WO2016167021A1 - 固体撮像素子、電子機器および固体撮像素子の制御方法 - Google Patents
固体撮像素子、電子機器および固体撮像素子の制御方法 Download PDFInfo
- Publication number
- WO2016167021A1 WO2016167021A1 PCT/JP2016/054987 JP2016054987W WO2016167021A1 WO 2016167021 A1 WO2016167021 A1 WO 2016167021A1 JP 2016054987 W JP2016054987 W JP 2016054987W WO 2016167021 A1 WO2016167021 A1 WO 2016167021A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- line
- signal
- transfer
- thinning
- read
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 105
- 238000000034 method Methods 0.000 title claims description 35
- 230000007704 transition Effects 0.000 claims abstract description 22
- 238000010187 selection method Methods 0.000 claims description 2
- 230000001186 cumulative effect Effects 0.000 abstract description 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 77
- 230000000875 corresponding effect Effects 0.000 description 47
- 238000010586 diagram Methods 0.000 description 18
- 230000004048 modification Effects 0.000 description 18
- 238000012986 modification Methods 0.000 description 18
- 238000009792 diffusion process Methods 0.000 description 17
- 238000005516 engineering process Methods 0.000 description 17
- 238000009825 accumulation Methods 0.000 description 13
- 230000006866 deterioration Effects 0.000 description 11
- 102100026191 Class E basic helix-loop-helix protein 40 Human genes 0.000 description 9
- 101710130550 Class E basic helix-loop-helix protein 40 Proteins 0.000 description 9
- 230000001276 controlling effect Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 101150103877 Selenom gene Proteins 0.000 description 7
- 230000003321 amplification Effects 0.000 description 6
- 238000003199 nucleic acid amplification method Methods 0.000 description 6
- 230000001360 synchronised effect Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 101100126625 Caenorhabditis elegans itr-1 gene Proteins 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 102100026190 Class E basic helix-loop-helix protein 41 Human genes 0.000 description 2
- 101000765033 Homo sapiens Class E basic helix-loop-helix protein 41 Proteins 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/40—Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/40—Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
- H04N25/44—Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/71—Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
- H04N25/74—Circuitry for scanning or addressing the pixel array
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
Definitions
- the present technology relates to a solid-state imaging device, an electronic device, and a control method for the solid-state imaging device.
- the present invention relates to a solid-state imaging device provided with a transistor, an electronic device, and a method for controlling the solid-state imaging device.
- a solid-state imaging device is used to capture image data.
- the method for exposing the solid-state imaging device is classified into a global shutter method in which all of a plurality of lines are exposed simultaneously and a rolling shutter method in which those lines are exposed in order.
- a rolling shutter system is often used in a solid-state image pickup device of CMOS (Complementary Metal Oxide) Semiconductor).
- CMOS Complementary Metal Oxide
- thinning readout may be performed in which some lines are thinned out in order to shorten the readout period. For example, thinning-out reading is performed when capturing a moving image or displaying an image on a monitor in real time.
- the scanning circuit in the solid-state imaging device supplies a transfer signal to the readout line to be read at the start of exposure and at the end of exposure.
- the transfer transistor in the readout line to which the transfer signal is supplied transitions to a conductive state and transfers charges from the photodiode to the floating diffusion layer.
- the transfer signal is not supplied to the thinning line, if the transfer signal is not supplied to the thinning line, the charge of the photodiode on the thinning line overflows from the pixel and the image data is white. May occur. This phenomenon is called blooming.
- a solid-state imaging device has been proposed in which the potential of the transfer signal is fixed at a high level and the transfer transistor in the thinning line is kept in a conductive state (see, for example, Patent Document 1). .
- the transfer transistor since the driving conditions of the transfer transistor in the thinning line are different from those in the readout line, the transfer transistor may be deteriorated at different speeds in these lines. Due to this difference in the deterioration speed, when the deterioration level of each transfer transistor in the readout line and the thinning line becomes different, streak noise appears along the line in the image data when all lines are read out, and the image quality There is a problem that the remarkably decreases.
- the present technology has been developed in view of such a situation, and an object thereof is to improve the image quality of image data in a solid-state imaging device in which thinning-out reading is performed by transistor control.
- the present technology has been made to solve the above-described problems.
- the first aspect of the present technology is the transition to a conductive state by a transfer signal instructing transfer of charges from a photodiode to a charge storage unit.
- a plurality of pixels each provided with a transfer transistor for transferring charges are arranged in a two-dimensional lattice, and all lines including the pixels arranged along a predetermined direction in the pixel array unit.
- a selection unit that selects a remaining line obtained by thinning a part of the lines as a thinning line, and the transfer of the read line over a predetermined period from a predetermined timing by supplying the transfer signal to the read line.
- Read line transfer signal supply unit for controlling the transistor to the conductive state, and a pixel signal corresponding to the amount of charge from the read line
- At least one of the reading unit for reading and the accumulated time of the conduction state in the transfer transistor of the thinning line and the number of transitions to the conduction state is substantially the same as the reading line by supplying the transfer signal to the thinning line.
- a solid-state imaging device including a thinning line transfer signal supply unit to be controlled, and a control method thereof. This brings about the effect that at least one of the accumulation time of the conduction state and the number of transition times to the conduction state in the transfer transistor of the thinning line is controlled substantially the same as that of the readout line.
- the thinning line transfer signal supply unit may supply the same number of transfer signals as the number transferred by the read line transfer signal supply unit to the thinning line. As a result, the same number of transfer signals as those transferred by the read line transfer signal supply unit are supplied to the thinning line.
- the thinning line transfer signal supply unit substantially reduces the accumulated time of the conduction state by the predetermined number of transfer signals each time the predetermined number of transfer signals are transferred to the read line.
- the transfer signal may be supplied to the thinning line over a matching period. As a result, every time a predetermined number of transfer signals are transferred to the read line, the transfer signal is supplied to the thinning line over a period of time approximately equal to the accumulation time of the conduction state by the predetermined number of transfer signals. Bring.
- each of the lines further includes a latch circuit and an OR gate that outputs one of the two input signals to the transfer transistor, and the read line transfer signal supply unit includes the logic corresponding to the read line.
- the transfer signal to the read line is input to the sum gate and the transfer signal is input to the latch circuit as the reset signal corresponding to the read line, and the thinned line transfer signal supply unit corresponds to the thinned line
- a signal of the logical product of the output signal of the latch circuit and a predetermined additional shutter signal is used as the transfer signal to the thinning line.
- the selection unit switches a position and the number of lines to be selected as the read line among the plurality of lines according to a predetermined mode signal
- the latch circuit receives the mode signal based on the mode signal.
- the set signal may be input every time the position and number of read lines are switched. As a result, the set signal is input to the latch circuit every time the position and number of read lines are switched by the mode signal.
- the selection unit may select each of the plurality of lines arranged at regular intervals in a direction perpendicular to the predetermined direction as the read line. This brings about the effect that each of the lines arranged at regular intervals in the direction perpendicular to the predetermined direction is selected as a read line.
- the selection unit may select lines adjacent to each other in the direction perpendicular to the predetermined direction as the readout line among the plurality of lines. Thereby, there is an effect that lines adjacent to each other in a direction perpendicular to the predetermined direction are selected as read lines.
