminum (Al) or a metal oxide.
  • a metal such as aluminum (Al) or a metal oxide.
  • sulfides, selenides, halides, and the like may be used.
  • the negative electrode active material examples include carbon materials such as artificial graphite, natural graphite, hard carbon, and soft carbon in powder form, silicon-containing materials such as silicon (Si) and silicon alloys, tin (Sn), and lithium titanium oxide ( Although li 4 Ti 5 O 12) 1 two or more mixtures selected from the non-carbon material and the like, but is not particularly limited. Among these, it is preferable to use one or a mixture of two or more selected from the group consisting of powders of silicon-containing substances, graphite, transition metal oxides, etc., or use lithium titanium oxides, particularly silicon-containing substances. Is preferred.
  • the binder resin of the present invention can be used in the range of 1 to 30% by weight with respect to the electrode active material as the weight (solid content) of polyimide.
  • the amount of binder resin (polyimide) used is preferably 1 to 10% by weight based on the positive electrode active material.
  • the amount of binder resin (polyimide) used is preferably 1 to 10% by weight based on the active material, and when a non-carbon material is used as the active material for the negative electrode, 3 to 30% by weight is preferred.
  • the content of the binder resin can be designed in various ways according to the specific surface area of the active material and the content of the conductive material, and is not limited to the above range.
  • the conductive material is not particularly limited as long as it is an electron conductive material that does not cause a chemical change in the electrochemical element.
  • conductive carbon powder such as carbon black, graphite, carbon nanotube, graphene, or the like can be used.
  • commercially available conductive materials include acetylene black series (Denka Black (registered trademark), manufactured by Denki Kagaku Kogyo Co., Ltd.) (or Gulf Oil Company (Gulf Oil Company), etc.), Ketjen Black EC A series (made by Armak Company), Vulcan XC-72 (made by Cabot Company), Super P (made by MMM (MMM)), etc. are used, and these are used. can do.
  • the solvent used for the composite material together with the active material, the binder resin, and the conductive material is a solvent in which the polyimide contained in the binder resin dissolves, and the organic polar solvent used when synthesizing the polyimide is used. Can do.
  • the present invention also provides a lithium secondary battery using the negative electrode and the positive electrode manufactured as described above.
  • the lithium secondary battery includes a negative electrode, a positive electrode, a separation membrane, an electrolyte, and an exterior material.
  • Examples of the lithium secondary battery include a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, and a lithium ion polymer secondary battery.
  • the separation membrane As the separation membrane (separator), commonly used porous polymer films such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer are used. A porous polymer film produced from a polyolefin polymer such as these can be used alone or by laminating these films. Moreover, although the porous nonwoven fabric used normally, for example, the nonwoven fabric which consists of a high melting glass fiber, a polyethylene terephthalate fiber, etc. can be used, it is not limited to this.
  • a nonaqueous electrolytic solution a solid electrolyte, or a gel electrolyte
  • a non-aqueous electrolyte a solution in which a salt represented by the formula: A + B ⁇ is dissolved or dissociated in an organic solvent can be used, but is not limited thereto.
  • a + includes an ion composed of an alkali metal cation such as Li + , Na + , K + or a combination thereof
  • B ⁇ represents PF 6 ⁇ , BF 4 ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , ClO 4 ⁇ , AsF 6 ⁇ , CH 3 CO 2 ⁇ , CF 3 SO 3 ⁇ , N (CF 3 SO 2 ) 2 ⁇ , C (CF 2 SO 2 )
  • Examples thereof include a salt containing an anion such as 3 ⁇ or an ion composed of a combination thereof.
  • organic solvent used for a non-aqueous electrolyte propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), fluoroethylene carbonate ( An organic solvent composed of a mixture of FEC), dipropyl carbonate (DPC), ⁇ -butyrolactone and the like.
  • the exterior material may be in a pouch shape in which a multilayer polymer resin is covered on both sides of an aluminum foil, or in a can shape made of aluminum or steel, but is not limited thereto.
  • Synthesis Example 2 The same apparatus as in Synthesis Example 1 was used. 58.84 g (0.2 mol) of 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride, 5-amino-1- (4′-aminophenyl) -1,3,3-trimethylindane 26 .38 g (0.1 mol) (phenylindane structure-containing aromatic diamine; Ar 3 component in the general formula [IV]), valerolactone 1.5 g (0.015 mol), pyridine 2.4 g (0.03 mol) Then, 200 g of NMP and 30 g of toluene were charged and stirred at room temperature in a nitrogen atmosphere at 200 rpm for 30 minutes, then heated to 180 ° C.
  • Synthesis Comparative Example 1 The same apparatus as in Synthesis Example 1 was used. 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride 58.84 g (0.2 mol), m-phenylenediamine 10.81 g (0.1 mol), valerolactone 1.5 g (0.015) Mol), 2.4 g (0.03 mol) of pyridine, 200 g of NMP, and 30 g of toluene were stirred at room temperature in a nitrogen atmosphere at 200 rpm for 30 minutes, then heated to 180 ° C. and stirred with heating for 1 hour.
  • NMP 360 g and toluene 90 g were added, stirred at room temperature for 30 minutes, then heated to 180 ° C., The mixture was heated and stirred for 1 hour. After removing 45 ml of the water-toluene azeotrope, the reaction was terminated by heating and stirring at 180 ° C. for 2 hours and 30 minutes while removing the reflux from the system. NMP was added to the obtained product for dilution to obtain a block copolymerized polyimide solution having a solid content of 20% by weight.
  • Example 1 100 g of silicon powder having an average particle diameter of 0.2 ⁇ m as the negative electrode active material, 100 g of the polyimide solution produced in Synthesis Example 1 as the binder resin (polyimide solid content: 20 g), 10 g of carbon black as the conductive material, and 100 g of NMP as the solvent were used in the mixer. The slurry (mixed material) added and uniformly dispersed and mixed was produced. The obtained composite material was applied to a copper foil current collector with a thickness of 10 ⁇ m at an area density of 3.5 mg / cm 2 , dried with NMP solvent, and then rolled with a roll presser to reduce 10% of the initial thickness. A negative electrode was produced.
  • Example 2 In Example 1, a negative electrode was produced in the same manner as in Example 1 except that 100 g of the polyimide solution produced in Synthesis Example 2 (polyimide solid content: 20 g) was used as the binder resin.
  • Example 3 A negative electrode was produced in the same manner as in Example 1 except that the mass of the polyimide solution used in Example 1 was 75 g (polyimide solid content: 15 g).
  • Example 4 A negative electrode was produced in the same manner as in Example 1 except that the mass of the polyimide solution used in Example 1 was 50 g (polyimide solid content: 10 g).
  • Example 5 In Example 1, as a binder resin, 100 g of Q-VR-X1413 (block copolymer polyimide solution containing a carboxyl group-containing aromatic diamine residue and an aromatic ether bond-containing aromatic diamine residue) manufactured by PI Engineering Laboratory Co., Ltd. A negative electrode was produced in the same manner as in Example 1 except that (polyimide solid content: 20 g) was used.
  • Q-VR-X1413 block copolymer polyimide solution containing a carboxyl group-containing aromatic diamine residue and an aromatic ether bond-containing aromatic diamine residue
  • Example 6 In Example 1, except that 57 g (polyimide solid content: 20 g) of Q-VR-X1415 (polyimide solution containing a phenylindane structure-containing aromatic diamine residue) manufactured by PI Engineering Laboratory Co., Ltd. was used as the binder resin. A negative electrode was produced in the same manner as in Example 1.
  • Example 1 instead of the polyimide solution produced in Synthesis Example 1, a polyamide acid having the following structure dissolved in NMP at a concentration of 20% by weight was used as the binder resin, and the NMP solvent was dried. A negative electrode was produced in the same manner as in Example 1 except that it was heat-treated at 350 ° C. for 2 hours and imidized on the current collector.
  • Example 2 a negative electrode was produced in the same manner as in Example 1 except that 100 g of the polyimide solution produced in Synthesis Comparative Example 1 (polyimide solid content: 20 g) was used as the binder resin.
  • Example 7 100 g of artificial graphite powder having an average particle size of 8 ⁇ m as the negative electrode active material, 10 g of the polyimide solution manufactured in Synthesis Example 1 (polyimide solid content: 2 g) as the binder resin, and 100 g of NMP as the solvent are added to the mixer and dispersed uniformly. A slurry (composite material) mixed with was manufactured. The obtained composite material was applied to a 10 ⁇ m-thick copper foil current collector at an area density of 10 mg / cm 2 , and after drying the NMP solvent, it was rolled with a roll presser to reduce 30% of the initial thickness. A negative electrode was produced.
  • Example 7 a negative electrode was produced in the same manner as in Example 7 except that 20 g of polyvinylidene fluoride (PVdF) dissolved in NMP at a concentration of 10% by weight was added as a binder resin.
  • PVdF polyvinylidene fluoride
  • Example 8 100 g of lithium nickel cobalt manganese oxide powder (LiNi 0.5 Co 0.2 Mn 0.3 O 2 ) having an average particle size of 10 ⁇ m as a positive electrode active material, 4 g of carbon black as a conductive material, and 15 g of the polyimide solution produced in Synthesis Example 1 as a binder resin (Polyimide solid content: 3 g), 100 g of NMP as a solvent was added to the mixer to produce a slurry (mixed material) that was uniformly dispersed and mixed.
  • LiNi 0.5 Co 0.2 Mn 0.3 O 2 lithium nickel cobalt manganese oxide powder having an average particle size of 10 ⁇ m as a positive electrode active material, 4 g of carbon black as a conductive material, and 15 g of the polyimide solution produced in Synthesis Example 1 as a binder resin (Polyimide solid content: 3 g)
  • the obtained mixture was applied to an aluminum foil current collector with a thickness of 15 ⁇ m at an area density of 20 mg / cm 2 , and after drying the NMP solvent, it was rolled with a roll presser to reduce 40% of the initial thickness.
  • a positive electrode was prepared.
  • Example 8 a positive electrode was produced in the same manner as in Example 8 except that 30 g of polyvinylidene fluoride (PVdF) dissolved in NMP at a concentration of 10% by weight was added as a binder resin.
  • PVdF polyvinylidene fluoride
  • Example 9 a positive electrode was produced in the same manner as in Example 8, except that lithium iron phosphate (LiFePO 4 ) powder having an average particle size of 5 ⁇ m was used as the positive electrode active material.
  • lithium iron phosphate (LiFePO 4 ) powder having an average particle size of 5 ⁇ m was used as the positive electrode active material.
  • Example 9 a positive electrode was produced in the same manner as in Example 9 except that 30 g of polyvinylidene fluoride (PVdF) dissolved in NMP at a concentration of 10% by weight was added as a binder resin.
  • PVdF polyvinylidene fluoride
  • Q-VR-X1413 Block copolymerized polyimide containing a carboxyl group-containing aromatic diamine residue and an aromatic ether bond-containing aromatic diamine residue
  • Q-VR-X1415 polyimide containing phenylindane structure-containing aromatic diamine residue
  • the binder resin of the present invention is more effective than PVdF even when the electrode is a graphite negative electrode, a LiNi 0.5 Co 0.2 Mn 0.3 O 2 positive electrode and a LiFePO 4 positive electrode. It can be seen that the improvement in binding force is significant.
  • Example 10 The silicon negative electrode manufactured in Example 1 was maintained in a vacuum oven at 140 ° C. for 5 hours and dried so that the water content in the electrode was less than 500 ppm, and a 2016 coin cell was manufactured by a normal method. .
  • Lithium is used as the counter electrode, 20 ⁇ m thick porous polyethylene film is used as the separator, and ethylene carbonate (EC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC) are used as the electrolyte in a volume ratio.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • Example 11 In Example 10, a coin cell was manufactured in the same manner as in Example 10 except that the silicon negative electrode manufactured in Example 2 was used as the negative electrode.
  • Example 12 In Example 10, a coin cell was manufactured in the same manner as in Example 10 except that the silicon negative electrode manufactured in Example 3 was used as the negative electrode.
  • Example 13 In Example 10, a coin cell was manufactured in the same manner as in Example 10 except that the silicon negative electrode manufactured in Example 4 was used as the negative electrode.
  • Example 14 In Example 10, a coin cell was manufactured in the same manner as in Example 10 except that the silicon negative electrode manufactured in Example 5 was used as the negative electrode.
  • Example 15 In Example 10, a coin cell was manufactured in the same manner as in Example 10 except that the silicon negative electrode manufactured in Example 6 was used as the negative electrode.
  • Example 10 a coin cell was manufactured in the same manner as in Example 10 except that the silicon negative electrode manufactured in Comparative Example 1 was used as the negative electrode.
  • Example 10 a coin cell was manufactured in the same manner as in Example 10 except that the silicon negative electrode manufactured in Comparative Example 2 was used as the negative electrode.
  • Example 16 In Example 10, a coin cell was manufactured in the same manner as in Example 10 except that the graphite negative electrode manufactured in Example 7 was used as the negative electrode.
  • Example 17 In Example 10, a coin cell was produced in the same manner as in Example 10 except that the positive electrode (lithium nickel cobalt manganese oxide) produced in Example 8 was used as the positive electrode.
  • the positive electrode lithium nickel cobalt manganese oxide
  • Example 18 In Example 10, a coin cell was manufactured in the same manner as in Example 10 except that the positive electrode (lithium iron phosphate) manufactured in Example 9 was used as the positive electrode.
  • the positive electrode lithium iron phosphate
  • the negative electrode is charged at a constant current charge rate of 1.0 C at room temperature to a final voltage of 0.05 V, and the discharge is 1.5 V at a constant current discharge rate of 1.0 C at room temperature. Went up.
  • charging was performed at a normal charging rate of 1.0 C to a final voltage of 4.2 V, and discharging was performed at a normal temperature of 1.0 C at a discharging rate of 3.0 V.
  • the cycle characteristics were calculated by the following equation by repeating charging and discharging under the same conditions, measuring the first discharge capacity and the 50th discharge capacity.
  • Cycle characteristics (%) [(50th discharge capacity (mAh)) / (First discharge capacity (mAh))] ⁇ 100
  • the specific capacity, charge / discharge efficiency and cycle characteristics of the coin cells produced in Examples 10 to 18 and Comparative Examples 6 and 7 were measured, and the results are shown in Table 3 below.
  • the lithium secondary battery provided with the electrode manufactured using the binder resin of the present invention is It can be seen that it exhibits good specific capacity, charge / discharge efficiency and cycle characteristics.
  • the electrode binder resin of the present invention By using the electrode binder resin of the present invention to produce an electrode for a lithium secondary battery, the binding force between the active material particles in the composite material or between the active material particles and the current collector is remarkably increased.
  • the electrode can be easily manufactured.
  • the lithium secondary battery including the electrode manufactured in this way has a high specific capacity and is excellent in charge / discharge efficiency and cycle characteristics. In particular, even when a material containing silicon (silicon) is used as a negative electrode active material, a lithium secondary battery excellent in rapid charge / discharge characteristics, charge / discharge cycle characteristics, active material coverage, charge / discharge efficiency, and safety is provided. It becomes possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

