[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017082696A1 - 무선 신호를 전송하는 방법 및 이를 위한 장치 - Google Patents

무선 신호를 전송하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2017082696A1
WO2017082696A1 PCT/KR2016/013038 KR2016013038W WO2017082696A1 WO 2017082696 A1 WO2017082696 A1 WO 2017082696A1 KR 2016013038 W KR2016013038 W KR 2016013038W WO 2017082696 A1 WO2017082696 A1 WO 2017082696A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch
transmission
control information
uplink control
transmitted
Prior art date
Application number
PCT/KR2016/013038
Other languages
English (en)
French (fr)
Inventor
양석철
김기준
이윤정
서한별
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/775,640 priority Critical patent/US10397906B2/en
Publication of WO2017082696A1 publication Critical patent/WO2017082696A1/ko
Priority to US16/517,537 priority patent/US10701675B2/en
Priority to US16/914,047 priority patent/US11445486B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting a wireless signal.
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • An object of the present invention is to provide a method and an apparatus therefor for efficiently transmitting a wireless signal in a wireless communication system.
  • a periodically allocated Physical Uplink Shared Channel (PUSCH) resource is obtained, wherein the periodically allocated PUSCH resource is a first resource; Used to transmit a PUSCH; Performing a process for transmitting the uplink control information when transmission of the uplink control information is required at the time of transmission of the first PUSCH; And transmitting the uplink control information.
  • the uplink control information is transmitted through the first PUSCH.
  • the uplink control information is transmitted through the second PUSCH.
  • a terminal used in a wireless communication system comprising: a radio frequency (RF) unit; And a processor, wherein the processor acquires a periodically allocated Physical Uplink Shared Channel (PUSCH) resource, wherein the periodically allocated PUSCH resource is used to transmit a first PUSCH and is a transmission time of the first PUSCH.
  • RF radio frequency
  • PUSCH Physical Uplink Shared Channel
  • the uplink control information When the transmission of the uplink control information is required to perform the process for transmitting the uplink control information, and is configured to transmit the uplink control information, aperiodically assigned at the transmission time of the first PUSCH When there is no second PUSCH, the uplink control information is transmitted through the first PUSCH, and when there is a second PUSCH allocated aperiodically at a transmission time of the first PUSCH, the uplink control information.
  • the UE is provided through the second PUSCH.
  • the first PUSCH may be a PUSCH used to carry information of a first type requiring low latency.
  • the first PUSCH may be a PUSCH used to carry uplink shared channel (UL-SCH) data having Transmission Control Protocol Acknowledgment (TCP-ACK).
  • UL-SCH uplink shared channel
  • TCP-ACK Transmission Control Protocol Acknowledgment
  • the second PUSCH may be a PUCCH used to carry retransmission data.
  • the second PUSCH may be a PUSCH used to carry channel state information (CSI) without UL-SCH data.
  • CSI channel state information
  • a wireless signal can be efficiently transmitted in a wireless communication system.
  • FIG. 1 illustrates physical channels used in a 3GPP LTE system, which is an example of a wireless communication system, and a general signal transmission method using the same.
  • FIG. 2 illustrates a structure of a radio frame.
  • FIG. 3 illustrates a resource grid of a downlink slot.
  • 5 illustrates a structure of an uplink subframe.
  • CA 7 illustrates a Carrier Aggregation (CA) communication system.
  • FIG 9 illustrates a transmission process according to an embodiment of the present invention.
  • FIG. 10 illustrates a base station and a terminal that can be applied to the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of Evolved UMTS (E-UMTS) using E-UTRA and LTE-A (Advanced) is an evolved version of 3GPP LTE.
  • 3GPP LTE / LTE-A the technical spirit of the present invention is not limited thereto.
  • a terminal receives information through a downlink (DL) from a base station, and the terminal transmits information through an uplink (UL) to the base station.
  • the information transmitted and received between the base station and the terminal includes data and various control information, and various physical channels exist according to the type / use of the information transmitted and received.
  • FIG. 1 is a diagram for explaining physical channels used in a 3GPP LTE system and a general signal transmission method using the same.
  • the terminal which is powered on again or enters a new cell while the power is turned off performs an initial cell search operation such as synchronizing with the base station in step S101.
  • the terminal receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station, synchronizes with the base station, and provides information such as cell identity (cell identity). Acquire.
  • the terminal may receive a physical broadcast channel (PBCH) from the base station to obtain broadcast information in a cell.
  • PBCH physical broadcast channel
  • the terminal may check a downlink channel state by receiving a downlink reference signal (DL RS) in an initial cell search step.
  • DL RS downlink reference signal
  • the UE After completing the initial cell discovery, the UE receives a physical downlink control channel (PDSCH) according to physical downlink control channel (PDCCH) and physical downlink control channel information in step S102 to be more specific.
  • PDSCH physical downlink control channel
  • PDCCH physical downlink control channel
  • System information can be obtained.
  • the terminal may perform a random access procedure such as steps S103 to S106 to complete the access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S103), a response message to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel. Can be received (S104).
  • contention resolution procedure such as transmission of an additional physical random access channel (S105) and reception of a physical downlink control channel and a corresponding physical downlink shared channel (S106). ) Can be performed.
  • the UE After performing the above-described procedure, the UE performs a general downlink control channel / physical downlink shared channel reception (S107) and a physical uplink shared channel (PUSCH) / as a general uplink / downlink signal transmission procedure.
  • Physical uplink control channel (PUCCH) transmission (S108) may be performed.
  • the control information transmitted from the terminal to the base station is collectively referred to as uplink control information (UCI).
  • UCI includes Hybrid Automatic Repeat and reQuest Acknowledgment / Negative-ACK (HARQ ACK / NACK), Scheduling Request (SR), Channel State Information (CSI), and the like.
  • HARQ ACK / NACK Hybrid Automatic Repeat and reQuest Acknowledgment / Negative-ACK
  • SR Scheduling Request
  • CSI Channel State Information
  • the CSI includes a Channel Quality Indicator (CQI), a Precoding Matrix Indicator (PMI), a Rank Indication (RI), and the like.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indication
  • UCI is generally transmitted through PUCCH, but may be transmitted through PUSCH when control information and traffic data should be transmitted at the same time. In addition, the UCI may be aperiodically transmitted through the PUSCH by the request / instruction of the network.
  • the uplink / downlink data packet transmission is performed in subframe units, and the subframe is defined as a time interval including a plurality of symbols.
  • the 3GPP LTE standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
  • one subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms.
  • One slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • RB resource blocks
  • an OFDM symbol represents one symbol period.
  • An OFDM symbol may also be referred to as an SC-FDMA symbol or symbol period.
  • a resource block (RB) as a resource allocation unit may include a plurality of consecutive subcarriers in one slot.
  • the number of OFDM symbols included in the slot may vary depending on the configuration of a cyclic prefix (CP).
  • CP has an extended CP (normal CP) and a normal CP (normal CP).
  • normal CP when an OFDM symbol is configured by a normal CP, the number of OFDM symbols included in one slot may be seven.
  • extended CP since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the normal CP.
  • the number of OFDM symbols included in one slot may be six.
  • an extended CP may be used to further reduce intersymbol interference.
  • the subframe includes 14 OFDM symbols.
  • First up to three OFDM symbols of a subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • Type 2 (b) illustrates the structure of a type 2 radio frame.
  • Type 2 radio frames consist of two half frames.
  • the half frame includes 4 (5) normal subframes and 1 (0) special subframes.
  • the general subframe is used for uplink or downlink according to the UL-Downlink configuration.
  • the subframe consists of two slots.
  • Table 1 illustrates a subframe configuration in a radio frame according to the UL-DL configuration.
  • D represents a downlink subframe
  • U represents an uplink subframe
  • S represents a special subframe.
  • the special subframe includes a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • the structure of the radio frame is merely an example, and the number of subframes, the number of slots, and the number of symbols in the radio frame may be variously changed.
  • FIG. 3 illustrates a resource grid for a downlink slot.
  • the downlink slot includes a plurality of OFDM symbols in the time domain.
  • one downlink slot includes 7 OFDM symbols and one resource block (RB) is illustrated as including 12 subcarriers in the frequency domain.
  • Each element on the resource grid is referred to as a resource element (RE).
  • One RB contains 12 * 7 REs.
  • the number N DL of RBs included in the downlink slot depends on the downlink transmission band.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 4 illustrates a structure of a downlink subframe.
  • up to three (4) OFDM symbols located in front of the first slot in a subframe correspond to a control region to which a control channel is allocated.
  • the remaining OFDM symbol corresponds to a data region to which a physical downlink shared chance (PDSCH) is allocated, and a basic resource unit of the data region is RB.
  • Examples of downlink control channels used in LTE include a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid ARQ indicator channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information on the number of OFDM symbols used for transmission of a control channel within the subframe.
  • the PHICH is a response to uplink transmission and carries an HARQ ACK / NACK (acknowledgment / negative-acknowledgment) signal.
  • Control information transmitted on the PDCCH is referred to as downlink control information (DCI).
  • DCI includes uplink or downlink scheduling information or an uplink transmit power control command for a certain group of terminals.
  • DCI downlink control information
  • the DCI format has formats 0, 3, 3A, 4 for uplink, formats 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C, etc. defined for downlink.
  • the type of the information field, the number of information fields, the number of bits of each information field, etc. vary according to the DCI format.
  • the DCI format may include a hopping flag, an RB assignment, a modulation coding scheme (MCS), a redundancy version (RV), a new data indicator (NDI), a transmit power control (TPC), It optionally includes information such as a HARQ process number and a precoding matrix indicator (PMI) confirmation.
  • MCS modulation coding scheme
  • RV redundancy version
  • NDI new data indicator
  • TPC transmit power control
  • PMI precoding matrix indicator
  • any DCI format may be used for transmitting two or more kinds of control information.
  • DCI format 0 / 1A is used to carry DCI format 0 or DCI format 1, which are distinguished by a flag field.
  • the PDCCH includes a transmission format and resource allocation of a downlink shared channel (DL-SCH), resource allocation information for an uplink shared channel (UL-SCH), paging information for a paging channel (PCH), and system information on the DL-SCH. ), Resource allocation information of a higher-layer control message such as a random access response transmitted on a PDSCH, transmission power control commands for individual terminals in an arbitrary terminal group, activation of voice over IP (VoIP), and the like. .
  • a plurality of PDCCHs may be transmitted in the control region.
  • the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregation of one or a plurality of consecutive CCEs (consecutive control channel elements).
  • the CCE is a logical allocation unit used to provide a PDCCH of a predetermined coding rate according to the state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups (REGs).
  • the format of the PDCCH and the number of bits of the available PDCCH are determined according to the correlation between the number of CCEs and the code rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and adds a cyclic redundancy check (CRC) to the control information.
  • the CRC is masked with a unique identifier (referred to as a radio network temporary identifier (RNTI)) depending on the owner of the PDCCH or the intended use.
  • RNTI radio network temporary identifier
  • a unique identifier (eg, C-RNTI (cell-RNTI)) of the terminal is masked on the CRC.
  • C-RNTI cell-RNTI
  • a paging indication identifier eg, p-RNTI (p-RNTI)
  • SIB system information block
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • the PDCCH carries a message known as DCI, and in general, a plurality of PDCCHs are transmitted in subframes. Each PDCCH is transmitted using one or more CCEs. One CCE corresponds to nine REGs and one REG corresponds to four REs. Four QPSK symbols are mapped to each REG. Resource elements occupied by the reference signal are not included in the REG. Thus, the number of REGs within a given OFDM symbol depends on the presence of a cell-specific reference signal. The REG concept is also used for other downlink control channels (ie, PDFICH and PHICH). Four PDCCH formats are supported as described in Table 2.
  • CCEs are numbered consecutively, and to simplify the decoding process, a PDCCH having a format composed of n CCEs can only be started in a CCE having a number corresponding to a multiple of n.
  • the number of CCEs used for transmission of a specific PDCCH is determined by the base station according to the channel state. For example, in case of a PDCCH for a UE having a good downlink channel (eg, adjacent to a base station), one CCE may be sufficient. However, in case of a PDCCH for a terminal having a poor channel (eg, near the cell boundary), eight CCEs may be required to obtain sufficient robustness.
  • the power level of the PDCCH may be adjusted according to the channel state.
  • a CCE set in which a PDCCH can be located is defined for each UE.
  • the CCE set in which the UE can discover its own PDCCH is referred to as a PDCCH search space, or simply a search space (SS).
  • An individual resource to which a PDCCH can be transmitted in a search space is referred to as a PDCCH candidate.
  • One PDCCH candidate corresponds to 1, 2, 4 or 8 CCEs according to the CCE aggregation level.
  • the base station transmits the actual PDCCH (DCI) on any PDCCH candidate in the search space, and the terminal monitors the search space to find the PDCCH (DCI). Specifically, the UE attempts blind decoding (BD) on PDCCH candidates in the search space.
  • DCI actual PDCCH
  • BD blind decoding
  • the search space for each PDCCH format may have a different size.
  • Dedicated (or UE-specific search space (UE-specific SS, USS)) and common search space (Common SS, CSS) are defined.
  • the dedicated search space is configured for each individual terminal, and all terminals are provided with information about the range of the common search space.
  • Dedicated and common search spaces may overlap for a given terminal.
  • the base station may not be able to find a CCE resource for sending a PDCCH to all desired terminals in a given subframe. This is because CCE resources are already allocated to other UEs, and therefore, there may be no more CCE resources for the UEs in the search space of the UEs (blocking).
  • a terminal-specific hopping sequence is applied to the start position of the dedicated search space. Table 3 shows the sizes of common and dedicated search spaces.
  • the UE does not search all defined DCI formats at the same time.
  • the terminal in a dedicated search space, the terminal always searches for formats 0 and 1A. Formats 0 and 1A have the same size and are separated by flags in the message.
  • the terminal may be further required to receive another format (ie, 1, 1B or 2 depending on the PDSCH transmission mode set by the base station).
  • the terminal searches for formats 1A and 1C.
  • the terminal may be configured to search for format 3 or 3A. Format 3 / 3A has the same size as format 0 / 1A and is distinguished by whether it has a CRC scrambled with a different (common) identifier.
  • Information contents of a transmission mode and a DCI format for configuring a multi-antenna technology are as follows.
  • Transmission mode 1 Transmission from a single base station antenna port
  • Transmission mode 3 Open-loop spatial multiplexing
  • Transmission mode 7 Transmission using UE-specific reference signals
  • Format 1D Compact resource assignments for PDSCH using multi-user MIMO (mode 5)
  • 5 illustrates a structure of an uplink subframe.
  • the subframe 500 includes two 0.5 ms slots 501.
  • each slot consists of seven symbols 502 and one symbol corresponds to one SC-FDMA symbol.
  • the resource block 503 is a resource allocation unit corresponding to 12 subcarriers in the frequency domain and one slot in the time domain.
  • the structure of an uplink subframe is largely divided into a data region 504 and a control region 505.
  • the data area refers to a communication resource used by the terminal to transmit data such as voice and packets, and includes a PUSCH (Physical Uplink Shared Channel).
  • the control region means a communication resource used by the UE to transmit uplink control information (UCI) and includes a PUCCH (Physical Uplink Control Channel).
  • PUCCH may be used to transmit the following uplink control information.
  • SR Service Request: Information used for requesting an uplink UL-SCH resource. It is transmitted using OOK (On-Off Keying) method.
  • HARQ-ACK A response to a downlink data packet (eg, a codeword) on a PDSCH. Indicates whether the downlink data packet was successfully received.
  • One bit of HARQ-ACK is transmitted in response to a single downlink codeword, and two bits of HARQ-ACK are transmitted in response to two downlink codewords.
  • HARQ-ACK responses include positive ACK (simply ACK), negative ACK (NACK), DTX or NACK / DTX.
  • HARQ-ACK is mixed with HARQ ACK / NACK, ACK / NACK.
  • CSI Channel State Information
  • MIMO Multiple Input Multiple Output
  • RI rank indicator
  • PMI precoding matrix indicator
  • the amount of control information that the UE can transmit in a subframe depends on the number of available SC-FDMA.
  • SC-FDMA available for transmission of control information means the remaining SC-FDMA symbol except for the SC-FDMA symbol for transmitting the reference signal in the subframe, and in the case of the subframe in which the Sounding Reference Signal (SRS) is set, the last of the subframe SC-FDMA symbols are also excluded.
  • the reference signal is used for coherent detection of the PUCCH.
  • PUCCH supports various formats according to the transmitted information.
  • Table 4 shows a mapping relationship between PUCCH format and UCI in LTE (-A).
  • the SRS is transmitted 506 on the last SC-FDMA symbol in the subframe.
  • SRSs of multiple terminals transmitted through the same SC-FDMA symbol can be distinguished according to frequency location / sequence.
  • SRS is transmitted aperiodically or periodically.
  • UCI is divided into two methods of simultaneously transmitting UL-SCH data.
  • the first method is a method of simultaneously transmitting a PUCCH and a PUSCH
  • the second method is a method of multiplexing UCI in a PUSCH as in the existing LTE. Whether simultaneous transmission of the PUCCH and the PUSCH is allowed may be set by an upper layer.
  • the first method is applied when PUCCH + PUSCH simultaneous transmission is enabled, and the second method is applied when PUCCH + PUSCH simultaneous transmission is disabled.
  • the existing LTE terminal cannot transmit the PUCCH and the PUSCH at the same time, when UCI (eg, CQI / PMI, HARQ-ACK, RI, etc.) transmission is required in the subframe in which the PUSCH is transmitted, a method of multiplexing the UCI in the PUSCH region is used. .
