[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016190626A1 - 무선 통신 시스템에서 신호의 전송 방법 및 장치 - Google Patents

무선 통신 시스템에서 신호의 전송 방법 및 장치 Download PDF

Info

Publication number
WO2016190626A1
WO2016190626A1 PCT/KR2016/005398 KR2016005398W WO2016190626A1 WO 2016190626 A1 WO2016190626 A1 WO 2016190626A1 KR 2016005398 W KR2016005398 W KR 2016005398W WO 2016190626 A1 WO2016190626 A1 WO 2016190626A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
transmission
priority
configuration
scell
Prior art date
Application number
PCT/KR2016/005398
Other languages
English (en)
French (fr)
Inventor
양석철
안준기
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/576,255 priority Critical patent/US10568109B2/en
Publication of WO2016190626A1 publication Critical patent/WO2016190626A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting / receiving a signal.
  • the wireless communication system can support Carrier Aggregation (CA).
  • CA Carrier Aggregation
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • the first cell of the first UL-DL configuration Uplink-Downlink configuration
  • the second cell of the second UL-DL configuration Configure wherein subframe #n is UL SF or S (special) SF in the first cell, SF # n + 1 is UL SF, and SF #n is DL SF in the second cell;
  • the UL transmission in SF # n + 1 of the first cell wherein if the priority of the first cell is higher than the second cell in SF #n, SF # of the first cell If the UL transmission is normally performed at n + 1 and the priority of the first cell is lower than the second cell in the SF #n, the UL transmission is limited at least partially in the SF # n + 1 of the first cell.
  • the SF configuration in the radio frame according to the UL-DL configuration is provided as follows:
  • D represents DL SF
  • U represents UL SF
  • S represents SF
  • S SF includes Downlink Pilot TimeSlot (DwPTS), Guard Period (GP), and Uplink Pilot TimeSlot (UpPTS).
  • DwPTS Downlink Pilot TimeSlot
  • GP Guard Period
  • UpPTS Uplink Pilot TimeSlot
  • a terminal used in a wireless communication system comprising: a radio frequency (RF) unit; And a processor, wherein the processor configures a first cell of a first UL-DL configuration and a second cell of a second UL-DL configuration, wherein a subframe (SF) is formed in the first cell.
  • RF radio frequency
  • SF #n is UL SF or S (special) SF and SF # n + 1 is UL SF
  • SF #n is DL SF in the second cell and controls UL transmission in SF # n + 1 of the first cell
  • UL transmission is normally performed in SF # n + 1 of the first cell, and the first in SF #n.
  • the priority of one cell is lower than the second cell, at least a part of UL transmission is limited in SF # n + 1 of the first cell, and the SF configuration in a radio frame according to the UL-DL configuration may be determined by the following UE. Is provided:
  • D represents DL SF
  • U represents UL SF
  • S represents SF
  • S SF includes Downlink Pilot TimeSlot (DwPTS), Guard Period (GP), and Uplink Pilot TimeSlot (UpPTS).
  • DwPTS Downlink Pilot TimeSlot
  • GP Guard Period
  • UpPTS Uplink Pilot TimeSlot
  • the first cell may be a primary cell (PCell), and the second cell may be a secondary cell (SCell).
  • PCell primary cell
  • SCell secondary cell
  • the priority of the first cell is higher than the second cell in SF #n, and the SF of the second cell
  • the priority of the first cell may be later than the second cell in the SF #n.
  • the specific RS may include a Positioning Reference Signal (PRS).
  • PRS Positioning Reference Signal
  • a physical uplink control channel (PUCCH) and a physical uplink shared channel (PUSCH) in SF # n + 1 of the first cell can be skipped.
  • a Sounding Reference Signal (SRS) transmission may be normally performed in SF # n + 1 of the first cell.
  • SRS Sounding Reference Signal
  • the present invention it is possible to efficiently transmit / receive a signal in a wireless communication system. In addition, it is possible to efficiently control the transmission of the uplink signal.
  • FIG. 1 illustrates physical channels used in a 3GPP LTE system, which is an example of a wireless communication system, and a general signal transmission method using the same.
  • FIG. 2 illustrates a structure of a radio frame.
  • FIG. 3 illustrates a resource grid of a downlink slot.
  • 5 illustrates a structure of an uplink subframe.
  • FIG. 6 illustrates a slot level structure of PUCCH formats 1a and 1b.
  • CA 8 illustrates a Carrier Aggregation (CA) communication system.
  • FIG. 16 illustrates a base station and a terminal that can be applied to the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of Evolved UMTS (E-UMTS) using E-UTRA and LTE-A (Advanced) is an evolved version of 3GPP LTE.
  • 3GPP LTE / LTE-A the technical spirit of the present invention is not limited thereto.
  • a terminal receives information through a downlink (DL) from a base station, and the terminal transmits information through an uplink (UL) to the base station.
  • the information transmitted and received between the base station and the terminal includes data and various control information, and various physical channels exist according to the type / use of the information transmitted and received.
  • FIG. 1 is a diagram for explaining physical channels used in a 3GPP LTE system and a general signal transmission method using the same.
  • the terminal which is powered on again or enters a new cell while the power is turned off performs an initial cell search operation such as synchronizing with the base station in step S101.
  • the terminal receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station, synchronizes with the base station, and provides information such as cell identity (cell identity). Acquire.
  • the terminal may receive a physical broadcast channel (PBCH) from the base station to obtain broadcast information in a cell.
  • PBCH physical broadcast channel
  • the terminal may check a downlink channel state by receiving a downlink reference signal (DL RS) in an initial cell search step.
  • DL RS downlink reference signal
  • the UE After completing the initial cell discovery, the UE receives a physical downlink control channel (PDSCH) according to physical downlink control channel (PDCCH) and physical downlink control channel information in step S102 to be more specific.
  • PDSCH physical downlink control channel
  • PDCCH physical downlink control channel
  • System information can be obtained.
  • the terminal may perform a random access procedure such as steps S103 to S106 to complete the access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S103), a response message to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel. Can be received (S104).
  • contention resolution procedure such as transmission of an additional physical random access channel (S105) and reception of a physical downlink control channel and a corresponding physical downlink shared channel (S106). ) Can be performed.
  • the UE After performing the above-described procedure, the UE performs a general downlink control channel / physical downlink shared channel reception (S107) and a physical uplink shared channel (PUSCH) / as a general uplink / downlink signal transmission procedure.
  • Physical uplink control channel (PUCCH) transmission (S108) may be performed.
  • the control information transmitted from the terminal to the base station is collectively referred to as uplink control information (UCI).
  • UCI includes Hybrid Automatic Repeat and reQuest Acknowledgment / Negative-ACK (HARQ ACK / NACK), Scheduling Request (SR), Channel State Information (CSI), and the like.
  • HARQ ACK / NACK Hybrid Automatic Repeat and reQuest Acknowledgment / Negative-ACK
  • SR Scheduling Request
  • CSI Channel State Information
  • the CSI includes a Channel Quality Indicator (CQI), a Precoding Matrix Indicator (PMI), a Rank Indication (RI), and the like.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indication
  • UCI is generally transmitted through PUCCH, but may be transmitted through PUSCH when control information and traffic data should be transmitted at the same time. In addition, the UCI may be aperiodically transmitted through the PUSCH by the request / instruction of the network.
  • the uplink / downlink data packet transmission is performed in subframe units, and the subframe is defined as a time interval including a plurality of symbols.
  • the 3GPP LTE standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms
  • one slot may have a length of 0.5 ms.
  • One slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • RBs resource blocks
  • a resource block (RB) as a resource allocation unit may include a plurality of consecutive subcarriers in one slot.
  • the number of OFDM symbols included in the slot may vary depending on the configuration of a cyclic prefix (CP).
  • CP has an extended CP (normal CP) and a normal CP (normal CP).
  • normal CP when an OFDM symbol is configured by a normal CP, the number of OFDM symbols included in one slot may be seven.
  • extended CP since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the normal CP.
  • the number of OFDM symbols included in one slot may be six.
  • an extended CP may be used to further reduce intersymbol interference.
  • the subframe includes 14 OFDM symbols.
  • First up to three OFDM symbols of a subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • Type 2 (b) illustrates the structure of a type 2 radio frame.
  • Type 2 radio frames consist of two half frames.
  • the half frame includes 4 (5) normal subframes and 1 (0) special subframes.
  • the general subframe is used for uplink or downlink according to the UL-Downlink configuration.
  • the subframe consists of two slots.
  • Table 1 illustrates a subframe configuration in a radio frame according to the UL-DL configuration.
  • D represents a downlink subframe
  • U represents an uplink subframe
  • S represents a special subframe.
  • the special subframe includes a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • the structure of the radio frame is merely an example, and the number of subframes, the number of slots, and the number of symbols in the radio frame may be variously changed.
  • FIG. 3 illustrates a resource grid for a downlink slot.
  • the downlink slot includes a plurality of OFDM symbols in the time domain.
  • one downlink slot includes 7 OFDM symbols and one resource block (RB) is illustrated as including 12 subcarriers in the frequency domain.
  • Each element on the resource grid is referred to as a resource element (RE).