- the read line transfer signal supply unit supplies the transfer signal to each of some of the pixels of the read line and the remaining pixels at different timings
- the thinning line transfer signal supply unit may supply the transfer signal to a part of the pixels of the thinning line and a remaining pixel at different timings. As a result, a transfer signal is supplied to some of the pixels and the remaining pixels at different timings.
- a pair of pixels adjacent to each other in a direction perpendicular to the predetermined direction among the plurality of pixels share the charge accumulation unit, and the thinning line transfer signal supply unit
- the transfer signal may be supplied to the thinning line during a period in which the transfer signal is not supplied to any of the lines.
- the transfer signal is supplied to the thinning-out line during a period in which no transfer signal is supplied to any of the read lines.
- a second aspect of the present technology provides a plurality of pixels each provided with a transfer transistor that is transferred to a conductive state by a transfer signal instructing transfer of charge from the photodiode to the charge storage unit and transfers the charge.
- a transfer transistor that is transferred to a conductive state by a transfer signal instructing transfer of charge from the photodiode to the charge storage unit and transfers the charge.
- a selection unit that selects as a read line, and a read line transfer signal supply unit that controls the transfer transistor of the read line to the conductive state over a certain period from a predetermined timing by supplying the transfer signal to the read line;
- a readout unit that reads out a pixel signal corresponding to the amount of charge from the readout line, and the transfer of the thinning line
- a thinning line transfer signal supply unit for controlling at least one of the accumulated time of the conductive state in the transistor and the number of transitions to the conductive state to be substantially the same as the readout line by supplying the transfer signal to the thinning line;
- an electronic device including a processing unit that processes the read pixel signal. This brings about the effect that at least one of the accumulation time of the conduction state and the number of transition times to the conduction state in the transfer transistor of the thinning line is controlled substantially the same as that of the readout line.
- the present technology it is possible to achieve an excellent effect that the image quality of the image data can be improved in the solid-state imaging device in which thinning-out reading is performed by controlling the transistors.
- the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
- FIG. 1 is a block diagram illustrating a configuration example of an imaging apparatus according to a first embodiment. It is a block diagram which shows one structural example of the solid-state image sensor in 1st Embodiment.
- FIG. 3 is a circuit diagram illustrating a configuration example of a pixel according to the first embodiment.
- 1 is a block diagram illustrating a configuration example of a vertical scanning circuit according to a first embodiment.
- FIG. It is a figure which shows an example of the decoding signal in 1st Embodiment.
- It is a block diagram which shows one structural example of the timing generation part in 1st Embodiment.
- 6 is a table showing an example of the operation of the read transfer signal generation circuit in the first embodiment.
- FIG. 6 is a table illustrating an example of an operation of the shutter transfer signal generation circuit according to the first embodiment.
- 6 is a table illustrating an example of an operation of the reset signal generation circuit according to the first embodiment.
- 6 is a table showing an example of the operation of the selection signal generation circuit in the first embodiment.
- FIG. 3 is a circuit diagram illustrating a configuration example of a transfer signal generation circuit according to the first embodiment.
- 3 is a table showing an example of the operation of the latch circuit in the first embodiment.
- 3 is a table illustrating an example of an operation of a transfer signal generation circuit according to the first embodiment.
- 6 is a timing chart illustrating an example of an operation in a normal reading mode of the vertical scanning circuit according to the first embodiment.
- 6 is a timing chart illustrating an example of an operation in a normal reading mode of the solid-state imaging device according to the first embodiment.
- 5 is a timing chart illustrating an example of an operation in a 1/3 decimation readout mode of the vertical scanning circuit according to the first embodiment.
- 3 is a timing chart illustrating an example of an operation in a 1/3 decimation readout mode of the solid-state imaging device according to the first embodiment.
- It is a timing chart which shows an example of operation
- 6 is a flowchart illustrating an example of a normal read process in the first embodiment.
- FIG. 6 is a timing chart illustrating an example of an operation in a 1/3 decimation readout mode of the solid-state imaging device according to the first modification of the first embodiment. It is a timing chart which shows an example of operation
- 12 is a timing chart illustrating an example of an operation in a 1/5 decimation readout mode of the vertical scanning circuit according to the second embodiment. It is a figure which shows an example of the decoding signal in 3rd Embodiment. 12 is a timing chart illustrating an example of operation in a thinning readout mode of a vertical scanning circuit in a third embodiment. It is a figure which shows an example of the decoding signal in 4th Embodiment. 16 is a timing chart illustrating an example of an operation in a window reading mode of the vertical scanning circuit in the fourth embodiment.
- FIG. 1 is a block diagram illustrating a configuration example of the imaging apparatus 100 according to the first embodiment.
- the imaging device 100 captures image data, and includes an imaging lens 110, a solid-state imaging device 200, an image processing unit 120, a recording unit 130, a control unit 140, and a display unit 150.
- the imaging lens 110 collects light and guides it to the solid-state imaging device 200.
- the solid-state imaging device 200 generates image data by converting light from the imaging lens 110 into an electrical signal under the control of the control unit 140.
- a CMOS sensor is used as the solid-state image sensor 200.
- the solid-state imaging device 200 supplies image data to the image processing unit 120 via the signal line 209.
- the solid-state imaging device 200 has a plurality of pixels arranged in a two-dimensional grid.
- a plurality of pixels arranged in a predetermined direction is referred to as “row” or “line”
- a plurality of pixels arranged in a direction perpendicular to the row (line) is referred to as “column”.
- the solid-state imaging device 200 is controlled by the control unit 140 in either a normal reading mode in which pixel signals are read from all lines or a 1/3 decimation reading mode in which pixel signals are read from 1/3 of all lines.
- the 1/3 decimation readout mode is used, for example, when displaying image data on the display unit 150 in real time.
- the normal reading mode is used when, for example, a still image or a moving image is captured with a higher resolution than the 1/3 decimation reading mode.
- the image processing unit 120 performs various types of image processing such as AD (Analog-to-Digital) conversion processing, noise removal processing, demosaic processing, and white balance processing on the image data under the control of the control unit 140. Further, for the image data generated in the 1/3 thinning readout mode, a process of thinning out 2/3 pixels in each line is further performed in order to make the aspect ratio the same as in the normal readout mode.
- the image processing unit 120 supplies the image data after the image processing generated in the normal reading mode to the recording unit 130 via the signal line 128. Further, the image processing unit 120 supplies the image data after the image processing generated in the 1/3 thinning-out reading mode to the display unit 150 via the signal line 129.
- the image processing unit 120 is an example of a processing unit described in the claims.
- the recording unit 130 records image data.
- the display unit 150 displays image data.
- the control unit 140 controls the entire imaging apparatus 100.
- the control unit 140 generates various control signals according to user operations. For example, as a control signal, an imaging control signal for instructing the start or end of imaging and a mode signal for instructing a normal reading mode or a 1/3 decimation reading mode are generated.
- the control unit 140 supplies these control signals to the solid-state imaging device 200 via the signal line 149 to start or end imaging.
- the control unit 140 also supplies the control signal to the image processing unit 120 via the signal line 148 to perform image processing.
- the control unit 140 controls to the 1/3 thinning readout mode when displaying the image data in real time, but is not limited to this configuration.
- the control unit 140 may be configured to control the normal reading mode when capturing a still image and to control to the 1/3 decimation reading mode when capturing a moving image.
- the solid-state imaging device 200 reads 1/3 of all lines at the time of thinning-out reading, but the reading ratio is not limited to 1/3, and 1/2 line or 1/5 line is read. Also good.