 下記一般式[I]で表される繰返し単位を有する溶剤可溶性ポリイミドを含有する、リチウム二次電池の電極用バインダ樹脂、及びこの電極用バインダ樹脂の製造方法を提供する。 (式中、Zは芳香族又は脂環式のテトラカルボン酸ジ無水物残基であり、Arはカルボキシル基含有芳香族ジアミン残基及び芳香族エーテル結合含有芳香族ジアミン残基であるか、又はフェニルインダン構造含有芳香族ジアミン残基である)

Description

リチウム二次電池の電極用バインダ樹脂、リチウム二次電池用電極及びリチウム二次電池
 本発明は、リチウム二次電池の電極用バインダ樹脂、それを用いて製造されたリチウム二次電池用電極、及びリチウム二次電池に関する。
 リチウム二次電池は、携帯電話、スマートフォン、タブレット、ノートパソコンなどの電子製品の電源として用いられており、電気自動車用の電源やエネルギー貯蔵システムを構成する大容量電池として、市場の需要も急速に増加している。リチウム二次電池の電極は、活物質、導電材、バインダ樹脂及び溶剤などを混合したスラリー(合材)を集電体上に塗布し、溶剤を乾燥した後に一定の厚さに圧延して製造されるが、エネルギー密度と出力密度を上げるため、高い比容量と出力特性を有する活物質を用いる必要がある。
 例えば、リチウム二次電池の正極活物質としては、リチウム遷移金属酸化物やリチウムリン酸鉄等が使用されている。また、負極活物質としては、黒鉛粉末が主に用いられてきたが、シリコン等の非炭素系高容量材料やリチウムチタン酸化物等の使用も増えており、電池のエネルギー密度を更に高めるため、リチウムと合金化する材料も使用されている。
 また、電極の製造に使用されるバインダ樹脂には、活物質、導電材及び集電体との接着強度、活物質被覆性、耐電解液膨潤性、効率、寿命、安全性等の電池特性に加え、電極製造性が容易であることも要求されている。現在、正極用バインダ樹脂としては、PVDF(ポリフッ化ビニリデン)が使用されており、負極用バインダ樹脂としては、SBR(スチレンブタジエンラテックス)とCMC(カルボキシメチルセルロース)の併用系やPVDFが多く使用されている。しかし、これらのバインダ樹脂は、接着強度、酸化劣化及び安全性等の点で使用が制限される場合がある。
 特に、リチウムと合金化する材料としてケイ素(シリコン)を含む活物質等を使用する場合には、リチウムを吸蔵及び放出する際に活物質の体積変化が大きいため、PVDF等の従来のバインダ樹脂では、充放電に伴い活物質が微粉化したり、集電体からの活物質の離脱が起こり、その結果、負極における集電性が低下して、充放電サイクル特性が低下するという問題があった。
 このような問題を解決するため、電極の製造に使用されるバインダ樹脂として、耐熱性や接着強度に優れるポリイミド樹脂の検討がなされている。
 例えば、特許文献1には、NMP溶剤中で芳香族ジアミンと芳香族カルボン酸二無水物との反応により製造したポリアミド酸(ポリイミドの前駆体)と、活物質である黒鉛粉末とを混合してスラリー(合材)を調製し、このスラリーを集電体上に塗布し乾燥させた後、350℃で2時間で熱処理し、集電体上でポリアミド酸をポリイミドに転換して負極を作製する方法が開示されている。
 特許文献2には、NMP溶剤中でジアミンとカルボン酸二無水物との反応により製造した脂肪族又は脂環式のポリアミド酸(ポリイミドの前駆体)と活物質とを混合してスラリー(合材)を調製し、このスラリーを集電体上に塗布し乾燥させた後、250℃で1時間熱処理し、集電体上でポリアミド酸をポリイミドに転換して負極を作製する方法が開示されている。
 特許文献3~6には、ケイ素及び/又はケイ素合金を含む活物質と、バインダとしてポリアミド酸等のポリイミド前駆体を含むスラリーを集電体上に塗布した後、高温で熱処理し、集電体上でポリイミド前駆体を特定のポリイミド化合物に変換して負極を作製する方法が開示されている。
 例えば、特許文献5には、例えば、3,3’,4,4’-ベンゾフェノンテトラカルボン酸ジエチルエステルとm-フェニレンジアミン等との混合物からなるバインダ前駆体溶液と活物質とを含むスラリーを集電体に塗布し、溶剤を乾燥させた後、高温で熱処理して、集電体上でバインダ前駆体を特定構造のポリイミド樹脂とした負極を作製する方法が記載されている。
 しかし、特許文献1~6のいずれの方法でも、バインダ樹脂と、活物質、集電体又は導電材との間の密着性や電池のサイクル特性は依然として不十分であり、ポリアミド酸等のポリイミド前駆体を高温で熱処理する工程を含むため、熱処理工程において活物質又は集電体が酸化されて電池の充放電効率が下がる恐れがあった。
 また、特許文献8には、シロキサン含有ポリイミド樹脂の前駆体と負極活物質を含む合材を集電体上に塗布し、次いで、熱処理により集電体上でポリイミド前駆体をイミド化させて負極を作製する方法が開示されており、特許文献9には、π共役炭素材料と可溶性ポリイミドとの反応生成物を主成分として含有する、電池の電極の導電剤が記載されている。しかし、特許文献8及び9の方法により得られた電極でも、前述したリチウム二次電池用の電極に要求される特性を満たすには不十分であった。
米国特許第5,468,571号公報 米国特許第7,972,725号公報 国際公開第2004/004031号公報 特開2007-242405号公報 特開2008-34352号公報 国際公開第2012/073853号公報 特開平05-179224号公報 特開2010-238562号公報 国際公開第2009/142203号公報
 本発明は、以上の事情に鑑みなされたものであって、その目的は、活物質、導電材及び集電体の間の接着強度を向上させることのできる電極用バインダ樹脂であって、ケイ素(シリコン)を含む負極活物質を用いた場合でも、充放電時のバインダの崩壊や、活物質及び集電体とバインダ樹脂との界面における剥離発生を抑制でき、また、電極製造性や、リチウム二次電池の急速充放電特性、充放電サイクル特性、活物質被覆性、充放電効率及び安全性に優れる電極用バインダ樹脂を提供することにある。
 また、本発明は、このバインダ樹脂を含む合材が集電体上に被着されて成るリチウム二次電池用電極、及びこの電極の製造方法、並びに、この電極を備えたリチウム二次電池を提供することにある。
 本発明者らは、鋭意検討を重ねた結果、リチウム二次電池の電極用バインダ樹脂として使用するポリイミド樹脂に、カルボキシル基又はフェニルインダン構造を導入すると、活物質、導電材及び集電体の間の接着強度が顕著に向上することを見出した。また、フェニルインダン構造を導入したポリイミドの場合には、負極活物質としてケイ素(シリコン)を含む材料を用いた場合でも、バインダ樹脂の崩壊や、活物質及び集電体とバインダ樹脂との界面における剥離の発生が抑制され、電池の諸特性が活物質の体積変化に充分追随可能であることも見出した。
 一方、カルボニル基のみを導入したポリイミドの場合には、活物質の上記体積変化への追随には不十分であったが、更に芳香族エーテル結合のような柔軟性部分をポリイミドに導入することにより、電池の諸特性が活物質の上記体積変化にも追随可能となることを見出し、本発明を完成した。
 すなわち、本発明は、下記一般式[I]で表される繰返し単位を有する溶剤可溶性ポリイミドを含有する、リチウム二次電池の電極用バインダ樹脂、を提供する。
Figure JPOXMLDOC01-appb-C000008
(式中、Zは芳香族若しくは脂環式のテトラカルボン酸ジ無水物残基であり、Arはカルボキシル基含有芳香族ジアミン残基及び芳香族エーテル結合含有芳香族ジアミン残基であるか、又はフェニルインダン構造含有芳香族ジアミン残基である)
 また、本発明は、活物質と上記本発明のバインダ樹脂と導電材が混合された合材が集電体上に被着されて成るリチウム二次電池用電極、を提供する。
 また、本発明は、負極、正極、分離膜、電解質及び外装材を備えたリチウム二次電池において、正極又は負極が、上記本発明の電極であるリチウム二次電池、を提供する。
 また、本発明は、芳香族若しくは脂環式のテトラカルボン酸ジ無水物とカルボキシル基含有芳香族ジアミン及び芳香族エーテル結合含有芳香族ジアミンを脱水縮合反応させるか、又は、芳香族若しくは脂環式のテトラカルボン酸ジ無水物とフェニルインダン構造含有芳香族ジアミンを脱水縮合反応させることにより、下記一般式[I]で表される繰返し単位を有する溶剤可溶性ポリイミドを製造することを含む、リチウム二次電池の電極用バインダ樹脂の製造方法、を提供する。
Figure JPOXMLDOC01-appb-C000009
(式中、Zは芳香族若しくは脂環式のテトラカルボン酸ジ無水物残基であり、Arはカルボキシル基含有芳香族ジアミン残基及び芳香族エーテル結合含有芳香族ジアミン残基であるか、又はフェニルインダン構造含有芳香族ジアミン残基である)
 また、本発明は、活物質と上記本発明の方法により製造されたバインダ樹脂と導電材を含む合材を集電体上に塗布し、乾燥させることを含む、リチウム二次電池用電極の製造方法、を提供する。
 また、本発明は、上記本発明の方法により製造された電極を用いてリチウム二次電池を製造する方法、を提供する。
 更に、本発明は、上記本発明のバインダ樹脂の、リチウム二次電池の電極用バインダ樹脂としての使用、を提供する。
 本発明の電極用バインダ樹脂を用いて、リチウム二次電池用の電極を製造することにより、合材中の活物質粒子間、又は活物質粒子と集電体との間の結着力が顕著に高まり、また、合材を集電体に塗布した後に熱処理工程を経る必要がないため、電極を容易に製造することが可能となる。更に、このようにして製造された電極を備えたリチウム二次電池は、比容量が高く、充放電効率及びサイクル特性に優れるため、電池の出力特性及び寿命を著しく改善することができる。
 特に、負極活物質として、リチウムの吸蔵・放出時の体積変化が大きい、ケイ素(シリコン)を含む材料を用いた場合でも、充放電時のバインダ自体の崩壊や、活物質及び集電体とバインダ樹脂との界面における剥離の発生が抑制されるため、急速充放電特性、充放電サイクル特性、活物質被覆性、充放電効率及び安全性に優れるリチウム二次電池を提供することが可能となる。
本発明の実施例1~9及び比較例1~5で製造された電極の内部抵抗を測定するための装置を示す図である。 本発明の実施例1~6における負極の作製において、負極活物質(シリコン)、バインダ樹脂(ポリイミド溶液)、導電材及び溶剤を含む合材を銅箔集電体に塗布する工程を示す写真である。 本発明の実施例1~6における負極の作製において、銅箔集電体に塗布した合材を乾燥した後の状態を示す写真である。
 本発明におけるリチウム二次電池の電極用バインダ樹脂は、下記一般式(I)で表される繰返し単位を有する溶剤可溶性ポリイミドを含むものである。
Figure JPOXMLDOC01-appb-C000010
 上記一般式[I]中、Zは芳香族若しくは脂環式のテトラカルボン酸ジ無水物残基であり、Arはカルボキシル基含有芳香族ジアミン残基及び芳香族エーテル結合含有芳香族ジアミン残基であるか、又はフェニルインダン構造含有芳香族ジアミン残基である。
 本発明の電極用バインダ樹脂が含むポリイミドの特徴は、以下の(1)及び(2)の少なくともいずれかの構造を有する点にある。
(1)上記一般式[I]中のArがカルボキシル基含有芳香族ジアミン残基である繰返し単位と、Arが芳香族エーテル結合含有芳香族ジアミン残基である繰返し単位の両方を有する構造
(2)上記一般式[I]中のArがフェニルインダン構造含有芳香族ジアミン残基である繰返し単位を有する構造
 上記(1)と(2)のポリイミド構造は、活物質と集電体と導電材の間の接着性を向上させると共に強靭性を付与する剛直構造部分と、充放電時の体積変化に追随可能な柔軟性部分を有するため、活物質粒子間、又は活物質粒子と金属集電体との間の結着力を顕著に向上させ、電池の比容量、充放電効率及び充放電サイクル特性を向上させることができる。
 例えば、構造(1)の場合には、カルボキシル基を有する芳香環部分が剛直構造部分であり、芳香族エーテル結合部分が柔軟性部分である。カルボキシル基は、水酸基、アミノ基等の他の極性基に比べ、接着強度、樹脂安定性及び耐湿性に優れるという点で好ましい。
 また、構造(2)の場合には、フェニルインダン構造が接着性を向上させると共に強靭性を付与する剛直構造部分であるが、下記に示すインダン構造自体にある程度の柔軟性がある。