  • One RB contains 12 7 REs.
  • the number N DL of RBs included in the downlink slot depends on the downlink transmission band.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 4 illustrates a structure of a downlink subframe.
  • up to three (4) OFDM symbols located in front of the first slot in a subframe correspond to a control region to which a control channel is allocated.
  • the remaining OFDM symbol corresponds to a data region to which a physical downlink shared chance (PDSCH) is allocated, and a basic resource unit of the data region is RB.
  • Examples of downlink control channels used in LTE include a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid ARQ indicator channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information on the number of OFDM symbols used for transmission of a control channel within the subframe.
  • the PHICH is a response to uplink transmission and carries an HARQ ACK / NACK (acknowledgment / negative-acknowledgment) signal.
  • Control information transmitted on the PDCCH is referred to as downlink control information (DCI).
  • DCI includes uplink or downlink scheduling information or an uplink transmit power control command for a certain group of terminals.
  • DCI downlink control information
  • the DCI format has formats 0, 3, 3A, 4 for uplink, formats 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C, etc. defined for downlink.
  • the type of the information field, the number of information fields, the number of bits of each information field, etc. vary according to the DCI format.
  • the DCI format may include a hopping flag, an RB assignment, a modulation coding scheme (MCS), a redundancy version (RV), a new data indicator (NDI), a transmit power control (TPC), It optionally includes information such as a HARQ process number and a precoding matrix indicator (PMI) confirmation.
  • MCS modulation coding scheme
  • RV redundancy version
  • NDI new data indicator
  • TPC transmit power control
  • PMI precoding matrix indicator
  • any DCI format may be used for transmitting two or more kinds of control information.
  • DCI format 0 / 1A is used to carry DCI format 0 or DCI format 1, which are distinguished by a flag field.
  • the PDCCH includes a transmission format and resource allocation of a downlink shared channel (DL-SCH), resource allocation information for an uplink shared channel (UL-SCH), paging information for a paging channel (PCH), and system information on the DL-SCH. ), Resource allocation information of a higher-layer control message such as a random access response transmitted on a PDSCH, transmission power control commands for individual terminals in an arbitrary terminal group, activation of voice over IP (VoIP), and the like. .
  • a plurality of PDCCHs may be transmitted in the control region.
  • the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregation of one or a plurality of consecutive CCEs (consecutive control channel elements).
  • the CCE is a logical allocation unit used to provide a PDCCH of a predetermined coding rate according to the state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups (REGs).
  • the format of the PDCCH and the number of bits of the available PDCCH are determined according to the correlation between the number of CCEs and the code rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and adds a cyclic redundancy check (CRC) to the control information.
  • the CRC is masked with a unique identifier (referred to as a radio network temporary identifier (RNTI)) depending on the owner of the PDCCH or the intended use.
  • RNTI radio network temporary identifier
  • a unique identifier (eg, C-RNTI (cell-RNTI)) of the terminal is masked on the CRC.
  • C-RNTI cell-RNTI
  • a paging indication identifier eg, p-RNTI (p-RNTI)
  • SIB system information block
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • 5 illustrates a structure of an uplink subframe.
  • the subframe 500 includes two 0.5 ms slots 501.
  • each slot consists of seven symbols 502 and one symbol corresponds to one SC-FDMA symbol.
  • the resource block 503 is a resource allocation unit corresponding to 12 subcarriers in the frequency domain and one slot in the time domain.
  • the structure of an uplink subframe is largely divided into a data region 504 and a control region 505.
  • the data area refers to a communication resource used by the terminal to transmit data such as voice and packets, and includes a PUSCH (Physical Uplink Shared Channel).
  • the control region means a communication resource used by the UE to transmit uplink control information (UCI) and includes a PUCCH (Physical Uplink Control Channel).
  • PUCCH may be used to transmit the following uplink control information.
  • SR Service Request: Information used for requesting an uplink UL-SCH resource. It is transmitted using OOK (On-Off Keying) method.
  • HARQ-ACK A response to a downlink data packet (eg, a codeword) on a PDSCH. Indicates whether the downlink data packet was successfully received.
  • One bit of HARQ-ACK is transmitted in response to a single downlink codeword, and two bits of HARQ-ACK are transmitted in response to two downlink codewords.
  • HARQ-ACK responses include positive ACK (simply ACK), negative ACK (NACK), DTX or NACK / DTX.
  • HARQ-ACK is mixed with HARQ ACK / NACK, ACK / NACK.
  • CSI Channel State Information
  • MIMO Multiple Input Multiple Output
  • RI rank indicator
  • PMI precoding matrix indicator
  • the amount of control information that the UE can transmit in a subframe depends on the number of available SC-FDMA.
  • SC-FDMA available for transmission of control information means the remaining SC-FDMA symbol except for the SC-FDMA symbol for transmitting the reference signal in the subframe, and in the case of the subframe in which the Sounding Reference Signal (SRS) is set, the last of the subframe SC-FDMA symbols are also excluded.
  • the reference signal is used for coherent detection of the PUCCH.
  • PUCCH supports various formats according to the transmitted information.
  • Table 2 shows a mapping relationship between PUCCH format and UCI in LTE (-A).
  • the SRS is transmitted 506 on the last SC-FDMA symbol in the subframe.
  • SRSs of multiple terminals transmitted through the same SC-FDMA symbol can be distinguished according to frequency location / sequence.
  • SRS is transmitted aperiodically or periodically.
  • the ACK / NACK signal includes a cyclic shift (CS) (frequency domain code) and an orthogonal cover code (COR-CAZAC) sequence of a computer-generated constant amplitude zero auto correlation (CG-CAZAC) sequence. It is transmitted through different resources consisting of OC or OCC (Time Domain Spreading Code).
  • CS cyclic shift
  • COR-CAZAC orthogonal cover code
  • CG-CAZAC computer-generated constant amplitude zero auto correlation
  • OC includes, for example, Walsh / DFT orthogonal code. If the number of CSs is six and the number of OCs is three, a total of 18 terminals may be multiplexed in the same PRB (Physical Resource Block) based on a single antenna.
  • PRB Physical Resource Block
  • the transmission of the uplink radio frame i starts before (N TA + N TAoffset ) * T s seconds before the downlink radio frame.
  • N TA N TA ⁇ 20512
  • N TAoffset 0 in FDD
  • N TAoffset 624 in TDD.
  • the N Taoffset value is a value previously recognized by the base station and the terminal. If N TA is indicated through a timing advance command in the random access procedure, the UE adjusts a transmission timing of a UL signal (eg, PUCCH / PUSCH / SRS) through the above equation.
  • the UL transmission timing is set in multiples of 16T s .
  • the timing advance command indicates a change in the UL timing based on the current UL timing.
  • the timing advance command received in SF #n applies from SF # n + 6. In the case of FDD, as illustrated, the transmission time of UL SF #n is advanced based on the start time of DL SF #n. On the other hand, in the case of TDD, the transmission time of UL SF #n is advanced based on the end time of DL SF # n + 1 (not shown).
  • CA 8 illustrates a Carrier Aggregation (CA) communication system.
  • a plurality of uplink / downlink component carriers may be collected to support a wider uplink / downlink bandwidth.
  • Each of the CCs may be adjacent or non-adjacent to each other in the frequency domain.
  • the bandwidth of each component carrier can be determined independently. It is also possible to merge asymmetric carriers in which the number of UL CCs and the number of DL CCs are different.
  • the control information may be set to be transmitted and received only through a specific CC. This particular CC may be referred to as the primary CC and the remaining CCs may be referred to as the secondary CC.
  • the PDCCH for downlink allocation may be transmitted in DL CC # 0, and the corresponding PDSCH may be transmitted in DL CC # 2.
  • component carrier may be replaced with other equivalent terms (eg, carrier, cell, etc.).
  • a carrier indicator field (CIF) is used.
  • Configuration for the presence or absence of CIF in the PDCCH may be semi-statically enabled by higher layer signaling (eg, RRC signaling) to be UE-specific (or UE group-specific).
  • RRC signaling e.g., RRC signaling
  • ⁇ CIF disabled The PDCCH on the DL CC allocates PDSCH resources on the same DL CC and PUSCH resources on a single linked UL CC.
  • a PDCCH on a DL CC may allocate a PDSCH or PUSCH resource on one DL / UL CC among a plurality of merged DL / UL CCs using the CIF.
  • the base station may allocate a monitoring DL CC (set) to reduce the BD complexity at the terminal side.
  • the UE may perform detection / decoding of the PDCCH only in the corresponding DL CC.
  • the base station may transmit the PDCCH only through the monitoring DL CC (set).
  • the monitoring DL CC set may be set in a terminal-specific, terminal-group-specific or cell-specific manner.
  • each DL CC may transmit a PDCCH scheduling a PDSCH of each DL CC without CIF according to the LTE PDCCH rule.
  • the CIF is enabled by higher layer signaling, only the DL CC A can transmit the PDCCH scheduling the PDSCH of another DL CC as well as the PDSCH of the DL CC A using the CIF.
  • PDCCH is not transmitted in DL CCs B and C that are not configured as monitoring DL CCs.
  • monitoring DL CC may be replaced with equivalent terms such as monitoring carrier, monitoring cell, scheduling carrier, scheduling cell, serving carrier, serving cell and the like. From the scheduling point of view, the PCC may be referred to as an MCC.
