WO2016117692A1 - レール - Google Patents
レール Download PDFInfo
- Publication number
- WO2016117692A1 WO2016117692A1 PCT/JP2016/051890 JP2016051890W WO2016117692A1 WO 2016117692 A1 WO2016117692 A1 WO 2016117692A1 JP 2016051890 W JP2016051890 W JP 2016051890W WO 2016117692 A1 WO2016117692 A1 WO 2016117692A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rail
- hardness
- sole
- surface hardness
- center
- Prior art date
Links
- 229910001562 pearlite Inorganic materials 0.000 claims abstract description 102
- 229910000831 Steel Inorganic materials 0.000 claims description 40
- 239000010959 steel Substances 0.000 claims description 40
- 229910052751 metal Inorganic materials 0.000 claims description 26
- 239000002184 metal Substances 0.000 claims description 26
- 239000012535 impurity Substances 0.000 claims description 8
- 239000000126 substance Substances 0.000 abstract description 9
- 239000000203 mixture Substances 0.000 abstract description 5
- 210000003371 toe Anatomy 0.000 description 87
- 238000001816 cooling Methods 0.000 description 77
- 210000002683 foot Anatomy 0.000 description 63
- 238000005096 rolling process Methods 0.000 description 35
- 238000003303 reheating Methods 0.000 description 29
- 238000005098 hot rolling Methods 0.000 description 27
- 230000000694 effects Effects 0.000 description 24
- 238000010438 heat treatment Methods 0.000 description 24
- 238000012360 testing method Methods 0.000 description 23
- 230000009466 transformation Effects 0.000 description 22
- 238000000034 method Methods 0.000 description 21
- 238000009661 fatigue test Methods 0.000 description 20
- 229910052761 rare earth metal Inorganic materials 0.000 description 18
- 230000006378 damage Effects 0.000 description 17
- 238000004519 manufacturing process Methods 0.000 description 17
- 230000015572 biosynthetic process Effects 0.000 description 14
- 229910000734 martensite Inorganic materials 0.000 description 14
- 229910000859 α-Fe Inorganic materials 0.000 description 14
- 229910001566 austenite Inorganic materials 0.000 description 13
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 13
- 230000002829 reductive effect Effects 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- 150000004767 nitrides Chemical class 0.000 description 12
- 230000006872 improvement Effects 0.000 description 11
- 230000007423 decrease Effects 0.000 description 10
- 238000009863 impact test Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 241000446313 Lamella Species 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 229910052698 phosphorus Inorganic materials 0.000 description 8
- 229910052717 sulfur Inorganic materials 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 230000000670 limiting effect Effects 0.000 description 7
- 229910052748 manganese Inorganic materials 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 238000005452 bending Methods 0.000 description 6
- 235000019362 perlite Nutrition 0.000 description 6
- 239000010451 perlite Substances 0.000 description 6
- 238000004881 precipitation hardening Methods 0.000 description 6
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 5
- 229910001563 bainite Inorganic materials 0.000 description 5
- 238000000691 measurement method Methods 0.000 description 5
- 150000001247 metal acetylides Chemical class 0.000 description 5
- 238000013001 point bending Methods 0.000 description 5
- 238000007670 refining Methods 0.000 description 5
- 238000010998 test method Methods 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000006477 desulfuration reaction Methods 0.000 description 3
- 230000023556 desulfurization Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 238000005496 tempering Methods 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000003595 mist Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 150000004763 sulfides Chemical class 0.000 description 2
- 238000004781 supercooling Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- QMQXDJATSGGYDR-UHFFFAOYSA-N methylidyneiron Chemical compound [C].[Fe] QMQXDJATSGGYDR-UHFFFAOYSA-N 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000988 reflection electron microscopy Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/04—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rails
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
- C22C38/105—Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01B—PERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
- E01B5/00—Rails; Guard rails; Distance-keeping means for them
- E01B5/02—Rails
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/009—Pearlite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
Definitions
- the present invention relates to a rail having excellent breakage resistance and fatigue resistance in a high-strength rail used in a cargo railway.
- high-strength rails as shown in Patent Documents 1 to 5 have been developed.
- the main feature of these rails is to improve wear resistance, by reducing the pearlite lamella spacing by heat treatment, increasing the hardness of the steel, or increasing the carbon content of the steel and increasing the carbon content of the celite in the pearlite lamella.
- the volume ratio of the phase is increased.
- Patent Document 1 the rail head after rolling or reheating is accelerated and cooled at a cooling rate of 1 to 4 ° C./second from the temperature of the austenite region to 850 to 500 ° C. It is disclosed that an excellent rail can be obtained.
- Patent Document 2 also shows excellent wear resistance by using hypereutectoid steel (C: more than 0.85 to 1.20%) and increasing the cementite volume ratio in lamellae in the pearlite structure. It is disclosed that an improved rail is obtained.
- Patent Documents 3 to 5 disclose a method of heat-treating the rail bottom for the purpose of controlling the material of the rail bottom and preventing breakage starting from the rail bottom. According to these disclosed technologies, it has been suggested that the service life of the rail can be dramatically improved.
- Patent Document 3 discloses that the rail head is accelerated and cooled from the austenite temperature after rolling the rail, and at the same time, the temperature range of 800 to 450 ° C. is set to the cooling rate of 1 to 5 ° C./sec. Discloses a heat treatment method for accelerated cooling. In addition, according to this heat treatment method, it is disclosed that a rail bottom pearlite average hardness of HB320 or more can improve the drop weight resistance and provide a rail having excellent breakage resistance.
- the bottom part of the rail after the rolling and heat treatment (rail bottom part) is reheated to 600 to 750 ° C. to spheroidize the pearlite structure, and then rapidly cool to improve the drop weight characteristics. It is disclosed that a rail excellent in breakage resistance can be provided.
- the foot portion of the rail is reheated to a temperature range of Ar3 transformation point or Arcm transformation point to 950 ° C., accelerated and cooled at a cooling rate of 0.5 to 20 ° C./second, and at 400 ° C. or higher. Accelerated cooling is stopped, and then cooled to room temperature or accelerated, and then reheated to a temperature range of 500 to 650 ° C., and then cooled to room temperature or accelerated to reduce the hardness of the foot portion to Hv320.
- the method described above is disclosed.
- the hardness of the pearlite structure is improved by applying accelerated cooling to the bottom of the rail, so that it is possible to improve the drop weight resistance and fatigue resistance, which mainly require strength.
- the toughness is reduced by increasing the hardness, it is difficult to improve the breakage resistance.
- it is difficult to improve breakage resistance in this respect because it is easy to generate a pro-eutectoid cementite structure that is harmful to toughness at the above accelerated cooling rate.
- Patent Document 4 since the entire rail bottom is reheated and then rapidly cooled, toughness can be improved by tempering the pearlite structure. However, since the structure is softened by tempering, it is difficult to improve fatigue resistance.
- An object of the present invention is to provide a rail excellent in breakage resistance and fatigue resistance, which can suppress the occurrence of breakage from the bottom, which is required for a rail of a cargo railway.
- the gist of the present invention is as follows.
- the rail according to one embodiment of the present invention is, in mass%, C: 0.75 to 1.20%, Si: 0.10 to 2.00%, Mn: 0.10 to 2.00%, Cr: 0 to 2.00%, Mo: 0 to 0.50%, Co: 0 to 1.00%, B: 0 to 0.0050%, Cu: 0 to 1.00%, Ni: 0 to 1 0.00%, V: 0 to 0.50%, Nb: 0 to 0.050%, Ti: 0 to 0.0500%, Mg: 0 to 0.0200%, Ca: 0 to 0.0200%, REM : 0-0.0500%, Zr: 0-0.0200%, N: 0-0.0200%, Al: 0-1.00%, P: 0.0250% or less, S: 0.0250% or less 90% or more of the metal structure in the range of 5 mm depth starting from the outer surface of the rail bottom part is pearlite.
- HC which is the surface hardness of the center part of the sole
- HE which is the surface hardness of the toe part
- the HC, HE, and HM which is the surface hardness of the intermediate part located between the sole center part and the toe part satisfies the formula a.
- the HM and the HC may further satisfy the formula b.
- HM / HC ⁇ 0.900 (Formula b) (3)
- the steel components are in mass%, Cr: 0.01 to 2.00%, Mo: 0.01 to 0.50%, Co: 0.00. 01 to 1.00%, B: 0.0001 to 0.0050%, Cu: 0.01 to 1.00%, Ni: 0.01 to 1.00%, V: 0.005 to 0.50% , Nb: 0.0010 to 0.050%, Ti: 0.0030 to 0.0500%, Mg: 0.0005 to 0.0200%, Ca: 0.0005 to 0.0200%, REM: 0.0005 1 or 2 selected from the group consisting of: -0.0500%, Zr: 0.0001-0.0200%, N: 0.0060-0.0200%, Al: 0.0100-1.00% It may contain seeds or more.
- the component of the rail steel as the material of the rail is controlled, the metal structure of the rail bottom, the center of the sole of the bottom of the rail, and the surface hardness of the toe, By controlling the balance of the surface hardness of the center part of the sole, the tip part, and the intermediate part, and suppressing the concentration of strain in the vicinity of the intermediate part, Rails with excellent fatigue resistance can be provided.
- a rail excellent in breakage resistance and fatigue resistance according to an embodiment of the present invention (sometimes referred to as a rail according to the present embodiment) will be described in detail.
- % in the composition is mass%.
- the present inventors investigated in detail the cause of breakage from the bottom of the rail in the current freight railway. As a result, it was found that there are mainly two types of breakage of rail breakage depending on the cause. That is, it was confirmed that there were two types of forms: brittle fracture starting from the foot portion at the bottom of the rail and fatigue failure starting from the center of the sole at the bottom of the rail.
- brittle fracture starting from the tip of the foot is often observed on the outer rail of the curved section, and fatigue failure starting from the center of the sole is often observed on the rail of the straight section. confirmed.
- the formation of fatigue cracks was not observed at all in the brittle fracture occurring at the toe portion of the outer rail in the curved section. Therefore, it is presumed that the brittle fracture that occurs at the toe portion of the outer rail in the curved section has resulted in breakage due to the instantaneous application of impact stress.
- FIG. 7 is a schematic diagram of the bottom of the rail according to the present embodiment. With reference to FIG. 7, the bottom part (rail bottom part 4) of the rail which concerns on this embodiment is demonstrated.
- the rail bottom portion 4 includes a sole central portion 1, a foot tip portion 2 located at both ends of the sole central portion 1, and an intermediate portion 3 located between the sole central portion 1 and the foot tip portion 2. .
- the foot tip portion 2 is a portion near both ends in the width direction of the rail bottom portion 4 and close to the rail bottom portion outer surface 5.
- the sole center portion 1 is a location near the center of the rail bottom portion 4 in the width direction and close to the rail bottom outer surface 5.
- the intermediate portion 3 is a portion between the foot tip portion 2 and the sole central portion 1 and close to the rail bottom outer surface 5. More specifically, when the width dimension of the rail bottom portion 4 is W in FIG.
- the sole center portion 1 has a width of 0.1 W sandwiched at a position of 0.05 W from the width center of the rail bottom portion 4. . Further, the foot tip portions 2 positioned at both ends of the sole central portion 1 are within a range of 0.1 W from the width direction end portion of the rail bottom portion 4. Further, the intermediate portion 3 located between the sole center portion 1 and the toe portion 2 is in the range of 0.2 to 0.3 W from the end portion in the width direction of the rail bottom portion 4.
- the rail bottom outer surface 5 means at least a surface of the rail bottom surface that faces downward when the rail is erected.
- the rail bottom outer surface 5 may include a side end surface of the rail bottom.
- low hardness is effective for brittle fracture caused by impact stress
- high hardness hard is effective for fatigue fracture. It has been broken. In other words, conflicting measures are required to improve these characteristics. Therefore, it is not easy to improve these characteristics at the same time.
- the present inventors need to appropriately control the hardness of the surface at each position of the bottom according to the main cause of destruction. I found out.
- Fig. 1 shows the relationship between the distance from the bottom width center of the rail bottom surface and the stress measurement results.
- the vertical axis in FIG. 1 shows the measurement results of three times of surface stress arranged in the stress range.
- the stress range is greatly different at the bottom of the rail
- the center of the sole is the highest at a maximum of 200 MPa, decreases monotonically from the center of the sole toward the toes, and is less constrained. It has been found that the toe portion that is easily deformed decreases to 150 MPa. Therefore, it was suggested that the surface hardness required for improving the fatigue resistance differs depending on each portion because the load stress varies depending on the portion at the bottom of the rail.
- the present inventors have determined the C content: 1.00%, the Si content: 0.50%, and the Mn content: 0.00. 90%, P ⁇ 0.0250%, S ⁇ 0.0250%, with the remainder being Fe and impurities rail steel (steel used as rail material) is hot-rolled and heat-treated, and the center of the foot A plurality of rails A in which the hardness of the part was changed and a plurality of rails B in which the hardness of the toe part was changed were manufactured. And the fatigue test which reproduced the use condition of the actual track
- Rail hardness Rail A with controlled hardness at the center of the sole A Surface hardness at the center of the sole HC (Hv): Hv 320 to 540, Surface hardness at the toe HE (Hv): Hv 315 (constant)
- the hardness at the center of the sole is an average value obtained by measuring the surface hardness (cross-sectional hardness of 1 mm and 5 mm below the surface) of the part shown in FIG.
