WO2016199406A1 - 蛍光体およびその製造方法、ならびにledランプ - Google Patents
蛍光体およびその製造方法、ならびにledランプ Download PDFInfo
- Publication number
- WO2016199406A1 WO2016199406A1 PCT/JP2016/002756 JP2016002756W WO2016199406A1 WO 2016199406 A1 WO2016199406 A1 WO 2016199406A1 JP 2016002756 W JP2016002756 W JP 2016002756W WO 2016199406 A1 WO2016199406 A1 WO 2016199406A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phosphor
- light emitting
- led lamp
- number satisfying
- chemical formula
- Prior art date
Links
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims abstract description 179
- 238000004519 manufacturing process Methods 0.000 title description 7
- 239000000126 substance Substances 0.000 claims abstract description 52
- 239000000203 mixture Substances 0.000 claims abstract description 35
- 239000002245 particle Substances 0.000 claims description 58
- 229910052710 silicon Inorganic materials 0.000 claims description 23
- 238000010304 firing Methods 0.000 claims description 21
- 229910052749 magnesium Inorganic materials 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 15
- 239000002994 raw material Substances 0.000 claims description 12
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 11
- 102100032047 Alsin Human genes 0.000 claims description 11
- 101710187109 Alsin Proteins 0.000 claims description 11
- 229910052771 Terbium Inorganic materials 0.000 claims description 8
- 230000001747 exhibiting effect Effects 0.000 claims description 7
- 229910052706 scandium Inorganic materials 0.000 claims description 6
- 229910052727 yttrium Inorganic materials 0.000 claims description 6
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 5
- 229910052765 Lutetium Inorganic materials 0.000 claims description 3
- OBOSXEWFRARQPU-UHFFFAOYSA-N 2-n,2-n-dimethylpyridine-2,5-diamine Chemical compound CN(C)C1=CC=C(N)C=N1 OBOSXEWFRARQPU-UHFFFAOYSA-N 0.000 claims description 2
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 claims description 2
- 229910001632 barium fluoride Inorganic materials 0.000 claims description 2
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 2
- -1 cerium-activated yttrium aluminum garnet Chemical class 0.000 description 33
- 229910052684 Cerium Inorganic materials 0.000 description 29
- 229920005989 resin Polymers 0.000 description 28
- 239000011347 resin Substances 0.000 description 28
- 229920002050 silicone resin Polymers 0.000 description 22
- 239000002002 slurry Substances 0.000 description 22
- 239000000843 powder Substances 0.000 description 20
- 239000011777 magnesium Substances 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 15
- 238000000295 emission spectrum Methods 0.000 description 14
- 239000011575 calcium Substances 0.000 description 10
- 238000006467 substitution reaction Methods 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 9
- 238000009877 rendering Methods 0.000 description 9
- 238000009826 distribution Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 229910052693 Europium Inorganic materials 0.000 description 7
- 239000011572 manganese Substances 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- JNDMLEXHDPKVFC-UHFFFAOYSA-N aluminum;oxygen(2-);yttrium(3+) Chemical class [O-2].[O-2].[O-2].[Al+3].[Y+3] JNDMLEXHDPKVFC-UHFFFAOYSA-N 0.000 description 6
- 239000000395 magnesium oxide Substances 0.000 description 6
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 6
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 6
- 229910000323 aluminium silicate Inorganic materials 0.000 description 5
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 5
- 230000004907 flux Effects 0.000 description 5
- 229910052733 gallium Inorganic materials 0.000 description 5
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 description 5
- VAWSWDPVUFTPQO-UHFFFAOYSA-N calcium strontium Chemical class [Ca].[Sr] VAWSWDPVUFTPQO-UHFFFAOYSA-N 0.000 description 4
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000005273 aeration Methods 0.000 description 3
- 239000004411 aluminium Substances 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910000420 cerium oxide Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 150000003746 yttrium Chemical class 0.000 description 3
- OCKGFTQIICXDQW-ZEQRLZLVSA-N 5-[(1r)-1-hydroxy-2-[4-[(2r)-2-hydroxy-2-(4-methyl-1-oxo-3h-2-benzofuran-5-yl)ethyl]piperazin-1-yl]ethyl]-4-methyl-3h-2-benzofuran-1-one Chemical compound C1=C2C(=O)OCC2=C(C)C([C@@H](O)CN2CCN(CC2)C[C@H](O)C2=CC=C3C(=O)OCC3=C2C)=C1 OCKGFTQIICXDQW-ZEQRLZLVSA-N 0.000 description 2
- 150000004645 aluminates Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 2
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 2
- IBIKHMZPHNKTHM-RDTXWAMCSA-N merck compound 25 Chemical compound C1C[C@@H](C(O)=O)[C@H](O)CN1C(C1=C(F)C=CC=C11)=NN1C(=O)C1=C(Cl)C=CC=C1C1CC1 IBIKHMZPHNKTHM-RDTXWAMCSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 2
- HYXGAEYDKFCVMU-UHFFFAOYSA-N scandium oxide Chemical compound O=[Sc]O[Sc]=O HYXGAEYDKFCVMU-UHFFFAOYSA-N 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910016036 BaF 2 Inorganic materials 0.000 description 1
- 238000001159 Fisher's combined probability test Methods 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 108010033272 Nitrilase Proteins 0.000 description 1
- 150000001217 Terbium Chemical class 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 235000003270 potassium fluoride Nutrition 0.000 description 1
- 239000011698 potassium fluoride Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
- C09K11/7774—Aluminates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
- H01L33/502—Wavelength conversion materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7715—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
- C09K11/7721—Aluminates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
- C09K11/7767—Chalcogenides
- C09K11/7768—Chalcogenides with alkaline earth metals
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
- C09K11/7767—Chalcogenides
- C09K11/7769—Oxides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
- C09K11/77744—Aluminosilicates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/38—Devices for influencing the colour or wavelength of the light
- H01J61/42—Devices for influencing the colour or wavelength of the light by transforming the wavelength of the light by luminescence
- H01J61/44—Devices characterised by the luminescent material
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/48463—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
- H01L2224/48465—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/48475—Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
- H01L2224/48476—Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
- H01L2224/48477—Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding)
- H01L2224/48478—Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding) the connecting portion being a wedge bond, i.e. wedge on pre-ball
- H01L2224/4848—Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding) the connecting portion being a wedge bond, i.e. wedge on pre-ball outside the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/85909—Post-treatment of the connector or wire bonding area
- H01L2224/8592—Applying permanent coating, e.g. protective coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
Definitions
- the present embodiment relates to a phosphor and an LED lamp.
- a light emitting diode (LED: Light Emitting Diode, also referred to as an LED chip) is a light emitting element that acts as a light source when a voltage is applied.
- a light emitting diode emits light, for example, by recombination of electrons and holes near contact surfaces (pn junctions) of two semiconductors.
- a light emitting diode is small and has a high conversion efficiency from electric energy to light, and thus is widely used in home appliances, illuminated operation switches, LED displays, general lighting, and the like.
- Light emitting diodes are different from light bulbs that use a filament. Therefore, so-called “ball breakage” does not occur in the light emitting diode.
- the light emitting diode is excellent in initial drive characteristics and has excellent durability against vibration and repetitive ON / OFF operations. For this reason, the light emitting diode is also used as a backlight of a display device provided on a dashboard of a car or the like. Since the light emitting diode can emit light of high saturation and vivid color without being affected by sunlight, it can be used for a display device installed outside, a display device for traffic, a traffic light, and the like.
- a light emitting diode is a semiconductor diode that emits light and converts electrical energy into ultraviolet light or visible light.
- the light emitting diode is also used for an LED lamp in which a light emitting chip formed of a light emitting material such as GaP, GaAsP, GaAlAs, GaN, InGaAlP or the like is sealed with a transparent resin in order to use visible light.
- the light emitting material is also fixed to the upper surface of a printed circuit board or a metal lead, and is also used in, for example, a display type LED lamp sealed by a resin case having a number shape or a character shape.
- the color of the emitted light can also be adjusted by adding various phosphor powders to the surface of the light emitting chip or to the resin. Therefore, the LED lamp can reproduce the color of the light of the visible light region according to the usage from blue to red.
- the light emitting diode is a semiconductor element, it has a long life and high reliability, and when it is used as a light source, the frequency of replacement due to failure is also reduced. Therefore, portable communication devices, personal computer peripheral devices, OA devices It is also widely used as a component of various display devices such as home electric appliances, audio devices, various switches, and light source display boards for backlights.
- a white light emitting LED lamp for example, a light emitting device of a type combining blue light emitting diode and green, yellow light emitting phosphor, and in some cases red phosphor, (referred to as type 1), ultraviolet light or purple light emitting diode And blue, yellow and red phosphors are combined (referred to as type 2).
- type 1 blue light emitting diode and green, yellow light emitting phosphor, and in some cases red phosphor
- type 2 ultraviolet light or purple light emitting diode And blue, yellow and red phosphors are combined
- cerium-activated yttrium aluminate phosphor (YAG), cerium-activated terbium aluminate phosphor (TAG), alkaline earth Phosphor materials such as silicate phosphors (BOSS) are in practical use.
- YAG and BOSS are phosphors generally known before and used in combination with light emitting diodes, and have been studied, used, or applied in flying spot scanners, fluorescent lamps, etc. Application to products has been tried. These phosphors have already been put to practical use as phosphors for backlights of mobile phones, but improvements are being made daily aiming to further increase the demand for lighting devices and automobile headlamps.
- the conventional type 1 white LED lamp which is formed by combining a blue light emitting diode and a yellow light emitting phosphor such as BOSS, YAG, TAG or the like and the luminance characteristic is superior, it is necessary to improve the luminous efficiency.