  • the DL CC through which the PDSCH corresponding to the PDCCH is transmitted and the UL CC through which the PUSCH corresponding to the PDCCH is transmitted may be referred to as a scheduled carrier, a scheduled cell, or the like.
  • simultaneous transmission and reception in a plurality of cells may or may not be possible due to a hardware configuration of the terminal or an indication from a base station. Therefore, when SFs having different transmission directions between a plurality of cells collide at the same time point (hereinafter referred to as collided SF), SF of a specific cell or SF of a plurality of cells may be prioritized. Can be configured. For example, simultaneous transmission and reception may be limited in a situation where a plurality of cells having different UL-DL configurations are merged.
  • collided SF SF of a specific cell or SF of a plurality of cells
  • the 3GPP standard basically gives priority to SF on the PCell (i.e., transmission direction), 1) If the D of the PCell and the U or S of the SCell collide, all UL signal transmissions in the SCell are restricted / omitted. 3) If the U of the PCell and the D of the SCell collide with each other, the reception of all DL signals is restricted / omitted from the SCell. Only the reception degree for the control channel is allowed and reception for the PDSCH / EPDCCH / PMCH / PRS signal may be restricted / omitted (hereinafter, half-duplex (HD) -TDD CA).
  • HD half-duplex
  • 10-11 illustrate an HD-TDD CA structure. Gray shades in the figure illustrate the CC (link direction) where use is limited in collision SF.
  • FIG. 10 when the PCell is set to the UL SF and the SCell is set to the DL SF, only the UL SF of the PCell may be operated, and all DL reception may be restricted / omitted in the DL SF of the SCell.
  • FIG. 11 in a situation where the PCell is set to DL SF and the SCell is set to UL SF, only the DL SF of the PCell may be operated and all UL transmissions may be restricted / omitted in the UL SF of the SCell.
  • the base station in order to calculate the location information of the terminal, the base station periodically transmits a positioning reference signal (PRS) to the terminal. Since the PRS is transmitted in a relatively long period compared to the other DL RS of each base station, the UE may need to report the measurement result by measuring the rarely transmitted PRS within a short time. Accordingly, if any one of the SFs in which the PRS is transmitted is missed, the PRS measurement quality may be greatly degraded. Therefore, in the case of a terminal performing a half-duplex operation, it may be effective to give priority to the PCell for the SF including the specific DL RS (eg, PRS) transmission even if the SF is in the SCell.
  • PRS positioning reference signal
  • a special SCell-D in a specific overlap SF (hereinafter referred to as a special SCell-D) and a PCell S or U (hereinafter referred to as collided PCell-S / U), a special SCell-D is defined.
  • special SCell-D means DL SF whose SCell has a higher priority than PCell.
  • the special SCell-D may be configured as part of an entire DL set on the SCell.
  • the special SCell-D may be periodically configured on the SCell.
  • the DL SF other than the special SCell-D on the SCell is referred to as non-special SCell-D.
  • the special SCell-D may be limited to SF set to a transmission (possible) time point of a specific DL RS (eg, PRS) in the SCell.
  • a specific DL RS eg, PRS
  • FIG. 12 shows an example of an UL transmission process according to the present invention. It is assumed that a plurality of cells including a PCell and a SCell is configured / merged for one UE. It is also assumed that, via signaling from the base station (eg, system information), the PCell is set to UL-DL configuration # 0 and the SCell is set to UL-DL configuration # 2. In this case, assuming that special SCell-D is SF # 3, SF on SCell may be classified as follows.
  • Non-collided SF SF # 0, # 1, # 2, # 5, # 6, # 7
  • the UE performs transmission / reception according to the transmission direction of each cell in the non-collision SF, and when the U of the PCell collides with the non-special SCell-D of the SCell, the reception of all DL signals is restricted / May be omitted.
  • the reception degree of the existing control channel such as the PCFICH / PHICH / PDCCH signal is allowed in the SCell and the PDSCH / EPDCCH / PMCH / PRS signal Reception may be restricted / omitted.
  • FIG. 13 shows another example of an UL transmission process according to the present invention. Since the DL reception time is delayed by a propagation delay and the like, and the UL transmission time is advanced by a timing advance command, the end point of the special SCell-D reception may be located after the start time of the next PCell-U transmission. Therefore, all or specific UL signals are transmitted in the next PCell-U to receive special SCell-D, even for the U of the PCell (next next PCell-U) in the adjacent SF (hereinafter next SF) immediately after the special overlap SF. This limit may be omitted.
  • the UL signal for which transmission is restricted / omitted in the next PCell-U may be limited to PUCCH / PUSCH / PRACH, with the exception that SRS transmission in the next PCell-U may be allowed. Receipt for all or specific DL signals transmitted through may be performed / allowed, and the specific DL signal may be limited to PCFICH / PHICH / PDCCH.
  • SFs on a PCell / SCell may be classified as follows.
  • Non-collided SF SF # 0, # 1, # 2, # 5, # 6, # 7
  • the operation of the terminal is basically the same as that of FIG. 12. However, in FIG. 13, when U of a PCell collides with a special SCell-D of a SCell, all or specific UL signal transmissions in a next PCell-U may be restricted / omitted to receive a special SCell-D.
  • FIG. 14 to 15 are diagrams illustrating signal collision in Next SF. 14 shows whether a signal collides in an existing process, and FIG. 15 shows a signal collision of Next SF.
  • FIG. 14 corresponds to a part of FIG. 11, and
  • FIG. 15 corresponds to a part (SF # 2 to 4) of FIG. 13.
  • the transmission direction of the PCell always precedes the SCell, and the end of the DL SF (s) always consists of S SF. That is, the end of the DL SF in the PCell has a structure of ⁇ DL SF, S SF, UL SF ⁇ . Since the S SF includes a GP section for DL-UL switching, the DL reception time of the PCell is delayed by the DL transmission propagation delay and the like, and the UL transmission time of the SCell is promoted by the GP even though it is advanced by the UL transmission timing advance. The reception time and the UL transmission time do not collide.
  • the UL transmission of the SCell in the next SF (ie, S SF) of the DL SF need not be limited / omitted.
  • the transmission priority of the SCell is higher than that of the PCell only in the specific DL SF of the SCell, and the transmission priority of the PCell is higher than the SCell in the other SFs.
  • the UE may perform DL reception in the SCell in SF # n + 1 and UL transmission in the PCell in SF # n + 2.
  • the DL reception time of the SCell is delayed by a DL transmission propagation delay or the like and the UL transmission time of the PCell is advanced by the UL transmission timing advance, the DL reception of the SCell and the UL transmission of the PCell may collide.
  • all or specific UL signal transmissions of the PCell in SF # n + 2 may be restricted / omitted.
  • UL signals for which transmission is restricted / omitted may be limited to PUCCH / PUSCH / PRACH, with the exception that SRS transmission may be allowed.
  • a cell in which UL signal transmission is limited / omitted in special overlap SF and next SF may not be limited to the PCell.
  • the UL signal transmission limit / omit operation at collided PCell-S / U and next PCell-U may be equally applied to any or all cells in which S or U is set in the special overlap SF.
  • the SCell may be replaced by a cell in which a specific DL RS (eg, PRS) transmission is configured in the special overlap SF
  • the PCell may be replaced by a cell in which S or U is configured in the special overlap SF.
  • all UL signal transmissions through the remaining cells may be restricted / omitted during the reception interval for a particular DL RS (eg, PRS) from a particular cell.
  • FIG. 16 illustrates a base station, a relay, and a terminal applicable to the present invention.
  • a wireless communication system includes a base station (BS) 110 and a terminal (UE) 120.
  • BS base station
  • UE terminal
  • the wireless communication system includes a relay
  • the base station or the terminal may be replaced with a relay.
  • Base station 110 includes a processor 112, a memory 114, and a radio frequency (RF) unit 116.
  • the processor 112 may be configured to implement the procedures and / or methods proposed in the present invention.
  • the memory 114 is connected to the processor 112 and stores various information related to the operation of the processor 112.
  • the RF unit 116 is connected with the processor 112 and transmits and / or receives a radio signal.
  • the terminal 120 includes a processor 122, a memory 124, and a radio frequency unit 126.
  • the processor 122 may be configured to implement the procedures and / or methods proposed by the present invention.
  • the memory 124 is connected with the processor 122 and stores various information related to the operation of the processor 122.
  • the RF unit 126 is connected with the processor 122 and transmits and / or receives a radio signal.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • a base station may in some cases be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • the terminal may be replaced with terms such as a user equipment (UE), a mobile station (MS), a mobile subscriber station (MSS), and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the present invention can be used in a terminal, base station, or other equipment of a wireless mobile communication system. Specifically, the present invention can be applied to a method for transmitting uplink control information and an apparatus therefor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에 관한 것이다. 구체적으로, 본 발명은 무선 통신 시스템에서 단말이 UL 전송을 제어하는 방법에 있어서, 제1 UL-DL 구성의 제1 셀과 제2 UL-DL 구성의 제2 셀을 구성하되, 상기 제1 셀에서 SF #n은 UL SF 또는 S SF이고 SF #n+1은 UL SF이며, 상기 제2 셀에서 SF #n은 DL SF인 단계; 및 상기 제1 셀의 SF #n+1에서 UL 전송을 제어하는 단계를 포함하되, 상기 SF #n에서 상기 제1 셀의 우선순위가 상기 제2 셀보다 높은 경우, 상기 제1 셀의 SF #n+1에서 UL 전송은 정상적으로 수행되고, 상기 SF #n에서 상기 제1 셀의 우선순위가 상기 제2 셀보다 낮은 경우, 상기 제1 셀의 SF #n+1에서 UL 전송은 적어도 일부가 제한되는 방법 및 이를 위한 장치에 관한 것이다.