- the hardness of a foot part is an average value which measured 20 surface hardness (1 mm and 5 mm cross-sectional hardness under a surface) of the site
- part shown in FIG. Hv represents Vickers hardness.
- the surface hardness between the toe part and the center part of the sole including the hardness HM (Hv) of the intermediate part between the toe part and the center part of the sole is monotonous from the toe part toward the center part of the sole. Was given an increasing distribution.
- Fatigue test conditions Test method: Real rail three-point bending (span length: 0.65 m) (see FIG. 8) Load conditions: Stress range control (maximum load-minimum load, minimum load is 10% of maximum load), frequency of load load: 5 Hz Test posture: Load on the rail head (tensile stress acting on the bottom) Stress control: Controlled by a strain gauge attached to the center of the sole of the bottom of the rail. Number of repetitions: 2 million times, and the maximum stress range when not broken is the fatigue limit stress range.
- Fig. 2 shows the fatigue test results for rail A
- Fig. 3 shows the fatigue test results for rail B.
- FIG. 2 is a graph organized by the relationship between the surface hardness HC (Hv) of the center part of the sole of the rail A and the fatigue limit stress range.
- Hv surface hardness of the center of the sole
- Hv360 the surface hardness of the center of the sole is HC (Hv) is Hv360 ⁇ It has been found that it needs to be in the range of 500. If HC (Hv) is less than Hv360, the hardness of pearlite is insufficient and fatigue cracks occur. If HC (Hv) exceeds Hv500, cracks occur due to embrittlement of the pearlite structure.
- FIG. 3 is a graph arranged in relation to the surface hardness HE (Hv) of the foot part of the rail B and the fatigue limit stress range.
- Hv surface hardness of the foot part of the rail B
- the fatigue limit stress range of a load stress of 200 MPa or more. It is necessary that the hardness HE (Hv) is Hv 260 or more.
- the present inventors have examined an appropriate hardness in order to suppress brittle fracture starting from the toe portion. Specifically, C amount: 0.75 to 1.20%, Si amount: 0.50%, Mn amount: 0.90%, P ⁇ 0.0250%, S ⁇ 0.0250%, the balance being Fe Further, the rail steel made of impurities was subjected to hot rolling and heat treatment to produce a rail in which the hardness of the toe portion was changed. And in order to evaluate breakage resistance, the impact test piece was extract
- Impact test conditions Specimen shape: JIS No. 2 mm U-notch Charpy impact test specimen Specimen sampling position: Rail tip (see Fig. 9) Test temperature: Normal temperature (+ 20 ° C) Test conditions: Conducted according to JIS Z2242
- FIG. 4 shows the impact test results of the toe portion.
- FIG. 4 is a graph in which the relationship between the surface hardness of the toe portion and the impact value is arranged. As shown in FIG. 4, when the hardness of the toe part decreases, the impact value tends to increase, and when the toe part hardness becomes Hv315 or less, excellent toughness (15.0 J / cm 2 at 20 ° C.). It was confirmed that the above was obtained.
- the fracture resistance and fatigue resistance of the bottom of the rail are suppressed by suppressing brittle fracture starting from the foot tip and suppressing fatigue failure starting from the foot tip or the center of the sole. It has been found that in order to improve the surface hardness, it is necessary to control the surface hardness of the center of the sole in the range of Hv 360 to 500 and the surface hardness of the toe in the range of Hv 260 to 315.
- the present inventors verified the relationship between the surface hardness of the intermediate part located between the center part of the sole and the toe part and the fatigue resistance of the rail bottom part in the rail having the above hardness range. .
- C amount 1.00%
- Si amount 0.50%
- Mn amount 0.90%
- S ⁇ 0.0250% the balance being Fe and impurities
- the rail steel is hot-rolled and heat-treated, and the surface hardness of the center of the sole: HC (Hv) and the surface hardness of the toe: HE (Hv) are controlled to be constant, and the surface hardness of the intermediate portion is controlled.
- S A plurality of rails (rails C to E) having different HM (Hv) were manufactured. Fatigue tests were performed on the prototype rails C to E, which reproduced the actual track usage conditions, and the fatigue limit stress range was investigated. The test conditions are as shown below.
- Rail Hardness Rail C with controlled hardness at the middle part (8): Surface hardness HC (Hv) at the center of the sole: Hv400 (constant), Surface hardness HE (Hv) at the tip of the foot: Hv315 ( Constant), surface hardness HM (Hv) of the intermediate part located between the center part of the sole and the toe part: Hv 315 to 400 (HC ⁇ HM ⁇ HE) Rail D (2) with controlled hardness at the middle part: surface hardness HC (Hv) at the center of the sole: Hv400 (constant), surface hardness at the toe part: HE (Hv) at Hv315 (constant), Surface hardness HM (Hv) of the intermediate part located between the center part of the sole and the toe part: Hv310 or Hv290 (HM ⁇ HE) Rail E (two) in which the hardness of the middle part is controlled: Surface hardness HC (Hv) of the sole center part: Hv400 (constant), Surface hardness HE (Hv)
- the surface hardness of the center part of the sole is an average value obtained by measuring the surface hardness of the part shown in FIG. 7 (cross-sectional hardness of 1 mm and 5 mm below the surface), respectively, and the surface hardness of the foot part is shown in FIG.
- the surface hardness (section hardness of 1 mm below the surface and 5 mm of cross section) is an average value measured at 20 locations, and the surface hardness of the intermediate portion is the surface hardness (1 mm below the surface and 1 mm below the surface). It is an average value obtained by measuring 20 sections each having a cross-sectional hardness of 5 mm. Further, the surface hardness between the toe part and the intermediate part and the surface hardness between the intermediate part and the center part of the sole gave a distribution that increased or decreased monotonously.
- Fatigue test Test method Real rail three-point bending (span length: 0.65 m) (see Fig. 8) Load conditions: Stress range control (maximum load-minimum load, minimum load is 10% of maximum load), frequency of load load: 5 Hz Test posture: Load on the rail head (tensile stress acting on the bottom) Stress control: Controlled by a strain gauge affixed to the center of the sole of the bottom of the rail Number of repetitions: 2 million times (the maximum stress range when not broken is the fatigue limit stress range)
- FIG. 5 shows the fatigue test results of rail C (eight), rail D (two), and rail E (two).
- FIG. 5 is a graph organized by the relationship between the surface hardness of the intermediate portion: HM (Hv) and the fatigue limit stress range at the bottom center of the sole. Note that four tests were performed for each rail in consideration of variations. As a result, in the rail D where HM ⁇ HE, strain was concentrated in the intermediate portion (soft portion) having a lower surface hardness than the foot tip portion, and fatigue failure was generated starting from the intermediate portion. Further, in rail E where HM> HC, strain was concentrated at the boundary between the central portion and the intermediate portion having a higher surface hardness than the central portion, and fatigue failure was generated starting from the boundary portion. On the other hand, in the rail C, strain concentration was suppressed at the intermediate portion or at the boundary portion between the central portion and the intermediate portion, and fatigue resistance (load stress of 200 MPa or more) at the rail bottom portion could be secured.
- the present inventors have studied by paying attention to the balance of hardness between the center part of the sole and the middle part. Specifically, for rail steel comprising C: 1.00%, Si: 0.50%, Mn: 0.90%, P ⁇ 0.0250%, S ⁇ 0.0250%, the balance being Fe and impurities.
- the surface hardness of the toe part: HE (Hv) is controlled to be constant
- the surface hardness of the center part of the sole Hv
- the surface hardness of the intermediate part HM Rails F to H with different (Hv) were produced. Fatigue tests that reproduced the conditions of actual tracks were performed on the prototype rails F to H, and the fatigue limit stress range was investigated. The test conditions are as shown below.
- Rail hardness Rail F (6) with controlled hardness at the center and middle of the foot Surface hardness HE (Hv) of the toe: Hv315 (constant), Surface hardness HC of the center of the foot HC ( Hv): Hv360, surface hardness HM (Hv) of the intermediate part located between the center part of the sole and the toe part: Hv315 to 360 (HC ⁇ HM ⁇ HE) Rail G (eight) with controlled hardness at the center and middle of the sole: Surface hardness HE (Hv): Hv315 (constant) at the tip of the foot, Surface hardness HC (Hv) at the center of the sole HC: Hv440 The surface hardness HM (Hv) of the intermediate part located between the center part of the sole and the toe part: Hv 315 to 440 (HC ⁇ HM ⁇ HE) Rail H (11) with controlled hardness at the center and middle of the sole: Surface hardness HE (Hv) of the toe portion: Hv315
- the surface hardness of the center part of the sole is an average value obtained by measuring the surface hardness of the part shown in FIG. 7 (cross-sectional hardness of 1 mm and 5 mm below the surface), respectively, and the surface hardness of the foot part is shown in FIG.
- the surface hardness (section hardness of 1 mm below the surface and 5 mm of cross section) is an average value measured at 20 locations, and the surface hardness of the intermediate portion is the surface hardness (1 mm below the surface and 1 mm below the surface). It is an average value obtained by measuring 20 sections each having a cross-sectional hardness of 5 mm.
- the surface hardness between the tip part and the middle part and the surface hardness between the middle part and the center part of the sole gave a distribution that increased or decreased monotonously.
- Fatigue test conditions Test method: Real rail three-point bending (span length: 0.65 m) (see FIG. 8) Load conditions: Stress range control (maximum load-minimum load, minimum load is 10% of maximum load), frequency of load load: 5 Hz Test posture: Load on the rail head (tensile stress acting on the bottom) Stress control: Controlled by a strain gauge affixed to the center of the sole of the bottom of the rail Number of repetitions: 2 million times (the maximum stress range when not broken is the fatigue limit stress range)
- FIG. 6 shows the fatigue test results of rail F (six), rail G (eight), and rail H (11).
- FIG. 6 is a graph in which the relationship between the surface hardness of the intermediate portion: HM (Hv) and the fatigue limit stress range of the bottom portion is arranged.
- HM (Hv) the surface hardness of the intermediate part
- HC (Hv) the surface hardness of the sole center part
- the rail according to the present embodiment controls the components of the rail steel, controls the metal structure of the rail bottom, the sole center of the bottom of the rail, and the surface hardness of the toe, By controlling the balance of the surface hardness of the back center part, the toe part, and the middle part, and suppressing the concentration of strain near the middle part, the breakage resistance and fatigue resistance of the bottom part of the rail used in freight railways It is a rail that aims to improve the performance and greatly improve the service life.
- % in the steel component is mass%.
- C 0.75 to 1.20% C is an element that promotes pearlite transformation and contributes to improvement of fatigue resistance.
- the C content is less than 0.75%, the minimum strength and breakage resistance required for the rail cannot be ensured. Furthermore, a large amount of soft pro-eutectoid ferrite structure that easily generates fatigue cracks at the bottom of the rail is likely to be generated, and fatigue damage is likely to occur.
- the C content exceeds 1.20%, a pro-eutectoid cementite structure is likely to be generated, fatigue cracks are generated from the interface with the pearlite structure, and fatigue resistance is reduced. Further, the toughness is lowered and the breakage resistance is lowered at the toe portion.
- the C content is set to 0.75 to 1.20%. In order to further stabilize the formation of the pearlite structure and further improve the fatigue resistance and breakage resistance, the C content is preferably 0.85 to 1.10%.
- Si 0.10 to 2.00%
- Si is an element that dissolves in the ferrite phase in the pearlite structure, increases the hardness (strength) of the rail bottom, and improves fatigue resistance.
- Si suppresses the formation of pro-eutectoid cementite structure, prevents fatigue damage that occurs from the interface with pearlite structure, improves fatigue resistance, and suppresses toughness reduction due to the formation of pro-eutectoid cementite structure. It is also an element that improves breakage resistance at the tip.
- Si amount is less than 0.10%, these effects cannot be obtained sufficiently.
- the amount of Si exceeds 2.00%, many surface defects are generated during hot rolling.
- the Si content is set to 0.10 to 2.00% in order to promote the formation of a pearlite structure and ensure a certain level of fatigue resistance and breakage resistance.
- the Si content is desirably 0.20 to 1.50%.
- Mn 0.10 to 2.00%
- Mn is an element that improves hardenability and stabilizes pearlite transformation, and at the same time, refines the lamella spacing of the pearlite structure and secures the hardness of the pearlite structure, thereby improving fatigue resistance.
- the amount of Mn is less than 0.10%, the effect is small, and a soft pro-eutectoid ferrite structure that easily generates a fatigue crack at the rail bottom is easily generated. When pro-eutectoid ferrite is generated, it becomes difficult to ensure fatigue resistance.