- Patent No. 3749243 gazette Japanese Patent Application Publication No. 2006-332692 JP, 2006-299168, A JP, 2006-41096, A JP 2005-317985 JP, 2005-8844, A JP 2003-179259 A JP 2002-198573 A JP 2002-151747 A Japanese Patent Application Laid-Open No. 10-36835 Unexamined-Japanese-Patent No. 2006-321974 JP, 2006-265542, A Unexamined-Japanese-Patent No. 2006-213893 JP, 2006-167946, A JP, 2005-243699, A Japanese Patent Application Publication No. 2005-150691 JP 2004-115304 A JP 2006-324407 A JP, 2006-253336, A JP 2005-235847 A JP 2002-42525 A
- the phosphor of the embodiment has a composition represented by a chemical formula 1: 1.5Y 2 O 3 .2.5aAl 2 O 3 : Ce (wherein a is a number satisfying 1.02 ⁇ a ⁇ 1.1).
- the phosphor of the present embodiment has a chemical formula 1: 1.5 Y 2 O 3. 2.5 a Al 2 O 3 : Ce (Wherein a is a number satisfying 1.02 ⁇ a ⁇ 1.1) It has a composition represented by The phosphor of the present embodiment includes 1.5 moles of yttrium oxide (Y 2 O 3 ) and 2.5 ⁇ a (a is a number satisfying 1.02 ⁇ a ⁇ 1.1) of aluminum oxide (Al 2 O 3 ) is mixed, reacted, and formed by further activating Ce.
- part of Y may be substituted with at least one element of Lu, Gd, and Tb.
- at least one of Al is replaced by at least one of the first element of Ga, the second element of Mg and Si, and the third element of Sc and B. It may be done.
- the element replacing a part of Y or the element replacing a part of Al is an element having a role of shifting the emission wavelength of the phosphor.
- Lu, Ga, Sc and a pair of elements of B can shift the emission wavelength to the short wavelength side.
- a pair of elements of Gd, Tb, Mg and Si can shift the emission wavelength to the long wavelength side.
- the substitution ratio of Sc is preferably the same as that of B in atomic percent.
- the substitution ratio of Mg is preferably the same as the substitution ratio of Si in atomic percent.
- the above substitution can also be understood as replacing two Al atoms with a pair of atoms.
- the pair of elements is selected such that their average valence and average ionic radius are approximately equal to the atomic valence (+3) and the ionic radius (0.53 angstrom) of Al.
- the wavelength shift by substituting such a pair of elements is also achieved, for example, by substituting a part of Y with (Ca, Zr) or (Sr, Zr).
- the composition of the phosphor of this embodiment is Chemical formula 2: 1.5 ((Y, Lu) 1-x M1 x ) 2 O 3. 2.5 a (Al 1-yz Ga y (M2, M 3 ) z ) 2 O 3 : Ce (Wherein, M1 is at least one element of Gd and Tb, (M2, M3) is (Mg, Si) or (Sc, B), and x is a number satisfying 0 ⁇ x ⁇ 0.6, a is a number satisfying 1.02 ⁇ a ⁇ 1.1, y is a number satisfying 0 ⁇ y ⁇ 0.4, z is a number satisfying 0 ⁇ z ⁇ 0.1) It can be represented by When z is a number greater than 0, the ratio of atomic percent of the element M3 to atomic percent of the element M2 is 0.9 or more and 1.1 or less.
- Lu can substitute part or all of Y with an element replacing Y.
- M1 is at least one element of Gd or Tb, but substitution within a range not exceeding 60% of Y is preferable. If it exceeds 60%, the luminance drops significantly, which is not preferable.
- the element substituting Al is preferably substituted in a range not exceeding 40% of Al, and if it exceeds 40%, the decrease in luminance becomes remarkable.
- the substitution amount of a pair of elements such as (Mg, Si) or (Sc, B) is preferably in a range not exceeding 10%. The pair of elements can be shifted to a desired emission wavelength even with a small amount of substitution. When the substitution amount exceeds 10%, the luminance may decrease.
- FIG. 1 is a view showing the relationship between the value of a and the luminous efficiency in the phosphor of the present embodiment.
- the abscissa represents the value of a
- the ordinate represents the luminous efficiency of the phosphor.
- the value of a is a value calculated from analysis values of Y and Al of the obtained phosphor.
- a exceeds 1.1, it drops sharply. Therefore, by setting a to be in the range of 1.02 to 1.10, it is possible to obtain a luminous efficiency higher than that of the conventional YAG.
- a is more preferably in the range of 1.03 to 1.09, and still more preferably in the range of 1.04 to 1.08.
- the proportion of Ce is 2 to 20 atomic%, preferably 3 to 15 atomic%.
- the luminous efficiency of FIG. 1 is obtained by measuring the luminous efficiency using a phosphor luminous efficiency evaluation apparatus (C9920) manufactured by Hamamatsu Photonics.
- the luminous efficiency is measured by filling a phosphor in a dedicated cell and setting a monochrome light source. The light from the excitation light source and the light from the phosphor are excited on the same side (reflection) to the phosphor.
- the luminous efficiency is a value obtained by multiplying the ratio of absorption of the light source excitation light to the phosphor (absorptivity) and the ratio of absorbed excitation light to the light emission of the phosphor (internal quantum efficiency), also called external quantum efficiency Amount.
- Table 1 shows the results of comparison between the phosphor of the present embodiment (embodiments 1A to 3A) and a conventional phosphor (conventional examples 1A to 3A) exhibiting substantially the same emission wavelength as the phosphor.
- the phosphor of the present embodiment exhibits higher luminous efficiency than the conventional phosphor at the same emission wavelength. Even when Y or Al of the phosphors of Embodiments 1A to 3A is partially replaced with another element, the luminous efficiency is higher than that of the phosphors of Conventional Examples 1A to 3A. However, if the value of a is made close to 1, the luminous efficiency is reduced to the conventional value. From this, it can be seen that, even when a part of Y or Al is replaced with another element, the luminous efficiency can be improved by increasing the ratio of Al 2 O 3 of the phosphor.
- the phosphor is in the form of powder.
- the average particle diameter of the particles constituting the phosphor is, for example, 3 ⁇ m to 80 ⁇ m, preferably 5 ⁇ m to 40 ⁇ m, and more preferably 5 ⁇ m to 30 ⁇ m.
- the average particle diameter is a measured value by a laser diffraction type particle size distribution measuring device, and means a median value D50 of the volume cumulative distribution.
- the shape of the particles constituting the phosphor is preferably as close to spherical as possible.
- the light emission luminance of the light emitting device can be further improved by making the particle shape close to a spherical shape.
- a light emitting device including a semiconductor light emitting element and a phosphor light emitted from the semiconductor light emitting element is reflected on the surface of the phosphor, or light emitted from the phosphor is reflected on the surface of the other phosphor, thereby causing multiple reflection. Repeatedly, light is extracted outside. When the light reflection phenomenon occurs, the energy efficiency of the light decreases. In order to suppress the decrease in the energy efficiency of light, it is preferable to make the particle shape of the phosphor spherical and reduce the surface area of the particles.
- Whether the particle shape of the phosphor is spherical or not is determined using Wadell's sphericity ( ⁇ ) (hereinafter also referred to as “sphericity”) as an index.
- ⁇ Wadell's sphericity
- the sphericity of the particles constituting the phosphor is preferably, for example, 0.80 or more.
- the sphericity can be increased by producing a phosphor using a manufacturing method described later.
- Wadell's sphericity ( ⁇ ) is determined by the following method.
- the particle size distribution of the powdery phosphor is measured by the Coulter counter method.
- Coulter counter method is a method of defining particle size from voltage change according to particle volume.
- the number frequency at a certain particle diameter Di is taken as Ni.
- the particle size Di is the diameter of a spherical particle having the same volume as the actual particle whose particle size is defined by the Coulter Counter method.
- the specific surface area (S) of the powder phosphor is calculated using the number frequency Ni and the particle size Di.
- the specific surface area is the surface area of the powder divided by its weight and is defined as the surface area per unit weight.
- the weight of the particle of the particle diameter Di is (4 ⁇ / 3) ⁇ (Di / 2) 3 ⁇ Ni ⁇ ⁇ ( ⁇ is the density of the powder).
- the surface area of particles of particle size Di is 4 ⁇ ⁇ (Di / 2) 2 ⁇ Ni.
- the specific surface area of the actual particle is the value obtained by dividing the surface area of the particle by Wadell sphericity ( ⁇ ) ( ⁇ 4 ⁇ ⁇ (Di / 2) 2 ⁇ Ni ⁇ / ⁇ )
- the specific surface area (S) of the powder is the sum of the specific surface area of the particles for each particle size, and is represented by the following formula (A3).
- Wadell sphericity ( ⁇ ) is a value different for each particle size, but it can be interpreted as an average value as a deviation from a sphere as a whole powder.
- aeration method As a method of measuring the particle size of powder, aeration method (Brain method, Fisher method, etc.) is known.
- a metal tube whose both ends are open is filled with powder, air is allowed to pass through the powder layer, and the particle size is defined from the passing ratio of air.
- the particle diameter defined by the ventilation method is also called specific surface area diameter (d).
- the sphericity ( ⁇ ) of Wadell is represented by the following formula (A5), and may be calculated by comparing the specific surface area calculated from the particle size distribution with the specific surface area calculated from the particle size of the aeration method. it can.
- the particle diameter of the particle size distribution is usually expressed as a particle diameter range, but in the present embodiment, the particle diameter Di is set to an intermediate value of the particle diameter range, and the particle diameter range is made every 0.2 ⁇ m to improve accuracy.
