[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016199406A1 - 蛍光体およびその製造方法、ならびにledランプ - Google Patents

蛍光体およびその製造方法、ならびにledランプ Download PDF

Info

Publication number
WO2016199406A1
WO2016199406A1 PCT/JP2016/002756 JP2016002756W WO2016199406A1 WO 2016199406 A1 WO2016199406 A1 WO 2016199406A1 JP 2016002756 W JP2016002756 W JP 2016002756W WO 2016199406 A1 WO2016199406 A1 WO 2016199406A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light emitting
led lamp
number satisfying
chemical formula
Prior art date
Application number
PCT/JP2016/002756
Other languages
English (en)
French (fr)
Inventor
欣能 舩山
由美 菅野
博文 竹村
石井 努
康博 白川
Original Assignee
株式会社 東芝
東芝マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝マテリアル株式会社 filed Critical 株式会社 東芝
Priority to JP2017523109A priority Critical patent/JP6833683B2/ja
Priority to KR1020187000582A priority patent/KR102069081B1/ko
Priority to CN201680033880.XA priority patent/CN107636113B/zh
Publication of WO2016199406A1 publication Critical patent/WO2016199406A1/ja
Priority to US15/833,176 priority patent/US11005010B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7715Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
    • C09K11/7721Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7768Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7769Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/77744Aluminosilicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/38Devices for influencing the colour or wavelength of the light
    • H01J61/42Devices for influencing the colour or wavelength of the light by transforming the wavelength of the light by luminescence
    • H01J61/44Devices characterised by the luminescent material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48476Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
    • H01L2224/48477Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding)
    • H01L2224/48478Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding) the connecting portion being a wedge bond, i.e. wedge on pre-ball
    • H01L2224/4848Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding) the connecting portion being a wedge bond, i.e. wedge on pre-ball outside the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present embodiment relates to a phosphor and an LED lamp.
  • a light emitting diode (LED: Light Emitting Diode, also referred to as an LED chip) is a light emitting element that acts as a light source when a voltage is applied.
  • a light emitting diode emits light, for example, by recombination of electrons and holes near contact surfaces (pn junctions) of two semiconductors.
  • a light emitting diode is small and has a high conversion efficiency from electric energy to light, and thus is widely used in home appliances, illuminated operation switches, LED displays, general lighting, and the like.
  • Light emitting diodes are different from light bulbs that use a filament. Therefore, so-called “ball breakage” does not occur in the light emitting diode.
  • the light emitting diode is excellent in initial drive characteristics and has excellent durability against vibration and repetitive ON / OFF operations. For this reason, the light emitting diode is also used as a backlight of a display device provided on a dashboard of a car or the like. Since the light emitting diode can emit light of high saturation and vivid color without being affected by sunlight, it can be used for a display device installed outside, a display device for traffic, a traffic light, and the like.
  • a light emitting diode is a semiconductor diode that emits light and converts electrical energy into ultraviolet light or visible light.
  • the light emitting diode is also used for an LED lamp in which a light emitting chip formed of a light emitting material such as GaP, GaAsP, GaAlAs, GaN, InGaAlP or the like is sealed with a transparent resin in order to use visible light.
  • the light emitting material is also fixed to the upper surface of a printed circuit board or a metal lead, and is also used in, for example, a display type LED lamp sealed by a resin case having a number shape or a character shape.
  • the color of the emitted light can also be adjusted by adding various phosphor powders to the surface of the light emitting chip or to the resin. Therefore, the LED lamp can reproduce the color of the light of the visible light region according to the usage from blue to red.
  • the light emitting diode is a semiconductor element, it has a long life and high reliability, and when it is used as a light source, the frequency of replacement due to failure is also reduced. Therefore, portable communication devices, personal computer peripheral devices, OA devices It is also widely used as a component of various display devices such as home electric appliances, audio devices, various switches, and light source display boards for backlights.
  • a white light emitting LED lamp for example, a light emitting device of a type combining blue light emitting diode and green, yellow light emitting phosphor, and in some cases red phosphor, (referred to as type 1), ultraviolet light or purple light emitting diode And blue, yellow and red phosphors are combined (referred to as type 2).
  • type 1 blue light emitting diode and green, yellow light emitting phosphor, and in some cases red phosphor
  • type 2 ultraviolet light or purple light emitting diode And blue, yellow and red phosphors are combined
  • cerium-activated yttrium aluminate phosphor (YAG), cerium-activated terbium aluminate phosphor (TAG), alkaline earth Phosphor materials such as silicate phosphors (BOSS) are in practical use.
  • YAG and BOSS are phosphors generally known before and used in combination with light emitting diodes, and have been studied, used, or applied in flying spot scanners, fluorescent lamps, etc. Application to products has been tried. These phosphors have already been put to practical use as phosphors for backlights of mobile phones, but improvements are being made daily aiming to further increase the demand for lighting devices and automobile headlamps.
  • the conventional type 1 white LED lamp which is formed by combining a blue light emitting diode and a yellow light emitting phosphor such as BOSS, YAG, TAG or the like and the luminance characteristic is superior, it is necessary to improve the luminous efficiency.
  • Patent No. 3749243 gazette Japanese Patent Application Publication No. 2006-332692 JP, 2006-299168, A JP, 2006-41096, A JP 2005-317985 JP, 2005-8844, A JP 2003-179259 A JP 2002-198573 A JP 2002-151747 A Japanese Patent Application Laid-Open No. 10-36835 Unexamined-Japanese-Patent No. 2006-321974 JP, 2006-265542, A Unexamined-Japanese-Patent No. 2006-213893 JP, 2006-167946, A JP, 2005-243699, A Japanese Patent Application Publication No. 2005-150691 JP 2004-115304 A JP 2006-324407 A JP, 2006-253336, A JP 2005-235847 A JP 2002-42525 A
  • the phosphor of the embodiment has a composition represented by a chemical formula 1: 1.5Y 2 O 3 .2.5aAl 2 O 3 : Ce (wherein a is a number satisfying 1.02 ⁇ a ⁇ 1.1).
  • the phosphor of the present embodiment has a chemical formula 1: 1.5 Y 2 O 3. 2.5 a Al 2 O 3 : Ce (Wherein a is a number satisfying 1.02 ⁇ a ⁇ 1.1) It has a composition represented by The phosphor of the present embodiment includes 1.5 moles of yttrium oxide (Y 2 O 3 ) and 2.5 ⁇ a (a is a number satisfying 1.02 ⁇ a ⁇ 1.1) of aluminum oxide (Al 2 O 3 ) is mixed, reacted, and formed by further activating Ce.
  • part of Y may be substituted with at least one element of Lu, Gd, and Tb.
  • at least one of Al is replaced by at least one of the first element of Ga, the second element of Mg and Si, and the third element of Sc and B. It may be done.
  • the element replacing a part of Y or the element replacing a part of Al is an element having a role of shifting the emission wavelength of the phosphor.
  • Lu, Ga, Sc and a pair of elements of B can shift the emission wavelength to the short wavelength side.
  • a pair of elements of Gd, Tb, Mg and Si can shift the emission wavelength to the long wavelength side.
  • the substitution ratio of Sc is preferably the same as that of B in atomic percent.
  • the substitution ratio of Mg is preferably the same as the substitution ratio of Si in atomic percent.
  • the above substitution can also be understood as replacing two Al atoms with a pair of atoms.
  • the pair of elements is selected such that their average valence and average ionic radius are approximately equal to the atomic valence (+3) and the ionic radius (0.53 angstrom) of Al.
  • the wavelength shift by substituting such a pair of elements is also achieved, for example, by substituting a part of Y with (Ca, Zr) or (Sr, Zr).
  • the composition of the phosphor of this embodiment is Chemical formula 2: 1.5 ((Y, Lu) 1-x M1 x ) 2 O 3. 2.5 a (Al 1-yz Ga y (M2, M 3 ) z ) 2 O 3 : Ce (Wherein, M1 is at least one element of Gd and Tb, (M2, M3) is (Mg, Si) or (Sc, B), and x is a number satisfying 0 ⁇ x ⁇ 0.6, a is a number satisfying 1.02 ⁇ a ⁇ 1.1, y is a number satisfying 0 ⁇ y ⁇ 0.4, z is a number satisfying 0 ⁇ z ⁇ 0.1) It can be represented by When z is a number greater than 0, the ratio of atomic percent of the element M3 to atomic percent of the element M2 is 0.9 or more and 1.1 or less.
  • Lu can substitute part or all of Y with an element replacing Y.
  • M1 is at least one element of Gd or Tb, but substitution within a range not exceeding 60% of Y is preferable. If it exceeds 60%, the luminance drops significantly, which is not preferable.
  • the element substituting Al is preferably substituted in a range not exceeding 40% of Al, and if it exceeds 40%, the decrease in luminance becomes remarkable.
  • the substitution amount of a pair of elements such as (Mg, Si) or (Sc, B) is preferably in a range not exceeding 10%. The pair of elements can be shifted to a desired emission wavelength even with a small amount of substitution. When the substitution amount exceeds 10%, the luminance may decrease.
  • FIG. 1 is a view showing the relationship between the value of a and the luminous efficiency in the phosphor of the present embodiment.
  • the abscissa represents the value of a
  • the ordinate represents the luminous efficiency of the phosphor.
  • the value of a is a value calculated from analysis values of Y and Al of the obtained phosphor.
  • a exceeds 1.1, it drops sharply. Therefore, by setting a to be in the range of 1.02 to 1.10, it is possible to obtain a luminous efficiency higher than that of the conventional YAG.
  • a is more preferably in the range of 1.03 to 1.09, and still more preferably in the range of 1.04 to 1.08.
  • the proportion of Ce is 2 to 20 atomic%, preferably 3 to 15 atomic%.
  • the luminous efficiency of FIG. 1 is obtained by measuring the luminous efficiency using a phosphor luminous efficiency evaluation apparatus (C9920) manufactured by Hamamatsu Photonics.
  • the luminous efficiency is measured by filling a phosphor in a dedicated cell and setting a monochrome light source. The light from the excitation light source and the light from the phosphor are excited on the same side (reflection) to the phosphor.
  • the luminous efficiency is a value obtained by multiplying the ratio of absorption of the light source excitation light to the phosphor (absorptivity) and the ratio of absorbed excitation light to the light emission of the phosphor (internal quantum efficiency), also called external quantum efficiency Amount.
  • Table 1 shows the results of comparison between the phosphor of the present embodiment (embodiments 1A to 3A) and a conventional phosphor (conventional examples 1A to 3A) exhibiting substantially the same emission wavelength as the phosphor.
  • the phosphor of the present embodiment exhibits higher luminous efficiency than the conventional phosphor at the same emission wavelength. Even when Y or Al of the phosphors of Embodiments 1A to 3A is partially replaced with another element, the luminous efficiency is higher than that of the phosphors of Conventional Examples 1A to 3A. However, if the value of a is made close to 1, the luminous efficiency is reduced to the conventional value. From this, it can be seen that, even when a part of Y or Al is replaced with another element, the luminous efficiency can be improved by increasing the ratio of Al 2 O 3 of the phosphor.
  • the phosphor is in the form of powder.
  • the average particle diameter of the particles constituting the phosphor is, for example, 3 ⁇ m to 80 ⁇ m, preferably 5 ⁇ m to 40 ⁇ m, and more preferably 5 ⁇ m to 30 ⁇ m.
  • the average particle diameter is a measured value by a laser diffraction type particle size distribution measuring device, and means a median value D50 of the volume cumulative distribution.
  • the shape of the particles constituting the phosphor is preferably as close to spherical as possible.
  • the light emission luminance of the light emitting device can be further improved by making the particle shape close to a spherical shape.
  • a light emitting device including a semiconductor light emitting element and a phosphor light emitted from the semiconductor light emitting element is reflected on the surface of the phosphor, or light emitted from the phosphor is reflected on the surface of the other phosphor, thereby causing multiple reflection. Repeatedly, light is extracted outside. When the light reflection phenomenon occurs, the energy efficiency of the light decreases. In order to suppress the decrease in the energy efficiency of light, it is preferable to make the particle shape of the phosphor spherical and reduce the surface area of the particles.
  • Whether the particle shape of the phosphor is spherical or not is determined using Wadell's sphericity ( ⁇ ) (hereinafter also referred to as “sphericity”) as an index.
  • Wadell's sphericity
  • the sphericity of the particles constituting the phosphor is preferably, for example, 0.80 or more.
  • the sphericity can be increased by producing a phosphor using a manufacturing method described later.
  • Wadell's sphericity ( ⁇ ) is determined by the following method.
  • the particle size distribution of the powdery phosphor is measured by the Coulter counter method.