- the imaging apparatus 100 may further include an external interface and output image data to an external apparatus.
- the imaging lens 110, the solid-state imaging device 200, the image processing unit 120, the recording unit 130, the control unit 140, and the display unit 150 are provided in the same device, they may be provided in different devices.
- the imaging lens 110 and the solid-state imaging device 200 may be provided in the imaging device, and the image processing unit 120 and the like may be provided in the image processing device.
- the solid-state imaging device 200 is provided in the imaging device 100, it may be provided in an electronic device other than the imaging device such as a mobile phone or a tablet terminal.
- the imaging device 100 is an example of an electronic device in the claims.
- FIG. 2 is a block diagram illustrating a configuration example of the solid-state imaging device 200 according to the first embodiment.
- the solid-state imaging device 200 includes a pixel array unit 210, a column CDS unit 260, a timing signal generation circuit 270, an output circuit 280, a horizontal scanning circuit 290, and a vertical scanning circuit 300.
- a plurality of lines are arranged, among which a plurality of pixels 220 are arranged on the 2m (m is an integer of 0 or more) line, and a plurality of pixels 230 are arranged on the 2m + 1th line.
- the column CDS unit 260 is provided with a CDS circuit 261 for each column composed of pixels (220 or 230) arranged in a direction perpendicular to the line.
- the timing signal generation circuit 270 generates timing signals such as a vertical synchronization signal and a horizontal synchronization signal. For example, when an imaging control signal instructing the start of imaging is supplied from the control unit 140, the timing signal generation circuit 270 generates a vertical synchronization signal, a clock signal, and a horizontal synchronization signal as timing signals.
- the vertical synchronizing signal is a constant frequency synchronizing signal indicating the timing of reading out the pixel signal (in other words, scanning) in the direction perpendicular to the line, and the horizontal synchronizing signal is scanned in the direction horizontal to the line. It is a constant frequency synchronization signal indicating the timing to be performed.
- the frequency of the horizontal synchronizing signal is higher than that of the vertical synchronizing signal.
- the timing signal generation circuit 270 supplies a vertical synchronization signal to the vertical scanning circuit 300, supplies a clock signal to the column CDS unit 260, and supplies a horizontal synchronization signal to the horizontal scanning circuit 290. Further, for example, when an imaging control signal instructing to stop imaging is supplied, the timing signal generating circuit 270 stops generating the timing signal.
- the pixels 220 and 230 convert light into an electrical signal under the control of the vertical scanning circuit 300 and output it as a pixel signal.
- the vertical scanning circuit 300 selects a line composed of the pixels 220 or 230 in order, and outputs a pixel signal to the selected line.
- the vertical scanning circuit 300 sequentially selects all lines in synchronization with the vertical synchronization signal from the timing signal generation circuit 270.
- the vertical scanning circuit 300 sequentially selects 1/3 of all lines as readout lines in synchronization with the vertical synchronization signal.
- the CDS circuit 261 reads out a pixel signal from a pixel via a vertical signal line 219, and performs correlated double sampling (CDS: Correlated Double Sampling) processing in synchronization with a clock signal.
- the CDS circuit 261 reads a pixel signal from the corresponding column and performs CDS processing on the pixel signal. Then, the CDS circuit 261 supplies the pixel signal after the CDS process to the output circuit 280 according to the control of the horizontal scanning circuit 290.
- the column CDS unit 260 is an example of a reading unit described in the claims.
- the horizontal scanning circuit 290 causes the CDS circuit 261 to sequentially output pixel signals in synchronization with the horizontal synchronization signal.
- the output circuit 280 outputs a pixel signal to the recording unit 130 or the like.
- the CDS circuit 261 performs only the CDS process, but may perform an AD conversion process in addition to the CDS process. In this case, the subsequent image processing unit 120 does not need to perform AD conversion processing, and performs image processing other than AD conversion processing.
- FIG. 3 is a circuit diagram illustrating a configuration example of the pixels 220 and 230 according to the first embodiment.
- the pixel 220 includes a transfer transistor 221 and a photodiode 222.
- the pixel 230 includes a transfer transistor 231, a photodiode 232, a reset transistor 233, a floating diffusion layer 234, an amplification transistor 235, and a selection transistor 236.
- N-type field effect transistors are used as the transfer transistor 221, the transfer transistor 231, the reset transistor 233, the amplification transistor 235, and the selection transistor 236.
- one horizontal signal line 229 is connected to the pixel 220 as a transfer signal line.
- a horizontal signal line 239 including a transfer signal line, a reset signal line, and a selection signal line is connected to the pixel 230.
- the pixel 220 is arranged in the 0th row
- the pixel 230 is arranged in the 1st row.
- the gate of the transfer transistor 221 is connected to the horizontal signal line 229 (transfer signal line), the source is connected to the photodiode 222, and the drain is connected to the floating diffusion layer 234.
- the transfer transistor 231 has a gate connected to the transfer signal line, a source connected to the photodiode 232, and a drain connected to the floating diffusion layer 234.
- the gate of the reset transistor 233 is connected to the reset signal line, the source is connected to the floating diffusion layer 234, and the drain is connected to the power source.
- the gate of the amplification transistor 235 is connected to the floating diffusion layer 234, the source is connected to the selection transistor 236, and the drain is connected to the power source.
- the gate of the selection transistor 236 is connected to the selection signal line, the source is connected to the vertical signal line 219, and the drain is connected to the amplification transistor 235.
- the photodiodes 222 and 232 generate charges from light by photoelectric conversion.
- the transfer transistor 221 transfers charges from the photodiode 222 to the floating diffusion layer 234 in accordance with the transfer signal Tx0.
- the transfer transistor 231 transfers charges from the photodiode 232 to the floating diffusion layer 234 in accordance with the transfer signal Tx1.
- the floating diffusion layer 234 accumulates the transferred charge and generates an electric signal having a voltage corresponding to the amount of the accumulated charge.
- the floating diffusion layer 234 is an example of a charge storage unit described in the claims.
- the reset transistor 233 discharges the floating diffusion layer 234 and resets the charge amount to an initial value.
- the amplification transistor 235 amplifies the electric signal generated in the floating diffusion layer 234.
- the selection transistor 236 supplies the amplified electrical signal as a pixel signal to the column CDS unit 260.
- a pair of pixels 220 and 230 adjacent in the vertical direction share the reset transistor 233, the floating diffusion layer 234, the amplification transistor 235, and the selection transistor 236, but the configuration is not limited thereto.
- four adjacent pixels may share the floating diffusion layer 234 and the like.
- the floating diffusion layer 234 and the like may be provided for each pixel without being shared.
- FIG. 4 is a block diagram illustrating a configuration example of the vertical scanning circuit 300 according to the first embodiment.
- the vertical scanning circuit 300 includes a transfer signal generation unit 310, a level shifter 330, a timing generation unit 340, an address decoder 350, and a timing control unit 360.
- the transfer signal generator 310 generates transfer signals for all lines.
- the transfer signal generation unit 310 includes a transfer signal generation circuit 320 for each line.
- the additional shutter signal SH_Add and the latch set signal LT_Set are commonly input to all the transfer signal generation circuits 320 by the level shifter 330.
- the read transfer signal RD_Rn and the shutter transfer signal SH_Rn are input to the transfer signal generation circuit 320 corresponding to the nth (n is an integer of 0 or more) line.
