WO2016185728A1 - 銀ナノ粒子分散体の製造方法及び銀ナノ粒子インクの製造方法 - Google Patents
銀ナノ粒子分散体の製造方法及び銀ナノ粒子インクの製造方法 Download PDFInfo
- Publication number
- WO2016185728A1 WO2016185728A1 PCT/JP2016/002480 JP2016002480W WO2016185728A1 WO 2016185728 A1 WO2016185728 A1 WO 2016185728A1 JP 2016002480 W JP2016002480 W JP 2016002480W WO 2016185728 A1 WO2016185728 A1 WO 2016185728A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silver
- silver nanoparticle
- resin
- nanoparticle dispersion
- producing
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/30—Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
- B22F1/0545—Dispersions or suspensions of nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/09—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
- C08J3/091—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
- C08J3/097—Sulfur containing compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/52—Electrically conductive inks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/54—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of silver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/25—Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
- B22F2301/255—Silver or gold
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a method for producing a silver nanoparticle dispersion and a method for producing a silver nanoparticle ink.
- nanometer-sized materials have been actively developed, and expectations for activated material properties due to the size effect are increasing.
- nanometer-sized metal particles hereinafter referred to as “metal nanoparticles”
- metal nanoparticles have a lower melting point as the particle size decreases, and can be sintered at a low temperature of 100 ° C. to 200 ° C.
- silver nanoparticles are considered to be one of the most easy-to-use nanomaterials due to their ease of preparation and the nature of silver that is reduced by heating at 150 ° C. in the atmosphere.
- silver nanoparticle ink (ink containing silver nanoparticles) is attracting attention as a conductive ink that exhibits high conductivity in the field of printed electronics in which electronic devices are produced by printing.
- the silver nanoparticle ink is obtained by dispersing silver nanoparticles in a solvent.
- examples of the printing apparatus used for manufacturing the electronic device include a screen printing apparatus, a gravure offset printing apparatus, a flexographic printing apparatus, a letterpress reverse printing apparatus, and an inkjet printing apparatus.
- a screen printing apparatus a gravure offset printing apparatus
- a flexographic printing apparatus a flexographic printing apparatus
- a letterpress reverse printing apparatus a letterpress reverse printing apparatus
- an inkjet printing apparatus a silver nanoparticle ink having ink characteristics (viscosity, surface energy, etc.) suitable for each printing apparatus is required.
- JP 2010-209366 A Japanese Patent No. 5574761 Japanese Patent No. 4641384
- liquid phase reduction method As described in Patent Document 1, silver nanoparticles can be obtained by reducing a silver salt. This method is called a liquid phase reduction method and is currently widely used. However, in the liquid phase reduction method, a large amount of a dispersion solvent containing a highly toxic reducing agent is used. Therefore, the liquid phase reduction method has problems such as environmental impact and cost.
- Patent Document 2 discloses a method for producing silver nanoparticles that can be sintered at a low temperature through thermal decomposition of a silver complex. This method is called a complex decomposition method.
- the complex decomposition method is excellent in that high-quality silver nanoparticles can be efficiently produced without using a reducing agent.
- silver nanoparticle ink that can be used in various printing apparatuses can be obtained.
- silver nanoparticle ink having a very low viscosity can be obtained only by dispersing silver nanoparticles prepared by a conventional method in a solvent.
- Such silver nanoparticle ink is difficult to use in screen printing apparatuses and gravure offset printing apparatuses that require high viscosity.
- Patent Document 3 describes that a resin (polymer material) is added to the silver nanoparticle ink to increase the viscosity.
- An object of the present invention is to provide a silver nanoparticle ink having a wide range of viscosity characteristics applicable to various printing apparatuses and in which silver nanoparticles and a resin are uniformly dispersed in a solvent. Moreover, an object of this invention is to provide the silver nanoparticle dispersion suitable for manufacture of such a silver nanoparticle ink.
- the present invention Mixing an amine compound, a resin and a silver salt to form a complex compound; Heating and decomposing the complex compound to form silver nanoparticles; The manufacturing method of the silver nanoparticle dispersion containing this is provided.
- a silver nanoparticle ink in which silver nanoparticles and a resin are uniformly dispersed in a solvent can be easily produced.
- silver nanoparticle inks having a wide range of viscosity characteristics that can be applied to various printing apparatuses can be obtained.
- FIG. 4 is a TEM image of silver nanoparticles of Example 1.
- FIG. 4 is a TEM image of silver nanoparticles of Example 3.
- FIG. 4 is a TEM image of silver nanoparticles of Example 4.
- FIG. 4 is a TEM image of silver nanoparticles of Example 5.
- FIG. 4 is a TEM image of silver nanoparticles of Example 6.
- 10 is a TEM image of silver nanoparticles of Example 10.
- FIG. 10 is a TEM image of silver nanoparticles of Example 11.
- FIG. 14 is a cross-sectional profile of the wiring of FIG. 1 is a schematic cross-sectional view of a thin film transistor.
- the silver nanoparticles of the present embodiment can be formed by mixing an amine compound, a resin and a silver salt to form a complex compound, and then heating and decomposing the complex compound. After synthesizing the silver nanoparticles, the silver nanoparticles are added to a solvent such as an alcohol, a hydrocarbon organic solvent, an aromatic organic solvent, a ketone organic solvent, or a mixed solvent thereof, and the silver nanoparticles are dispersed in the solvent. Thereby, the silver nanoparticle ink which has the viscosity controlled appropriately is obtained.
- a solvent such as an alcohol, a hydrocarbon organic solvent, an aromatic organic solvent, a ketone organic solvent, or a mixed solvent thereof
- a complex compound (silver complex) is heated and decomposed to form silver nanoparticles.
- the resin is previously contained in the raw material mixture for forming the complex compound.
- the product is a silver nanoparticle dispersion containing silver nanoparticles and a resin. In the silver nanoparticle dispersion, the silver nanoparticles and the resin are uniformly mixed. Each silver nanoparticle is protected with an amine (amine compound).
- the particle size of the silver nanoparticles is, for example, 10 to 200 nm.
- the silver nanoparticle dispersion of this embodiment is used, a silver nanoparticle ink in which silver nanoparticles and a resin are uniformly dispersed in a solvent at a nanoscale can be easily produced.
- the “particle size” means an average particle size. The average particle diameter of the silver nanoparticles can be calculated by the following method, for example.
- the diameter of an arbitrary number (for example, 50) of silver nanoparticles can be calculated, and the average value can be regarded as the average particle diameter.
- the diameter of the silver nanoparticles can be regarded as being equal to the diameter of a circle having an area equal to the area of the silver nanoparticles in the transmission microscope image.
- the method for preparing a mixture (raw material mixture) containing an amine compound, a resin and a silver salt is not particularly limited.
- the amine compound, resin and silver salt are placed in a container and the mixture is stirred. If necessary, the mixture is stirred while heating to a temperature of 20-50 ° C. Thereby, a complex compound is generated. Formation of a complex compound can be confirmed by a change in the color and viscosity of the mixture (mixture).
- the amine compound and the resin are mixed (first stage), and then a silver salt is added to the mixture containing the amine compound and the resin that has undergone the first stage to form a complex compound (first stage). Two steps).
- the amine compound and the resin can be mixed uniformly in advance.
- the mixture may be heated to a temperature of 20-50 ° C. in each stage.
- the mixture containing the amine compound and the resin is stirred for 10 minutes to 1 hour while being heated to a temperature of 20 to 50 ° C.
- the mixture containing the amine compound, the resin and the silver salt is stirred for 5 minutes to 1 hour while being heated to a temperature of 20 to 50 ° C.
- a complex compound is generated.
- a complex compound is formed when an amine compound, resin and silver salt are mixed.
- a part of the silver salt forms a silver amine complex.
- the silver salt is silver oxalate
- a silver oxalate amine complex is formed.
- the mixture containing the silver amine complex is heated to a temperature of 90 to 120 ° C. and stirred for 3 to 20 minutes, a silver nanoparticle dispersion is obtained. Since the mixture is heated at a temperature lower than the decomposition temperature of the resin, decomposition of the resin can also be prevented.