  • Coulter counter method is a method of defining particle size from voltage change according to particle volume.
  • the number frequency at a certain particle diameter Di is taken as Ni.
  • the particle size Di is the diameter of a spherical particle having the same volume as the actual particle whose particle size is defined by the Coulter Counter method.
  • the specific surface area (S) of the powder phosphor is calculated using the number frequency Ni and the particle size Di.
  • the specific surface area is the surface area of the powder divided by its weight and is defined as the surface area per unit weight.
  • the weight of the particle of the particle diameter Di is (4 ⁇ / 3) ⁇ (Di / 2) 3 ⁇ Ni ⁇ ⁇ ( ⁇ is the density of the powder).
  • the surface area of particles of particle size Di is 4 ⁇ ⁇ (Di / 2) 2 ⁇ Ni.
  • the specific surface area of the actual particle is the value obtained by dividing the surface area of the particle by Wadell sphericity ( ⁇ ) ( ⁇ 4 ⁇ ⁇ (Di / 2) 2 ⁇ Ni ⁇ / ⁇ )
  • the specific surface area (S) of the powder is the sum of the specific surface area of the particles for each particle size, and is represented by the following formula (A3).
  • Wadell sphericity ( ⁇ ) is a value different for each particle size, but it can be interpreted as an average value as a deviation from a sphere as a whole powder.
  • aeration method As a method of measuring the particle size of powder, aeration method (Brain method, Fisher method, etc.) is known.
  • a metal tube whose both ends are open is filled with powder, air is allowed to pass through the powder layer, and the particle size is defined from the passing ratio of air.
  • the particle diameter defined by the ventilation method is also called specific surface area diameter (d).
  • the sphericity ( ⁇ ) of Wadell is represented by the following formula (A5), and may be calculated by comparing the specific surface area calculated from the particle size distribution with the specific surface area calculated from the particle size of the aeration method. it can.
  • the particle diameter of the particle size distribution is usually expressed as a particle diameter range, but in the present embodiment, the particle diameter Di is set to an intermediate value of the particle diameter range, and the particle diameter range is made every 0.2 ⁇ m to improve accuracy.
  • the particle size distribution is plotted on lognormal probability paper, it can be approximated by two straight lines. Therefore, number frequency data of every 0.2 ⁇ m can be easily obtained from the two normal probability distributions.
  • d ⁇ ⁇ (Di 2 ⁇ Ni) ⁇ / ⁇ (Di 3 ⁇ Ni) ⁇ (A5)
  • the present inventors produced phosphors having various compositions, and a part of the main components of the conventional phosphor was replaced with another element, and It is a phosphor formed by comparing and examining the influence of the type and substitution amount on the light emission characteristics of the phosphor by a series of experiments.
  • the luminous efficiency can be further improved by shifting the ratio of the rare earth oxide and aluminum oxide which are the constituent elements to a composition in which aluminum oxide is excessive.
  • the phosphor of the present embodiment is manufactured, for example, by mixing the respective phosphor raw materials and baking the obtained phosphor raw material mixture in a low oxygen atmosphere. A specific manufacturing method example will be described below.
  • a phosphor raw material containing an element constituting the composition of the phosphor of the present embodiment for example, rare earth oxides (Y 2 O 3 , Lu 2 O 3 , Gd 2 O 3 , Tb 4 O 7 ), aluminum oxide (Al) 2 O 3), magnesium oxide (MgO), silicon oxide (SiO 2), scandium oxide (Sc 2 O 3), boron oxide (B 2 O 3), gallium oxide (Ga 2 O 3), cerium oxide (CeO 2 ) Dry-mix etc. to make a phosphor raw material mixture.
  • rare earth oxides Y 2 O 3 , Lu 2 O 3 , Gd 2 O 3 , Tb 4 O 7
  • aluminum oxide Al
  • magnesium oxide MgO
  • silicon oxide SiO 2
  • scandium oxide Sc 2 O 3
  • B 2 O 3 gallium oxide
  • Ga 2 O 3 gallium oxide
  • CeO 2 cerium oxide
  • the phosphor raw material mixture contains these fluxes, the sphericity of the obtained phosphor powder can be increased. When the blending amounts of these fluxes both exceed the upper limit value, the luminance of the phosphor tends to decrease due to abnormal growth of the phosphor particles. Moreover, when both are below a lower limit, sphericity can not fully be raised.
  • the phosphor raw material mixture may contain, as another flux, a fluoride of an alkali metal or an alkaline earth metal such as potassium fluoride which is a reaction accelerator.
  • the phosphor raw material mixture is filled into a refractory crucible.
  • a refractory crucible an alumina crucible, a carbon crucible etc. are used, for example.
  • the phosphor raw material mixture filled in the refractory crucible is fired.
  • the firing apparatus a composition of the firing atmosphere in which the refractory crucible is disposed, and a device in which the firing temperature and the firing time are maintained at predetermined conditions are used.
  • an electric furnace is used, for example.
  • a reducing gas As a firing atmosphere, a reducing gas is used.
  • the reducing gas for example, N 2 gas, Ar gas, a mixed gas of N 2 and H 2 or the like is used.
  • reducing gas, N 2 and when a mixed gas of H 2, the molar ratio of N 2 and H 2 in the inert gas (N 2: H 2) is 10: 0-1: 9 , Preferably 9: 1 to 3: 7. It is preferable to flow these reducing gases so as to form an air flow in the chamber of the baking apparatus because they can be baked uniformly. It is also effective to arrange carbon (C) inside and outside the crucible in order to realize a reducing atmosphere. Carbon has high ability to deoxidize oxygen and can realize a suitable reducing atmosphere.
  • the pressure of the reducing gas which is the firing atmosphere is usually 0.1 MPa (about 1 atm) to 1.0 MPa (about 10 atm), preferably 0.1 MPa to 0.5 MPa.
  • the pressure of the firing atmosphere is less than 0.1 MPa, the composition of the phosphor powder obtained after firing is likely to be different from the desired phosphor, as compared with the phosphor material mixture charged in the crucible before firing.
  • the emission intensity of the phosphor powder may be weakened.
  • the pressure in the firing atmosphere exceeds 1.0 MPa, there is no particular change in the firing conditions even when the pressure is 1.0 MPa or less, which is not preferable from the viewpoint of energy saving.
  • the firing temperature is, for example, 1300 ° C. to 1600 ° C., preferably 1400 ° C. to 1550 ° C.
  • the firing temperature is 1300 ° C. to 1600 ° C.
  • high-quality single crystal phosphor powder with few defects of crystal structure can be obtained by firing for a short time.
  • the firing temperature is less than 1300 ° C., the reaction of the obtained phosphor powder may be insufficient and the emission intensity may be insufficient.
  • the firing temperature exceeds 1600 ° C., the emission intensity of the phosphor powder obtained by the abnormal growth of the phosphor particles may be weakened.
  • the baking time is, for example, 0.5 hour to 10 hours, preferably 1 hour to 8 hours, and more preferably 2 hours to 5 hours.
  • the firing time is preferably in the range of 0.5 hours to 10 hours when the firing temperature is high, and is short if the firing temperature is low, and is long in the range of 0.5 hours to 10 hours. It is preferable to
  • the white light emitting LED lamp of the present embodiment includes, for example, a blue light emitting diode having a light emission peak wavelength of 430 to 470 nm and the above-described phosphor.
  • a blue light emitting diode having a light emission peak wavelength of 430 to 470 nm and a phosphor having a light emission efficiency higher than that of the prior art and having a variable light emission wavelength It is possible to obtain a white light emitting LED lamp that exhibits higher luminance than that.
  • a red to orange warm-colored phosphor that emits light by converting the light of the blue light-emitting diode into light exhibiting an emission peak wavelength of 580 nm or more may be further used.
  • the warm-colored phosphor is, for example, a compound represented by the chemical formula 3: (Sr 1 -xy , Ca x , Eu y ) AlSiN 3 (Wherein x is a number satisfying 0.01 ⁇ x ⁇ 0.35, y is a number satisfying 0.002 ⁇ y ⁇ 0.03)
  • Table 2 shows a white light emitting LED lamp (embodiments 1B and 2B) including the phosphor of the present embodiment and a blue light emitting diode (wavelength 460 nm), and a conventional fluorescence showing an emission wavelength equivalent to the phosphor of the present embodiment. It is a table
  • the white light emitting LED lamp comprising the phosphor of the present embodiment exhibits excellent light emission luminance while maintaining high color rendering as compared to the white light emitting LED lamp comprising the conventional phosphor.
  • the phosphor of the present embodiment can obtain high emission efficiency in a wide range of emission wavelength than conventional phosphors.
  • the LED lamp equipped with the phosphor of the present embodiment has higher luminance and color rendering than a conventional lighting device such as a fluorescent lamp. Therefore, it is possible to provide a high quality light source in the technical field such as general lighting where high brightness and high color rendering of white light are required. Moreover, since the energy saving performance can be improved more than the conventional fluorescent lamp, the demand growth of the LED lamp as a substitute for the fluorescent lamp is expected.
  • FIG. 2 is a cross-sectional view showing a structural example of the LED lamp.
  • the LED lamp 1 shown in FIG. 2 includes a substrate 2 on which the lamp component is mounted, a blue light emitting diode (light emitting element) 3 mounted on the substrate 2 and emitting light having an emission peak wavelength of 430 to 470 nm, and a light emitting diode 3
  • the phosphor layer 4 includes the phosphor and the resin, and the resin frame 5 supports the light emitting portion including the light emitting diode 3 and the phosphor layer 4. Further, the electrode portion 6 disposed on the upper portion of the resin frame 5 and the light emitting diode 3 are electrically connected by the bonding wire 7.
  • the electrical energy applied to the light emitting diode 3 from the electrode portion 6 via the bonding wire 7 is converted to blue light by the light emitting diode 3 and a part of the light is located above the light emitting diode 3
  • white light is emitted to the outside of the LED lamp as a total of the light emitted from the light emitting diode 3 and the light emitted from the phosphor layer 4 after being converted to longer wavelength light. ing.
  • FIG. 3 is a view showing an example of an emission spectrum of light emitted from the LED lamp of the present embodiment.
  • the emission spectrum shown in FIG. 3 is an example of the emission spectrum of the light emitted from the LED lamp having the configuration shown in FIG. 2 using the phosphor of the present embodiment.
  • the emission spectrum shown in FIG. 3 is an emission spectrum of white light obtained by converting light with an emission peak wavelength of 460 nm emitted from a blue light emitting diode by a phosphor.
  • FIG. 4 is a view showing an example of an emission spectrum of light emitted from the LED lamp of the present embodiment.
  • the emission spectrum shown in FIG. 4 is a view showing an example of the emission spectrum of the light emitted from the LED lamp having the configuration shown in FIG. 2 using the phosphor of the present embodiment.
  • the emission spectrum shown in FIG. 4 is a view showing an example of the emission spectrum of the light emitted from the LED lamp having the configuration shown in FIG. 2 using the phosphor of the present embodiment.
  • the emission spectrum of FIG. 4 is an emission spectrum of white light with a color temperature of 5000 K obtained by converting light with an emission peak wavelength of 460 nm emitted from a blue light emitting diode by a phosphor.
  • the phosphors having various compositions were produced, and the phosphor particles were embedded in a resin as shown in FIG. 2 to produce LED lamps of each example in which a phosphor layer was formed, and their light emission characteristics were evaluated.
  • the LED lamp of each example has the cross-sectional shape shown in FIG. 2 and in a state where a light emitting chip of 300 ⁇ m square is disposed as the light emitting diode 3 at the concave bottom of the resin frame 5, the light emitting chip The light was emitted to evaluate its characteristics.
  • the emission peak wavelength of the light emitted from the light emitting diode 3 was about 460 nm.
  • the emission characteristics as a white LED lamp were measured using a Loves Fair SLIMS total luminous flux system.
  • each LED lamp is as follows.
  • the phosphor of the above embodiment and the silicone resin were mixed at different weight ratios to prepare a plurality of slurries.
  • Each slurry was dropped on the top side of different light emitting diodes. They were heat-treated at 100 to 150 ° C. to cure the silicone resin to produce the LED lamps of each example.
  • the brightness (lm) of these white LED lamps was then measured.
  • Example 1A Comparative Example 1A
  • Y 2 O 3 yttrium oxide
  • Al 2 O 3 aluminum oxide
  • MgO magnesium oxide
  • SiO 2 silicon oxide
  • CeO 2 cerium oxide
  • Each predetermined amount was weighed so as to be as described above, mixed in a ball mill for 1 hour, and fired in a reducing atmosphere.
  • the synthesized phosphor is ground in a mortar and passed through a mesh to obtain cerium-activated yttrium magnesium silicon aluminate (chemical formula: 1.5 Y 2 O 3. 2.6 (Al 0.996 (Mg, Si) 0.002 ) 2 O 3 : Ce Got).
  • the phosphors of Examples 2A to 10A were also produced in the same manner as in Example 1A except that the ratio of each component was appropriately changed so as to obtain the phosphor composition shown in Table 3.