- the additional shutter signal SH_Add is a signal indicating a timing for generating a transfer signal to the thinning line to be thinned.
- the latch set signal LT_Set is a signal for causing the latch circuit in the transfer signal generation circuit 320 to hold a high level signal. The latch circuit will be described later.
- the read transfer signal RD_Rn is a signal indicating the timing at which the exposure of the nth line is finished and the pixel signal is read out.
- the shutter transfer signal SH_Rn is a signal indicating timing for starting exposure of the nth line.
- the transfer signal generation circuit 320 generates a transfer signal to the corresponding line.
- the transfer signal generation circuit 320 generates a transfer signal Txn from the additional shutter signal SH_Add, the latch set signal LT_Set, the read transfer signal RD_Rn, and the shutter transfer signal SH_Rn, and supplies it to the corresponding line.
- the timing control unit 360 controls the entire vertical scanning circuit 300.
- the timing control unit 360 When the supply of the vertical synchronization signal is started, the timing control unit 360 generates a pulse signal obtained by multiplying the vertical synchronization signal and supplies the pulse signal to the timing generation unit 340. Further, the timing control unit 360 generates address data indicating the address of the read line from the mode signal. In the normal read mode, address data indicating all lines is generated, and in the 1/3 decimation read mode, address data indicating 1/3 of all lines is generated. The timing control unit 360 supplies the generated address data to the address decoder 350.
- the timing control unit 360 generates an additional shutter signal SH_Add in the 1/3 decimation readout mode and supplies the additional shutter signal SH_Add to the level shifter 330. In the 1/3 decimation readout mode, the timing control unit 360 generates an average of two additional shutter signals SH_Add per frame.
- Each additional shutter signal SH_Add is, for example, a signal that is at a high level over a certain pulse period W1.
- timing control unit 360 generates a latch set signal LAT_Set and supplies it to the level shifter 330 when the mode is switched or when imaging is started.
- the address decoder 350 decodes address data. For each line, the address decoder 350 generates a decode signal DECn indicating whether or not the line is a read line from the address data and supplies it to the timing generator 340.
- the address decoder 350 is an example of a selection unit described in the claims.
- the timing generation unit 340 generates a read transfer signal RD_Rn, a shutter transfer signal SH_Rn, a reset signal RSTm, and a selection signal SELm.
- m is an integer greater than or equal to 0
- the reset signal RSTm is a signal indicating the timing at which the reset transistor 233 of the (2m + 1) th line is reset.
- the selection signal SELm is a signal indicating the timing at which the pixel signal is output to the selection transistor 236 on the 2m + 1st line.
- the timing generation unit 340 generates a signal such as a read transfer signal RD_Rn from the pulse signal and the decode signal, and supplies the signal to the level shifter 330.
- the read transfer signal RD_Rn and the shutter transfer signal SH_Rn are generated for each line.
- the reset signal RSTm and the selection signal SELm are generated for each of the 2m + 1th line among all the lines.
- the read transfer signal RD_R0 and the shutter transfer signal SH_R0 are generated for the 0th line.
- a read transfer signal RD_R1, a shutter transfer signal SH_R1, a reset signal RST0, and a selection signal SEL0 are generated.
- the level shifter 330 boosts the voltage such as the latch set signal LAT_Set from the timing control unit 360 and the timing generation unit 340 to a voltage sufficient to drive the transfer signal generation unit 310 or the driver in the subsequent stage.
- a driver is arranged between the transfer signal generation unit 310 and the pixel array unit 210, but this driver is omitted in FIG.
- FIG. 5 is a diagram illustrating an example of the decode signal in the first embodiment. It is assumed that data A is input as address data in the normal read mode, and data B is input in the 1/3 decimation read mode.
- the address decoder 350 sets “1” indicating the read line to the decode signal of all lines and outputs it.
- the address decoder 350 sets “1” (read line) to 1/3 of the decode signals of all lines, and the remaining decimation lines. Is set to “0”. For example, “1” is set to the decode signal DEC0 of the 0th line, and “0” is set to the decode signals DEC1 and DEC2 of the first and second lines. Further, “1” is set to the third decode signal DEC3, and “0” is set to the fourth and fifth decode signals DEC4 and DEC5. Similarly thereafter, one of the three lines is set as a read line.
- FIG. 6 is a block diagram illustrating a configuration example of the timing generation unit 340 according to the first embodiment.
- the timing generation unit 340 includes a read transfer signal generation circuit 341 and a shutter transfer signal generation circuit 342 for each 2m-th line. Further, the timing generation unit 340 includes a read transfer signal generation circuit 343, a shutter transfer signal generation circuit 344, a reset signal generation circuit 345, and a selection signal generation circuit 346 for each of the 2m + 1th lines.
- the read transfer signal RD_Rn is, for example, a signal that is at a high level over a certain pulse period W1. If the decode signal DECn from the address decoder 350 is “1”, the read transfer signal generation circuit 341 uses the pulse signal from the timing control unit 360 to read the read transfer signal RD_Rn at a preset exposure end timing. Is generated.
- the read transfer signal generation circuit 341 counts the number of pulses of the pulse signal, generates the read transfer signal RD_Rn at the timing when the count value reaches a predetermined value (that is, the exposure end timing), and calculates the count value. Repeat the initial value operation.
- the exposure end timing is set by an exposure control unit (not shown) that sets the exposure time according to the light metering amount, or by a user operation.
- the shutter transfer signal SH_Rn is, for example, a signal that is at a high level over a certain pulse period W1. If the decode signal DECn from the address decoder 350 is “1”, the shutter transfer signal generation circuit 342 uses the pulse signal from the timing control unit 360 to set the shutter transfer signal SH_Rn at a preset exposure end timing. Is generated.
- the shutter transfer signal generation circuit 342 counts the number of pulses, generates the shutter transfer signal SH_Rn at the timing when the count value reaches a predetermined value (that is, the exposure start timing), and sets the count value to the initial value. Repeat the operation.
- the exposure start timing is set by an exposure control unit that sets an exposure time according to the light metering amount or by a user operation.
- the reset signal generation circuit 345 generates a reset signal RSTm for the reset transistor 233 shared by the 2mth and 2m + 1th lines and supplies the reset signal RSTm to the level shifter 330.
- the reset signal generation circuit 345 uses the pulse signal to set the reset signal line to the low level before the read transfer of the 2m-th line and reset after the read transfer. Set the signal line to high level.
- the reset signal generation circuit 345 uses the pulse signal to set the reset signal line to the low level before the read transfer of the 2m + 1th line, and read the read signal. After transfer, the reset signal line is set to high level. By such control, a high level reset signal RSTm is supplied.
- the selection signal generation circuit 346 generates a selection signal SELm to the selection transistor 236 shared by the 2m-th and 2m + 1-th lines and supplies the selection signal SELm to the level shifter 330.
- the selection signal generation circuit 346 uses the pulse signal to set the selection signal line to the high level before the read transfer of the 2m-th line and select after the read transfer. Set the signal line to low level.
- the selection signal generation circuit 346 uses the pulse signal to set the selection signal line to the high level before the read transfer of the 2m + 1-th line and perform the read transfer. Later, the selection signal line is set to the low level. By such control, the high level selection signal SELm is supplied.
- FIG. 7 is a table showing an example of the operation of the read transfer signal generation circuit 341 in the first embodiment. If the decode signal DECn is “1”, the read transfer signal generation circuit 341 corresponding to the n-th line has an exposure end timing every time the period of the vertical synchronization signal elapses (in other words, every frame). A read transfer signal RD_Rn is generated.