Figure JPOXMLDOC01-appb-C000011
 従って、上記構造(2)を有するポリイミドは、上記一般式[I]中のArがフェニルインダン構造含有芳香族ジアミン残基である繰返し単位を含む構造であれば、単独重合体でもよく、或いは、柔軟性を有する構造、好ましくは芳香族エーテル結合含有芳香族ジアミン残基を含む繰返し単位とのブロック共重合体としてもよい。フェニルインダン構造を含むポリイミドは、銅、アルミ、ケイ素、チタン等との接着強度に優れるため特に好ましい。
 上記構造(1)を有するポリイミドとしては、下記一般式[II]で表される繰返し単位と、下記一般式[III]で表される繰返し単位を有するブロック共重合体であることが好ましい。
Figure JPOXMLDOC01-appb-C000012
(式中、Zは芳香族若しくは脂環式のテトラカルボン酸ジ無水物残基であり、Arはカルボキシル基含有芳香族ジアミン残基である)
Figure JPOXMLDOC01-appb-C000013
(式中、Zは芳香族若しくは脂環式のテトラカルボン酸ジ無水物残基であり、Arは芳香族エーテル結合含有芳香族ジアミン残基である)
 上記一般式(I)で表される繰返し単位を有する溶剤可溶性ポリイミドは、芳香族若しくは脂環式のテトラカルボン酸ジ無水物とカルボキシル基含有芳香族ジアミン及び芳香族エーテル結合含有芳香族ジアミンを脱水縮合反応させるか、又は、芳香族若しくは脂環式のテトラカルボン酸ジ無水物とフェニルインダン構造含有芳香族ジアミンを脱水縮合反応させることにより得られる。
 カルボキシル基含有芳香族ジアミン(Ar成分)としては、1,3-ジアミノ安息香酸、3,5-ジアミノ安息香酸、2,4-ジアミノフェニル酢酸、2,5-ジアミノテレフタル酸、3,5-ジアミノパラトルイル酸、3,5-ジアミノ-2-ナフタリンカルボン酸、1,4-ジアミノ-2-ナフタリンカルボン酸、3,3’-ジカルボキシ-4,4’-ジアミノジフェニルメタン等が挙げられる。中でも、カルボキシル基を1個有するモノカルボキシル基含有芳香族ジアミン類が好ましい。
 芳香族エーテル結合含有芳香族ジアミン(Ar成分)としては、2,2-ビス[4-(アミノフェノキシ)フェニル]プロパン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]シクロヘキサン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、3-(3’-(3”-アミノフェノキシ)フェニル)アミノ-1-(3’-(3”-アミノフェノキシ)フェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン等が挙げられる。中でも、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン等の、芳香族エーテル結合を2つ有する芳香族ジアミンが好ましい。
 前記構造(1)を有するブロック共重合体を構成するカルボキシル基含有芳香族ジアミン成分(Ar成分)は、全芳香族ジアミン成分の25~60mol%、更には27~50mol%であるのが好ましい。カルボキシル基含有芳香族ジアミン成分(Ar成分)が25mol%未満であると、活物質、導電材及び集電体の間の接着強度が低く、60mol%を超えるとバインダ樹脂層の柔軟性が低下する傾向がある。また、前記構造(1)を有するブロック共重合体中のカルボキシル基含有芳香族ジアミン成分(Ar成分)と芳香族エーテル結合含有芳香族ジアミン成分(Ar成分)とのモル比(脱水縮合反応における反応比率)は、1:0.6~3.0が好ましく、1:0.8~2.7がより好ましく、1:1~2.5が更に好ましい。中でも、(Ar成分)と(Ar成分)の合計が100mol%であることが好ましい。
 また、上記構造(2)(フェニルインダン構造)を有するポリイミドを、柔軟性を有する他の繰返し単位とのブロック共重合体とする場合には、下記一般式[III]で表される繰返し単位と、下記一般式[IV]で表される繰返し単位を含むブロック共重合体であることが好ましい。
Figure JPOXMLDOC01-appb-C000014
(式中、Zは芳香族若しくは脂環式のテトラカルボン酸ジ無水物残基であり、Arは芳香族エーテル結合含有芳香族ジアミン残基である)
Figure JPOXMLDOC01-appb-C000015
(式中、Zは芳香族若しくは脂環式のテトラカルボン酸ジ無水物残基であり、Arはフェニルインダン構造含有芳香族ジアミン残基である)
 フェニルインダン構造とは、下記のインダン骨格に、置換基を有していてもよいフェニル基が置換した構造であり、置換基としては、ハロゲン原子又は炭素数1~5、好ましくは炭素数1~3のアルキル基が挙げられる。フェニルインダン構造含有芳香族ジアミン残基(Ar)としては、下記のインダン骨格の1位又は2位に置換基を有していてもよいフェニル基が置換した構造を含むジアミン残基が好ましく、中でも、下記一般式[V]で表されるジアミン残基であるのが好ましい。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 一般式[V]中、R、R及びRは、各々独立して、水素原子又は炭素数1~5のアルキル基を表し、好ましくは炭素数1~3のアルキル基を表す。また、Rの各々及びRの各々は、独立して水素原子、ハロゲン原子又は炭素数1~5のアルキル基を表し、好ましくは炭素数1~3のアルキル基を表す。
 フェニルインダン構造含有芳香族ジアミン(Ar成分)としては、5-アミノ-1-(4’-アミノフェニル)-1,3,3-トリメチルインダン、6-アミノ-1-(4’-アミノフェニル)-1,3,3-トリメチルインダン、5-アミノ-6-メチル-1-(3’-アミノ-4’-メチルフェニル)-1,3,3-トリメチルインダン、5-アミノ-1-(4’-アミノ-Ph’,Ph’-ジクロロ-フェニル)-Ph,Ph-ジクロロ-1,3,3-トリメチルインダン,6-アミノ-1-(4’-アミノ-Ph’,Ph’-ジクロロ-フェニル)-Ph,Ph-ジクロロ-1,3,3-トリメチルインダン,4-アミノ-6-メチル-1-(3’-アミノ-4’-メチル-フェニル)-1,3,3-トリメチルインダン、Ph-アミノ-1-(Ph’-アミノ-2’,4’-ジメチルフェニル)-1,3,3,4,6-ペンタメチルインダン等が挙げられる。上記例示化合物中のPh及びPh’は、フェニルインダン構造中のフェニル環中の不特定な位置を表わす。
 上記構造(2)(フェニルインダン構造)を有するブロック共重合ポリイミドを構成する、フェニルインダン構造含有芳香族ジアミン成分(Ar成分)は、全芳香族ジアミン成分の25~90mol%、更には27~70mol%であることが好ましい。フェニルインダン構造含有芳香族ジアミン成分(Ar成分)が25mol%未満であると、活物質、導電材及び集電体の間の接着強度が低くなる傾向がある。また、前記ブロック共重合体中のフェニルインダン構造含有芳香族ジアミン成分(Ar成分)と芳香族エーテル結合含有芳香族ジアミン成分(Ar成分)とのモル比(脱水縮合反応における反応比率)は、1:0.10~3.0が好ましく、1:0.13~2.8がより好ましく1:0.15~2.5が更に好ましい。中でも、(Ar成分)と(Ar成分)の合計が100mol%であることが好ましい。
 一般式[I]~[IV]中のZ、Z~Zで表される芳香族テトラカルボン酸ジ無水物残基をポリイミドに導入するための芳香族テトラカルボン酸ジ無水物としては、特に制限はないが、ピロメリット酸ジ無水物、3,4,3’,4’-ベンゾフェノンテトラカルボン酸ジ無水物、3,4,3’,4’-ジフェニルテトラカルボン酸ジ無水物、ビス-(3,4-ジカルボキシフェニル)エーテルジ無水物、2,2-ビス-(3,4-ジカルボキシフェニル)ヘキサフルオロプロパンジ無水物、4,4’-オキシジフタル酸ジ無水物等が挙げられる。
 また、Z、Z~Zで表される脂環式テトラカルボン酸ジ無水物残基をポリイミドに導入するための脂環式テトラカルボン酸ジ無水物としては、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸ジ無水物、ノルボルナン-2-スピロ-α-シクロアルカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸ジ無水物、1,2,3,4-シクロブタンテトラカルボン酸ジ無水物、1,2,3,4-シクロペンタンテトラカルボン酸ジ無水物、1,2,4,5-シクロヘキサンテトラカルボン酸ジ無水物、2,3,5-トリカルボキシシクロペンチル酢酸ジ無水物、3,5,6-トリカルボキシノルボルナン-2-酢酸ジ無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸ジ無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]-フラン-1,3-ジオン、1,3,3a,4,5,9b-ヘキサヒドロ-5-メチル-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]-フラン-1,3-ジオン、1,3,3a,4,5,9b-ヘキサヒドロ-8-メチル-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]-フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸ジ無水物、ビシクロ[2,2,2]-オクト-7-エン-2,3,5,6-テトラカルボン酸ジ無水物、ビシクロ[2,2,1]-ヘプタン-2,3,5,6-テトラカルボン酸ジ無水物及びデカハイドロジメタノナフタレン-2,3,6,7-テトラカルボン酸ジ無水物等が挙げられる。
 溶剤可溶性ポリイミドの合成方法は公知の方法を用いればよく、特に制限されないが、上述したテトラカルボン酸ジ無水物と芳香族ジアミンをほぼ等量用いて、有機極性溶媒中、触媒及び脱水剤の存在下、160~200℃で数時間反応させることにより、溶剤可溶性のポリイミドを合成できる。有機極性溶媒としては、N-メチルピロリドン(NMP)、γ-ブチロラクトン、N,N’-ジメチルアセトアミド、N,N’-ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、テトラヒドロチオフェン-1,1-オキシド等が用いられる。イミド化反応によって生成する水は、トルエン、キシレン、テトラヒドロナフタリン等の脱水剤と共沸して除かれる。触媒としては、無水酢酸/トリエチルアミン、γ-バレロラクトン/ピリジン等の酸又は塩基が用いられる。
 ポリイミドを共重合体とする場合には、数種のテトラカルボン酸ジ無水物と芳香族ジアミンとを同時に混合して、縮合反応させるとランダム共重合体が得られるが、このランダム重合体は好ましくない特性に左右される欠点があるため、ランダム共重合体よりも前述のようなブロック共重合体とするのが好ましい。ブロック共重合体は、例えば、二段階の逐次添加反応によって製造することができ、第一段階でテトラカルボン酸ジ無水物と芳香族ジアミンからポリイミドオリゴマーを合成し、次いで第二段階で、更にテトラカルボン酸ジ無水物及び/又は芳香族ジアミンを添加して、重縮合させてブロック共重合ポリイミドとすることができる。
 本発明における「溶剤可溶性」なる用語は、ポリイミドの合成において使用する有機極性溶媒と、後述する合材に使用する溶剤に対して使用する用語であり、100gの溶剤中に5g以上溶解するポリイミドであることを意味する。合成されたポリイミドは、上記有機極性溶媒又は後述する合材に使用する溶剤に、例えば、固形分が10~30重量%となるよう溶解させた溶液の状態でバインダ樹脂として用いることができる。溶剤可溶性ポリイミドの適正な重量平均分子量(Mw)は、好ましくは20,000~100,000であり、適正な粘度は、固形分が20~40重量%の場合で、好ましくは2~10Pa・s/25℃である。共重合反応の条件等を最適化して、ポリイミドの分子量や粘度を上記範囲に適正化することにより、ポリイミドを含有するバインダ樹脂の活物質被覆性や耐電解液膨潤性を向上させることができる。また、溶剤可溶性ポリイミドのガラス転移温度(Tg)(TMA測定法による)は200℃以上であると、PVDF(常用使用温度の上限:150℃)に比べ安全性が大幅に向上するため好ましい。
