WO2016119293A1 - 一种微生物发酵生产氨基葡萄糖的菌株及方法 - Google Patents
一种微生物发酵生产氨基葡萄糖的菌株及方法 Download PDFInfo
- Publication number
- WO2016119293A1 WO2016119293A1 PCT/CN2015/075174 CN2015075174W WO2016119293A1 WO 2016119293 A1 WO2016119293 A1 WO 2016119293A1 CN 2015075174 W CN2015075174 W CN 2015075174W WO 2016119293 A1 WO2016119293 A1 WO 2016119293A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glucosamine
- fermentation
- medium
- acetyl
- culture
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/26—Preparation of nitrogen-containing carbohydrates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
- C12N1/205—Bacterial isolates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/26—Preparation of nitrogen-containing carbohydrates
- C12P19/28—N-glycosides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
- C12R2001/07—Bacillus
- C12R2001/10—Bacillus licheniformis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
- C12R2001/07—Bacillus
- C12R2001/125—Bacillus subtilis ; Hay bacillus; Grass bacillus
Definitions
- the invention relates to the field of biotechnology, and particularly relates to a strain for producing N-acetyl-D-glucosamine and D-glucosamine by microorganism fermentation and a method thereof.
- N-acetyl-D-glucosamine is a monosaccharide, which is a component of the cell wall of fungi (Basidiomycetes, mold or yeast), or a component of crustaceans such as crabs and shrimp shells. Less nutrients.
- N-acetyl-D-glucosamine has a similar effect to glucosamine, and uptake of a certain amount of N-acetyl-D-glucosamine can induce the production of new cartilage and inhibit the onset of osteoarthritis, and in some cases, N -Acetyl-D-glucosamine can also be used to treat osteoarthritis.
- N-acetyl-D-glucosamine has a sweetness of 50% sucrose and is easy to ingest, N-acetyl-D-glucosamine has received extensive attention as an alternative to glucosamine.
- the traditional production of N-acetyl-D-glucosamine is based on crustacean shells.
- the production method comprises: crushing the shell of the crustacean; decalcifying the crushed shell with a dilute acid solution; purifying the chitin by removing the protein with a base; and using the chitin obtained by the acid hydrolysis to produce glucosamine; Glucose is subjected to acetylation with anhydrous acetic acid to obtain N-acetyl-D-glucosamine.
- the method for producing glucosamine by acid hydrolysis of chitin further comprises using fungal residue (such as the slag of Aspergillus niger used in citric acid fermentation) as a raw material in high concentration hydrochloric acid.
- fungal residue such as the slag of Aspergillus niger used in citric acid fermentation
- the conventional method further comprises: (1) using an enzyme produced by a microorganism to degrade chitin produced from a shrimp shell material to produce N-acetyl-D-glucosamine, see U.S. Patent No. 5,998,173 issued on Dec. 7, 1999, the disclosure of which is Preparation process of N-acetyl-D-glucosamine; (2) Enzymatic hydrolysis by enzyme produced by microorganism (Trichoderma) or partial hydrolysis of acid to purify fungus residue (bacteria of Aspergillus niger used for citric acid fermentation) Chitin to produce N-acetyl-D-glucosamine, see U.S. Patent No. 20030073666 A1, issued Apr.
- N-acetyl-D-glucosamine and its preparation (3) by cultivating green algae Chlorovirus-infected Chlorella cells or recombinant Escherichia coli derived from the Chlorella virus gene to produce N-acetyl-D-glucosamine, see Japanese Patent JP2004283144A, published on October 14, 2004, which discloses a method for preparing glucosamine and N-acetyl-D-glucosamine; (4) fermentative production of N-acetyl-D-glucosamine using genetically modified microorganisms, particularly genetically modified Escherichia coli, see January 8, 2004 WO2004/003175, which discloses the production process and materials of glucosamine and N-acetylglucosamine; (5) directly using glucose as a carbon source with Trichoderma, without the need for chitin and shell from fungal residue or shrimp shell The carbon source of the polysaccharide oligosaccharide is fermente
- the above method for producing N-acetyl-D-glucosamine or D-glucosamine by chemical hydrolysis using crustacean shell or Aspergillus residue (citric acid residue) as a raw material usually requires high use.
- the concentration of the acid solution and the alkali solution will result in a large amount of waste liquid.
- the extraction of D-glucosamine from shrimp and crab shells may produce more than 100 tons of wastewater and a large amount of waste residue per ton of D-glucosamine produced.
- citric acid slag extraction only 1 ton of D-glucosamine can be produced per 30-50 tons of citric acid slag.
- an enzyme produced by a microorganism or a microorganism to degrade chitin derived from a crustacean such as a crab or a shrimp shell to produce N-acetyl-D-glucosamine has a problem of low yield and high cost.
- N-acetyl-D-glucosamine By producing N-acetyl-D-glucosamine by culturing Chlorella virus-infected Chlorella cells, it is necessary to obtain N-acetyl-D-glucosamine by crushing cells, which has a problem of complicated operation.
- the use of genetically modified micro-organisms to produce N-acetyl-D-glucosamine requires appropriate measures to avoid the spread of microorganisms within the device. It also has complex operational problems, even food safety and social threats.
- a method for fermentative production of N-acetyl-D-glucosamine using Trichoderma directly using glucose as a carbon source although having a carbon source such as chitin or chitin oligosaccharide produced from crustacean shell or fungal residue is not required.
- the object of the present invention is to provide a microbial fermentation for producing N-acetyl-D-glucosamine And D-glucosamine methods to overcome the aforementioned deficiencies of the prior art.
- a non-genetically recombinant strain for microbial fermentation of N-acetyl-D-glucosamine and D-glucosamine characterized in that it has been deposited in the General Microbiology Center of the China Collection of Microorganisms Species, Bacillus subtilis NJ090259 strain, deposited under CGMCC10257, dated December 29, 2014, and a strain of Bacillus lincheniformis NJ091195, deposited under CGMCC 10258, with a deposit date of 2014 12 Month 29th.