- FIG. 8 is a table showing an example of the operation of the shutter transfer signal generation circuit 342 in the first embodiment. If the decode signal DECn is “1”, the shutter transfer signal generation circuit 342 corresponding to the nth line generates the shutter transfer signal SH_Rn at the exposure start timing for each frame.
- FIG. 9 is a table showing an example of the operation of the reset signal generation circuit 345 in the first embodiment.
- DEC1 among the decode signals DEC0 and DEC1 is “1” (read line)
- the reset signal generation circuit 345 sets the reset signal line to the low level before the read transfer of the first row, and the reset signal after the read transfer. Make the line high.
- the reset signal generation circuit 345 sets the reset signal line to the low level before the read transfer of the 0th row, and sets the reset signal line after the read transfer. Set to high level.
- the reset signal generation circuit 345 sets the reset signal line to the low level before the read transfer of the 0th and 1st rows and reads them. After transfer, the reset signal line is set to high level. By such control, a high level reset signal RTS0 is supplied. Similarly, the reset signals RSTm in the second and subsequent rows are generated from the 2m-th and 2m + 1-th decoded signals.
- FIG. 10 is a table showing an example of the operation of the selection signal generation circuit 346 in the first embodiment.
- DEC1 among the decode signals DEC0 and DEC1 is “1” (read line)
- the selection signal generation circuit 346 sets the selection signal line to the high level before the read transfer of the first row, and the selection signal after the read transfer. Make the line high.
- the selection signal generation circuit 346 sets the selection signal line to the high level before the read transfer of the 0th row, and sets the selection signal line to the low level after the read transfer. To do.
- the selection signal generation circuit 346 sets the selection signal line to the high level before the read transfer of the 0th row and the 1st row, and the read transfer of them. Later, the selection signal line is set to the low level. By such control, the high level selection signal SEL0 is supplied. Similarly, the selection signals SELm in the second and subsequent rows are generated from the 2m-th and 2m + 1-th decoded signals.
- FIG. 11 is a circuit diagram illustrating a configuration example of the transfer signal generation circuit 320 according to the first embodiment.
- the transfer signal generation circuit 320 includes OR (logical sum) gates 321 and 324, an AND (logical product) gate 322, and a latch circuit 323.
- the latch circuit 323 holds 1-bit data.
- the latch circuit 323 includes a set terminal S, a reset terminal R, and an output terminal Q.
- a latch set signal LT_Set from the level shifter 330 is input to the set terminal S of the latch circuit 323.
- the reset terminal R of the latch circuit 323 is connected to the output terminal of the OR gate 324, and the output terminal Q is connected to the input terminal of the AND gate 322.
- the latch circuit 323 When the latch set signal LT_Set is input from the set terminal S, the latch circuit 323 outputs a high level signal as the latch output signal LAT_Qn. When a high level signal is input from the reset terminal R as a reset signal, the latch circuit 323 outputs a low level signal. In addition, when neither the latch set signal LT_Set nor the reset signal is input, the latch circuit 323 holds the state.
- the OR gate 324 outputs a logical sum of input values.
- the read transfer signal RD_Rn is input to one of the two input terminals of the OR gate 324, and the shutter transfer signal SH_Rn is input to the other.
- the OR gate 324 outputs a logical sum of the values of the two input terminals to the latch circuit 323 as a reset signal.
- a high level signal from the OR gate 324 is input to the OR gate 321 as a transfer signal to the readout line.
- the OR gate 324 is an example of a read line transfer signal supply unit described in the claims.
- the AND gate 322 outputs a logical product of input values.
- the additional shutter signal SH_Add is input to one of the two input terminals of the AND gate 322, and the latch output signal LAT_Qn from the latch circuit 323 is input to the other.
- the AND gate 322 outputs the logical product of the values of the two input terminals to the input terminal of the OR gate 321.
- the high level signal from the AND gate 322 is input to the OR gate 321 as a transfer signal to the thinning line.
- the AND gate 322 is an example of a thinned line transfer signal supply unit described in the claims.
- the OR gate 321 outputs a logical sum of input values.
- the OR gate 321 outputs either the transfer signal from the AND gate 322 or the transfer signal from the OR gate 324 to the pixel array unit 210 as an n-line transfer signal Txn.
- the OR gate 321 is an example of an OR gate described in the claims.
- the latch circuit 323 when the latch set signal LT_Set is input, the latch circuit 323 is held at a high level (in other words, set).
- the low level is held in the latch circuit 323 (in other words, reset), and the transfer signal generation circuit 320 outputs the transfer signal Txn. Since these read transfer signal RD_Rn or shutter transfer signal SH_Rn is not generated in the thinning line, the latch circuit 323 remains set in the thinning line.
- the transfer signal generation circuit 320 including the set latch circuit 323 outputs the transfer signal Txn. Therefore, the transfer signal Txn can be output to the transfer signal generation circuit 320 corresponding to the thinning-out line by inputting the additional shutter signal SH_Add.
- the number of transfer signals Txn of the thinning line per unit time is set to be the same as that of the readout line.
- the accumulated time during which the transfer transistor 221 is in the conductive state and the number of transitions to the conductive state are the same in the thinning line and the readout line. Note that the accumulation time of the thinning line in the conductive state and the number of transitions to the conductive state are not completely the same as those in the readout line, and the difference may be substantially the same value within a predetermined allowable value.
- FIG. 12 is a table showing an example of the operation of the latch circuit 323 according to the first embodiment.
- the latch circuit 323 holds the state.
- the latch circuit 323 is reset and outputs a signal “0” from the output terminal Q.
- the latch circuit 323 is set and outputs a signal “1”.
- FIG. 13 is a table showing an example of the operation of the transfer signal generation circuit 320 in the first embodiment.
- the transfer signal generation circuit 320 for all lines sets the latch circuit 323 to generate the latch output signal LAT_Qn.
- the transfer signal generation circuit 320 on the n-th line resets the latch circuit 323 and outputs the transfer signal Txn.
- the transfer signal generation circuit 320 in the nth line resets the latch circuit 323 and outputs the transfer signal Txn.
- the transfer signal generation circuit 320 of the nth line holds the state of the latch circuit 323.
- the transfer signal generation circuit 320 outputs the transfer signal Txn. Since the thinning line latch circuit 323 is set, the transfer signal Txn is output to the thinning line by the additional shutter signal SH_Add.
- the transfer signal generation circuit 320 does not output the transfer signal Txn. Since the readout line latch circuit 323 is reset after the first frame readout, the transfer signal Txn is not output to the readout line even if the additional shutter signal SH_Add is inputted.
- FIG. 14 is a timing chart illustrating an example of an operation in the normal reading mode of the vertical scanning circuit 300 according to the first embodiment.
- the timing control unit 360 in the vertical scanning circuit 300 When imaging starts in the normal readout mode at timing T11, the timing control unit 360 in the vertical scanning circuit 300 generates a latch set signal LT_Set. As a result, the latch circuits 323 for all lines are set.
- the timing generation unit 340 generates the read transfer signal RD_R0 at the exposure end timing T12. As a result, the latch circuit 323 corresponding to the 0th line is reset, and the OR gate 321 in the transfer signal generation circuit 320 corresponding to the 0th line generates the transfer signal Tx0.