 このような溶剤可溶性ポリイミドは市販されているものもあり、特に好適な市販品としては、株式会社ピーアイ技術研究所のQ-VR-X1413(カルボキシル基含有芳香族ジアミン残基と芳香族エーテル結合含有芳香族ジアミン残基を含むブロック共重合ポリイミド)、Q-VR-X1415(フェニルインダン構造含有芳香族ジアミン残基を含むポリイミド)等が挙げられる。
 上記の適正範囲の粘度及び分子量を有し、完全にイミド化された溶剤可溶性ポリイミドを電極用バインダ樹脂として用いることにより、活物質、導電材及びバインダ樹脂を含む合材を、集電体の両面上に塗布する工程が容易となり、電極製造性が容易となる。具体的には、集電体に塗布された電極層の膜厚均一性が優れ、ボイドも発生しにくくなるという利点がある。
 また、本発明のバインダ樹脂として使用するポリイミドは、完全にイミド化したポリイミドであるため、合材を集電体に塗布した後にイミド化のための高温での熱処理を必要としない。従って、本発のバインダ樹脂は、合材を集電体に塗布した後にイミド化のための高温での熱処理(300℃以上)を要するポリアミック酸(ポリイミド前駆体)に比べ、電極製造性に優れるという利点がある
 本発明の特定のバインダ樹脂を用いることにより、リチウム二次電池の電極を製造することができる。リチウム二次電池の電極としては、電極活物質として、リチウム金属の酸化還元電位に対して3V以上の高い電位を有する正極活物質を用いる正極と、0~2.0Vの範囲の低い電位を有する負極活物質を用いる負極を使用する。
 電極に用いられる材料及び電極層の形成方法に特に制限はないが、リチウム二次電池の電極の製造において用いられる公知の材料及び方法を採用することができる。具体的には、正極又は負極の活物質、本発明のバインダ樹脂、導電材及び溶剤をミキサーを用いて混合し、均一に分散させてスラリーとした合材を調製し、この合材をアルミニウム又は銅箔からなる集電体の両面に塗布する。次いで溶剤を乾燥させ、ロールプレッサーで加圧成形し、一定の幅に切断することにより、リチウム二次電池の正極又は負極を製造することができる。
 正極活物質としては、粉末形態になされたリチウム含有遷移金属酸化物又はリチウム含有リン酸塩が好ましい。リチウム含有遷移金属酸化物としては、LiCoO(0.5<x<1.3)、LiNiO(0.5<x<1.3)、LiMnO(0.5<x<1.3)、LiMn(0.5<x<1.3)、Li(NiCoMn)O(0.5<x<1.3、0<a<1、0<b<1、0<c<1、a+b+c=1)、LiNi1-yCo(0.5<x<1.3、0<y<1)、LiCo1-yMn(0.5<x<1.3、0≦y<1)、LiNi1-yMn(0.5<x<1.3、0≦y<1)、Li(NiCoMn)O(0.5<x<1.3、0<a<2、0<b<2、0<c<2、a+b+c=2)、LiMn2-zNi(0.5<x<1.3、0<z<2)、LiMn2-zCo(0.5<x<1.3、0<z<2)からなる群から選択される1種、又は2種以上の混合物が挙げられる。また、リチウム含有リン酸塩としては、LiCoPO(0.5<x<1.3)及びLiFePO(0.5<x<1.3)等のリチウム含有遷移金属リン酸塩が好ましい。
 前記リチウム含有遷移金属酸化物は、表面をアルミニウム(Al)などの金属や金属酸化物でコーティングしてもよい。また、前記リチウム含有遷移金属酸化物の他に、硫化物、セレン化物及びハロゲン化物などを用いてもよい。
 負極活物質としては、粉末形態になされた人造黒鉛、天然黒鉛、ハードカーボン、ソフトカーボン等の炭素材料、シリコン(Si)やシリコン合金等のシリコン含有物質、スズ(Sn)、リチウムチタン酸化物(LiTi12)などの非炭素材料から選択された1種又は2種以上の混合物が挙げられるが、特に限定されるものではない。中でも、シリコン含有物質、黒鉛、遷移金属酸化物等の粉末からなる群から選択された1種又は2種以上の混合物であるか、又はリチウムチタン酸化物を用いるのが好ましく、特にはシリコン含有物質が好ましい。
 本発明のバインダ樹脂は、ポリイミドの重量(固形分)として、電極活物質に対し1~30重量%の範囲で使用できる。正極の場合は、バインダ樹脂(ポリイミド)の使用量は正極活物質に対し1~10重量%が好ましい。負極の活物質として炭素材を使用する場合は、バインダ樹脂(ポリイミド)の使用量は活物質に対し1~10重量%が好ましく、負極の活物質として非炭素材を使用する場合は、3~30重量%が好ましい。しかし、活物質の比表面積と導電材の含量によって、バインダ樹脂の含量は多様に設計され得るので、上記範囲に限定されるものではない。
 導電材としては、電気化学素子で化学変化を起こさない電子伝導性物質であれば、特に制限はない。一般に、カーボンブラック、黒鉛、カーボンナノチューブ、グラフェンなどの導電性炭素粉末を用いることができる。現在、導電材として市販されている商品としては、アセチレンブラック系列(デンカ ブラック(登録商標)、電気化学工業株式会社製)(又は、ガルフオイルカンパニー(Gulf Oil Company)製等)、ケッチェンブラックEC系列(アルマック社(Armak Company)製)、ブルカン(Vulcan)XC-72(キャボット社(Cabot Company)製)及びスーパーピー(Super P)(エムエムエム(MMM)社製)等が挙げられ、これらを使用することができる。
 上記活物質、バインダ樹脂及び導電材と共に合材に使用される溶剤としては、バインダ樹脂に含まれるポリイミドが溶解する溶剤であって、ポリイミドを合成する際に使用した上記有機極性溶媒を使用することができる。
 本発明は、上記のように製造した負極及び正極を用いたリチウム二次電池も提供する。リチウム二次電池は、負極、正極、分離膜、電解質及び外装材を備える。リチウム二次電池としては、リチウム金属二次電池、リチウムイオン二次電池、リチウムポリマー二次電池及びリチウムイオンポリマー二次電池などが挙げられる。
 分離膜(セパレータ)としては、通常使用される多孔性高分子フィルム、例えば、エチレン単独重合体、プロピレン単独重合体、エチレン/ブテン共重合体、エチレン/ヘキセン共重合体及びエチレン/メタクリレート共重合体等のポリオレフィン系高分子で製造した多孔性高分子フィルムを、単独で、又はこれらのフィルムを積層して用いることができる。また、通常使用される多孔性不織布、例えば、高融点のガラス繊維、ポリエチレンテレフタレート繊維等からなる不織布も使用できるが、これに限定されない。
 電解質としては、非水電解液、固体電解質又はゲル電解質を用いることができる。非水電解液としては、式:A+-で表される塩が有機溶媒に溶解又は解離されたものが使用できるが、これらに限定されない。式:A+-で表される塩としては、A+が、Li+、Na+、K+のようなアルカリ金属カチオン又はこれらの組み合わせからなるイオンを含み、Bは、PF -、BF -、Cl-、Br-、I-、ClO -、AsF -、CHCO -、CFSO -、N(CFSO -、C(CFSO -のようなアニオン又はこれらの組み合わせからなるイオンを含む塩が挙げられる。また、非水電解液に使用される有機溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、フルオロエチレンカーボネート(FEC)、ジプロピルカーボネート(DPC)、γ-ブチロラクトンなどの混合物からなる有機溶媒が挙げられる。
 外装材としては、アルミ箔の両面に多層のポリマー樹脂を被せてなるパウチ(pouch)状であってもよく、アルミニウムや鋼鉄からなる缶状であってもよいが、これらに限定されない。
 以下、本発明を実施例に基づき詳細に説明するが、本発明は様々な他の実施形態に変形できるものであり、下記実施例に限定されることはない。
1. ポリイミドバインダ樹脂の合成
合成実施例1
 ガラス製のセパラブル三つ口フラスコに、撹拌機、チッ素導入管、及び水分受容器を備えた冷却管を取り付けた。3,4,3’,4’-ビフェニルテトラカルボン酸ジ無水物58.84g(0.2モル)、1,3-ジアミノ安息香酸15.21g(0.1モル)(カルボキシル基含有芳香族ジアミン;一般式[II]におけるAr成分)、バレロラクトン1.5g(0.015モル)、ピリジン2.4g(0.03モル)、NMP200g、トルエン30gを仕込み、室温で、窒素雰囲気下、200rpmで30分撹拌した後、180℃に昇温して1時間加熱撹拌した。トルエン-水の共沸分15mlを除去し、空冷後、4,4’-オキシジフタル酸ジ無水物46.53g(0.15モル)、1,3-ビス(3-アミノフェノキシ)ベンゼン73.08g(0.25モル)(芳香族エーテル結合含有芳香族ジアミン;一般式[III]におけるAr成分)、NMP360g、トルエン90gを加え、室温で30分撹拌した後、180℃に昇温して1時間加熱撹拌した。水-トルエンの共沸分45mlを除去した後、還流物を系外に除きながら、180℃で2時間30分加熱撹拌して反応を終了した。得られた生成物にNMPを加えて希釈し、固形分20重量%のブロック共重合ポリイミド溶液を得た。
合成実施例2
 合成実施例1と同様の装置を用いた。3,4,3’,4’-ビフェニルテトラカルボン酸ジ無水物58.84g(0.2モル)、5-アミノ-1-(4’-アミノフェニル)-1,3,3-トリメチルインダン26.38g(0.1モル)(フェニルインダン構造含有芳香族ジアミン;一般式[IV]におけるAr成分)、バレロラクトン1.5g(0.015モル)、ピリジン2.4g(0.03モル)、NMP200g、トルエン30gを仕込み、室温で、窒素雰囲気下、200rpmで30分撹拌した後、180℃に昇温して1時間加熱撹拌した。水-トルエンの共沸分15mlを除去し、空冷後、4,4’-オキシジフタル酸ジ無水物46.53g(0.15モル)、1,3-ビス(3-アミノフェノキシ)ベンゼン73.08g(0.25モル)(芳香族エーテル結合含有芳香族ジアミン;一般式[III]におけるAr成分)、NMP360g、トルエン90gを加え、室温で30分撹拌した後、180℃に昇温して、1時間加熱撹拌した。水-トルエンの共沸分45mlを除去した後、還流物を系外に除きながら、180℃で2時間30分加熱撹拌して反応を終了した。得られた生成物にNMPを加えて希釈し、固形分20重量%のブロック共重合ポリイミド溶液を得た。
合成比較例1
 合成実施例1と同様の装置を用いた。3,4,3’,4’-ビフェニルテトラカルボン酸ジ無水物58.84g(0.2モル)、m-フェニレンジアミン10.81g(0.1モル)、バレロラクトン1.5g(0.015モル)、ピリジン2.4g(0.03モル)、NMP200g、トルエン30gを仕込み、室温で、窒素雰囲気下、200rpmで30分撹拌した後、180℃に昇温して1時間加熱撹拌した。水-トルエンの共沸分15mlを除去し、空冷後、4,4’-オキシジフタル酸ジ無水物46.53g(0.15モル)、1,3-ビス(3-アミノフェノキシ)ベンゼン73.08g(0.25モル)(芳香族エーテル結合含有芳香族ジアミン;一般式[III]におけるAr成分)、NMP360g、トルエン90gを加え、室温で30分撹拌した後、180℃に昇温して、1時間加熱撹拌した。水-トルエンの共沸分45mlを除去した後、還流物を系外に除きながら、180℃で2時間30分加熱撹拌して反応を終了した。得られた生成物にNMPを加えて希釈し、固形分20重量%のブロック共重合ポリイミド溶液を得た。
 合成実施例1、2及び合成比較例1で得られたポリイミド溶液の物性を、株式会社ピーアイ技術研究所製Q-VR-X1413(カルボキシル基含有芳香族ジアミン残基と芳香族エーテル結合含有芳香族ジアミン残基を含むブロック共重合ポリイミド)、及びQ-VR-X1415(フェニルインダン構造含有芳香族ジアミン残基を含むポリイミド)の物性と共に、下記表1に示す。
Figure JPOXMLDOC01-appb-T000018
2. 電極の製造
実施例1