  • the phosphor (chemical formula: 1.5 (Y 0.58 Gd 0.42 ) 2 O 3 .2.5 Al 2 O 3 : Ce) was compared as the phosphor of Comparative Example 1A showing an emission wavelength equivalent to that of Example 1A.
  • the composition of this phosphor can also be expressed as (Y 0.58 Gd 0.42 ) 3 Al 5 O 12 : Ce. These were mixed with the silicone resin at various concentrations (mass%). After applying these slurries on the light emitting diode, the white light emitting LED lamp of Example 1A and Comparative Example 1A was produced by curing the resin by heat treatment at 150 ° C.
  • Example 2A A cerium-activated yttrium aluminate (chemical formula: 1.5 Y 2 O 3. 2.625 Al 2 O 3 : Ce) as a phosphor was mixed with a silicone resin at various concentrations (% by mass). After applying these slurries on the light emitting diode, the white light emitting LED lamp of Example 2A was manufactured by heat treatment at 150 ° C. to cure the resin.
  • yttrium aluminate chemical formula: 1.5 Y 2 O 3. 2.625 Al 2 O 3 : Ce
  • Example 3A A cerium-activated yttrium lutetium aluminate (chemical formula: 1.5 (Y 0.3 Lu 0.7 ) 2 O 3 .. Al 2 O 3 : Ce) as a phosphor was mixed with a silicone resin at various concentrations (% by mass). After applying these slurries on the light emitting diode, the white light emitting LED lamp of Example 3A was manufactured by heat treatment at 150 ° C. to cure the resin.
  • Example 4A Yellow-orange emitting phosphor as cerium-activated yttrium magnesium silicon aluminate of (Formula: 1.5Y 2 O 3 ⁇ 2.58 ( Al 0.96 (Mg, Si) 0.02) 2 O 3: Ce) a silicone resin with various concentrations ( Mixed by mass). After applying these slurries on the light emitting diode, the white light emitting LED lamp of Example 4A was produced by heat treatment at 150 ° C. to cure the resin.
  • Example 5A Various cerium-activated yttrium lutetium magnesium silicon silicon aluminate (chemical formula: 1.5 (Y 0.1 Lu 0.9 ) 2 O 3 .2.575 (Al 0.994 (Mg, Si) 0.003 ) 2 O 3 : Ce) as a phosphor and a silicone resin Mixed at a concentration (mass%) of After applying these slurries on the light emitting diode, the white light emitting LED lamp of Example 5A was produced by heat treatment at 150 ° C. to cure the resin.
  • Example 6A A cerium-activated yttrium gallium aluminate (chemical formula: 1.5Y 2 O 3 .2.62 (Al 0.9 Ga 0.1 ) 2 O 3 : Ce) as a phosphor was mixed with a silicone resin at various concentrations (% by mass). After applying these slurries on the light emitting diode, the white light emitting LED lamp of Example 6A was manufactured by heat treatment at 150 ° C. to cure the resin.
  • Example 7A A cerium-activated yttrium gadolinium aluminate (chemical formula: 1.5 (Y 0.9 Gd 0.1 ) 2 O 3 .2.6Al 2 O 3 : Ce) as a phosphor was mixed with a silicone resin at various concentrations (% by mass). After applying these slurries on the light emitting diode, the white light emitting LED lamp of Example 7A was produced by heat treatment at 150 ° C. to cure the resin.
  • Example 8A A cerium-activated yttrium aluminate (chemical formula: 1.5 Y 2 O 3. 2. 65 Al 2 O 3 : Ce) as a phosphor was mixed with a silicone resin at various concentrations (% by mass). After applying these slurries on a light emitting diode, a white light emitting LED lamp according to Example 8A was produced by heat treatment at 150 ° C. to cure the resin.
  • Example 9A Cerium-activated yttrium boron scandium aluminate (chemical formula: 1.5 Y 2 O 3. 2.6 (Al 0.9 (B, Sc) 0.05 ) 2 O 3 : Ce) as phosphor and various concentrations (mass%) with silicone resin Mixed. These slurries were applied onto the light emitting diode, and then heat treated at 150 ° C. to cure the resin, thereby producing a white light emitting LED lamp according to Example 9A.
  • Example 10A A cerium-activated yttrium aluminate (chemical formula: 1.5 Y 2 O 3. 2.56 Al 2 O 3 : Ce) as a phosphor was mixed with a silicone resin at various concentrations (% by mass). These slurries were applied onto the light emitting diode, and then heat treated at 150 ° C. to cure the resin, thereby producing a white light emitting LED lamp according to Example 10A.
  • yttrium aluminate chemical formula: 1.5 Y 2 O 3. 2.56 Al 2 O 3 : Ce
  • Comparative Examples 2A to 10A are LED lamps manufactured by the same manufacturing method using conventional phosphors that exhibit the same emission wavelength as the phosphors of Examples 2A to 10A.
  • LED lamps using a phosphor based on a compound containing aluminum oxide more than the conventional rare earth oxides used in combination have higher luminous efficiency than the conventional one. Furthermore, a white LED lamp using the above-mentioned phosphor has higher emission luminance than before.
  • the phosphors according to the respective embodiments in combination with a blue light emitting diode which emits light having a predetermined light emission peak wavelength, it is possible to realize higher luminance than in the conventional case. In addition, it is possible to provide a high quality light source in application fields such as general lighting where high brightness and high color rendering of white light are required. Moreover, since it does not contain mercury, the growth of demand can be expected as an environmentally friendly product.
  • Example 1B Rare earth oxides (Y 2 O 3 , Lu 2 O 3 , Gd 2 O 3 , Tb 4 O 7 ), aluminum oxide (Al 2 O 3 ), magnesium oxide (MgO), silicon oxide (SiO 2 ), scandium oxide
  • the phosphor composition shown in Example 1 B in Table 4 can be obtained using raw materials such as (Sc 2 O 3 ), boron oxide (B 2 O 3 ), gallium oxide (Ga 2 O 3 ), cerium oxide (CeO 2 ), etc. As described above, each predetermined amount was weighed, mixed in a ball mill for 1 hour, and fired in a reducing atmosphere.
  • the synthesized phosphor is ground in a mortar and passed through a mesh to obtain cerium-activated yttrium lutetium magnesium silicon aluminate (chemical formula: 1.5 (Y 0.1 Lu 0.9 ) 2 O 3. 2.575 (Al 0.994 (Mg, Si) 0.003 ) ) 2 O 3 : Ce) was obtained. Furthermore, europium activated strontium calcium nitride aluminosilicate (chemical formula: Sr 0.90 Ca 0.08 Eu 0.02 AlSiN 3 ) was synthesized as a warm-colored phosphor.
  • Example 1B white light emitting LED lamp according to Example 1B.
  • a white light emitting LED lamp according to Comparative Example 1B was produced in the same manner using a phosphor (chemical formula: (SrCa) AlSiN 3 : Eu) exhibiting a peak wavelength of 620 nm. The weight ratio of the phosphors was adjusted so that the chromaticity of the white LED lamp had a color temperature of 5000 K and a deviation of ⁇ 0.001.
  • each component ratio was suitably changed so that it might become a phosphor composition shown to Tables 4 and 5 about each fluorescent substance of Example 2 B-10 B, and it created by the method similar to Example 1 B. Further, warm-colored phosphors used simultaneously are also shown in Tables 4 and 5. Also in Comparative Examples 2B to 10B, phosphors showing emission peak wavelengths equivalent to those of Examples 2B to 10B were selected and shown in Tables 4 and 5. The weight ratio of the phosphors was adjusted so that the chromaticity of the white LED lamp had a color temperature of 5000 K and a deviation of ⁇ 0.001.
  • Example 2B Cerium-activated yttrium lutetium gallium aluminate (chemical formula: 1.5 (Y 0.1 Lu 0.9 ) 2 O 3 .2.575 (Al 0.9 Ga 0.1 ) 2 O 3 : Ce) as a phosphor and europium-activated strontium calcium as a warm phosphor Nitrile door luminometer silicate (chemical formula: Sr 0.72 Ca 0.27 Eu 0.01 AlSiN 3) was mixed with a silicone resin. The slurry was applied onto a light emitting diode, and then heat treated at 150 ° C. to cure the resin, whereby a white light emitting LED lamp according to Example 2B was produced. The emission peak wavelength of the used phosphor was (530 nm, 630 nm).
  • Example 3B Cerium activated yttrium borate scandium aluminate as a phosphor (chemical formula: 1.5Y 2 O 3 ⁇ 2.575 ( Al 0.9 (B, Sc) 0.05) 2 O 3: Ce) and europium-activated strontium calcium nitrilase as warm phosphor Aluminosilicate (chemical formula: Sr 0.90 Ca 0.08 Eu 0.02 AlSiN 3 was mixed with a silicone resin. After the slurry was applied on a light emitting diode, it was heat treated at 150 ° C. to cure the resin and white according to Example 3B. A light emitting LED lamp was produced The emission peak wavelength of the used phosphor was (540 nm, 620 nm).
  • Example 4B Cerium-activated yttrium gallium aluminate (chemical formula: 1.5Y 2 O 3 .2.6 (Al 0.9 Ga 0.1 ) 2 O 3 : Ce) as a phosphor and manganese-activated potassium silicofluoride (chemical formula: K 2 ) as a warm phosphor (Si 0.97 Mn 0.03 ) F 6 ) was mixed with the silicone resin. The slurry was applied onto a light emitting diode, and then heat treated at 150 ° C. to cure the resin, whereby a white light emitting LED lamp according to Example 4B was produced. The emission peak wavelength of the phosphor used was (546 nm, 629 nm).
  • Example 5B Cerium-activated yttrium lutetium gallium aluminate (chemical formula: 1.5 (Y 0.1 Lu 0.9 ) 2 O 3 .2.575 (Al 0.9 Ga 0.1 ) 2 O 3 : Ce) as a phosphor and cerium-activated yttrium gallium aluminate (chemical formula : 1.5Y 2 O 3 .2.6 (Al 0.9 Ga 0.1 ) 2 O 3 : Ce) Further, europium activated strontium calcium nitride aluminosilicate (chemical formula: Sr 0.72 Ca 0.27 Eu 0.01 AlSiN 3 ) silicone resin as a warm-colored phosphor Mixed with The slurry was applied onto a light emitting diode, and then heat treated at 150 ° C. to cure the resin, whereby a white light emitting LED lamp according to Example 5B was produced. The emission peak wavelength of the used phosphor was (530 nm, 546 nm, 630 nm).
  • Example 6B Cerium-activated yttrium lutetium magnesium silicon aluminate (chemical formula: 1.5 (Y 0.1 Lu 0.9 ) 2 O 3 .2.575 (Al 0.994 (Mg, Si) 0.003 ) 2 O 3 : Ce) and cerium-activated yttrium magnesium as phosphors silicon aluminate (formula: 1.5Y 2 O 3 ⁇ 2.6 ( Al 0.996 (Mg, Si) 0.002) 2 O 3: Ce) further warm phosphor as europium-activated strontium calcium nitridosilicate door luminometer silicate (chemical formula: Sr 0.90 Ca 0.08 Eu 0.02 AlSiN 3 ) was mixed with the silicone resin.
  • the slurry was applied onto a light emitting diode, and then heat treated at 150 ° C. to cure the resin, whereby a white light emitting LED lamp according to Example 6B was produced.
  • the emission peak wavelength of the used phosphor was (535 nm, 557 nm, 620 nm).
  • Example 7B Cerium-activated yttrium lutetium magnesium silicon aluminate (chemical formula: 1.5 (Y 0.1 Lu 0.9 ) 2 O 3 .2.575 (Al 0.994 (Mg, Si) 0.003 ) 2 O 3 : Ce) and cerium-activated yttrium aluminium as phosphors Acid salt (chemical formula: 1.5Y 2 O 3 .2.625Al 2 O 3 : Ce) and europium activated strontium calcium nitride aluminosilicate (chemical formula: Sr 0.72 Ca 0.27 Eu 0.01 AlSiN 3 ) as a warm-colored phosphor together with a silicone resin Mixed.
  • the slurry was applied onto a light emitting diode and then heat treated at 150 ° C. to cure the resin, whereby a white light emitting LED lamp according to Example 7B was produced. It was an emission peak wavelength (535 nm, 552 nm, 630 nm) of the phosphor used.
  • Example 8B Cerium-activated yttrium lutetium magnesium silicon aluminate (chemical formula: 1.5 (Y 0.1 Lu 0.9 ) 2 O 3 .2.575 (Al 0.994 (Mg, Si) 0.003 ) 2 O 3 : Ce) and cerium-activated yttrium aluminium as phosphors Acid salt (chemical formula: 1.5Y 2 O 3. 2.65Al 2 O 3 : Ce) Furthermore, europium activated strontium calcium nitride aluminosilicate (chemical formula: Sr 0.90 Ca 0.08 Eu 0.02 AlSiN 3 ) as a warm-colored phosphor with a silicone resin Mixed.
  • the slurry was applied onto a light emitting diode, and then heat treated at 150 ° C. to cure the resin, whereby a white light emitting LED lamp according to Example 8B was produced.
  • the emission peak wavelength of the phosphor used was (535 nm, 560 nm, 620 nm).
  • Example 9B Cerium-activated yttrium lutetium magnesium silicon aluminate (chemical formula: 1.5 (Y 0.1 Lu 0.9 ) 2 O 3 .2.575 (Al 0.994 (Mg, Si) 0.003 ) 2 O 3 : Ce) and cerium-activated yttrium magnesium as phosphors silicon aluminate (formula: 1.5Y 2 O 3 ⁇ 2.6 ( Al 0.996 (Mg, Si) 0.002) 2 O 3: Ce) further manganese activated potassium hexafluorosilicate as warm phosphor (chemical formula: K 2 (Si 0.97 Mn 0.03 ) F 6 ) was mixed with the silicone resin.
  • the slurry was applied onto a light emitting diode, and then heat treated at 150 ° C. to cure the resin, whereby a white light emitting LED lamp according to Example 9B was produced.
  • the emission peak wavelength of the phosphor used was (535 nm, 557 nm, 629 nm).
  • Example 10B Cerium-activated yttrium lutetium magnesium silicon aluminate (chemical formula: 1.5 (Y 0.1 Lu 0.9 ) 2 O 3 .2.575 (Al 0.994 (Mg, Si) 0.003 ) 2 O 3 : Ce) and cerium-activated yttrium aluminium as phosphors Acid salt (chemical formula: 1.5Y 2 O 3. 2.65Al 2 O 3 : Ce) Furthermore, manganese activated potassium silicofluoride (chemical formula: K 2 (Si 0.97 Mn 0.03 ) F 6 ) is mixed with a silicone resin as a warm phosphor did. The slurry was applied onto a light emitting diode and then heat treated at 150 ° C. to cure the resin, whereby a white light emitting LED lamp according to Example 10B was produced. It was an emission peak wavelength (535 nm, 560 nm, 629 nm) of the phosphor used.
  • the luminance and color rendering properties (Ra) at a color temperature of 5000 K are shown in Tables 4 and 5 for the white light emitting LED lamps according to the examples and comparative examples manufactured as described above.
  • a white light emitting LED lamp using a phosphor containing aluminum oxide in a higher proportion than the conventional rare earth oxide has a color rendering of 80 or more, which is practically required. Light emission luminance higher than before can be realized while maintaining the brightness.
  • the white light emitting LED lamp according to each embodiment it is possible to realize higher luminance and high color rendering than in the prior art.
  • it does not contain mercury since it does not contain mercury, the growth of demand can be expected as an environmentally friendly product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