- the particle size distribution is plotted on lognormal probability paper, it can be approximated by two straight lines. Therefore, number frequency data of every 0.2 ⁇ m can be easily obtained from the two normal probability distributions.
- ⁇ d ⁇ ⁇ (Di 2 ⁇ Ni) ⁇ / ⁇ (Di 3 ⁇ Ni) ⁇ (A5)
- the present inventors produced phosphors having various compositions, and a part of the main components of the conventional phosphor was replaced with another element, and It is a phosphor formed by comparing and examining the influence of the type and substitution amount on the light emission characteristics of the phosphor by a series of experiments.
- the luminous efficiency can be further improved by shifting the ratio of the rare earth oxide and aluminum oxide which are the constituent elements to a composition in which aluminum oxide is excessive.
- the phosphor of the present embodiment is manufactured, for example, by mixing the respective phosphor raw materials and baking the obtained phosphor raw material mixture in a low oxygen atmosphere. A specific manufacturing method example will be described below.
- a phosphor raw material containing an element constituting the composition of the phosphor of the present embodiment for example, rare earth oxides (Y 2 O 3 , Lu 2 O 3 , Gd 2 O 3 , Tb 4 O 7 ), aluminum oxide (Al) 2 O 3), magnesium oxide (MgO), silicon oxide (SiO 2), scandium oxide (Sc 2 O 3), boron oxide (B 2 O 3), gallium oxide (Ga 2 O 3), cerium oxide (CeO 2 ) Dry-mix etc. to make a phosphor raw material mixture.
- rare earth oxides Y 2 O 3 , Lu 2 O 3 , Gd 2 O 3 , Tb 4 O 7
- aluminum oxide Al
- magnesium oxide MgO
- silicon oxide SiO 2
- scandium oxide Sc 2 O 3
- B 2 O 3 gallium oxide
- Ga 2 O 3 gallium oxide
- CeO 2 cerium oxide
- the phosphor raw material mixture contains these fluxes, the sphericity of the obtained phosphor powder can be increased. When the blending amounts of these fluxes both exceed the upper limit value, the luminance of the phosphor tends to decrease due to abnormal growth of the phosphor particles. Moreover, when both are below a lower limit, sphericity can not fully be raised.
- the phosphor raw material mixture may contain, as another flux, a fluoride of an alkali metal or an alkaline earth metal such as potassium fluoride which is a reaction accelerator.
- the phosphor raw material mixture is filled into a refractory crucible.
- a refractory crucible an alumina crucible, a carbon crucible etc. are used, for example.
- the phosphor raw material mixture filled in the refractory crucible is fired.
- the firing apparatus a composition of the firing atmosphere in which the refractory crucible is disposed, and a device in which the firing temperature and the firing time are maintained at predetermined conditions are used.
- an electric furnace is used, for example.
- a reducing gas As a firing atmosphere, a reducing gas is used.
- the reducing gas for example, N 2 gas, Ar gas, a mixed gas of N 2 and H 2 or the like is used.
- reducing gas, N 2 and when a mixed gas of H 2, the molar ratio of N 2 and H 2 in the inert gas (N 2: H 2) is 10: 0-1: 9 , Preferably 9: 1 to 3: 7. It is preferable to flow these reducing gases so as to form an air flow in the chamber of the baking apparatus because they can be baked uniformly. It is also effective to arrange carbon (C) inside and outside the crucible in order to realize a reducing atmosphere. Carbon has high ability to deoxidize oxygen and can realize a suitable reducing atmosphere.
- the pressure of the reducing gas which is the firing atmosphere is usually 0.1 MPa (about 1 atm) to 1.0 MPa (about 10 atm), preferably 0.1 MPa to 0.5 MPa.
- the pressure of the firing atmosphere is less than 0.1 MPa, the composition of the phosphor powder obtained after firing is likely to be different from the desired phosphor, as compared with the phosphor material mixture charged in the crucible before firing.
- the emission intensity of the phosphor powder may be weakened.
- the pressure in the firing atmosphere exceeds 1.0 MPa, there is no particular change in the firing conditions even when the pressure is 1.0 MPa or less, which is not preferable from the viewpoint of energy saving.
- the firing temperature is, for example, 1300 ° C. to 1600 ° C., preferably 1400 ° C. to 1550 ° C.
- the firing temperature is 1300 ° C. to 1600 ° C.
- high-quality single crystal phosphor powder with few defects of crystal structure can be obtained by firing for a short time.
- the firing temperature is less than 1300 ° C., the reaction of the obtained phosphor powder may be insufficient and the emission intensity may be insufficient.
- the firing temperature exceeds 1600 ° C., the emission intensity of the phosphor powder obtained by the abnormal growth of the phosphor particles may be weakened.
- the baking time is, for example, 0.5 hour to 10 hours, preferably 1 hour to 8 hours, and more preferably 2 hours to 5 hours.
- the firing time is preferably in the range of 0.5 hours to 10 hours when the firing temperature is high, and is short if the firing temperature is low, and is long in the range of 0.5 hours to 10 hours. It is preferable to
- the white light emitting LED lamp of the present embodiment includes, for example, a blue light emitting diode having a light emission peak wavelength of 430 to 470 nm and the above-described phosphor.
- a blue light emitting diode having a light emission peak wavelength of 430 to 470 nm and a phosphor having a light emission efficiency higher than that of the prior art and having a variable light emission wavelength It is possible to obtain a white light emitting LED lamp that exhibits higher luminance than that.
- a red to orange warm-colored phosphor that emits light by converting the light of the blue light-emitting diode into light exhibiting an emission peak wavelength of 580 nm or more may be further used.
- the warm-colored phosphor is, for example, a compound represented by the chemical formula 3: (Sr 1 -xy , Ca x , Eu y ) AlSiN 3 (Wherein x is a number satisfying 0.01 ⁇ x ⁇ 0.35, y is a number satisfying 0.002 ⁇ y ⁇ 0.03)
- Table 2 shows a white light emitting LED lamp (embodiments 1B and 2B) including the phosphor of the present embodiment and a blue light emitting diode (wavelength 460 nm), and a conventional fluorescence showing an emission wavelength equivalent to the phosphor of the present embodiment. It is a table
- the white light emitting LED lamp comprising the phosphor of the present embodiment exhibits excellent light emission luminance while maintaining high color rendering as compared to the white light emitting LED lamp comprising the conventional phosphor.
- the phosphor of the present embodiment can obtain high emission efficiency in a wide range of emission wavelength than conventional phosphors.
- the LED lamp equipped with the phosphor of the present embodiment has higher luminance and color rendering than a conventional lighting device such as a fluorescent lamp. Therefore, it is possible to provide a high quality light source in the technical field such as general lighting where high brightness and high color rendering of white light are required. Moreover, since the energy saving performance can be improved more than the conventional fluorescent lamp, the demand growth of the LED lamp as a substitute for the fluorescent lamp is expected.
- FIG. 2 is a cross-sectional view showing a structural example of the LED lamp.
- the LED lamp 1 shown in FIG. 2 includes a substrate 2 on which the lamp component is mounted, a blue light emitting diode (light emitting element) 3 mounted on the substrate 2 and emitting light having an emission peak wavelength of 430 to 470 nm, and a light emitting diode 3
- the phosphor layer 4 includes the phosphor and the resin, and the resin frame 5 supports the light emitting portion including the light emitting diode 3 and the phosphor layer 4. Further, the electrode portion 6 disposed on the upper portion of the resin frame 5 and the light emitting diode 3 are electrically connected by the bonding wire 7.
- the electrical energy applied to the light emitting diode 3 from the electrode portion 6 via the bonding wire 7 is converted to blue light by the light emitting diode 3 and a part of the light is located above the light emitting diode 3
- white light is emitted to the outside of the LED lamp as a total of the light emitted from the light emitting diode 3 and the light emitted from the phosphor layer 4 after being converted to longer wavelength light. ing.
- FIG. 3 is a view showing an example of an emission spectrum of light emitted from the LED lamp of the present embodiment.
- the emission spectrum shown in FIG. 3 is an example of the emission spectrum of the light emitted from the LED lamp having the configuration shown in FIG. 2 using the phosphor of the present embodiment.
- the emission spectrum shown in FIG. 3 is an emission spectrum of white light obtained by converting light with an emission peak wavelength of 460 nm emitted from a blue light emitting diode by a phosphor.
- FIG. 4 is a view showing an example of an emission spectrum of light emitted from the LED lamp of the present embodiment.
- the emission spectrum shown in FIG. 4 is a view showing an example of the emission spectrum of the light emitted from the LED lamp having the configuration shown in FIG. 2 using the phosphor of the present embodiment.
- the emission spectrum shown in FIG. 4 is a view showing an example of the emission spectrum of the light emitted from the LED lamp having the configuration shown in FIG. 2 using the phosphor of the present embodiment.
- the emission spectrum of FIG. 4 is an emission spectrum of white light with a color temperature of 5000 K obtained by converting light with an emission peak wavelength of 460 nm emitted from a blue light emitting diode by a phosphor.
- the phosphors having various compositions were produced, and the phosphor particles were embedded in a resin as shown in FIG. 2 to produce LED lamps of each example in which a phosphor layer was formed, and their light emission characteristics were evaluated.
- the LED lamp of each example has the cross-sectional shape shown in FIG. 2 and in a state where a light emitting chip of 300 ⁇ m square is disposed as the light emitting diode 3 at the concave bottom of the resin frame 5, the light emitting chip The light was emitted to evaluate its characteristics.
- the emission peak wavelength of the light emitted from the light emitting diode 3 was about 460 nm.
- the emission characteristics as a white LED lamp were measured using a Loves Fair SLIMS total luminous flux system.
- each LED lamp is as follows.