- the raw material mixture may contain only an amine compound, a resin and a silver salt.
- the raw material mixture may contain only an amine compound, a resin, a silver salt, and a fatty acid described later.
- the method of the present embodiment is a so-called complex decomposition method and does not require a reducing agent for reducing silver.
- the complex decomposition method since water is not used as a solvent, silver nanoparticles that do not contain water and are soluble in various organic solvents can be produced. Since water is not used, the silver nanoparticles produced by the complex decomposition method are suitable as a wiring material for electronic components.
- Silver salt (silver compound) is a raw material for silver nanoparticles.
- the silver salt can be a material that is easily decomposed by heating to produce metallic silver.
- the silver salt may be a silver organic salt, a silver inorganic salt, or a combination thereof.
- at least one selected from the group consisting of fatty acid silver, silver acetate, silver benzoate, silver citrate, silver carbonate, silver oxide, silver oxalate, silver sulfate, silver nitrate and silver fluoride can be used. Among them, it is desirable to use silver oxalate that is less prone to impurities.
- the amine compound serves as a protective agent for coating the silver nanoparticles. That is, the amine compound covers the surface of the silver nanoparticles and prevents fusion between the silver nanoparticles.
- the amine compound may be a primary amine, a secondary amine, or a combination thereof.
- the amine compound may be an aliphatic amine. Specifically, a primary aliphatic amine is mentioned as an amine compound. In particular, it is desirable to use an alkylamine. From the viewpoint of sinterability, an amine compound having a boiling point of 250 ° C. or lower is suitable for this embodiment. Such amine compounds are likely to volatilize after being desorbed from the silver nanoparticles by heating. From the viewpoint of uniformly carrying out the silver nanoparticle synthesis reaction, the amine compound preferably has a melting point of 20 ° C. or lower.
- the amine compound is typically a liquid at room temperature (25 ° C.).
- aliphatic amines examples include ethanolamine, diethanolamine, triethanolamine, and propanolamine.
- Primary amines include butylamine, dipropylamine, dibutylamine, hexylamine, cyclohexylamine, heptylamine, 3-butoxypropylamine, octylamine, nonylamine, decylamine, dodecylamine, hexadecylamine, oleylamine, octadecylamine, etc. Can be mentioned. Among these, it is desirable to use hexylamine or propanolamine, which are easily available.
- the amine compound may be a diamine having a plurality of amino groups.
- the diamine preferably has a melting point of 20 ° C. or less from the viewpoint of uniformly carrying out the synthesis reaction of the silver nanoparticles. From the viewpoint of reaction uniformity in which a silver compound is sufficiently complexed, the diamine preferably has 4 to 12 carbon atoms.
- the above amine compounds may be used alone or in combination of a plurality of types.
- the ratio of the amine compound in the mixture containing the amine compound, resin and silver salt is not particularly limited.
- the amine compound is contained in the mixture in a ratio of 0.5 mol to 10 mol, particularly 0.8 mol to 3 mol, relative to 1 mol of the silver salt.
- the resin plays a role of imparting viscosity and / or viscoelasticity to the silver nanoparticle ink.
- the resin is added to the raw mixture of silver nanoparticles to control the viscosity of the silver nanoparticle ink.
- a resin that is uniformly mixed with an amine compound (particularly an aliphatic amine) or a resin that is soluble in an amine compound (particularly an aliphatic amine) can be suitably used.
- the amine compound and the resin are uniformly mixed or the resin is dissolved in the amine compound.
- a liquid resin having a viscosity at room temperature can be preferably used.
- the resin is a polymer that exhibits viscosity at any temperature within the temperature range of 20 ° C. to 50 ° C., or a viscosity at any temperature within the temperature range of 20 ° C. to 50 ° C.
- the resin is contained in the raw material mixture, it is easy to impart viscosity and viscoelasticity to the silver nanoparticle ink. Only one type of resin may be included in the raw material mixture, or a plurality of types of resins may be included.
- the phrase “high molecular weight compound” means an organic compound having a molecular weight of 500 or more.
- examples of the resin include epoxy, acrylic, polyimide, polyamide, polystyrene, polyethylene, polyester, and polyolefin.
- a resin classified as a hydrocarbon polymer can be preferably used.
- a wide variety of these resins are sold as additives such as thickeners and surfactants, and are easily available.
- the ratio of the resin in the mixture containing the amine compound, the resin and the silver salt is not particularly limited.
- the resin is included in the mixture at a ratio of 10 to 100 parts by weight with respect to 100 parts by weight of silver salt (eg, silver oxalate). Since the degree of polymerization of the polymer is often unknown, in this embodiment, the amount of resin used is expressed as a ratio to the weight of the silver salt.
- a desired viscosity can be obtained by appropriately adjusting the molecular weight of the resin.
- the raw material mixture for forming the complex compound may contain a fatty acid. Further, the raw material mixture for forming the complex compound may contain thiol. Fatty acids and thiols form an ionic bond with silver, thus improving the dispersion stability of the silver nanoparticles.
- These additional materials can be combined with the raw material mixture to form the complex compound. When the two-step process is performed as described above, these additional materials can be mixed with the amine compound and the resin in the first step described above.
- fatty acids are unsaturated fatty acids with unsaturated bonds.
- the fatty acid may be a carboxylic acid having a carboxyl group.
- citric acid, malonic acid, cholic acid, deoxycholic acid, dehydrocholic acid, glycocholic acid, colanic acid, lithocholic acid, abithienoic acid, glycyrrhizic acid, crotonic acid, sapienoic acid, oleic acid, Aiconsenic acid, linolenic acid, etc. can be used.
- Said fatty acid may be used individually by 1 type, and may use several types together.
- the ratio of the fatty acid in the raw material mixture is not particularly limited. In one example, the fatty acid is contained in the raw material mixture in a ratio of 0.01 mol to 1 mol, particularly 0.03 mol to 0.1 mol, with respect to 1 mol of the silver salt.
- thiols examples include octadecanethiol, hexadecanethiol, and tetradecanethiol.
- the silver nanoparticle dispersion obtained by the heat treatment contains impurities generated by the reduction reaction and raw materials that have not contributed to the reaction. Therefore, to remove them, the silver nanoparticle dispersion is washed with alcohol. For example, 1-5 times the volume of alcohol is added to the silver nanoparticle dispersion, stirred and centrifuged, and the supernatant is discarded. This operation is repeated twice or more.
- the precipitate can be removed as a purified silver nanoparticle dispersion. In order to remove alcohol which is a washing solvent, the precipitate after removing the supernatant may be dried.
- a silver nanoparticle ink having a viscosity suitable for various printings can be obtained.
- organic solvent hydrocarbon solvents such as toluene, xylene, cyclohexane, octane, butane, dodecane, and tetradecane can be used.
- a ketone-based organic solvent may be used.
- ketone organic solvent examples include acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), diisobutyl ketone (DIBK), isophorone, and cyclohexanone.
- an organic solvent having a boiling point of 200 ° C. or higher can be used. If an organic solvent having a high boiling point is used, problems such as ink clogging due to drying can be prevented.
- the upper limit of the boiling point of the organic solvent is not particularly limited and is, for example, 250 ° C.
- an organic solvent that does not easily volatilize at normal temperature and pressure is preferably used.
- organic solvents that are less likely to volatilize at normal temperature and pressure include dodecane, tetradecane, and isophorone.
- a volatile solvent and a non-volatile solvent can be mixed to prepare a hardly volatile solvent, and the hardly volatile solvent can be used for production of ink.
- DBS sodium alkylbenzene sulfonate
- paraffin oil liquid paraffin
- Paraffin oil is a non-volatile solvent and has a boiling point of, for example, 300 ° C. or higher.
- the upper limit of the boiling point of paraffin oil is, for example, 350 ° C.
- a solvent having a low boiling point of 150 ° C. or lower (low boiling point solvent) may be suitable.
- a silver nanoparticle ink can be produced using a low boiling point solvent.
- the low boiling point solvent include methanol, ethanol, isopropyl alcohol, toluene, xylene, tetrahydrofuran, and methyl ethyl ketone.