- primary screening medium colloidal chitin 2.5g/L, dipotassium hydrogen phosphate 0.7g/L, potassium dihydrogen phosphate 0.3g/L, magnesium sulfate 0.5 g/L, ferrous sulfate 0.01 g/L, agar 20 g/L, pH 7.0, culture temperature 37 ° C, culture time 72 h, culture, single colonies were obtained, colonies were isolated, and Bacillus subtilis and Bacillus licheniformis were obtained, and The flask is subjected to shake flask fermentation culture, the chitinase activity of the fermentation liquid is measured, and the strain is screened according to the chitinase activity of the fermentation liquid;
- Bacillus subtilis after activation on plate medium NJ090259 and Bacillus lincheniformis NJ091195 were respectively inserted into seed culture medium, cultured under constant temperature shaker, used as seed liquid, connected to fermentation medium, cultured under constant temperature shaker, centrifuged to take supernatant, and N-acetyl was determined. -D-glucosamine content;
- Plate medium colloid chitin 30g / L, ammonium sulfate 2g / L, potassium dihydrogen phosphate 1.0g / L, magnesium sulfate 0.5g / L, sodium chloride 0.5g / L, agar 20g / L, pH 6.5;
- Seed medium peptone 5.0g / L, beef extract 5.0g / L, sodium chloride 5.0g / L, pH 7.0-7.2;
- Fermentation medium colloidal chitin 10g/L, glucose 10g/L, yeast extract 3.0g/L, MgSO 4 ⁇ 7H 2 O 0.6g/L, FeSO 4 ⁇ 7H 2 O 0.01g/L, KH 2 PO 4 0.4g / L, K 2 HPO 4 0.6g / L, ZnSO 4 0.001g / L;
- Fermentation conditions temperature 35 ° C, fermentation time 18 h, initial pH 6.5, inoculum 10%, liquid volume 50ml / 250ml;
- the supernatant obtained by centrifugation from the medium is electrolyzed and desalted, and the fermented liquid is heated under vacuum, concentrated to supersaturation, and the concentrated fermentation broth is cooled, and 5 times of absolute ethanol is added, and the mixture is stirred and centrifuged to obtain High purity N-acetyl-D-glucosamine crystals;
- the crude N-acetyl-D-glucosamine crystals were prepared into a saturated solution, 37% concentrated hydrochloric acid was added to a final concentration of 12-16%, and the temperature was kept at 90 ° C for 45-90 min, and cooled overnight.
- the crystals obtained by filtration were washed with ethanol and dried under vacuum. And detection, high purity D-glucosamine hydrochloride was obtained in a yield of 86%.
- the carbon source and the nitrogen source of the medium are as follows: the carbon source includes glucose, One or more of Aspergillus bacteria residue, Trichoderma residue, Black fungus production waste, Mushroom production waste, fructose, sucrose, galactose, dextrin, glycerin, starch, syrup and molasses, the nitrogen source includes One or more of ammonia water, soy flour, malt, corn syrup, cottonseed meal, yeast extract, ammonium chloride, ammonium sulfate, ammonium nitrate, ammonium acetate, sodium nitrate and urea.
- the carbon source includes glucose, One or more of Aspergillus bacteria residue, Trichoderma residue, Black fungus production waste, Mushroom production waste, fructose, sucrose, galactose, dextrin, glycerin, starch, syrup and molasses
- the nitrogen source includes One or more of ammonia water, soy flour, malt, corn syrup, cotton
- the fungus is one or more of basidiomycetes, molds, and yeast species.
- the invention screens Bacillus subtilis NJ090259 and Bacillus lincheniformis NJ091195 from soil under different environmental conditions, and the bacteriology characteristics of the NJ090259 strain and NJ091195 are as follows:
- NJ090259 strain is a purulent pale yellow translucent colony when growing, the surface of the colony is smooth; the colony is round, 4-7mm in diameter; low convex, regular, radial, edge leaflike; surface wrinkle, dull, grayish white, with scales It is opaque; when it grows to a certain extent, it becomes a milky white colony, umbrella-shaped, with wrinkles on the surface of the colony, large colonies, and central protrusions; single-rod-shaped, blunt ends, single arrangement, occasionally 2-3 bacterial rows Short-chained, smear-dried stained bacteria 0.7-0.8 ⁇ 2-3 ⁇ m, Gram-positive, spores appear after 24 h of liquid fermentation, spores are born or end-produced, elliptical, not significantly swell; in liquid matrix It is evenly turbid in the middle, and does not form a bacterial membrane and a fungus ring;
- NJ090259 strain is obligate aerobic, does not have curd effect, catalase test, nitrate reduction test, VP test positive; phenylalanine deaminase test, egg yolk lecithin enzyme test negative; decomposition of glucose acid production does not produce gas , can break down arabinose, mannitol, casein, Gelatin, starch.
- the colony of NJ091195 When cultured on broth agar plate, the colony of NJ091195 is approximately round, milky white, dark surface, opaque, irregular edges, rough; colony and medium are close to each other, difficult to pick; liquid culture has bacterial membrane, no turbidity, No precipitation; single bacteria are short rods, blunt ends, single or 2 arranged side by side, the length of the bacteria is 1.5-3.0 ⁇ m, the width of the bacteria is 0.6-1.0 ⁇ m, Gram is positive, the spores are oval, the middle is inflated, the spores In the middle or at one end;
- NJ091195 strain is positive for contact enzyme test, can grow on medium containing 7% NaCl, can grow at 50 °C, has motility, can use citrate, hydrolyzable starch, methyl red test is negative, leather Positive for Langer staining, negative for lecithinase test, positive for VP test, can be grown under nutrient broth with pH 5.7, fermentable chitin, D-glucose, L-arabinose, D-xylose and D-mannitol produces acid which can liquefy gelatin.
- the invention has the beneficial effects of providing a novel strain for producing N-acetyl-D-glucosamine and D-glucosamine and a production method thereof, and the method can realize stable production of N-acetyl-D-glucosamine and It is capable of producing non-animal, safe N-acetyl-D-glucosamine and D-glucosamine with short production cycle, low cost and more environmental protection.
- a strain for producing N-acetyl-D-glucosamine by microbial fermentation and a method thereof.
- a strain of microbial fermentation of N-acetyl-D-glucosamine has been deposited in the General Microbiology Center of the China Collection of Microorganisms, a strain of Bacillus subtilis NJ090259, with the accession number CGMCC10257, and the deposit date is 2014. On December 29, and a strain of Bacillus lincheniformis NJ091195, the accession number was CGMCC10258, and the deposit date was December 29, 2014.
- the primary screening medium colloidal chitin 2.5g/L, dipotassium hydrogen phosphate 0.7g/L, potassium dihydrogen phosphate 0.3g/ L, magnesium sulfate 0.5g / L, ferrous sulfate 0.01g / L, agar 20g / L, pH 7.0, culture temperature 37 ° C, culture time 72h, cultured, single colonies were obtained, colonies were isolated, 11 colony transparent circles were obtained Large, bright, well-grown strains, depending on the colony morphology of the strain Identification, Gram staining, physiological and biochemical identification test to identify the obtained strain, to obtain 3 strains of Bacillus subtilis and 2 strains of Bacillus licheniformis;
- the activated slanted species were inoculated in a 250 ml volume shake flask containing 50 ml of seed medium, and the cultured liquid strain was inoculated with a 10% inoculum in a 500 ml volume shake flask containing 100 ml of the medium.