  • the UE when HARQ-ACK needs to be transmitted in a subframe to which PUSCH transmission is allocated, the UE multiplexes UL-SCH data and HARQ-ACK before DFT-spreading, and then transmits control information and data together through PUSCH. do.
  • the UE When transmitting control information in a subframe to which PUSCH transmission is allocated, the UE multiplexes the control information (UCI) and the UL-SCH data together before DFT-spreading.
  • the control information includes at least one of CQI / PMI, HARQ ACK / NACK, and RI.
  • Each RE number used for CQI / PMI, ACK / NACK, and RI transmissions is based on a Modulation and Coding Scheme (MCS) and an offset value allocated for PUSCH transmission.
  • MCS Modulation and Coding Scheme
  • the offset value allows different coding rates according to the control information and is set semi-statically by higher layer (eg RRC) signals.
  • UL-SCH data and control information are not mapped to the same RE. Control information is mapped to exist in both slots of the subframe.
  • CQI and / or PMI (CQI / PMI) resources are located at the beginning of the UL-SCH data resource and are sequentially mapped to all SC-FDMA symbols on one subcarrier and then mapped on the next subcarrier. .
  • CQI / PMI is mapped in a subcarrier in a direction from left to right, that is, SC-FDMA symbol index increases.
  • PUSCH data (UL-SCH data) is rate-matched taking into account the amount of CQI / PMI resources (ie, the number of coded symbols). The same modulation order as the UL-SCH data is used for CQI / PMI.
  • the ACK / NACK is inserted through puncturing into a part of the SC-FDMA resource to which the UL-SCH data is mapped.
  • the ACK / NACK is located next to the RS and is filled in the direction of increasing up, i.e., subcarrier index, starting from the bottom in the corresponding SC-FDMA symbol.
  • an SC-FDMA symbol for ACK / NACK is located at SC-FDMA symbol # 2 / # 5 in each slot. Regardless of whether ACK / NACK actually transmits in a subframe, the coded RI is located next to the symbol for ACK / NACK.
  • control information may be scheduled to be transmitted on the PUSCH without UL-SCH data.
  • Control information (CQI / PMI, RI and / or ACK / NACK) is multiplexed before DFT-spreading to maintain low Cubic Metric (CM) single-carrier characteristics. Multiplexing ACK / NACK, RI and CQI / PMI is similar to that shown in FIG.
  • the SC-FDMA symbol for ACK / NACK is located next to the RS, and the resource to which the CQI is mapped may be punctured.
  • the number of REs for ACK / NACK and RI is based on the reference MCS (CQI / PMI MCS) and offset parameters.
  • the reference MCS is calculated from the CQI payload size and resource allocation.
  • Channel coding and rate matching for control signaling without UL-SCH data is the same as the case of control signaling with UL-SCH data described above.
  • the LTE-A system collects a plurality of uplink / downlink frequency blocks to use a wider frequency band and uses a carrier aggregation or bandwidth aggregation technique that uses a larger uplink / downlink bandwidth.
  • Each frequency block is transmitted using a component carrier (CC).
  • the component carrier may be understood as the carrier frequency (or center carrier, center frequency) for the corresponding frequency block.
  • a plurality of uplink / downlink component carriers may be collected to support a wider uplink / downlink bandwidth.
  • Each of the CCs may be adjacent or non-adjacent to each other in the frequency domain.
  • the bandwidth of each component carrier can be determined independently. It is also possible to merge asymmetric carriers in which the number of UL CCs and the number of DL CCs are different. For example, in case of two DL CCs and one UL CC, the configuration may be configured to correspond to 2: 1.
  • the DL CC / UL CC link may be fixed in the system or configured semi-statically.
  • the frequency band that a specific UE can monitor / receive may be limited to M ( ⁇ N) CCs.
  • Various parameters for carrier aggregation may be set in a cell-specific, UE group-specific or UE-specific manner.
  • the control information may be set to be transmitted and received only through a specific CC.
  • This particular CC may be referred to as a primary CC (or PCC) (or anchor CC), and the remaining CC may be referred to as a secondary CC (SCC).
  • PCC primary CC
  • SCC secondary CC
  • LTE-A uses the concept of a cell to manage radio resources.
  • a cell is defined as a combination of downlink resources and uplink resources, and uplink resources are not required. Accordingly, the cell may be configured with only downlink resources or with downlink resources and uplink resources. If carrier aggregation is supported, the linkage between the carrier frequency (or DL CC) of the downlink resource and the carrier frequency (or UL CC) of the uplink resource may be indicated by system information.
  • a cell operating on the primary frequency (or PCC) may be referred to as a primary cell (PCell), and a cell operating on the secondary frequency (or SCC) may be referred to as a secondary cell (SCell).
  • PCell primary cell
  • SCell secondary cell
  • the PCell is used by the terminal to perform an initial connection establishment process or to perform a connection re-establishment process.
  • PCell may refer to a cell indicated in the handover process.
  • the SCell is configurable after the RRC connection is established and can be used to provide additional radio resources.
  • PCell and SCell may be collectively referred to as a serving cell. Therefore, in the case of the UE that is in the RRC_CONNECTED state, but carrier aggregation is not configured or does not support carrier aggregation, there is only one serving cell configured only with the PCell.
  • the network may configure one or more SCells for the UE supporting carrier aggregation in addition to the PCell initially configured in the connection establishment process.
  • the PDCCH for downlink allocation may be transmitted on DL CC # 0, and the corresponding PDSCH may be transmitted on DL CC # 2.
  • the introduction of a carrier indicator field (CIF) may be considered.
  • the presence or absence of the CIF in the PDCCH may be set in a semi-static and terminal-specific (or terminal group-specific) manner by higher layer signaling (eg, RRC signaling).
  • RRC signaling eg, RRC signaling
  • PDCCH on DL CC allocates PDSCH resources on the same DL CC or PUSCH resources on one linked UL CC
  • PDCCH on DL CC can allocate PDSCH or PUSCH resource on a specific DL / UL CC among a plurality of merged DL / UL CCs using CIF
  • the base station may allocate the PDCCH monitoring DL CC set to reduce the BD complexity of the terminal side.
  • the PDCCH monitoring DL CC set includes one or more DL CCs as part of the merged total DL CCs, and the UE performs detection / decoding of the PDCCH only on the corresponding DL CCs. That is, when the base station schedules PDSCH / PUSCH to the UE, the PDCCH is transmitted only through the PDCCH monitoring DL CC set.
  • the PDCCH monitoring DL CC set may be configured in a UE-specific, UE-group-specific or cell-specific manner.
  • the term “PDCCH monitoring DL CC” may be replaced with equivalent terms such as a monitoring carrier, a monitoring cell, and the like.
  • the CC merged for the terminal may be replaced with equivalent terms such as a serving CC, a serving carrier, a serving cell, and the like.
  • DL CC A is set to PDCCH monitoring DL CC.
  • DL CC A to C may be referred to as a serving CC, a serving carrier, a serving cell, and the like.
  • each DL CC may transmit only the PDCCH scheduling its PDSCH without the CIF according to the LTE PDCCH rule.
  • DL CC A uses the CIF to schedule PDSCH of DL CC A.
  • the PDCCH scheduling the PDSCH of another CC may be transmitted. In this case, PDCCH is not transmitted in DL CC B / C that is not configured as PDCCH monitoring DL CC.
  • pre-grant based UL scheduling i.e., a UL (e.g., PUSCH) transmission resource (e.g., RB set, MCS, TB) that is valid for a certain time duration Size, etc.) may be set in advance, and a method of performing UL data transmission quickly using a corresponding resource (only when there is data to be transmitted) may be considered.
  • the UL transmission resource may be set to have a specific period within the time period. The period may be specified by the subframe period / offset.
  • the period may be set by higher layer signaling (eg, RRC signaling) or may have a predefined specific value.
  • the pre-grant based PUSCH is called a reserved-PUSCH.
  • the reserved-PUSCH may be useful for transmitting ACK (hereinafter, referred to as TCP-ACK) information for DL Transmission Control Protocol (TCP) packet transmission requiring low delay.
  • TCP-ACK ACK
  • TCP Transmission Control Protocol
  • another UL signal for example, UCI signaling including HARQ-ACK feedback for DL scheduling or PUSCH transmission scheduled based on a general dynamic UL grant, is available at the time of reserved-PUSCH. Can overlap each other.
  • a dynamic UL grant based PUSCH is called a dynamic-PUSCH.
  • the present invention proposes a terminal operation method suitable for a case where other UL signal transmission such as UCI feedback signaling or dynamic-PUSCH is required in a situation where a reserved-PUSCH is configured.
  • the PDCCH may include an enhanced PDCCH (EPDCCH) transmitted through an existing PDSCH region (FIG. 4, data region).
  • UL-SCH Uplink Shared Channel
  • UL-SCH Uplink Shared Channel
  • the UL-SCH means a logical channel (ie, UL-SCH) or UL-SCH data (eg, UL-SCH TB) and may be mutually compatible according to context.
  • SPS PUSCH a PUSCH transmitted in a semi-persistent scheduling (SPS) scheme without a dynamic UL grant or a PUSCH retransmitted in a non-adaptive manner based on only a PHICH-NACK.
  • SPS semi-persistent scheduling
  • -PUSCH dynamic-PUSCH may mean only PUSCH scheduling for the first transmission except retransmission.
  • reserved-PUSCH This indicates a pre-grant based PUSCH.
  • the UL grant resource that is valid for a certain time period is occupied / set by the pre-grant, and the UE may use the resource (only when there is data to be transmitted).
  • Pre-grants may be signaled via the PDCCH (e.g., RB set, MCS, TB size, etc.) and some information (e.g., period of UL transmission resources, valid time periods, etc.) may be higher layer signaling (e.g., RRC signaling). It can be set through.
  • reserved / PUSCH setting / cancellation may be used to indicate whether a reserved-PUSCH resource exists or may be used to indicate whether a reserved-PUSCH resource is used for data transmission within a predetermined time period. In the latter case, the UE may assume that the reserved-PUSCH resource is temporarily set / released according to whether data is transmitted within a certain time period (ie, only in a corresponding subframe).
  • the reserved-PUSCH may be used only for transmission of data (eg, TCP-ACK) requiring low delay.
  • General-PUSCH Broadly, it may mean a PUSCH other than the reserved-PUSCH (ie, a non-reserved-PUSCH).
  • the general-PUSCH may be subdivided as follows and may mean a part of the non-reserved-PUSCH according to the definition.
  • dynamic-PUSCH This indicates a dynamic UL grant based PUSCH.
  • the UE performs a monitoring operation for receiving a UL grant in every subframe, and transmits a PUSCH after a predefined time (eg, 4 ms) when the UL grant is detected.
  • the dynamic-PUSCH may mean only the first PUSCH scheduled by the UL grant.
  • only-PUSCH indicates an SPS PUSCH or a PUSCH that is re-transmitted non-adaptive (based on PHICH-NACK).
  • the reserved-PUSCH is available (that is, setting / activating or releasing the reserved-PUSCH) only according to whether UL-SCH data (eg, TCP-ACK) is available regardless of the presence or absence of UCI in the upper layer (eg, the MAC layer) of the UE. You can assume that you decide. In this case, in a situation where only UCI is present without UL-SCH data (at a transmission time point (eg, subframe SF)), the reserved-PUSCH is released, so that the UE is in a state excluding the reserved-PUSCH (or, the reserved-PUSCH is Assume that there is no UL transmission operation including the UCI transmission.
  • UL-SCH data eg, TCP-ACK
  • This operation may be the same as the UL operation of the existing terminal in the absence of the reserved-PUSCH.
  • the UCI transmission time eg, SF
  • the UCI is transmitted through the PUSCH
  • the PUSCH transmitted as part of the random access procedure that is, the PUSCH transmitted according to the UL grant of the random access response message
  • the reserved-PUSCH may be released and the UCI feedback may be transmitted through the PUCCH. Meanwhile, when only reserved-PUSCH is present in a situation where UL-SCH data is present (at the time of transmission), UCI may be transmitted through reserved-PUSCH.
  • the upper layer eg, MAC layer
  • the UE determines whether the reserved-PUSCH is available (that is, whether the reserved-PUSCH is set / activated or released) according to the presence or absence of the UL-SCH data as well as the UCI. have.
  • the UE may perform the UL transmission operation including the UCI transmission in the state including the reserved-PUSCH.
  • UCI type constituting UCI eg, HARQ-ACK
  • Only UCI signals may be mapped to all symbols / REs (except DMRS transmission symbols / REs) constituting the reserved-PUSCH, regardless of the aperiodic CSI and periodic CSI).
  • the reserved-PUSCH transmission is used in advance.
  • a reserved-PUSCH resource e.g., symbol / RE
  • the UL-SCH data signal may be configured by padding a specific bit (eg, bit 0) to the reserved-PUSCH resource (for example, see PUSCH data and CQI / PMI of FIG. 6).
  • UCI may be transmitted (piggybacked) on the PUSCH w / o UL-SCH. Accordingly, when the PUSCH w / o UL-SCH is present, the UE may operate in the state in which there is no UCI in view of the reserved-PUSCH (eg, release the reserved-PUSCH).
  • UL-SCH data and UCI may be simultaneously transmitted (multiplexed with each other) through the reserved-PUSCH.
  • code rate increase of UL-SCH data according to UCI piggyback process e.g. rate-matching for CSI, puncturing for HARQ-ACK
  • power-limited UL In a CA (carrier aggregation) situation, transmission performance of UL-SCH data may be reduced due to a decrease in transmission power (due to power scaling) of UL-SCH data due to simultaneous transmission of multiple UL signals.
  • UL-SCH data transmission may be delayed.
  • the UL-SCH data may be limited to UL-SCH data (eg, TCP-ACK) requiring low-delay transmission.
  • a lower selection priority may be given to the reserved-PUSCH than the general PUSCH.
  • the general PUSCH means a PUSCH other than the reserved-PUSCH (eg, dynamic-PUSCH, only-PUSCH). Accordingly, when determining the UCI PUSCH, the general PUSCH may be preferentially selected first rather than the reserved PUSCH. Alternatively, all or specific UCIs (eg, CSI) may not be transmitted through the reserved-PUSCH, or UCIs exceeding a specific size (eg, number of bits) may not be performed.
  • a higher protection priority may be given to the reserved-PUSCH than the normal PUSCH (and / or PUCCH) during UL transmission power adjustment (eg, power scaling) in a power-limiting situation. Accordingly, in the power-limiting situation, the transmission power may be reduced first / first from the general PUSCH (and / or PUCCH) rather than the reserved-PUSCH.
  • the priority of the present method may be limited to that assigned to the reserved-PUSCH only for the only-PUSCH and / or the retransmitted PUSCH. have. This is because the reserved-PUSCH is released when the dynamic-PUSCH is present, and the reserved-PUSCH may coexist only with the only-PUSCH and / or the retransmission PUSCH.
  • Table 5 This example can be summarized as shown in Table 5.
  • the base station In a situation in which a dynamic-PUSCH is scheduled for a terminal for which a reserved-PUSCH is configured, the base station has already received a buffer status report (BSR) or scheduling request (SR) signal from the terminal, or the base station has a UL-SCH of the terminal.
  • BSR buffer status report
  • SR scheduling request
  • the terminal may release the reserved-PUSCH completely or temporarily for a certain period.
  • the terminal may maintain the set state without releasing the reserved-PUSCH.
  • an interval for releasing the reserved-PUSCH may be differently set according to an available period of the reserved-PUSCH. For example, when the available period of the reserved-PUSCH is set to a predetermined level or less (for example, K SFs or K msec), the reserved-PUSCH may be temporarily released only for a certain period. On the other hand, when the available period of the reserved-PUSCH exceeds a certain level (eg, K SFs or K msec), the reserved-PUSCH may be completely released.
  • a predetermined level or less for example, K SFs or K msec
  • PUSCH w / o UL-SCH a PUSCH (and / or a PUSCH scheduled from a UL grant including an aperiodic CSI request) (hereinafter, PUSCH w / o UL-SCH) indicated to transmit only aperiodic CSI without UL-SCH data
  • PUSCH w / o UL-SCH a PUSCH scheduled from a UL grant including an aperiodic CSI request
  • the terminal may acquire a periodically allocated PUSCH resource (S902).
  • the periodically allocated PUSCH resource may be used for transmission of the first PUSCH.
  • the first PUSCH may be a PUSCH used to carry a first type of information requiring (only) low delay, for example, a PUSCH used to carry UL-SCH data with (only) TCP-ACK.
  • the UE may perform a process for transmitting the UCI (S904).
  • the process for transmitting the UCI includes a resource allocation process (or channel allocation process).
  • the terminal may transmit the UCI (S906).
  • the UCI when there is no general PUSCH (eg, non-periodically allocated second PUSCH) at the transmission time of the first PUSCH, the UCI may be transmitted through the first PUSCH.
  • the general PUSCH when the general PUSCH is present at the transmission time of the first PUSCH, the UCI may be transmitted through the general-PUSCH.
  • General PUSCH includes, for example, dynamic-PUSCH, only-PUSCH, retransmission PUSCH, PUSCH w / o UL-SCH and the like.
  • the range of the general PUSCH may vary depending on the schemes (1) to (3). Options (1) to (3) are described independently but they can be combined with each other.
  • the first PUSCH corresponds to the TCP-ACK. It may further include a dummy block / bit.
  • the UCI may be allocated / mapped after the dummy block / bit is first allocated / mapped in the first PUSCH (for example, see PUSCH data, CQI / PMI of FIG. 6).
  • FIG. 10 illustrates a base station, a relay, and a terminal applicable to the present invention.
  • a wireless communication system includes a base station (BS) 110 and a terminal (UE) 120.
  • BS base station
  • UE terminal
  • the wireless communication system includes a relay
  • the base station or the terminal may be replaced with a relay.
  • Base station 110 includes a processor 112, a memory 114, and a radio frequency (RF) unit 116.
  • the processor 112 may be configured to implement the procedures and / or methods proposed in the present invention.
  • the memory 114 is connected to the processor 112 and stores various information related to the operation of the processor 112.
  • the RF unit 116 is connected with the processor 112 and transmits and / or receives a radio signal.
  • the terminal 120 includes a processor 122, a memory 124, and a radio frequency unit 126.
  • the processor 122 may be configured to implement the procedures and / or methods proposed by the present invention.
  • the memory 124 is connected with the processor 122 and stores various information related to the operation of the processor 122.
  • the RF unit 126 is connected with the processor 122 and transmits and / or receives a radio signal.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • a base station may in some cases be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • the terminal may be replaced with terms such as a user equipment (UE), a mobile station (MS), a mobile subscriber station (MSS), and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the present invention can be used in a terminal, base station, or other equipment of a wireless mobile communication system. Specifically, the present invention can be applied to a method for transmitting uplink control information and an apparatus therefor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명에 무선 통신 시스템에 관한 것으로서, 구체적으로 주기적으로 할당된 PUSCH 자원을 획득하되, 상기 주기적으로 할당된 PUSCH 자원은 제1 PUSCH의 전송에 사용되는 단계; 상기 제1 PUSCH의 전송 시점에 상기 상향링크 제어 정보의 전송이 요구되는 경우, 상기 상향링크 제어 정보를 전송하기 위한 과정을 수행하는 단계; 및 상기 상향링크 제어 정보를 전송하는 단계를 포함하고, 상기 제1 PUSCH의 전송 시점에 비주기적으로 할당된 제2 PUSCH가 존재하지 않는 경우, 상기 상향링크 제어 정보는 상기 제1 PUSCH를 통해 전송되고, 상기 제1 PUSCH의 전송 시점에 비주기적으로 할당된 제2 PUSCH가 존재하는 경우, 상기 상향링크 제어 정보는 상기 제2 PUSCH를 통해 전송되는 방법 및 이를 위한 장치에 관한 것이다.