蛍光体は、化学式1:1.5Y2O3・2.5aAl2O3:Ce(式中aは1.02<a<1.1を満たす数である)で表わされる組成を有する。

Description

蛍光体およびその製造方法、ならびにLEDランプ
 本実施形態は、蛍光体およびLEDランプに関する。
 発光ダイオード(LED:Light Emitting Diode、LEDチップともいう)は、電圧を印加すると光源として作用する発光素子である。発光ダイオードは、例えば二つの半導体の接触面(pn接合)付近での電子と正孔との再結合によって発光する。発光ダイオードは小型で電気エネルギーから光への変換効率が高いため、家電製品、照光式操作スイッチ、LED表示器、または一般照明等に広く用いられている。
 発光ダイオードは、フィラメントを用いる電球と異なる。よって、発光ダイオードでは、いわゆる「球切れ」が発生しない。また、発光ダイオードは、初期駆動特性に優れ、振動や繰り返しのON/OFF操作に対しても優れた耐久性を有する。このため、発光ダイオードは、自動車用ダッシュボード等に設けられる表示装置のバックライトとしても用いられる。発光ダイオードは、太陽光に影響されずに高彩度で鮮やかな色の光を発光することができるため、屋外に設置される表示装置、交通用表示装置や信号機等にも用いることができる。
 発光ダイオードは、光を放射する半導体ダイオードであり、電気エネルギーを紫外光または可視光に変換する。発光ダイオードは、可視光を利用するためにGaP、GaAsP、GaAlAs、GaN、InGaAlPなどの発光材料で形成した発光チップを透明樹脂で封止したLEDランプにも用いられている。また、上記発光材料をプリント基板や金属リードの上面に固定し、例えば数字形状や文字形状を有する樹脂ケースにより封止されたディスプレイ型のLEDランプにも用いられている。
 発光チップの表面または樹脂中に各種の蛍光体粉末を添加することにより、放射光の色を調整することもできる。よって、LEDランプは、青色から赤色まで使用用途に応じた可視光領域の光の色を再現することができる。また、発光ダイオードは半導体素子であるため、長寿命でかつ信頼性が高く、光源として用いた場合には、故障による交換頻度も低減されることから、携帯通信機器、パーソナルコンピュータ周辺機器、OA機器、家庭用電気機器、オーディオ機器、各種スイッチ、バックライト用光源表示板等の各種表示装置の構成部品としても広く使用されている。
 LEDの普及を促進する環境として、2006年7月にEU(欧州連合)において施行されたRoHS規制(電気・電子機器に含まれる特定有害物質の使用制限に関する指令)では、電気製品等への水銀の使用が禁止され、日本でも「水俣条約」の締結に向け、政省令の改正等、近い将来において照明設備においても水銀を使用しない白色発光LEDランプが、水銀蒸気を封入した従来の蛍光灯に置き換わると予想される。
 普及をさらに推進するためには、発光効率の向上が求められている。ここ数年、白色LEDパッケージ市場は、金額単位でフラットであり、必ずしも当初の想定通りには伸張していない。白色LEDランプの発光効率は従来の蛍光灯よりも必ずしも優位ではない。また、白色LEDランプは長寿命ではあるが、製品の価格や省エネ性能を考慮すると、現在の一般照明を直ぐにでも置き換えたいという消費者意識を喚起するにはまだまだ弱いことが考えられる。従って、将来的に、蛍光灯の代替品として白色LEDランプの需要を増大させるためには発光効率の向上が必要である。
 白色発光LEDランプ(発光装置)としては、例えば青色発光ダイオードと緑、黄色発光蛍光体、場合によってはさらに赤色蛍光体を組み合わせたタイプの発光装置(タイプ1と呼称する)、紫外線あるいは紫色発光ダイオードと青色、黄色、赤色蛍光体とを組み合わせたタイプの発光装置(タイプ2と呼称する)が挙げられる。現時点で、タイプ1はタイプ2よりも高輝度であるという優位性が評価され最も普及している。
 上記タイプ1の発光装置の用途で使用されている緑、黄色蛍光体としては、セリウム付活イットリウムアルミン酸塩蛍光体(YAG)、セリウム付活テルビウムアルミン酸塩蛍光体(TAG)、アルカリ土類珪酸塩蛍光体(BOSS)などの蛍光体材料が実用化されている。
 上記蛍光体材料のうち、YAG、BOSSについては、発光ダイオードと組合わせて使用される以前から一般に知られた蛍光体であり、これまでフライングスポットスキャナーや蛍光灯などで検討、使用され、あるいは応用製品への適用が試行されてきた。これらの蛍光体は携帯電話のバックライト用蛍光体として既に実用化されているが、さらに照明装置や自動車のヘッドランプ等への更なる需要の拡大を目指し日々改良がなされている。
 上記実用化を目指した改良の成果については様々な文献に記載されている。具体的には蛍光体の基本成分の一部を他種類の元素で置換したり、その置換量を最適化したり、付活剤の種類およびその添加量を調整したりする試みが継続されている。
 青色発光ダイオードとBOSSあるいはYAG、TAGなどの黄色発光蛍光体とを組み合わせて形成し、輝度特性が優位である従来のタイプ1の白色LEDランプでは、発光効率向上が必要である。
特許第3749243号公報 特開2006-332692号公報 特開2006-299168号公報 特開2006-41096号公報 特開2005-317985号公報 特開2005-8844号公報 特開2003-179259号公報 特開2002-198573号公報 特開2002-151747号公報 特開平10-36835号公報 特開2006-321974号公報 特開2006-265542号公報 特開2006-213893号公報 特開2006-167946号公報 特開2005-243699号公報 特開2005-150691号公報 特開2004-115304号公報 特開2006-324407号公報 特開2006-253336号公報 特開2005-235847号公報 特開2002-42525号公報
 実施形態の蛍光体は、化学式1:1.5Y2O3・2.5aAl2O3:Ce(式中aは1.02<a<1.1を満たす数である)で表わされる組成を有する。
本実施形態の蛍光体におけるaの値と発光効率との関係を示す図である。 LEDランプの構成例を示す断面図である。 LEDランプの発光スペクトルの一例を示す図である。 LEDランプの発光スペクトルの一例を示す図である。
 [蛍光体]
 本実施形態の蛍光体は、化学式1:1.5Y2O3・2.5aAl2O3:Ce
(式中aは1.02<a<1.1を満たす数である)
で表される組成を有する。本実施形態の蛍光体は、1.5モルの酸化イットリウム(Y)と、2.5×a(aは1.02<a<1.1を満たす数である)モルの酸化アルミニウム(Al)とを混合、反応させ、さらにCeを付活させることにより形成される。
 本実施形態の蛍光体では、Yの一部がLu、Gd、およびTbの少なくとも1つの元素で置換されてもよい。また、本実施形態の蛍光体では、Alの一部が、Gaである第1の元素、MgおよびSiである第2の元素、ならびにScおよびBである第3の元素の少なくとも一つで置換されてもよい。
 Yの一部を置換する元素またはAlの一部を置換する元素は、蛍光体の発光波長をシフトさせる役割を担う元素である。Luと、Gaと、ScおよびBの一対の元素は、発光波長を短波長側にシフトさせることができる。Gdと、Tbと、MgおよびSiの一対の元素は、発光波長を長波長側にシフトさせることができる。
 Scの置換割合は、Bの置換割合と原子%で同じであることが好ましい。Mgの置換割合は、Siの置換割合と原子%で同じであることが好ましい。上記置換は、2つのAl原子を一対の原子によって置換するとも捉えることができる。このとき、一対の元素はそれらの平均原子価および平均イオン半径がAlの原子価(+3)、イオン半径(0.53オングストローム)にほぼ等しくなるように選ばれる。このような一対の元素に置換することによる波長シフトは、例えばYの一部を(Ca,Zr)または(Sr,Zr)に置換することによっても達成される。
 すなわち、本実施形態の蛍光体における組成は、
  化学式2:1.5((Y,Lu)1-xM1x)2O3・2.5a(Al1-y-zGay(M2,M3)z)2O3:Ce
 (式中、M1はGdおよびTbの少なくとも1つの元素であり、(M2,M3)は(Mg,Si)または(Sc,B)であり、xは0≦x<0.6を満たす数、aは1.02<a<1.1を満たす数、yは0≦y<0.4を満たす数、zは0≦z<0.1を満たす数である)
で表わすことができる。zが0よりも大きい数のとき、元素M2の原子%に対する元素M3の原子%の比は、0.9以上1.1以下である。
 Yを置換する元素でLuはYの一部または全部を置換可能である。M1はGdまたはTbの少なくとも1つの元素であるが、Yの6割を超えない範囲での置換が好ましい。6割を超えると輝度低下が著しくなり好ましくない。Alを置換する元素でGaは、Alの4割を超えない範囲での置換が好ましく、4割を超えると輝度低下が顕著となる。(Mg,Si)または(Sc,B)等の一対の元素の置換量は1割を超えない範囲が好ましい。上記一対の元素は僅かな置換量でも所望の発光波長にシフトさせることができる。置換量が1割を超えると輝度低下が生じる場合がある。
 図1は本実施形態の蛍光体におけるaの値と発光効率との関係を示す図である。図1は、横軸をaの値とし、縦軸を蛍光体の発光効率としてプロットされている。aの値は得られた蛍光体のYおよびAlの分析値から算出される値である。
 図1においてaが1の場合は1.5Y2O3・2.5Al2O3:Ceである。1.5Y2O3・2.5Al2O3:Ceの表記は、Y3Al5O12:Ceに変換することができる。Y3Al5O12:Ceは、セリウム付活イットリウムアルミニウムガーネット(YAG)蛍光体である。
 図1では、aの増加に伴い発光効率は高くなり、a=1.07近傍でピークを形成する。aが1.1を越えると急激に低下する。よって、aを1.02~1.10の範囲にすることにより従来のYAGよりも高い発光効率を得ることができる。aは、1.03~1.09の範囲であることがより好ましく、さらに1.04~1.08の範囲であることがより好ましい。蛍光体に含まれる希土類元素のうち、Ceの割合は2~20原子%、好ましくは3~15原子%である。
 図1の発光効率は、浜松ホトニクス社製蛍光体発光効率評価装置(C9920)を用いて発光効率を測定することにより得られる。発光効率は、蛍光体を専用セルに充填し、モノクロ光源を設定することにより測定される。励起光源からの光および蛍光体からの光は蛍光体に対し同一側(反射)で励起される。発光効率は、光源励起光の蛍光体へ吸収される割合(吸収率)と吸収された励起光が蛍光体の発光に代わる割合(内部量子効率)を乗じた値であり、外部量子効率とも呼ばれる量である。
 表1は本実施形態の蛍光体(実施形態1A~3A)と、当該蛍光体とほぼ同じ発光波長を示す従来の蛍光体(従来例1A~3A)との比較結果である。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように本実施形態の蛍光体は、同じ発光波長において、従来の蛍光体よりも高い発光効率を示す。なお、実施形態1A~3Aの蛍光体のYまたはAlの一部を他の元素で置換した場合においても、従来例1A~3Aの蛍光体よりも高い発光効率を示す。しかしながら、a値を1に近づけると、発光効率は従来以下の値まで低下してしまう。このことから、YまたはAlの一部を他の元素で置換する場合であっても蛍光体のAlの比率を高くすることにより発光効率を向上させることができることがわかる。
 上記蛍光体は、粉末状である。蛍光体を構成する粒子の平均粒径は、例えば3μm以上80μm以下、好ましくは5μm以上40μm以下、より好ましくは5μm以上30μm以下である。ここで平均粒径とは、レーザー回折式粒度分布測定装置による測定値であり、体積累積分布の中央値D50を意味する。好ましい粒径範囲に調整された蛍光体を用いることにより、高輝度で色むらの少ない白色LEDランプを得ることができ、LED毎の輝度、色ばらつきを低減することができる。
 蛍光体を構成する粒子の形状は、球形に近いほど好ましい。粒子形状を球形に近づけることで発光装置の発光輝度をさらに向上させることができる。半導体発光素子と蛍光体とを備える発光装置では、半導体発光素子から放射される光が蛍光体の表面で反射、または蛍光体から放射される光が他の蛍光体の表面で反射し、多重反射を繰り返して、外部に光が取り出される。光の反射現象が生じると、光のエネルギー効率が低下する。光のエネルギー効率の低下を抑制するために、蛍光体の粒子形状を球形にして粒子の表面積を小さくすることが好ましい。
 蛍光体の粒子形状が球形であるか否かは、Wadellの球形度(Ψ)(以下、「球形度」ともいう)を指標として判断される。蛍光体を構成する粒子の球形度は、例えば0.80以上であることが好ましい。例えば、後述の製造方法を用いて蛍光体を作製することにより球形度を高めることができる。
 Wadellの球形度(Ψ)は、実際の粒子の表面積とその粒子と同じ体積を有する球の表面積の比として次式(A1)により定義される。
 Ψ=(粒子と同じ体積を有する球の表面積)/(実際の粒子の表面積)  (A1)
 通常、任意の体積を有する粒子において、最も小さい表面積を有する粒子は球形の粒子である。従って、Wadellの球形度(Ψ)は通常の粒子では1以下であり、粒子形状が球形でない場合は球形に近いほど1に近い。
 Wadellの球形度(Ψ)は、次の方法で求められる。まず、粉末の蛍光体の粒度分布をコールターカウンター法で測定する。コールターカウンター法は、粒子の体積に応じた電圧変化から粒度を規定する方法である。コールターカウンター法により得られる粒度分布において、ある粒径Diにおける個数頻度をNiとする。粒径Diは、コールターカウンター法により粒度が規定された実際の粒子と同体積の球形粒子の直径である。
 個数頻度Niおよび粒径Diを用いて粉末蛍光体の比表面積(S)を計算する。比表面積は粉体の表面積をその重量で割った値であり、単位重量当たりの表面積として定義される。粒径Diの粒子の重量は、(4π/3)×(Di/2)×Ni×ρ(ρは粉体の密度)である。粉体の重量は、粒径毎の粒子の重量の和であり、下記式(A2)で表される。
 粉体の重量=Σ{(4π/3)×(Di/2)×Ni×ρ}    (A2)