- the lower limit of the boiling point of the low boiling point solvent is, for example, 60 ° C.
- the organic solvent desirably contains an organic solvent (for example, an aromatic compound) having a surface free energy of 20 mN / m to 50 mN / m at room temperature (25 ° C.).
- an organic solvent having a relatively large surface free energy it is possible to form a fine wiring and to effectively suppress the coffee stain phenomenon.
- “Coffee stain phenomenon” means that the concentration of solute (eg, silver nanoparticles) in the outer periphery of the coating film is relatively higher than that in the center of the coating film, and the outer periphery of the wiring obtained by baking the coating film This means a phenomenon in which the portion becomes thicker than the central portion.
- the surface free energy of the liquid can be calculated by the Wilhelmy method for measuring the force when pulling up the plate immersed in the liquid.
- the resin component is contained in the silver nanoparticle dispersion.
- This resin component makes it possible to uniformly and easily disperse silver nanoparticles in various organic solvents regardless of whether they are nonpolar solvents or polar solvents. Therefore, it is possible to provide a silver nanoparticle ink having a surface energy optimum for various printing apparatuses.
- the silver nanoparticle ink of this embodiment can be used in known methods such as spin coating, bar coating, spray coating, ink jet printing, screen printing, gravure offset printing, letterpress reverse printing, and the like.
- the silver nanoparticle ink produced by the method of the present embodiment has a high viscosity of 1 Pa ⁇ s or more suitable for printing such as screen printing and gravure offset printing. Further, by diluting the high-viscosity silver nanoparticle ink with a desired organic solvent, a silver nanoparticle ink having a low viscosity of 10 mPa ⁇ s or less suitable for printing such as ink jet printing and letterpress reverse printing can be obtained. Thus, according to the present embodiment, the viscosity of the silver nanoparticle ink can be widely controlled.
- the phrase “viscosity” means a viscosity at room temperature (25 ° C.).
- the silver obtained through the above washing step A resin may be further added to the nanoparticle ink.
- the resin used for producing the high-viscosity ink include an acrylic resin and an epoxy resin.
- the resin may be mixed as it is with the silver nanoparticle ink, or the resin solution may be mixed with the silver nanoparticle ink after dissolving the resin in the organic solvent described above.
- the coating film is baked to sinter the silver nanoparticles.
- a calcination temperature is 250 degrees C or less, 200 degrees C or less, or 150 degrees C or less, for example.
- Silver nanoparticles are excellent in low temperature sinterability.
- the silver nanoparticle ink exhibits excellent conductivity by baking at a low temperature.
- the coating film formed using the silver nanoparticle ink of this embodiment can also be baked by a light baking method using a xenon flash lamp or the like.
- the resistivity is sufficiently low (for example, 50 ⁇ 10 ⁇ 6 ⁇ ⁇ cm or less at room temperature (25 ° C.), preferably 3 ⁇ 10 ⁇ 6 to 10 ⁇ 10 ⁇ 6 ⁇ .
- a conductive structure such as a wiring or an electrode having a (cm) can be formed. Therefore, the silver nanoparticle ink of the present embodiment can be used for manufacturing various electronic components such as a thin film transistor, an integrated circuit including a thin film transistor, a touch panel, an RFID, a flexible display, an organic EL, a circuit board, and a sensor device.
- a thin film transistor having the structure shown in FIG. 15 can be manufactured using the silver nanoparticle ink of this embodiment.
- the thin film transistor 20 includes a substrate 11, a base layer 12, a gate electrode 13, a gate insulating film 15, a source electrode 16, a drain electrode 17, and an organic semiconductor layer 18.
- the underlayer 12 is made of, for example, an insulating resin.
- a gate electrode 13 is formed on the base layer 12.
- the gate electrode 13 can be formed by applying and baking silver nanoparticle ink on the underlayer 12.
- the gate insulating film 15 covers the gate electrode 13.
- a source electrode 16 and a drain electrode 17 are formed on the gate insulating film 15.
- the source electrode 16 and the drain electrode 17 can be formed by applying and baking silver nanoparticle ink on the gate insulating film 15.
- Silver content rate The silver content rate is obtained by performing thermogravimetric / differential thermal analysis (TG / DTA) using a thermogravimetric measuring apparatus (SDQ600 manufactured by TA Instruments Japan). It was.
- Viscosity The viscosity was measured using a rotational viscometer (DV2T manufactured by Brookfield).
- Printability A wiring with a line width of 50 ⁇ m was printed using a gravure offset device (manufactured by MT Tech Co., Ltd.), and the transfer residue on the blanket and the shape of the printed wiring were observed.
- Shape observation The shape of the printed wiring was observed using the laser microscope (LEXT OLS4500 by Olympus).
- Example 1 5.78 g of n-hexylamine, 3.89 g of N, N-dimethyl-1,3-diaminopropane, 0.251 g of oleic acid, and 1.9 g of SOLSPERSE8000 (“SOLSPERSE” is a registered trademark) of Lubrizol as a resin Place in a container and stir the solution at 40 ° C. for 15 minutes. The resin was dissolved in a mixed solution of an amine compound and a fatty acid. Next, 7.6 g of silver oxalate was added to the container and stirring was continued. 15 minutes after adding silver oxalate, the solution changed into a gel, so the heating temperature was raised to 110 ° C., and further heating and stirring were performed.
- SOLSPERSE8000 is a registered trademark
- the solution turned brown to generate bubbles, and then changed to a glossy blue-violet color. After confirming that the generation of bubbles stopped, heating and stirring were stopped, and the solution was cooled to room temperature. Next, 50 ml of methanol was added to the solution and stirred, and then the operation of centrifuging the solution at 2000 rpm for 5 minutes and discarding the supernatant was repeated three times. After discarding the final supernatant, the precipitate was taken out. This precipitate was dried in the atmosphere at a temperature of 23 ° C. and a humidity of 30% for 24 hours or more. As a result, a paste-like silver nanoparticle dispersion (silver paste) having a high viscosity was obtained.
- the silver content in the silver nanoparticle dispersion was 92.2% by weight.
- a TEM image of the silver nanoparticles of Example 1 is shown in FIG.
- the silver nanoparticles had a particle size of 10 nm to 20 nm.
- the silver nanoparticle dispersion was diluted with tetradecane so that the weight concentration of silver was 82% to obtain a silver nanoparticle ink having a viscosity of about 1 Pa ⁇ s.
- Example 2 A silver nanoparticle dispersion was obtained by synthesizing silver nanoparticles in the same manner as in Example 1 except that 1.9 g of Lubrizol's SOLSPERSE16000 was used instead of SOLSPERSE8000. The silver content in the silver nanoparticle dispersion was 90.3% by weight. The silver nanoparticle dispersion was diluted with tetradecane so that the weight concentration of silver was 82% to obtain a silver nanoparticle ink having a viscosity of about 1 Pa ⁇ s.
- Example 3 Silver nanoparticles were synthesized in the same manner as in Example 1 except that 1.9 g of polyvinyl pyrrolidone (K-30) from Tokyo Chemical Industry Co., Ltd. was used as the resin instead of SOLSPERSE8000. Got. A TEM image of the silver nanoparticles of Example 3 is shown in FIG. The silver nanoparticles had a particle size of 10 nm to 20 nm. The silver nanoparticle dispersion was diluted with toluene or tetradecane. Silver nanoparticles could be uniformly dispersed in both toluene and tetradecane.
- the silver nanoparticle ink when it can be confirmed visually that the silver nanoparticles are dissolved in a solvent to the extent that no precipitate can be confirmed, and that the secondary aggregation of the silver nanoparticles has not occurred, It was judged that the silver nanoparticles were uniformly dispersed in the solvent.
- Example 4 A silver nanoparticle dispersion was obtained by synthesizing silver nanoparticles in the same manner as in Example 1 except that 1.9 g of Aldrich polyvinylphenol was used as the resin instead of SOLSPERSE8000. A TEM image of the silver nanoparticles of Example 4 is shown in FIG. The silver nanoparticles had a particle size of 10 nm to 20 nm. The silver nanoparticle dispersion was diluted with toluene or tetradecane. Silver nanoparticles could be uniformly dispersed in both toluene and tetradecane.