 負極活物質として平均粒径0.2μmのシリコン粉末100g、バインダ樹脂として合成実施例1で製造されたポリイミド溶液100g(ポリイミド固形分:20g)、導電材としてカーボンブラック10g、溶剤としてNMP100gをミキサーに添加し、均一に分散と混合がなされたスラリー(合材)を製造した。得られた合材を10μm厚の銅箔集電体に面積密度3.5mg/cmで塗布し、NMP溶剤を乾燥させた後、ロールプレッサーで圧延して最初の厚さの10%を減少させた負極を作製した。
実施例2
 実施例1において、バインダ樹脂として合成実施例2で製造されたポリイミド溶液100g(ポリイミド固形分:20g)を用いたこと以外は、実施例1と同様の方法で負極を作製した。
実施例3
 実施例1で使用したポリイミド溶液の質量が75g(ポリイミド固形分:15g)であること以外は、実施例1と同様の方法で負極を作製した。
実施例4
 実施例1で使用したポリイミド溶液の質量が50g(ポリイミド固形分:10g)であること以外は、実施例1と同様の方法で負極を作製した。
実施例5
 実施例1において、バインダ樹脂として、株式会社ピーアイ技術研究所製Q-VR-X1413(カルボキシル基含有芳香族ジアミン残基と芳香族エーテル結合含有芳香族ジアミン残基を含むブロック共重合ポリイミド溶液)100g(ポリイミド固形分:20g)を用いたこと以外は、実施例1と同様の方法で負極を作製した。
実施例6
 実施例1において、バインダ樹脂として、株式会社ピーアイ技術研究所製Q-VR-X1415(フェニルインダン構造含有芳香族ジアミン残基を含むポリイミド溶液)57g(ポリイミド固形分:20g)を用いたこと以外は、実施例1と同様の方法で負極を作製した。
比較例1
 実施例1において、バインダ樹脂として、合成実施例1で製造されたポリイミド溶液の代わりに、NMPに20重量%の濃度で溶解させた下記構造のポリアミド酸を使用し、NMP溶剤を乾燥させた後、350℃で2時間熱処理して、集電体上でイミド化反応させたこと以外は、実施例1と同様の方法で負極を作製した。
Figure JPOXMLDOC01-appb-C000019
比較例2
 実施例1において、バインダ樹脂として、合成比較例1で製造されたポリイミド溶液100g(ポリイミド固形分:20g)を用いたこと以外は、実施例1と同様の方法で負極を作製した。
実施例7
 負極活物質として、平均粒径8μmの人造黒鉛粉末100g、バインダ樹脂として、合成実施例1で製造されたポリイミド溶液10g(ポリイミド固形分:2g)、溶剤としてNMP100gをミキサーに添加し、均一に分散と混合がなされたスラリー(合材)を製造した。得られた合材を10μm厚の銅箔集電体に面積密度10mg/cmで塗布し、NMP溶剤を乾燥させた後、ロールプレッサーで圧延して最初の厚さの30%を減少させた負極を作製した。
比較例3
 実施例7において、バインダ樹脂として、NMPに10重量%濃度で溶解させたポリフッ化ビニリデン(PVdF)20gを添加したこと以外は、実施例7と同様の方法で負極を作製した。
実施例8
 正極活物質として、平均粒径10μmのリチウムニッケルコバルトマンガン酸化物粉末(LiNi0.5Co0.2Mn0.32)100g、導電材としてカーボンブラック4g、バインダ樹脂として合成実施例1で製造されたポリイミド溶液15g(ポリイミド固形分:3g)、溶剤としてNMP100gをミキサーに添加し、均一に分散と混合がなされたスラリー(合材)を製造した。得られた合材を15μm厚さのアルミ箔集電体に面積密度20mg/cmで塗布し、NMP溶剤を乾燥させた後、ロールプレッサーで圧延して最初の厚さの40%を減少させた正極を作製した。
比較例4
 実施例8において、バインダ樹脂として、NMPに10重量%濃度で溶解させたポリフッ化ビニリデン(PVdF)30gを添加したこと以外は、実施例8と同様の方法で正極を作製した。
実施例9
 実施例8において、正極活物質として平均粒径5μmのリチウムリン酸鉄(LiFePO4)粉末を用いたこと以外は、実施例8と同様の方法で正極を作製した。
比較例5
 実施例9において、バインダ樹脂として、NMPに10重量%濃度で溶解させたポリフッ化ビニリデン(PVdF)30gを添加したこと以外は、実施例9と同様の方法で正極を作製した。
3. 電極の特性評価
(1)電極の結着力測定
 幅20mmの接着テープを電極に貼り付けた後、引張強度機(テストン社(TESTONE Co.,Ltd.(Korea))製、TO-100-1C)を用いてテープと電極間の結着力(gf単位)を測定した。
(2)電極の内部抵抗測定
 実施例及び比較例で製造された電極を、直径10mmにパンチングして測定用試料を作製した。図2に示す抵抗測定装置(アジレント・テクノロジー株式会社製、マルチメータ34401A)を準備し、試料を治具(Jig)の中央の挿入口に入れ、80psiの圧力で空圧シリンダーを用いて圧着した。次いで、一定の電流を通して計測機で抵抗(mΩ単位)を測定した。
 前記実施例1~9及び比較例1~5で製造された電極の結着力と内部抵抗をそれぞれ測定し、下記表2に示した。
Figure JPOXMLDOC01-appb-T000020
*1 Q-VR-X1413:カルボキシル基含有芳香族ジアミン残基と芳香族エーテル結合含有芳香族ジアミン残基を含むブロック共重合ポリイミド
*2 Q-VR-X1415:フェニルインダン構造含有芳香族ジアミン残基を含むポリイミド
 表2において、ポリイミド溶液の質量が同じ(ポリイミド固形分の質量も同じ)である実施例1及び2と比較例2を比べると、合成実施例1のポリイミド(カルボキシル基含有芳香族ジアミン残基及び芳香族エーテル結合含有芳香族ジアミン残基を有する)を用いた実施例1のシリコン負極(結着力:540gf、内部抵抗:195mΩ)と、合成実施例2のポリイミド(フェニルインダン構造含有芳香族ジアミン残基と芳香族エーテル結合含有芳香族ジアミン残基を有する)を用いた実施例2のシリコン負極(結着力:420gf、内部抵抗:238mΩ)は、合成比較例1のポリイミド(芳香族エーテル結合含有芳香族ジアミン残基を有するが、カルボキシル基含有芳香族ジアミン残基やフェニルインダン構造含有芳香族ジアミン残基は有さない)を用いた比較例2のシリコン負極(結着力:190gf、内部抵抗:270mΩ)に比べ、結着力の向上が顕著であることが分かる。
 また、実施例7~9と比較例3~5の比較より、電極が黒鉛負極、LiNi0.5Co0.2Mn0.32正極及びLiFePO4正極の場合でも、本発明のバインダ樹脂は、PVdFに比べて結着力の向上が顕著であることが分かる。
4. リチウム二次電池コインセルの製造
実施例10
 実施例1で製造されたシリコン負極を140℃の真空オーブン中に5時間維持し、電極内の水分含量が500ppm未満となるように乾燥させ、通常の方法により2016の大きさのコインセルを製造した。相手電極としてはリチウムを使用し、セパレータとしては、20μm厚の多孔性ポリエチレンフィルムを使用し、電解質としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とエチルメチルカーボネート(EMC)が体積比で3:3:4で構成された溶媒に、リチウム塩として1.2M濃度のリチウムヘキサフルオロホスフェート(LiPF6)を溶解させた電解液を用いた。
実施例11
 実施例10において、負極として実施例2で製造されたシリコン負極を用いたこと以外は、実施例10と同様の方法でコインセルを製造した。
実施例12
 実施例10において、負極として実施例3で製造されたシリコン負極を用いたこと以外は、実施例10と同様の方法でコインセルを製造した。
実施例13
 実施例10において、負極として実施例4で製造されたシリコン負極を用いたこと以外は、実施例10と同様の方法でコインセルを製造した。
実施例14
 実施例10において、負極として実施例5で製造されたシリコン負極を用いたこと以外は、実施例10と同様の方法でコインセルを製造した。
実施例15
 実施例10において、負極として実施例6で製造されたシリコン負極を用いたこと以外は、実施例10と同様の方法でコインセルを製造した。
比較例6
 実施例10において、負極として比較例1で製造されたシリコン負極を用いたこと以外は、実施例10と同様の方法でコインセルを製造した。
比較例7
 実施例10において、負極として比較例2で製造されたシリコン負極を用いたこと以外は、実施例10と同様の方法でコインセルを製造した。
実施例16
 実施例10において、負極として実施例7で製造された黒鉛負極を用いたこと以外は、実施例10と同様の方法でコインセルを製造した。
実施例17
 実施例10において、正極として実施例8で製造された正極(リチウムニッケルコバルトマンガン酸化物)を用いたこと以外は、実施例10と同様の方法でコインセルを製造した。
実施例18
 実施例10において、正極として実施例9で製造された正極(リチウムリン酸鉄)を用いたこと以外は、実施例10と同様の方法でコインセルを製造した。
5. コインセルの特性評価
(1)比容量(mAh/g)の測定
 負極については、充電は、常温で0.1Cの定電流充電率で終止電圧0.05Vまで行い、放電は、常温で0.1Cの定電流放電率で1.5Vまで行った。正極については、充電は、常温で0.1Cの充電率で終止電圧4.2Vまで行い、放電は、常温で0.1Cの放電率で3.0Vまで行った。比容量は、コインセルの製造時に用いられた電極における活物質量(g)を算出し、測定された放電容量(mAh)をこの活物質量(g)で除することにより求めた。
(2)充放電効率(%)の測定
 充放電効率は、前記(1)で測定した最初の充電容量と放電容量を用いて、次式により算出した。
充放電効率(%)=(放電容量(mAh)/充電容量(mAh))×100
(3)サイクル特性の測定
 負極については、充電は、常温で1.0Cの定電流充電率で終止電圧0.05Vまで行い、放電は、常温で1.0Cの定電流放電率で1.5Vまで行った。正極については、充電は、常温で1.0Cの充電率で終止電圧4.2Vまで行い、放電は、常温で1.0Cの放電率で3.0Vまで行った。サイクル特性は、同様の条件で充電と放電を繰り返し、最初の放電容量と50回目の放電容量を測定して、次式により算出した。
サイクル特性(%)
=[(50回目の放電容量(mAh))/(最初の放電容量(mAh))]×100
 上記実施例10~18、並びに比較例6及び7で製造したコインセルの比容量、充放電効率及びサイクル特性をそれぞれ測定し、下記表3に結果を示した。
Figure JPOXMLDOC01-appb-T000021
 表3において、電極の作成に使用したポリイミド溶液の質量が同じ(ポリイミド固形分の質量も同じ)である実施例10及び11のコインセルと比較例7のコインセルを比べると、合成実施例1のポリイミド(カルボキシル基含有芳香族ジアミン残基及び芳香族エーテル結合含有芳香族ジアミン残基を有する)を用いた実施例10のコインセルと、合成実施例2のポリイミド(フェニルインダン構造含有芳香族ジアミン残基と芳香族エーテル結合含有芳香族ジアミン残基を有する)を用いた実施例11のコインセルは、合成比較例1のポリイミド(芳香族エーテル結合含有芳香族ジアミン残基を有するが、カルボキシル基含有芳香族ジアミン残基やフェニルインダン構造含有芳香族ジアミン残基は有さない)を用いた比較例7のコインセルに比べ、比容量、充放電効率及びサイクル特性の向上が顕著であることが分かる。
 また、実施例16~18より、電極が黒鉛負極、LiNi0.5Co0.2Mn0.32正極及びLiFePO4正極の場合でも、本発明のバインダ樹脂を用いて製造した電極を備えたリチウム二次電池は、良好な比容量、充放電効率及びサイクル特性を示すことが分かる。
 本発明の電極用バインダ樹脂を用いて、リチウム二次電池用の電極を製造することにより、合材中の活物質粒子間、又は活物質粒子と集電体との間の結着力が顕著に高まり、電極を容易に製造することが可能となる。更に、このようにして製造された電極を備えたリチウム二次電池は、比容量が高く、充放電効率及びサイクル特性に優れる。
 特に、負極活物質として、ケイ素(シリコン)を含む材料を用いた場合でも、急速充放電特性、充放電サイクル特性、活物質被覆性、充放電効率及び安全性に優れるリチウム二次電池を提供することが可能となる。
1 測定装置
2 ケーブル
3 シリンダー
4 試料位置
5 治具
6 圧縮空気送入部