Description

무선 신호를 전송하는 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 구체적으로 무선 신호를 전송하는 방법 및 이를 위한 장치에 관한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
본 발명의 목적은 무선 통신 시스템에서 무선 신호를 효율적으로 전송하는 방법 및 이를 위한 장치를 제공하는데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상으로, 무선 통신 시스템에서 단말이 상향링크 제어 정보를 전송하는 방법에 있어서, 주기적으로 할당된 PUSCH(Physical Uplink Shared Channel) 자원을 획득하되, 상기 주기적으로 할당된 PUSCH 자원은 제1 PUSCH의 전송에 사용되는 단계; 상기 제1 PUSCH의 전송 시점에 상기 상향링크 제어 정보의 전송이 요구되는 경우, 상기 상향링크 제어 정보를 전송하기 위한 과정을 수행하는 단계; 및 상기 상향링크 제어 정보를 전송하는 단계를 포함하고, 상기 제1 PUSCH의 전송 시점에 비주기적으로 할당된 제2 PUSCH가 존재하지 않는 경우, 상기 상향링크 제어 정보는 상기 제1 PUSCH를 통해 전송되고, 상기 제1 PUSCH의 전송 시점에 비주기적으로 할당된 제2 PUSCH가 존재하는 경우, 상기 상향링크 제어 정보는 상기 제2 PUSCH를 통해 전송되는 방법이 제공된다.
본 발명의 다른 양상으로, 무선 통신 시스템에 사용되는 단말에 있어서, 무선 주파수(Radio Frequency, RF) 유닛; 및 프로세서를 포함하고, 상기 프로세서는, 주기적으로 할당된 PUSCH(Physical Uplink Shared Channel) 자원을 획득하되, 상기 주기적으로 할당된 PUSCH 자원은 제1 PUSCH의 전송에 사용되며, 상기 제1 PUSCH의 전송 시점에 상향링크 제어 정보의 전송이 요구되는 경우, 상기 상향링크 제어 정보를 전송하기 위한 과정을 수행하고, 상기 상향링크 제어 정보를 전송하도록 구성되며, 상기 제1 PUSCH의 전송 시점에 비주기적으로 할당된 제2 PUSCH가 존재하지 않는 경우, 상기 상향링크 제어 정보는 상기 제1 PUSCH를 통해 전송되고, 상기 제1 PUSCH의 전송 시점에 비주기적으로 할당된 제2 PUSCH가 존재하는 경우, 상기 상향링크 제어 정보는 상기 제2 PUSCH를 통해 전송되는 단말이 제공된다.
바람직하게, 상기 제1 PUSCH는 저-지연(low latency)이 요구되는 제1 타입의 정보를 나르는데 사용되는 PUSCH일 수 있다.
바람직하게, 상기 제1 PUSCH는 TCP-ACK(Transmission Control Protocol Acknowledgement)을 갖는 UL-SCH(Uplink Shared Channel) 데이터를 나르는데 사용되는 PUSCH일 수 있다.
바람직하게, 상기 제2 PUSCH는 재전송 데이터를 나르는데 사용되는 PUCCH일 수 있다.
바람직하게, 상기 제2 PUSCH는 UL-SCH 데이터 없이 CSI(Channel State Information)를 나르는데 사용되는 PUSCH일 수 있다.
본 발명에 의하면, 무선 통신 시스템에서 무선 신호를 효율적으로 전송할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선 통신 시스템의 일례인 3GPP LTE 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다.
도 3은 하향링크 슬롯의 자원 그리드(resource grid)를 예시한다.
도 4는 하향링크 서브프레임의 구조를 나타낸다.
도 5는 상향링크 서브프레임의 구조를 예시한다.
도 6은 PUSCH 상에서 제어 정보와 UL-SCH 데이터의 다중화를 나타낸다.
도 7은 캐리어 병합(Carrier Aggregation, CA) 통신 시스템을 예시한다.
도 8은 복수의 캐리어가 병합된 경우의 스케줄링을 예시한다.
도 9는 본 발명의 일 실시예에 따른 전송 과정을 예시한다.
도 10은 본 발명에 적용될 수 있는 기지국 및 단말을 예시한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다. 설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 3GPP LTE 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 단계 S101에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 주동기 채널(Primary Synchronization Channel, P-SCH) 및 부동기 채널(Secondary Synchronization Channel, S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID (cell identity)등의 정보를 획득한다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel, PBCH)을 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 단계 S102에서 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH) 및 물리 하향링크 제어 채널 정보에 따른 물리 하향링크 공유 채널(Physical Downlink Control Channel, PDSCH)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 단계 S103 내지 단계 S106과 같은 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리 임의 접속 채널(Physical Random Access Channel, PRACH)을 통해 프리앰블(preamble)을 전송하고(S103), 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S104). 경쟁 기반 임의 접속(Contention based random access)의 경우 추가적인 물리 임의 접속 채널의 전송(S105) 및 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널 수신(S106)과 같은 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상향/하향링크 신호 전송 절차로서 물리 하향링크 제어 채널/물리 하향링크 공유 채널 수신(S107) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH) 전송(S108)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보(Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CSI(Channel State Information) 등을 포함한다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다. 상향/하향링크 데이터 패킷 전송은 서브프레임 단위로 이루어지며, 서브프레임은 다수의 심볼을 포함하는 시간 구간으로 정의된다. 3GPP LTE 표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 2(a)는 타입 1 무선 프레임의 구조를 예시한다. 하향링크 무선 프레임은 10개의 서브프레임으로 구성되고, 하나의 서브프레임은 시간 도메인(time domain)에서 2개의 슬롯(slot)으로 구성된다. 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(Resource Block, RB)을 포함한다. 3GPP LTE 시스템에서는 하향링크에서 OFDM을 사용하므로, OFDM 심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 지칭될 수 있다. 자원 할당 단위로서의 자원 블록(RB)은 하나의 슬롯에서 복수의 연속적인 부반송파(subcarrier)를 포함할 수 있다.
슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix)의 구성(configuration)에 따라 달라질 수 있다. CP에는 확장 CP(extended CP)와 노멀 CP(normal CP)가 있다. 예를 들어, OFDM 심볼이 노멀 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장된 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 노멀 CP인 경우보다 적다. 예를 들어, 확장 CP의 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장 CP가 사용될 수 있다.
노멀 CP가 사용되는 경우, 슬롯은 7개의 OFDM 심볼을 포함하므로, 서브프레임은 14개의 OFDM 심볼을 포함한다. 서브프레임의 처음 최대 3 개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.
도 2(b)는 타입 2 무선 프레임의 구조를 예시한다. 타입 2 무선 프레임은 2개의 하프 프레임(half frame)으로 구성된다. 하프 프레임은 4(5)개의 일반 서브프레임과 1(0)개의 스페셜 서브프레임을 포함한다. 일반 서브프레임은 UL-DL 구성(Uplink-Downlink Configuration)에 따라 상향링크 또는 하향링크에 사용된다. 서브프레임은 2개의 슬롯으로 구성된다.
표 1은 UL-DL 구성에 따른 무선 프레임 내 서브프레임 구성을 예시한다.
표 1
Figure PCTKR2016013038-appb-T000001
표에서 D는 하향링크 서브프레임을, U는 상향링크 서브프레임을, S는 스페셜(special) 서브프레임을 나타낸다. 스페셜 서브프레임은 DwPTS(Downlink Pilot TimeSlot), GP(Guard Period), UpPTS(Uplink Pilot TimeSlot)를 포함한다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. 보호 구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에서 서브프레임의 수, 슬롯의 수, 심볼의 수는 다양하게 변경될 수 있다.
도 3은 하향링크 슬롯을 위한 자원 그리드를 예시한다.
도 3을 참조하면, 하향링크 슬롯은 시간 도메인에서 복수의 OFDM 심볼을 포함한다. 여기에서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원블록(RB)은 주파수 도메인에서 12개의 부반송파를 포함하는 것으로 예시되었다. 그러나, 본 발명이 이로 제한되는 것은 아니다. 자원 그리드 상에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭된다. 하나의 RB는 12*7 RE들을 포함한다. 하향링크 슬롯에 포함된 RB의 개수 NDL는 하향링크 전송 대역에 의존한다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 4는 하향링크 서브프레임의 구조를 예시한다.
도 4를 참조하면, 서브프레임 내에서 첫 번째 슬롯의 앞에 위치한 최대 3(4)개의 OFDM 심볼이 제어 채널이 할당되는 제어 영역에 해당한다. 남은 OFDM 심볼은 PDSCH(physical downlink shared chancel)가 할당되는 데이터 영역에 해당하며, 데이터 영역의 기본 자원 단위는 RB이다. LTE 에서 사용되는 하향링크 제어 채널의 예는 PCFICH(physical control format indicator channel), PDCCH(physical downlink control channel), PHICH(physical hybrid ARQ indicator channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되며 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개수에 관한 정보를 나른다. PHICH는 상향링크 전송에 대한 응답이고 HARQ ACK/NACK(acknowledgment/negative-acknowledgment) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보는 DCI(downlink control information)라고 지칭된다. DCI는 상향링크 또는 하향링크 스케줄링 정보 또는 임의의 단말 그룹을 위한 상향링크 전송 전력 제어 명령(Transmit Power Control Command)를 포함한다.
PDCCH를 통해 전송되는 제어 정보를 DCI(Downlink Control Information)라고 한다. DCI 포맷(format)은 상향링크용으로 포맷 0, 3, 3A, 4, 하향링크용으로 포맷 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C 등의 포맷이 정의되어 있다. DCI 포맷에 따라 정보 필드의 종류, 정보 필드의 개수, 각 정보 필드의 비트 수 등이 달라진다. 예를 들어, DCI 포맷은 용도에 따라 호핑 플래그(hopping flag), RB 할당(assignment), MCS(modulation coding scheme), RV(redundancy version), NDI(new data indicator), TPC(transmit power control), HARQ 프로세스 번호, PMI(precoding matrix indicator) 확인(confirmation) 등의 정보를 선택적으로 포함한다. 따라서, DCI 포맷에 따라 DCI 포맷에 정합되는 제어 정보의 사이즈(size)가 달라진다. 한편, 임의의 DCI 포맷은 두 종류 이상의 제어 정보 전송에 사용될 수 있다. 예를 들어, DCI 포맷 0/1A는 DCI 포맷 0 또는 DCI 포맷 1을 나르는데 사용되며, 이들은 플래그 필드(flag field)에 의해 구분된다.