- the amount of Mn exceeds 2.00%, hardenability increases remarkably, a martensitic structure with low toughness is generated at the bottom of the rail, and fatigue resistance decreases.
- the amount of Mn added is set to 0.10 to 2.00% in order to promote the formation of a pearlite structure and ensure a certain level of fatigue resistance and breakage resistance.
- the Mn content is desirably 0.20 to 1.50%.
- P 0.0250% or less
- the content can be controlled by refining in a converter.
- the amount of P is small, in particular, when the amount of P exceeds 0.0250%, the pearlite structure becomes brittle, a brittle crack is generated from the tip of the fatigue crack at the bottom of the rail, and fatigue resistance decreases. Moreover, toughness falls in a toe part, and breakage resistance falls. For this reason, the amount of P is limited to 0.0250% or less.
- the lower limit of the amount of P is not limited, considering the dephosphorization ability in the refining process, the lower limit of the amount of P is considered to be about 0.0050% as the limit for actual production.
- S is an element inevitably contained in steel.
- the content can be controlled by desulfurization in a hot metal ladle.
- the amount of S is preferably small, but when the amount of S exceeds 0.0250%, coarse MnS-based sulfide inclusions are likely to be generated, and fatigue at the bottom of the rail due to stress concentration around the inclusions. Cracks form and fatigue resistance decreases. For this reason, the amount of S was limited to 0.0250% or less.
- the lower limit of the amount of S is not limited, but considering the desulfurization capability in the refining process, the lower limit of the amount of S is considered to be about 0.0030% when actually manufacturing.
- the rail according to the present embodiment basically contains the chemical components described above, and the balance is made of Fe and impurities. However, instead of a part of the remaining Fe, if necessary, further improvement in fatigue resistance due to an increase in the hardness (strength) of the pearlite structure, improvement in toughness, prevention of softening of the heat affected zone, the inside of the rail bottom
- Cr and Mo increase the equilibrium transformation point, refine the lamella spacing of the pearlite structure, and improve the hardness.
- Co refines the lamellar structure directly under the rolling surface due to contact with the wheel and increases the hardness.
- B reduces the dependency of the pearlite transformation temperature on the cooling rate, and makes the hardness distribution uniform in the cross section of the rail bottom.
- Cu dissolves in the ferrite in the pearlite structure and increases the hardness.
- Ni improves the toughness and hardness of the pearlite structure, and at the same time prevents softening of the heat affected zone of the welded joint.
- V, Nb, and Ti improve the fatigue strength of the pearlite structure by precipitation hardening of carbides and nitrides generated during hot rolling and subsequent cooling.
- Mg, Ca, and REM finely disperse MnS-based sulfides to refine austenite grains, and at the same time promote pearlite transformation and improve toughness.
- Zr increases the equiaxed crystallization rate of the solidified structure, thereby suppressing the formation of a segregation zone at the center of the slab and suppressing the formation of proeutectoid cementite structure and martensite structure.
- N promotes pearlite transformation by segregating at the austenite grain boundaries, improves toughness and promotes precipitation of V carbides and nitrides in the subsequent cooling process after hot rolling, and fatigue resistance of the pearlite structure Improve sexiness. Therefore, in order to acquire said effect, you may contain these elements in the range mentioned later. In addition, even if these elements are contained within the range described later, the characteristics of the rail according to this embodiment are not impaired. Moreover, since it is not always necessary to contain these elements, the lower limit is 0%.
- Cr 0.01 to 2.00%
- Cr is an element that raises the equilibrium transformation temperature and increases the degree of supercooling, thereby refining the lamella spacing of the pearlite structure, improving the hardness (strength) of the pearlite structure, and consequently improving fatigue resistance. is there.
- the Cr content is less than 0.01%, the effect is small, and the effect of improving the hardness of the rail steel is not seen.
- the Cr content exceeds 2.00%, the hardenability is remarkably increased, and a martensitic structure with low toughness is generated at the bottom of the rail, so that the breakage resistance is lowered.
- the Cr content is preferably 0.01 to 2.00%.
- Mo 0.01 to 0.50% Mo, like Cr, raises the equilibrium transformation temperature and increases the degree of supercooling, thereby refining the lamella spacing of the pearlite structure and improving the hardness (strength) of the pearlite structure, resulting in fatigue resistance. It is an element that improves. However, when the amount of Mo is less than 0.01%, the effect is small, and the effect of improving the hardness of the rail steel is not observed. On the other hand, when the amount of Mo exceeds 0.50%, the transformation speed is remarkably reduced, and a martensitic structure with low toughness is generated at the bottom of the rail, and the breakage resistance is lowered. For this reason, when it is contained, the Mo content is preferably 0.01 to 0.50%.
- Co 0.01 to 1.00%
- Co dissolves in the ferrite phase in the pearlite structure, refines the lamella structure of the pearlite structure just below the rolling surface due to contact with the wheel, and improves the hardness (strength) of the pearlite structure, resulting in fatigue resistance. It is an element that enhances. However, if the amount of Co is less than 0.01%, refinement of the lamellar structure is not promoted, and the effect of improving fatigue resistance cannot be obtained. On the other hand, if the amount of Co exceeds 1.00%, the above effect is saturated, and the economy is reduced due to an increase in alloy addition cost. For this reason, when it is contained, the Co content is preferably 0.01 to 1.00%.
- B 0.0001 to 0.0050%
- B is an element that reduces the dependence of the pearlite transformation temperature on the cooling rate by forming ferroboride (Fe 23 (CB) 6 ) at the austenite grain boundary and promoting pearlite transformation.
- Fe 23 (CB) 6 ferroboride
- the amount of B is less than 0.0001%, the effect is not sufficient, and no improvement is observed in the hardness distribution at the rail bottom.
- the amount of B exceeds 0.0050%, coarse ferrocarbon borides are generated, and fatigue damage is likely to occur due to stress concentration. For this reason, when it is contained, the B content is preferably 0.0001 to 0.0050%.
- Cu 0.01 to 1.00%
- Cu is an element that dissolves in the ferrite phase of the pearlite structure, improves the hardness (strength) by solid solution strengthening, and, as a result, improves fatigue resistance.
- the amount of Cu is less than 0.01%, the effect cannot be obtained.
- the amount of Cu exceeds 1.00%, a martensitic structure is generated at the bottom of the rail due to a significant improvement in hardenability, and the breakage resistance is lowered. For this reason, when it is contained, the Cu content is preferably 0.01 to 1.00%.
- Ni 0.01 to 1.00%
- Ni is an element that improves fatigue resistance by improving the toughness of the pearlite structure and at the same time improving the hardness (strength) by solid solution strengthening.
- Ni is an element that is finely precipitated as an intermetallic compound of Ni 3 Ti in a composite with Ti in the weld heat affected zone and suppresses softening by precipitation strengthening. It is an element that suppresses embrittlement of grain boundaries in steel containing Cu.
- the Ni content exceeds 1.00%, a martensitic structure with low toughness is generated at the bottom of the rail due to a significant improvement in hardenability, and the breakage resistance decreases. For this reason, when Ni is contained, the Ni content is preferably 0.01 to 1.00%.
- V 0.005 to 0.50%
- V is an element that increases the hardness (strength) of the pearlite structure and improves fatigue resistance by precipitation hardening due to V carbide and V nitride generated in the cooling process after hot rolling.
- V is generated as V carbide or V nitride in a relatively high temperature range in the heat affected zone that is reheated to a temperature range below the Ac1 point and prevents softening of the heat affected zone of the welded joint. Is an effective element. However, if the amount of V is less than 0.005%, these effects cannot be sufficiently obtained, and improvement in hardness (strength) is not recognized.
- V content is preferably 0.005 to 0.50%.
- Nb 0.0010 to 0.050%
- Nb is an element that increases the hardness (strength) of the pearlite structure and improves fatigue resistance by precipitation hardening with Nb carbide and Nb nitride generated in the cooling process after hot rolling.
- Nb stably generates Nb carbides and Nb nitrides from a low temperature range to a high temperature range in the heat affected zone reheated to a temperature range below the Ac1 point, and the heat affected zone of the welded joint It is an effective element for preventing softening.
- the amount of Nb is less than 0.0010%, these effects cannot be sufficiently obtained, and the improvement of the hardness (strength) of the pearlite structure is not recognized.
- the Nb content is preferably 0.0010 to 0.050%.
- Ti 0.0030 to 0.0500%
- Ti is an element that precipitates as Ti carbide and Ti nitride generated in the cooling process after hot rolling, increases the hardness (strength) of the pearlite structure by precipitation hardening, and improves fatigue resistance.
- the precipitated Ti carbide and Ti nitride do not dissolve during reheating during welding, the structure of the heat affected zone heated to the austenite region is refined to prevent embrittlement of the welded joint. It is an effective element.
- the Ti content is less than 0.0030%, these effects are small.
- the amount of Ti exceeds 0.0500%, coarse Ti carbide and Ti nitride are generated, and fatigue damage is likely to occur due to stress concentration. For this reason, when Ti is contained, the Ti content is preferably 0.0030 to 0.0500%.
- Mg 0.0005 to 0.0200%
- Mg is an element that combines with S to form fine sulfides (MgS).
- MgS finely disperses MnS. Further, this finely dispersed MnS becomes the core of the pearlite transformation, promotes the pearlite transformation, and improves the toughness of the pearlite structure.
- the amount of Mg is less than 0.0005%, the above effect is small.
- the Mg content exceeds 0.0200%, a coarse Mg oxide is generated, and fatigue damage is likely to occur due to stress concentration. For this reason, when Mg is contained, the Mg content is preferably 0.0005 to 0.0200%.
- Ca 0.0005 to 0.0200%
- Ca is an element that has a strong binding force with S and forms sulfide (CaS).
- This CaS finely disperses MnS.
- Fine MnS becomes the core of the pearlite transformation, promotes the pearlite transformation, and improves the toughness of the pearlite structure.
- the Ca content is less than 0.0005%, the effect is small.
- the Ca content exceeds 0.0200%, a coarse oxide of Ca is generated, and fatigue damage is likely to occur due to stress concentration. For this reason, when Ca is contained, the Ca content is preferably 0.0005 to 0.0200%.
- REM 0.0005 to 0.0500% REM is a deoxidation / desulfurization element. When REM is contained, it generates REM oxysulfide (REM 2 O 2 S) and serves as a generation nucleus of Mn sulfide inclusions. In addition, since the melting point of oxysulfide (REM 2 O 2 S), which is the nucleus, is high, stretching of Mn sulfide inclusions after rolling is suppressed. As a result, by containing REM, MnS is finely dispersed, stress concentration is reduced, and fatigue resistance is improved.
- REM REM 0.0005 to 0.0500% REM is a deoxidation / desulfurization element. When REM is contained, it generates REM oxysulfide (REM 2 O 2 S) and serves as a generation nucleus of Mn sulfide inclusions. In addition, since the melting point of oxysulfide (REM 2 O 2 S), which is the nucleus, is
- the amount of REM is less than 0.0005%, the effect is small, and it is insufficient as a production nucleus of MnS-based sulfide.
- the REM content exceeds 0.0500%, hard REM oxysulfide (REM 2 O 2 S) is generated, and fatigue damage is likely to occur due to stress concentration. For this reason, when it is contained, the REM content is preferably 0.0005 to 0.0500%.
- REM is a rare earth metal such as Ce, La, Pr or Nd.
- the above content limits the total content of these all REMs. As long as the total content of all REM elements is within the above range, the same effect can be obtained regardless of whether it is a single type or a composite type (two or more types).
- Zr 0.0001 to 0.0200% Zr combines with O to produce ZrO 2 inclusions. Since this ZrO 2 inclusion has good lattice matching with ⁇ -Fe, ⁇ -Fe becomes a solidification nucleus of high-carbon rail steel that is a solidification primary crystal, and by increasing the equiaxed crystallization rate of the solidification structure, It suppresses the formation of segregation bands at the center of the slab, and suppresses the formation of martensite and proeutectoid cementite structures generated in the rail segregation part. However, if the amount of Zr is less than 0.0001%, the number of ZrO 2 -based inclusions is small, and a sufficient action as a solidification nucleus is not exhibited.
- the Zr content is preferably 0.0001 to 0.0200%.
- N 0.0060 to 0.0200%
- N is an element effective for improving the toughness by promoting the pearlite transformation from the austenite grain boundary by segregating at the austenite grain boundary and mainly by reducing the pearlite block size.
- N is added simultaneously with V, it is an element that promotes precipitation of V carbonitrides in the cooling process after hot rolling, increases the hardness (strength) of the pearlite structure, and improves fatigue resistance.
- the N content is less than 0.0060%, these effects are small.
- the N content exceeds 0.0200%, it becomes difficult to make N dissolve in the steel. In this case, bubbles that become the starting point of fatigue damage are generated, and fatigue damage is likely to occur.
- the N content is preferably 0.0060 to 0.0200%.
- Al 0.0100 to 1.00%
- Al is a component that functions as a deoxidizer.