- the medium is cultured, and the strain is screened according to the chitinase activity of the fermentation liquid;
- Seed medium peptone 10g / L, beef extract 3g / L, sodium chloride 5g / L;
- Culture conditions pH 7.4, culture temperature 37 ° C, shaking speed 200 rpm, culture time 8 h;
- Fermentation medium fine powder chitin l0g / L, corn flour 5g / L, starch 3g / L, sodium nitrate 3g / L, dipotassium hydrogen phosphate 1.05g / L, potassium dihydrogen phosphate 0.45g / L, chlorination Sodium 0.1g / L, magnesium sulfate 0.5g / L, ferrous sulfate 0.03g / L;
- Culture conditions pH 7.0, culture temperature 37 ° C, shaking speed 220 rpm, culture time 72 h;
- Determination of chitinase activity in fermentation broth Weigh 10 g of fine powder chitin, prepare a suspension with a concentration of 10% with phosphate buffer, and add the fermentation after centrifugation at a ratio of 1:1 (V/V). The solution was reacted at 45 ° C for 4 h, then the enzyme was centrifuged at 3000 rpm for 10 min, the supernatant was taken, and then 2 volumes of absolute ethanol were added, and the mixture was allowed to stand overnight, and the precipitate was removed by centrifugation, and the supernatant was concentrated under reduced pressure to a reducing sugar concentration of 1 %, HPLC determination of N-acetyl-D-glucosamine content;
- Enzyme unit definition The amount of enzyme required to produce a reducing sugar equivalent to 1 ⁇ mol of N-acetyl-D-glucosamine per minute under enzymatic reaction conditions, defined as an enzyme activity unit (IU);
- Test results The results of the enzyme production activities of three strains of Bacillus subtilis and two strains of Bacillus licheniformis are shown in Table 1.
- Bacillus subtilis NJ090259 was selected as the highest enzyme producing activity, and N0.1 B. licheniformis with the highest enzyme activity was selected as Bacillus lincheniformis NJ091195.
- Bacillus subtilis NJ090259, Bacillus lincheniformis NJ091195 and the standard strain Bacillus licheniformi ACCC02569 were activated on plate medium, respectively, and then inserted into seed culture medium, 30 ° C constant temperature shaker After culturing for 18 hours, it was used as a seed solution. When inoculated, it was inserted into the fermentation medium at a ratio of 1:10. The medium was incubated at 30 ° C for 72 h at a constant temperature shaker, centrifuged at 12,000 rpm for 5 min, and the supernatant was centrifuged to determine N-acetyl by HPLC. -D-glucosamine The amount and test results are shown in Table 2.
- Plate medium colloidal chitin 30g / L, ammonium sulfate 2.0g / L, potassium dihydrogen phosphate 1.0g / L, magnesium sulfate 0.5g / L, sodium chloride 0.5g / L, agar 20g / L, pH 6.5 ;
- Seed medium peptone 5.0g / L, beef extract 5.0g / L, sodium chloride 5.0g / L, pH 7.0-7.2;
- Fermentation medium colloidal chitin 10g/L, glucose 10g/L, yeast extract 3.0g/L, MgSO 4 ⁇ 7H 2 O 0.6g/L, FeSO 4 ⁇ 7H 2 O 0.01g/L, KH 2 PO 4 0.4g / L, K 2 HPO 4 0.6g / L, ZnSO 4 0.001g / L;
- Fermentation conditions temperature 35 ° C, fermentation time 18 h, initial pH 6.5, inoculum 10%, liquid volume 50ml / 250ml.
- the supernatant obtained by centrifugation from the medium was electrolyzed and desalted, and the initial salt concentration of the concentrated chamber was filled into the fermentation liquid: 0.01 mol/L, the flow rate of the light fermentation broth was 40 L/h, and the flow rate of the concentrated chamber fermentation liquid was 40 L/h.
- the voltage of the single membrane pair is 0.5V.
- the fermentation broth is heated to 50 ° C under vacuum conditions (0.095 MPa), concentrated for 8 hours, and supersaturated.
- the concentrated fermentation broth is first cooled to 25 ° C at 25 ° C, and then 0. °C water is cooled for 1 h, to 0 ° C, 5 times absolute ethanol is added, and stirred for 15 min. Centrifugation at 700 rpm for 15 min, stirring an equal volume of absolute ethanol at 10 rpm for 0.5 h, thereby obtaining N-acetyl-D-glucosamine crystals having a purity of 90%;
- the crude N-acetyl-D-glucosamine crystals were placed in a glass container, dissolved in water, and made into a saturated solution. 37% concentrated hydrochloric acid was added to a final concentration of 12%, kept at 90 ° C for 45 min, and cooled to 4 ° C overnight. The crystals present were filtered and washed with ethanol, dried in vacuo and tested to give 97.5% D-glucosamine hydrochloride, white, with a total yield of 82%.
- step (3) of the N-acetyl-D-glucosamine fermentation broth purification step is as follows:
- the supernatant obtained by centrifugation from the medium was electrolyzed and desalted, and the initial salt concentration of the concentrated chamber was filled into the fermentation liquid: 0.03 mol/L, the flow rate of the fermentation broth of the light chamber was 60 L/h, and the flow rate of the fermentation broth of the concentrated chamber was 60 L/h.
- the voltage of the single membrane pair is 0.5-1.4V.
- the fermentation broth is heated at 65 ° C under vacuum conditions (0.095 MPa), concentrated for 11 h, to supersaturated, and the concentrated fermentation broth is first cooled to 30 ° C at 25 ° C, and then The temperature was lowered with 0 ° C water for 2 h, to 5 ° C, 5 times absolute ethanol was added, and stirred for 37 min.
- Step (4) N-acetyl-D-glucosamine hydrolysis hydrolysis step is as follows:
- the crude N-acetyl-D-glucosamine crystals were placed in a glass container, dissolved in water, and made into a saturated solution. 37% concentrated hydrochloric acid was added to a final concentration of 14%, kept at 90 ° C for 67 min, cooled to 4 ° C, overnight, filtered. The crystals present were washed with ethanol, vacuum dried and tested to give 98.0% D-glucosamine hydrochloride, white, with a total yield of 84%.
- step (3) of the N-acetyl-D-glucosamine fermentation broth purification step is as follows:
- the supernatant obtained by centrifugation from the medium was electrolyzed and desalted, and the initial salt concentration of the concentrated chamber was filled into the fermentation liquid: 0.05 mol/L, the flow rate of the light fermentation broth was 80 L/h, and the flow rate of the concentrated chamber fermentation liquid was: 80L/h, the voltage of the single membrane pair is 1.4V.
- the fermentation broth is heated at 80 ° C under vacuum conditions (0.095 MPa), concentrated for 15 h, to supersaturated, and the concentrated fermentation broth is first cooled to 35 ° C at 25 ° C.
- Step (4) N-acetyl-D-glucosamine hydrolysis hydrolysis step is as follows:
- the crude N-acetyl-D-glucosamine crystals were placed in a glass container, dissolved in water, and made into a saturated solution. 37% concentrated hydrochloric acid was added to a final concentration of 16%, kept at 90 ° C for 90 min, cooled to 4 ° C, overnight, filtered. The crystals present were washed with ethanol, vacuum dried and tested to give 98.5% D-glucosamine hydrochloride, white, with a total yield of 86%.