- Example 5 A silver nanoparticle dispersion was obtained by synthesizing silver nanoparticles in the same manner as in Example 1 except that 1.9 g of Aldrich polystyrene was used as the resin instead of SOLSPERSE8000.
- a TEM image of the silver nanoparticles of Example 5 is shown in FIG.
- the silver nanoparticles had a particle size of 10 nm to 20 nm.
- the silver nanoparticle dispersion was diluted with toluene or tetradecane. Silver nanoparticles could be uniformly dispersed in both toluene and tetradecane.
- Example 6 A silver nanoparticle dispersion was obtained by synthesizing silver nanoparticles in the same manner as in Example 1 except that 1.9 g of Aldrich melamine resin was used as a resin instead of SOLSPERSE8000. A TEM image of the silver nanoparticles of Example 6 is shown in FIG. The silver nanoparticles had a particle size of 10 nm to 20 nm. The silver nanoparticle dispersion was diluted with toluene or tetradecane. Silver nanoparticles could be uniformly dispersed in both toluene and tetradecane.
- Example 7 A silver nanoparticle dispersion was obtained by synthesizing silver nanoparticles in the same manner as in Example 1 except that 1.9 g of Span85 (“Span” is a registered trademark) of Kanto Chemical Co., Inc. was used instead of SOLSPERSE8000. It was. The silver content in the silver nanoparticle dispersion was 93.0% by weight. The silver nanoparticle dispersion was diluted with tetradecane so that the weight concentration of silver was 82% to obtain a silver nanoparticle ink having a viscosity of about 1 Pa ⁇ s.
- Example 8 Silver nanoparticles were synthesized by the same method as in Example 1 except that 4.42 g of N, N-dibutylethylenediamine was used instead of N, N-dimethyl-1,3-diaminopropane. A dispersion was obtained. The silver nanoparticle dispersion was diluted with tetradecane to obtain a silver nanoparticle ink having a viscosity of about 1 Pa ⁇ s.
- Example 9 Silver nanoparticles were synthesized by the same method as in Example 1 except that N, N-dimethyl-1,3-diaminopropane was not used to obtain a silver nanoparticle dispersion.
- a TEM image of the silver nanoparticles of Example 9 is shown in FIG.
- the silver nanoparticles had a particle size of 10 nm to 20 nm.
- the silver nanoparticle dispersion was diluted with tetradecane to obtain a silver nanoparticle ink having a viscosity of about 1 Pa ⁇ s.
- Example 10 Silver nanoparticles were synthesized by the same method as in Example 1 except that n-hexylamine was not used to obtain a silver nanoparticle dispersion.
- a TEM image of the silver nanoparticles of Example 10 is shown in FIG.
- the silver nanoparticles had a particle size of 10 nm to 20 nm.
- the silver nanoparticle dispersion was diluted with tetradecane to obtain a silver nanoparticle ink having a viscosity of about 1 Pa ⁇ s.
- Example 11 In the same manner as in Example 1, except that n-hexylamine was not used and 4.42 g of N, N-dibutylethylenediamine was used instead of N, N-dimethyl-1,3-diaminopropane, The particles were synthesized to obtain a silver nanoparticle dispersion.
- a TEM image of the silver nanoparticles of Example 11 is shown in FIG.
- the silver nanoparticles had a particle size of 10 nm to 20 nm.
- the silver nanoparticle dispersion was diluted with tetradecane to obtain a silver nanoparticle ink having a viscosity of about 1 Pa ⁇ s.
- Example 12 Silver nanoparticles were synthesized by the same method as in Example 1 except that oleic acid was not used, to obtain a silver nanoparticle dispersion.
- a TEM image of the silver nanoparticles of Example 12 is shown in FIG.
- Silver nanoparticles had a particle size of 10 nm to 30 nm.
- the silver nanoparticle dispersion was diluted with tetradecane to obtain a silver nanoparticle ink having a viscosity of about 1 Pa ⁇ s.
- Example 13 Silver nanoparticles were synthesized by the same method as in Example 8 except that oleic acid was not used, to obtain a silver nanoparticle dispersion.
- the silver nanoparticle dispersion was diluted with tetradecane to obtain a silver nanoparticle ink having a viscosity of about 1 Pa ⁇ s.
- Example 14 Silver nanoparticles were synthesized by the same method as in Example 9 except that oleic acid was not used to obtain a silver nanoparticle dispersion.
- a TEM image of the silver nanoparticles of Example 14 is shown in FIG.
- the silver nanoparticles had a particle size of 10 nm to 20 nm.
- the silver nanoparticle dispersion was diluted with toluene or tetradecane. Silver nanoparticles could be uniformly dispersed in both toluene and tetradecane.
- Example 15 Except that oleic acid was not used, silver nanoparticles were synthesized in the same manner as in Example 10 to obtain a silver nanoparticle dispersion.
- a TEM image of the silver nanoparticles of Example 15 is shown in FIG.
- the silver nanoparticles had a particle size of 10 nm to 20 nm.
- the silver nanoparticle dispersion was diluted with toluene or tetradecane. Silver nanoparticles could be uniformly dispersed in both toluene and tetradecane.
- Example 16 Except that oleic acid was not used, silver nanoparticles were synthesized in the same manner as in Example 11 to obtain a silver nanoparticle dispersion.
- the silver nanoparticle dispersion was diluted with toluene or tetradecane. Silver nanoparticles could be uniformly dispersed in both toluene and tetradecane.
- Silver nanoparticle ink was prepared without using resin. Specifically, 5.78 g of n-hexylamine, 4.77 g of n-dodecylamine, 3.89 g of N, N-dimethyl-1,3-diaminopropane and 0.251 g of oleic acid were put in a container, Stir at 15 ° C. for 15 minutes. Next, 7.6 g of silver oxalate was added to the container, and stirring was continued at 40 ° C. About 20 minutes after addition of silver oxalate, the solution changed to a gel, so the heating temperature was raised to 110 ° C., and further heating and stirring were performed.
- the solution turned brown to generate bubbles, and then changed to a glossy blue color. After confirming that the generation of bubbles stopped, heating and stirring were stopped, and the solution was cooled to room temperature. Next, 50 ml of methanol was added to the solution and stirred, and then the operation of centrifuging the solution at 2000 rpm for 5 minutes and discarding the supernatant was repeated three times. After discarding the final supernatant, the precipitate was vacuum-dried with a bell jar for 3 minutes. The obtained precipitate was a cake-like lump (silver paste) in which silver nanoparticles were aggregated. The silver content in the precipitate was 93.4% by weight.
- Comparative Example 2 A mixed solution of the solvent and the resin was prepared by dissolving the resin (SOLSPERSE8000) in the solvent (tetradecane) until saturation. When this mixed solution was added to the silver paste synthesized in Comparative Example 1 and mixed well so that the weight concentration of silver was 82%, the viscosity dropped to about 400 mPa ⁇ s.
- a thin film was formed on a glass substrate by spin coating using the silver nanoparticle ink of Example 1. After firing the thin film at a predetermined temperature, the volume resistivity of the thin film was measured. The results are shown in Table 1. A resistivity of less than 50 ⁇ ⁇ cm could be achieved at a firing temperature of 250 ° C. or higher.
- the silver nanoparticles of Example 1 were dispersed in various solvents, and their dispersibility was confirmed. Specifically, the silver nanoparticle of Example 1 was added to each of isophorone, tetradecane, methyl ethyl ketone, dodecane, n-octane, mesitylene, p-cymene, xylene, tetralin, 1-decanol, 1-octanol, 1-butanol and liquid paraffin. The particles were dispersed. The dispersibility of the silver nanoparticles of Example 1 in these solvents was good.
- the silver nanoparticle ink using a solvent having a relatively high boiling point such as isophorone, tetradecane, tetralin, 1-decanol, and liquid paraffin can be subjected to gravure offset printing.
- Teflon (AF1600 manufactured by Mitsui DuPont Fluorochemical Co., Ltd.) (“Teflon” is a registered trademark) was formed on a glass substrate by a spin coating method. The surface of the thin film was made lyophilic by oxygen plasma treatment.