- Al is an element that moves the eutectoid transformation temperature to a higher temperature side, contributes to increasing the hardness (strength) of the pearlite structure, and improves fatigue resistance.
- the Al content is less than 0.0100%, the effect is small.
- the Al content exceeds 1.00%, it is difficult to make Al dissolve in the steel. In this case, coarse alumina inclusions are generated, fatigue cracks are generated from the coarse precipitates, and fatigue damage is likely to occur. Furthermore, oxides are generated during welding, and weldability is significantly reduced. For this reason, when it is contained, the Al content is preferably 0.0100 to 1.00%.
- the pearlite structure is a low alloy and is easy to obtain strength (hardness), and is an advantageous structure for improving fatigue resistance. Furthermore, the strength (hardness) can be easily controlled, the toughness can be easily improved, and the fracture resistance is excellent. Therefore, the pearlite structure is limited to the purpose of improving the breakage resistance and fatigue resistance of the rail bottom.
- the necessary range of the pearlite structure is limited to a range of 5 mm depth starting from the bottom outer surface. If the required range of the pearlite structure is less than 5 mm starting from the bottom outer surface, the effect of improving the breakage resistance and fatigue resistance required for the rail bottom is small, and it is difficult to sufficiently improve the service life of the rail. Therefore, 90% by area or more of the metal structure having a depth of 5 mm starting from the bottom outer surface is defined as a pearlite structure.
- Fig. 7 shows areas where pearlite structure is required.
- the rail bottom portion 4 is positioned between the sole central portion 1, the foot tip portion 2 located at both ends of the sole central portion 1, and the sole central portion 1 and the foot tip portion 2.
- the rail bottom outer surface 5 indicates the entire surface of the rail bottom 4 including the sole center portion 1, the middle portion 3, the foot tip portion 2 and the like of the rail indicated by bold lines, and faces downward when the rail is erected. Surface.
- the rail bottom outer surface 5 may include a side end surface of the rail bottom.
- the rails are resistant to breakage. And improvement in fatigue resistance. Therefore, the pearlite structure P is disposed within a depth range of at least 5 mm from the rail bottom outer surface 5 where improvement in breakage resistance and fatigue resistance is required as shown in the hatched range of FIG.
- the other part may be a pearlite structure or a metal structure other than that. In consideration of the characteristics of the entire cross section of the rail, it is most important to ensure wear resistance particularly in the rail head that contacts the wheel. As a result of investigating the relationship between the metal structure and the wear resistance, it has been confirmed that the pearlite structure is the best. Therefore, the structure of the rail head is also preferably a pearlite structure.
- the metal structure of the bottom surface layer portion of the rail according to the present embodiment is desirably a pearlite structure as described above.
- the area ratio is 10% in the pearlite structure.
- the following trace amounts of pro-eutectoid ferrite structure, pro-eutectoid cementite structure, bainite structure and martensite structure may be mixed.
- a test piece is taken from a cross section perpendicular to the outer surface of the rail bottom, and after polishing the test piece, a metal structure is revealed by etching, and a metal structure at each position of 1 mm and 5 mm from the surface is observed. Can be obtained. Specifically, in the observation of each position, it is obtained by observing the metal structure in the field of view of the optical microscope of 200 times, determining the area of each structure, and determining the area ratio.
- the area ratio of the pearlite structure is 90% or more in both 1 mm and 5 mm from the surface, 90% or more of the metal structure in the range of 5 mm depth starting from the rail bottom outer surface is the pearlite structure (rail It may be determined that the area ratio of the pearlite structure in the range of 5 mm depth starting from the bottom outer surface is 90% or more. That is, if the area ratio at each position is 90%, the pearlite area ratio may be 90% or more at the intermediate position between the positions.
- the surface hardness of the rail bottom is preferably measured under the following conditions.
- Measurement method of surface hardness of rail bottom Measurement Measuring device: Vickers hardness tester (load 98N) Sample collection for measurement: Sample cut out from the cross section at the bottom Pretreatment: 1 ⁇ m diamond polishing of the cross section Measurement method: Measured according to JIS Z 2244
- Calculation of hardness Center of sole of foot 20 points are measured at 1 mm and 5 mm below the surface of the part shown in FIG. 7, and the average value is taken as the hardness at each position.
- Toe part 20 points are measured at 1 mm and 5 mm below the surface of the part shown in FIG. 7, and the average value is taken as the hardness at each position.
- Intermediate part 20 points are measured at 1 mm and 5 mm below the surface of the part shown in FIG. 7, and the average value is taken as the hardness at each position.
- Ratio of the surface hardness (HM) of the middle part and the surface hardness (HC) of the middle part of the sole Is a value obtained by further averaging the average values of the hardness of 1 mm and 5 mm below the surface in each part, the surface hardness (HC) of the center of the sole and the surface hardness (HM) of the intermediate part, Calculate the ratio.
- Method for controlling the hardness of the bottom of the rail In order to control the hardness of the bottom of the rail, for example, depending on the hardness required by the center of the sole, the tip of the foot, and the intermediate part, rolling conditions, after rolling The hardness can be controlled by adjusting the heat treatment conditions.
- the rail according to the present embodiment includes the above-described components, structures, and the like, so that the effect can be obtained regardless of the manufacturing method.
- rail steel composed of the above component composition is melted in a commonly used melting furnace such as a converter or electric furnace, and this molten steel is ingot-bundled or continuously cast. Then, it can be obtained by performing hot rolling and performing heat treatment for controlling the metal structure and hardness of the rail bottom as required.
- the molten steel after component adjustment is cast into a bloom, and the bloom is heated to 1250 to 1300 ° C. and hot-rolled to form a rail shape. And it cools or accelerates cooling after hot rolling, or it carries out accelerated cooling after reheating after carrying out hot rolling and standing to cool.
- the final rolling temperature should be increased by cooling the toe part before final rolling.
- the back center part and the toe part are individually controlled.
- the actual rolling conditions of the rail are as follows: the final rolling temperature at the center of the sole is 900 to 1000 ° C. (temperature of the rail bottom outer surface), and the final rolling temperature at the foot tip is 800 to 900 ° C. (rail bottom outer contour). By setting the surface temperature in the range, the hardness can be individually controlled at each position.
- the heating temperature of the toe portion may be lowered.
- the actual rail reheating conditions include, for example, a reheating temperature of 950 to 1050 ° C (rail bottom outer surface) at the center of the sole and a reheating temperature of 850 to 950 ° C (rail bottom outer surface) at the foot tip.
- the final rolling temperature and reheating temperature are slightly higher in the vicinity of the foot part than in the foot part, based on conditions according to the hot rolling and reheating conditions at the center part of the sole and the foot part.
- the accelerated cooling method at the bottom of the rail is not particularly limited.
- the cooling rate of the rail bottom during heat treatment can be controlled by air injection cooling, mist cooling, water / air mixed injection cooling, or a combination thereof in order to control hardness. Control is sufficient.
- the coolant for the accelerated cooling in the center part of the sole is water, mist, or toe.
- the cooling rate of the toe part may be reduced as compared with the center part of the sole.
- the cooling rate and the cooling temperature range are controlled based on the temperature of the rail bottom outer surface.
- an accelerated cooling rate of 3 to 10 ° C./sec (cooling temperature range: 850 to 600 ° C.) at the center of the sole, and an accelerated cooling rate of 1 to 5 ° C./sec at the foot tip (for example)
- the hardness can be controlled in the range of the cooling temperature range (800 to 650 ° C.). Further, the accelerated cooling may be performed in the range of 800 to 600 ° C., and the cooling conditions below 600 ° C. are not particularly limited.
- an accelerated cooling rate of 5 to 12 ° C./sec (cooling temperature range: 850 to 600 ° C.) at the center of the sole and accelerated cooling at the tip of the foot
- the hardness can be controlled by cooling at a speed of 3 to 8 ° C./sec (cooling temperature range: 800 to 600 ° C.).
- the accelerated cooling may be performed in the range of 800 to 600 ° C., and the cooling conditions below 600 ° C. are not particularly limited.
- the acceleration cooling rate in the vicinity of the toes is slightly higher than that of the toes. In the vicinity, it is desirable to set the acceleration cooling rate slightly lower than the sole. As a result, it is possible to ensure the intended hardness.
- the accelerated cooling rate of the middle part is brought close to the cooling rate of the center part of the sole, or
- the combination of the manufacturing conditions as described above can control the hardness of the rail bottom, and the area ratio of the pearlite structure can be 90% or more in a predetermined range of metal structure.
- the adjustment refer to the relationship between the hot rolling conditions and crystal grains, the steel equilibrium state diagram, the continuous cooling transformation diagram (CCT diagram), etc. described in the publicly known literatures disclosed. That's fine.
- the hardness can be selected and the structure Can be determined.
- delay before rolling, forced cooling of the foot portion, etc. can be applied.
- the reheating temperature it is possible to select the reheating temperature from the equilibrium diagram of iron-carbon.
- control is performed to reduce the austenite grain size by lowering the reheating temperature. If the temperature is reduced too much, the metal structure may not be completely austenitic. Therefore, it is desirable to control the minimum heating temperature using the A1, A3, and Acm lines as a scale.
- heating suppression such as installing a shielding plate can be applied.
- induction heating suppression of heating of the toe portion by adjusting the arrangement of the plurality of coils, suppression of heating of the toe portion by adjusting the output of the induction heating coil near the toe portion, and the like can be applied.
- the cooling rate such as accelerated cooling (cooling control as heat treatment after finish rolling or reheating)
- the rail according to the present embodiment can be manufactured by utilizing in combination with the above organization control method and new knowledge obtained by the present inventors.
- Tables 1 to 4 show the chemical components and various properties of the rails that are examples of the present invention.
- Tables 1 to 4 show chemical component values, the microstructure of the bottom, the surface hardness of the bottom, and the ratio of the surface hardness of the center of the sole to the surface hardness of the middle.
- the balance of the chemical components is Fe and impurities.
- the area ratio of the pearlite structure in the range of 5 mm depth starting from the outer surface of the rail bottom is 90% or more, and a very small initial ratio of 10% or less in area ratio. Also included are those in which one or more of an eutectoid ferrite structure, a pro-eutectoid cementite structure, a bainite structure and a martensite structure are mixed.
- Tables 5 to 9 show the chemical component values, the bottom microstructure, the bottom surface hardness, the ratio of the surface hardness at the center of the sole and the surface hardness of the middle portion of the rails as comparative examples. Further, the results of the fatigue test conducted by the method shown in FIG. 8 and the impact test results of the foot tips obtained by collecting the test pieces from the position shown in FIG. 9 are also shown. In addition, when only “perlite” is described as the microstructure of the bottom, the area ratio of the pearlite structure in the range of 5 mm depth starting from the outer surface of the rail bottom is 90% or more, and the area ratio is a trace amount of 10% or less.
- pro-eutectoid ferrite structure pro-eutectoid cementite structure, bainite structure or martensite structure are mixed.
- all the structures other than the pearlite structure described in the column of microstructure mean an amount of more than 10% in terms of area ratio.
- pearlite + proeutectoid ferrite it means that the pearlite structure is less than 90% in area ratio, and the remaining main structure is proeutectoid ferrite.
- Hot rolling conditions (only applied examples) Final rolling temperature Center of foot sole: 900-1000 ° C Foot tip: 800-900 ° C ⁇ Reheating conditions (applied examples only) Reheating temperature Center of foot sole: 950-1050 ° C Foot tip: 850-950 ° C ⁇ Bottom heat treatment conditions (only applied examples) Heat treatment cooling rate immediately after hot rolling Center of sole: 3 to 10 ° C / sec (cooling temperature range: 850 to 600 ° C) Toe: 1-5 ° C / sec (cooling temperature range: 800-600 ° C) Heat treatment cooling rate after reheating Center part of sole: 5-12 ° C / sec (cooling temperature range: 850-600 ° C) Toe part: 3 to 8 ° C / sec (cooling temperature range: 800 to 650 ° C)
- Invention rail (35) Invention Examples 1 to 35: Chemical composition value, bottom microstructure, bottom surface hardness (foot sole center, toe part), and ratio of surface hardness to foot part surface hardness Is a rail within the scope of the present invention.
- Comparative Examples 1 to 8 A rail in which any of the contents of C, Si, Mn, P, and S and the microstructure of the bottom is out of the scope of the present invention. Comparative Examples 9 to 20 (12 pieces): The balance of the surface hardness of the foot sole center portion and the foot tip portion at the bottom of the rail, and the surface hardness of the foot sole center portion, the foot tip portion and the intermediate portion is outside the scope of the present invention. Rails.
- Test method Real rail 3-point bending (span length: 0.65 m, frequency: 5 Hz)
- Load conditions Stress range control (maximum load-minimum load, minimum load is 10% of maximum load)
- Test posture Load on the rail head (tensile stress acting on the bottom)
- Stress control Controlled by a strain gauge attached to the center of the bottom of the rail. The number of repetitions: 2 million times, the maximum stress range when not ruptured is the fatigue limit stress range
- Test piece shape JIS No. 2 mm U-notch Charpy impact test piece
- Test piece collection position rail tip (see FIG. 9)
- Test temperature Normal temperature (+ 20 ° C)
- Measurement method of surface hardness of rail bottom Measurement Measuring device: Vickers hardness tester (load 98N) Sample collection for measurement: Sample cutting from the bottom cross section Pretreatment: 1 ⁇ m diamond polishing of the cross section Measurement method: Measured according to JIS Z 2244.