- Chitin medium colloidal chitin 30g / L, ammonium sulfate 2.0g / L, magnesium sulfate 0.5g / L, potassium dihydrogen phosphate 1.0g / L, sodium chloride 0.5g / L;
- Culture conditions pH 6.5, culture temperature 32 ° C, culture time 5 days;
- the Bacillus subtilis NJ090259 mutant was inoculated by ultraviolet irradiation, and the fermentation culture test was carried out, and the culture supernatant was analyzed by HPLC, and the results showed that the culture was cultured.
- the base contains 5.5 g/L of N-acetyl-D-glucosamine;
- the supernatant obtained by centrifugation from the medium is electrolyzed and desalted, and the initial salt concentration of the concentrated chamber is filled into the fermentation liquid: 0.01-0.05 mol/L, the flow rate of the fermentation broth of the light chamber is 40-80 L/h, and the flow rate of the fermentation broth of the concentrated chamber :40-80L/h, the voltage of the single membrane pair is 0.5-1.4V, and the fermentation broth after heating and dehydration (0.095MPa) is heated at 50-80 ° C, concentrated for 8-15 hours, to supersaturated, concentrated fermentation broth First, cool the water at 25 ° C to 25-35 ° C, then cool with 0 ° C water for 1-3 h, to 0-10 ° C, add 5 times absolute ethanol, stir for 15 min -1 h.
- N-acetyl-D-glucosamine crystals in a glass container, dissolved in water, prepared into a saturated solution, added concentrated hydrochloric acid (37%) to a final concentration of 12-16%, 90 ° C for 45-90min, cooled to At 4 ° C, overnight, the crystals present were filtered and washed with ethanol, dried in vacuo and tested to give 98.0% D-glucosamine hydrochloride, white, with a total yield of 85%.
- the ultraviolet-induced mutant of Bacillus subtilis NJ090259 was activated on a plate medium, and then inserted into a seed culture medium, and cultured at 30 ° C for 7 hours under a constant temperature shaker to be used as a seed liquid;
- the amount of 10 was connected to a 250 mL baffled conical flask containing 50 ml of fermentation medium, and 2.5 ml of the feed medium was added at 24 h, 36 h, 48 h, and 60 h, respectively;
- Fermentation medium colloidal chitin 10g/L, glucose 10g/L, yeast extract 3.0g/L, MgSO 4 ⁇ 7H 2 O 0.6g/L, FeSO 4 ⁇ 7H 2 O 0.01g/L, KH 2 PO 4 0.4g / L, K 2 HPO 4 0.6g / L, ZnSO 4 0.001g / L;
- Feeding medium colloidal chitin 100g/L, glucose 100g/L, pH 6.0.
- Culture conditions pH 6.5, culture temperature 35 ° C, constant temperature shaker culture, culture time 72h.
- the mixture was centrifuged at 12,000 rpm for 5 min, and the supernatant was centrifuged, and the N-acetyl-D-glucosamine content was determined by HPLC.
- the Bacillus subtilis NJ090259 mutant was inoculated by ultraviolet irradiation, and the fermentation fermentation test was carried out, and the culture supernatant was analyzed by HPLC, and the result showed that the culture produced
- the medium contains 24.0 g/L of N-acetyl-D-glucosamine;
- the supernatant obtained by centrifugation from the medium is electrolyzed and desalted, and the initial salt concentration of the concentrated chamber is filled into the fermentation liquid: 0.01-0.05 mol/L, the flow rate of the fermentation broth of the light chamber is 40-80 L/h, and the flow rate of the fermentation broth of the concentrated chamber :40-80L/h, the voltage of the single membrane pair is 0.5-1.4V, and the fermentation broth is heated under the vacuum condition (0.095MPa), 50-80 °C, concentrated for 8-15h, to supersaturated, concentrated hair
- the fermentation broth should be cooled to 25-35 ° C at 25 ° C, then cooled with 0 ° C water for 1-3 h, to 0-10 ° C, add 5 times absolute ethanol, and stir for 15 min -1 h. Centrifugation at 700-1500 rpm, 15-60 min, stirring an equal volume of absolute ethanol at 10-100 rpm for 0.5-2 h, thereby obtaining N-acetyl-D-gluco
- N-acetyl-D-glucosamine crystals in a glass container, dissolved in water, prepared into a saturated solution, added concentrated hydrochloric acid (37%) to a final concentration of 12-16%, 90 ° C for 45-90min, cooled to The crystals were filtered at 4 ° C overnight, washed with ethanol, dried in vacuo and then purified to give 98.7% D-glucosamine hydrochloride, white, with a total yield of 86.5%.
- Bacillus lincheniformis NJ091195 was activated and cultured to log phase culture solution, and the supernatant was centrifuged to prepare a bacterial suspension with a cell number of about 10 8 /mL, and 0.5 mL of 400 mL was taken first. 800, 1000 ⁇ g / mL of N-methyl-N-nitro-N-nitrosoguanidine was added to the test tube, and 0.5 mL of each prepared bacterial suspension was added to the above test tube, and immediately placed after mixing.
- the reaction was terminated by dilution, and the chitin medium plate was diluted in the dark, and cultured at 37 ° C for 5 days, the growth rate was selected.
- the chitin hydrolyzed circle and the colony diameter ratio were greater than 10% of the starting bacteria and the largest mutant was tested for enzyme activity.
- the mutagen-induced Bacillus lincheniformis NJ091195 mutant was inoculated and subjected to fermentation culture test.
- the culture supernatant was analyzed by HPLC, and it was found that the culture produced a medium containing 3.0 g/L of N-acetyl-D-glucosamine;
- the supernatant obtained by centrifugation from the medium is electrolyzed and desalted, and the initial salt concentration of the concentrated chamber is filled into the fermentation liquid: 0.01-0.05 mol/L, the flow rate of the fermentation broth of the light chamber is 40-80 L/h, and the flow rate of the fermentation broth of the concentrated chamber :40-80L/h, the voltage of the single membrane pair is 0.5-1.4V, and the fermentation broth after heating and dehydration (0.095MPa) is heated at 50-80 ° C, concentrated for 8-15 hours, to supersaturated, concentrated fermentation broth First, cool the water at 25 ° C to 25-35 ° C, then cool with 0 ° C water for 1-3 h, to 0-10 ° C, add 5 times absolute ethanol, stir for 15 min -1 h. Centrifugation at 700-1500 rpm for 15-60 min, stirring an equal volume of absolute ethanol at 10-100 rpm for 0.5-2 h, thereby obtaining N-acetyl-D-glucosamine
- N-acetyl-D-glucosamine crystals in a glass container, dissolved in water, prepared into a saturated solution, added concentrated hydrochloric acid (37%) to a final concentration of 12-16%, 90 ° C for 45-90min, cooled to The resulting crystals were filtered at 4 ° C overnight, washed with ethanol, dried in vacuo and dried to give 98.6% D-glucosamine hydrochloride, white, with a total yield of 86.6%.