Description

무선 통신 시스템에서 신호의 전송 방법 및 장치
본 발명은 무선 통신 시스템에 관한 것으로, 보다 상세하게는 신호를 전송/수신하는 방법 및 장치에 관한 것이다. 무선 통신 시스템은 캐리어 병합(Carrier Aggregation, CA)을 지원할 수 있다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
본 발명의 목적은 무선 통신 시스템에서 신호를 효율적으로 전송/수신하는 방법 및 이를 위한 장치를 제공하는데 있다. 본 발명의 다른 목적은 상향링크 신호의 전송을 효율적으로 제어하는 방법 및 이를 위한 장치를 제공하는데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상으로, 무선 통신 시스템에서 단말이 UL 전송을 제어하는 방법에 있어서, 제1 UL-DL 구성(Uplink-Downlink configuration)의 제1 셀과 제2 UL-DL 구성의 제2 셀을 구성하되, 상기 제1 셀에서 SF(subframe) #n은 UL SF 또는 S(special) SF이고 SF #n+1은 UL SF이며, 상기 제2 셀에서 SF #n은 DL SF인 단계; 및 상기 제1 셀의 SF #n+1에서 UL 전송을 제어하는 단계를 포함하되, 상기 SF #n에서 상기 제1 셀의 우선순위가 상기 제2 셀보다 높은 경우, 상기 제1 셀의 SF #n+1에서 UL 전송은 정상적으로 수행되고, 상기 SF #n에서 상기 제1 셀의 우선순위가 상기 제2 셀보다 낮은 경우, 상기 제1 셀의 SF #n+1에서 UL 전송은 적어도 일부가 제한되며, UL-DL 구성에 따른 무선 프레임 내 SF 구성은 아래와 같은 방법이 제공된다:
Figure PCTKR2016005398-appb-I000001
여기서, D는 DL SF를, U는 UL SF를, S는 SF를 나타내고, S SF는 DwPTS(Downlink Pilot TimeSlot), GP(Guard Period), UpPTS(Uplink Pilot TimeSlot)를 포함한다.
본 발명의 다른 양상으로, 무선 통신 시스템에 사용되는 단말에 있어서, RF(Radio Frequency) 유닛; 및 프로세서를 포함하고, 상기 프로세서는, 제1 UL-DL 구성(Uplink-Downlink configuration)의 제1 셀과 제2 UL-DL 구성의 제2 셀을 구성하되, 상기 제1 셀에서 SF(subframe) #n은 UL SF 또는 S(special) SF이고 SF #n+1은 UL SF이며, 상기 제2 셀에서 SF #n은 DL SF이고, 상기 제1 셀의 SF #n+1에서 UL 전송을 제어하도록 구성되고, 상기 SF #n에서 상기 제1 셀의 우선순위가 상기 제2 셀보다 높은 경우, 상기 제1 셀의 SF #n+1에서 UL 전송은 정상적으로 수행되고, 상기 SF #n에서 상기 제1 셀의 우선순위가 상기 제2 셀보다 낮은 경우, 상기 제1 셀의 SF #n+1에서 UL 전송은 적어도 일부가 제한되며, UL-DL 구성에 따른 무선 프레임 내 SF 구성은 아래와 같은 단말이 제공된다:
Figure PCTKR2016005398-appb-I000002
여기서, D는 DL SF를, U는 UL SF를, S는 SF를 나타내고, S SF는 DwPTS(Downlink Pilot TimeSlot), GP(Guard Period), UpPTS(Uplink Pilot TimeSlot)를 포함한다.
바람직하게, 상기 제1 셀은 PCell(Primary Cell)이고, 상기 제2 셀은 SCell(Secondary Cell)일 수 있다.
바람직하게, 상기 제2 셀의 SF #n에서 특정 RS(Reference Signal)가 전송되지 않는 경우, 상기 SF #n에서 상기 제1 셀의 우선순위가 상기 제2 셀보다 높고, 상기 제2 셀의 SF #n에 상기 특정 RS가 전송되는 경우, 상기 SF #n에서 상기 제1 셀의 우선순위가 상기 제2 셀보다 늦을 수 있다.
바람직하게, 상기 특정 RS는 PRS(Positioning Reference Signal)를 포함할 수 있다.
바람직하게, 상기 SF #n에서 상기 제1 셀의 우선순위가 상기 제2 셀보다 낮은 경우, 상기 제1 셀의 SF #n+1에서 PUCCH(Physical Uplink Control Channel) 및 PUSCH(Physical Uplink Shared Channel) 전송이 스킵될 수 있다.
바람직하게, 상기 SF #n에서 상기 제1 셀의 우선순위가 상기 제2 셀보다 낮은 경우, 상기 제1 셀의 SF #n+1에서 SRS(Sounding Reference Signal) 전송이 정상적으로 수행될 수 있다.
본 발명에 의하면, 무선 통신 시스템에서 신호를 효율적으로 전송/수신할 수 있다. 또한, 상향링크 신호의 전송을 효율적으로 제어할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선 통신 시스템의 일례인 3GPP LTE 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다.
도 3은 하향링크 슬롯의 자원 그리드(resource grid)를 예시한다.
도 4는 하향링크 서브프레임의 구조를 나타낸다.
도 5는 상향링크 서브프레임의 구조를 예시한다.
도 6은 PUCCH 포맷 1a와 1b의 슬롯 레벨 구조를 예시한다.
도 7은 상향링크-하향링크 프레임 타이밍을 예시한다.
도 8은 캐리어 병합(Carrier Aggregation, CA) 통신 시스템을 예시한다.
도 9는 크로스-캐리어 스케줄링(cross-carrier scheduling)을 예시한다.
도 10~11은 HD(Half-Duplex) 방식의 TDD 기반 캐리어 병합을 예시한다.
도 12~15는 본 발명의 실시예에 따른 신호 전송 방안을 설명하는 도면이다.
도 16은 본 발명에 적용될 수 있는 기지국 및 단말을 예시한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다. 설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 3GPP LTE 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 단계 S101에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 주동기 채널(Primary Synchronization Channel, P-SCH) 및 부동기 채널(Secondary Synchronization Channel, S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID (cell identity)등의 정보를 획득한다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel, PBCH)을 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 단계 S102에서 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH) 및 물리 하향링크 제어 채널 정보에 따른 물리 하향링크 공유 채널(Physical Downlink Control Channel, PDSCH)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 단계 S103 내지 단계 S106과 같은 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리 임의 접속 채널(Physical Random Access Channel, PRACH)을 통해 프리앰블(preamble)을 전송하고(S103), 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S104). 경쟁 기반 임의 접속(Contention based random access)의 경우 추가적인 물리 임의 접속 채널의 전송(S105) 및 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널 수신(S106)과 같은 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상향/하향링크 신호 전송 절차로서 물리 하향링크 제어 채널/물리 하향링크 공유 채널 수신(S107) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH) 전송(S108)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보(Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CSI(Channel State Information) 등을 포함한다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다. 상향/하향링크 데이터 패킷 전송은 서브프레임 단위로 이루어지며, 서브프레임은 다수의 심볼을 포함하는 시간 구간으로 정의된다. 3GPP LTE 표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 2(a)는 타입 1 무선 프레임의 구조를 예시한다. 하향링크 무선 프레임은 10개의 서브프레임으로 구성되고, 하나의 서브프레임은 시간 도메인(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)라 한다. 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(Resource Block, RB)을 포함한다. 3GPP LTE 시스템에서는 하향링크에서 OFDM을 사용하므로, OFDM 심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 지칭될 수 있다. 자원 할당 단위로서의 자원 블록(RB)은 하나의 슬롯에서 복수의 연속적인 부반송파(subcarrier)를 포함할 수 있다.
슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix)의 구성(configuration)에 따라 달라질 수 있다. CP에는 확장 CP(extended CP)와 노멀 CP(normal CP)가 있다. 예를 들어, OFDM 심볼이 노멀 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장된 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 노멀 CP인 경우보다 적다. 예를 들어, 확장 CP의 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장 CP가 사용될 수 있다.
노멀 CP가 사용되는 경우, 슬롯은 7개의 OFDM 심볼을 포함하므로, 서브프레임은 14개의 OFDM 심볼을 포함한다. 서브프레임의 처음 최대 3 개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.
도 2(b)는 타입 2 무선 프레임의 구조를 예시한다. 타입 2 무선 프레임은 2개의 하프 프레임(half frame)으로 구성된다. 하프 프레임은 4(5)개의 일반 서브프레임과 1(0)개의 스페셜 서브프레임을 포함한다. 일반 서브프레임은 UL-DL 구성(Uplink-Downlink Configuration)에 따라 상향링크 또는 하향링크에 사용된다. 서브프레임은 2개의 슬롯으로 구성된다.
표 1은 UL-DL 구성에 따른 무선 프레임 내 서브프레임 구성을 예시한다.
표 1
Figure PCTKR2016005398-appb-T000001
표에서 D는 하향링크 서브프레임을, U는 상향링크 서브프레임을, S는 스페셜(special) 서브프레임을 나타낸다. 스페셜 서브프레임은 DwPTS(Downlink Pilot TimeSlot), GP(Guard Period), UpPTS(Uplink Pilot TimeSlot)를 포함한다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. 보호 구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에서 서브프레임의 수, 슬롯의 수, 심볼의 수는 다양하게 변경될 수 있다.
도 3은 하향링크 슬롯을 위한 자원 그리드를 예시한다.
도 3을 참조하면, 하향링크 슬롯은 시간 도메인에서 복수의 OFDM 심볼을 포함한다. 여기에서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원블록(RB)은 주파수 도메인에서 12개의 부반송파를 포함하는 것으로 예시되었다. 그러나, 본 발명이 이로 제한되는 것은 아니다. 자원 그리드 상에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭된다. 하나의 RB는 12 7 RE들을 포함한다. 하향링크 슬롯에 포함된 RB의 개수 NDL는 하향링크 전송 대역에 의존한다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 4는 하향링크 서브프레임의 구조를 예시한다.