Claims (16)

  1.  下記一般式[I]で表される繰返し単位を有する溶剤可溶性ポリイミドを含有する、リチウム二次電池の電極用バインダ樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Zは芳香族若しくは脂環式のテトラカルボン酸ジ無水物残基であり、Arはカルボキシル基含有芳香族ジアミン残基及び芳香族エーテル結合含有芳香族ジアミン残基であるか、又はフェニルインダン構造含有芳香族ジアミン残基である)
  2.  前記溶剤可溶性ポリイミドが、下記一般式[II]で表される繰返し単位と、下記一般式[III]で表される繰返し単位を有するブロック共重合体である請求項1記載の電極用バインダ樹脂。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Zは芳香族若しくは脂環式のテトラカルボン酸ジ無水物残基であり、Arはカルボキシル基含有芳香族ジアミン残基である)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Zは芳香族若しくは脂環式のテトラカルボン酸ジ無水物残基であり、Arは芳香族エーテル結合含有芳香族ジアミン残基である)
  3.  前記溶剤可溶性ポリイミドを構成するカルボキシル基含有芳香族ジアミン成分が、全芳香族ジアミン成分の25~60mol%である請求項2記載の電極用バインダ樹脂。
  4.  下記一般式[IV]で表される繰返し単位を有する溶剤可溶性ポリイミドを含有する請求項1記載の電極用バインダ樹脂。
    Figure JPOXMLDOC01-appb-C000004
    (式中、Zは芳香族若しくは脂環式のテトラカルボン酸ジ無水物残基であり、Arはフェニルインダン構造含有芳香族ジアミン残基である)
  5.  前記溶剤可溶性ポリイミドが、下記一般式[III]で表される繰返し単位と、下記一般式[IV]で表される繰返し単位を有するブロック共重合体である請求項4記載の電極用バインダ樹脂。
    Figure JPOXMLDOC01-appb-C000005
    (式中、Zは芳香族若しくは脂環式のテトラカルボン酸ジ無水物残基であり、Arは芳香族エーテル結合含有芳香族ジアミン残基である)
    Figure JPOXMLDOC01-appb-C000006
    (式中、Zは芳香族若しくは脂環式のテトラカルボン酸ジ無水物残基であり、Arはフェニルインダン構造含有芳香族ジアミン残基である)
  6.  前記溶剤可溶性ポリイミドを構成するフェニルインダン構造含有芳香族ジアミン成分が、全芳香族ジアミン成分の25~90mol%である請求項5記載の電極用バインダ樹脂。
  7.  活物質と請求項1~6のいずれか1項に記載されたバインダ樹脂と導電材が混合された合材が集電体上に被着されて成るリチウム二次電池用電極。
  8.  前記電極が、活物質として、シリコン含有物質、黒鉛、遷移金属酸化物からなる群から選択された1種または2種以上の混合物を用いた負極である、請求項7記載の電極。
  9.  前記電極が、活物質としてリチウムチタン酸化物を用いた負極である、請求項7記載の電極。
  10.  前記電極が、活物質としてリチウム含有遷移金属酸化物又はリチウム含有リン酸塩を用いた正極である、請求項7記載の電極。
  11.  活物質に対するバインダ樹脂の含量が、ポリイミドの重量(固形分)として1~30重量%である請求項7~10のいずれか1項に記載の電極。
  12.  負極、正極、分離膜、電解質及び外装材を備えたリチウム二次電池において、正極または負極が、請求項7~11のいずれか1項に記載された電極であるリチウム二次電池。
  13.  芳香族若しくは脂環式のテトラカルボン酸ジ無水物とカルボキシル基含有芳香族ジアミン及び芳香族エーテル結合含有芳香族ジアミンを反応させるか、又は、芳香族若しくは脂環式のテトラカルボン酸ジ無水物とフェニルインダン構造含有芳香族ジアミンを反応させることにより、下記一般式[I]で表される繰返し単位を有する溶剤可溶性ポリイミドを製造することを含む、リチウム二次電池の電極用バインダ樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000007
    (式中、Zは芳香族若しくは脂環式のテトラカルボン酸ジ無水物残基であり、Arはカルボキシル基含有芳香族ジアミン残基及び芳香族エーテル結合含有芳香族ジアミン残基であるか、又はフェニルインダン構造含有芳香族ジアミン残基である)
  14.  活物質と請求項13に記載の方法により製造されたバインダ樹脂と導電材を含む合材を集電体上に塗布し、乾燥させることを含む、リチウム二次電池用電極の製造方法。
  15.  請求項14に記載の方法により製造された電極を用いてリチウム二次電池を製造する方法。
  16.  請求項1~6に記載のバインダ樹脂の、リチウム二次電池の電極用バインダ樹脂としての使用。
PCT/JP2016/052859 2015-02-05 2016-02-01 リチウム二次電池の電極用バインダ樹脂、リチウム二次電池用電極及びリチウム二次電池 WO2016125718A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/549,066 US11569508B2 (en) 2015-02-05 2016-02-01 Binder resin for lithium secondary battery electrode, electrode for lithium secondary battery, and lithium secondary battery
JP2016573337A JP6649283B2 (ja) 2015-02-05 2016-02-01 リチウム二次電池の電極用バインダ樹脂、リチウム二次電池用電極及びリチウム二次電池
CN201680008828.9A CN107431207B (zh) 2015-02-05 2016-02-01 锂二次电池的电极用粘合剂树脂、锂二次电池用电极和锂二次电池
KR1020177024046A KR102504976B1 (ko) 2015-02-05 2016-02-01 리튬 이차 전지의 전극용 바인더 수지, 리튬 이차 전지용 전극 및 리튬 이차 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015021282 2015-02-05
JP2015-021282 2015-02-05