- the phosphor of the above embodiment and the silicone resin were mixed at different weight ratios to prepare a plurality of slurries.
- Each slurry was dropped on the top side of different light emitting diodes. They were heat-treated at 100 to 150 ° C. to cure the silicone resin to produce the LED lamps of each example.
- the brightness (lm) of these white LED lamps was then measured.
- Example 1A Comparative Example 1A
- Y 2 O 3 yttrium oxide
- Al 2 O 3 aluminum oxide
- MgO magnesium oxide
- SiO 2 silicon oxide
- CeO 2 cerium oxide
- Each predetermined amount was weighed so as to be as described above, mixed in a ball mill for 1 hour, and fired in a reducing atmosphere.
- the synthesized phosphor is ground in a mortar and passed through a mesh to obtain cerium-activated yttrium magnesium silicon aluminate (chemical formula: 1.5 Y 2 O 3. 2.6 (Al 0.996 (Mg, Si) 0.002 ) 2 O 3 : Ce Got).
- the phosphors of Examples 2A to 10A were also produced in the same manner as in Example 1A except that the ratio of each component was appropriately changed so as to obtain the phosphor composition shown in Table 3.
- the phosphor (chemical formula: 1.5 (Y 0.58 Gd 0.42 ) 2 O 3 .2.5 Al 2 O 3 : Ce) was compared as the phosphor of Comparative Example 1A showing an emission wavelength equivalent to that of Example 1A.
- the composition of this phosphor can also be expressed as (Y 0.58 Gd 0.42 ) 3 Al 5 O 12 : Ce. These were mixed with the silicone resin at various concentrations (mass%). After applying these slurries on the light emitting diode, the white light emitting LED lamp of Example 1A and Comparative Example 1A was produced by curing the resin by heat treatment at 150 ° C.
- Example 2A A cerium-activated yttrium aluminate (chemical formula: 1.5 Y 2 O 3. 2.625 Al 2 O 3 : Ce) as a phosphor was mixed with a silicone resin at various concentrations (% by mass). After applying these slurries on the light emitting diode, the white light emitting LED lamp of Example 2A was manufactured by heat treatment at 150 ° C. to cure the resin.
- yttrium aluminate chemical formula: 1.5 Y 2 O 3. 2.625 Al 2 O 3 : Ce
- Example 3A A cerium-activated yttrium lutetium aluminate (chemical formula: 1.5 (Y 0.3 Lu 0.7 ) 2 O 3 .. Al 2 O 3 : Ce) as a phosphor was mixed with a silicone resin at various concentrations (% by mass). After applying these slurries on the light emitting diode, the white light emitting LED lamp of Example 3A was manufactured by heat treatment at 150 ° C. to cure the resin.
- Example 4A Yellow-orange emitting phosphor as cerium-activated yttrium magnesium silicon aluminate of (Formula: 1.5Y 2 O 3 ⁇ 2.58 ( Al 0.96 (Mg, Si) 0.02) 2 O 3: Ce) a silicone resin with various concentrations ( Mixed by mass). After applying these slurries on the light emitting diode, the white light emitting LED lamp of Example 4A was produced by heat treatment at 150 ° C. to cure the resin.
- Example 5A Various cerium-activated yttrium lutetium magnesium silicon silicon aluminate (chemical formula: 1.5 (Y 0.1 Lu 0.9 ) 2 O 3 .2.575 (Al 0.994 (Mg, Si) 0.003 ) 2 O 3 : Ce) as a phosphor and a silicone resin Mixed at a concentration (mass%) of After applying these slurries on the light emitting diode, the white light emitting LED lamp of Example 5A was produced by heat treatment at 150 ° C. to cure the resin.
- Example 6A A cerium-activated yttrium gallium aluminate (chemical formula: 1.5Y 2 O 3 .2.62 (Al 0.9 Ga 0.1 ) 2 O 3 : Ce) as a phosphor was mixed with a silicone resin at various concentrations (% by mass). After applying these slurries on the light emitting diode, the white light emitting LED lamp of Example 6A was manufactured by heat treatment at 150 ° C. to cure the resin.
- Example 7A A cerium-activated yttrium gadolinium aluminate (chemical formula: 1.5 (Y 0.9 Gd 0.1 ) 2 O 3 .2.6Al 2 O 3 : Ce) as a phosphor was mixed with a silicone resin at various concentrations (% by mass). After applying these slurries on the light emitting diode, the white light emitting LED lamp of Example 7A was produced by heat treatment at 150 ° C. to cure the resin.
- Example 8A A cerium-activated yttrium aluminate (chemical formula: 1.5 Y 2 O 3. 2. 65 Al 2 O 3 : Ce) as a phosphor was mixed with a silicone resin at various concentrations (% by mass). After applying these slurries on a light emitting diode, a white light emitting LED lamp according to Example 8A was produced by heat treatment at 150 ° C. to cure the resin.
- Example 9A Cerium-activated yttrium boron scandium aluminate (chemical formula: 1.5 Y 2 O 3. 2.6 (Al 0.9 (B, Sc) 0.05 ) 2 O 3 : Ce) as phosphor and various concentrations (mass%) with silicone resin Mixed. These slurries were applied onto the light emitting diode, and then heat treated at 150 ° C. to cure the resin, thereby producing a white light emitting LED lamp according to Example 9A.
- Example 10A A cerium-activated yttrium aluminate (chemical formula: 1.5 Y 2 O 3. 2.56 Al 2 O 3 : Ce) as a phosphor was mixed with a silicone resin at various concentrations (% by mass). These slurries were applied onto the light emitting diode, and then heat treated at 150 ° C. to cure the resin, thereby producing a white light emitting LED lamp according to Example 10A.
- yttrium aluminate chemical formula: 1.5 Y 2 O 3. 2.56 Al 2 O 3 : Ce
- Comparative Examples 2A to 10A are LED lamps manufactured by the same manufacturing method using conventional phosphors that exhibit the same emission wavelength as the phosphors of Examples 2A to 10A.
- LED lamps using a phosphor based on a compound containing aluminum oxide more than the conventional rare earth oxides used in combination have higher luminous efficiency than the conventional one. Furthermore, a white LED lamp using the above-mentioned phosphor has higher emission luminance than before.
- the phosphors according to the respective embodiments in combination with a blue light emitting diode which emits light having a predetermined light emission peak wavelength, it is possible to realize higher luminance than in the conventional case. In addition, it is possible to provide a high quality light source in application fields such as general lighting where high brightness and high color rendering of white light are required. Moreover, since it does not contain mercury, the growth of demand can be expected as an environmentally friendly product.
- Example 1B Rare earth oxides (Y 2 O 3 , Lu 2 O 3 , Gd 2 O 3 , Tb 4 O 7 ), aluminum oxide (Al 2 O 3 ), magnesium oxide (MgO), silicon oxide (SiO 2 ), scandium oxide
- the phosphor composition shown in Example 1 B in Table 4 can be obtained using raw materials such as (Sc 2 O 3 ), boron oxide (B 2 O 3 ), gallium oxide (Ga 2 O 3 ), cerium oxide (CeO 2 ), etc. As described above, each predetermined amount was weighed, mixed in a ball mill for 1 hour, and fired in a reducing atmosphere.
- the synthesized phosphor is ground in a mortar and passed through a mesh to obtain cerium-activated yttrium lutetium magnesium silicon aluminate (chemical formula: 1.5 (Y 0.1 Lu 0.9 ) 2 O 3. 2.575 (Al 0.994 (Mg, Si) 0.003 ) ) 2 O 3 : Ce) was obtained. Furthermore, europium activated strontium calcium nitride aluminosilicate (chemical formula: Sr 0.90 Ca 0.08 Eu 0.02 AlSiN 3 ) was synthesized as a warm-colored phosphor.
- Example 1B white light emitting LED lamp according to Example 1B.
- a white light emitting LED lamp according to Comparative Example 1B was produced in the same manner using a phosphor (chemical formula: (SrCa) AlSiN 3 : Eu) exhibiting a peak wavelength of 620 nm. The weight ratio of the phosphors was adjusted so that the chromaticity of the white LED lamp had a color temperature of 5000 K and a deviation of ⁇ 0.001.
- each component ratio was suitably changed so that it might become a phosphor composition shown to Tables 4 and 5 about each fluorescent substance of Example 2 B-10 B, and it created by the method similar to Example 1 B. Further, warm-colored phosphors used simultaneously are also shown in Tables 4 and 5. Also in Comparative Examples 2B to 10B, phosphors showing emission peak wavelengths equivalent to those of Examples 2B to 10B were selected and shown in Tables 4 and 5. The weight ratio of the phosphors was adjusted so that the chromaticity of the white LED lamp had a color temperature of 5000 K and a deviation of ⁇ 0.001.
- Example 2B Cerium-activated yttrium lutetium gallium aluminate (chemical formula: 1.5 (Y 0.1 Lu 0.9 ) 2 O 3 .2.575 (Al 0.9 Ga 0.1 ) 2 O 3 : Ce) as a phosphor and europium-activated strontium calcium as a warm phosphor Nitrile door luminometer silicate (chemical formula: Sr 0.72 Ca 0.27 Eu 0.01 AlSiN 3) was mixed with a silicone resin. The slurry was applied onto a light emitting diode, and then heat treated at 150 ° C. to cure the resin, whereby a white light emitting LED lamp according to Example 2B was produced. The emission peak wavelength of the used phosphor was (530 nm, 630 nm).