도 4를 참조하면, 서브프레임 내에서 첫 번째 슬롯의 앞에 위치한 최대 3(4)개의 OFDM 심볼이 제어 채널이 할당되는 제어 영역에 해당한다. 남은 OFDM 심볼은 PDSCH(physical downlink shared chancel)가 할당되는 데이터 영역에 해당하며, 데이터 영역의 기본 자원 단위는 RB이다. LTE 에서 사용되는 하향링크 제어 채널의 예는 PCFICH(physical control format indicator channel), PDCCH(physical downlink control channel), PHICH(physical hybrid ARQ indicator channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되며 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개수에 관한 정보를 나른다. PHICH는 상향링크 전송에 대한 응답이고 HARQ ACK/NACK(acknowledgment/negative-acknowledgment) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보는 DCI(downlink control information)라고 지칭된다. DCI는 상향링크 또는 하향링크 스케줄링 정보 또는 임의의 단말 그룹을 위한 상향링크 전송 전력 제어 명령(Transmit Power Control Command)를 포함한다.
PDCCH를 통해 전송되는 제어 정보를 DCI(Downlink Control Information)라고 한다. DCI 포맷(format)은 상향링크용으로 포맷 0, 3, 3A, 4, 하향링크용으로 포맷 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C 등의 포맷이 정의되어 있다. DCI 포맷에 따라 정보 필드의 종류, 정보 필드의 개수, 각 정보 필드의 비트 수 등이 달라진다. 예를 들어, DCI 포맷은 용도에 따라 호핑 플래그(hopping flag), RB 할당(assignment), MCS(modulation coding scheme), RV(redundancy version), NDI(new data indicator), TPC(transmit power control), HARQ 프로세스 번호, PMI(precoding matrix indicator) 확인(confirmation) 등의 정보를 선택적으로 포함한다. 따라서, DCI 포맷에 따라 DCI 포맷에 정합되는 제어 정보의 사이즈(size)가 달라진다. 한편, 임의의 DCI 포맷은 두 종류 이상의 제어 정보 전송에 사용될 수 있다. 예를 들어, DCI 포맷 0/1A는 DCI 포맷 0 또는 DCI 포맷 1을 나르는데 사용되며, 이들은 플래그 필드(flag field)에 의해 구분된다.
PDCCH는 DL-SCH(downlink shared channel)의 전송 포맷 및 자원 할당, UL-SCH(uplink shared channel)에 대한 자원 할당 정보, PCH(paging channel)에 대한 페이징 정보, DL-SCH 상의 시스템 정보(system information), PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위-계층 제어 메시지의 자원 할당 정보, 임의의 단말 그룹 내에서 개별 단말에 대한 전송 전력 제어 명령, VoIP(voice over IP)의 활성화(activation) 등을 나른다. 제어 영역 내에서 복수의 PDCCH가 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 복수의 연속된 CCE(consecutive control channel element)의 집합(aggregation) 상에서 전송된다. CCE는 무선 채널의 상태에 따라 소정 부호율 (coding rate)의 PDCCH를 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 복수의 REG(resource element group)에 대응한다. PDCCH의 포맷 및 가용한 PDCCH의 비트 수는 CCE의 개수와 CCE에 의해 제공되는 부호율 사이의 상관 관계에 따라 결정된다. 기지국은 단말에게 전송될 DCI에 따라 PDCCH 포맷을 결정하고, CRC(cyclic redundancy check)를 제어 정보에 부가한다. CRC는 PDCCH의 소유자 또는 사용 용도에 따라 유일 식별자(RNTI(radio network temporary identifier)로 지칭됨)로 마스킹 된다. PDCCH가 특정 단말을 위한 것이면, 해당 단말의 유일 식별자(예, C-RNTI (cell-RNTI))가 CRC에 마스킹 된다. 다른 예로, PDCCH가 페이징 메시지를 위한 것이면, 페이징 지시 식별자(예, P-RNTI(paging-RNTI))가 CRC에 마스킹 된다. PDCCH가 시스템 정보 (보다 구체적으로, 후술하는 SIB(system information block))에 관한 것이면, 시스템 정보 식별자(예, SI-RNTI(system information RNTI))가 CRC에 마스킹 된다. 단말의 랜덤 접속 프리앰블의 전송에 대한 응답인, 랜덤 접속 응답을 지시하기 위해 RA-RNTI(random access-RNTI)가 CRC에 마스킹 된다.
도 5는 상향링크 서브프레임의 구조를 예시한다.
도 5를 참조하면, 서브프레임(500)은 두 개의 0.5ms 슬롯(501)을 포함한다. 노멀 CP가 사용되는 경우, 각 슬롯은 7개의 심볼(502)로 구성되며 하나의 심볼은 하나의 SC-FDMA 심볼에 대응된다. 자원블록(503)은 주파수 영역에서 12개의 부반송파, 그리고 시간영역에서 한 슬롯에 해당되는 자원 할당 단위이다. 상향링크 서브프레임의 구조는 크게 데이터 영역(504)과 제어 영역(505)으로 구분된다. 데이터 영역은 단말이 음성, 패킷 등의 데이터를 송신하는데 사용되는 통신 자원을 의미하며 PUSCH(Physical Uplink Shared Channel)을 포함한다. 제어 영역은 단말이 상향링크 제어 정보(Uplink Control Information, UCI)를 전송하는데 사용되는 통신 자원을 의미하며 PUCCH(Physical Uplink Control Channel)을 포함한다.
PUCCH는 다음의 상향링크 제어 정보를 전송하는데 사용될 수 있다.
- SR(Scheduling Request): 상향링크 UL-SCH 자원을 요청하는데 사용되는 정보이다. OOK(On-Off Keying) 방식을 이용하여 전송된다.
- HARQ-ACK: PDSCH 상의 하향링크 데이터 패킷(예, 코드워드)에 대한 응답이다. 하향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 하향링크 코드워드에 대한 응답으로 HARQ-ACK 1비트가 전송되고, 두 개의 하향링크 코드워드에 대한 응답으로 HARQ-ACK 2비트가 전송된다. HARQ-ACK 응답은 포지티브 ACK(간단히, ACK), 네거티브 ACK(NACK), DTX 또는 NACK/DTX를 포함한다. 여기서, HARQ-ACK은 HARQ ACK/NACK, ACK/NACK과 혼용된다.
- CSI(Channel State Information): 하향링크 채널에 대한 피드백 정보이다. MIMO(Multiple Input Multiple Output)-관련 피드백 정보는 RI(Rank Indicator) 및 PMI(Precoding Matrix Indicator)를 포함한다. 서브프레임 당 20비트가 사용된다.
단말이 서브프레임에서 전송할 수 있는 제어 정보의 양은 가용한 SC-FDMA의 개수에 의존한다. 제어 정보 전송에 가용한 SC-FDMA는 서브프레임에서 참조 신호 전송을 위한 SC-FDMA 심볼을 제외하고 남은 SC-FDMA 심볼을 의미하고, SRS(Sounding Reference Signal)가 설정된 서브프레임의 경우 서브프레임의 마지막 SC-FDMA 심볼도 제외된다. 참조 신호는 PUCCH의 코히어런트 검출에 사용된다. PUCCH는 전송되는 정보에 따라 다양한 포맷을 지원한다.
표 2는 LTE(-A)에서 PUCCH 포맷과 UCI의 매핑 관계를 나타낸다.
표 2
Figure PCTKR2016005398-appb-T000002
SRS는 서브프레임에서 마지막 SC-FDMA 심볼을 통하여 전송된다(506). 동일한 SC-FDMA 심볼을 통해 전송되는 여러 단말의 SRS들은 주파수 위치/시퀀스에 따라 구분이 가능하다. SRS는 비주기적 또는 주기적으로 전송된다.
도 6은 슬롯 레벨에서 PUCCH 포맷 1a와 1b의 구조를 나타낸다. PUCCH 포맷 1a와 1b는 동일한 내용의 제어 정보가 서브프레임 내에서 슬롯 단위로 반복된다. 각 단말에서 ACK/NACK 신호는 CG-CAZAC(Computer-Generated Constant Amplitude Zero Auto Correlation) 시퀀스의 서로 다른 순환 쉬프트(Cyclic Shift, CS)(주파수 도메인 코드)와 직교 커버 코드(Orthogonal Cover or Orthogonal Cover Code, OC or OCC)(시간 도메인 확산 코드)로 구성된 서로 다른 자원을 통해 전송된다. OC는 예를 들어 왈쉬(Walsh)/DFT 직교 코드를 포함한다. CS의 개수가 6개이고 OC의 개수가 3개이면, 단일 안테나를 기준으로 총 18개의 단말이 동일한 PRB(Physical Resource Block) 안에서 다중화 될 수 있다.
도 7은 상향링크-하향링크 프레임 타이밍 관계를 예시한다.
도 7을 참조하면, 상향링크 무선 프레임 i의 전송은 해당 하향링크 무선 프레임보다 (NTA+NTAoffset)*Ts초 이전에 시작된다. LTE 시스템의 경우, 0=NTA≤20512이고, FDD에서 NTAoffset=0이며, TDD에서 NTAoffset=624이다. NTaoffset 값은 기지국과 단말이 사전에 인지하고 있는 값이다. 랜덤 접속 과정에서 타이밍 어드밴스(timing advance) 명령을 통해 NTA이 지시되면, 단말은 UL 신호(예, PUCCH/PUSCH/SRS)의 전송 타이밍을 위의 수식을 통해 조정한다. UL 전송 타이밍은 16Ts의 배수로 설정된다. 타이밍 어드밴스 명령은 현재 UL 타이밍을 기준으로 UL 타이밍의 변화를 지시한다. 랜덤 접속 응답 내의 타이밍 어드밴스 명령(TA)은 11-비트로서 TA는 0,1,2, ,1282의 값을 나타내고 타이밍 조정 값(NTA)은 NTA=TA*16으로 주어진다. 그 외의 경우, 타이밍 어드밴스 명령(TA)은 6-비트로서 TA는 0,1,2, ,63의 값을 나타내고 타이밍 조정 값(NTA)은 NTA ,new=NTA ,old+(TA-31)*16으로 주어진다. SF #n에서 수신된 타이밍 어드밴스 명령은 SF #n+6부터 적용된다. FDD의 경우, 도시된 바와 같이, UL SF #n의 전송 시점은 DL SF #n의 시작 시점을 기준으로 앞당겨진다. 반면, TDD의 경우, UL SF #n의 전송 시점은 DL SF #n+1의 종료 시점을 기준으로 앞당겨진다(미도시).
도 8은 캐리어 병합(Carrier Aggregation, CA) 통신 시스템을 예시한다.
도 8을 참조하면, 복수의 상/하향링크 콤포넌트 캐리어(Component Carrier, CC)들을 모아서 더 넓은 상/하향링크 대역폭을 지원할 수 있다. 각각의 CC들은 주파수 영역에서 서로 인접하거나 비-인접할 수 있다. 각 콤포넌트 캐리어의 대역폭은 독립적으로 정해질 수 있다. UL CC의 개수와 DL CC의 개수가 다른 비대칭 캐리어 병합도 가능하다. 한편, 제어 정보는 특정 CC를 통해서만 송수신 되도록 설정될 수 있다. 이러한 특정 CC를 프라이머리 CC로 지칭하고, 나머지 CC를 세컨더리 CC로 지칭할 수 있다. 일 예로, 크로스-캐리어 스케줄링(cross-carrier scheduling) (또는 크로스-CC 스케줄링)이 적용될 경우, 하향링크 할당을 위한 PDCCH는 DL CC#0으로 전송되고, 해당 PDSCH는 DL CC#2로 전송될 수 있다. 용어 "콤포넌트 캐리어"는 등가의 다른 용어(예, 캐리어, 셀 등)로 대체될 수 있다.
크로스-CC 스케줄링을 위해, CIF(carrier indicator field)가 사용된다. PDCCH 내에 CIF의 존재 또는 부재를 위한 설정이 반-정적으로 단말-특정 (또는 단말 그룹-특정)하게 상위 계층 시그널링(예, RRC 시그널링)에 의해 이네이블(enable) 될 수 있다. PDCCH 전송의 기본 사항이 아래와 같이 정리될 수 있다.
■ CIF 디스에이블드(disabled): DL CC 상의 PDCCH는 동일 DL CC 상의 PDSCH 자원 및 단일의 링크된 UL CC 상에서의 PUSCH 자원을 할당한다.
● No CIF
■ CIF 이네이블드(enabled): DL CC 상의 PDCCH는 CIF를 이용하여 복수의 병합된 DL/UL CC들 중 한 DL/UL CC 상의 PDSCH 또는 PUSCH 자원을 할당할 수 있다.
● CIF를 갖도록 확장된 LTE DCI 포맷
- CIF (설정될 경우)는 고정된 x-비트 필드 (예, x=3)
- CIF (설정될 경우) 위치는 DCI 포맷 사이즈와 관계 없이 고정됨
CIF 존재 시, 기지국은 단말 측에서의 BD 복잡도를 낮추기 위해 모니터링 DL CC (세트)를 할당할 수 있다. PDSCH/PUSCH 스케줄링 위해, 단말은 해당 DL CC에서만 PDCCH의 검출/디코딩을 수행할 수 있다. 또한, 기지국은 모니터링 DL CC (세트)를 통해서만 PDCCH를 전송할 수 있다. 모니터링 DL CC 세트는 단말-특정, 단말-그룹-특정 또는 셀-특정 방식으로 세팅될 수 있다.