Publications (1)

Publication Number Publication Date
WO2016125718A1 true WO2016125718A1 (ja) 2016-08-11

Family

ID=56564064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052859 WO2016125718A1 (ja) 2015-02-05 2016-02-01 リチウム二次電池の電極用バインダ樹脂、リチウム二次電池用電極及びリチウム二次電池

Country Status (6)

Country Link
US (1) US11569508B2 (ja)
JP (1) JP6649283B2 (ja)
KR (1) KR102504976B1 (ja)
CN (1) CN107431207B (ja)
TW (1) TWI616505B (ja)
WO (1) WO2016125718A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017138604A1 (ja) * 2016-02-10 2017-08-17 日本電気株式会社 二次電池用バインダ
JP6516076B1 (ja) * 2017-08-23 2019-05-22 宇部興産株式会社 電極合剤ペースト
JP2019096401A (ja) * 2017-11-20 2019-06-20 株式会社ピーアイ技術研究所 リチウムイオン二次電池製造用バインダー及びこれを用いたリチウムイオン二次電池
KR20190089476A (ko) * 2018-01-23 2019-07-31 충남대학교산학협력단 리튬 이차전지용 바인더, 이를 포함하는 전극 및 리튬 이차전지
CN112652772A (zh) * 2020-12-22 2021-04-13 桂林电器科学研究院有限公司 一种粘合剂及其制备方法和含有该粘合剂的负极及锂离子电池