- Example 3B Cerium activated yttrium borate scandium aluminate as a phosphor (chemical formula: 1.5Y 2 O 3 ⁇ 2.575 ( Al 0.9 (B, Sc) 0.05) 2 O 3: Ce) and europium-activated strontium calcium nitrilase as warm phosphor Aluminosilicate (chemical formula: Sr 0.90 Ca 0.08 Eu 0.02 AlSiN 3 was mixed with a silicone resin. After the slurry was applied on a light emitting diode, it was heat treated at 150 ° C. to cure the resin and white according to Example 3B. A light emitting LED lamp was produced The emission peak wavelength of the used phosphor was (540 nm, 620 nm).
- Example 4B Cerium-activated yttrium gallium aluminate (chemical formula: 1.5Y 2 O 3 .2.6 (Al 0.9 Ga 0.1 ) 2 O 3 : Ce) as a phosphor and manganese-activated potassium silicofluoride (chemical formula: K 2 ) as a warm phosphor (Si 0.97 Mn 0.03 ) F 6 ) was mixed with the silicone resin. The slurry was applied onto a light emitting diode, and then heat treated at 150 ° C. to cure the resin, whereby a white light emitting LED lamp according to Example 4B was produced. The emission peak wavelength of the phosphor used was (546 nm, 629 nm).
- Example 5B Cerium-activated yttrium lutetium gallium aluminate (chemical formula: 1.5 (Y 0.1 Lu 0.9 ) 2 O 3 .2.575 (Al 0.9 Ga 0.1 ) 2 O 3 : Ce) as a phosphor and cerium-activated yttrium gallium aluminate (chemical formula : 1.5Y 2 O 3 .2.6 (Al 0.9 Ga 0.1 ) 2 O 3 : Ce) Further, europium activated strontium calcium nitride aluminosilicate (chemical formula: Sr 0.72 Ca 0.27 Eu 0.01 AlSiN 3 ) silicone resin as a warm-colored phosphor Mixed with The slurry was applied onto a light emitting diode, and then heat treated at 150 ° C. to cure the resin, whereby a white light emitting LED lamp according to Example 5B was produced. The emission peak wavelength of the used phosphor was (530 nm, 546 nm, 630 nm).
- Example 6B Cerium-activated yttrium lutetium magnesium silicon aluminate (chemical formula: 1.5 (Y 0.1 Lu 0.9 ) 2 O 3 .2.575 (Al 0.994 (Mg, Si) 0.003 ) 2 O 3 : Ce) and cerium-activated yttrium magnesium as phosphors silicon aluminate (formula: 1.5Y 2 O 3 ⁇ 2.6 ( Al 0.996 (Mg, Si) 0.002) 2 O 3: Ce) further warm phosphor as europium-activated strontium calcium nitridosilicate door luminometer silicate (chemical formula: Sr 0.90 Ca 0.08 Eu 0.02 AlSiN 3 ) was mixed with the silicone resin.
- the slurry was applied onto a light emitting diode, and then heat treated at 150 ° C. to cure the resin, whereby a white light emitting LED lamp according to Example 6B was produced.
- the emission peak wavelength of the used phosphor was (535 nm, 557 nm, 620 nm).
- Example 7B Cerium-activated yttrium lutetium magnesium silicon aluminate (chemical formula: 1.5 (Y 0.1 Lu 0.9 ) 2 O 3 .2.575 (Al 0.994 (Mg, Si) 0.003 ) 2 O 3 : Ce) and cerium-activated yttrium aluminium as phosphors Acid salt (chemical formula: 1.5Y 2 O 3 .2.625Al 2 O 3 : Ce) and europium activated strontium calcium nitride aluminosilicate (chemical formula: Sr 0.72 Ca 0.27 Eu 0.01 AlSiN 3 ) as a warm-colored phosphor together with a silicone resin Mixed.
- the slurry was applied onto a light emitting diode and then heat treated at 150 ° C. to cure the resin, whereby a white light emitting LED lamp according to Example 7B was produced. It was an emission peak wavelength (535 nm, 552 nm, 630 nm) of the phosphor used.
- Example 8B Cerium-activated yttrium lutetium magnesium silicon aluminate (chemical formula: 1.5 (Y 0.1 Lu 0.9 ) 2 O 3 .2.575 (Al 0.994 (Mg, Si) 0.003 ) 2 O 3 : Ce) and cerium-activated yttrium aluminium as phosphors Acid salt (chemical formula: 1.5Y 2 O 3. 2.65Al 2 O 3 : Ce) Furthermore, europium activated strontium calcium nitride aluminosilicate (chemical formula: Sr 0.90 Ca 0.08 Eu 0.02 AlSiN 3 ) as a warm-colored phosphor with a silicone resin Mixed.
- the slurry was applied onto a light emitting diode, and then heat treated at 150 ° C. to cure the resin, whereby a white light emitting LED lamp according to Example 8B was produced.
- the emission peak wavelength of the phosphor used was (535 nm, 560 nm, 620 nm).
- Example 9B Cerium-activated yttrium lutetium magnesium silicon aluminate (chemical formula: 1.5 (Y 0.1 Lu 0.9 ) 2 O 3 .2.575 (Al 0.994 (Mg, Si) 0.003 ) 2 O 3 : Ce) and cerium-activated yttrium magnesium as phosphors silicon aluminate (formula: 1.5Y 2 O 3 ⁇ 2.6 ( Al 0.996 (Mg, Si) 0.002) 2 O 3: Ce) further manganese activated potassium hexafluorosilicate as warm phosphor (chemical formula: K 2 (Si 0.97 Mn 0.03 ) F 6 ) was mixed with the silicone resin.
- the slurry was applied onto a light emitting diode, and then heat treated at 150 ° C. to cure the resin, whereby a white light emitting LED lamp according to Example 9B was produced.
- the emission peak wavelength of the phosphor used was (535 nm, 557 nm, 629 nm).
- Example 10B Cerium-activated yttrium lutetium magnesium silicon aluminate (chemical formula: 1.5 (Y 0.1 Lu 0.9 ) 2 O 3 .2.575 (Al 0.994 (Mg, Si) 0.003 ) 2 O 3 : Ce) and cerium-activated yttrium aluminium as phosphors Acid salt (chemical formula: 1.5Y 2 O 3. 2.65Al 2 O 3 : Ce) Furthermore, manganese activated potassium silicofluoride (chemical formula: K 2 (Si 0.97 Mn 0.03 ) F 6 ) is mixed with a silicone resin as a warm phosphor did. The slurry was applied onto a light emitting diode and then heat treated at 150 ° C. to cure the resin, whereby a white light emitting LED lamp according to Example 10B was produced. It was an emission peak wavelength (535 nm, 560 nm, 629 nm) of the phosphor used.
- the luminance and color rendering properties (Ra) at a color temperature of 5000 K are shown in Tables 4 and 5 for the white light emitting LED lamps according to the examples and comparative examples manufactured as described above.
- a white light emitting LED lamp using a phosphor containing aluminum oxide in a higher proportion than the conventional rare earth oxide has a color rendering of 80 or more, which is practically required. Light emission luminance higher than before can be realized while maintaining the brightness.
- the white light emitting LED lamp according to each embodiment it is possible to realize higher luminance and high color rendering than in the prior art.