도 9는 3개의 DL CC가 병합되고 DL CC A가 모니터링 DL CC로 설정된 경우를 예시한다. CIF가 디스에이블 되면, LTE PDCCH 규칙에 따라 각 DL CC는 CIF 없이 각 DL CC의 PDSCH를 스케줄링 하는 PDCCH를 전송할 수 있다. 반면, CIF가 상위 계층 시그널링에 의해 이네이블 되면, CIF를 이용하여 오직 DL CC A만이 DL CC A의 PDSCH 뿐만 아니라 다른 DL CC의 PDSCH를 스케줄링 하는 PDCCH를 전송할 수 있다. 모니터링 DL CC로 설정되지 않은 DL CC B 및 C에서는 PDCCH가 전송되지 않는다. 여기서, "모티터링 DL CC (MCC)"는 모니터링 캐리어, 모니터링 셀, 스케줄링 캐리어, 스케줄링 셀, 서빙 캐리어, 서빙 셀 등과 같은 등가의 용어로 대체될 수 있다. 스케줄링 관점에서 PCC는 MCC로 지칭될 수 있다. PDCCH에 대응되는 PDSCH가 전송되는 DL CC, PDCCH에 대응되는 PUSCH가 전송되는 UL CC는 피스케줄링 캐리어, 피스케줄링 셀 등으로 지칭될 수 있다.
하나의 단말이 복수 셀을 병합(예, CA)하고 있는 상황에서 단말의 하드웨어 구성 혹은 기지국으로부터의 지시 등에 기인하여 복수 셀에서의 동시 송수신이 허용되지 않거나 불가능한 경우가 발생될 수 있다. 따라서, 복수 셀간에 서로 다른 전송 방향을 갖는 SF이 동일 시점(이하, 충돌(collided) SF)에 충돌하는 경우, 특정 셀의 SF 혹은 특정 전송 방향을 우선(prioritize)하는 방식으로 복수 셀의 SF을 구성할 수 있다. 일 예로, 서로 다른 UL-DL 구성을 가지는 복수 셀이 병합된 상황에서 동시 송수신이 제한될 수 있다. 이 경우, 3GPP 표준에서는 기본적으로 PCell 상의 SF(즉, 전송 방향)을 우선하여, 1) PCell의 D와 SCell의 U 혹은 S가 충돌하는 경우에는 SCell에서 모든 UL 신호 전송이 제한/생략되고, 2) PCell의 U와 SCell의 D가 충돌하는 경우에는 SCell에서 모든 DL 신호 수신이 제한/생략되며, 3) PCell의 S와 SCell의 D가 충돌하는 경우에는 SCell에서 PCFICH/PHICH/PDCCH 신호 등의 기존 제어 채널에 대한 수신 정도만 허용되고 PDSCH/EPDCCH/PMCH/PRS 신호에 대한 수신은 제한/생략될 수 있다(이하, HD(Half-Duplex)-TDD CA).
도 10~11은 HD-TDD CA 구조를 예시한다. 도면에서 회색 음영은 충돌 SF에서 사용이 제한되는 CC(링크 방향)를 예시한다. 도 10을 참조하면, PCell은 UL SF로 설정되고 SCell은 DL SF로 설정된 상황에서 PCell의 UL SF만을 운용하고 SCell의 DL SF에서 모든 DL 수신이 제한/생략될 수 있다. 도 11을 참조하면, PCell은 DL SF로 설정되고 SCell은 UL SF로 설정된 상황에서 PCell의 DL SF만을 운용하고 SCell의 UL SF에서 모든 UL 전송이 제한/생략될 수 있다.
한편, 단말의 위치 정보 산출을 위해, 기지국들은 단말에게 주기적으로 PRS(positioning reference signal)를 전송한다. PRS는 각 기지국의 다른 DL RS에 비하여 상대적으로 긴 주기로 전송하므로 단말은 매우 드물게 전송되는 PRS를 짧은 시간 내에 측정하여 측정 결과를 보고해야 할 수 있다. 이에 따라, PRS가 전송되는 SF를 하나라도 놓칠 경우에 PRS 측정 품질이 크게 저하될 수 있다. 따라서, 하프-듀플렉스 동작을 수행하는 단말의 경우, 특정 DL RS(예, PRS) 전송을 포함하는 SF에 대해서는 해당 SF가 SCell에 있더라도 PCell보다 우선하는 것이 효과적일 수 있다.
이하, SCell의 특정 D(이하, special SCell-D)와 PCell의 S 혹은 U(이하, collided PCell-S/U)가 충돌하는 특정 오버랩 SF(이하, special overlap SF)에서, special SCell-D를 우선하는 하프-듀플렉스 기반 단말 송수신 동작 방법을 제안한다. 여기서, special SCell-D는, SCell의 우선 순위가 PCell보다 높은 DL SF를 의미한다. special SCell-D는 SCell 상의 전체 DL 세트의 일부로 구성될 수 있다. 또한, special SCell-D는 SCell 상에서 주기적으로 구성될 수 있다. 편의상, SCell 상에서 special SCell-D 외의 DL SF를 non-special SCell-D라고 지칭한다. 이로 제한되는 것은 아니지만, special SCell-D는 SCell에서 특정 DL RS(예, PRS)의 전송 (가능) 시점으로 설정된 SF로 한정될 수 있다.
도 12는 본 발명에 따른 UL 전송 과정의 일 예를 나타낸다. 한 단말에 대해 PCell과 SCell을 포함하는 복수의 셀이 구성/병합되었다고 가정한다. 또한, 기지국으로부터의 시그널링(예, 시스템 정보)를 통해, PCell은 UL-DL 구성 #0으로 설정되고, SCell은 UL-DL 구성 #2로 설정되었다고 가정한다. 이 경우, special SCell-D가 SF #3이라고 가정하면, SCell 상의 SF는 다음과 같이 분류될 수 있다.
- SCell의 DL SF: SF #0, #3, #4, #5, #8, #9
- Collided SF: SF #3, #4, #8, #9
- Non-collided SF: SF #0, #1, #2, #5, #6, #7
- Special SCell-D: SF #3
- Non-special SCell-D: SF #0, #4, #5, #8, #9
따라서, 단말은 논-충돌 SF에서는 각 셀의 전송 방향에 따라 전송/수신 동작을 수행하고, PCell의 U와 SCell의 non-special SCell-D가 충돌하는 경우에는 SCell에서 모든 DL 신호 수신이 제한/생략될 수 있다. 도시하지는 않았지만, PCell의 S와 SCell의 non-special SCell-D가 충돌하는 경우에는 SCell에서 PCFICH/PHICH/PDCCH 신호 등의 기존 제어 채널에 대한 수신 정도만 허용되고 PDSCH/EPDCCH/PMCH/PRS 신호에 대한 수신은 제한/생략될 수 있다. 한편, PCell의 S 혹은 U와 SCell의 special SCell-D가 충돌하는 경우 special overlap SF에서 special SCell-D 수신을 위해, collided PCell-S/U에서의 모든 UL 신호 전송이 제한/생략될 수 있다.
도 13은 본 발명에 따른 UL 전송 과정의 다른 예를 나타낸다. DL 수신 시점은 전파 지연 등에 의해 지연되고, UL 전송 시점은 타이밍 어드밴스 명령에 의해 앞당겨지므로, special SCell-D 수신 종료 시점이 next PCell-U 전송 시작 시점보다 이후에 위치할 수 있다. 따라서, special overlap SF 바로 다음에 인접한 SF(이하, next SF)에서 PCell의 U(이하, next PCell-U)에 대해서도, special SCell-D 수신을 위하여 next PCell-U에서의 모든 혹은 특정 UL 신호 전송이 제한/생략될 수 있다. next PCell-U에서 전송이 제한/생략되는 UL 신호는 PUCCH/PUSCH/PRACH로 한정될 수 있으며, 예외적으로 next PCell-U에서 SRS 전송은 허용될 수 있다.이 경우 추가적으로, next SF에서 SCell의 D를 통해 전송되는 모든 혹은 특정 DL 신호에 대한 수신이 수행/허용될 수 있으며, 해당 특정 DL 신호의 경우 PCFICH/PHICH/PDCCH로 한정될 수 있다.
도 13을 참조하면, PCell/SCell 상의 SF는 다음과 같이 분류될 수 있다.
- SCell의 DL SF: SF #0, #3, #4, #5, #8, #9
- Collided SF: SF #3, #4, #8, #9
- Non-collided SF: SF #0, #1, #2, #5, #6, #7
- Special SCell-D: SF #3
- Next SF (=next PCell-U): SF #4
- Non-special SCell-D: SF #0, #4, #5, #8, #9
도 13에서 단말의 동작은 기본적으로 도 12와 동일하다. 다만, 도 13에서는 PCell의 U와 SCell의 special SCell-D가 충돌하는 경우 special SCell-D 수신을 위하여 next PCell-U에서의 모든 혹은 특정 UL 신호 전송이 제한/생략될 수 있다.
도 14~15는 Next SF에서의 신호 충돌을 설명하는 도면이다. 도 14는 기존 과정에서의 신호 충돌 여부를 나타내고, 도 15는 Next SF의 신호 충돌을 나타낸다. 도 14는 도 11의 일부에 해당하고, 도 15는 도 13의 일부(SF #2~4)에 해당한다.
도 14를 참조하면, 기존에는 PCell의 전송 방향이 항상 SCell보다 우선하며, DL SF(들)의 끝은 항상 S SF로 구성된다. 즉, PCell에서 DL SF의 끝은 {DL SF, S SF, UL SF}의 구조를 가진다. S SF는 DL-UL 스위칭을 위한 GP 구간을 포함하고 있으므로, PCell의 DL 수신 시점이 DL 전송 전파 지연 등에 의해 지연되고, SCell의 UL 전송 시점이 UL 전송 타이밍 어드밴스에 의해 앞당겨지더라도 GP에 의해 DL 수신 시점과 UL 전송 시점이 충돌하지 않는다. 따라서, 기존 과정에 따르면, DL SF의 다음 SF (즉, S SF)에서 SCell의 UL 전송이 제한/생략될 필요가 없다. 그러나, 도 15를 참조하면, 본 발명에서는 SCell의 특정 DL SF에서만 SCell의 전송 우선 순위가 PCell보다 높고, 그 외의 SF에서는 PCell의 전송 우선 순위가 SCell보다 높다. SCell의 SF #n+1을 특정 DL SF라고 가정 시, 단말은 SF #n+1에서는 SCell에서 DL 수신을 수행하고, SF #n+2에서는 PCell에서 UL 전송을 수행할 수 있다. 이 경우, SCell의 DL 수신 시점이 DL 전송 전파 지연 등에 의해 지연되고, PCell의 UL 전송 시점이 UL 전송 타이밍 어드밴스에 의해 앞당겨지면, SCell의 DL 수신과 PCell의 UL 전송이 충돌할 수 있다. 따라서, SCell의 DL 수신(예, PRS)을 보호하기 위해, SF #n+2에서 PCell의 모든 혹은 특정 UL 신호 전송이 제한/생략될 수 있다. 전송이 제한/생략되는 UL 신호는 PUCCH/PUSCH/PRACH로 한정될 수 있으며, 예외로 SRS 전송은 허용될 수 있다.
본 발명을 보다 일반화하면, special overlap SF 및 next SF에서 UL 신호 전송이 제한/생략되는 셀은 PCell로 국한되지 않을 수 있다. 구체적으로, special overlap SF에 S 혹은 U가 설정된 임의의 혹은 모든 셀에 대해 collided PCell-S/U 및 next PCell-U에서의 UL 신호 전송 제한/생략 동작이 동일하게 적용될 수 있다. 이 경우, SCell은 special overlap SF에 특정 DL RS (예, PRS) 전송이 설정된 셀로 대체되고, PCell은 special overlap SF에 S 혹은 U가 설정된 셀로 대체될 수 있다. 보다 일반적으로, 특정 셀로부터의 특정 DL RS (예, PRS)에 대한 수신 구간 동안 나머지 셀을 통한 모든 UL 신호 전송이 제한/생략될 수 있다.
도 16은 본 발명에 적용될 수 있는 기지국, 릴레이 및 단말을 예시한다.
도 16을 참조하면, 무선 통신 시스템은 기지국(BS, 110) 및 단말(UE, 120)을 포함한다. 무선 통신 시스템이 릴레이를 포함하는 경우, 기지국 또는 단말은 릴레이로 대체될 수 있다.
기지국(110)은 프로세서(112), 메모리(114) 및 무선 주파수(Radio Frequency: RF) 유닛(116)을 포함한다. 프로세서(112)는 본 발명에서 제안한 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리(114)는 프로세서(112)와 연결되고 프로세서(112)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛(116)은 프로세서(112)와 연결되고 무선 신호를 송신 및/또는 수신한다. 단말(120)은 프로세서(122), 메모리(124) 및 무선 주파수 유닛(126)을 포함한다. 프로세서(122)는 본 발명에서 제안한 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리(124)는 프로세서(122)와 연결되고 프로세서(122)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛(126)은 프로세서(122)와 연결되고 무선 신호를 송신 및/또는 수신한다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 본 발명의 실시예들은 주로 단말과 기지국 간의 신호 송수신 관계를 중심으로 설명되었다. 이러한 송수신 관계는 단말과 릴레이 또는 기지국과 릴레이간의 신호 송수신에도 동일/유사하게 확장된다. 본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다. 또한, 단말은 UE(User Equipment), MS(Mobile Station), MSS(Mobile Subscriber Station) 등의 용어로 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 무선 이동 통신 시스템의 단말기, 기지국, 또는 기타 다른 장비에 사용될 수 있다. 구체적으로, 본 발명은 상향링크 제어 정보를 전송하는 방법 및 이를 위한 장치에 적용될 수 있다.