PDCCH는 DL-SCH(downlink shared channel)의 전송 포맷 및 자원 할당, UL-SCH(uplink shared channel)에 대한 자원 할당 정보, PCH(paging channel)에 대한 페이징 정보, DL-SCH 상의 시스템 정보(system information), PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위-계층 제어 메시지의 자원 할당 정보, 임의의 단말 그룹 내에서 개별 단말에 대한 전송 전력 제어 명령, VoIP(voice over IP)의 활성화(activation) 등을 나른다. 제어 영역 내에서 복수의 PDCCH가 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 복수의 연속된 CCE(consecutive control channel element)의 집합(aggregation) 상에서 전송된다. CCE는 무선 채널의 상태에 따라 소정 부호율 (coding rate)의 PDCCH를 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 복수의 REG(resource element group)에 대응한다. PDCCH의 포맷 및 가용한 PDCCH의 비트 수는 CCE의 개수와 CCE에 의해 제공되는 부호율 사이의 상관 관계에 따라 결정된다. 기지국은 단말에게 전송될 DCI에 따라 PDCCH 포맷을 결정하고, CRC(cyclic redundancy check)를 제어 정보에 부가한다. CRC는 PDCCH의 소유자 또는 사용 용도에 따라 유일 식별자(RNTI(radio network temporary identifier)로 지칭됨)로 마스킹 된다. PDCCH가 특정 단말을 위한 것이면, 해당 단말의 유일 식별자(예, C-RNTI (cell-RNTI))가 CRC에 마스킹 된다. 다른 예로, PDCCH가 페이징 메시지를 위한 것이면, 페이징 지시 식별자(예, P-RNTI(paging-RNTI))가 CRC에 마스킹 된다. PDCCH가 시스템 정보 (보다 구체적으로, 후술하는 SIB(system information block))에 관한 것이면, 시스템 정보 식별자(예, SI-RNTI(system information RNTI))가 CRC에 마스킹 된다. 단말의 랜덤 접속 프리앰블의 전송에 대한 응답인, 랜덤 접속 응답을 지시하기 위해 RA-RNTI(random access-RNTI)가 CRC에 마스킹 된다.
PDCCH는 DCI로 알려진 메시지를 나르고, 일반적으로, 복수의 PDCCH가 서브프레임에서 전송된다. 각각의 PDCCH는 하나 이상의 CCE를 이용해서 전송된다. 하나의 CCE는 9개의 REG에 대응되고 하나의 REG는 네 개의 RE에 대응한다. 네 개의 QPSK 심볼이 각각의 REG에 맵핑된다. 참조 신호에 의해 점유된 자원 요소는 REG에 포함되지 않는다. 따라서, 주어진 OFDM 심볼 내에서 REG의 개수는 셀-특정 참조 신호의 존재 여부에 따라 달라진다. REG 개념은 다른 하향링크 제어 채널(즉, PDFICH 및 PHICH)에도 사용된다. 표 2의 기재와 같이 네 개의 PDCCH 포맷이 지원된다.
표 2
Figure PCTKR2016013038-appb-T000002
CCE들은 번호가 매겨져 연속적으로 사용되고, 디코딩 프로세스를 간단히 하기 위해, n CCEs로 구성된 포맷을 가지는 PDCCH는 n의 배수에 해당하는 번호를 가지는 CCE에서만 시작될 수 있다. 특정 PDCCH의 전송에 사용되는 CCE의 개수는 채널 상태에 따라 기지국에 의해 결정된다. 예를 들어, 좋은 하향링크 채널을 가지는 단말(예, 기지국에 인접함)을 위한 PDCCH의 경우 하나의 CCE로도 충분할 수 있다. 그러나, 열악한 채널을 가지는 단말(예, 셀 경계에 근처에 존재)을 위한 PDCCH의 경우 충분한 로버스트(robustness)를 얻기 위해서는 8개의 CCE가 요구될 수 있다. 또한, PDCCH의 파워 레벨은 채널 상태에 맞춰 조정될 수 있다.
LTE의 경우, 각각의 단말을 위해 PDCCH가 위치할 수 있는 CCE 세트를 정의하였다. 단말이 자신의 PDCCH를 발견할 수 있는 CCE 세트를 PDCCH 서치 스페이스, 간단히 서치 스페이스(Search Space, SS)라고 지칭한다. 서치 스페이스 내에서 PDCCH가 전송될 수 있는 개별 자원을 PDCCH 후보라고 지칭한다. 하나의 PDCCH 후보는 CCE 집합 레벨에 따라 1, 2, 4 또는 8개의 CCE에 대응한다. 기지국은 서치 스페이스 내의 임의의 PDCCH 후보 상의로 실제 PDCCH (DCI)를 전송하고, 단말은 PDCCH (DCI)를 찾기 위해 서치 스페이스를 모니터링 한다. 구체적으로, 단말은 서치 스페이스 내의 PDCCH 후보들에 대해 블라인드 디코딩(Blind Decoding, BD)을 시도한다.
LTE에서 각각의 PDCCH 포맷을 위한 서치 스페이스는 다른 사이즈를 가질 수 있다. 전용(dedicated)(또는 단말-특정 서치 스페이스(UE-specific SS, USS))와 공통 서치 스페이스(Common SS, CSS)가 정의되어 있다. 전용 서치 스페이스는 각각의 개별 단말을 위해 구성되며, 모든 단말은 공통 서치 스페이스의 범위에 관해 정보를 제공받는다. 전용 및 공통 서치 스페이스는 주어진 단말에 대해 겹칠 수 있다.
서치 스페이스들은 사이즈가 작고 이들은 서로 겹칠 수 있으므로, 기지국은 주어진 서브프레임에서 원하는 모든 단말에게 PDCCH를 보내기 위한 CCE 자원을 찾는 것이 불가능할 수 있다. 이는 다른 단말에게 CCE 자원이 이미 할당되었으므로, 특정 단말의 서치 스페이스에는 해당 단말을 위한 CCE 자원이 더 이상 없을 수 있기 때문이다(블록킹). 다음 서브프레임에서 지속될 블록킹의 가능성을 최소화 하기 위해, 단말-특정 호핑 시퀀스가 전용 서치 스페이스의 시작 위치에 적용된다. 표 3은 공통 및 전용 서치 스페이스의 사이즈를 나타낸다.
표 3
Figure PCTKR2016013038-appb-T000003
블라인드 디코딩 시도에 따른 연산 부하를 제어 하에 두기 위해, 단말은 정의된 모든 DCI 포맷을 동시에 서치하지 않는다. 일반적으로, 전용 서치 스페이스에서 단말은 항상 포맷 0 및 1A를 서치한다. 포맷 0 및 1A는 동일한 사이즈를 가지며 메시지 내의 플래그에 의해 구분된다. 또한, 단말은 추가로 다른 포맷 (즉, 기지국에 의해 설정된 PDSCH 전송 모드에 따라 1, 1B 또는 2)을 수신하도록 요구될 수 있다. 공통 서치 스페이스에서 단말은 포맷 1A 및 1C를 서치한다. 또한, 단말은 포맷 3 또는 3A를 서치하도록 구성될 수 있다. 포맷 3/3A는 포맷 0/1A와 마찬가지로 동일한 사이즈를 가지며, 다른 (공통) 식별자로 스크램블링 된 CRC를 가지는 지에 따라 구분된다. 다중-안테나 기술을 구성하기 위한 전송 모드 및 DCI 포맷의 정보 컨텐츠는 다음과 같다.
전송 모드(Transmission Mode, TM )
● 전송 모드 1: Transmission from a single base station antenna port
● 전송 모드 2: Transmit diversity
● 전송 모드 3: Open-loop spatial multiplexing
● 전송 모드 4: Closed-loop spatial multiplexing
● 전송 모드 5: Multi-user MIMO
● 전송 모드 6: Closed-loop rank-1 precoding
● 전송 모드 7: Transmission using UE-specific reference signals
DCI 포맷
● 포맷 0: Resource grants for the PUSCH transmissions (uplink)
● 포맷 1: Resource assignments for single codeword PDSCH transmissions (transmission modes 1, 2 and 7)
● 포맷 1A: Compact signaling of resource assignments for single codeword PDSCH (all modes)
● 포맷 1B: Compact resource assignments for PDSCH using rank-1 closed loop precoding (mode 6)
● 포맷 1C: Very compact resource assignments for PDSCH (e.g. paging/broadcast system information)
● 포맷 1D: Compact resource assignments for PDSCH using multi-user MIMO (mode 5)
● 포맷 2: Resource assignments for PDSCH for closed-loop MIMO operation (mode 4)
● 포맷 2A: Resource assignments for PDSCH for open-loop MIMO operation (mode 3)
● 포맷 3/3A: Power control commands for PUCCH and PUSCH with 2-bit/1-bit power adjustments
도 5는 상향링크 서브프레임의 구조를 예시한다.
도 5를 참조하면, 서브프레임(500)은 두 개의 0.5ms 슬롯(501)을 포함한다. 노멀 CP가 사용되는 경우, 각 슬롯은 7개의 심볼(502)로 구성되며 하나의 심볼은 하나의 SC-FDMA 심볼에 대응된다. 자원블록(503)은 주파수 영역에서 12개의 부반송파, 그리고 시간영역에서 한 슬롯에 해당되는 자원 할당 단위이다. 상향링크 서브프레임의 구조는 크게 데이터 영역(504)과 제어 영역(505)으로 구분된다. 데이터 영역은 단말이 음성, 패킷 등의 데이터를 송신하는데 사용되는 통신 자원을 의미하며 PUSCH(Physical Uplink Shared Channel)을 포함한다. 제어 영역은 단말이 상향링크 제어 정보(Uplink Control Information, UCI)를 전송하는데 사용되는 통신 자원을 의미하며 PUCCH(Physical Uplink Control Channel)을 포함한다.
PUCCH는 다음의 상향링크 제어 정보를 전송하는데 사용될 수 있다.
- SR(Scheduling Request): 상향링크 UL-SCH 자원을 요청하는데 사용되는 정보이다. OOK(On-Off Keying) 방식을 이용하여 전송된다.
- HARQ-ACK: PDSCH 상의 하향링크 데이터 패킷(예, 코드워드)에 대한 응답이다. 하향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 하향링크 코드워드에 대한 응답으로 HARQ-ACK 1비트가 전송되고, 두 개의 하향링크 코드워드에 대한 응답으로 HARQ-ACK 2비트가 전송된다. HARQ-ACK 응답은 포지티브 ACK(간단히, ACK), 네거티브 ACK(NACK), DTX 또는 NACK/DTX를 포함한다. 여기서, HARQ-ACK은 HARQ ACK/NACK, ACK/NACK과 혼용된다.
- CSI(Channel State Information): 하향링크 채널에 대한 피드백 정보이다. MIMO(Multiple Input Multiple Output)-관련 피드백 정보는 RI(Rank Indicator) 및 PMI(Precoding Matrix Indicator)를 포함한다. 서브프레임 당 20비트가 사용된다.
단말이 서브프레임에서 전송할 수 있는 제어 정보의 양은 가용한 SC-FDMA의 개수에 의존한다. 제어 정보 전송에 가용한 SC-FDMA는 서브프레임에서 참조 신호 전송을 위한 SC-FDMA 심볼을 제외하고 남은 SC-FDMA 심볼을 의미하고, SRS(Sounding Reference Signal)가 설정된 서브프레임의 경우 서브프레임의 마지막 SC-FDMA 심볼도 제외된다. 참조 신호는 PUCCH의 코히어런트 검출에 사용된다. PUCCH는 전송되는 정보에 따라 다양한 포맷을 지원한다.
표 4는 LTE(-A)에서 PUCCH 포맷과 UCI의 매핑 관계를 나타낸다.
표 4
Figure PCTKR2016013038-appb-T000004
SRS는 서브프레임에서 마지막 SC-FDMA 심볼을 통하여 전송된다(506). 동일한 SC-FDMA 심볼을 통해 전송되는 여러 단말의 SRS들은 주파수 위치/시퀀스에 따라 구분이 가능하다. SRS는 비주기적 또는 주기적으로 전송된다.
LTE-A에서는 UCI를 UL-SCH 데이터와 동시에 전송하는 방법을 두 가지로 나누고 있다. 첫 번째 방법은 PUCCH와 PUSCH를 동시에 전송하는 방법이고, 두 번째 방법은 기존의 LTE와 마찬가지로 PUSCH에 UCI를 다중화 하는 방법이다. PUCCH와 PUSCH의 동시 전송 허용 여부는 상위 계층에 의해 설정될 수 있다. PUCCH+PUSCH 동시 전송이 이네이블(enable)되면 첫 번째 방법이 적용되고, PUCCH+PUSCH 동시 전송이 디스에이블(disable)되면 두 번째 방법이 적용된다. 기존 LTE 단말은 PUCCH와 PUSCH를 동시에 전송할 수 없으므로 PUSCH가 전송되는 서브프레임에서 UCI(예, CQI/PMI, HARQ-ACK, RI 등) 전송이 필요한 경우, UCI를 PUSCH 영역에 다중화 하는 방법을 사용한다. 일 예로, PUSCH 전송이 할당된 서브프레임에서 HARQ-ACK을 전송해야 할 경우, 단말은 UL-SCH 데이터와 HARQ-ACK를 DFT-확산 이전에 다중화한 뒤, PUSCH를 통해 제어 정보와 데이터를 함께 전송한다.
도 6은 PUSCH 상에서 제어 정보와 UL-SCH 데이터의 다중화를 나타낸다. PUSCH 전송이 할당된 서브프레임에서 제어 정보를 전송하고자 할 경우, 단말은 DFT-확산 이전에 제어 정보(UCI)와 UL-SCH 데이터를 함께 다중화 한다. 제어 정보는 CQI/PMI, HARQ ACK/NACK 및 RI 중에서 적어도 하나를 포함한다. CQI/PMI, ACK/NACK 및 RI 전송에 사용되는 각각의 RE 개수는 PUSCH 전송을 위해 할당된 MCS(Modulation and Coding Scheme) 및 오프셋 값에 기초한다. 오프셋 값은 제어 정보에 따라 서로 다른 코딩 레이트를 허용하며 상위 계층(예, RRC) 시그널에 의해 반-정적으로 설정된다. UL-SCH 데이터와 제어 정보는 동일한 RE에 맵핑되지 않는다. 제어 정보는 서브프레임의 두 슬롯에 모두 존재하도록 맵핑된다.