- Fermentation medium colloidal chitin 10g/L, glucose 10g/L, yeast extract 3.0g/L, MgSO 4 ⁇ 7H 2 O 0.6g/L, FeSO 4 ⁇ 7H 2 O 0.01g/L, KH 2 PO 4 0.4g / L, K 2 HPO 4 0.6g / L, ZnSO 4 0.001g / L;
- Feeding medium colloidal chitin 100g/L, glucose 100g/L, pH 6.0.
- Culture conditions pH 6.5, culture temperature 35 ° C, culture time 72 h, constant temperature shaker culture.
- the Bacillus lincheniformis NJ091195 mutant modified by ultraviolet irradiation was inoculated, and the fermentation fermentation test was carried out, and the culture supernatant was analyzed by HPLC, and the result showed that the culture was produced.
- the medium contains 19.0 g/L of N-acetyl-D-glucosamine;
- the supernatant obtained by centrifugation from the medium is electrolyzed and desalted, and the initial salt concentration of the concentrated chamber is filled into the fermentation liquid: 0.01-0.05 mol/L, the flow rate of the fermentation broth of the light chamber is 40-80 L/h, and the flow rate of the fermentation broth of the concentrated chamber :40-80L/h, the voltage of the single membrane pair is 0.5-1.4V, and the fermentation broth after heating and dehydration (0.095MPa) is heated at 50-80 ° C, concentrated for 8-15 hours, to supersaturated, concentrated fermentation broth First, cool the water at 25 ° C to 25-35 ° C, then cool with 0 ° C water for 1-3 h, to 0-10 ° C, add 5 times absolute ethanol, stir for 15 min -1 h.
- N-acetyl-D-glucosamine crystals in a glass container, dissolved in water, prepared into a saturated solution, added concentrated hydrochloric acid (37%) to a final concentration of 12-16%, 90 ° C for 45-90min, cooled to At 4 ° C, overnight, the crystals were filtered and washed with ethanol, dried in vacuo and tested to give 98.8% D-glucosamine hydrochloride, white, with a total yield of 87%.
- Instruments and equipment Shimadzu LC-15C high performance liquid chromatograph; detector: variable wavelength UV detector.
- the above-mentioned Bacillus subtilis NJ090259 and Bacillus licheniformis NJ091195 capable of producing N-acetyl-D-glucosamine and D-glucosamine are mutagenized and mutagenized.
- the method is a known natural mutation method or a common artificial mutation method, such as ultraviolet irradiation, X-ray irradiation or a mutagen (for example, N-methyl-N-nitro-N-nitrosoguanidine), which induces bacterial strain mutation. .
- a mutagen for example, N-methyl-N-nitro-N-nitrosoguanidine
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Biomedical Technology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Description
菌株及编号 | 几丁质酶活力(IU/ml) |
No.1枯草芽孢杆菌(Bacillus·subtilis) | 0.31 |
No.2枯草芽孢杆菌(Bacillus·subtilis) | 2.44 |
No.3枯草芽孢杆菌(Bacillus·subtilis) | 1.34 |
No.1地衣芽孢杆菌(Bacillus·lincheniformis) | 1.75 |
No.2地衣芽孢杆菌(Bacillus·lincheniformis) | 0.41 |
菌株 | N-乙酰-D-氨基葡萄糖(g/L) |
地衣芽孢杆菌(Bacillus·licheniformi)ACCC02569 | 1.13·g/L |
枯草芽孢杆菌(Bacillus·subtilis)NJ090259 | 1.55·g/L |
地衣芽孢杆菌(Bacillus·lincheniformis)NJ091195 | 1.11·g/L |
Claims (10)
- 一种微生物发酵生产N-乙酰-D-氨基葡萄糖和D-氨基葡萄糖的菌株,其特征在于,已保藏于中国微生物菌种保藏委员会普通微生物中心,一种枯草芽孢杆菌NJ090259菌株,保藏号为CGMCC10257,保藏日期为2014年12月29日。
- 一种微生物发酵生产N-乙酰-D-氨基葡萄糖的方法,其特征在于,利用权利要求1所述的枯草芽孢杆菌NJ090259菌株作为出发菌种,经种子培养和已优化的培养基发酵产生N-乙酰-D-氨基葡萄糖,包括以下步骤:(1)菌株筛选、鉴定与培养采集50份土壤样品,稀释后涂布于初筛平板,采用初筛培养基:胶体几丁质2.5g/L,磷酸氢二钾0.7g/L,磷酸二氢钾0.3g/L,硫酸镁0.5g/L,硫酸亚铁0.01g/L,琼脂20g/L,pH 7.0,培养温度37℃,培养时间72h,进行培养,得到单菌落,分离菌落,得到枯草芽孢杆菌,并对其进行摇瓶发酵培养,测定发酵液几丁质酶活力,并根据发酵液含几丁质酶活力筛选菌株;(2)发酵培养将在平板培养基上活化后的枯草芽孢杆菌NJ090259接入种子培养基中,恒温摇床培养,用作种子液,接入发酵培养基中,恒温摇床培养,离心取上清液,测定N-乙酰-D-氨基葡萄糖含量;平板培养基:胶体几丁质30g/L,硫酸铵2g/L,磷酸二氢钾1.0g/L,硫酸镁0.5g/L,氯化钠0.5g/L,琼脂20g/L,pH 6.5;种子培养基:蛋白胨5.0g/L,牛肉膏5.0g/L,氯化钠5.0g/L,pH 7.0-7.2;发酵培养基:胶体几丁质10g/L,葡萄糖10g/L,酵母膏3.0g/L,MgSO4·7H2O 0.6g/L,FeSO4·7H2O 0.01g/L,KH2PO40.4g/L,K2HPO40.6g/L,ZnSO40.001g/L;发酵条件:温度35℃,发酵时间18h,起始pH6.5,接种量10%,装液量50ml/250ml;(3)N-乙酰-D-氨基葡萄糖发酵液纯化将由培养基离心获得的上清液,电渗析除盐,将除盐后发酵液真空加热,浓缩至过饱和,对浓缩后的发酵液进行降温,并加入5倍无水乙醇,搅拌离心,得到高纯度N-乙酰-D-氨基葡萄糖结晶。