- the silver nanoparticle ink of Example 1 was diluted with tetradecane so that the weight concentration of silver was 30% to obtain a low viscosity silver nanoparticle ink.
- a film formation test by ink jet printing was performed with an ink jet apparatus (manufactured by Fujifilm Dimatics, material printer DMP-2831).
- FIG. 14 shows a cross-sectional profile of wiring measured with a laser microscope.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- Composite Materials (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Conductive Materials (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
Abstract
Description
アミン化合物、樹脂及び銀塩を混合して錯化合物を生成させる工程と、
前記錯化合物を加熱して分解させて銀ナノ粒子を形成する工程と、
を含む、銀ナノ粒子分散体の製造方法を提供する。
アミン化合物、樹脂及び銀塩を含む混合物(原料混合物)を調製する方法は特に限定されない。アミン化合物、樹脂及び銀塩を容器に入れ、これらの混合物を撹拌する。必要に応じて、混合物を20~50℃の温度に加熱しながら撹拌する。これにより、錯化合物が生成する。混合物(混合液)の色の変化及び粘性の変化によって、錯化合物の生成を確認することができる。
銀塩(銀化合物)は、銀ナノ粒子の原料である。銀塩は、加熱によって容易に分解して金属の銀を生じる材料でありうる。銀塩は、銀の有機塩であってもよく、銀の無機塩であってもよく、これらを併用してもよい。具体的には、脂肪酸銀、酢酸銀、安息香酸銀、クエン酸銀、炭酸銀、酸化銀、シュウ酸銀、硫酸銀、硝酸銀及びフッ化銀からなる群より選ばれる少なくとも1種を使用できる。中でも、不純物が生じにくいシュウ酸銀を使用することが望ましい。
アミン化合物は、銀ナノ粒子を被覆する保護剤の役割を担う。すなわち、アミン化合物は、銀ナノ粒子の表面を覆って銀ナノ粒子同士の融着を防止する。アミン化合物は、第一級アミンであってもよいし、第二級アミンであってもよく、これらを併用してもよい。また、アミン化合物は、脂肪族アミンであってもよい。具体的には、アミン化合物として、第一級の脂肪族アミンが挙げられる。とりわけ、アルキルアミンを使用することが望ましい。焼結性の観点から、250℃以下の沸点を有するアミン化合物が本実施形態に適している。そのようなアミン化合物は、加熱によって銀ナノ粒子から脱離した後に揮発しやすい。銀ナノ粒子の合成反応を均一に行う観点から、アミン化合物の融点が20℃以下であることが望ましい。アミン化合物は、典型的には、室温(25℃)で液体である。
樹脂は、銀ナノ粒子インクに粘度及び/又は粘弾性を与える役割を担う。言い換えれば、樹脂は、銀ナノ粒子インクの粘性を制御するために、銀ナノ粒子の原料混合物に加えられる。アミン化合物(特に、脂肪族アミン)と均一に混ざり合う樹脂又はアミン化合物(特に、脂肪族アミン)に溶解する樹脂を好適に使用できる。例えば、20℃~50℃の温度範囲に含まれるいずれかの温度において、アミン化合物と樹脂とが均一に混ざり合う又はアミン化合物に樹脂が溶解する。具体的には、室温において粘性を有する液体状態の樹脂を好適に使用できる。さらに別の側面において、樹脂は、20℃~50℃の温度範囲に含まれるいずれかの温度において粘性を示す高分子、又は、20℃~50℃の温度範囲に含まれるいずれかの温度において粘性を示す高分子量化合物(high molecular weight compound)でありうる。このような樹脂が原料混合物に含まれていると、銀ナノ粒子インクに粘度及び粘弾性を付与しやすい。原料混合物には、1種類の樹脂のみが含まれていてもよいし、複数の種類の樹脂が含まれていてもよい。「高分子量化合物」の語句は、分子量が500以上の有機化合物を意味する。
脂肪酸の例は、不飽和結合を持つ不飽和脂肪酸である。脂肪酸は、カルボキシル基を持つカルボン酸であってもよい。具体的には、脂肪酸として、クエン酸、マロン酸、コール酸、デオキシコール酸、デヒドロコール酸、グリココール酸、コラン酸、リトコール酸、アビチエン酸、グリチルリチン酸、クロトン酸、サピエン酸、オレイン酸、エイコンセン酸、リノレン酸などを使用できる。中でも、クエン酸及びオレイン酸から選ばれる少なくとも1つを使用することが望ましい。上記の脂肪酸は、1種を単独で使用してもよいし、複数の種類を併用してもよい。原料混合物における脂肪酸の比率は特に限定されない。一例において、脂肪酸は、銀塩1molに対し、0.01mol~1mol、特に0.03mol~0.1molの比率で原料混合物に含まれる。
チオールとして、オクタデカンチオール、ヘキサデカンチオール、テトラデカンチオールなどが挙げられる。
熱処理によって得られた銀ナノ粒子分散体は、還元反応によって生成された不純物、及び、反応に寄与しなかった原料を含んでいる。したがって、それらを取り除くために、銀ナノ粒子分散体をアルコールで洗浄する。例えば、銀ナノ粒子分散体に1~5倍の体積のアルコールを加え、撹拌して遠心分離機にかけ、上澄み液を捨てる。この操作を2回以上繰り返す。沈殿物を精製された銀ナノ粒子分散体として取り出すことができる。洗浄溶媒であるアルコールを取り除くために、上澄み液を除去した後の沈殿物を乾燥させてもよい。
銀ナノ粒子(銀ナノ粒子分散体)と有機溶媒とを混合すれば、各種印刷に適した粘度を有する銀ナノ粒子インクが得られる。有機溶媒として、トルエン、キシレン、シクロヘキサン、オクタン、ブタン、ドデカン、テトラデカンなどの炭化水素系溶媒を使用できる。使用した樹脂の種類によっては、ケトン系有機溶媒を使用できる場合もある。ケトン系有機溶媒として、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、ジイソブチルケトン(DIBK)、イソホロン、シクロヘキサノンなどが挙げられる。
本実施形態の銀ナノ粒子インクを用いて図15に示す構造を有する薄膜トランジスタを作製できる。薄膜トランジスタ20は、基板11、下地層12、ゲート電極13、ゲート絶縁膜15、ソース電極16、ドレイン電極17及び有機半導体層18を備えている。下地層12は、例えば、絶縁性樹脂で形成されている。下地層12の上にゲート電極13が形成されている。ゲート電極13は、銀ナノ粒子インクを下地層12に塗布及び焼成することによって形成されうる。ゲート絶縁膜15は、ゲート電極13を被覆している。ゲート絶縁膜15の上には、ソース電極16及びドレイン電極17が形成されている。ソース電極16及びドレイン電極17は、銀ナノ粒子インクをゲート絶縁膜15に塗布及び焼成することによって形成されうる。
銀の含有率は、熱重量測定装置(ティー・エイ・インスツルメント・ジャパン社製 SDTQ600)を用い、熱重量/示差熱分析(TG/DTA)を行うことにより求めた。
(2)粘度
粘度は、回転粘度計(ブルックフィールド社製 DV2T)を用いて測定した。
(3)印刷適性
グラビアオフセット装置(エムティーテック社製)を用いて線幅50μmの配線を印刷し、ブランケット上の転写残りと、印刷された配線の形状とを観察した。
(4)形状観察
印刷された配線の形状は、レーザー顕微鏡(オリンパス社製 LEXT OLS4500)を用いて観察した。
n-ヘキシルアミン5.78g、N,N-ジメチル-1,3-ジアミノプロパン3.89g、オレイン酸0.251g、及び樹脂としてのルブリゾール社のSOLSPERSE8000(「SOLSPERSE」は登録商標)1.9gを容器に入れ、溶液を40℃で15分間撹拌した。樹脂は、アミン化合物と脂肪酸との混合液に溶解した。次に、容器にシュウ酸銀7.6gを加えて撹拌を続けた。シュウ酸銀を加えて15分後に溶液がゲル状に変化したので、加熱温度を110℃に上げ、さらに加熱及び撹拌を行った。すると溶液が茶色に変化して気泡を発生し、その後、光沢のある青紫色に変化した。気泡の発生が止まったことを確認した後、加熱及び撹拌を停止し、常温まで溶液を冷却した。次に、溶液に50mlのメタノールを加えて撹拌した後、2000rpmで5分間、溶液を遠心分離して上澄み液を捨てる操作を3回繰り返した。最後の上澄み液を捨てた後、沈殿物を取り出した。この沈殿物を温度23℃、湿度30%の大気中で24時間以上乾燥させた。その結果、粘度の高いペースト状の銀ナノ粒子分散体(銀ペースト)を得た。銀ナノ粒子分散体における銀の含有率は92.2重量%であった。実施例1の銀ナノ粒子のTEM像を図1に示す。銀ナノ粒子は10nm~20nmの粒子径を有していた。銀の重量濃度が82%になるように、銀ナノ粒子分散体をテトラデカンで希釈し、粘度が約1Pa・sの銀ナノ粒子インクを得た。