 粒径Diの粒子の表面積は、4π×(Di/2)×Niである。実際の粒子形状が球形でない場合、実際の粒子の比表面積は、粒子の表面積をWadell球形度(Ψ)で割った値({4π×(Di/2)×Ni}/Ψ)であり、粉体の比表面積(S)は、粒径毎の粒子の比表面積の和であり、下記式(A3)で表される。実際にはWadell球形度(Ψ)が粒径毎に異なる値であることも考えられるが、粉体全体として球形からのずれとして平均的な値であると解釈することができる。
 S=[Σ{4π×(Di/2)×Ni}/Ψ]/[Σ{(4π/3)×(Di/2)×Ni×ρ}]
 =(6/ρ/Ψ)×{Σ(Di×Ni)}/{Σ(Di×Ni)}  (A3)
 粉体の粒径を測定する方法としては、通気法(ブレーン法、フィッシャー法等)が知られている。通気法では、両端が開放した金属製のチューブに粉体を詰め、その粉体層に空気を通過させて、空気の通過割合から粒径を規定する。通気法により規定された粒径を比表面積径(d)ともいう。比表面積径(d)と比表面積(S)とは下記式(A4)の関係がある。
 S=6/ρ/d    (A4)
 従って、Wadellの球形度(Ψ)は、下記式(A5)で表され、粒度分布から計算される比表面積と通気法の粒径から計算される比表面積とを比較することにより算出することができる。粒度分布の粒径は通常粒径範囲として表わされるが、本実施形態では粒径Diを粒径範囲の中間値とし、精度をあげるために粒径範囲を0.2μm毎にする。粒度分布を対数正規確率紙にプロットすると2本の直線で近似できる。従って、その2本の正規確率分布から0.2μm毎の個数頻度データを容易に得ることができる。
  Ψ=d×{Σ(Di×Ni)}/{Σ(Di×Ni)}    (A5)
 以上のように、本実施形態の蛍光体は、本発明者らが各種組成を有する蛍光体を作製し、従来の蛍光体の主成分の一部を他の元素で置換し、その置換元素の種類および置換量が蛍光体の発光特性に及ぼす影響を一連の実験により比較検討することにより形成された蛍光体である。特にガーネット構造を有するアルミン酸塩蛍光体において、その構成要素である希土類酸化物と酸化アルミニウムの比率を酸化アルミニウムが過剰となる組成にずらすことによって、より発光効率が向上させることができる。さらに、酸化アルミニウムを過剰とした蛍光体をベースに、発光波長を長波長あるいは短波長にずらす機能を有する不純物と組合わせることにより、実用上必要とされる種々の発光色ならびに高発光効率の蛍光体を得ることができる。
 [蛍光体の製造方法]
 本実施形態の蛍光体は、例えば各蛍光体原料を混合し、得られた蛍光体原料混合物を低酸素雰囲気中で焼成することにより製造される。具体的な製造方法例について以下に説明する。
 まず、本実施形態の蛍光体の組成を構成する元素を含む蛍光体原料、例えば希土類酸化物(Y、Lu、Gd、Tb)、酸化アルミニウム(Al)、酸化マグネシウム(MgO)、酸化けい素(SiO)、酸化スカンジウム(Sc)、酸化ホウ素(B)、酸化ガリウム(Ga)、酸化セリウム(CeO)等を乾式混合して蛍光体原料混合物を作製する。
 蛍光体原料混合物に、融剤を含む蛍光体原料混合物を100質量%としたときに、0.05~3質量%のフッ化バリウム(BaF)および0.01~1質量%の塩化イットリウム(YCl)を添加することが好ましい。蛍光体原料混合物が、これらの融剤を含むと、得られる蛍光体粉末の球形度を高くすることができる。これらの融剤の配合量が、共に上限値を超えると、蛍光体粒子の異常成長により蛍光体の輝度が低下しやすい。また、共に下限値以下であると十分に球形度を高めることができない。蛍光体原料混合物は、別の融剤として、反応促進剤であるフッ化カリウム等のアルカリ金属またはアルカリ土類金属のフッ化物等を含んでいてもよい。
 次に、蛍光体原料混合物を耐火るつぼに充填する。耐火るつぼとしては、例えば、アルミナるつぼ、カーボンるつぼ等が用いられる。耐火るつぼに充填された蛍光体原料混合物は焼成される。焼成装置は、耐火るつぼが配置される内部の焼成雰囲気の組成、ならびに焼成温度および焼成時間が所定条件に保たれる装置が用いられる。このような焼成装置としては、たとえば、電気炉が用いられる。
 焼成雰囲気としては、還元性ガスが用いられる。還元性ガスとしては、例えば、Nガス、Arガス、NとHとの混合ガス等が用いられる。また、還元性ガスが、NとHとの混合ガスである場合、不活性ガス中のNとHとのモル比率(N:H)は、10:0~1:9、好ましくは9:1~3:7である。これら還元性ガスは、焼成装置のチャンバー内で気流を形成させるように流通させると、均一に焼成することができるため好ましい。また、還元性雰囲気を実現するため、炭素(C)をルツボ内外に配置することも有効である。炭素は、高い脱酸素能を有し、適度の還元性雰囲気を実現することができる。
 焼成雰囲気である還元性ガスの圧力は、通常0.1MPa(略1atm)~1.0MPa(略10atm)、好ましくは0.1MPa~0.5MPaである。焼成雰囲気の圧力が0.1MPa未満であると、焼成前にるつぼに仕込んだ蛍光体原料混合物と比較して、焼成後に得られる蛍光体粉末の組成が所望の蛍光体と異なりやすく、このために蛍光体粉末の発光強度が弱くなるおそれがある。一方、焼成雰囲気の圧力が1.0MPaを超えると、圧力が1.0MPa以下の場合と比較しても焼成条件に特に変化がなく、省エネルギーの観点から好ましくない。
 焼成温度は、例えば1300℃~1600℃、好ましくは1400℃~1550℃である。焼成温度が1300℃~1600℃であると、短時間の焼成で、結晶構造の欠陥が少ない高品質な単結晶の蛍光体粉末を得ることができる。焼成温度が1300℃未満であると、得られる蛍光体粉末の反応が不足し発光強度が不十分となるおそれがある。一方、焼成温度が1600℃を超えると、蛍光体粒子の異常成長により得られる蛍光体粉末の発光強度が弱くなるおそれがある。
 焼成時間は、例えば0.5時間~10時間、好ましくは1時間~8時間、さらに好ましくは2時間~5時間である。焼成時間が0.5時間未満である場合または10時間を超える場合は、得られる蛍光体粉末の未反応や異常成長のため蛍光体粉末の発光強度が弱くなるおそれがある。焼成時間は、焼成温度が高い場合は、0.5時間~10時間の範囲内で短い時間とすることが好ましく、焼成温度が低い場合は、0.5時間~10時間の範囲内で長い時間とすることが好ましい。
 [LEDランプ]
 本実施形態の白色発光LEDランプは、例えば発光ピーク波長が430~470nmである青色発光ダイオードと上記記載の蛍光体とを具備する。本実施形態の白色発光LEDランプによれば、発光ピーク波長が430~470nmである青色発光ダイオードと、従来よりも高い発光効率を示し、発光波長が可変な蛍光体とを組合わせることにより、従来よりも高い輝度を示す白色発光LEDランプを得ることができる。
 上記青色発光ダイオードの光を580nm以上の発光ピーク波長を示す光に変換して発光する赤色ないし橙色の暖色系蛍光体をさらに用いてもよい。暖色系蛍光体は、例えば
  化学式3:(Sr1-x-y,Cax,Euy)AlSiN3
 (式中xは0.01<x<0.35を満たす数、yは0.002<y<0.03を満たす数である)
で表される組成を有する蛍光体、および
  化学式4:K2(Si1-zMnz)F6
 (式中zは0.02<z<0.5を満たす数である)
で表される組成を有する蛍光体の少なくとも一つの蛍光体を含む。
 表2は本実施形態の蛍光体と青色発光ダイオード(波長460nm)とを具備する白色発光LEDランプ(実施形態1B、2B)と、本実施形態の蛍光体と同等の発光波長を示す従来の蛍光体と青色発光ダイオード(波長460nm)とを具備する白色発光LEDランプ(従来例1B、2B)の発光輝度と演色性(Ra)の結果を示す表である。白色発光LEDランプから放射される光の色温度は5000Kである。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように本実施形態の蛍光体を具備する白色発光LEDランプは、従来の蛍光体を具備する白色発光LEDランプと比べ、高い演色性を維持しつつ優れた発光輝度を示す。
 本実施形態の蛍光体は、従来の蛍光体よりも広範囲の発光波長において高い発光効率を得ることができる。本実施形態の蛍光体を具備するLEDランプは、蛍光灯等の従来の照明装置よりも高い輝度と演色性とを兼ね備える。よって、白色光の高輝度および高演色性が要求される一般照明等の技術分野において、良質の光源を提供することができる。また、従来の蛍光灯よりも省エネ性能を向上させることができるため、蛍光灯の代わりとしてLEDランプの需要の伸長が期待される。
 図2は、LEDランプの構造例を示す断面図である。図2に示すLEDランプ1は、ランプ部品を搭載する基板2と、基板2上に搭載され発光ピーク波長が430~470nmである光を発光する青色発光ダイオード(発光素子)3と、発光ダイオード3の上面側に配置され、上記蛍光体と樹脂とを含む蛍光体層4と、これらの発光ダイオード3および蛍光体層4から成る発光部を支持する樹脂枠5とを備えて構成される。また、樹脂枠5の上部に配置された電極部6と発光ダイオード3とは、ボンディングワイヤ7によって電気的に接続されている。
 上記LEDランプにおいて、電極部6からボンディングワイヤ7を経由して発光ダイオード3に印加された電気エネルギーは発光ダイオード3によって青色光に変換され、それらの光の一部が発光ダイオード3上部に位置する蛍光体層4によって、より長波長の光に変換され、発光ダイオード3から放出される光と蛍光体層4から放出される光との総計として白色光がLEDランプ外へ放出される仕組みになっている。
 図3は、本実施形態のLEDランプから放射される光の発光スペクトルの一例を示す図である。図3に示す発光スペクトルは、本実施形態の蛍光体を用い且つ図2に示す構成を有するLEDランプから放射される光の発光スペクトルの例である。図3に示す発光スペクトルは、青色発光ダイオードから放射された460nmの発光ピーク波長を示す光を蛍光体により変換した白色光の発光スペクトルである。
 図4は、本実施形態のLEDランプから放射される光の発光スペクトルの一例を示す図である。図4に示す発光スペクトルは、本実施形態の蛍光体を用い且つ図2に示す構成を有するLEDランプから放射される光の発光スペクトルの例を示す図である。図4に示す発光スペクトルは、蛍光体1(化学式:1.5(Y0.1Lu0.9)2O3・2.575(Al0.994(Mg,Si)0.003)2O3:Ce)と、蛍光体2(化学式:1.5Y2O3・2.6Al0.996(Mg,Si)0.002)2O3:Ce)と、蛍光体3(Sr0.90Ca0.08Eu0.02AlSiN3)と、を組み合わせたLEDランプの発光スペクトルの例である。図4の発光スペクトルは、青色発光ダイオードから放射された460nmの発光ピーク波長を示す光を蛍光体により変換した5000Kの色温度の白色光の発光スペクトルである。
 本実施形態の蛍光体を用いることにより、従来よりも高い発光効率を有する白色LEDランプを提供することができる。
 各種組成を有する蛍光体を作製し、その蛍光体粒子を図2に示すように樹脂によって埋め込んで蛍光体層を形成した各実施例のLEDランプをそれぞれ作製し、その発光特性を評価した。
 各実施例のLEDランプは、図2に示す横断面形状を有し、発光ダイオード3としてサイズ300μm四方の発光チップを樹脂枠5の凹底部に配置した状態で、20mAの電流値にて発光チップを発光させて、その特性を評価した。発光ダイオード3から放射される光の発光ピーク波長は約460nmであった。白色LEDランプとしての発光特性は、ラブズフェア社製SLIMS全光束システムを使用して測定した。
 各LEDランプの製造方法は次の通りである。上記実施形態の蛍光体とシリコーン樹脂とを重量比率を変えて混合し、複数のスラリーを作製した。それぞれのスラリーを、異なる発光ダイオードの上面側に滴下した。それらを、100~150℃で熱処理し、シリコーン樹脂を硬化して各実施例のLEDランプを作製した。次にこれらの白色LEDランプの輝度(lm)を測定した。
 (実施例1A、比較例1A)
 酸化イットリウム(Y)、酸化アルミニウム(Al)、酸化マグネシウム(MgO)、酸化けい素(SiO)、酸化セリウム(CeO)を表3の実施例1Aに示す蛍光体組成となるように各所定量を秤量し、ボールミルで1時間混合した後、還元雰囲気下で焼成した。合成した蛍光体を乳鉢で粉砕し、メッシュを通すことにより、セリウム付活イットリウムマグネシウムシリコンアルミン酸塩(化学式:1.5Y2O3・2.6(Al0.996(Mg,Si)0.002)2O3:Ce)を得た。なお、実施例2A~10Aの各蛍光体についても、表3に示す蛍光体組成となるよう各成分比率を適宜変えたこと以外は、実施例1Aと同様の方法で作製した。実施例1Aと同等の発光波長を示す比較例1Aの蛍光体として蛍光体(化学式:1.5(Y0.58Gd0.42)2O3・2.5Al2O3:Ce)を比較した。この蛍光体の組成を(Y0.58Gd0.42)3Al5O12:Ceと表記することもできる。これらをシリコーン樹脂と種々の濃度(質量%)で混合した。これらのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例1A、比較例1Aの白色発光LEDランプを作製した。
 (実施例2A)
 蛍光体としてのセリウム付活イットリウムアルミン酸塩(化学式:1.5Y2O3・2.625Al2O3:Ce)をシリコーン樹脂と種々の濃度(質量%)で混合した。これらのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化することにより実施例2Aの白色発光LEDランプを作製した。
 (実施例3A)
 蛍光体としてのセリウム付活イットリウムルテチウムアルミン酸塩(化学式:1.5(Y0.3Lu0.7)2O3・.Al2O3:Ce)をシリコーン樹脂と種々の濃度(質量%)で混合した。これらのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化することにより実施例3Aの白色発光LEDランプを作製した。
 (実施例4A)