- 一种微生物发酵生产D-氨基葡萄糖的方法,其特征在于,利用权利要求1所述的枯草芽孢杆菌NJ090259菌株作为出发菌种,经种子培养和已优化的培养基发酵产生D-氨基葡萄糖,包括以下步骤:(1)菌株筛选、鉴定与培养采集50份土壤样品,稀释后涂布于初筛平板,采用初筛培养基:胶体几丁质2.5g/L,磷酸氢二钾0.7g/L,磷酸二氢钾0.3g/L,硫酸镁0.5g/L,硫酸亚铁0.01g/L,琼脂20g/L,pH 7.0,培养温度37℃,培养时间72h,进行培养,得到单菌落,分离菌落,得到枯草芽孢杆菌,并对其进行摇瓶发酵培养,测定发酵液几丁质酶活力,并根据发酵液含几丁质酶活力筛选菌株;(2)发酵培养将在平板培养基上活化后的枯草芽孢杆菌NJ090259接入种子培养基中,恒温摇床培养,用作种子液,接入发酵培养基中,恒温摇床培养,离心取上清液,测定N-乙酰-D-氨基葡萄糖含量;平板培养基:胶体几丁质30g/L,硫酸铵2g/L,磷酸二氢钾1.0g/L,硫酸镁0.5g/L,氯化钠0.5g/L,琼脂20g/L,pH 6.5;种子培养基:蛋白胨5.0g/L,牛肉膏5.0g/L,氯化钠5.0g/L,pH 7.0-7.2;发酵培养基:胶体几丁质10g/L,葡萄糖10g/L,酵母膏3.0g/L,MgSO4·7H2O 0.6g/L,FeSO4·7H2O 0.01g/L,KH2PO40.4g/L,K2HPO40.6g/L,ZnSO40.001g/L;发酵条件:温度35℃,发酵时间18h,起始pH6.5,接种量10%,装液量50ml/250ml;(3)N-乙酰-D-氨基葡萄糖发酵液纯化将由培养基离心获得的上清液,电渗析除盐,将除盐后发酵液真空加热,浓缩至过饱和,对浓缩后的发酵液进行降温,并加入5倍无水乙醇,搅拌离心,得到高纯度N-乙酰-D-氨基葡萄糖结晶;(4)N-乙酰-D-氨基葡萄糖酸化水解将N-乙酰-D-氨基葡萄糖结晶粗品配制成饱和溶液,加入37%浓盐酸至终浓度为12-16%,90℃保温45-90min,冷却过夜,过滤得到的晶体用乙醇洗涤、真空干燥并检测,得到高纯度D-氨基葡萄糖盐酸盐。
- 一种微生物发酵生产N-乙酰-D-氨基葡萄糖和D-氨基葡萄糖的 菌株,其特征在于,已保藏于中国微生物菌种保藏委员会普通微生物中心,一种地衣芽孢杆菌NJ091195菌株,保藏号为CGMCC10258,保藏日期为2014年12月29日。
- 一种微生物发酵生产N-乙酰-D-氨基葡萄糖的方法,其特征在于,利用权利要求4所述的地衣芽孢杆菌NJ091195菌株作为出发菌种,经种子培养和已优化的培养基发酵产生N-乙酰-D-氨基葡萄糖,包括以下步骤:(1)菌株筛选、鉴定与培养采集50份土壤样品,稀释后涂布于初筛平板,采用初筛培养基:胶体几丁质2.5g/L,磷酸氢二钾0.7g/L,磷酸二氢钾0.3g/L,硫酸镁0.5g/L,硫酸亚铁0.01g/L,琼脂20g/L,pH 7.0,培养温度37℃,培养时间72h,进行培养,得到单菌落,分离菌落,得到地衣芽孢杆菌,并对其进行摇瓶发酵培养,测定发酵液几丁质酶活力,并根据发酵液含几丁质酶活力筛选菌株;(2)发酵培养将在平板培养基上活化后的地衣芽孢杆菌NJ091195接入种子培养基中,恒温摇床培养,用作种子液,接入发酵培养基中,恒温摇床培养,离心取上清液,测定N-乙酰-D-氨基葡萄糖含量;平板培养基:胶体几丁质30g/L,硫酸铵2g/L,磷酸二氢钾1.0g/L,硫酸镁0.5g/L,氯化钠0.5g/L,琼脂20g/L,pH 6.5;种子培养基:蛋白胨5.0g/L,牛肉膏5.0g/L,氯化钠5.0g/L,pH 7.0-7.2;发酵培养基:胶体几丁质10g/L,葡萄糖10g/L,酵母膏3.0g/L,MgSO4·7H2O 0.6g/L,FeSO4·7H2O 0.01g/L,KH2PO40.4g/L,K2HPO40.6g/L,ZnSO40.001g/L;发酵条件:温度35℃,发酵时间18h,起始pH6.5,接种量10%,装液量50ml/250ml;(3)N-乙酰-D-氨基葡萄糖发酵液纯化将由培养基离心获得的上清液,电渗析除盐,将除盐后发酵液真空加热,浓缩至过饱和,对浓缩后的发酵液进行降温,并加入5倍无水乙醇,搅拌离心,得到高纯度N-乙酰-D-氨基葡萄糖结晶。
- 一种微生物发酵生产D-氨基葡萄糖的方法,其特征在于,利用权利要求4所述的地衣芽孢杆菌NJ091195菌株作为出发菌种,经种子培养和已优化的培养基发酵产生N-乙酰-D-氨基葡萄糖,包括以下步骤:(1)菌株筛选、鉴定与培养采集50份土壤样品,稀释后涂布于初筛平板,采用初筛培养基:胶体几丁质2.5g/L,磷酸氢二钾0.7g/L,磷酸二氢钾0.3g/L,硫酸镁0.5g/L,硫酸亚铁0.01g/L,琼脂20g/L,pH 7.0,培养温度37℃,培养时间72h,进行培养,得到单菌落,分离菌落,得到地衣芽孢杆菌,并对其进行摇瓶发酵培养,测定发酵液几丁质酶活力,并根据发酵液含几丁质酶活力筛选菌株;(2)发酵培养将在平板培养基上活化后的地衣芽孢杆菌NJ091195接入种子培 养基中,恒温摇床培养,用作种子液,接入发酵培养基中,恒温摇床培养,离心取上清液,测定N-乙酰-D-氨基葡萄糖含量;平板培养基:胶体几丁质30g/L,硫酸铵2g/L,磷酸二氢钾1.0g/L,硫酸镁0.5g/L,氯化钠0.5g/L,琼脂20g/L,pH 6.5;种子培养基:蛋白胨5.0g/L,牛肉膏5.0g/L,氯化钠5.0g/L,pH 7.0-7.2;发酵培养基:胶体几丁质10g/L,葡萄糖10g/L,酵母膏3.0g/L,MgSO4·7H2O 0.6g/L,FeSO4·7H2O 0.01g/L,KH2PO40.4g/L,K2HPO40.6g/L,ZnSO40.001g/L;发酵条件:温度35℃,发酵时间18h,起始pH6.5,接种量10%,装液量50ml/250ml;(3)N-乙酰-D-氨基葡萄糖发酵液纯化将由培养基离心获得的上清液,电渗析除盐,将除盐后发酵液真空加热,浓缩至过饱和,对浓缩后的发酵液进行降温,并加入5倍无水乙醇,搅拌离心,得到高纯度N-乙酰-D-氨基葡萄糖结晶;(4)N-乙酰-D-氨基葡萄糖酸化水解将N-乙酰-D-氨基葡萄糖结晶粗品配制成饱和溶液,加入37%浓盐酸至终浓度为12-16%,90℃保温45-90min,冷却过夜,过滤得到的晶体用乙醇洗涤、真空干燥并检测,得到高纯度D-氨基葡萄糖盐酸盐。
- 根据权利要求2所述的微生物发酵生产N-乙酰-D-氨基葡萄糖的方法,其特征在于,所述培养基的碳源和氮源如下:所述碳源包括 葡萄糖、黑曲霉菌渣、木霉菌渣、黑木耳生产下脚料、香菇生产下脚料、果糖、蔗糖、半乳糖、糊精、甘油、淀粉、糖浆和糖蜜中的一种或几种,所述氮源包括氨水、豆粉、麦芽、玉米浆、棉籽粉、酵母浸膏、氯化铵、硫酸铵、硝酸铵、醋酸铵、硝酸钠和尿素中的一种或几种。
- 根据权利要求3所述的微生物发酵生产D-氨基葡萄糖的方法,其特征在于,所述培养基的碳源和氮源如下:所述碳源包括葡萄糖、黑曲霉菌渣、木霉菌渣、黑木耳生产下脚料、香菇生产下脚料、果糖、蔗糖、半乳糖、糊精、甘油、淀粉、糖浆和糖蜜中的一种或几种,所述氮源包括氨水、豆粉、麦芽、玉米浆、棉籽粉、酵母浸膏、氯化铵、硫酸铵、硝酸铵、醋酸铵、硝酸钠和尿素中的一种或几种。
- 根据权利要求5所述的微生物发酵生产N-乙酰-D-氨基葡萄糖的方法,其特征在于,所述培养基的碳源和氮源如下:所述碳源包括葡萄糖、黑曲霉菌渣、木霉菌渣、黑木耳生产下脚料、香菇生产下脚料、果糖、蔗糖、半乳糖、糊精、甘油、淀粉、糖浆和糖蜜中的一种或几种,所述氮源包括氨水、豆粉、麦芽、玉米浆、棉籽粉、酵母浸膏、氯化铵、硫酸铵、硝酸铵、醋酸铵、硝酸钠和尿素中的一种或几种。