- it does not contain mercury since it does not contain mercury, the growth of demand can be expected as an environmentally friendly product.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Luminescent Compositions (AREA)
- Led Device Packages (AREA)
Abstract
Description
本実施形態の蛍光体は、化学式1:1.5Y2O3・2.5aAl2O3:Ce
(式中aは1.02<a<1.1を満たす数である)
で表される組成を有する。本実施形態の蛍光体は、1.5モルの酸化イットリウム(Y2O3)と、2.5×a(aは1.02<a<1.1を満たす数である)モルの酸化アルミニウム(Al2O3)とを混合、反応させ、さらにCeを付活させることにより形成される。
化学式2:1.5((Y,Lu)1-xM1x)2O3・2.5a(Al1-y-zGay(M2,M3)z)2O3:Ce
(式中、M1はGdおよびTbの少なくとも1つの元素であり、(M2,M3)は(Mg,Si)または(Sc,B)であり、xは0≦x<0.6を満たす数、aは1.02<a<1.1を満たす数、yは0≦y<0.4を満たす数、zは0≦z<0.1を満たす数である)
で表わすことができる。zが0よりも大きい数のとき、元素M2の原子%に対する元素M3の原子%の比は、0.9以上1.1以下である。
Ψ=(粒子と同じ体積を有する球の表面積)/(実際の粒子の表面積) (A1)
粉体の重量=Σ{(4π/3)×(Di/2)3×Ni×ρ} (A2)
S=[Σ{4π×(Di/2)2×Ni}/Ψ]/[Σ{(4π/3)×(Di/2)3×Ni×ρ}]
=(6/ρ/Ψ)×{Σ(Di2×Ni)}/{Σ(Di3×Ni)} (A3)
S=6/ρ/d (A4)
Ψ=d×{Σ(Di2×Ni)}/{Σ(Di3×Ni)} (A5)
本実施形態の蛍光体は、例えば各蛍光体原料を混合し、得られた蛍光体原料混合物を低酸素雰囲気中で焼成することにより製造される。具体的な製造方法例について以下に説明する。
本実施形態の白色発光LEDランプは、例えば発光ピーク波長が430~470nmである青色発光ダイオードと上記記載の蛍光体とを具備する。本実施形態の白色発光LEDランプによれば、発光ピーク波長が430~470nmである青色発光ダイオードと、従来よりも高い発光効率を示し、発光波長が可変な蛍光体とを組合わせることにより、従来よりも高い輝度を示す白色発光LEDランプを得ることができる。
化学式3:(Sr1-x-y,Cax,Euy)AlSiN3
(式中xは0.01<x<0.35を満たす数、yは0.002<y<0.03を満たす数である)
で表される組成を有する蛍光体、および
化学式4:K2(Si1-zMnz)F6
(式中zは0.02<z<0.5を満たす数である)
で表される組成を有する蛍光体の少なくとも一つの蛍光体を含む。
酸化イットリウム(Y2O3)、酸化アルミニウム(Al2O3)、酸化マグネシウム(MgO)、酸化けい素(SiO2)、酸化セリウム(CeO2)を表3の実施例1Aに示す蛍光体組成となるように各所定量を秤量し、ボールミルで1時間混合した後、還元雰囲気下で焼成した。合成した蛍光体を乳鉢で粉砕し、メッシュを通すことにより、セリウム付活イットリウムマグネシウムシリコンアルミン酸塩(化学式:1.5Y2O3・2.6(Al0.996(Mg,Si)0.002)2O3:Ce)を得た。なお、実施例2A~10Aの各蛍光体についても、表3に示す蛍光体組成となるよう各成分比率を適宜変えたこと以外は、実施例1Aと同様の方法で作製した。実施例1Aと同等の発光波長を示す比較例1Aの蛍光体として蛍光体(化学式:1.5(Y0.58Gd0.42)2O3・2.5Al2O3:Ce)を比較した。この蛍光体の組成を(Y0.58Gd0.42)3Al5O12:Ceと表記することもできる。これらをシリコーン樹脂と種々の濃度(質量%)で混合した。これらのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例1A、比較例1Aの白色発光LEDランプを作製した。
蛍光体としてのセリウム付活イットリウムアルミン酸塩(化学式:1.5Y2O3・2.625Al2O3:Ce)をシリコーン樹脂と種々の濃度(質量%)で混合した。これらのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化することにより実施例2Aの白色発光LEDランプを作製した。
蛍光体としてのセリウム付活イットリウムルテチウムアルミン酸塩(化学式:1.5(Y0.3Lu0.7)2O3・.Al2O3:Ce)をシリコーン樹脂と種々の濃度(質量%)で混合した。これらのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化することにより実施例3Aの白色発光LEDランプを作製した。
黄橙色発光蛍光体としてのセリウム付活イットリウムマグネシウムシリコンアルミン酸塩(化学式:1.5Y2O3・2.58(Al0.96(Mg,Si)0.02)2O3:Ce)をシリコーン樹脂と種々の濃度(質量%)で混合した。これらのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化することにより実施例4Aの白色発光LEDランプを作製した。
蛍光体としてのセリウム付活イットリウムルテチウムマグネシウムシリコンアルミン酸
塩(化学式:1.5(Y0.1Lu0.9)2O3・2.575(Al0.994(Mg,Si)0.003)2O3:Ce)をシリコーン樹脂と種々の濃度(質量%)で混合した。これらのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例5Aの白色発光LEDランプを作製した。
蛍光体としてのセリウム付活イットリウムガリウムアルミン酸塩(化学式:1.5Y2O3・2.62(Al0.9Ga0.1)2O3:Ce)をシリコーン樹脂と種々の濃度(質量%)で混合した。これらのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例6Aの白色発光LEDランプを作製した。
蛍光体としてのセリウム付活イットリウムガドリニウムアルミン酸塩(化学式:1.5(Y0.9Gd0.1)2O3・2.6Al2O3:Ce)をシリコーン樹脂と種々の濃度(質量%)で混合した。これらのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例7Aの白色発光LEDランプを作製した。
蛍光体としてのセリウム付活イットリウムアルミン酸塩(化学式:1.5Y2O3・2.65Al2O3:Ce)をシリコーン樹脂と種々の濃度(質量%)で混合した。これらのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例8Aに係る白色発光LEDランプを作製した。
蛍光体としてのセリウム付活イットリウムホウ素スカンジウムアルミン酸塩(化学式:1.5Y2O3・2.6(Al0.9(B,Sc)0.05)2O3:Ce)をシリコーン樹脂と種々の濃度(質量%)で混合した。これらのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例9Aに係る白色発光LEDランプを作製した。
蛍光体としてのセリウム付活イットリウムアルミン酸塩(化学式:1.5Y2O3・2.56Al2O3:Ce)をシリコーン樹脂と種々の濃度(質量%)で混合した。これらのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例10Aに係る白色発光LEDランプを作製した。
比較例2A~10Aは、表3に示すように、実施例2A~10Aの蛍光体と同等の発光波長を示す従来の蛍光体を用い、それぞれ同様の製造方法により製造されたLEDランプである。
希土類酸化物(Y2O3、Lu2O3、Gd2O3、Tb4O7)、酸化アルミニウム(Al2O3)、酸化マグネシウム(MgO)、酸化けい素(SiO2)、酸化スカンジウム(Sc2O3)、酸化ホウ素(B2O3)、酸化ガリウム(Ga2O3)、酸化セリウム(CeO2)等の原料を用い、表4の実施例1Bに示す蛍光体組成となるように各所定量を秤量し、ボールミルで1時間混合した後、還元雰囲気下で焼成した。合成した蛍光体を乳鉢で粉砕し、メッシュを通すことにより、セリウム付活イットリウムルテチウムマグネシウムシリコンアルミン酸塩(化学式:1.5(Y0.1Lu0.9)2O3・2.575(Al0.994(Mg,Si)0.003)2O3:Ce)を得た。さらに暖色系蛍光体としてユーロピウム付活ストロンチウムカルシウムニトリドアルミノシリケート(化学式:Sr0.90Ca0.08Eu0.02AlSiN3)を合成した。
蛍光体としてセリウム付活イットリウムルテチウムガリウムアルミン酸塩(化学式:1.5(Y0.1Lu0.9)2O3・2.575(Al0.9Ga0.1)2O3:Ce)および暖色系蛍光体としてユーロピウム付活ストロンチウムカルシウムニトリドアルミノシリケート(化学式:Sr0.72Ca0.27Eu0.01AlSiN3)をシリコーン樹脂と混合した。そのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例2Bに係る白色発光LEDランプを作製した。使用した蛍光体の発光ピーク波長は(530nm,630nm)であった。
蛍光体としてセリウム付活イットリウムホウ素スカンジウムアルミン酸塩(化学式:1.5Y2O3・2.575(Al0.9(B,Sc)0.05)2O3:Ce)および暖色系蛍光体としてユーロピウム付活ストロンチウムカルシウムニトリドアルミノシリケート(化学式:Sr0.90Ca0.08Eu0.02AlSiN3をシリコーン樹脂と混合した。そのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例3Bに係る白色発光LEDランプを作製した。使用した蛍光体の発光ピーク波長は(540nm,620nm)であった。
蛍光体としてセリウム付活イットリウムガリウムアルミン酸塩(化学式:1.5Y2O3・2.6(Al0.9Ga0.1)2O3:Ce)および暖色系蛍光体としてマンガン付活ケイフッ化カリウム(化学式:K2(Si0.97Mn0.03)F6)をシリコーン樹脂と混合した。そのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例4Bに係る白色発光LEDランプを作製した。使用した蛍光体の発光ピーク波長は(546nm,629nm)であった。
蛍光体としてセリウム付活イットリウムルテチウムガリウムアルミン酸塩(化学式:1.5(Y0.1Lu0.9)2O3・2.575(Al0.9Ga0.1)2O3:Ce)およびセリウム付活イットリウムガリウムアルミン酸塩(化学式:1.5Y2O3・2.6(Al0.9Ga0.1)2O3:Ce)さらに暖色系蛍光体としてユーロピウム付活ストロンチウムカルシウムニトリドアルミノシリケート(化学式:Sr0.72Ca0.27Eu0.01AlSiN3)をシリコーン樹脂と混合した。そのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例5Bに係る白色発光LEDランプを作製した。使用した蛍光体の発光ピーク波長は(530nm,546nm,630nm)であった。
蛍光体としてセリウム付活イットリウムルテチウムマグネシウムシリコンアルミン酸塩(化学式:1.5(Y0.1Lu0.9)2O3・2.575(Al0.994(Mg,Si)0.003)2O3:Ce)およびセリウム付活イットリウムマグネシウムシリコンアルミン酸塩(化学式:1.5Y2O3・2.6(Al0.996(Mg,Si)0.002)2O3:Ce)さらに暖色系蛍光体としてユーロピウム付活ストロンチウムカルシウムニトリドアルミノシリケート(化学式:Sr0.90Ca0.08Eu0.02AlSiN3)をシリコーン樹脂と混合した。そのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例6Bに係る白色発光LEDランプを作製した。使用した蛍光体の発光ピーク波長は(535nm,557nm,620nm)であった。
蛍光体としてセリウム付活イットリウムルテチウムマグネシウムシリコンアルミン酸塩(化学式:1.5(Y0.1Lu0.9)2O3・2.575(Al0.994(Mg,Si)0.003)2O3:Ce)およびセリウム付活イットリウムアルミン酸塩(化学式:1.5Y2O3・2.625Al2O3:Ce)さらに暖色系蛍光体としてユーロピウム付活ストロンチウムカルシウムニトリドアルミノシリケート(化学式:Sr0.72Ca0.27Eu0.01AlSiN3)をシリコーン樹脂と混合した。そのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例7Bに係る白色発光LEDランプを作製した。使用した蛍光体の発光ピーク波長(535nm,552nm,630nm)であった。