도 6을 참조하면, CQI 및/또는 PMI(CQI/PMI) 자원은 UL-SCH 데이터 자원의 시작 부분에 위치하고 하나의 부반송파 상에서 모든 SC-FDMA 심볼에 순차적으로 맵핑된 이후에 다음 부반송파에서 맵핑이 이뤄진다. CQI/PMI는 부반송파 내에서 왼쪽에서 오른쪽, 즉 SC-FDMA 심볼 인덱스가 증가하는 방향으로 맵핑된다. PUSCH 데이터(UL-SCH 데이터)는 CQI/PMI 자원의 양(즉, 부호화된 심볼의 개수)을 고려해서 레이트-매칭된다. UL-SCH 데이터와 동일한 변조 차수(modulation order)가 CQI/PMI에 사용된다. ACK/NACK은 UL-SCH 데이터가 맵핑된 SC-FDMA의 자원의 일부에 펑처링을 통해 삽입된다. ACK/NACK는 RS 옆에 위치하며 해당 SC-FDMA 심볼 내에서 아래쪽부터 시작해서 위쪽, 즉 부반송파 인덱스가 증가하는 방향으로 채워진다. 노멀 CP인 경우, 도면에서와 같이 ACK/NACK을 위한 SC-FDMA 심볼은 각 슬롯에서 SC-FDMA 심볼 #2/#5에 위치한다. 서브프레임에서 ACK/NACK이 실제로 전송하는지 여부와 관계 없이, 부호화된 RI는 ACK/NACK을 위한 심볼의 옆에 위치한다.
또한, 제어 정보(예, QPSK 변조 사용)는 UL-SCH 데이터 없이 PUSCH 상에서 전송되도록 스케줄링 될 수 있다. 제어 정보(CQI/PMI, RI 및/또는 ACK/NACK)는 낮은 CM(Cubic Metric) 단일-반송파 특성을 유지하기 위해 DFT-스프레딩 이전에 다중화된다. ACK/NACK, RI 및 CQI/PMI를 다중화 하는 것은 도 14에서 도시한 것과 유사하다. ACK/NACK를 위한 SC-FDMA 심볼은 RS 옆에 위치하며, CQI가 맵핑된 자원이 펑처링 될 수 있다. ACK/NACK 및 RI을 위한 RE의 개수는 레퍼런스 MCS(CQI/PMI MCS)와 오프셋 파라미터에 기초한다. 레퍼런스 MCS는 CQI 페이로드 사이즈 및 자원 할당으로부터 계산된다. UL-SCH 데이터가 없는 제어 시그널링을 위한 채널 코딩 및 레이트 매칭은 상술한 UL-SCH 데이터가 있는 제어 시그널링의 경우와 동일하다.
도 7은 캐리어 병합(Carrier Aggregation, CA) 통신 시스템을 예시한다. LTE-A 시스템은 보다 넓은 주파수 대역을 사용하기 위하여 복수의 상/하향링크 주파수 블록을 모다 더 큰 상/하향링크 대역폭을 사용하는 캐리어 병합(carrier aggregation 또는 bandwidth aggregation) 기술을 사용한다. 각각의 주파수 블록은 콤포넌트 캐리어(Component Carrier, CC)를 이용하여 전송된다. 콤포넌트 캐리어는 해당 주파수 블록을 위한 캐리어 주파수 (또는 중심 캐리어, 중심 주파수)로 이해될 수 있다.
도 7을 참조하면, 복수의 상/하향링크 콤포넌트 캐리어(Component Carrier, CC)들을 모아서 더 넓은 상/하향링크 대역폭을 지원할 수 있다. 각각의 CC들은 주파수 영역에서 서로 인접하거나 비-인접할 수 있다. 각 콤포넌트 캐리어의 대역폭은 독립적으로 정해질 수 있다. UL CC의 개수와 DL CC의 개수가 다른 비대칭 캐리어 병합도 가능하다. 예를 들어, DL CC 2개 UL CC 1개인 경우에는 2:1로 대응되도록 구성이 가능하다. DL CC/UL CC 링크는 시스템에 고정되어 있거나 반-정적으로 구성될 수 있다. 또한, 시스템 전체 대역이 N개의 CC로 구성되더라도 특정 단말이 모니터링/수신할 수 있는 주파수 대역은 M(<N)개의 CC로 한정될 수 있다. 캐리어 병합에 대한 다양한 파라미터는 셀 특정(cell-specific), 단말 그룹 특정(UE group-specific) 또는 단말 특정(UE-specific) 방식으로 설정될 수 있다. 한편, 제어 정보는 특정 CC를 통해서만 송수신 되도록 설정될 수 있다. 이러한 특정 CC를 프라이머리 CC(Primary CC, PCC)(또는 앵커 CC)로 지칭하고, 나머지 CC를 세컨더리 CC(Secondary CC, SCC)로 지칭할 수 있다.
LTE-A는 무선 자원을 관리하기 위해 셀(cell)의 개념을 사용한다. 셀은 하향링크 자원과 상향링크 자원의 조합으로 정의되며, 상향링크 자원은 필수 요소는 아니다. 따라서, 셀은 하향링크 자원 단독, 또는 하향링크 자원과 상향링크 자원으로 구성될 수 있다. 캐리어 병합이 지원되는 경우, 하향링크 자원의 캐리어 주파수(또는, DL CC)와 상향링크 자원의 캐리어 주파수(또는, UL CC) 사이의 링키지(linkage)는 시스템 정보에 의해 지시될 수 있다. 프라이머리 주파수(또는 PCC) 상에서 동작하는 셀을 프라이머리 셀(Primary Cell, PCell)로 지칭하고, 세컨더리 주파수(또는 SCC) 상에서 동작하는 셀을 세컨더리 셀(Secondary Cell, SCell)로 지칭할 수 있다. PCell은 단말이 초기 연결 설정(initial connection establishment) 과정을 수행하거나 연결 재-설정 과정을 수행하는데 사용된다. PCell은 핸드오버 과정에서 지시된 셀을 지칭할 수도 있다. SCell은 RRC 연결이 설정이 이루어진 이후에 구성 가능하고 추가적인 무선 자원을 제공하는데 사용될 수 있다. PCell과 SCell은 서빙 셀로 통칭될 수 있다. 따라서, RRC_CONNECTED 상태에 있지만 캐리어 병합이 설정되지 않았거나 캐리어 병합을 지원하지 않는 단말의 경우, PCell로만 구성된 서빙 셀이 단 하나 존재한다. 반면, RRC_CONNECTED 상태에 있고 캐리어 병합이 설정된 단말의 경우, 하나 이상의 서빙 셀이 존재하고, 전체 서빙 셀에는 PCell과 전체 SCell이 포함된다. 캐리어 병합을 위해, 네트워크는 초기 보안 활성화(initial security activation) 과정이 개시된 이후, 연결 설정 과정에서 초기에 구성되는 PCell에 부가하여 하나 이상의 SCell을 캐리어 병합을 지원하는 단말을 위해 구성할 수 있다.
크로스-캐리어 스케줄링 (또는 크로스-CC 스케줄링)이 적용될 경우, 하향링크 할당을 위한 PDCCH는 DL CC#0으로 전송되고, 해당 PDSCH는 DL CC#2로 전송될 수 있다. 크로스-CC 스케줄링을 위해, 캐리어 지시 필드(carrier indicator field, CIF)의 도입이 고려될 수 있다. PDCCH 내에서 CIF의 존재 여부는 상위 계층 시그널링(예, RRC 시그널링)에 의해 반-정적 및 단말-특정(또는 단말 그룹-특정) 방식으로 설정될 수 있다. PDCCH 전송의 베이스 라인을 요약하면 다음과 같다.
- CIF 디스에이블드(disabled): DL CC 상의 PDCCH는 동일한 DL CC 상의 PDSCH 자원을 할당하거나 하나의 링크된 UL CC 상의 PUSCH 자원을 할당
- CIF 이네이블드(enabled): DL CC 상의 PDCCH는 CIF를 이용하여 복수의 병합된 DL/UL CC 중에서 특정 DL/UL CC 상의 PDSCH 또는 PUSCH 자원을 할당 가능
CIF가 존재할 경우, 기지국은 단말 측의 BD 복잡도를 낮추기 위해 PDCCH 모니터링 DL CC 세트를 할당할 수 있다. PDCCH 모니터링 DL CC 세트는 병합된 전체 DL CC의 일부로서 하나 이상의 DL CC를 포함하고 단말은 해당 DL CC 상에서만 PDCCH의 검출/디코딩을 수행한다. 즉, 기지국이 단말에게 PDSCH/PUSCH를 스케줄링 할 경우, PDCCH는 PDCCH 모니터링 DL CC 세트를 통해서만 전송된다. PDCCH 모니터링 DL CC 세트는 단말-특정(UE-specific), 단말-그룹-특정 또는 셀-특정(cell-specific) 방식으로 설정될 수 있다. 용어 "PDCCH 모니터링 DL CC"는 모니터링 캐리어, 모니터링 셀 등과 같은 등가의 용어로 대체될 수 있다. 또한, 단말을 위해 병합된 CC는 서빙 CC, 서빙 캐리어, 서빙 셀 등과 같은 등가의 용어로 대체될 수 있다.
도 8은 복수의 캐리어가 병합된 경우의 스케줄링을 예시한다. 3개의 DL CC가 병합되었다고 가정한다. DL CC A가 PDCCH 모니터링 DL CC로 설정되었다고 가정한다. DL CC A~C는 서빙 CC, 서빙 캐리어, 서빙 셀 등으로 지칭될 수 있다. CIF가 디스에이블 된 경우, 각각의 DL CC는 LTE PDCCH 규칙에 따라 CIF 없이 자신의 PDSCH를 스케줄링 하는 PDCCH만을 전송할 수 있다. 반면, 단말-특정 (또는 단말-그룹-특정 또는 셀-특정) 상위 계층 시그널링에 의해 CIF가 이네이블 된 경우, DL CC A(모니터링 DL CC)는 CIF를 이용하여 DL CC A의 PDSCH를 스케줄링 하는 PDCCH뿐만 아니라 다른 CC의 PDSCH를 스케줄링 하는 PDCCH도 전송할 수 있다. 이 경우, PDCCH 모니터링 DL CC로 설정되지 않은 DL CC B/C에서는 PDCCH가 전송되지 않는다.
실시예: 저-지연(low latency) 기반의 신호 전송
LTE-A 이후 차기 시스템의 중요한 기술적 요구사항 중 하나로 저-지연(low latency) 기반의 데이터 전송이 고려되고 있다. 이를 위한 한가지 방안으로, 프리-그랜트(pre-grant) 기반의 UL 스케줄링, 즉 일정 시구간(time duration) 동안 유효한 UL(예, PUSCH) 전송 자원(예, RB 세트, MCS, TB(Transport Block) 사이즈 등)을 미리 설정해 놓고, 단말이 (전송할 데이터가 있을 경우에만) 해당 자원을 사용하여 빠르게 UL 데이터 전송을 수행하는 방식을 고려할 수 있다. UL 전송 자원은 해당 시구간 내에서 특정 주기를 가지도록 설정될 수 있다. 주기는 서브프레임 주기/오프셋에 의해 특정될 수 있다. 주기는 상위 계층 시그널링(예, RRC 시그널링)에 의해 설정되거나, 미리 정의된 특정 값을 가질 수 있다. 편의상, 프리-그랜트 기반의 PUSCH를 reserved-PUSCH라고 지칭한다. reserved-PUSCH는 예를 들어 저-지연이 요구되는 DL TCP(Transmission Control Protocol) 패킷 전송에 대한 ACK(이하, TCP-ACK) 정보 전송에 유용할 수 있다. 한편, reserved-PUSCH가 설정된 상황에서 다른 UL 신호, 예를 들면 DL 스케줄링에 대한 HARQ-ACK 피드백을 비롯한 UCI 시그널링 혹은 일반적인 동적 UL 그랜트를 기반으로 스케줄링된 PUSCH 전송 등의 시점이 reserved-PUSCH의 가용 시점과 서로 겹칠 수 있다. 편의상, 동적 UL 그랜트 기반의 PUSCH를 dynamic-PUSCH라고 지칭한다.
이하, 본 발명에서는, reserved-PUSCH가 설정된 상황에서 UCI 피드백 시그널링 혹은 dynamic-PUSCH 등의 여타의 다른 UL 신호 전송이 요구될 경우에 적합한 단말 동작 방법을 제안한다. 본 발명에서 PDCCH는 기존 PDSCH 영역(도 4, data region)을 통해 전송되는 EPDCCH(Enhanced PDCCH)를 포함할 수 있다. 또한, 본 발명에서 UL-SCH(Uplink Shared Channel)는 TCP-ACK만을 한정적으로 의미할 수 있다. 여기서, UL-SCH는 논리채널(즉, UL-SCH) 또는 UL-SCH 데이터(예, UL-SCH TB(Transport Block))를 의미하며, 문맥에 따라 상호 호환될 수 있다. 또한, 본 발명에서 동적 UL 그랜트 없이 SPS(Semi-Persistent Scheduling) 방식으로 전송되는 PUSCH(이하, SPS PUSCH) 혹은 PHICH-NACK만을 기반으로 비-적응적(non-adaptive)으로 재전송되는 PUSCH 등을 only-PUSCH로 통칭하며, dynamic-PUSCH는 재전송을 제외한 최초 전송에 대한 PUSCH 스케줄링만을 한정적으로 의미할 수 있다.
본 발명에서 사용되는 용어를 요약하면 다음과 같다.
- reserved-PUSCH: 프리-그랜트 기반의 PUSCH를 나타낸다. 프리-그랜트에 의해 일정 시구간 동안 유효한 UL 전송 자원이 점유/설정되며, 단말이 (전송할 데이터가 있을 경우에만) 해당 자원을 사용할 수 있다. 프리-그랜트는 PDCCH를 통해 시그널링 될 수 있으며(예, RB 세트, MCS, TB 사이즈 등), 일부 정보(예, UL 전송 자원의 주기, 유효한 시구간 등)는 상위 계층 시그널링(예, RRC 시그널링)을 통해 설정될 수 있다. 본 명세서에서 reserved-PUSCH 설정/해제는 reserved-PUSCH 자원이 존재 여부를 나타내는 의미로 쓰이거나, 일정 시구간 내에서 reserved-PUSCH 자원이 데이터 전송에 사용되는지 여부를 나타내는 의미로 쓰일 수 있다. 후자의 경우, 단말은 일정 시구간 내에서 데이터 전송 여부에 따라 일시적으로(즉, 해당 서브프레임에 한해) reserved-PUSCH 자원이 설정/해제된 걸로 가정할 수 있다. reserved-PUSCH는 저-지연이 요구되는 데이터(예, TCP-ACK)의 전송에만 사용될 수 있다.
- 일반-PUSCH: 넓게는 reserved-PUSCH외의 PUSCH(즉, Non-reserved-PUSCH)를 의미할 수 있다. 일반-PUSCH는 아래와 같이 세분화될 수 있으며, 정의에 따라 Non-reserved-PUSCH의 일부를 의미할 수 있다.
- dynamic-PUSCH: 동적 UL 그랜트 기반의 PUSCH를 나타낸다. 단말은 매 서브프레임마다 UL 그랜트 수신을 위한 모니터링 동작을 수행하며, UL 그랜트 검출 시에는 미리 정의된 시간(예, 4ms) 뒤에 PUSCH를 전송한다. 본 발명에서 dynamic-PUSCH는 UL 그랜트에 의해 스케줄링된 최초 PUSCH만을 의미할 수 있다.
- only-PUSCH: SPS PUSCH를 나타내거나, (PHICH-NACK에 기반하여) 비-적응적으로 재전송되는 PUSCH를 나타낸다.
편의상, 방안 (1)~(3)은 독립적으로 설명되지만 이들은 서로 조합될 수 있다.
(1) UL-SCH 데이터 없이 UCI만 존재하는 상황에서의 reserved-PUSCH 관련 동작