- 根据权利要求6所述的微生物发酵生产D-氨基葡萄糖的方法,其特征在于,所述培养基的碳源和氮源如下:所述碳源包括葡萄糖、黑曲霉菌渣、木霉菌渣、黑木耳生产下脚料、香菇生产下脚料、果糖、蔗糖、半乳糖、糊精、甘油、淀粉、糖浆和糖蜜中的一种或几种,所 述氮源包括氨水、豆粉、麦芽、玉米浆、棉籽粉、酵母浸膏、氯化铵、硫酸铵、硝酸铵、醋酸铵、硝酸钠和尿素中的一种或几种。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017540774A JP6446141B2 (ja) | 2015-01-27 | 2015-03-27 | 一種の微生物の発酵によるグルコサミンを生産する菌株及びその方法 |
US15/546,720 US20180016608A1 (en) | 2015-01-27 | 2015-03-27 | A strain for production of glucosamine by microbial fermentation, and its methods |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510040300.7 | 2015-01-27 | ||
CN201510040300.7A CN105039193B (zh) | 2015-01-27 | 2015-01-27 | 一种微生物发酵生产氨基葡萄糖的菌株及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016119293A1 true WO2016119293A1 (zh) | 2016-08-04 |
Family
ID=54446168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/075174 WO2016119293A1 (zh) | 2015-01-27 | 2015-03-27 | 一种微生物发酵生产氨基葡萄糖的菌株及方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20180016608A1 (zh) |
JP (1) | JP6446141B2 (zh) |
CN (1) | CN105039193B (zh) |
WO (1) | WO2016119293A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111206012A (zh) * | 2020-03-02 | 2020-05-29 | 卜树华 | 一种可提高硅酸盐细菌解钾活性的培养基及培养方法 |
WO2023030496A1 (zh) * | 2021-09-03 | 2023-03-09 | 杭州中美华东制药有限公司 | 一种发酵制备纽莫康定b0的方法 |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106188167B (zh) * | 2016-07-04 | 2018-12-11 | 扬州日兴生物科技股份有限公司 | 一种从氨糖发酵液中分离提取n-乙酰基-d-氨基葡萄糖和d-氨基葡萄糖的方法 |
TWI598442B (zh) * | 2016-10-27 | 2017-09-11 | 元智大學 | 一種用於生產葡萄糖胺的培養基及其應用 |
CN106831895B (zh) * | 2017-01-19 | 2019-11-01 | 山东润德生物科技有限公司 | 一种纯化n-乙酰氨基葡萄糖的方法 |
CN110004129B (zh) * | 2018-01-04 | 2021-06-15 | 孙敬方 | 一种β-葡萄糖苷酶突变体及其应用 |
TWI676682B (zh) * | 2018-08-31 | 2019-11-11 | 財團法人食品工業發展研究所 | 枯草芽孢桿菌分離株及其用途 |
CN109957558A (zh) * | 2019-03-29 | 2019-07-02 | 嘉兴卓盛生物科技有限公司 | 中性酯酶的制备方法及用于废纸造纸工艺的胶黏物控制酶试剂 |
CN112779178B (zh) * | 2019-11-08 | 2023-02-17 | 财团法人农业科技研究院 | 地衣芽孢杆菌a6菌株及其应用 |
CN111018926B (zh) * | 2019-12-17 | 2023-10-10 | 大自然生物集团有限公司 | 从氨基葡萄糖发酵液中提取高纯氨基葡萄糖盐酸盐的方法 |
CN110760622B (zh) * | 2019-12-17 | 2023-06-27 | 大自然生物集团有限公司 | 一种枯草芽孢杆菌发酵生产氨基葡萄糖的补料方法 |
CN111139277A (zh) * | 2020-03-03 | 2020-05-12 | 长春工业大学 | 粗多糖及其制备工艺、保健口服液及其制备方法 |
CN111662848B (zh) * | 2020-03-25 | 2022-02-18 | 济南航晨生物科技有限公司 | 耐盐地衣芽孢杆菌a-a2-10的培养方法及应用 |
CN111807893A (zh) * | 2020-06-23 | 2020-10-23 | 秦皇岛禾苗生物技术有限公司 | 一种黄瓜专用抗重茬生物菌肥 |
CN112080442A (zh) * | 2020-08-14 | 2020-12-15 | 上海原本生物科技有限公司 | 一种异位处理禽畜粪污的专用菌剂及其制备方法 |
CN112458022B (zh) * | 2020-12-09 | 2022-08-16 | 吉林中粮生化有限公司 | 高产几丁质脱乙酰酶的地衣芽孢杆菌Bl22及其相关产品和应用 |
CN113817788B (zh) * | 2021-03-10 | 2024-02-02 | 江苏澳新生物工程有限公司 | 氨基葡萄糖的酶催化制备方法 |
CN112971119A (zh) * | 2021-03-17 | 2021-06-18 | 大连澎立生物科技有限公司 | 银耳小分子多元蛋白肽原液及制备方法和银耳蛋白肽产品 |
CN112961817B (zh) * | 2021-04-06 | 2021-11-05 | 广西中医药大学 | 一种利用海盐渗透压胁迫筛选高产Macrolactins海洋芽孢杆菌的方法 |
CN113564212B (zh) * | 2021-07-26 | 2024-01-16 | 浙江树人学院(浙江树人大学) | 一种利用微生物发酵法提取杜仲叶多糖的方法 |
CN113475623B (zh) * | 2021-09-07 | 2021-11-30 | 山东润德生物科技有限公司 | 一种发酵饲料及其制备方法 |
CN114437985B (zh) * | 2022-02-18 | 2023-04-11 | 南京工业大学 | 一株产气肠杆菌及其在合成微生物多糖中的应用 |
CN115372494B (zh) * | 2022-04-24 | 2023-10-24 | 浙江省农业科学院 | 一种发酵液中γ-氨基丁酸的测定方法 |
CN116731934B (zh) * | 2023-08-08 | 2023-10-13 | 欧铭庄生物科技(天津)有限公司滨海新区分公司 | 一株大肠埃希氏菌及其在生产氨基葡萄糖中的应用 |
CN117586913B (zh) * | 2023-11-20 | 2024-07-30 | 微康益生菌(苏州)股份有限公司 | 一种直投式发酵剂的制备方法及应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005065569A (ja) * | 2003-08-22 | 2005-03-17 | Seikagaku Kogyo Co Ltd | 新規細菌変異体 |
WO2012168462A1 (de) * | 2011-06-10 | 2012-12-13 | Reinmueller Johannes | Antiinfektives mittel |