 黄橙色発光蛍光体としてのセリウム付活イットリウムマグネシウムシリコンアルミン酸塩(化学式:1.5Y2O3・2.58(Al0.96(Mg,Si)0.02)2O3:Ce)をシリコーン樹脂と種々の濃度(質量%)で混合した。これらのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化することにより実施例4Aの白色発光LEDランプを作製した。
 (実施例5A)
 蛍光体としてのセリウム付活イットリウムルテチウムマグネシウムシリコンアルミン酸
塩(化学式:1.5(Y0.1Lu0.9)2O3・2.575(Al0.994(Mg,Si)0.003)2O3:Ce)をシリコーン樹脂と種々の濃度(質量%)で混合した。これらのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例5Aの白色発光LEDランプを作製した。
 (実施例6A)
 蛍光体としてのセリウム付活イットリウムガリウムアルミン酸塩(化学式:1.5Y2O3・2.62(Al0.9Ga0.1)2O3:Ce)をシリコーン樹脂と種々の濃度(質量%)で混合した。これらのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例6Aの白色発光LEDランプを作製した。
 (実施例7A)
 蛍光体としてのセリウム付活イットリウムガドリニウムアルミン酸塩(化学式:1.5(Y0.9Gd0.1)2O3・2.6Al2O3:Ce)をシリコーン樹脂と種々の濃度(質量%)で混合した。これらのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例7Aの白色発光LEDランプを作製した。
 (実施例8A)
 蛍光体としてのセリウム付活イットリウムアルミン酸塩(化学式:1.5Y2O3・2.65Al2O3:Ce)をシリコーン樹脂と種々の濃度(質量%)で混合した。これらのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例8Aに係る白色発光LEDランプを作製した。
 (実施例9A)
 蛍光体としてのセリウム付活イットリウムホウ素スカンジウムアルミン酸塩(化学式:1.5Y2O3・2.6(Al0.9(B,Sc)0.05)2O3:Ce)をシリコーン樹脂と種々の濃度(質量%)で混合した。これらのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例9Aに係る白色発光LEDランプを作製した。
 (実施例10A)
 蛍光体としてのセリウム付活イットリウムアルミン酸塩(化学式:1.5Y2O3・2.56Al2O3:Ce)をシリコーン樹脂と種々の濃度(質量%)で混合した。これらのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例10Aに係る白色発光LEDランプを作製した。
 (比較例2A~10A)
 比較例2A~10Aは、表3に示すように、実施例2A~10Aの蛍光体と同等の発光波長を示す従来の蛍光体を用い、それぞれ同様の製造方法により製造されたLEDランプである。
 上記のように作製した各実施例および比較例に係る白色発光LEDランプについて、20mAの電流を流し点灯させて発光させ、その発光の輝度、及び色度を測定した。輝度と色度の関係から、色度x=0.33における輝度を求めた。各蛍光体の白色発光LEDランプにおける発光輝度(比較を100とした相対輝度)を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、併用される希土類酸化物に対して従来よりも多い酸化アルミニウムを含む化合物をベースとして有する蛍光体を用いたLEDランプは、従来よりも高い発光効率を有する。さらに、上記蛍光体を用いた白色LEDランプは従来よりも高い発光輝度を有する。
 以上説明したように、各実施例に係る蛍光体によれば、所定の発光ピーク波長を有する光を発光する青色発光ダイオードと組み合わせて、従来よりも高い輝度を実現することができる。また、白色光の高輝度および高演色性が要求される一般照明等の応用分野において良質な光源を提供することができる。しかも水銀を含まないため環境に優しい製品として需要の伸長が期待できる。
 (実施例1B、比較例1B)
 希土類酸化物(Y、Lu、Gd、Tb)、酸化アルミニウム(Al)、酸化マグネシウム(MgO)、酸化けい素(SiO)、酸化スカンジウム(Sc)、酸化ホウ素(B)、酸化ガリウム(Ga)、酸化セリウム(CeO)等の原料を用い、表4の実施例1Bに示す蛍光体組成となるように各所定量を秤量し、ボールミルで1時間混合した後、還元雰囲気下で焼成した。合成した蛍光体を乳鉢で粉砕し、メッシュを通すことにより、セリウム付活イットリウムルテチウムマグネシウムシリコンアルミン酸塩(化学式:1.5(Y0.1Lu0.9)2O3・2.575(Al0.994(Mg,Si)0.003)2O3:Ce)を得た。さらに暖色系蛍光体としてユーロピウム付活ストロンチウムカルシウムニトリドアルミノシリケート(化学式:Sr0.90Ca0.08Eu0.02AlSiN)を合成した。
 これらの蛍光体をシリコーン樹脂と混合し、そのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例1Bに係る白色発光LEDランプを作製した。なお比較例1Bとして同等の発光ピーク波長535nmを示す従来の蛍光体(化学式:1.5(Y0.15Lu0.85)2O3・2.5Al2O3:Ce))を合成、暖色蛍光体として同等の発光ピーク波長620nmを示す蛍光体(化学式:(SrCa)AlSiN3:Eu)を用い、同様の方法で比較例1Bに係る白色発光LEDランプを作製した。白色LEDランプの色度が色温度5000K、偏差±0.001となるように蛍光体の重量比率を調整した。
 なお、実施例2B~10Bの各蛍光体についても、表4、5に示す蛍光体組成となるように各成分比率を適宜変え、実施例1Bと同様の方法で作成した。また同時に使用した暖色系蛍光体も表4、5に示した。比較例2B~10Bにおいても、実施例2B~10Bと同等の発光ピーク波長を示す蛍光体を選定し表4、5に示した。白色LEDランプの色度は色温度5000K、偏差±0.001となるように蛍光体の重量比率を調整した。
 (実施例2B)
 蛍光体としてセリウム付活イットリウムルテチウムガリウムアルミン酸塩(化学式:1.5(Y0.1Lu0.9)2O3・2.575(Al0.9Ga0.1)2O3:Ce)および暖色系蛍光体としてユーロピウム付活ストロンチウムカルシウムニトリドアルミノシリケート(化学式:Sr0.72Ca0.27Eu0.01AlSiN3)をシリコーン樹脂と混合した。そのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例2Bに係る白色発光LEDランプを作製した。使用した蛍光体の発光ピーク波長は(530nm,630nm)であった。
 (実施例3B)
 蛍光体としてセリウム付活イットリウムホウ素スカンジウムアルミン酸塩(化学式:1.5Y2O3・2.575(Al0.9(B,Sc)0.05)2O3:Ce)および暖色系蛍光体としてユーロピウム付活ストロンチウムカルシウムニトリドアルミノシリケート(化学式:Sr0.90Ca0.08Eu0.02AlSiN3をシリコーン樹脂と混合した。そのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例3Bに係る白色発光LEDランプを作製した。使用した蛍光体の発光ピーク波長は(540nm,620nm)であった。
 (実施例4B)
 蛍光体としてセリウム付活イットリウムガリウムアルミン酸塩(化学式:1.5Y2O3・2.6(Al0.9Ga0.1)2O3:Ce)および暖色系蛍光体としてマンガン付活ケイフッ化カリウム(化学式:K2(Si0.97Mn0.03)F6)をシリコーン樹脂と混合した。そのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例4Bに係る白色発光LEDランプを作製した。使用した蛍光体の発光ピーク波長は(546nm,629nm)であった。
 (実施例5B)
 蛍光体としてセリウム付活イットリウムルテチウムガリウムアルミン酸塩(化学式:1.5(Y0.1Lu0.9)2O3・2.575(Al0.9Ga0.1)2O3:Ce)およびセリウム付活イットリウムガリウムアルミン酸塩(化学式:1.5Y2O3・2.6(Al0.9Ga0.1)2O3:Ce)さらに暖色系蛍光体としてユーロピウム付活ストロンチウムカルシウムニトリドアルミノシリケート(化学式:Sr0.72Ca0.27Eu0.01AlSiN3)をシリコーン樹脂と混合した。そのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例5Bに係る白色発光LEDランプを作製した。使用した蛍光体の発光ピーク波長は(530nm,546nm,630nm)であった。
 (実施例6B)
 蛍光体としてセリウム付活イットリウムルテチウムマグネシウムシリコンアルミン酸塩(化学式:1.5(Y0.1Lu0.9)2O3・2.575(Al0.994(Mg,Si)0.003)2O3:Ce)およびセリウム付活イットリウムマグネシウムシリコンアルミン酸塩(化学式:1.5Y2O3・2.6(Al0.996(Mg,Si)0.002)2O3:Ce)さらに暖色系蛍光体としてユーロピウム付活ストロンチウムカルシウムニトリドアルミノシリケート(化学式:Sr0.90Ca0.08Eu0.02AlSiN3)をシリコーン樹脂と混合した。そのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例6Bに係る白色発光LEDランプを作製した。使用した蛍光体の発光ピーク波長は(535nm,557nm,620nm)であった。
 (実施例7B)
 蛍光体としてセリウム付活イットリウムルテチウムマグネシウムシリコンアルミン酸塩(化学式:1.5(Y0.1Lu0.9)2O3・2.575(Al0.994(Mg,Si)0.003)2O3:Ce)およびセリウム付活イットリウムアルミン酸塩(化学式:1.5Y2O3・2.625Al2O3:Ce)さらに暖色系蛍光体としてユーロピウム付活ストロンチウムカルシウムニトリドアルミノシリケート(化学式:Sr0.72Ca0.27Eu0.01AlSiN3)をシリコーン樹脂と混合した。そのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例7Bに係る白色発光LEDランプを作製した。使用した蛍光体の発光ピーク波長(535nm,552nm,630nm)であった。
 (実施例8B)
 蛍光体としてセリウム付活イットリウムルテチウムマグネシウムシリコンアルミン酸塩(化学式:1.5(Y0.1Lu0.9)2O3・2.575(Al0.994(Mg,Si)0.003)2O3:Ce)およびセリウム付活イットリウムアルミン酸塩(化学式:1.5Y2O3・2.65Al2O3:Ce)さらに暖色系蛍光体としてユーロピウム付活ストロンチウムカルシウムニトリドアルミノシリケート(化学式:Sr0.90Ca0.08Eu0.02AlSiN3)をシリコーン樹脂と混合した。そのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例8Bに係る白色発光LEDランプを作製した。使用した蛍光体の発光ピーク波長は(535nm,560nm,620nm)であった。
 (実施例9B)
 蛍光体としてセリウム付活イットリウムルテチウムマグネシウムシリコンアルミン酸塩(化学式:1.5(Y0.1Lu0.9)2O3・2.575(Al0.994(Mg,Si)0.003)2O3:Ce)およびセリウム付活イットリウムマグネシウムシリコンアルミン酸塩(化学式:1.5Y2O3・2.6(Al0.996(Mg,Si)0.002)2O3:Ce)さらに暖色系蛍光体としてマンガン付活ケイフッ化カリウム(化学式:K2(Si0.97Mn0.03)F6)をシリコーン樹脂と混合した。そのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例9Bに係る白色発光LEDランプを作製した。使用した蛍光体の発光ピーク波長は(535nm,557nm,629nm)であった。
 (実施例10B)
 蛍光体としてセリウム付活イットリウムルテチウムマグネシウムシリコンアルミン酸塩(化学式:1.5(Y0.1Lu0.9)2O3・2.575(Al0.994(Mg,Si)0.003)2O3:Ce)およびセリウム付活イットリウムアルミン酸塩(化学式:1.5Y2O3・2.65Al2O3:Ce)さらに暖色系蛍光体としてマンガン付活ケイフッ化カリウム(化学式:K2(Si0.97Mn0.03)F6)をシリコーン樹脂と混合した。そのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例10Bに係る白色発光LEDランプを作製した。使用した蛍光体の発光ピーク波長(535nm,560nm,629nm)であった。
 (比較例2B)~(比較例10B)
 比較例2B~10Bは、表4、5に示すように、実施例2B~10Bの蛍光体と同等の発光ピーク波長を示す従来の蛍光体を用い、それぞれ同様の製造方法により製造されたLEDランプである。なお、比較例に用いた暖色系蛍光体はそれぞれの波長を示す市販品を用いた。
 上記のように作製した各実施例および比較例に係る白色発光LEDランプについて、色温度5000Kでの発光輝度および演色性(Ra)を表4、5に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表4、5に示す結果から明らかなように、希土類酸化物に対して従来よりも高い割合の酸化アルミニウムを含む蛍光体を用いた白色発光LEDランプは、実用上必要とされる80以上の演色性を維持しつつ、従来よりも高い発光輝度を実現することができる。
 以上説明したように、各実施例に係る白色発光LEDランプによれば、従来よりも高い輝度と高演色性とを実現することができる。また、白色光の高輝度および高演色性が要求される一般照明等の応用分野において良質な光源を提供することができる。しかも水銀を含まないため環境に優しい製品として需要の伸長が期待できる。