단말의 상위계층(예, MAC 계층)에서 UCI 유무에 관계없이 UL-SCH 데이터(예, TCP-ACK) 유무에 따라서만 reserved-PUSCH의 가용 여부(즉, reserved-PUSCH 설정/활성화 또는 해제)를 결정한다고 가정할 수 있다. 이 경우, (전송 시점(예, 서브프레임(SF))에) UL-SCH 데이터 없이 UCI만 존재하는 상황에서는 reserved-PUSCH가 해제되므로 단말은 reserved-PUSCH를 제외한 상태에서(혹은, reserved-PUSCH가 없다고 가정) UCI 전송을 포함한 UL 전송 동작을 수행할 수 있다. 이런 동작은 reserved-PUSCH가 존재하지 않은 상황에서의 기존 단말의 UL 동작과 동일할 수 있다. 기존 단말의 UL 동작에 따르면, UCI 전송 시점(예, SF)에 할당된 PUSCH가 있으면 UCI는 PUSCH를 통해 전송되고, UCI 전송 시점에 할당된 PUSCH가 없으면 UCI는 PUCCH를 통해 전송된다. 단, 할당된 PUSCH를 판단 시에 랜덤 접속 과정의 일부로 전송되는 PUSCH(즉, 랜덤 접속 응답 메시지의 UL 그랜트에 따라 전송되는 PUSCH)는 제외된다. 따라서, (전송 시점에) UL-SCH 데이터 없이 UCI만 존재하는 상황에서 reserved-PUSCH만 존재할 경우, reserved-PUSCH는 해제되고 UCI 피드백은 PUCCH를 통해 전송될 수 있다. 한편, (전송 시점에) UL-SCH 데이터가 존재하는 상황에서 reserved-PUSCH만 존재할 경우, UCI는 reserved-PUSCH를 통해 전송될 수 있다.
이와 달리, 단말의 상위계층(예, MAC 계층)에서 UL-SCH 데이터 유무뿐만 아니라 UCI 유무에 따라서도 reserved-PUSCH의 가용 여부(즉, reserved-PUSCH 설정/활성화 또는 해제)를 결정한다고 가정할 수 있다. 이 경우, (전송 시점에) UL-SCH 데이터 없이 UCI만 존재하는 상황에서는 reserved-PUSCH가 설정된 상태이므로 단말은 reserved-PUSCH까지 포함한 상태에서 UCI 전송을 포함한 UL 전송 동작을 수행할 수 있다. 이와 관련하여, UL-SCH 데이터 없이 UCI만 존재하는 상황에서, reserved-PUSCH만 존재하거나 reserved-PUSCH를 통해 UL-SCH 데이터 없이 UCI만 전송될 경우, UCI를 구성하는 UCI 타입(예, HARQ-ACK, 비주기적 CSI, 주기적 CSI) 및 이의 조합에 관계없이 reserved-PUSCH를 구성하는 (DMRS 전송 심볼/RE를 제외한) 모든 심볼/RE에는 UCI 신호만 매핑될 수 있다. 또한, reserved-PUSCH를 통해 UL-SCH 데이터 없이 UCI만 전송될 경우, UL-SCH 데이터 유무에 대한 기지국과 단말간 불일치 (이로 인한 UCI 수신 성능 저하)를 방지하기 위해, reserved-PUSCH 전송 용도로 사전에 설정된 MCS 레벨 및/또는 TB 사이즈에 맞춰 reserved-PUSCH 자원(예, 심볼/RE)에 먼저 가상의 (dummy) UL-SCH 데이터 신호를 채우고/매핑하고 난 뒤, reserved-PUSCH로의 UCI 피기백 과정이 적용될 수 있다. (dummy) UL-SCH 데이터 신호는 reserved-PUSCH 자원에 특정 비트(예, 비트 0)를 패딩(padding)하는 방식으로 구성될 수 있다(예, 도 6의 PUSCH data, CQI/PMI 참조).
한편, UL-SCH 데이터 없이 비주기적 CSI만을 전송하도록 지시된 PUSCH (및/또는 비주기적 CSI 요청을 포함한 UL 그랜트로부터 스케줄링된 PUSCH)(이하, PUSCH w/o UL-SCH)가 존재하는 경우, 모든 UCI가 PUSCH w/o UL-SCH를 통해 전송 (피기백)될 수 있다. 따라서, PUSCH w/o UL-SCH가 존재할 경우, reserved-PUSCH 관점에서 단말은 UCI가 없다고 간주한 상태에서 동작할 수 있다(예, reserved-PUSCH를 해제).
(2) UL-SCH 데이터와 UCI가 모두 있는 상황에서의 reserved-PUSCH 관련 동작
(전송 시점에) UL-SCH 데이터(예, TCP-ACK)와 UCI 피드백이 모두 존재하는 상황에서 reserved-PUSCH를 통해 UL-SCH 데이터와 UCI가 (서로 다중화 되어) 동시에 전송될 수 있다. 이 경우, (i) PUSCH에의 UCI 피기백 과정(예, rate-matching for CSI, puncturing for HARQ-ACK)에 따른 UL-SCH 데이터의 코드 레이트 증가, (ii) 전력-제한(power-limited) UL CA(carrier aggregation) 상황에서 복수 UL 신호 동시전송에 따른 UL-SCH 데이터의 (전력 스케일링으로 인한) 전송 전력 감소 등으로 인해, UL-SCH 데이터의 전송 성능이 저하될 수 있다. 이로 인해, PUSCH 재전송이 유발될 경우, UL-SCH 데이터 전송이 지연될 수 있다. 여기서, UL-SCH 데이터는 저-지연 전송이 요구되는 UL-SCH 데이터(예, TCP-ACK)로 국한될 수 있다.
상기와 같은 영향을 고려하여, 복수 PUSCH들 중에서 UCI가 전송될 PUSCH(이하, UCI PUSCH)를 결정 시에 일반 PUSCH보다 reserved-PUSCH에 낮은 선택 우선순위를 부여할 수 있다. 여기서, 일반 PUSCH는 reserved-PUSCH 외의 PUSCH(예, dynamic-PUSCH, only-PUSCH)를 의미한다. 이에 따라, UCI PUSCH 결정 시에 reserved-PUSCH가 아닌 일반 PUSCH가 우선적으로/먼저 선택될 수 있다. 또는, reserved-PUSCH를 통해서는 모든 혹은 특정 UCI(예, CSI)의 전송이 수행되지 않거나, 특정 사이즈(예, 비트 수)를 초과한 UCI의 전송이 수행되지 않을 수 있다. 또한, 전력-제한 상황에서 UL 전송 전력 조정(예, 전력 스케일링) 시에 일반 PUSCH (및/또는 PUCCH)보다 reserved-PUSCH에 높은 보호우선순위가 부여될 수 있다. 이에 따라, 전력-제한 상황에서 reserved-PUSCH가 아닌 일반 PUSCH (및/또는 PUCCH)부터 우선적으로/먼저 전송 전력을 줄일 수 있다.
한편, dynamic-PUSCH가 존재하는 경우 UL-SCH는 dynamic-PUSCH를 통해 전송될 수도 있으므로, 본 방법의 우선순위는 only-PUSCH 및/또는 재전송 PUSCH만을 대상으로 reserved-PUSCH에 부여되는 것으로 한정할 수 있다. dynamic-PUSCH 존재하는 경우 reserved-PUSCH는 해제되어, reserved-PUSCH는 only-PUSCH 및/또는 재전송 PUSCH와만 공존할 수 있기 때문이다. 본 예는 표 5와 같이 정리될 수 있다.
표 5
UCI PUSCH reserved-PUSCH 가용 여부
일반 PUSCH 존재 시(dynamic PUSCH) 일반 PUSCH 비가용 (즉, 해제)
일반 PUSCH 존재 시(dynamic PUSCH 외) 일반 PUSCH 가용 (즉, 설정)
일반 PUSCH 부재 시 reserved-PUSCH 가용 (즉, 설정)
또한, reserved-PUSCH와 dynamic-PUSCH가 공존할 경우 특정 UL-SCH 데이터(예, TCP-ACK)는 항상 reserved-PUSCH를 통해 전송되도록 설정될 수 있다. 이 경우, dynamic-PUSCH를 포함한 모든 일반 PUSCH를 대상으로 reserved-PUSCH에 대해 본 방법의 우선순위가 부여될 수 있다. 본 예는 표 6과 같이 정리될 수 있다.
표 6
UCI PUSCH reserved-PUSCH 가용 여부
일반 PUSCH 존재 시 일반 PUSCH 가용 (즉, 설정)
일반 PUSCH 부재 시 reserved-PUSCH 가용 (즉, 설정)
한편, 비주기적 CSI 요청을 포함한 UL 그랜트로부터 스케줄링된 PUSCH (및/또는 UL-SCH 데이터 없이 비주기적 CSI만을 전송하도록 지시된 PUSCH)(이하, PUSCH w/o UL-SCH 데이터)가 존재하는 경우, 모든 UCI가 PUSCH w/o UL-SCH를 통해서만 전송될 수 있다. 따라서, PUSCH w/o UL-SCH가 존재할 경우, reserved-PUSCH 관점에서 단말은 UCI가 없는 경우로 간주한 상태에서 동작할 수 있다.
(3) Dynamic PUSCH가 스케줄링된 경우 reserved-PUSCH에 대한 해제 방법
reserved-PUSCH가 설정된 단말에 대하여 dynamic-PUSCH가 스케줄링된 상황은, 기지국이 해당 단말로부터 이미 BSR(Buffer Status Report) 혹은 SR(Scheduling Request) 신호를 수신한 상태이거나, 기지국이 해당 단말의 UL-SCH 데이터 생성 및 전송 요구 시점을 미리 예측하여 적정 시점에 dynamic-PUSCH를 스케줄링 한 경우일 수 있다. 이 경우, 단말은 reserved-PUSCH를 완전히 혹은 일정 구간 동안만 한시적으로 해제시킬 수 있다. 반면, dynamic-PUSCH가 아닌 only-PUSCH 및/또는 재전송 PUSCH가 스케줄링된 경우, 단말은 reserved-PUSCH를 해제시키지 않고 설정된 상태로 유지할 수 있다.
추가적으로, dynamic-PUSCH가 스케줄링된 경우, reserved-PUSCH의 가용 주기에 따라 reserved-PUSCH를 해제시키는 구간을 다르게 설정할 수 있다. 일 예로, reserved-PUSCH의 가용 주기가 특정 수준(예, K개 SF 혹은 K msec) 이하로 설정된 경우, reserved-PUSCH를 일정 구간 동안만 한시적으로 해제할 수 있다. 반면, reserved-PUSCH의 가용 주기가 특정 수준(예, K SFs 또는 K msec)을 초과한 경우, reserved-PUSCH는 완전히 해제될 수 있다.
다만, UL-SCH 데이터 없이 비주기적 CSI만을 전송하도록 지시된 PUSCH (및/또는 비주기적 CSI 요청을 포함한 UL 그랜트로부터 스케줄링된 PUSCH)(이하, PUSCH w/o UL-SCH)가 존재하는 경우에는 UL-SCH 전송 공간이 없는 PUSCH가 스케줄링된 것이다. 따라서, PUSCH w/o UL-SCH가 스케줄링된 경우에는 reserved-PUSCH를 해제시키지 않고 설정된 상태로 유지할 수 있다.
편의상, (1)~(3)은 독립적으로 설명되었지만, 이들은 서로 조합될 수 있다.
도 9는 본 발명에 따른 신호 전송 과정을 예시한다.
도 9를 참조하면, 단말은 주기적으로 할당된 PUSCH 자원을 획득할 수 있다(S902). 여기서, 주기적으로 할당된 PUSCH 자원은 제1 PUSCH의 전송에 사용될 수 있다. 제1 PUSCH는 (오직) 저-지연이 요구되는 제1 타입의 정보를 나르는데 사용되는 PUSCH, 예를 들어 (오직) TCP-ACK을 갖는 UL-SCH 데이터를 나르는데 사용되는 PUSCH일 수 있다. 이후, 단말은 제1 PUSCH의 전송 시점에 UCI의 전송이 요구되는 경우, UCI를 전송하기 위한 과정을 수행할 수 있다(S904). UCI를 전송하기 위한 과정은 자원 할당 과정 (혹은 채널 할당 과정)을 포함한다. 이후, 단말은 UCI를 전송할 수 있다(S906). 여기서, 제1 PUSCH의 전송 시점에 일반 PUSCH(예, 비주기적으로 할당된 제2 PUSCH)가 존재하지 않는 경우, UCI는 제1 PUSCH를 통해 전송될 수 있다. 반면, 제1 PUSCH의 전송 시점에 일반 PUSCH 가 존재하는 경우, UCI는 일반-PUSCH를 통해 전송될 수 있다. 일반 PUSCH는 예를 들어 dynamic-PUSCH, only-PUSCH, 재전송 PUSCH, PUSCH w/o UL-SCH 등을 포함한다. 일반 PUSCH의 범위는 방안 (1)~(3)에 따라 달라질 수 있다. 방안 (1)~(3)은 독립적으로 설명되지만 이들은 서로 조합될 수 있다. 예를 들어, 제1 PUSCH의 전송 시점에 TCP-ACK의 전송이 요구되지 않는 경우 (및, 제1 PUSCH의 전송 시점에 일반 PUSCH가 존재하지 않는 경우), 제1 PUSCH는 TCP-ACK에 대응되는 더미(dummy) 블록/비트를 더 포함할 수 있다. 이 경우, 제1 PUSCH 내에서 더미 블록/비트가 먼저 할당/매핑되고 난 뒤에 UCI가 할당/매핑될 수 있다(예, 도 6의 PUSCH data, CQI/PMI 참조).
도 10은 본 발명에 적용될 수 있는 기지국, 릴레이 및 단말을 예시한다.
도 10을 참조하면, 무선 통신 시스템은 기지국(BS, 110) 및 단말(UE, 120)을 포함한다. 무선 통신 시스템이 릴레이를 포함하는 경우, 기지국 또는 단말은 릴레이로 대체될 수 있다.
기지국(110)은 프로세서(112), 메모리(114) 및 무선 주파수(Radio Frequency: RF) 유닛(116)을 포함한다. 프로세서(112)는 본 발명에서 제안한 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리(114)는 프로세서(112)와 연결되고 프로세서(112)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛(116)은 프로세서(112)와 연결되고 무선 신호를 송신 및/또는 수신한다. 단말(120)은 프로세서(122), 메모리(124) 및 무선 주파수 유닛(126)을 포함한다. 프로세서(122)는 본 발명에서 제안한 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리(124)는 프로세서(122)와 연결되고 프로세서(122)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛(126)은 프로세서(122)와 연결되고 무선 신호를 송신 및/또는 수신한다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 본 발명의 실시예들은 주로 단말과 기지국 간의 신호 송수신 관계를 중심으로 설명되었다. 이러한 송수신 관계는 단말과 릴레이 또는 기지국과 릴레이간의 신호 송수신에도 동일/유사하게 확장된다. 본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다. 또한, 단말은 UE(User Equipment), MS(Mobile Station), MSS(Mobile Subscriber Station) 등의 용어로 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 무선 이동 통신 시스템의 단말기, 기지국, 또는 기타 다른 장비에 사용될 수 있다. 구체적으로, 본 발명은 상향링크 제어 정보를 전송하는 방법 및 이를 위한 장치에 적용될 수 있다.