Claims (12)

  1. 무선 통신 시스템에서 단말이 UL 전송을 제어하는 방법에 있어서,
    제1 UL-DL 구성(Uplink-Downlink configuration)의 제1 셀과 제2 UL-DL 구성의 제2 셀을 구성하되, 상기 제1 셀에서 SF(subframe) #n은 UL SF 또는 S(special) SF이고 SF #n+1은 UL SF이며, 상기 제2 셀에서 SF #n은 DL SF인 단계; 및
    상기 제1 셀의 SF #n+1에서 UL 전송을 제어하는 단계를 포함하되,
    상기 SF #n에서 상기 제1 셀의 우선순위가 상기 제2 셀보다 높은 경우, 상기 제1 셀의 SF #n+1에서 UL 전송은 정상적으로 수행되고,
    상기 SF #n에서 상기 제1 셀의 우선순위가 상기 제2 셀보다 낮은 경우, 상기 제1 셀의 SF #n+1에서 UL 전송은 적어도 일부가 제한되며,
    UL-DL 구성에 따른 무선 프레임 내 SF 구성은 아래와 같은 방법:
    Figure PCTKR2016005398-appb-I000003
    여기서, D는 DL SF를, U는 UL SF를, S는 SF를 나타내고, S SF는 DwPTS(Downlink Pilot TimeSlot), GP(Guard Period), UpPTS(Uplink Pilot TimeSlot)를 포함한다.
  2. 제1항에 있어서,
    상기 제1 셀은 PCell(Primary Cell)이고, 상기 제2 셀은 SCell(Secondary Cell)인 방법.
  3. 제1항에 있어서,
    상기 제2 셀의 SF #n에서 특정 RS(Reference Signal)가 전송되지 않는 경우, 상기 SF #n에서 상기 제1 셀의 우선순위가 상기 제2 셀보다 높고,
    상기 제2 셀의 SF #n에 상기 특정 RS가 전송되는 경우, 상기 SF #n에서 상기 제1 셀의 우선순위가 상기 제2 셀보다 늦은 방법.
  4. 제3항에 있어서,
    상기 특정 RS는 PRS(Positioning Reference Signal)를 포함하는 방법.
  5. 제1항에 있어서,
    상기 SF #n에서 상기 제1 셀의 우선순위가 상기 제2 셀보다 낮은 경우, 상기 제1 셀의 SF #n+1에서 PUCCH(Physical Uplink Control Channel) 및 PUSCH(Physical Uplink Shared Channel) 전송이 스킵되는 방법.
  6. 제5항에 있어서,
    상기 SF #n에서 상기 제1 셀의 우선순위가 상기 제2 셀보다 낮은 경우, 상기 제1 셀의 SF #n+1에서 SRS(Sounding Reference Signal) 전송이 정상적으로 수행되는 방법.
  7. 무선 통신 시스템에 사용되는 단말에 있어서,
    RF(Radio Frequency) 유닛; 및
    프로세서를 포함하고, 상기 프로세서는,
    제1 UL-DL 구성(Uplink-Downlink configuration)의 제1 셀과 제2 UL-DL 구성의 제2 셀을 구성하되, 상기 제1 셀에서 SF(subframe) #n은 UL SF 또는 S(special) SF이고 SF #n+1은 UL SF이며, 상기 제2 셀에서 SF #n은 DL SF이고,
    상기 제1 셀의 SF #n+1에서 UL 전송을 제어하도록 구성되고,
    상기 SF #n에서 상기 제1 셀의 우선순위가 상기 제2 셀보다 높은 경우, 상기 제1 셀의 SF #n+1에서 UL 전송은 정상적으로 수행되고,
    상기 SF #n에서 상기 제1 셀의 우선순위가 상기 제2 셀보다 낮은 경우, 상기 제1 셀의 SF #n+1에서 UL 전송은 적어도 일부가 제한되며,
    UL-DL 구성에 따른 무선 프레임 내 SF 구성은 아래와 같은 단말:
    Figure PCTKR2016005398-appb-I000004
    여기서, D는 DL SF를, U는 UL SF를, S는 SF를 나타내고, S SF는 DwPTS(Downlink Pilot TimeSlot), GP(Guard Period), UpPTS(Uplink Pilot TimeSlot)를 포함한다.
  8. 제7항에 있어서,
    상기 제1 셀은 PCell(Primary Cell)이고, 상기 제2 셀은 SCell(Secondary Cell)인 단말.
  9. 제7항에 있어서,
    상기 제2 셀의 SF #n에서 특정 RS(Reference Signal)가 전송되지 않는 경우, 상기 SF #n에서 상기 제1 셀의 우선순위가 상기 제2 셀보다 높고,
    상기 제2 셀의 SF #n에 상기 특정 RS가 전송되는 경우, 상기 SF #n에서 상기 제1 셀의 우선순위가 상기 제2 셀보다 늦은 단말.
  10. 제9항에 있어서,
    상기 특정 RS는 PRS(Positioning Reference Signal)를 포함하는 단말.
  11. 제7항에 있어서,
    상기 SF #n에서 상기 제1 셀의 우선순위가 상기 제2 셀보다 낮은 경우, 상기 제1 셀의 SF #n+1에서 PUCCH(Physical Uplink Control Channel) 및 PUSCH(Physical Uplink Shared Channel) 전송이 스킵되는 단말.
  12. 제11항에 있어서,
    상기 SF #n에서 상기 제1 셀의 우선순위가 상기 제2 셀보다 낮은 경우, 상기 제1 셀의 SF #n+1에서 SRS(Sounding Reference Signal) 전송이 정상적으로 수행되는 단말.
PCT/KR2016/005398 2015-05-22 2016-05-20 무선 통신 시스템에서 신호의 전송 방법 및 장치 WO2016190626A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/576,255 US10568109B2 (en) 2015-05-22 2016-05-20 Method and apparatus for transmitting signal based on priorities of cells in wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562165221P 2015-05-22 2015-05-22
US62/165,221 2015-05-22