CN102978149A (zh) * | 2012-12-25 | 2013-03-20 | 江南大学 | 一种高产乙酰氨基葡萄糖重组枯草芽孢杆菌及其应用 |
CN103923869A (zh) * | 2014-03-19 | 2014-07-16 | 武汉中科光谷绿色生物技术有限公司 | 一种产n-乙酰神经氨酸的枯草芽孢杆菌基因工程菌及其构建方法和应用 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63185352A (ja) * | 1986-09-30 | 1988-07-30 | Taiho Akira | 腫瘍の予防効果を有する食品 |
USH2218H1 (en) * | 2002-03-05 | 2008-06-03 | Ki-Oh Hwang | Glucosamine and method of making glucosamine from microbial biomass |
JP5447761B2 (ja) * | 2007-03-14 | 2014-03-19 | 公立大学法人福井県立大学 | キチン・キトサンを分解する新種の微生物及びその利用方法 |
JP2009256445A (ja) * | 2008-04-16 | 2009-11-05 | Toyota Industries Corp | ポリ乳酸及びその製造方法 |
-
2015
- 2015-01-27 CN CN201510040300.7A patent/CN105039193B/zh active Active - Reinstated
- 2015-03-27 US US15/546,720 patent/US20180016608A1/en not_active Abandoned
- 2015-03-27 WO PCT/CN2015/075174 patent/WO2016119293A1/zh active Application Filing
- 2015-03-27 JP JP2017540774A patent/JP6446141B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005065569A (ja) * | 2003-08-22 | 2005-03-17 | Seikagaku Kogyo Co Ltd | 新規細菌変異体 |
WO2012168462A1 (de) * | 2011-06-10 | 2012-12-13 | Reinmueller Johannes | Antiinfektives mittel |
CN102978149A (zh) * | 2012-12-25 | 2013-03-20 | 江南大学 | 一种高产乙酰氨基葡萄糖重组枯草芽孢杆菌及其应用 |
CN103923869A (zh) * | 2014-03-19 | 2014-07-16 | 武汉中科光谷绿色生物技术有限公司 | 一种产n-乙酰神经氨酸的枯草芽孢杆菌基因工程菌及其构建方法和应用 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111206012A (zh) * | 2020-03-02 | 2020-05-29 | 卜树华 | 一种可提高硅酸盐细菌解钾活性的培养基及培养方法 |
WO2023030496A1 (zh) * | 2021-09-03 | 2023-03-09 | 杭州中美华东制药有限公司 | 一种发酵制备纽莫康定b0的方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6446141B2 (ja) | 2018-12-26 |
US20180016608A1 (en) | 2018-01-18 |
CN105039193A (zh) | 2015-11-11 |
JP2018503393A (ja) | 2018-02-08 |
CN105039193B (zh) | 2016-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016119293A1 (zh) | 一种微生物发酵生产氨基葡萄糖的菌株及方法 | |
US11149048B2 (en) | High-purity D-psicose preparation method | |
US5232842A (en) | Method for preparing chitosan | |
CN114214251B (zh) | 一种生产d-阿洛酮糖用枯草芽孢杆菌及其培养方法和应用 | |
CN102796673A (zh) | 一株阿魏酸酯酶生产菌株及应用该菌株生产阿魏酸酯酶的方法 | |
CN115873754A (zh) | 一株肠源凝结魏茨曼氏菌rs804及其应用 | |
JP2020031580A (ja) | β−グルカン高産生菌株、β−グルカンの製造方法、及びβ−グルカン高産生菌株のスクリーニング方法 | |
US8383368B2 (en) | Method for fermentative production of N-acetyl-D-glucosamine by microorganism | |
CN112300953B (zh) | 枯草芽孢杆菌及其在发酵生产腺苷酸脱氨酶中的应用 | |
CN116656565B (zh) | 一种地衣芽孢杆菌及其应用 | |
CN102816751B (zh) | 一种高活性壳聚糖酶及其制备方法 | |
JP4057617B2 (ja) | 酢酸菌型セラミドの製造方法 | |
CN105821098A (zh) | 自絮凝发酵生产α-熊果苷 | |
CN103740599B (zh) | 一种α-转移葡萄糖苷酶的生产菌株及其应用 | |
CN116731874B (zh) | 一株蜂蜜曲霉adm01及其应用 | |
Paranthaman et al. | Production on tannin acyl hydrolase from pulse milling by-products using solid state fermentation | |
CN107267420A (zh) | 一种高产β‑1,3‑葡聚糖枯草芽孢杆菌及其应用 | |
JP2011244756A (ja) | セルロース分解促進剤及びその用途 | |
FI89077B (fi) | Foerfarande foer erhaollande av termostabila -amylaser genom odling av superproduktiva mikroorganismer vid hoeg temperatur | |
CN106929456A (zh) | 一种天目不动杆菌mcda01及其制备几丁质脱乙酰酶的方法 | |
JP4268857B2 (ja) | 微生物によるd−グルコサミンの製造法 | |
CN116286512A (zh) | 一株产壳聚糖酶的芽孢杆菌及其应用 | |
CN117821257A (zh) | 一株内生真菌帚枝霉f5及其应用 | |
CN115786186A (zh) | 一株副地衣芽孢杆菌GXU-1及其在制备γ-聚谷氨酸中的应用 | |
JP2006296348A (ja) | マクロホモプシスガムの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15879501 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017540774 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15546720 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15879501 Country of ref document: EP Kind code of ref document: A1 |