Claims (10)

  1. 무선 통신 시스템에서 단말이 상향링크 제어 정보를 전송하는 방법에 있어서,
    주기적으로 할당된 PUSCH(Physical Uplink Shared Channel) 자원을 획득하되, 상기 주기적으로 할당된 PUSCH 자원은 제1 PUSCH의 전송에 사용되는 단계;
    상기 제1 PUSCH의 전송 시점에 상기 상향링크 제어 정보의 전송이 요구되는 경우, 상기 상향링크 제어 정보를 전송하기 위한 과정을 수행하는 단계; 및
    상기 상향링크 제어 정보를 전송하는 단계를 포함하고,
    상기 제1 PUSCH의 전송 시점에 비주기적으로 할당된 제2 PUSCH가 존재하지 않는 경우, 상기 상향링크 제어 정보는 상기 제1 PUSCH를 통해 전송되고,
    상기 제1 PUSCH의 전송 시점에 비주기적으로 할당된 제2 PUSCH가 존재하는 경우, 상기 상향링크 제어 정보는 상기 제2 PUSCH를 통해 전송되는 방법.
  2. 제1항에 있어서,
    상기 제1 PUSCH는 저-지연(low latency)이 요구되는 제1 타입의 정보를 나르는데 사용되는 PUSCH인 방법.
  3. 제1항에 있어서,
    상기 제1 PUSCH는 TCP-ACK(Transmission Control Protocol Acknowledgement)을 갖는 UL-SCH(Uplink Shared Channel) 데이터를 나르는데 사용되는 PUSCH인 방법.
  4. 제1항에 있어서,
    상기 제2 PUSCH는 재전송 데이터를 나르는데 사용되는 PUCCH인 방법.
  5. 제1항에 있어서,
    상기 제2 PUSCH는 UL-SCH 데이터 없이 CSI(Channel State Information)를 나르는데 사용되는 PUSCH인 방법.
  6. 무선 통신 시스템에 사용되는 단말에 있어서,
    무선 주파수(Radio Frequency, RF) 유닛; 및
    프로세서를 포함하고, 상기 프로세서는,
    주기적으로 할당된 PUSCH(Physical Uplink Shared Channel) 자원을 획득하되, 상기 주기적으로 할당된 PUSCH 자원은 제1 PUSCH의 전송에 사용되며,
    상기 제1 PUSCH의 전송 시점에 상향링크 제어 정보의 전송이 요구되는 경우, 상기 상향링크 제어 정보를 전송하기 위한 과정을 수행하고,
    상기 상향링크 제어 정보를 전송하도록 구성되며,
    상기 제1 PUSCH의 전송 시점에 비주기적으로 할당된 제2 PUSCH가 존재하지 않는 경우, 상기 상향링크 제어 정보는 상기 제1 PUSCH를 통해 전송되고,
    상기 제1 PUSCH의 전송 시점에 비주기적으로 할당된 제2 PUSCH가 존재하는 경우, 상기 상향링크 제어 정보는 상기 제2 PUSCH를 통해 전송되는 단말.
  7. 제6항에 있어서,
    상기 제1 PUSCH는 저-지연(low latency)이 요구되는 제1 타입의 정보를 나르는데 사용되는 PUSCH인 단말.
  8. 제6항에 있어서,
    상기 제1 PUSCH는 TCP-ACK(Transmission Control Protocol Acknowledgement)을 갖는 UL-SCH(Uplink Shared Channel) 데이터를 나르는데 사용되는 PUSCH인 단말.
  9. 제6항에 있어서,
    상기 제2 PUSCH는 재전송 데이터를 나르는데 사용되는 PUCCH인 단말.
  10. 제6항에 있어서,
    상기 제2 PUSCH는 UL-SCH 데이터 없이 CSI(Channel State Information)를 나르는데 사용되는 PUSCH인 단말.
PCT/KR2016/013038 2015-11-13 2016-11-11 무선 신호를 전송하는 방법 및 이를 위한 장치 WO2017082696A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/775,640 US10397906B2 (en) 2015-11-13 2016-11-11 Method for transmitting wireless signals and apparatus therefor
US16/517,537 US10701675B2 (en) 2015-11-13 2019-07-19 Method for transmitting wireless signals and apparatus therefor
US16/914,047 US11445486B2 (en) 2015-11-13 2020-06-26 Method for transmitting wireless signals and apparatus therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562254752P 2015-11-13 2015-11-13
US62/254,752 2015-11-13
US201662303316P 2016-03-03 2016-03-03
US62/303,316 2016-03-03