Publications (1)

Publication Number Publication Date
WO2016190626A1 true WO2016190626A1 (ko) 2016-12-01

Family

ID=57393359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005398 WO2016190626A1 (ko) 2015-05-22 2016-05-20 무선 통신 시스템에서 신호의 전송 방법 및 장치

Country Status (2)

Country Link
US (1) US10568109B2 (ko)
WO (1) WO2016190626A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170111818A1 (en) * 2014-03-21 2017-04-20 Nokia Solutions And Networks Oy Cross reporting or empty buffers in dual connectivity

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026400A1 (ja) * 2015-08-13 2017-02-16 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
US11689313B2 (en) 2018-07-06 2023-06-27 Qualcomm Incorporated Re-allocation of positioning reference signal resources to accommodate another transmission
US11558877B2 (en) 2018-11-12 2023-01-17 Qualcomm Incorporated Managing an overlap between a set of resources allocated to a positioning reference signal and a set of resources allocated to a physical channel
JP7293253B2 (ja) * 2018-11-22 2023-06-19 株式会社Nttドコモ 端末、無線通信方法及びシステム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120327821A1 (en) * 2011-06-21 2012-12-27 Mediatek, Inc, Systems and Methods for Different TDD Configurations in Carrier Aggregation
EP2557878A1 (en) * 2011-08-11 2013-02-13 Industrial Technology Research Institute Method of uplink control information transmission
US20130242814A1 (en) * 2012-03-16 2013-09-19 Yiping Wang Uplink control channel resource collision resolution in carrier aggregation systems

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182742A1 (ja) * 2014-05-30 2015-12-03 シャープ株式会社 端末装置、基地局装置および通信方法
US9491575B2 (en) * 2014-06-13 2016-11-08 Qualcomm Incorporated Positioning beacons with wireless backhaul

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120327821A1 (en) * 2011-06-21 2012-12-27 Mediatek, Inc, Systems and Methods for Different TDD Configurations in Carrier Aggregation
EP2557878A1 (en) * 2011-08-11 2013-02-13 Industrial Technology Research Institute Method of uplink control information transmission
US20130242814A1 (en) * 2012-03-16 2013-09-19 Yiping Wang Uplink control channel resource collision resolution in carrier aggregation systems

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3GPP; TSGRAN; E-UTRA; Physical Channels and Modulation (Release 12)", 3GPP TS 36.211 V12.5.0, 26 March 2015 (2015-03-26), XP014248540 *
ERICSSON: "Clarification on Different TDD Configurations for OTDOA in CA", R1-152515, 3GPP TSG-RAN1 #81, 16 May 2015 (2015-05-16), Fuknoka, Japan, XP050969026 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170111818A1 (en) * 2014-03-21 2017-04-20 Nokia Solutions And Networks Oy Cross reporting or empty buffers in dual connectivity
US10631194B2 (en) * 2014-03-21 2020-04-21 Nokia Solutions And Networks Oy Cross reporting of empty or non-empty buffers in dual connectivity

Also Published As

Publication number Publication date
US10568109B2 (en) 2020-02-18
US20180146485A1 (en) 2018-05-24

Similar Documents

Publication Publication Date Title
WO2017146556A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2013002591A2 (ko) 무선 통신 시스템에서 사용자 기기의 신호 송수신 방법
WO2013191518A1 (ko) 기기-대-기기 통신을 위한 스케줄링 방법 및 이를 위한 장치
WO2017099556A1 (ko) 상향링크 신호를 전송하는 방법 및 이를 위한 장치
WO2012124969A2 (ko) 신호 송수신 방법 및 이를 위한 장치
WO2016021992A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2013095004A1 (ko) 무선 통신 시스템에서 랜덤 접속 과정의 수행 방법 및 장치
WO2012124996A2 (ko) 신호 송수신 방법 및 이를 위한 장치
WO2014142593A1 (ko) 제어 채널의 송수신 방법 및 이를 위한 장치
WO2013002576A2 (ko) 상향링크 신호 전송방법 및 수신방법과, 사용자기기 및 기지국
WO2015012665A1 (ko) Mtc를 위한 신호 전송 방법 및 이를 위한 장치
WO2017082696A1 (ko) 무선 신호를 전송하는 방법 및 이를 위한 장치
WO2016208994A1 (ko) 무선 통신 시스템에서 신호의 전송 방법 및 장치
WO2013035974A1 (en) Method for transmitting uplink signals from a user equipment to a base station in a wireless communication system and method for the same
KR102001932B1 (ko) 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
WO2016036100A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2013125871A1 (ko) 사용자기기의 통신 방법 및 사용자기기와, 기지국의 통신 방법 및 기지국
WO2018048273A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 신호 전송 방법 및 이를 위한 장치
WO2013129866A1 (ko) 캐리어 타입을 고려한 통신 방법 및 이를 위한 장치
WO2013012261A2 (ko) 무선통신 시스템에서 자원 할당 정보를 송신 및 수신하는 방법과 이를 위한 장치
WO2015163748A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2016085310A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2013169003A1 (ko) 제어 신호 송수신 방법 및 이를 위한 장치
WO2017026848A1 (ko) 무선 신호를 송수신하는 방법 및 이를 위한 장치
WO2018164450A1 (ko) 무선 통신 시스템에서 ack/nack 자원 할당 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16800265

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15576255

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16800265

Country of ref document: EP

Kind code of ref document: A1