SOLSPERSE8000の代わりに、樹脂として、ルブリゾール社のSOLSPERSE16000を1.9g用いたことを除き、実施例1と同様の方法で銀ナノ粒子を合成し、銀ナノ粒子分散体を得た。銀ナノ粒子分散体における銀の含有率は90.3重量%であった。銀の重量濃度が82%になるように、銀ナノ粒子分散体をテトラデカンで希釈し、粘度が約1Pa・sの銀ナノ粒子インクを得た。
SOLSPERSE8000の代わりに、樹脂として、東京化成工業社のポリビニルピロリドン(K-30)を1.9g用いたことを除き、実施例1と同様の方法で銀ナノ粒子を合成し、銀ナノ粒子分散体を得た。実施例3の銀ナノ粒子のTEM像を図2に示す。銀ナノ粒子は10nm~20nmの粒子径を有していた。銀ナノ粒子分散体をトルエン又はテトラデカンで希釈した。トルエン及びテトラデカンのいずれにも銀ナノ粒子を均一に分散させることができた。
SOLSPERSE8000の代わりに、樹脂として、アルドリッチ社のポリビニルフェノールを1.9g用いたことを除き、実施例1と同様の方法で銀ナノ粒子を合成し、銀ナノ粒子分散体を得た。実施例4の銀ナノ粒子のTEM像を図3に示す。銀ナノ粒子は10nm~20nmの粒子径を有していた。銀ナノ粒子分散体をトルエン又はテトラデカンで希釈した。トルエン及びテトラデカンのいずれにも銀ナノ粒子を均一に分散させることができた。
SOLSPERSE8000の代わりに、樹脂として、アルドリッチ社のポリスチレンを1.9g用いたことを除き、実施例1と同様の方法で銀ナノ粒子を合成し、銀ナノ粒子分散体を得た。実施例5の銀ナノ粒子のTEM像を図4に示す。銀ナノ粒子は10nm~20nmの粒子径を有していた。銀ナノ粒子分散体をトルエン又はテトラデカンで希釈した。トルエン及びテトラデカンのいずれにも銀ナノ粒子を均一に分散させることができた。
SOLSPERSE8000の代わりに、樹脂として、アルドリッチ社のメラミン樹脂を1.9g用いたことを除き、実施例1と同様の方法で銀ナノ粒子を合成し、銀ナノ粒子分散体を得た。実施例6の銀ナノ粒子のTEM像を図5に示す。銀ナノ粒子は10nm~20nmの粒子径を有していた。銀ナノ粒子分散体をトルエン又はテトラデカンで希釈した。トルエン及びテトラデカンのいずれにも銀ナノ粒子を均一に分散させることができた。
SOLSPERSE8000の代わりに、関東化学社のSpan85(「Span」は登録商標)を1.9g用いたことを除き、実施例1と同様の方法で銀ナノ粒子を合成し、銀ナノ粒子分散体を得た。銀ナノ粒子分散体における銀の含有率は93.0重量%であった。銀の重量濃度が82%になるように、銀ナノ粒子分散体をテトラデカンで希釈し、粘度が約1Pa・sの銀ナノ粒子インクを得た。
N,N-ジメチル-1,3-ジアミノプロパンの代わりに、N,N-ジブチルエチレンジアミンを4.42g用いたことを除き、実施例1と同様の方法で銀ナノ粒子を合成し、銀ナノ粒子分散体を得た。銀ナノ粒子分散体をテトラデカンで希釈し、粘度が約1Pa・sの銀ナノ粒子インクを得た。
N,N-ジメチル-1,3-ジアミノプロパンを使用しなかったことを除き、実施例1と同様の方法で銀ナノ粒子を合成し、銀ナノ粒子分散体を得た。実施例9の銀ナノ粒子のTEM像を図6に示す。銀ナノ粒子は10nm~20nmの粒子径を有していた。銀ナノ粒子分散体をテトラデカンで希釈し、粘度が約1Pa・sの銀ナノ粒子インクを得た。
n-ヘキシルアミンを使用しなかったことを除き、実施例1と同様の方法で銀ナノ粒子を合成し、銀ナノ粒子分散体を得た。実施例10の銀ナノ粒子のTEM像を図7に示す。銀ナノ粒子は10nm~20nmの粒子径を有していた。銀ナノ粒子分散体をテトラデカンで希釈し、粘度が約1Pa・sの銀ナノ粒子インクを得た。
n-ヘキシルアミンを使用せず、N,N-ジメチル-1,3-ジアミノプロパンの代わりにN,N-ジブチルエチレンジアミンを4.42g用いたことを除き、実施例1と同様の方法で銀ナノ粒子を合成し、銀ナノ粒子分散体を得た。実施例11の銀ナノ粒子のTEM像を図8に示す。銀ナノ粒子は10nm~20nmの粒子径を有していた。銀ナノ粒子分散体をテトラデカンで希釈し、粘度が約1Pa・sの銀ナノ粒子インクを得た。
オレイン酸を使用しなかったことを除き、実施例1と同様の方法で銀ナノ粒子を合成し、銀ナノ粒子分散体を得た。実施例12の銀ナノ粒子のTEM像を図9に示す。銀ナノ粒子は10nm~30nmの粒子径を有していた。銀ナノ粒子分散体をテトラデカンで希釈し、粘度が約1Pa・sの銀ナノ粒子インクを得た。
オレイン酸を使用しなかったことを除き、実施例8と同様の方法で銀ナノ粒子を合成し、銀ナノ粒子分散体を得た。銀ナノ粒子分散体をテトラデカンで希釈し、粘度が約1Pa・sの銀ナノ粒子インクを得た。
オレイン酸を使用しなかったことを除き、実施例9と同様の方法で銀ナノ粒子を合成し、銀ナノ粒子分散体を得た。実施例14の銀ナノ粒子のTEM像を図10に示す。銀ナノ粒子は10nm~20nmの粒子径を有していた。銀ナノ粒子分散体をトルエン又はテトラデカンで希釈した。トルエン及びテトラデカンのいずれにも銀ナノ粒子を均一に分散させることができた。
オレイン酸を使用しなかったことを除き、実施例10と同様の方法で銀ナノ粒子を合成し、銀ナノ粒子分散体を得た。実施例15の銀ナノ粒子のTEM像を図11に示す。銀ナノ粒子は10nm~20nmの粒子径を有していた。銀ナノ粒子分散体をトルエン又はテトラデカンで希釈した。トルエン及びテトラデカンのいずれにも銀ナノ粒子を均一に分散させることができた。
オレイン酸を使用しなかったことを除き、実施例11と同様の方法で銀ナノ粒子を合成し、銀ナノ粒子分散体を得た。銀ナノ粒子分散体をトルエン又はテトラデカンで希釈した。トルエン及びテトラデカンのいずれにも銀ナノ粒子を均一に分散させることができた。
樹脂を使用せずに銀ナノ粒子インクを製造した。具体的には、n-ヘキシルアミン5.78g、n-ドデシルアミン4.77g、N,N-ジメチル-1,3-ジアミノプロパン3.89g、オレイン酸0.251gを容器に入れ、溶液を40℃で15分間撹拌した。次に、容器にシュウ酸銀7.6gを加えて40℃で撹拌を続けた。シュウ酸銀を加えて約20分後に溶液がゲル状に変化したので、加熱温度を110℃に上げ、さらに加熱及び撹拌を行った。すると溶液が茶色に変色して気泡を発生し、その後、光沢のある青色に変化した。気泡の発生が止まったことを確認した後、加熱及び撹拌を停止し、常温まで溶液を冷却した。次に、溶液に50mlのメタノールを加えて撹拌した後、2000rpmで5分間、溶液を遠心分離して上澄み液を捨てる操作を3回繰り返した。最後の上澄み液を捨てた後、沈殿物をベルジャーにて3分間真空乾燥させた。得られた沈殿物は、銀ナノ粒子が凝集したケーキ状の塊(銀ペースト)であった。この沈殿物における銀の含有率は93.4重量%であった。
溶媒(テトラデカン)に樹脂(SOLSPERSE8000)を飽和するまで溶解させることによって溶媒と樹脂との混合液を調製した。銀の重量濃度が82%になるように、この混合液を比較例1で合成した銀ペーストに加えて十分に混合したところ、粘度が約400mPa・sまで降下した。
実施例1の銀ナノ粒子インクを用いてスピンコート法でガラス基板上に薄膜を形成した。薄膜を所定の温度で焼成した後、薄膜の体積抵抗率を測定した。結果を表1に示す。250℃以上の焼成温度で50μΩ・cm未満の抵抗率を達成できた。
実施例1の銀ナノ粒子を各種の溶媒に分散させ、その分散性を確認した。具体的には、イソホロン、テトラデカン、メチルエチルケトン、ドデカン、n-オクタン、メシチレン、p-シメン、キシレン、テトラリン、1-デカノール、1-オクタノール、1-ブタノール及び流動パラフィンのそれぞれに実施例1の銀ナノ粒子を分散させた。これらの溶媒に対する実施例1の銀ナノ粒子の分散性は良好であった。イソホロン、テトラデカン、テトラリン、1-デカノール、流動パラフィンなどの比較的沸点が高い溶媒を用いた銀ナノ粒子インクは、グラビアオフセット印刷を実施することが可能であった。
実施例1、実施例2及び実施例7の銀ナノ粒子インクをグラビアオフセット印刷に用いて印刷テストを行った。いずれの場合も、版幅50μmに対し、45~48μmの線幅の配線を形成することができた。実施例1の銀ナノ粒子インクを用いて形成した配線をレーザー顕微鏡で観察した結果を図12に示す。また、実施例2及び実施例7の銀ナノ粒子インクを用いてもグラビアオフセット印刷を実施することが可能であった。