- the timing generation unit 340 generates the read transfer signal RD_R1 at the timing T13 when the period of the horizontal synchronization signal has elapsed from the timing T12. As a result, the latch circuit 323 corresponding to the first line is reset, and the OR gate 321 corresponding to the first line generates the transfer signal Tx1. At timing T13, the timing generation unit 340 generates the shutter transfer signal SH_R0. As a result, the OR gate 321 corresponding to the 0th line generates the transfer signal Tx0. By this transfer signal Tx0, exposure of the 0th line is started. Then, the exposure of the first and subsequent lines is started in order.
- the timing generation unit 340 generates a read transfer signal RD_R0 at timing T22 when the exposure period of the 0th line has elapsed.
- the OR gate 321 corresponding to the 0th generates the transfer signal Tx1.
- Tx0 the exposure of the 0th line is completed and the pixel signal is read from the 0th line. Then, the exposure of each of the first and subsequent lines ends in order.
- FIG. 15 is a timing chart showing an example of the operation in the normal readout mode of the solid-state imaging device 200 according to the first embodiment.
- the timing generation unit 340 When the timing signal generation circuit 270 starts generating the vertical synchronization signal XVS at the timing T11, the timing generation unit 340 generates the latch set signal LT_Set. Then, immediately before the timing T12 synchronized with the vertical synchronization signal XVS, the timing generation unit 340 sets the selection signal line to the high level and sets the reset signal line to the low level.
- the OR gate 321 generates the transfer signal Tx0, and after generating the transfer signal Tx0, the timing generation unit 340 sets the reset signal line to high level and the selection signal line to low level.
- the timing generation unit 340 sets the selection signal line to the high level and sets the reset signal line to the low level.
- the OR gate 321 generates the transfer signal Tx1, and after generating the transfer signal Tx1, the timing generation unit 340 sets the reset signal line to high level and the selection signal line to low level. Thereby, the exposure of the 0th line is started. Then, in the first and subsequent lines, the exposure is sequentially started in the same procedure.
- the timing signal generation circuit 270 generates the vertical synchronization signal XVS at the timing T21 when the cycle of the vertical synchronization signal XVS has elapsed from the timing T11.
- the timing generation unit 340 sets the selection signal line to high level and the reset signal line to low level.
- the OR gate 321 generates the transfer signal Tx0. Thereby, the exposure of the 0th line is completed and the pixel signal is read out. In the first and subsequent lines, the exposure is sequentially completed in the same procedure. As described above, in the normal readout mode, all lines are sequentially exposed to read out pixel signals.
- FIG. 16 is a timing chart showing an example of operation in the 1/3 decimation readout mode of the vertical scanning circuit 300 according to the first embodiment. It is assumed that the normal reading mode is switched to the 1/3 decimation reading mode at timing T11. At this timing T11, the timing control unit 360 generates a latch set signal LT_Set. As a result, the latch circuits 323 for all lines are set. At timing T12 synchronized with the vertical synchronization signal XVS, the timing generation unit 340 generates a read transfer signal RD_R0. As a result, the latch circuit 323 corresponding to the 0th line is reset, and the OR gate 321 corresponding to the 0th line generates the transfer signal Tx0.
- the timing generation unit 340 generates the read transfer signal RD_R3 at the timing T13 when the period of the horizontal synchronization signal has elapsed from the timing T12. As a result, the latch circuit 323 corresponding to the third line is reset, and the OR gate 321 corresponding to the third line generates the transfer signal Tx3. At timing T13, the timing generation unit 340 generates the shutter transfer signal SH_R0. As a result, the OR gate 321 corresponding to the 0th line generates the transfer signal Tx0. By this transfer signal Tx0, exposure of the 0th line is started. Then, the exposure of the first and subsequent read lines is started in order.
- the timing control unit 360 generates four additional shutter signals SH_Add in order.
- four transfer signals Txn are generated in the line in which the latch circuit 323 is set (that is, the thinning line).
- the additional shutter signal SH_Add is supplied during a period in which the transfer signal Txn to the readout line is not generated. This is because when the transfer signal is supplied to the thinning line during the period for reading out the pixel signal, the characteristic conditions such as the power supply, ground, and signal line fluctuations change, resulting in a difference from the period in which no additional shutter signal is supplied. This is because noise may occur in the image.
- the floating diffusion layer 234 is not shared by a plurality of pixels, the power supply, the ground, and the signal line are less likely to fluctuate and the characteristic conditions are not affected.
- the timing for supplying the additional shutter signal SH_Add is arbitrarily set. can do.
- the reason that the additional shutter signal SH_Add is not generated at the first timing T11 is that the latch circuits 323 of all the lines are set at this time, and the transfer signal cannot be supplied only to the thinned lines.
- the timing generation unit 340 After the output of the four additional shutter signals SH_Add, the timing generation unit 340 generates the read transfer signal RD_R0 at the timing T22. Thereby, the exposure of the 0th line is completed and the pixel signal is read out. Then, the exposure of the first and subsequent read lines is finished in order.
- the timing control unit 360 At timing T31 when the cycle of the vertical synchronization signal XVS has elapsed from timing T21, the timing control unit 360 generates two additional shutter signals SH_Add in order. As a result, two transfer signals Txn are generated in the thinning line. Thereafter, every time the period of the vertical synchronization signal XVS elapses, two additional shutter signals SH_Add are generated, and two transfer signals Txn are generated in the thinning line.
- FIG. 17 is a timing chart showing an example of an operation in the 1/3 thinning readout mode of the solid-state imaging device 200 according to the first embodiment.
- the timing control unit 360 When the timing signal generation circuit 270 starts generating the vertical synchronization signal XVS at the timing T11, the timing control unit 360 generates the latch set signal LT_Set. Immediately before the timing T12 synchronized with the vertical synchronization signal XVS, the timing generation unit 340 sets the selection signal line to high level and the reset signal line to low level. At timing T12, the OR gate 321 generates the transfer signal Tx0, and then the timing generation unit 340 sets the reset signal line to high level and the selection signal line to low level.
- the OR gate 321 corresponding to the 0 line generates the transfer signal Tx0 at the timing T13 when the period of the horizontal synchronization signal has elapsed from the timing T12.
- This transfer signal Tx0 exposure of the 0th line is started. Then, the exposure of the first and subsequent read lines is started in order.
- the timing generator 340 sequentially generates four additional shutter signals SH_Add. As a result, four transfer signals Txn are generated in the line in which the latch circuit 323 is set (that is, the thinning line).
- the timing generation unit 340 generates the read transfer signal RD_R0 at the timing T22 after the output of the four additional shutter signals SH_Add. Thereby, the exposure of the 0th line is completed and the pixel signal is read out. Then, the exposure of the first and subsequent read lines is finished in order. Thus, in the 1/3 thinning readout mode, 1/3 of all lines are sequentially exposed and read.
- FIG. 18 is a timing chart showing an example of operation in the 1/3 thinning readout mode of the solid-state imaging device in the comparative example.
- the transfer line of the thinning line is fixed at a high level.
- the accumulation time of the transfer transistor in the conductive state and the number of transitions to the conductive state are not the same between the thinning line and the readout line.
- the deterioration of the transfer transistor proceeds at different speeds in the thinning line and the readout line, and the degree of deterioration of the transfer transistor becomes different. Due to the difference in the degree of deterioration, when all lines are read out, streak noise is generated in the image data.
- the transfer line of the thinning line can be fixed at a low level.