蛍光体としてセリウム付活イットリウムルテチウムマグネシウムシリコンアルミン酸塩(化学式:1.5(Y0.1Lu0.9)2O3・2.575(Al0.994(Mg,Si)0.003)2O3:Ce)およびセリウム付活イットリウムアルミン酸塩(化学式:1.5Y2O3・2.65Al2O3:Ce)さらに暖色系蛍光体としてユーロピウム付活ストロンチウムカルシウムニトリドアルミノシリケート(化学式:Sr0.90Ca0.08Eu0.02AlSiN3)をシリコーン樹脂と混合した。そのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例8Bに係る白色発光LEDランプを作製した。使用した蛍光体の発光ピーク波長は(535nm,560nm,620nm)であった。
蛍光体としてセリウム付活イットリウムルテチウムマグネシウムシリコンアルミン酸塩(化学式:1.5(Y0.1Lu0.9)2O3・2.575(Al0.994(Mg,Si)0.003)2O3:Ce)およびセリウム付活イットリウムマグネシウムシリコンアルミン酸塩(化学式:1.5Y2O3・2.6(Al0.996(Mg,Si)0.002)2O3:Ce)さらに暖色系蛍光体としてマンガン付活ケイフッ化カリウム(化学式:K2(Si0.97Mn0.03)F6)をシリコーン樹脂と混合した。そのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例9Bに係る白色発光LEDランプを作製した。使用した蛍光体の発光ピーク波長は(535nm,557nm,629nm)であった。
蛍光体としてセリウム付活イットリウムルテチウムマグネシウムシリコンアルミン酸塩(化学式:1.5(Y0.1Lu0.9)2O3・2.575(Al0.994(Mg,Si)0.003)2O3:Ce)およびセリウム付活イットリウムアルミン酸塩(化学式:1.5Y2O3・2.65Al2O3:Ce)さらに暖色系蛍光体としてマンガン付活ケイフッ化カリウム(化学式:K2(Si0.97Mn0.03)F6)をシリコーン樹脂と混合した。そのスラリーを発光ダイオード上に塗布した後に、150℃で熱処理して樹脂を硬化させることにより実施例10Bに係る白色発光LEDランプを作製した。使用した蛍光体の発光ピーク波長(535nm,560nm,629nm)であった。
比較例2B~10Bは、表4、5に示すように、実施例2B~10Bの蛍光体と同等の発光ピーク波長を示す従来の蛍光体を用い、それぞれ同様の製造方法により製造されたLEDランプである。なお、比較例に用いた暖色系蛍光体はそれぞれの波長を示す市販品を用いた。
Claims (12)
- 化学式1:1.5Y2O3・2.5aAl2O3:Ce
(式中aは1.02<a<1.1を満たす数である)
で表わされる組成を有する、蛍光体。 - 前記組成において、Yの少なくとも一部がLu、Gd、およびTbの少なくとも1つの元素で置換されている、もしくはAlの一部が、Gaである第1の元素、MgおよびSiである第2の元素、ならびにScおよびBである第3の元素の少なくとも一つで置換されている、請求項1に記載の蛍光体。
- 前記組成において、Yの少なくとも一部がLu、Gd、およびTbの少なくとも1つの元素で置換され且つAlの一部が、Gaである第1の元素、MgおよびSiである第2の元素、ならびにScおよびBである第3の元素の少なくとも一つで置換されている、請求項1に記載の蛍光体。
- 前記組成は、化学式2:1.5((Y,Lu)1-xM1x)2O3・2.5a(Al1-y-zGay(M2,M3)z)2O3:Ce
(式中、M1はGdおよびTbの少なくとも1つの元素であり、(M2,M3)は(Mg,Si)または(Sc,B)であり、xは0≦x<0.6を満たす数、aは1.02<a<1.1を満たす数、yは0≦y<0.4を満たす数、zは0≦z<0.1を満たす数である)
で表わされ、
zが0よりも大きい数のとき、元素M2の原子%に対する元素M3の原子%の比は、0.9以上1.1以下である、請求項1に記載の蛍光体。 - 前記蛍光体に含まれる希土類元素のうち、Ceの割合は2原子%以上20原子%以下である、請求項1に記載の蛍光体。
- 前記蛍光体は、粉末状であり、
前記蛍光体を構成する粒子は、0.8以上の球形度を有する、請求項1に記載の蛍光体。 - 前記蛍光体を構成する粒子の平均粒径は、3μm以上80μm以下である、請求項6に記載の蛍光体。
- 請求項1に記載の蛍光体の製造方法であって、
前記組成を構成する元素を含む蛍光体原料の混合物に、0.05質量%以上3質量%以下のフッ化バリウムと、0.01質量%以上1質量%以下の塩化イットリウムと、を添加する工程と、
前記添加する工程後の前記混合物を焼成する工程と、を具備する、蛍光体の製造方法。 - 430nm以上470nm以下の発光ピーク波長を示す光を発光する青色発光ダイオードと、
前記青色発光ダイオードから放射される光の一部を変換して第1の光を発光する請求項1に記載の蛍光体を含む層と、を具備する、LEDランプ。 - 前記層は、複数の前記蛍光体を含み、
前記複数の蛍光体のそれぞれの前記組成は、化学式2:1.5((Y,Lu)1-xM1x)2O3・2.5a(Al1-y-zGay(M2,M3)z)2O3:Ce
(式中、M1はGdおよびTbの少なくとも1つの元素であり、(M2,M3)は(Mg,Si)または(Sc,B)であり、xは0≦x<0.6を満たす数、aは1.02<a<1.1を満たす数、yは0≦y<0.4を満たす数、zは0≦z<0.1を満たす数である)
で表わされ、互いに異なる、請求項9に記載のLEDランプ。 - 前記層は、前記青色発光ダイオードから放射される光の他の一部を変換して580nm以上の発光ピーク波長を示す第2の光を発光する第2の蛍光体をさらに含む、請求項9に記載のLEDランプ。
- 前記第2の蛍光体は、
化学式3:(Sr1-x-y,Cax,Euy)AlSiN3
(式中xは0.01<x<0.35を満たす数、yは0.002<y<0.03を満たす数である)
で表される組成を有する蛍光体、および
化学式4:K2(Si1-zMnz)F6
(式中zは0.02<z<0.5を満たす数である)
で表される組成を有する蛍光体の少なくとも一つの蛍光体を含む、請求項9に記載のLEDランプ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017523109A JP6833683B2 (ja) | 2015-06-12 | 2016-06-07 | 蛍光体およびその製造方法、ならびにledランプ |
KR1020187000582A KR102069081B1 (ko) | 2015-06-12 | 2016-06-07 | 형광체 및 그 제조 방법, 그리고 led 램프 |
CN201680033880.XA CN107636113B (zh) | 2015-06-12 | 2016-06-07 | 荧光体及其制造方法、以及led灯 |
US15/833,176 US11005010B2 (en) | 2015-06-12 | 2017-12-06 | Phosphor and method of manufacturing same, and LED lamp |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-119676 | 2015-06-12 | ||
JP2015119676 | 2015-06-12 | ||
JP2016-031835 | 2016-02-23 | ||
JP2016031835 | 2016-02-23 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/833,176 Continuation US11005010B2 (en) | 2015-06-12 | 2017-12-06 | Phosphor and method of manufacturing same, and LED lamp |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016199406A1 true WO2016199406A1 (ja) | 2016-12-15 |
Family
ID=57503859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/002756 WO2016199406A1 (ja) | 2015-06-12 | 2016-06-07 | 蛍光体およびその製造方法、ならびにledランプ |
Country Status (6)
Country | Link |
---|---|
US (1) | US11005010B2 (ja) |
JP (1) | JP6833683B2 (ja) |
KR (1) | KR102069081B1 (ja) |
CN (1) | CN107636113B (ja) |
TW (1) | TWI642762B (ja) |
WO (1) | WO2016199406A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019006967A (ja) * | 2016-07-08 | 2019-01-17 | クアーズテック株式会社 | セラミックス複合体、並びにこれを含むプロジェクター用蛍光体及び発光デバイス |
JP2021038126A (ja) * | 2019-09-05 | 2021-03-11 | アダマンド並木精密宝石株式会社 | セラミック複合体の製造方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102675945B1 (ko) | 2018-09-18 | 2024-06-17 | 삼성전자주식회사 | 발광 장치 |
WO2021124532A1 (ja) * | 2019-12-19 | 2021-06-24 | 株式会社 東芝 | 蛍光板、x線検出器、およびx線検査装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004065324A1 (ja) * | 2003-01-20 | 2004-08-05 | Ube Industries, Ltd. | 光変換用セラミックス複合材料およびその用途 |
JP2005264062A (ja) * | 2004-03-19 | 2005-09-29 | Nemoto & Co Ltd | 蛍光体 |
JP2013147643A (ja) * | 2011-12-22 | 2013-08-01 | Shin-Etsu Chemical Co Ltd | イットリウムセリウムアルミニウムガーネット蛍光体の製造方法 |
JP2015044938A (ja) * | 2013-08-28 | 2015-03-12 | 東芝マテリアル株式会社 | 蛍光体およびその製造方法、並びにその蛍光体を用いたledランプ |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6017670A (en) * | 1996-02-29 | 2000-01-25 | Dainippon Ink And Chemicals, Inc. | Electrophotographic toner and process for the preparation thereof |
TW383508B (en) | 1996-07-29 | 2000-03-01 | Nichia Kagaku Kogyo Kk | Light emitting device and display |
JPH1036835A (ja) | 1996-07-29 | 1998-02-10 | Nichia Chem Ind Ltd | フォトルミネセンス蛍光体 |
JP2002042525A (ja) | 2000-07-26 | 2002-02-08 | Toyoda Gosei Co Ltd | 面状光源 |
JP3775268B2 (ja) | 2001-09-03 | 2006-05-17 | 日亜化学工業株式会社 | 発光装置の形成方法 |
KR100923804B1 (ko) | 2001-09-03 | 2009-10-27 | 파나소닉 주식회사 | 반도체발광소자, 발광장치 및 반도체발광소자의 제조방법 |
CN1153825C (zh) * | 2002-02-27 | 2004-06-16 | 北京大学 | 铈激活的钇铝石榴石白光粉的制备方法 |
JP4263453B2 (ja) | 2002-09-25 | 2009-05-13 | パナソニック株式会社 | 無機酸化物及びこれを用いた発光装置 |
JP4991026B2 (ja) | 2003-02-26 | 2012-08-01 | 日亜化学工業株式会社 | 発光装置 |
JP4916651B2 (ja) | 2003-08-28 | 2012-04-18 | 三菱化学株式会社 | 発光装置及び蛍光体 |