- Hardness calculation method Surface hardness at the center of the sole: 20 points of 1 mm and 5 mm below the surface of the site shown in FIG. 7 were measured, and the average value was defined as the surface hardness at the position.
- Surface hardness of toe part 20 points of 1 mm and 5 mm below the surface of the part shown in FIG. 7 were measured, and the average value was defined as the surface hardness at the position.
- Surface hardness of the intermediate portion 20 points of 1 mm and 5 mm below the surface of the site shown in FIG. 7 were measured, and the average value was defined as the surface hardness at the position.
- the ratio of the surface hardness (HM) of the intermediate part and the surface hardness (HC) of the center part of the back is The above-mentioned ratio was calculated by further averaging the surface hardness at each position of 1 mm and 5 mm below the surface of the part as the surface hardness (HC) at the back center and the surface hardness (HM) at the middle.
- the rails of the present invention are compared with the comparative rails (Comparative Examples 1 to 8) of C, Si, Mn, P, S of steel. Content within the limited range suppresses the formation of pro-eutectoid ferrite structure, pro-eutectoid cementite structure, bainite structure and martensite structure, controls the toughness of inclusions and pearlite structure, and By controlling the surface hardness of the center part of the sole and the toe part, the fatigue strength of the center part of the sole and the toughness of the toe part are improved, and the breakage resistance and fatigue resistance of the rail are improved.
- the rails of the present invention are compared with the comparative rails (Comparative Examples 9 to 20) of the center of the sole at the bottom of the rail, the surface hardness of the toe, and the surface hardness of the intermediate part.
- the fatigue resistance is improved by controlling the balance.
- the rails of the present invention Invention Examples 9 to 10, 12 to 13, 15 to 16, 18 to 19, 20 to 21, 23 to 24, 25 to 26, 29 to 30, 32 to 33
- the surface hardness at the center of the sole at the bottom of the rail HC (Hv)
- the surface hardness at the middle HM (Hv)
- the composition of the rail steel that is the material of the rail is controlled, the metal structure of the rail bottom, the center of the sole of the bottom of the rail, and the surface hardness of the toe are further controlled.
- Fracture resistance and fatigue resistance required for the bottom of rails of freight railways by controlling the balance of surface hardness of the part, toe part and intermediate part, and suppressing the concentration of strain in the vicinity of the intermediate part Can provide excellent rails.
- foot sole center part 2 foot tip part 3: intermediate part 4: bottom part 5: bottom outer surface
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
また、近年、鉄道輸送のさらなる過密化が進み、レール底部から折損や疲労損傷が発生する可能性が指摘されている。そのため、レール使用寿命の更なる向上のため、レールには、耐摩耗性に加えて耐折損性及び耐疲労性の向上が求められるようになってきた。
また、特許文献2には、過共析鋼(C:0.85超~1.20%)を用いて、パーライト組織中のラメラ中のセメンタイト体積比率を増加させることによって、耐摩耗性に優れたレールが得られることが開示されている。
(1)本発明の一態様に係るレールは、質量%で、C:0.75~1.20%、Si:0.10~2.00%、Mn:0.10~2.00%、Cr:0~2.00%、Mo:0~0.50%、Co:0~1.00%、B:0~0.0050%、Cu:0~1.00%、Ni:0~1.00%、V:0~0.50%、Nb:0~0.050%、Ti:0~0.0500%、Mg:0~0.0200%、Ca:0~0.0200%、REM:0~0.0500%、Zr:0~0.0200%、N:0~0.0200%、Al:0~1.00%、P:0.0250%以下、S:0.0250%以下、を含有し、残部がFeおよび不純物からなる鋼成分を有し、レール底部外郭表面を起点として5mm深さの範囲の金属組織の90%以上がパーライト組織であり、足裏中央部の表面硬さであるHCがHv360~500の範囲であり、足先部の表面硬さであるHEがHv260~315の範囲であり、前記HC、前記HE、及び前記足裏中央部と前記足先部の間に位置する中間部の表面硬さであるHMが、式aを満たす。
HC≧HM≧HE …(式a)
(2)上記(1)のレールでは、さらに、前記HMと前記HCが式bを満たしてもよい。
HM/HC≧0.900 …(式b)
(3)上記(1)または(2)のレールでは、前記鋼成分が、質量%で、Cr:0.01~2.00%、Mo:0.01~0.50%、Co:0.01~1.00%、B:0.0001~0.0050%、Cu:0.01~1.00%、Ni:0.01~1.00%、V:0.005~0.50%、Nb:0.0010~0.050%、Ti:0.0030~0.0500%、Mg:0.0005~0.0200%、Ca:0.0005~0.0200%、REM:0.0005~0.0500%、Zr:0.0001~0.0200%、N:0.0060~0.0200%、Al:0.0100~1.00%、からなる群から選択される1種または2種以上を含有してもよい。
また、曲線区間の外軌レールの足先部で発生する脆性破壊は、疲労き裂の生成が全く認められなかった。したがって、曲線区間の外軌レールの足先部で発生する脆性破壊は、衝撃的な応力が瞬時に作用して折損に至ったものと推定される。
足先部2は、図7に示すように、レール底部4の幅方向両端付近にあって、レール底部外郭表面5に近い箇所である。また、足裏中央部1は、図7に示すように、レール底部4の幅方向中央付近にあって、レール底部外郭表面5に近い箇所である。更に、中間部3は、図7に示すように、足先部2と足裏中央部1との間にあって、レール底部外郭表面5に近い箇所である。
より具体的には、図7においてレール底部4の幅寸法をWとしたとき、足裏中央部1はレール底部4の幅中心から0.05Wの位置で挟まれる幅0.1Wの範囲である。また、足裏中央部1の両端に位置する足先部2は、レール底部4の幅方向端部から0.1Wの範囲である。また、足裏中央部1と足先部2の間に位置する中間部3は、レール底部4の幅方向端部から0.2~0.3Wの範囲である。
用いたレール
形状:141ポンドレール(重さ:70kg/m、底部の幅:152mm)
底部の金属組織:パーライト
底部表面硬さ:Hv380~420(足先部~中間部~足裏中央部の間の表面下1mmの平均値)
試験方法:実物レール3点曲げ(スパン長:0.65m)(図8参照)
荷重条件:7~70トンの範囲(荷重負荷の周波数:5Hz)
試験姿勢:レール頭部に荷重負荷(レール底部に引張応力を作用させる)
測定方法:レール底部に貼り付けた歪ゲージによる測定
用いたレール
形状:141ポンドレール(重さ:70kg/m、底部の幅:152mm)
底部の金属組織:パーライト
足裏中央部の硬度を制御したレールA:足裏中央部の表面硬さHC(Hv):Hv320~540、足先部の表面硬さHE(Hv):Hv315(一定)
足先部の硬度を制御したレールB:足裏中央部の表面硬さHC(Hv):Hv400(一定)、足先部の表面硬さHE(Hv):Hv200~340
ここで、足裏中央部の硬さは図7に示す部位の表面硬さ(表面下1mm及び5mmの断面硬さ)をそれぞれ20箇所測定した平均値である。また、足先部の硬さは図7に示す部位の表面硬さ(表面下1mm及び5mmの断面硬さ)をそれぞれ20箇所測定した平均値である。また、Hvはビッカース硬さを示す。
足先部と足裏中央部の間の中間部の硬さHM(Hv)を含む足先部と足裏中央部の間の表面硬さは、足先部から足裏中央部に向けて単調に増加する分布を与えた。
試験方法:実物レール3点曲げ(スパン長:0.65m)(図8参照)
荷重条件:応力範囲制御(最大荷重-最小荷重、最小荷重は最大荷重の10%)、荷重負荷の周波数:5Hz
試験姿勢:レール頭部に荷重負荷(底部に引張応力作用)
応力制御:レール底部の足裏中央部に貼り付けた歪ゲージにより制御
繰り返し回数:200万回とし、未破断の場合の最大応力範囲を疲労限応力範囲とする
試験条件は下記に示すとおりである。
用いたレール
形状:141ポンドレール(重さ:70kg/m、底部の幅:152mm)
底部の金属組織:パーライト
足先部硬度:Hv240~360
足裏中央部硬度:Hv360~500
硬度測定位置:図7に示す足先部のレール底部外郭表面から1mm及び5mmの深さの部位での足先表面硬さを20箇所測定し、硬度はその平均値で示した。
試験片形状:JIS3号 2mmUノッチシャルピー衝撃試験片
試験片採取位置:レールの足先部(図9参照)
試験温度:常温(+20℃)
試験条件:JIS Z2242に準じて実施
用いたレール
形状:141ポンドレール(重さ:70kg/m、底部の幅:152mm)
底部の金属組織:パーライト
中間部の硬度を制御したレールC(8本):足裏中央部の表面硬さHC(Hv):Hv400(一定)、足先部の表面硬さHE(Hv):Hv315(一定)、足裏中央部と足先部の間に位置する中間部の表面硬さHM(Hv):Hv315~400(HC≧HM≧HE)
中間部の硬度を制御したレールD(2本):足裏中央部の表面硬さHC(Hv):Hv400(一定)、足先部の表面硬さ:HE(Hv)をHv315(一定)、足裏中央部と足先部の間に位置する中間部の表面硬さHM(Hv):Hv310、またはHv290(HM<HE)
中間部の硬度を制御したレールE(2本):足裏中央部の表面硬さHC(Hv):Hv400(一定)、足先部の表面硬さHE(Hv):Hv315(一定)、足裏中央部と足先部の間に位置する中間部の表面硬さHM(Hv):Hv405、または420(HM>HC)
また、足先部と中間部の間の表面硬さ、中間部と足裏中央部の間の表面硬さは、単調に増加または減少する分布を与えた。
荷重条件:応力範囲制御(最大荷重-最小荷重、最小荷重は最大荷重の10%)、荷重負荷の周波数:5Hz
試験姿勢:レール頭部に荷重負荷(底部に引張応力作用)
応力制御:レール底部の足裏中央部に貼り付けた歪ゲージにより制御
繰り返し回数:200万回(未破断の場合の最大応力範囲を疲労限応力範囲とする)
HC≧HM≧HE 式1
用いたレール
形状:141ポンドレール(重さ:70kg/m、底部の幅:152mm)
底部の金属組織:パーライト
足裏中央部、中間部の硬度を制御したレールF(6本):足先部の表面硬さHE(Hv):Hv315(一定)、足裏中央部の表面硬さHC(Hv):Hv360、足裏中央部と足先部との間に位置する中間部の表面硬さHM(Hv):Hv315~360(HC≧HM≧HE)
足裏中央部、中間部の硬度を制御したレールG(8本):足先部の表面硬さHE(Hv):Hv315(一定)、足裏中央部の表面硬さHC(Hv):Hv440、足裏中央部と足先部との間に位置する中間部の表面硬さHM(Hv):Hv315~440(HC≧HM≧HE)
足裏中央部、中間部の硬度を制御したレールH(11本):足先部の表面硬さHE(Hv):Hv315(一定)、足裏中央部の表面硬さHC(Hv):Hv500、足裏中央部と足先部との間に位置する中間部の表面硬さHM(Hv):Hv315~500(HC≧HM≧HE)
足先部と中間部の間の表面硬さ、中間部と足裏中央部の間の表面硬さ硬さは、単調に増加または減少する分布を与えた。
試験方法:実物レール3点曲げ(スパン長:0.65m)(図8参照)
荷重条件:応力範囲制御(最大荷重-最小荷重、最小荷重は最大荷重の10%)、荷重負荷の周波数:5Hz
試験姿勢:レール頭部に荷重負荷(底部に引張応力作用)
応力制御:レール底部の足裏中央部に貼り付けた歪ゲージにより制御
繰り返し回数:200万回(未破断の場合の最大応力範囲を疲労限応力範囲とする)
これは、中央部と中間部の硬度差の減少により、中央部と中間部の境界部において歪の集中がさらに抑制されたためであると考えられる。
HM/HC≧0.900 式2