- the driving conditions of the transfer transistors of the thinning line and the readout line are not the same, and similar noise is generated.
- the vertical scanning circuit 300 supplies the same number of transfer signals to each of the thinning line and the readout line. For this reason, in these lines, the accumulation time of the conduction state of the transfer transistor and the number of transitions to the conduction state are the same, and the deterioration proceeds at the same speed. As a result, streak noise does not occur in the image data, and the image quality can be improved.
- FIG. 19 is a flowchart showing an example of the operation of the solid-state imaging device 200 according to the first embodiment. This operation starts when, for example, the start of imaging is instructed by the imaging control signal.
- the solid-state imaging device 200 determines whether or not the mode signal indicates the 1/3 decimation readout mode (step S901). When the normal reading mode is set (step S901: No), the solid-state imaging device 200 executes normal reading processing for sequentially reading all lines (step S910). On the other hand, when the mode is the 1/3 decimation readout mode (step S901: Yes), the solid-state imaging device 200 executes 1 / decimation readout processing for sequentially reading 1/3 of all lines (step S920).
- the solid-state imaging device 200 performs predetermined image processing on the read image data (step S902). Then, the solid-state imaging device 200 determines whether or not the end of imaging is instructed by the imaging control signal (step S903). When the end of imaging is not instructed (step S903: No), the solid-state imaging device 200 repeatedly executes step S901 and subsequent steps. On the other hand, when the end of imaging is instructed (step S903: Yes), the solid-state imaging device 200 ends imaging.
- FIG. 20 is a flowchart showing an example of the normal reading process in the first embodiment.
- the vertical scanning circuit 300 selects the 2m line, sets the corresponding selection signal line to the high level, and sets the corresponding reset signal line to the low level (step S911).
- the vertical scanning circuit 300 supplies a read transfer signal to the 2m line (step S912). When m is 1 or more, a shutter transfer signal to the 2m-1 line is simultaneously supplied. After the read transfer, the vertical scanning circuit 300 sets the corresponding reset signal line to the high level and sets the corresponding selection signal line to the low level (step S913). Next, the vertical scanning circuit 300 selects the 2m + 1 line, sets the corresponding selection signal line to the high level, and sets the corresponding reset signal line to the low level (step S914).
- the vertical scanning circuit 300 supplies the read transfer signal to the 2m + 1 line together with the shutter transfer signal to the 2m line (step S915). After the read transfer, the vertical scanning circuit 300 sets the corresponding reset signal line to the high level and sets the corresponding selection signal line to the low level (step S916). The vertical scanning circuit 300 determines whether the 2m + 1 line is the last line (step S917). When it is not the last line (step S917: No), the vertical scanning circuit 300 repeats step S911 and subsequent steps. On the other hand, if it is the last line (step S917: Yes), the vertical scanning circuit 300 supplies a shutter transfer signal to that line (step S918), and the normal reading process is terminated.
- FIG. 21 is a flowchart illustrating an example of 1/3 decimation readout processing according to the first embodiment.
- the vertical scanning circuit 300 determines whether or not it is the time immediately after the start of imaging (T11 or the like) in the 1/3 decimation readout mode (step S921). If not immediately after the start of imaging (step S922: No), the vertical scanning circuit 300 supplies a predetermined number of transfer signals to the thinning lines (step S922).
- step S923 Immediately after the start of imaging (step S921: Yes) or after step S922, the vertical scanning circuit 300 pays attention to any line and determines whether the line is a readout line (step S923). If it is a readout line (step S923: Yes), the vertical scanning circuit 300 sets the corresponding selection signal line to high level and the corresponding reset signal line to low level (step S924). The vertical scanning circuit 300 transmits a read transfer signal and outputs a pixel signal (step S925). After the read transfer, the vertical scanning circuit 300 sets the corresponding reset signal line to the high level and sets the corresponding selection signal line to the low level (step S926). Subsequently, the vertical scanning circuit 300 starts exposure by transmitting a shutter transfer signal (step S927). When the focused line is a thinning line (step S923: No) or after step S927, the vertical scanning circuit 300 determines whether reading of all the reading lines is completed (step S928).
- step S928: No When reading of all the reading lines has not been completed (step S928: No), the vertical scanning circuit 300 repeats step S923 and subsequent steps. On the other hand, when reading of all the reading lines is completed (step S928: Yes), the vertical scanning circuit 300 ends the 1/3 thinning-out reading process.
- the vertical scanning circuit 300 makes the accumulated time of the conduction state of the transfer transistor of the thinning line and the number of transitions to the conduction state the same as those of the readout line. Therefore, the degree of deterioration of these lines can be made comparable. As a result, no streak noise is generated in the image data when all lines are read out, and the image quality can be improved.
- the vertical scanning circuit 300 generates the additional shutter signal SH_Add before the end of exposure of the first line (T22), but the additional shutter signal after the start of exposure of the last line. SH_Add may be generated.
- the vertical scanning circuit 300 according to the first modification of the first embodiment is different from the first embodiment in that the additional shutter signal SH_Add is generated after the exposure of the last line is started.
- FIG. 22 is a timing chart showing an example of operation in the 1/3 decimation readout mode of the solid-state imaging device 200 in the first modification of the first embodiment. It is assumed that the exposure of the last readout line is started immediately before the timing T14. At this timing T14, since the latch circuits 323 of all the readout lines are reset, the vertical scanning circuit 300 can supply a transfer signal only to the thinning lines. Therefore, the timing control unit 360 generates two additional shutter signals SH_Add in order. As a result, the OR gates 321 of all the thinning lines generate two transfer signals Txn. Similarly, after the timing T14, two transfer signals Txn are generated every time the exposure of the last readout line is started.
- the vertical scanning circuit 300 sequentially supplies two transfer signals to the thinning line after the exposure of the last line is started.
- the number of transfer signals to each thinning line can be made two. This makes it easier to control the vertical scanning circuit 300 than in the first embodiment in which only the second frame needs to supply four transfer signals to the thinning line.
- the vertical scanning circuit 300 controls the accumulated time of the transfer transistor in the conductive state and the number of transitions to the conductive state in the thinning line in the same manner as in the readout line. It is not limited to this configuration. Depending on the configuration of the transfer transistor, the cumulative time of the conductive state may have a greater influence on the progress of the deterioration than the number of transitions to the conductive state. In this case, it is not necessary to make the number of transitions the same, and if only the accumulation time of the conduction state is the same, the progress speed of the deterioration can be made the same.
- the vertical scanning circuit 300 according to the second modification of the first embodiment is different from the first embodiment in that only the accumulation time of the conduction state of the transfer transistor is controlled in the thinning line in the same manner as the readout line. Different.
- FIG. 23 is a timing chart showing an example of the operation in the 1/3 decimation readout mode of the solid-state imaging device 200 in the second modification of the first embodiment.
- the vertical scanning circuit 300 of the second modification example of the first embodiment generates one additional shutter signal SH_Add instead of four at the timing T21.
- the pulse width W2 of the additional shutter signal SH_Add is four times the pulse width W1 of the transfer signal Txn to the readout line.
- the vertical scanning circuit 300 generates one additional shutter signal SH_Add having a pulse width W2 that is twice W1 at timing T31. Thereafter, each time the period of the vertical synchronization signal XVS elapses, one additional shutter signal SH_Add having a pulse width W2 is generated. Thereby, in the thinning-out line, the accumulated time of the conduction state of the transfer transistor becomes the same as that of the reading line.