Claims (12)

  1.  化学式1:1.5Y2O3・2.5aAl2O3:Ce
    (式中aは1.02<a<1.1を満たす数である)
    で表わされる組成を有する、蛍光体。
  2.  前記組成において、Yの少なくとも一部がLu、Gd、およびTbの少なくとも1つの元素で置換されている、もしくはAlの一部が、Gaである第1の元素、MgおよびSiである第2の元素、ならびにScおよびBである第3の元素の少なくとも一つで置換されている、請求項1に記載の蛍光体。
  3.  前記組成において、Yの少なくとも一部がLu、Gd、およびTbの少なくとも1つの元素で置換され且つAlの一部が、Gaである第1の元素、MgおよびSiである第2の元素、ならびにScおよびBである第3の元素の少なくとも一つで置換されている、請求項1に記載の蛍光体。
  4.  前記組成は、化学式2:1.5((Y,Lu)1-xM1x)2O3・2.5a(Al1-y-zGay(M2,M3)z)2O3:Ce
    (式中、M1はGdおよびTbの少なくとも1つの元素であり、(M2,M3)は(Mg,Si)または(Sc,B)であり、xは0≦x<0.6を満たす数、aは1.02<a<1.1を満たす数、yは0≦y<0.4を満たす数、zは0≦z<0.1を満たす数である)
     で表わされ、
     zが0よりも大きい数のとき、元素M2の原子%に対する元素M3の原子%の比は、0.9以上1.1以下である、請求項1に記載の蛍光体。
  5.  前記蛍光体に含まれる希土類元素のうち、Ceの割合は2原子%以上20原子%以下である、請求項1に記載の蛍光体。
  6.  前記蛍光体は、粉末状であり、
     前記蛍光体を構成する粒子は、0.8以上の球形度を有する、請求項1に記載の蛍光体。
  7.  前記蛍光体を構成する粒子の平均粒径は、3μm以上80μm以下である、請求項6に記載の蛍光体。
  8.  請求項1に記載の蛍光体の製造方法であって、
     前記組成を構成する元素を含む蛍光体原料の混合物に、0.05質量%以上3質量%以下のフッ化バリウムと、0.01質量%以上1質量%以下の塩化イットリウムと、を添加する工程と、
     前記添加する工程後の前記混合物を焼成する工程と、を具備する、蛍光体の製造方法。
  9.  430nm以上470nm以下の発光ピーク波長を示す光を発光する青色発光ダイオードと、
     前記青色発光ダイオードから放射される光の一部を変換して第1の光を発光する請求項1に記載の蛍光体を含む層と、を具備する、LEDランプ。
  10.  前記層は、複数の前記蛍光体を含み、
     前記複数の蛍光体のそれぞれの前記組成は、化学式2:1.5((Y,Lu)1-xM1x)2O3・2.5a(Al1-y-zGay(M2,M3)z)2O3:Ce
    (式中、M1はGdおよびTbの少なくとも1つの元素であり、(M2,M3)は(Mg,Si)または(Sc,B)であり、xは0≦x<0.6を満たす数、aは1.02<a<1.1を満たす数、yは0≦y<0.4を満たす数、zは0≦z<0.1を満たす数である)
     で表わされ、互いに異なる、請求項9に記載のLEDランプ。
  11.  前記層は、前記青色発光ダイオードから放射される光の他の一部を変換して580nm以上の発光ピーク波長を示す第2の光を発光する第2の蛍光体をさらに含む、請求項9に記載のLEDランプ。
  12.  前記第2の蛍光体は、
     化学式3:(Sr1-x-y,Cax,Euy)AlSiN3
    (式中xは0.01<x<0.35を満たす数、yは0.002<y<0.03を満たす数である)
     で表される組成を有する蛍光体、および
     化学式4:K2(Si1-zMnz)F6
    (式中zは0.02<z<0.5を満たす数である)
     で表される組成を有する蛍光体の少なくとも一つの蛍光体を含む、請求項9に記載のLEDランプ。
PCT/JP2016/002756 2015-06-12 2016-06-07 蛍光体およびその製造方法、ならびにledランプ WO2016199406A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017523109A JP6833683B2 (ja) 2015-06-12 2016-06-07 蛍光体およびその製造方法、ならびにledランプ
KR1020187000582A KR102069081B1 (ko) 2015-06-12 2016-06-07 형광체 및 그 제조 방법, 그리고 led 램프
CN201680033880.XA CN107636113B (zh) 2015-06-12 2016-06-07 荧光体及其制造方法、以及led灯
US15/833,176 US11005010B2 (en) 2015-06-12 2017-12-06 Phosphor and method of manufacturing same, and LED lamp