本実施形態に係るレールにおいて、鋼の化学成分を限定する理由について詳細に説明する。
Cは、パーライト変態を促進させて、かつ、耐疲労性の向上に寄与する元素である。しかしながら、C量が0.75%未満であると、レールに要求される最低限の強度や耐折損性を確保できない。さらに、レール底部に疲労き裂を生成し易い軟質な初析フェライト組織が多量に生成し易くなり、疲労損傷が発生し易くなる。一方、C量が1.20%を超えると、初析セメンタイト組織が生成し易くなり、パーライト組織との界面から疲労き裂が発生し、耐疲労性が低下する。また、靭性が低下し、足先部において耐折損性が低下する。したがって、パーライト組織の生成を促し、耐疲労性や耐折損性の一定のレベルを確保するため、C量を0.75~1.20%とする。パーライト組織の生成を更に安定化し、耐疲労性や耐折損性をより向上させるには、C量を0.85~1.10%とすることが望ましい。
Siは、パーライト組織中のフェライト相に固溶し、レール底部の硬さ(強度)を上昇させ、耐疲労性を向上させる元素である。さらに、Siは初析セメンタイト組織の生成を抑制し、パーライト組織との界面から発生する疲労損傷を防止し、耐疲労性を向上させるとともに、初析セメンタイト組織の生成による靭性低下を抑制し、足先部において耐折損性を向上させる元素でもある。しかしながら、Si量が0.10%未満では、これらの効果が十分に得られない。一方、Si量が2.00%を超えると、熱間圧延時に表面疵が多く生成する。さらに、焼入性が著しく増加し、レール底部に靭性の低いマルテンサイト組織が生成し易くなり、耐疲労性の低下につながる。また、硬さの上昇が過剰となり、足先部において耐折損性が低下する。したがって、パーライト組織の生成を促し、耐疲労性や耐折損性の一定のレベルを確保するため、Si量を0.10~2.00%とする。パーライト組織の生成を更に安定化し、耐疲労性や耐折損性をより向上させるには、Si量を0.20~1.50%とすることが望ましい。
Mnは、焼き入れ性を高め、パーライト変態を安定化させると同時に、パーライト組織のラメラ間隔を微細化し、パーライト組織の硬度を確保することによって、耐疲労性を向上させる元素である。しかしながら、Mn量が0.10%未満では、その効果が小さく、レール底部に疲労き裂を生成し易い軟質な初析フェライト組織が生成し易くなる。初析フェライトが生成すると、耐疲労性の確保が困難となる。一方、Mn量が2.00%を超えると、焼入性が著しく増加し、レール底部に靭性の低いマルテンサイト組織が生成し、耐疲労性が低下する。また、硬さの上昇が過剰となり、足先部において耐折損性を低下させる。したがって、パーライト組織の生成を促し、耐疲労性や耐折損性の一定のレベルを確保するため、Mn添加量を0.10~2.00%とする。パーライト組織の生成を安定化し、耐疲労性や耐折損性をより向上させるには、Mn量を0.20~1.50%とすることが望ましい。
Pは、鋼中に不可避的に含有される元素である。転炉での精錬を行うことによりその含有量を制御することが可能である。P量は少ない方が好ましいが、特にP量が0.0250%を超えると、パーライト組織が脆化し、レール底部において疲労き裂の先端から脆性き裂が生成し、耐疲労性が低下する。また、足先部において靭性が低下し、耐折損性が低下する。このため、P量を0.0250%以下に限定する。P量の下限は限定しないが、精錬工程での脱燐能力を考慮すると、P量の下限は0.0050%程度が実際に製造する際の限界になると考えられる。
Crは、平衡変態温度を上昇させ、過冷度を増加させることにより、パーライト組織のラメラ間隔を微細化し、パーライト組織の硬度(強度)を向上させ、その結果として耐疲労性を向上させる元素である。しかしながら、Cr量が0.01%未満ではその効果は小さく、レール鋼の硬度を向上させる効果が見られない。一方、Cr量が2.00%を超えると、焼入れ性が著しく増加し、レール底部に靭性の低いマルテンサイト組織が生成し、耐折損性が低下する。このため、含有させる場合には、Cr量を0.01~2.00%とすることが好ましい。
Moは、Crと同様に平衡変態温度を上昇させ、過冷度を増加させることにより、パーライト組織のラメラ間隔を微細化し、パーライト組織の硬度(強度)を向上させ、その結果として、耐疲労性を向上させる元素である。しかしながら、Mo量が0.01%未満ではその効果が小さく、レール鋼の硬度を向上させる効果が見られない。一方、Mo量が0.50%を超えると、変態速度が著しく低下し、レール底部に靭性の低いマルテンサイト組織が生成して、耐折損性が低下する。このため、含有させる場合には、Mo量を0.01~0.50%とすることが好ましい。
Coは、パーライト組織中のフェライト相に固溶し、車輪との接触によるころがり面直下のパーライト組織のラメラ組織を微細し、パーライト組織の硬度(強度)を向上させ、その結果として、耐疲労性を高める元素である。しかし、Co量が0.01%未満では、ラメラ組織の微細化が促進せず、耐疲労性の向上効果が得られない。一方、Co量が1.00%を超えると、上記の効果が飽和する上、合金添加コストの増大により経済性が低下する。このため、含有させる場合には、Co量を0.01~1.00%とすることが好ましい。
Bは、オーステナイト粒界に鉄炭ほう化物(Fe23(CB)6)を形成し、パーライト変態を促進することにより、パーライト変態温度の冷却速度依存性を低減させる元素である。パーライト変態温度の冷却速度依存性が低減されると、レール底部表面から内部までより均一な硬度分布がレールに付与されるので、耐疲労性が向上する。しかしながら、B量が0.0001%未満では、その効果が十分でなく、レール底部の硬度分布に改善が認められない。一方、B量が0.0050%を超えると、粗大な鉄炭ほう化物が生成し、応力集中により疲労損傷が発生しやすくなる。このため、含有させる場合には、B量を0.0001~0.0050%とすることが好ましい。
Cuは、パーライト組織のフェライト相に固溶し、固溶強化により硬度(強度)を向上させ、その結果として、耐疲労性を向上させる元素である。しかし、Cu量が0.01%未満ではその効果が得られない。一方、Cu量が1.00%を超えると、著しい焼入れ性向上により、レール底部にマルテンサイト組織が生成し、耐折損性が低下する。このため、含有させる場合には、Cu量を0.01~1.00%とすることが好ましい。
Niは、パーライト組織の靭性を向上させると同時に、固溶強化により硬度(強度)を向上させることによって耐疲労性を向上させる元素である。さらに、Niは、溶接熱影響部においては、Tiと複合でNi3Tiの金属間化合物として微細に析出し、析出強化により軟化を抑制する元素である。また、Cuが含有された鋼において粒界の脆化を抑制する元素である。しかし、Ni量が0.01%未満では、これらの効果が著しく小さい。一方、Ni量が1.00%を超えると、著しい焼入れ性向上により、レール底部に靭性の低いマルテンサイト組織が生成し、耐折損性が低下する。このため、含有させる場合には、Ni量を0.01~1.00%とすることが好ましい。
Vは、熱間圧延後の冷却過程で生成するV炭化物、V窒化物による析出硬化により、パーライト組織の硬度(強度)を高め、耐疲労性を向上させる元素である。また、Vは、Ac1点以下の温度域に再加熱された溶接熱影響部において、比較的高温度域でV炭化物やV窒化物として生成し、溶接継手の熱影響部の軟化を防止するのに有効な元素である。しかしながら、V量が0.005%未満ではこれらの効果が十分に得られず、硬度(強度)の向上が認められない。一方、V量が0.50%を超えると、Vの炭化物や窒化物による析出硬化が過剰となり、パーライト組織が脆化し、レールの耐疲労性が低下する。このため、含有させる場合には、V量を0.005~0.50%とすることが好ましい。
Nbは、Vと同様に、熱間圧延後の冷却過程で生成したNb炭化物、Nb窒化物による析出硬化により、パーライト組織の硬度(強度)を高め、耐疲労性を向上させる元素である。また、Nbは、Ac1点以下の温度域に再加熱された熱影響部において、低温度域から高温度域までNbの炭化物やNb窒化物を安定的に生成させ、溶接継手の熱影響部の軟化を防止するのに有効な元素である。しかしながら、Nb量が0.0010%未満では、これらの効果が十分に得られず、パーライト組織の硬度(強度)の向上が認められない。また、Nb量が0.050%を超えると、Nbの炭化物や窒化物の析出硬化が過剰となり、パーライト組織が脆化し、レールの耐疲労性が低下する。このため、含有させる場合には、Nb量を0.0010~0.050%とすることが好ましい。
Tiは、熱間圧延後の冷却過程で生成したTi炭化物、Ti窒化物として析出し、析出硬化によってパーライト組織の硬度(強度)を高め、耐疲労性を向上させる元素である。また、溶接時の再加熱において、析出したTi炭化物、Ti窒化物が溶解しないので、オーステナイト域まで加熱される熱影響部の組織の微細化を図り、溶接継手部の脆化を防止するのに有効な元素である。しかしながら、Ti量が0.0030%未満ではこれらの効果が少ない。一方、Ti量が0.0500%を超えると、粗大なTi炭化物、Ti窒化物が生成し、応力集中により疲労損傷が発生しやすくなる。このため、含有させる場合には、Ti量を0.0030~0.0500%とすることが好ましい。
Mgは、Sと結合して微細な硫化物(MgS)を形成する元素である。MgSはMnSを微細に分散させる。また、この微細に分散したMnSはパーライト変態の核となり、パーライト変態を促進させ、パーライト組織の靭性を向上させる。しかしながら、Mg量が0.0005%未満では上記の効果は小さい。一方、Mg含有量が0.0200%を超えると、Mgの粗大酸化物が生成し、応力集中により疲労損傷が発生しやすくなる。このため、含有させる場合には、Mg量を0.0005~0.0200%とすることが好ましい。
Caは、Sとの結合力が強く、硫化物(CaS)を形成する元素である。このCaSはMnSを微細に分散させる。微細なMnSはパーライト変態の核となり、パーライト変態を促進させ、パーライト組織の靭性を向上させる。しかしながら、Ca量が0.0005%未満ではその効果は小さい。一方、Ca含有量が0.0200%を超えると、Caの粗大酸化物が生成し、応力集中により疲労損傷が発生しやすくなる。このため、含有させる場合には、Ca量を0.0005~0.0200%とすることが好ましい。
REMは、脱酸・脱硫元素であり、含有させることによりREMのオキシサルファイド(REM2O2S)を生成し、Mn硫化物系介在物の生成核となる。また、この核であるオキシサルファイド(REM2O2S)の融点は高いので、圧延後のMn硫化物系介在物の延伸を抑制する。この結果、REMの含有により、MnSが微細に分散し、応力集中を緩和し、耐疲労性が向上する。しかしながら、REM量が0.0005%未満では、その効果が小さく、MnS系硫化物の生成核としては不十分となる。一方、REM含有量が0.0500%を超えると、硬質なREMのオキシサルファイド(REM2O2S)が生成し、応力集中により疲労損傷が発生しやすくなる。このため、含有させる場合には、REM量を0.0005~0.0500%とすることが好ましい。
Zrは、Oと結合してZrO2介在物を生成する。このZrO2介在物は、γ-Feとの格子整合性が良いので、γ-Feが凝固初晶である高炭素レール鋼の凝固核となり、凝固組織の等軸晶化率を高めることにより、鋳片中心部の偏析帯の形成を抑制し、レール偏析部に生成するマルテンサイトや初析セメンタイト組織の生成を抑制する。しかしながら、Zr量が0.0001%未満では、ZrO2系介在物の数が少なく、凝固核として十分な作用を示さない。この場合、レール底部の偏析部にマルテンサイトや初析セメンタイト組織が生成し易くなり、レールの耐疲労性の向上が期待できない。一方、Zr量が0.0200%を超えると、粗大なZr系介在物が多量に生成し、応力集中により疲労損傷が発生しやすくなる。このため、含有させる場合には、Zr量を0.0001~0.0200%とすることが好ましい。
Nは、オーステナイト粒界に偏析することにより、オーステナイト粒界からのパーライト変態を促進させ、主に、パーライトブロックサイズを微細化することにより、靭性を向上させるのに有効な元素である。また、NをVと同時に添加すると、熱間圧延後の冷却過程でVの炭窒化物の析出を促進させ、パーライト組織の硬度(強度)を高め、耐疲労性を向上させる元素である。しかしながら、N量が0.0060%未満では、これらの効果が小さい。一方、N含有量が0.0200%を超えると、Nを鋼中に固溶させることが困難となる。この場合、疲労損傷の起点となる気泡が生成し、疲労損傷が発生し易くなる。このため、含有させる場合には、N量を0.0060~0.0200%とすることが好ましい。
Alは、脱酸材として機能する成分である。また、Alは、共析変態温度を高温側へ移動させる元素であり、パーライト組織の高硬度(強度)化に寄与し、耐疲労性を向上させる元素である。しかしながら、Al量が0.0100%未満では、その効果が小さい。一方、Al量が1.00%を超えると、鋼中にAlを固溶させることが困難となる。この場合、粗大なアルミナ系介在物が生成し、この粗大な析出物から疲労き裂が発生し、疲労損傷が発生し易くなる。さらに、溶接時に酸化物が生成し、溶接性が著しく低下する。このため、含有させる場合には、Al量を0.0100~1.00%とすることが好ましい。
本実施形態に係るレールにおいて、底部外郭表面を起点として5mm深さの範囲の金属組織の90面積%以上をパーライト組織に限定する理由について詳細に説明する。
パーライト組織は低合金で強度(硬さ)が得られ易く、耐疲労性を向上させるのに有利な組織である。さらに、強度(硬さ)の制御が容易で靭性の向上が図り易く、耐折損性にも優れている。そこで、レール底部の耐折損性および耐疲労性を向上させる目的からパーライト組織に限定した。
パーライト組織の必要範囲が底部外郭表面を起点として5mm未満では、レール底部に要求される耐折損性や耐疲労性を向上させる効果が小さく、十分なレール使用寿命の向上が困難となる。そのため、底部外郭表面を起点として5mm深さの範囲の金属組織の90面積%以上をパーライト組織とする。
面積率は、レール底部外郭表面に垂直な横断面から試験片を採取し、試験片を研磨後、エッチングにより金属組織を現出させ、前記表面から1mm、5mmの各位置の金属組織を観察することで得られる。具体的には、前記各位置の観察において、200倍の光学顕微鏡の視野で金属組織を観察し、各組織の面積を決定して面積率を決定することで得られる。観察の結果、表面から1mm、5mmの双方がともにパーライト組織の面積率が90%以上であれば、レール底部外郭表面を起点として5mm深さの範囲の金属組織の90%以上がパーライト組織(レール底部外郭表面を起点として5mm深さの範囲のパーライト組織の面積率が90%以上)であると判断してよい。すなわち、前記各位置の面積率が90%であれば、前記各位置に挟まれる中間位置は、パーライト面積率が90%以上であるとして良い。
本実施形態に係るレールにおいて、足裏中央部の表面硬さをHv360~500の範囲に限定した理由について説明する。
足裏中央部の表面硬さがHv360未満では、図2に示したように、重荷重鉄道で作用する足裏中央部の負荷応力(200MPa)に対して、疲労限応力範囲を確保できず、レール底部の耐疲労性が低下する。一方、表面硬さがHv500を超えると、図2に示したように、パーライト組織の脆化が進み、き裂発生により疲労限応力範囲を確保できず、レール底部の耐疲労性が低下する。このため、足裏中央部の表面硬さをHv360~500の範囲に限定する。
本実施形態に係るレールにおいて、足先部の表面硬さをHv260~315の範囲に限定した理由について説明する。