ガラス基板上にテフロン(三井・デュポンフルオロケミカル社製 AF1600)(「テフロン」は登録商標)の薄膜をスピンコート法で形成した。薄膜の表面を酸素プラズマ処理によって親液化した。一方、銀の重量濃度が30%となるように、実施例1の銀ナノ粒子インクをテトラデカンで希釈し、低粘度の銀ナノ粒子インクを得た。この銀ナノ粒子インクを用いて、インクジェット装置(富士フイルム・ダイマティックス社製、マテリアルプリンターDMP-2831)にて、インクジェット印刷による成膜試験を行った。10ピコリットル用インクカートリッジに銀ナノ粒子インクを充填した。親液化されたテフロン薄膜を有するガラス基板上にインクジェット装置で配線を描画した。配線のレーザー顕微鏡写真を図13に示す。図14は、レーザー顕微鏡で計測した配線の断面プロファイルを示している。実施例1の銀ナノ粒子インクを用い、インクジェット印刷によって幅30μmの配線を描画することができた。
Claims (13)
- アミン化合物、樹脂及び銀塩を混合して錯化合物を生成させる工程と、
前記錯化合物を加熱して分解させて銀ナノ粒子を形成する工程と、
を含む、銀ナノ粒子分散体の製造方法。 - 前記アミン化合物が脂肪族アミンを含む、請求項1に記載の銀ナノ粒子分散体の製造方法。
- 前記アミン化合物が第一級アミンを含む、請求項1又は2に記載の銀ナノ粒子分散体の製造方法。
- 前記樹脂は、20℃~50℃の温度範囲に含まれるいずれかの温度において粘性を示す高分子、又は、20℃~50℃の温度範囲に含まれるいずれかの温度において粘性を示す高分子量化合物を含む、請求項1~3のいずれか1項に記載の銀ナノ粒子分散体の製造方法。
- 前記銀塩がシュウ酸銀及び炭酸銀からなる群より選ばれる少なくとも1つを含む、請求項1~4のいずれか1項に記載の銀ナノ粒子分散体の製造方法。
- 前記アミン化合物、前記樹脂及び前記銀塩を含む混合物が脂肪酸をさらに含む、請求項1~5のいずれか1項に記載の銀ナノ粒子分散体の製造方法。
- 前記アミン化合物、前記樹脂及び前記銀塩を含む混合物がチオールをさらに含む、請求項1~6のいずれか1項に記載の銀ナノ粒子分散体の製造方法。
- 請求項1~7のいずれか1項に記載の方法によって銀ナノ粒子分散体を製造する工程と、
前記銀ナノ粒子分散体と有機溶媒とを混合する工程と、
を含む、銀ナノ粒子インクの製造方法。 - 前記有機溶媒が沸点200℃以上の有機溶媒を含む、請求項8に記載の銀ナノ粒子インクの製造方法。
- 前記有機溶媒は、20mN/m~50mN/mの表面自由エネルギーを有する芳香族化合物を含む、請求項8又は9に記載の銀ナノ粒子インクの製造方法。
- 請求項8~10のいずれか1項に記載の方法によって製造された銀ナノ粒子インクを用いて塗布膜を形成する工程と、
前記塗布膜を焼成する工程と、
を含む、電極の製造方法。 - 請求項8~10のいずれか1項に記載の方法によって製造された銀ナノ粒子インクを用いて塗布膜を形成する工程と、
前記塗布膜を焼成して電極を形成する工程と、
を含む、薄膜トランジスタの製造方法。 - 有機溶媒と、
前記有機溶媒に分散した樹脂と、
前記有機溶媒に分散しており、アミンで保護された銀ナノ粒子と、
を備えた、銀ナノ粒子インク。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16796123.4A EP3299099A4 (en) | 2015-05-20 | 2016-05-20 | METHOD FOR PRODUCING A SILVER NANOPARTICLE DISPERSION AND METHOD FOR PRODUCING A SILVER NANOPARTICLE INK |
KR1020177036405A KR20180031635A (ko) | 2015-05-20 | 2016-05-20 | 은나노 입자 분산체의 제조 방법 및 은나노 입자 잉크의 제조 방법 |
US15/575,013 US10821506B2 (en) | 2015-05-20 | 2016-05-20 | Method for producing silver nanoparticle dispersion and method for producing silver nanoparticle ink |
JP2017518772A JP6843437B2 (ja) | 2015-05-20 | 2016-05-20 | 銀ナノ粒子分散体の製造方法及び銀ナノ粒子インクの製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-102815 | 2015-05-20 | ||
JP2015102815 | 2015-05-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016185728A1 true WO2016185728A1 (ja) | 2016-11-24 |
Family
ID=57319721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/002480 WO2016185728A1 (ja) | 2015-05-20 | 2016-05-20 | 銀ナノ粒子分散体の製造方法及び銀ナノ粒子インクの製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10821506B2 (ja) |
EP (1) | EP3299099A4 (ja) |
JP (1) | JP6843437B2 (ja) |
KR (1) | KR20180031635A (ja) |
TW (1) | TWI690943B (ja) |
WO (1) | WO2016185728A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3685943A4 (en) * | 2017-10-27 | 2020-10-21 | Konica Minolta, Inc. | SILVER NANOPARTICLE PRODUCTION PROCESS |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3096814A1 (en) * | 2017-05-12 | 2018-11-15 | Inhibit Coatings Limited | Composite resins containing silver nanoparticles |
JP6530019B2 (ja) * | 2017-08-08 | 2019-06-12 | 田中貴金属工業株式会社 | 金属インク |
CN112548113A (zh) * | 2020-12-04 | 2021-03-26 | 中国科学院深圳先进技术研究院 | 银纳米颗粒的制备方法 |
CN113056088B (zh) * | 2021-03-02 | 2021-09-03 | 福建钰辰微电子有限公司 | 高性能柔性电路板 |
CN113770371A (zh) * | 2021-09-10 | 2021-12-10 | 厦门大学 | 一种高产量、小粒径的银纳米颗粒的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007148460A1 (ja) * | 2006-06-21 | 2007-12-27 | 3R Corporation | 粒径200nm以下のナノ粒子の製造方法 |
JP4155821B2 (ja) * | 2000-10-25 | 2008-09-24 | ハリマ化成株式会社 | 導電性金属ペースト及びその製造方法 |
JP2010500475A (ja) * | 2006-08-07 | 2010-01-07 | インクテック カンパニー リミテッド | 銀ナノ粒子の製造方法及びこれにより製造される銀ナノ粒子を含む銀インク組成物 |
JP5495465B1 (ja) * | 2012-08-23 | 2014-05-21 | バンドー化学株式会社 | 導電性ペースト |
WO2015025837A1 (ja) * | 2013-08-21 | 2015-02-26 | ダイソー株式会社 | 金属ナノ粒子の連続的な製造方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19734544B4 (de) * | 1997-08-01 | 2004-08-19 | Lancaster Group Gmbh | Schellackhaltiges kosmetisches Produkt und Verfahren zu dessen Herstellung |
JP4641384B2 (ja) | 2004-04-26 | 2011-03-02 | バンドー化学株式会社 | 導電性インクおよびそれを用いた導電性被膜 |
CN1261268C (zh) * | 2004-06-08 | 2006-06-28 | 刘杰 | 一种纳米银溶胶 |