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102122878B1 (ko) * 2018-04-11 2020-06-15 충남대학교산학협력단 전고상 리튬이차전지용 바인더, 이를 포함하는 전극 및 전고상 리튬이차전지
CN110534699B (zh) * 2019-08-22 2021-07-13 江苏大毛牛新材料有限公司 一种锂离子电池负极片的制备方法
CN111777984B (zh) * 2020-06-17 2022-05-20 浙江中科玖源新材料有限公司 一种磺化聚酰亚胺粘结剂、电极片及锂离子电池
KR20220052098A (ko) * 2020-10-20 2022-04-27 주식회사 엘지에너지솔루션 마스킹 테이프를 이용한 전극 시편에 대한 물성 측정 시스템 및 이를 이용한 물성 측정 방법
US20220209236A1 (en) * 2020-12-30 2022-06-30 Kokam Co., Ltd. Elastic Anode Binder For Secondary Lithium Ion Battery
CN116063675A (zh) * 2021-10-30 2023-05-05 华为技术有限公司 聚合物及其制备方法、负极材料、负极极片、锂离子电池
CN114773599B (zh) * 2022-04-29 2024-05-03 北京宇程科技有限公司 一种嵌段型聚酰胺酸溶液、嵌段型聚酰亚胺粘合剂及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10312791A (ja) * 1997-03-13 1998-11-24 Mitsui Chem Inc 非水電解液二次電池用電極材料
JPH1197028A (ja) * 1997-09-16 1999-04-09 Pi Gijutsu Kenkyusho:Kk 二次電池
WO2009142203A1 (ja) * 2008-05-22 2009-11-26 株式会社ピーアイ技術研究所 電池の電極の導電剤、それを含む電極及び電池
JP2011216320A (ja) * 2010-03-31 2011-10-27 Nippon Steel Chem Co Ltd 二次電池用負極及びこれを用いた二次電池
WO2012017738A1 (ja) * 2010-08-02 2012-02-09 日産自動車株式会社 リチウムイオン二次電池用負極およびその製造方法
JP2014062255A (ja) * 2013-10-30 2014-04-10 Nippon Kayaku Co Ltd ポリイミド樹脂

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05179224A (ja) 1991-12-26 1993-07-20 Nippon Steel Chem Co Ltd 耐熱性接着剤
JP3311402B2 (ja) 1992-11-19 2002-08-05 三洋電機株式会社 二次電池
EP1536499B1 (en) 2002-06-26 2012-02-29 Sanyo Electric Co., Ltd. Negative electrode for lithium secondary cell and lithium secondary cell
US7972725B2 (en) 2004-11-08 2011-07-05 3M Innovative Properties Company Polyimide electrode binders
JP4213688B2 (ja) * 2005-07-07 2009-01-21 株式会社東芝 非水電解質電池及び電池パック
JP5219340B2 (ja) 2006-03-08 2013-06-26 三洋電機株式会社 リチウム二次電池用負極及びその製造方法並びにリチウム二次電池
JP5398962B2 (ja) * 2006-06-30 2014-01-29 三洋電機株式会社 リチウム二次電池及びその製造方法
JP5334021B2 (ja) 2009-03-31 2013-11-06 信越化学工業株式会社 リチウム二次電池、そのリチウム二次電池の製造方法及びそれに用いられるリチウム二次電池負極用バインダー前駆体溶液
JPWO2010125755A1 (ja) * 2009-04-27 2012-10-25 パナソニック株式会社 組立封口体およびそれを用いた電池
JP5583447B2 (ja) * 2010-03-26 2014-09-03 三洋電機株式会社 リチウム二次電池及びその製造方法
WO2012073853A1 (ja) 2010-11-30 2012-06-07 東レ株式会社 リチウムイオン電池電極用バインダー、リチウムイオン電池負極用ペーストおよびリチウムイオン電池負極の製造方法
JP5849452B2 (ja) * 2011-06-17 2016-01-27 宇部興産株式会社 電極用バインダー樹脂組成物、電極合剤ペースト、及び電極

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10312791A (ja) * 1997-03-13 1998-11-24 Mitsui Chem Inc 非水電解液二次電池用電極材料
JPH1197028A (ja) * 1997-09-16 1999-04-09 Pi Gijutsu Kenkyusho:Kk 二次電池
WO2009142203A1 (ja) * 2008-05-22 2009-11-26 株式会社ピーアイ技術研究所 電池の電極の導電剤、それを含む電極及び電池
JP2011216320A (ja) * 2010-03-31 2011-10-27 Nippon Steel Chem Co Ltd 二次電池用負極及びこれを用いた二次電池
WO2012017738A1 (ja) * 2010-08-02 2012-02-09 日産自動車株式会社 リチウムイオン二次電池用負極およびその製造方法
JP2014062255A (ja) * 2013-10-30 2014-04-10 Nippon Kayaku Co Ltd ポリイミド樹脂

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017138604A1 (ja) * 2016-02-10 2017-08-17 日本電気株式会社 二次電池用バインダ
US10707491B2 (en) 2016-02-10 2020-07-07 Nec Corporation Binder for secondary battery
JP6516076B1 (ja) * 2017-08-23 2019-05-22 宇部興産株式会社 電極合剤ペースト
JP2019117796A (ja) * 2017-08-23 2019-07-18 宇部興産株式会社 電極用バインダー樹脂、電極合剤ペースト、電極、及び電極の製造方法
JP2019096401A (ja) * 2017-11-20 2019-06-20 株式会社ピーアイ技術研究所 リチウムイオン二次電池製造用バインダー及びこれを用いたリチウムイオン二次電池
JP7144794B2 (ja) 2017-11-20 2022-09-30 株式会社ピーアイ技術研究所 リチウムイオン二次電池製造用バインダー及びこれを用いたリチウムイオン二次電池
KR20190089476A (ko) * 2018-01-23 2019-07-31 충남대학교산학협력단 리튬 이차전지용 바인더, 이를 포함하는 전극 및 리튬 이차전지
WO2019146968A1 (ko) * 2018-01-23 2019-08-01 충남대학교산학협력단 리튬 이차전지용 바인더, 이를 포함하는 전극 및 리튬 이차전지
KR102033670B1 (ko) * 2018-01-23 2019-10-17 충남대학교산학협력단 리튬 이차전지용 바인더, 이를 포함하는 전극 및 리튬 이차전지
US11817584B2 (en) 2018-01-23 2023-11-14 Ipi Tech Inc. Binder for the lithium secondary battery, electrode comprising same and lithium secondary battery
CN112652772A (zh) * 2020-12-22 2021-04-13 桂林电器科学研究院有限公司 一种粘合剂及其制备方法和含有该粘合剂的负极及锂离子电池
CN112652772B (zh) * 2020-12-22 2022-05-06 桂林电器科学研究院有限公司 一种粘合剂及其制备方法和含有该粘合剂的负极及锂离子电池

Also Published As

Publication number Publication date
US11569508B2 (en) 2023-01-31
CN107431207A (zh) 2017-12-01
TW201636412A (zh) 2016-10-16
TWI616505B (zh) 2018-03-01
JP6649283B2 (ja) 2020-02-19
US20180034057A1 (en) 2018-02-01
CN107431207B (zh) 2020-12-08
KR102504976B1 (ko) 2023-03-02
KR20170113597A (ko) 2017-10-12
JPWO2016125718A1 (ja) 2018-04-26

Similar Documents

Publication Publication Date Title
JP6649283B2 (ja) リチウム二次電池の電極用バインダ樹脂、リチウム二次電池用電極及びリチウム二次電池
JP5130273B2 (ja) 非水系二次電池用負極およびその製造方法
KR101990168B1 (ko) 리튬 이온 전지 정극용 수지 조성물
KR102459626B1 (ko) 수용성 폴리아믹산 및 이의 제조방법, 상기 폴리아믹산을 포함하는 리튬 전지용 바인더 조성물 및 이를 이용하여 제조된 리튬 전지
JP6105826B1 (ja) リチウムイオン二次電池の負極用の合材ペースト、リチウムイオン二次電池用の負極、リチウムイオン二次電池用の負極の製造方法およびリチウムイオン二次電池
TWI667839B (zh) Negative electrode for secondary battery, method for producing the same, and lithium ion secondary battery having the same
JP2011040326A (ja) 非水系二次電池用負極および非水系二次電池
TW201343840A (zh) 鋰離子二次電池用電極合劑漿料及電極、以及鋰離子二次電池
KR102314898B1 (ko) 폴리아믹산 수용액 조성물
KR102279820B1 (ko) 폴리아믹산 수용액 조성물
JP2015109254A (ja) リチウムイオン二次電池用バインダー樹脂組成物およびそれを含む負極合材ペースト、リチウムイオン二次電池用負極およびそれを含む二次電池
JP2011142068A (ja) バインダー用樹脂前駆体、樹脂前駆体溶液、及びバインダー組成物
JP6052529B1 (ja) リチウムイオン二次電池負極用バインダー組成物、リチウムイオン二次電池負極用スラリー、リチウムイオン二次電池負極及びリチウムイオン二次電池
JP6520497B2 (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2013175316A (ja) リチウムイオン二次電池およびそれを搭載する車両
JP2019096401A (ja) リチウムイオン二次電池製造用バインダー及びこれを用いたリチウムイオン二次電池
TWI859710B (zh) 聚醯亞胺黏著劑前驅物組合物、及使用其之蓄電裝置
WO2023140276A1 (ja) ポリイミドバインダ前駆体組成物、およびそれを用いた蓄電デバイス
JP7572944B2 (ja) 蓄電デバイス用ポリイミド系バインダー、電極合剤ペースト、負極活物質層、蓄電デバイス用負極シート及び蓄電デバイス
CN118872096A (zh) 聚酰亚胺粘合剂前体组合物以及使用该组合物的蓄电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746549

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016573337

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177024046

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16746549

Country of ref document: EP

Kind code of ref document: A1