足先部の表面硬さがHv260未満では、図3に示したように、重荷重鉄道で作用する足先部の負荷応力(150MPa)に対して、疲労限応力範囲を確保できず、レール底部の耐疲労性が低下する。一方、表面硬さがHv315を超えると、図4に示したように、パーライト組織の靭性が低下し、脆性破壊の促進によりレール底部の耐折損性が低下する。このため、足先部の表面硬さをHv260~315の範囲に限定する。
足先部の表面硬さより中間部の表面硬さを低くすると、図5に示したように、中間部(軟質部)に歪が集中し、中間部を起点に疲労破壊が生成する。また、足裏中央部の表面硬さより中間部の表面硬さを高くすると、図5に示したように、足裏部と中間部との境界部において歪が集中し、境界部を起点に疲労破壊が生成する。このため、足裏中央部の表面硬さ:HC、足先部の表面硬さ:HE、中間部の表面硬さ:HMの関係を下記の条件を満足するように限定する。
足裏中央部の表面硬さ:HC(Hv)、足先部の表面硬さ:HE(Hv)、中間部の表面硬さ:HM(Hv)を上記の関係(HC≧HM≧HE)に制御した上で、中間部の表面硬さ:HM(Hv)が足裏中央部の表面硬さ:HC(Hv)の0.900倍以上に制御して、足裏中央部と中間部の硬度差を減少させると、図6に示したように、足裏中央部と中間部の境界部において歪の集中がさらに抑制され、レール底部の耐疲労性がより向上する。このため、足裏中央部の表面硬さ:HCと中間部の表面硬さ:HMの関係を下記の条件に限定することが好ましい。
[レール底部の表面硬さの測定方法]
測定
測定装置:ビッカース硬度計(荷重98N)
測定用試験片採取:底部の横断面からサンプル切り出し
事前処理:横断面を1μmダイヤ研磨
測定方法:JIS Z 2244に準じて測定
足裏中央部:図7に示す部位の表面下1mm及び5mmにおいてそれぞれ20点の測定を行い、その平均値を当該各位置での硬さとする。
足先部:図7に示す部位の表面下1mm及び5mmにおいてそれぞれ20点の測定を行い、その平均値を当該各位置での硬さとする。
中間部:図7に示す部位の表面下1mm及び5mmにおいてそれぞれ20点の測定を行い、その平均値を当該各位置での硬さとする。
中間部の表面硬さ(HM)と足裏中央部の表面硬さ(HC)との比は、各部位における表面下1mm及び5mmのそれぞれの硬さの平均値をさらに平均した値を、足裏中央部の表面硬さ(HC)、中間部の表面硬さ(HM)とし、上記の比を算定する。
レール底部の硬さを制御するには、例えば、足裏中央部、足先部および中間部が必要とする硬さに応じて、圧延条件、圧延後の熱処理条件を調整することで、硬さ制御が可能である。
足裏中央部と比較して硬さの低い足先部の特性を確保するために、最終圧延前に足先部を冷却する等、最終圧延温度を足裏中央部と足先部とで個別に制御する。実際のレールの熱間圧延条件としては、足裏中央部における最終圧延温度を900~1000℃(レール底部外郭表面の温度)とし、足先部における最終圧延温度を800~900℃(レール底部外郭表面の温度)の範囲にすることで、それぞれの位置において、個別に硬さの制御が可能である。
レール底部の加速冷却方法については特に限定してない。耐折損性や耐疲労性を付与するため、硬さを制御するために、空気噴射冷却、ミスト冷却、水及び空気の混合噴射冷却、あるいはこれらの組み合わせにより、熱処理時のレール底部の冷却速度を制御すればよい。しかしながら、例えば、熱間圧延後に加速冷却を行う場合は、足裏中央部と比較して足先部の硬さを低くするため、足裏中央部の加速冷却の冷媒を水やミスト、足先部の加速冷却の冷媒にエアーなどを用いることで、足裏中央部と比較して足先部の冷却速度を低下させるとよい。なお、冷却速度及び冷却温度範囲は、レール底部外郭表面の温度を基準にして制御する。
圧延後に加速冷却を行う場合は、例えば、足裏中央部で加速冷却速度3~10℃/sec(冷却温度範囲:850~600℃)、足先部で加速冷却速度1~5℃/sec(冷却温度範囲:800~650℃)の範囲で硬さ制御が可能である。また、加速冷却は、800~600℃の範囲で行えばよく、600℃未満の冷却条件は特に限定されない。
実際のレール製造においては、レール鋼の成分値に合わせて、上記で示した製造条件の範囲内において調整する必要がある。その調整においては、開示されている公知文献等に記載されている鋼の熱間圧延の条件と結晶粒の関係、鋼の平衡状態図、連続冷却変態線図(CCT図)等を参考にすればよい。
表1~4には、本発明例であるレールの化学成分と諸特性を示す。表1~4には、化学成分値、底部のミクロ組織、底部の表面硬さ、足裏中央部の表面硬さと中間部の表面硬さの比を示す。化学成分の残部は、Fe及び不純物である。図8に示す方法で行った疲労試験結果、図9に示す位置から試験片を採取した足先部の衝撃試験結果も併記した。底部のミクロ組織は、「パーライト」とのみ記載した場合、レール底部外郭表面を起点として5mm深さの範囲のパーライト組織の面積率が90%以上であり、面積率で10%以下の微量な初析フェライト組織、初析セメンタイト組織、ベイナイト組織またはマルテンサイト組織の1種または2種以上が混入しているものも含んでいる。
溶鋼→成分調整→鋳造(ブルーム)→再加熱(1250~1300℃)→熱間圧延→放冷または熱処理(加速冷却)。
溶鋼→成分調整→鋳造→再加熱→熱間圧延→放冷→再加熱(レール)→熱処理(加速冷却)。
・熱間圧延条件(適用した実施例のみ)
最終圧延温度 足裏中央部:900~1000℃ 足先部:800~900℃
・再加熱条件(適用した実施例のみ)
再加熱温度 足裏中央部:950~1050℃ 足先部:850~950℃
・底部熱処理条件(適用した実施例のみ)
熱間圧延直後の熱処理冷却速度
足裏中央部:3~10℃/sec(冷却温度範囲:850~600℃)
足先部:1~5℃/sec(冷却温度範囲:800~600℃)
再加熱後の熱処理冷却速度
足裏中央部:5~12℃/sec(冷却温度範囲:850~600℃)
足先部:3~8℃/sec(冷却温度範囲:800~650℃)
発明例1~35:化学成分値、底部のミクロ組織、底部の表面硬さ(足裏中央部、足先部)、さらに、足裏中央部の表面硬さと足先部の表面硬さの比が本願発明範囲内のレール。
比較例1~8(8本):C、Si、Mn、P、Sの含有量および底部のミクロ組織のいずれかが本願発明範囲外のレール。
比較例9~20(12本):レール底部の足裏中央部、足先部の表面硬さ、さらに、足裏中央部、足先部、中間部の表面硬さのバランスが本発明範囲外のレール。
[実レール曲げ疲労試験(図8参照)]
試験方法:実物レール3点曲げ(スパン長:0.65m、周波数:5Hz)
荷重条件:応力範囲制御(最大荷重-最小荷重、最小荷重は最大荷重の10%)
試験姿勢:レール頭部に荷重負荷(底部に引張応力作用)
応力制御:レール底部の足裏中央部に貼り付けた歪ゲージにより制御。
繰り返し回数:200万回、未破断の場合の最大応力範囲を疲労限応力範囲とする
試験片形状:JIS3号2mmUノッチシャルピー衝撃試験片
試験片採取位置:レールの足先部(図9参照)
試験温度:常温(+20℃)
測定
測定装置:ビッカース硬度計(荷重98N)
測定用試験片採取:底部の横断面からサンプル切り出し
事前処理:横断面を1μmダイヤ研磨
測定方法:JIS Z 2244に準じて測定。
足裏中央部の表面硬さ:図7に示す部位の表面下1mm及び5mmのそれぞれ20点の測定を行い、その平均値を当該位置での表面硬さとした。
足先部:の表面硬さ図7に示す部位の表面下1mm及び5mmのそれぞれ20点の測定を行い、その平均値を当該位置での表面硬さとした。
中間部の表面硬さ:図7に示す部位の表面下1mm及び5mmのそれぞれ20点の測定を行い、その平均値を当該位置での表面硬さとした。
中間部の表面硬さ(HM)と裏中央部の表面硬さ(HC)の比は、各部位の表面下1mm及び5mmのそれぞれの位置の表面硬さをさらに平均した値を裏中央部の表面硬さ(HC)、中間部の表面硬さ(HM)とし、上記の比を算定した。
2:足先部
3:中間部
4:底部
5:底部外郭表面
Claims (3)
- 質量%で、
C:0.75~1.20%、
Si:0.10~2.00%、
Mn:0.10~2.00%、
Cr:0~2.00%、
Mo:0~0.50%、
Co:0~1.00%、
B:0~0.0050%、
Cu:0~1.00%、
Ni:0~1.00%、
V:0~0.50%、
Nb:0~0.050%、
Ti:0~0.0500%、
Mg:0~0.0200%、
Ca:0~0.0200%、
REM:0~0.0500%、
Zr:0~0.0200%、
N:0~0.0200%、
Al:0~1.00%、
P:0.0250%以下、
S:0.0250%以下、
を含有し、残部がFeおよび不純物からなる鋼成分を有し、
レール底部外郭表面を起点として5mm深さの範囲の金属組織の90%以上がパーライト組織であり、
足裏中央部の表面硬さであるHCがHv360~500の範囲であり、
足先部の表面硬さであるHEがHv260~315の範囲であり、
前記HC、前記HE、及び前記足裏中央部と前記足先部の間に位置する中間部の表面硬さであるHMが、式1を満たす
ことを特徴とするレール。
HC≧HM≧HE …(式1) - さらに、前記HMと前記HCが式2を満たすことを特徴とする請求項1に記載のレール。
HM/HC≧0.900 …(式2) - 前記鋼成分が、質量%で、
Cr:0.01~2.00%、
Mo:0.01~0.50%、
Co:0.01~1.00%、
B:0.0001~0.0050%、
Cu:0.01~1.00%、
Ni:0.01~1.00%、
V:0.005~0.50%、
Nb:0.0010~0.050%、
Ti:0.0030~0.0500%、
Mg:0.0005~0.0200%、
Ca:0.0005~0.0200%、
REM:0.0005~0.0500%、
Zr:0.0001~0.0200%、
N:0.0060~0.0200%、
Al:0.0100~1.00%、
からなる群から選択される1種または2種以上を含有する
ことを特徴とする請求項1または2に記載のレール。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016570729A JP6354862B2 (ja) | 2015-01-23 | 2016-01-22 | レール |
PL16740299T PL3249070T3 (pl) | 2015-01-23 | 2016-01-22 | Szyna |
BR112017014991-5A BR112017014991A2 (ja) | 2015-01-23 | 2016-01-22 | Rail |
ES16740299T ES2794621T3 (es) | 2015-01-23 | 2016-01-22 | Vía |
CN201680006505.6A CN107208216B (zh) | 2015-01-23 | 2016-01-22 | 钢轨 |
EP16740299.9A EP3249070B1 (en) | 2015-01-23 | 2016-01-22 | Rail |
AU2016210110A AU2016210110B2 (en) | 2015-01-23 | 2016-01-22 | Rail |
CA2973858A CA2973858C (en) | 2015-01-23 | 2016-01-22 | Rail |
RU2017128814A RU2676374C1 (ru) | 2015-01-23 | 2016-01-22 | Рельс |
US15/544,686 US10047411B2 (en) | 2015-01-23 | 2016-01-22 | Rail |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015011007 | 2015-01-23 | ||
JP2015-011007 | 2015-01-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016117692A1 true WO2016117692A1 (ja) | 2016-07-28 |
Family
ID=56417222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/051890 WO2016117692A1 (ja) | 2015-01-23 | 2016-01-22 | レール |
Country Status (11)
Country | Link |
---|---|
US (1) | US10047411B2 (ja) |
EP (1) | EP3249070B1 (ja) |
JP (1) | JP6354862B2 (ja) |
CN (1) | CN107208216B (ja) |
AU (1) | AU2016210110B2 (ja) |
BR (1) | BR112017014991A2 (ja) |
CA (1) | CA2973858C (ja) |
ES (1) | ES2794621T3 (ja) |
PL (1) | PL3249070T3 (ja) |
RU (1) | RU2676374C1 (ja) |
WO (1) | WO2016117692A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020189232A1 (ja) * | 2019-03-15 | 2020-09-24 | 日本製鉄株式会社 | レール |
JP7522984B1 (ja) | 2023-03-24 | 2024-07-26 | Jfeスチール株式会社 | レールおよびその製造方法 |
JP7522985B1 (ja) | 2023-03-24 | 2024-07-26 | Jfeスチール株式会社 | レールおよびその製造方法 |
WO2024202407A1 (ja) * | 2023-03-24 | 2024-10-03 | Jfeスチール株式会社 | レールおよびその製造方法 |
WO2024202408A1 (ja) * | 2023-03-24 | 2024-10-03 | Jfeスチール株式会社 | レール及びその製造方法 |
WO2024202405A1 (ja) * | 2023-03-24 | 2024-10-03 | Jfeスチール株式会社 | レールおよびその製造方法 |
WO2024202406A1 (ja) * | 2023-03-24 | 2024-10-03 | Jfeスチール株式会社 | レール及びその製造方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2015268431B2 (en) * | 2014-05-29 | 2017-09-07 | Nippon Steel Corporation | Rail and production method therefor |
RU2650945C1 (ru) * | 2017-12-19 | 2018-04-18 | Юлия Алексеевна Щепочкина | Сталь |
CA3095559C (en) * | 2018-03-30 | 2022-10-04 | Jfe Steel Corporation | Rail |
US20220042128A1 (en) * | 2018-12-20 | 2022-02-10 | Arcelormittal | Method of making a tee rail having a high strength base |
CN111719083B (zh) * | 2020-06-11 | 2021-07-06 | 武汉钢铁有限公司 | 抗氯离子腐蚀的钢轨及制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4895605A (en) * | 1988-08-19 | 1990-01-23 | Algoma Steel Corporation | Method for the manufacture of hardened railroad rails |