US20080085410A1 (en) * | 2006-10-06 | 2008-04-10 | General Electric Company | Composition and associated method |
US20090214764A1 (en) | 2008-02-26 | 2009-08-27 | Xerox Corporation | Metal nanoparticles stabilized with a bident amine |
KR101616703B1 (ko) * | 2008-08-11 | 2016-04-29 | 지호우 도쿠리츠 교세이 호진 오사카 시리츠 고교 겐큐쇼 | 복합나노입자 및 그 제조방법 |
JP2010209366A (ja) | 2009-03-06 | 2010-09-24 | Dic Corp | 金属ナノ粒子の製造方法 |
JP5574761B2 (ja) | 2009-04-17 | 2014-08-20 | 国立大学法人山形大学 | 被覆銀超微粒子とその製造方法 |
KR20140040805A (ko) * | 2011-06-14 | 2014-04-03 | 바이엘 테크놀로지 서비시즈 게엠베하 | 전기 전도성 구조물을 제조하기 위한 은-함유 수성 잉크 제형, 및 이러한 전기 전도성 구조물을 제조하기 위한 잉크 젯 인쇄 방법 |
CN108219591B (zh) * | 2012-02-29 | 2022-02-18 | 新加坡朝日化学及锡焊制品有限公司 | 包含金属前体纳米颗粒的油墨 |
WO2014021461A1 (ja) * | 2012-08-02 | 2014-02-06 | 国立大学法人山形大学 | 被覆銀微粒子の製造方法及び当該製造方法で製造した被覆銀微粒子 |
CN104308180A (zh) * | 2014-10-16 | 2015-01-28 | 天津大学 | 有机体系高浓度纳米银溶胶的制备方法 |
-
2016
- 2016-05-20 KR KR1020177036405A patent/KR20180031635A/ko active IP Right Grant
- 2016-05-20 EP EP16796123.4A patent/EP3299099A4/en not_active Withdrawn
- 2016-05-20 JP JP2017518772A patent/JP6843437B2/ja active Active
- 2016-05-20 US US15/575,013 patent/US10821506B2/en active Active
- 2016-05-20 TW TW105115918A patent/TWI690943B/zh not_active IP Right Cessation
- 2016-05-20 WO PCT/JP2016/002480 patent/WO2016185728A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4155821B2 (ja) * | 2000-10-25 | 2008-09-24 | ハリマ化成株式会社 | 導電性金属ペースト及びその製造方法 |
WO2007148460A1 (ja) * | 2006-06-21 | 2007-12-27 | 3R Corporation | 粒径200nm以下のナノ粒子の製造方法 |
JP2010500475A (ja) * | 2006-08-07 | 2010-01-07 | インクテック カンパニー リミテッド | 銀ナノ粒子の製造方法及びこれにより製造される銀ナノ粒子を含む銀インク組成物 |
JP5495465B1 (ja) * | 2012-08-23 | 2014-05-21 | バンドー化学株式会社 | 導電性ペースト |
WO2015025837A1 (ja) * | 2013-08-21 | 2015-02-26 | ダイソー株式会社 | 金属ナノ粒子の連続的な製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3299099A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3685943A4 (en) * | 2017-10-27 | 2020-10-21 | Konica Minolta, Inc. | SILVER NANOPARTICLE PRODUCTION PROCESS |
Also Published As
Publication number | Publication date |
---|---|
JP6843437B2 (ja) | 2021-03-17 |
TWI690943B (zh) | 2020-04-11 |
TW201711054A (zh) | 2017-03-16 |
EP3299099A1 (en) | 2018-03-28 |
US10821506B2 (en) | 2020-11-03 |
US20180354031A1 (en) | 2018-12-13 |
JPWO2016185728A1 (ja) | 2018-04-26 |
EP3299099A4 (en) | 2019-01-16 |
KR20180031635A (ko) | 2018-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6843437B2 (ja) | 銀ナノ粒子分散体の製造方法及び銀ナノ粒子インクの製造方法 | |
US7736693B2 (en) | Nano-powder-based coating and ink compositions | |
US7601406B2 (en) | Nano-powder-based coating and ink compositions | |
US20100068409A1 (en) | Ink jet printable compositions | |
KR20110028750A (ko) | 금속 나노입자 수계 분산액의 제조방법 | |
JP6273301B2 (ja) | 金属のナノ粒子分散物を調製する方法 | |
TWI702262B (zh) | 金屬奈米微粒子製造用組合物 | |
TW201000574A (en) | Additives and modifiers for solvent-and water-based metallic conductive inks | |
JPWO2012026033A1 (ja) | 低温焼結性銀ナノ粒子組成物および該組成物を用いて形成された電子物品 | |
JP2009074054A (ja) | 非水系導電性ナノインク組成物 | |
TWI661012B (zh) | 核殼型金屬微粒子之製造方法、核殼型金屬微粒子、導電性墨水及基板之製造方法 | |
US20080193667A1 (en) | Ink Jet Printable Compositions | |
JP4935175B2 (ja) | 金属微粒子分散体およびその製造方法 | |
JP7262059B2 (ja) | 広分布な粒度分布を持つ銀ナノ粒子の製造方法及び銀ナノ粒子 | |
JP6036185B2 (ja) | 高純度の金属ナノ粒子分散体ならびにその製造方法 | |
WO2013141174A1 (ja) | 導電インク、導体付き基材及び導体付き基材の製造方法 | |
KR20150118801A (ko) | 전도성 구리 복합잉크 및 이를 이용한 광소결 방법 | |
CN106398398B (zh) | 一种金属纳米导电墨水及其制备方法 | |
WO2015045932A1 (ja) | 銅薄膜形成組成物 | |
JP6404523B1 (ja) | 銀ナノ粒子の製造方法 | |
JP7283703B2 (ja) | 広分布な粒度分布を持つ銀ナノ粒子の製造方法及び銀ナノ粒子 | |
JP2014029017A (ja) | 金属微粒子組成物の製造方法 | |
KR101118733B1 (ko) | 디스플레이 전극 인쇄용 다중벽 탄소나노튜브가 함유된 은페이스트 제조방법 | |
KR102054348B1 (ko) | 정전수력학적 인쇄용 금속 나노 잉크를 이용한 미세전도성 패턴의 제작방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16796123 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017518772 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20177036405 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016796123 Country of ref document: EP |