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-119676 2015-06-12
JP2015119676 2015-06-12
JP2016-031835 2016-02-23
JP2016031835 2016-02-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/833,176 Continuation US11005010B2 (en) 2015-06-12 2017-12-06 Phosphor and method of manufacturing same, and LED lamp

Publications (1)

Publication Number Publication Date
WO2016199406A1 true WO2016199406A1 (ja) 2016-12-15

Family

ID=57503859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002756 WO2016199406A1 (ja) 2015-06-12 2016-06-07 蛍光体およびその製造方法、ならびにledランプ

Country Status (6)

Country Link
US (1) US11005010B2 (ja)
JP (1) JP6833683B2 (ja)
KR (1) KR102069081B1 (ja)
CN (1) CN107636113B (ja)
TW (1) TWI642762B (ja)
WO (1) WO2016199406A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019006967A (ja) * 2016-07-08 2019-01-17 クアーズテック株式会社 セラミックス複合体、並びにこれを含むプロジェクター用蛍光体及び発光デバイス
JP2021038126A (ja) * 2019-09-05 2021-03-11 アダマンド並木精密宝石株式会社 セラミック複合体の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102675945B1 (ko) 2018-09-18 2024-06-17 삼성전자주식회사 발광 장치
WO2021124532A1 (ja) * 2019-12-19 2021-06-24 株式会社 東芝 蛍光板、x線検出器、およびx線検査装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004065324A1 (ja) * 2003-01-20 2004-08-05 Ube Industries, Ltd. 光変換用セラミックス複合材料およびその用途
JP2005264062A (ja) * 2004-03-19 2005-09-29 Nemoto & Co Ltd 蛍光体
JP2013147643A (ja) * 2011-12-22 2013-08-01 Shin-Etsu Chemical Co Ltd イットリウムセリウムアルミニウムガーネット蛍光体の製造方法
JP2015044938A (ja) * 2013-08-28 2015-03-12 東芝マテリアル株式会社 蛍光体およびその製造方法、並びにその蛍光体を用いたledランプ

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017670A (en) * 1996-02-29 2000-01-25 Dainippon Ink And Chemicals, Inc. Electrophotographic toner and process for the preparation thereof
TW383508B (en) 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
JPH1036835A (ja) 1996-07-29 1998-02-10 Nichia Chem Ind Ltd フォトルミネセンス蛍光体
JP2002042525A (ja) 2000-07-26 2002-02-08 Toyoda Gosei Co Ltd 面状光源
JP3775268B2 (ja) 2001-09-03 2006-05-17 日亜化学工業株式会社 発光装置の形成方法
KR100923804B1 (ko) 2001-09-03 2009-10-27 파나소닉 주식회사 반도체발광소자, 발광장치 및 반도체발광소자의 제조방법
CN1153825C (zh) * 2002-02-27 2004-06-16 北京大学 铈激活的钇铝石榴石白光粉的制备方法
JP4263453B2 (ja) 2002-09-25 2009-05-13 パナソニック株式会社 無機酸化物及びこれを用いた発光装置
JP4991026B2 (ja) 2003-02-26 2012-08-01 日亜化学工業株式会社 発光装置
JP4916651B2 (ja) 2003-08-28 2012-04-18 三菱化学株式会社 発光装置及び蛍光体
JP4534513B2 (ja) 2004-02-17 2010-09-01 豊田合成株式会社 発光装置
JP2005243699A (ja) 2004-02-24 2005-09-08 Mitsubishi Chemicals Corp 発光素子、及び画像表示装置、並びに照明装置
EP1780592A4 (en) * 2004-06-30 2014-07-09 Mitsubishi Chem Corp LIGHT-EMITTING COMPONENT, BACKLIGHT UNIT, DISPLAY UNIT AND DISPLAY UNIT
JP4645089B2 (ja) 2004-07-26 2011-03-09 日亜化学工業株式会社 発光装置および蛍光体
JP4904694B2 (ja) 2005-02-07 2012-03-28 三菱化学株式会社 酸化物蛍光体、並びにそれを用いた発光素子、画像表示装置、及び照明装置
JP2006167946A (ja) 2004-12-13 2006-06-29 Koito Mfg Co Ltd 車輌用灯具及び光線溶着方法
US7497973B2 (en) * 2005-02-02 2009-03-03 Lumination Llc Red line emitting phosphor materials for use in LED applications
JP4325629B2 (ja) 2005-02-28 2009-09-02 三菱化学株式会社 蛍光体及びその製造方法並びにそれを使用した発光装置
CN101128563B (zh) * 2005-02-28 2012-05-23 三菱化学株式会社 荧光体、其制造方法及其应用
JP2006253336A (ja) 2005-03-10 2006-09-21 Toyoda Gosei Co Ltd 光源装置
JP4972957B2 (ja) 2005-04-18 2012-07-11 三菱化学株式会社 蛍光体、及びそれを用いた発光装置、並びに画像表示装置、照明装置
JP4843990B2 (ja) 2005-04-22 2011-12-21 日亜化学工業株式会社 蛍光体およびそれを用いた発光装置
JP2006324407A (ja) 2005-05-18 2006-11-30 Toyoda Gosei Co Ltd 発光装置
CN101370908B (zh) * 2006-01-19 2012-04-18 宇部兴产株式会社 陶瓷复合体光转换构件和用其的发光装置
TW200743663A (en) * 2006-05-26 2007-12-01 Chen Shiang Mian Fluorescent powder for light source of blue light diode
WO2007144984A1 (ja) * 2006-06-14 2007-12-21 Sanyo Chemical Industries, Ltd. 樹脂分散体の製造方法及び樹脂粒子
US7538650B2 (en) * 2006-07-17 2009-05-26 Smith International, Inc. Apparatus and method for magnetizing casing string tubulars
US8274215B2 (en) * 2008-12-15 2012-09-25 Intematix Corporation Nitride-based, red-emitting phosphors
DE102008051029A1 (de) * 2008-10-13 2010-04-15 Merck Patent Gmbh Dotierte Granat-Leuchtstoffe mit Rotverschiebung für pcLEDs
EP2554627B1 (en) * 2010-03-31 2018-01-10 Ube Industries, Ltd. Ceramic composites for light conversion, process for production thereof, and light-emitting devices provided with same
JP5603657B2 (ja) 2010-05-20 2014-10-08 日東電工株式会社 回路付サスペンション基板およびその製造方法
CN103080634B (zh) * 2010-08-31 2015-07-22 株式会社东芝 Led电灯泡
KR101952138B1 (ko) * 2011-02-24 2019-02-26 닛토 덴코 가부시키가이샤 형광체 성분을 갖는 발광 복합물
JP5545601B2 (ja) 2011-11-07 2014-07-09 信越化学工業株式会社 蛍光体高充填波長変換シート、それを用いた発光半導体装置の製造方法、及び該発光半導体装置
CN102660283B (zh) * 2012-04-18 2013-11-27 烟台建塬光电技术有限公司 一种掺杂稀土元素的钇铝石榴石荧光粉的制造方法
CN102660284B (zh) * 2012-04-18 2013-11-27 烟台建塬光电技术有限公司 一种led用氮化物红色荧光粉的制造方法
KR20150035742A (ko) * 2012-07-20 2015-04-07 미쓰비시 가가꾸 가부시키가이샤 발광 장치, 파장 변환 부재, 형광체 조성물 및 형광체 혼합물

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004065324A1 (ja) * 2003-01-20 2004-08-05 Ube Industries, Ltd. 光変換用セラミックス複合材料およびその用途
JP2005264062A (ja) * 2004-03-19 2005-09-29 Nemoto & Co Ltd 蛍光体
JP2013147643A (ja) * 2011-12-22 2013-08-01 Shin-Etsu Chemical Co Ltd イットリウムセリウムアルミニウムガーネット蛍光体の製造方法
JP2015044938A (ja) * 2013-08-28 2015-03-12 東芝マテリアル株式会社 蛍光体およびその製造方法、並びにその蛍光体を用いたledランプ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019006967A (ja) * 2016-07-08 2019-01-17 クアーズテック株式会社 セラミックス複合体、並びにこれを含むプロジェクター用蛍光体及び発光デバイス
JP2021038126A (ja) * 2019-09-05 2021-03-11 アダマンド並木精密宝石株式会社 セラミック複合体の製造方法
JP7350298B2 (ja) 2019-09-05 2023-09-26 Orbray株式会社 セラミック複合体の製造方法

Also Published As

Publication number Publication date
TWI642762B (zh) 2018-12-01
JPWO2016199406A1 (ja) 2018-04-05
TW201708504A (zh) 2017-03-01
KR20180016529A (ko) 2018-02-14
KR102069081B1 (ko) 2020-01-22
CN107636113B (zh) 2020-09-22
US11005010B2 (en) 2021-05-11
US20180138374A1 (en) 2018-05-17
CN107636113A (zh) 2018-01-26
JP6833683B2 (ja) 2021-02-24

Similar Documents

Publication Publication Date Title
EP1503428B1 (en) Light-emitting device using fluorescent substance
JP5151002B2 (ja) 発光装置
CN102333844B (zh) 共掺杂锆和铪的次氮基硅酸盐
US7733002B2 (en) Semiconductor light emitting device provided with an alkaline earth metal boric halide phosphor for luminescence conversion
JP5092667B2 (ja) 発光装置
WO2007005486A2 (en) Aluminate-based blue phosphors
JP6528418B2 (ja) 蛍光体及びこれを用いた発光装置
JP2008545048A6 (ja) アルミネート系青色蛍光体
JP6102763B2 (ja) 蛍光体及びそれを用いた発光装置並びに蛍光体の製造方法
JP6167913B2 (ja) 蛍光体及びそれを用いた発光装置
JP2009280763A (ja) 蛍光体調製物およびそれを用いた発光装置
US11005010B2 (en) Phosphor and method of manufacturing same, and LED lamp
JP2015228419A (ja) 半導体発光装置
JP4843990B2 (ja) 蛍光体およびそれを用いた発光装置
JP2014194019A (ja) 照明システム
JP5402008B2 (ja) 蛍光体の製造方法及び蛍光体並びにこれを用いた発光装置
KR101176212B1 (ko) 알카리 토류 포스포러스 나이트라이드계 형광체와 그 제조방법 및 이를 이용한 발광장치
JP2011506655A5 (ja)
JP6139334B2 (ja) 蛍光体およびその製造方法、並びにその蛍光体を用いたledランプ
CN104073257B (zh) 一种硫代硅酸盐荧光体及其应用
CN102399554A (zh) 氮化物红色发光材料、包括其的发光件以及发光器件
CN106883853B (zh) 一种利用ntc半导体纳米粉体对荧光粉发射光谱的调变方法
JP2017149963A (ja) 蛍光体及びそれを用いた発光装置
JP2006183043A (ja) 蛍光体及びその製造方法
TW201341507A (zh) 螢光粉體及發光裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807114

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017523109

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187000582

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16807114

Country of ref document: EP

Kind code of ref document: A1