JP2005290486A (ja) * | 2004-03-31 | 2005-10-20 | Jfe Steel Kk | 高温レールの冷却方法 |
JP2006057128A (ja) * | 2004-08-18 | 2006-03-02 | Nippon Steel Corp | 耐落重破壊特性に優れたパーライト系レールの製造方法 |
WO2011021582A1 (ja) * | 2009-08-18 | 2011-02-24 | 新日本製鐵株式会社 | パーライト系レール |
US20110253268A1 (en) * | 2010-04-16 | 2011-10-20 | Pangang Group Co., Ltd. | High carbon content and high strength heat-treated steel rail and method for producing the same |
WO2014157198A1 (ja) * | 2013-03-28 | 2014-10-02 | Jfeスチール株式会社 | レールの製造方法及び製造装置 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS477606Y1 (ja) | 1969-04-11 | 1972-03-22 | ||
FR2109121A5 (ja) | 1970-10-02 | 1972-05-26 | Wendel Sidelor | |
JPS57198216A (en) | 1981-05-27 | 1982-12-04 | Nippon Kokan Kk <Nkk> | Manufacture of high-strength rail |
US4486248A (en) * | 1982-08-05 | 1984-12-04 | The Algoma Steel Corporation Limited | Method for the production of improved railway rails by accelerated cooling in line with the production rolling mill |
JP2601670B2 (ja) | 1987-11-27 | 1997-04-16 | 新日本製鐵株式会社 | 耐落重特性に優れた鋼レールの熱処理方法 |
JP2898371B2 (ja) | 1990-07-19 | 1999-05-31 | 和泉電気株式会社 | レーザ干渉装置 |
SU1839687A3 (en) * | 1990-07-30 | 1993-12-30 | Berlington Nortern Rejlroad Ko | Rail, method for its manufacturing and method of its cooling inspection |
JPH04202626A (ja) | 1990-11-30 | 1992-07-23 | Nippon Steel Corp | 耐落重特性に優れた鋼レールの製造方法 |
AT399346B (de) | 1992-07-15 | 1995-04-25 | Voest Alpine Schienen Gmbh | Verfahren zum w[rmebehandeln von schienen |
JP3078461B2 (ja) | 1994-11-15 | 2000-08-21 | 新日本製鐵株式会社 | 高耐摩耗パーライト系レール |
EP1493831A4 (en) * | 2002-04-05 | 2006-12-06 | Nippon Steel Corp | PERLITE-BASED RAIL HAVING EXCELLENT WEAR RESISTANCE AND EXCELLENT DUCTILITY AND PROCESS FOR PRODUCING THE SAME |
JP2003309182A (ja) | 2002-04-17 | 2003-10-31 | Hitachi Ltd | 半導体装置の製造方法及び半導体装置 |
US7217329B2 (en) | 2002-08-26 | 2007-05-15 | Cf&I Steel | Carbon-titanium steel rail |
JP4994928B2 (ja) | 2007-04-17 | 2012-08-08 | 新日本製鐵株式会社 | 耐折損性に優れたレールの製造方法 |
JP4757957B2 (ja) * | 2008-10-31 | 2011-08-24 | 新日本製鐵株式会社 | 耐摩耗性および靭性に優れたパーライト系レール |
US8241442B2 (en) * | 2009-12-14 | 2012-08-14 | Arcelormittal Investigacion Y Desarrollo, S.L. | Method of making a hypereutectoid, head-hardened steel rail |
WO2011155481A1 (ja) * | 2010-06-07 | 2011-12-15 | 新日本製鐵株式会社 | 鋼レールおよびその製造方法 |
EP2843074B1 (en) * | 2012-04-23 | 2018-03-21 | Nippon Steel & Sumitomo Metal Corporation | Rail |
EP2674504A1 (en) * | 2012-06-11 | 2013-12-18 | Siemens S.p.A. | Method and system for thermal treatments of rails |
-
2016
- 2016-01-22 US US15/544,686 patent/US10047411B2/en active Active
- 2016-01-22 AU AU2016210110A patent/AU2016210110B2/en active Active
- 2016-01-22 PL PL16740299T patent/PL3249070T3/pl unknown
- 2016-01-22 CA CA2973858A patent/CA2973858C/en active Active
- 2016-01-22 WO PCT/JP2016/051890 patent/WO2016117692A1/ja active Application Filing
- 2016-01-22 BR BR112017014991-5A patent/BR112017014991A2/ja active Search and Examination
- 2016-01-22 RU RU2017128814A patent/RU2676374C1/ru active
- 2016-01-22 EP EP16740299.9A patent/EP3249070B1/en active Active
- 2016-01-22 JP JP2016570729A patent/JP6354862B2/ja active Active
- 2016-01-22 CN CN201680006505.6A patent/CN107208216B/zh not_active Expired - Fee Related
- 2016-01-22 ES ES16740299T patent/ES2794621T3/es active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4895605A (en) * | 1988-08-19 | 1990-01-23 | Algoma Steel Corporation | Method for the manufacture of hardened railroad rails |
JP2005290486A (ja) * | 2004-03-31 | 2005-10-20 | Jfe Steel Kk | 高温レールの冷却方法 |
JP2006057128A (ja) * | 2004-08-18 | 2006-03-02 | Nippon Steel Corp | 耐落重破壊特性に優れたパーライト系レールの製造方法 |
WO2011021582A1 (ja) * | 2009-08-18 | 2011-02-24 | 新日本製鐵株式会社 | パーライト系レール |
US20110253268A1 (en) * | 2010-04-16 | 2011-10-20 | Pangang Group Co., Ltd. | High carbon content and high strength heat-treated steel rail and method for producing the same |
WO2014157198A1 (ja) * | 2013-03-28 | 2014-10-02 | Jfeスチール株式会社 | レールの製造方法及び製造装置 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020189232A1 (ja) * | 2019-03-15 | 2020-09-24 | 日本製鉄株式会社 | レール |
JPWO2020189232A1 (ja) * | 2019-03-15 | 2021-12-09 | 日本製鉄株式会社 | レール |
JP7136324B2 (ja) | 2019-03-15 | 2022-09-13 | 日本製鉄株式会社 | レール |
JP7522984B1 (ja) | 2023-03-24 | 2024-07-26 | Jfeスチール株式会社 | レールおよびその製造方法 |
JP7522985B1 (ja) | 2023-03-24 | 2024-07-26 | Jfeスチール株式会社 | レールおよびその製造方法 |
WO2024202407A1 (ja) * | 2023-03-24 | 2024-10-03 | Jfeスチール株式会社 | レールおよびその製造方法 |
WO2024202408A1 (ja) * | 2023-03-24 | 2024-10-03 | Jfeスチール株式会社 | レール及びその製造方法 |
WO2024202405A1 (ja) * | 2023-03-24 | 2024-10-03 | Jfeスチール株式会社 | レールおよびその製造方法 |
WO2024202406A1 (ja) * | 2023-03-24 | 2024-10-03 | Jfeスチール株式会社 | レール及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CA2973858C (en) | 2019-09-03 |
EP3249070A1 (en) | 2017-11-29 |
EP3249070A4 (en) | 2018-06-27 |
AU2016210110B2 (en) | 2018-11-01 |
CA2973858A1 (en) | 2016-07-28 |
RU2676374C1 (ru) | 2018-12-28 |
JPWO2016117692A1 (ja) | 2017-11-24 |
PL3249070T3 (pl) | 2020-07-27 |
US20170369961A1 (en) | 2017-12-28 |
BR112017014991A2 (ja) | 2018-03-20 |
CN107208216B (zh) | 2019-02-12 |
JP6354862B2 (ja) | 2018-07-11 |
US10047411B2 (en) | 2018-08-14 |
EP3249070B1 (en) | 2020-03-18 |
ES2794621T3 (es) | 2020-11-18 |
AU2016210110A1 (en) | 2017-08-03 |
CN107208216A (zh) | 2017-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6354862B2 (ja) | レール | |
JP4824141B2 (ja) | 耐摩耗性および靭性に優れたパーライト系レール | |
US20170051373A1 (en) | Rail and production method therefor | |
EP2843074A1 (en) | Rail | |
CA3108681C (en) | Rail and method of manufacturing rail | |
JP5867262B2 (ja) | 耐遅れ破壊特性に優れたレール | |
JP4272385B2 (ja) | 耐摩耗性および延性に優れたパーライト系レール | |
JP4964489B2 (ja) | 耐摩耗性および延性に優れたパーライト系レールの製造方法 | |
JP4336101B2 (ja) | 耐摩耗性および靭性に優れた高炭素パーライト系レール | |
JP4846476B2 (ja) | 耐摩耗性および延性に優れたパーライト系レールの製造方法 | |
JP2007277716A (ja) | 耐遅れ破壊特性に優れた高強度パーライト系レール | |
JP7136324B2 (ja) | レール | |
JP5867263B2 (ja) | 耐遅れ破壊特性に優れたレール | |
JP4214043B2 (ja) | 耐摩耗性および延性に優れた高炭素鋼レールの製造方法 | |
JP5053190B2 (ja) | 耐摩耗性および延性に優れたパーライト系レール | |
JP6601167B2 (ja) | 耐摩耗性に優れたレール | |
JP2006057127A (ja) | 耐落重破壊特性に優れたパーライト系レール | |
JP2005163088A (ja) | 耐摩耗性および延性に優れた高炭素鋼レールの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16740299 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016570729 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2973858 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15544686 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2016740299 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2016210110 Country of ref document: AU Date of ref document: 20160122 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017128814 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112017014991 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112017014991 Country of ref document: BR Kind code of ref document: A2 Effective date: 20170712 |