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/775,640 A-371-Of-International US10397906B2 (en) 2015-11-13 2016-11-11 Method for transmitting wireless signals and apparatus therefor
US16/517,537 Continuation US10701675B2 (en) 2015-11-13 2019-07-19 Method for transmitting wireless signals and apparatus therefor

Publications (1)

Publication Number Publication Date
WO2017082696A1 true WO2017082696A1 (ko) 2017-05-18

Family

ID=58695792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013038 WO2017082696A1 (ko) 2015-11-13 2016-11-11 무선 신호를 전송하는 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (3) US10397906B2 (ko)
WO (1) WO2017082696A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019073414A1 (en) * 2017-10-11 2019-04-18 Telefonaktiebolaget Lm Ericsson (Publ) UCI ON PUSCH WITHOUT GRANT
CN110035522A (zh) * 2018-01-12 2019-07-19 电信科学技术研究院有限公司 一种控制信息传输资源的确定方法、装置及通讯设备
EP3740004A4 (en) * 2018-01-12 2021-11-24 China Academy Of Information And Communications METHOD AND SYSTEM FOR TRANSMISSION OF UPRIGHT MOBILE COMMUNICATION LINK INFORMATION

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10397906B2 (en) 2015-11-13 2019-08-27 Lg Electronics Inc. Method for transmitting wireless signals and apparatus therefor
JP6894383B2 (ja) 2016-01-12 2021-06-30 富士通株式会社 無線通信装置、無線通信システム、及び無線通信方法
CN108463986B (zh) * 2016-01-12 2021-03-09 富士通株式会社 无线通信装置、无线通信系统和无线通信方法
CN110800225A (zh) * 2017-06-27 2020-02-14 瑞典爱立信有限公司 反馈信令格式选择
WO2019057092A1 (en) * 2017-09-19 2019-03-28 Mediatek Inc. TIME SIGNALING OF FEEDBACK OF UPLINK CONTROL INFORMATION IN WIRELESS COMMUNICATIONS
JP7080619B2 (ja) * 2017-11-15 2022-06-06 シャープ株式会社 端末装置及び通信方法
US11323227B2 (en) * 2017-11-17 2022-05-03 Qualcomm Incorporated Multiplexing of physical uplink shared channel (PUSCH) and physical uplink control channel (PUCCH) in uplink short burst transmission
WO2019104711A1 (en) * 2017-12-01 2019-06-06 Qualcomm Incorporated Resource allocation for uplink control information (uci) and data multiplexing on a physical uplink shared channel (pusch)
US11246153B2 (en) * 2019-02-15 2022-02-08 Mediatek Singapore Pte. Ltd. Method and apparatus for handling out-of-order uplink scheduling in mobile communications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100098012A1 (en) * 2008-10-20 2010-04-22 Interdigital Patent Holdings, Inc. Uplink control information transmission methods for carrier aggregation
WO2011132993A2 (ko) * 2010-04-22 2011-10-27 엘지전자 주식회사 반송파 집성 시스템에서 상향링크 제어 정보 전송 방법 및 장치
US20130343261A1 (en) * 2011-03-17 2013-12-26 Panasonic Corporation Dynamic PUSCH deactivation/activation for component carriers of a relay node

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100271970A1 (en) * 2009-04-22 2010-10-28 Interdigital Patent Holdings, Inc. Method and apparatus for transmitting uplink control information for carrier aggregated spectrums
KR101761627B1 (ko) * 2009-09-16 2017-07-27 엘지전자 주식회사 상향링크 제어 정보의 전송 방법 및 이를 위한 장치
US8422429B2 (en) * 2010-05-04 2013-04-16 Samsung Electronics Co., Ltd. Method and system for indicating the transmission mode for uplink control information
CN102104972B (zh) * 2010-05-24 2014-01-29 电信科学技术研究院 Uci信息传输的配置方法和设备
EP2579491A2 (en) * 2010-06-07 2013-04-10 LG Electronics Inc. Method and apparatus for transmitting control information in a wireless communication system
CN103168441B (zh) * 2010-06-18 2016-04-13 黑莓有限公司 用于载波聚合中的上行链路控制信息传输的系统和方法
US8976751B2 (en) * 2010-07-16 2015-03-10 Lg Electronics Inc. Method for transmitting control information and apparatus for same
CN103098398B (zh) * 2010-07-22 2015-11-25 Lg电子株式会社 在多载波系统中发送上行链路控制信息的设备和方法
WO2012015227A2 (ko) * 2010-07-26 2012-02-02 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 신호 전송 방법 및 장치
US8958370B2 (en) * 2010-08-10 2015-02-17 Lg Electronics Inc. Method and apparatus for controlling transmission power in wireless communication system
CN102098086B (zh) * 2010-12-30 2016-03-02 中兴通讯股份有限公司 数据发送方法及装置
US20140369324A1 (en) * 2012-01-20 2014-12-18 Zte Corporation Uplink signal sending method and user equipment
US9450714B2 (en) * 2012-04-24 2016-09-20 Lg Electronics Inc. Method and device for transmitting uplink control information
CN104812046B (zh) * 2014-01-28 2019-03-05 电信科学技术研究院 一种上行信道的功率控制方法及装置
WO2016021958A1 (ko) * 2014-08-06 2016-02-11 엘지전자 주식회사 상향링크 신호 전송 방법 및 사용자기기와, 상향링크 신호 수신 방법 및 기지국
WO2016108673A1 (ko) * 2014-12-31 2016-07-07 엘지전자 주식회사 상향링크 제어 정보 전송 방법 및 사용자기기와, 상향링크 제어 정보 수신 방법 및 기지국
US20170135090A1 (en) * 2015-11-11 2017-05-11 Sharp Laboratories Of America, Inc. Systems and methods for uplink control information reporting with license-assisted access (laa) uplink transmissions
US10397906B2 (en) * 2015-11-13 2019-08-27 Lg Electronics Inc. Method for transmitting wireless signals and apparatus therefor
BR112018073358B1 (pt) * 2016-05-13 2024-01-09 Huawei Technologies Co., Ltd Método para transmitir informação de controle de enlace ascendente, dispositivo de terminal, dispositivo de acesso e meio de armazenamento legível por computador

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100098012A1 (en) * 2008-10-20 2010-04-22 Interdigital Patent Holdings, Inc. Uplink control information transmission methods for carrier aggregation
WO2011132993A2 (ko) * 2010-04-22 2011-10-27 엘지전자 주식회사 반송파 집성 시스템에서 상향링크 제어 정보 전송 방법 및 장치
US20130343261A1 (en) * 2011-03-17 2013-12-26 Panasonic Corporation Dynamic PUSCH deactivation/activation for component carriers of a relay node

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Remaining Details of UCI Transmission on PUSCH", 3GPP TSG RAN WG1 MEETING #83 R1-157287, 6 November 2015 (2015-11-06), XP051042028 *
NTT DOCOMO, INC.: "Remaining Aspects of UCI Transmission on PUSCH''.", 3GPP TSG RAN WG1 MEETING #83 R1-157232, 7 November 2015 (2015-11-07), XP051022710 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019073414A1 (en) * 2017-10-11 2019-04-18 Telefonaktiebolaget Lm Ericsson (Publ) UCI ON PUSCH WITHOUT GRANT
RU2747887C1 (ru) * 2017-10-11 2021-05-17 Телефонактиеболагет Лм Эрикссон (Пабл) Uci по безгрантовому pusch
CN110035522A (zh) * 2018-01-12 2019-07-19 电信科学技术研究院有限公司 一种控制信息传输资源的确定方法、装置及通讯设备
CN110035522B (zh) * 2018-01-12 2021-06-11 电信科学技术研究院有限公司 一种控制信息传输资源的确定方法、装置及通讯设备
EP3740004A4 (en) * 2018-01-12 2021-11-24 China Academy Of Information And Communications METHOD AND SYSTEM FOR TRANSMISSION OF UPRIGHT MOBILE COMMUNICATION LINK INFORMATION

Also Published As

Publication number Publication date
US10397906B2 (en) 2019-08-27
US20180332577A1 (en) 2018-11-15
US20200337043A1 (en) 2020-10-22
US20190342884A1 (en) 2019-11-07
US11445486B2 (en) 2022-09-13
US10701675B2 (en) 2020-06-30

Similar Documents

Publication Publication Date Title
WO2017082696A1 (ko) 무선 신호를 전송하는 방법 및 이를 위한 장치
WO2017146556A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2012124969A2 (ko) 신호 송수신 방법 및 이를 위한 장치
WO2017043916A1 (ko) 무선 통신 시스템에서 신호의 전송 방법 및 장치
WO2017099556A1 (ko) 상향링크 신호를 전송하는 방법 및 이를 위한 장치
WO2012124996A2 (ko) 신호 송수신 방법 및 이를 위한 장치
WO2016021992A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2013191522A1 (ko) 기기-대-기기 통신을 위한 스케줄링 방법 및 이를 위한 장치
WO2014142593A1 (ko) 제어 채널의 송수신 방법 및 이를 위한 장치
WO2013015632A2 (ko) 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
WO2014088371A1 (ko) 제어 신호 송수신 방법 및 이를 위한 장치
WO2013055159A2 (ko) 데이터 송수신 방법 및 이를 위한 장치
WO2016056876A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2016036100A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2018048273A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 신호 전송 방법 및 이를 위한 장치
WO2013012261A2 (ko) 무선통신 시스템에서 자원 할당 정보를 송신 및 수신하는 방법과 이를 위한 장치
WO2016208994A1 (ko) 무선 통신 시스템에서 신호의 전송 방법 및 장치
WO2015163748A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
KR20200033345A (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2016085310A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2018164450A1 (ko) 무선 통신 시스템에서 ack/nack 자원 할당 방법 및 이를 위한 장치
WO2016036103A1 (ko) 반송파 집성을 지원하는 무선 통신 시스템에서 신호 송수신 방법 및 이를 위한 장치
WO2012157967A2 (ko) 무선통신 시스템에서 tdd(time division duplex) 방식을 이용하는 단말이 상향링크 전송 전력을 제어하는 방법 및 그 단말 장치
WO2015167222A1 (ko) 무선 통신 시스템에서 신호를 전송하는 방법 및 이를 위한 장치
WO2016018132A1 (ko) 무선 통신 시스템에서 d2d 통신을 지원하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864622

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15775640

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16864622

Country of ref document: EP

Kind code of ref document: A1