JP4534513B2 (ja) | 2004-02-17 | 2010-09-01 | 豊田合成株式会社 | 発光装置 |
JP2005243699A (ja) | 2004-02-24 | 2005-09-08 | Mitsubishi Chemicals Corp | 発光素子、及び画像表示装置、並びに照明装置 |
EP1780592A4 (en) * | 2004-06-30 | 2014-07-09 | Mitsubishi Chem Corp | LIGHT-EMITTING COMPONENT, BACKLIGHT UNIT, DISPLAY UNIT AND DISPLAY UNIT |
JP4645089B2 (ja) | 2004-07-26 | 2011-03-09 | 日亜化学工業株式会社 | 発光装置および蛍光体 |
JP4904694B2 (ja) | 2005-02-07 | 2012-03-28 | 三菱化学株式会社 | 酸化物蛍光体、並びにそれを用いた発光素子、画像表示装置、及び照明装置 |
JP2006167946A (ja) | 2004-12-13 | 2006-06-29 | Koito Mfg Co Ltd | 車輌用灯具及び光線溶着方法 |
US7497973B2 (en) * | 2005-02-02 | 2009-03-03 | Lumination Llc | Red line emitting phosphor materials for use in LED applications |
JP4325629B2 (ja) | 2005-02-28 | 2009-09-02 | 三菱化学株式会社 | 蛍光体及びその製造方法並びにそれを使用した発光装置 |
CN101128563B (zh) * | 2005-02-28 | 2012-05-23 | 三菱化学株式会社 | 荧光体、其制造方法及其应用 |
JP2006253336A (ja) | 2005-03-10 | 2006-09-21 | Toyoda Gosei Co Ltd | 光源装置 |
JP4972957B2 (ja) | 2005-04-18 | 2012-07-11 | 三菱化学株式会社 | 蛍光体、及びそれを用いた発光装置、並びに画像表示装置、照明装置 |
JP4843990B2 (ja) | 2005-04-22 | 2011-12-21 | 日亜化学工業株式会社 | 蛍光体およびそれを用いた発光装置 |
JP2006324407A (ja) | 2005-05-18 | 2006-11-30 | Toyoda Gosei Co Ltd | 発光装置 |
CN101370908B (zh) * | 2006-01-19 | 2012-04-18 | 宇部兴产株式会社 | 陶瓷复合体光转换构件和用其的发光装置 |
TW200743663A (en) * | 2006-05-26 | 2007-12-01 | Chen Shiang Mian | Fluorescent powder for light source of blue light diode |
WO2007144984A1 (ja) * | 2006-06-14 | 2007-12-21 | Sanyo Chemical Industries, Ltd. | 樹脂分散体の製造方法及び樹脂粒子 |
US7538650B2 (en) * | 2006-07-17 | 2009-05-26 | Smith International, Inc. | Apparatus and method for magnetizing casing string tubulars |
US8274215B2 (en) * | 2008-12-15 | 2012-09-25 | Intematix Corporation | Nitride-based, red-emitting phosphors |
DE102008051029A1 (de) * | 2008-10-13 | 2010-04-15 | Merck Patent Gmbh | Dotierte Granat-Leuchtstoffe mit Rotverschiebung für pcLEDs |
EP2554627B1 (en) * | 2010-03-31 | 2018-01-10 | Ube Industries, Ltd. | Ceramic composites for light conversion, process for production thereof, and light-emitting devices provided with same |
JP5603657B2 (ja) | 2010-05-20 | 2014-10-08 | 日東電工株式会社 | 回路付サスペンション基板およびその製造方法 |
CN103080634B (zh) * | 2010-08-31 | 2015-07-22 | 株式会社东芝 | Led电灯泡 |
KR101952138B1 (ko) * | 2011-02-24 | 2019-02-26 | 닛토 덴코 가부시키가이샤 | 형광체 성분을 갖는 발광 복합물 |
JP5545601B2 (ja) | 2011-11-07 | 2014-07-09 | 信越化学工業株式会社 | 蛍光体高充填波長変換シート、それを用いた発光半導体装置の製造方法、及び該発光半導体装置 |
CN102660283B (zh) * | 2012-04-18 | 2013-11-27 | 烟台建塬光电技术有限公司 | 一种掺杂稀土元素的钇铝石榴石荧光粉的制造方法 |
CN102660284B (zh) * | 2012-04-18 | 2013-11-27 | 烟台建塬光电技术有限公司 | 一种led用氮化物红色荧光粉的制造方法 |
KR20150035742A (ko) * | 2012-07-20 | 2015-04-07 | 미쓰비시 가가꾸 가부시키가이샤 | 발광 장치, 파장 변환 부재, 형광체 조성물 및 형광체 혼합물 |
-
2016
- 2016-06-07 KR KR1020187000582A patent/KR102069081B1/ko active IP Right Grant
- 2016-06-07 CN CN201680033880.XA patent/CN107636113B/zh active Active
- 2016-06-07 JP JP2017523109A patent/JP6833683B2/ja active Active
- 2016-06-07 WO PCT/JP2016/002756 patent/WO2016199406A1/ja active Application Filing
- 2016-06-08 TW TW105118244A patent/TWI642762B/zh active
-
2017
- 2017-12-06 US US15/833,176 patent/US11005010B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004065324A1 (ja) * | 2003-01-20 | 2004-08-05 | Ube Industries, Ltd. | 光変換用セラミックス複合材料およびその用途 |
JP2005264062A (ja) * | 2004-03-19 | 2005-09-29 | Nemoto & Co Ltd | 蛍光体 |
JP2013147643A (ja) * | 2011-12-22 | 2013-08-01 | Shin-Etsu Chemical Co Ltd | イットリウムセリウムアルミニウムガーネット蛍光体の製造方法 |
JP2015044938A (ja) * | 2013-08-28 | 2015-03-12 | 東芝マテリアル株式会社 | 蛍光体およびその製造方法、並びにその蛍光体を用いたledランプ |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019006967A (ja) * | 2016-07-08 | 2019-01-17 | クアーズテック株式会社 | セラミックス複合体、並びにこれを含むプロジェクター用蛍光体及び発光デバイス |
JP2021038126A (ja) * | 2019-09-05 | 2021-03-11 | アダマンド並木精密宝石株式会社 | セラミック複合体の製造方法 |
JP7350298B2 (ja) | 2019-09-05 | 2023-09-26 | Orbray株式会社 | セラミック複合体の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TWI642762B (zh) | 2018-12-01 |
JPWO2016199406A1 (ja) | 2018-04-05 |
TW201708504A (zh) | 2017-03-01 |
KR20180016529A (ko) | 2018-02-14 |
KR102069081B1 (ko) | 2020-01-22 |
CN107636113B (zh) | 2020-09-22 |
US11005010B2 (en) | 2021-05-11 |
US20180138374A1 (en) | 2018-05-17 |
CN107636113A (zh) | 2018-01-26 |
JP6833683B2 (ja) | 2021-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1503428B1 (en) | Light-emitting device using fluorescent substance | |
JP5151002B2 (ja) | 発光装置 | |
CN102333844B (zh) | 共掺杂锆和铪的次氮基硅酸盐 | |
US7733002B2 (en) | Semiconductor light emitting device provided with an alkaline earth metal boric halide phosphor for luminescence conversion | |
JP5092667B2 (ja) | 発光装置 | |
WO2007005486A2 (en) | Aluminate-based blue phosphors | |
JP6528418B2 (ja) | 蛍光体及びこれを用いた発光装置 | |
JP2008545048A6 (ja) | アルミネート系青色蛍光体 | |
JP6102763B2 (ja) | 蛍光体及びそれを用いた発光装置並びに蛍光体の製造方法 | |
JP6167913B2 (ja) | 蛍光体及びそれを用いた発光装置 | |
JP2009280763A (ja) | 蛍光体調製物およびそれを用いた発光装置 | |
US11005010B2 (en) | Phosphor and method of manufacturing same, and LED lamp | |
JP2015228419A (ja) | 半導体発光装置 | |
JP4843990B2 (ja) | 蛍光体およびそれを用いた発光装置 | |
JP2014194019A (ja) | 照明システム | |
JP5402008B2 (ja) | 蛍光体の製造方法及び蛍光体並びにこれを用いた発光装置 | |
KR101176212B1 (ko) | 알카리 토류 포스포러스 나이트라이드계 형광체와 그 제조방법 및 이를 이용한 발광장치 | |
JP2011506655A5 (ja) | ||
JP6139334B2 (ja) | 蛍光体およびその製造方法、並びにその蛍光体を用いたledランプ | |
CN104073257B (zh) | 一种硫代硅酸盐荧光体及其应用 | |
CN102399554A (zh) | 氮化物红色发光材料、包括其的发光件以及发光器件 | |
CN106883853B (zh) | 一种利用ntc半导体纳米粉体对荧光粉发射光谱的调变方法 | |
JP2017149963A (ja) | 蛍光体及びそれを用いた発光装置 | |
JP2006183043A (ja) | 蛍光体及びその製造方法 | |
TW201341507A (zh) | 螢光粉體及發光裝置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16807114 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017523109 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20187000582 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16807114 Country of ref document: EP Kind code of ref document: A1 |