- the vertical scanning circuit 300 controls the accumulated time of the conduction state of the transfer transistor in the thinning line to be the same as that in the readout line.
- the degree of deterioration of these lines can be made comparable.
- the vertical scanning circuit 300 has an R pixel.
- the exposure control of the B pixel and the G pixel can be performed at different timings.
- the R pixel indicates a pixel that receives red visible light
- the G pixel indicates a pixel that receives green visible light
- the B pixel indicates a pixel that receives blue visible light.
- the solid-state imaging device 200 of the third modification example of the first embodiment is different from the first embodiment in that two transfer lines are wired for each line.
- FIG. 24 is a circuit diagram illustrating a configuration example of the pixel array unit 210 according to the third modification of the first embodiment.
- the pixel array unit 210 of the third modification example of the first embodiment is different from the first embodiment in that the pixel array unit 210 further includes pixels 240 and 250 in addition to the pixels 220 and 230.
- the pixel 220 is an R pixel on the 2m-th line
- the pixel 230 is a Gb pixel on the 2m + 1-th line
- the pixel 240 is a Gr pixel on the 2m-th line
- the pixel 250 is a B pixel on the 2m + 1-th line.
- the Gr pixel is a G pixel arranged on the same line as the R pixel
- the Gb pixel is a G pixel arranged on the same line as the B pixel.
- the configuration of the pixel 240 is the same as that of the pixel 220, and the configuration of the pixel 250 is the same as that of the pixel 230.
- each of the R, Gr, B, and Gb pixels is arranged according to a Bayer array.
- two transfer lines are arranged for each line.
- one of the two transfer lines is connected to the transfer transistor 221 of the R pixel (220), and the other is connected to the transfer transistor 221 of the Gr pixel (240).
- the 2m + 1th line one of the two transfer lines is connected to the transfer transistor 231 of the Gb pixel (230), and the other is connected to the transfer transistor 231 of the B pixel (250).
- the transfer signal Txan is supplied to the Gr pixel (240) of the 2mth line.
- the vertical scanning circuit 300 supplies transfer signals to the R, Gr, B, and Gb pixels at different timings, and individually controls the exposure start timing and the exposure end timing of those pixels. Can do. Thereby, the vertical scanning circuit 300 can control the exposure times of the R, Gr, B, and Gb pixels to different values.
- the vertical scanning circuit 300 supplies transfer signals to the R, Gr, B, and Gb pixels at different timings.
- the exposure times of these pixels can be controlled to different values.
- the vertical scanning circuit 300 selects 1/3 of all the lines as a readout line at the time of thinning readout. However, a line having a ratio other than 1/3 may be selected. . For example, the vertical scanning circuit 300 may select 1/5 of all lines as a readout line.
- the vertical scanning circuit 300 according to the second embodiment is different from the first embodiment in that 1/5 of all the lines is selected as a readout line.
- FIG. 25 is a diagram illustrating an example of a decoded signal according to the second embodiment.
- data A is input as address data in the normal read mode
- data C is input in the 1/5 decimation read mode for selecting 1/5 of all the lines. .
- the address decoder 350 sets “1” (read line) to 1/5 of the decode signals of all the lines and “0” (decimation) for the rest. Line) is set and output. For example, “0” is set to the 0th decode signal DEC0, and “0” is set to all the 1st to 4th decode signals DEC1 to DEC4. Further, “1” is set to the fifth decode signal DEC5. In the same manner, one line out of every five lines is set as a readout line.
- FIG. 26 is a timing chart showing an example of the operation in the 1/5 thinning readout mode of the vertical scanning circuit 300 according to the second embodiment. It is assumed that the normal reading mode is switched to the 1/5 decimation reading mode at timing T11. At this timing T11, the timing control unit 360 generates a latch set signal LT_Set. At timing T12 synchronized with the vertical synchronization signal XVS, the timing generation unit 340 generates a read transfer signal RD_R0. The timing generation unit 340 generates the read transfer signal RD_R0 at timing T13 when the period of the horizontal synchronization signal has elapsed from timing T12.
- the timing control unit 360 sequentially generates four additional shutter signals SH_Add.
- four transfer signals Txn are supplied to the thinning lines such as the first to fourth lines. Since the transfer signal Txn is simultaneously supplied to all the thinned lines by one additional shutter signal SH_Add, the supply timing of the additional shutter signal SH_Add can be changed even if the number of thinned lines is changed as illustrated in FIG. There is no need to change.
- the vertical scanning circuit 300 selects 1/5 of all lines, the image data data is more than the case of selecting 1/3 of all lines. The amount can be reduced.
- the solid-state imaging device 200 performs reading by switching to one of two modes of the normal reading mode and the 1/3 thinning-out reading mode. However, a 1/5 decimation readout mode may be added, and the solid-state imaging device 200 may perform readout by switching to any of the three modes.
- the solid-state imaging device 200 according to the third embodiment is different from the first embodiment in that reading is performed by switching to any one of the normal reading mode, the 1/3 thinning readout mode, and the 1/5 thinning readout mode. .
- FIG. 27 is a diagram illustrating an example of a decode signal according to the third embodiment.
- data A is input as address data in the normal read mode
- data B is input in the 1/3 decimation read mode
- data C is input in the 1/5 decimation read mode. Shall be entered.
- data A or B is input, a decode signal similar to that of the first embodiment is generated, and when data C is input, a decode signal similar to that of the second embodiment is generated. Is done.
- FIG. 28 is a timing chart showing an example of the operation in the thinning readout mode of the vertical scanning circuit 300 in the third embodiment.
- the timing control unit 360 supplies the latch set signal LT_Set.
- the operation of the vertical scanning circuit 300 before the timing T21 is the same as that in the 1/3 decimation readout mode of the first embodiment.
- the operation of the vertical scanning circuit 300 after the timing T21 is the same as in the 1/5 decimation readout mode of the second embodiment.
- the solid-state imaging device 200 can switch between the 1/3 decimation readout mode and the 1/5 decimation readout mode.
- the amount of data can be changed according to the user's operation.
- the vertical scanning circuit 300 selects lines arranged with a certain interval in the direction perpendicular to the line (that is, the column direction) as the readout line. A plurality of continuous lines may be selected as read lines. Such thinning readout is also called window readout. This window reading is used when a part of an image is cut out without reducing the resolution.
- the vertical scanning circuit 300 of the fourth embodiment differs from the first embodiment in that window reading is performed.
- FIG. 29 is a diagram illustrating an example of a decoded signal according to the fourth embodiment.
- data A is input as address data in the normal reading mode
- data B is input in the 1/3 decimation reading mode
- data D is input in the window reading mode for performing window reading. Shall be entered.
- the address decoder 350 sets “1” (read line) to the decode signals of a plurality of lines continuous in the column direction, and the remaining “0” (decimation line). ) Is set and output. For example, “0” is set in the 0th, 1st and 2nd decode signals DEC0, DEC1 and DEC2. Further, “1” is set to the third, fourth and fifth decode signals DEC3, DEC4 and DEC5. “0” is set to the sixth and subsequent decode signals. With these decode signals, only the third to fifth lines are read out.
- FIG. 30 is a timing chart showing an example of the window reading mode operation of the vertical scanning circuit 300 according to the fourth embodiment. It is assumed that the normal reading mode is switched to the window reading mode at timing T11. At this timing T11, the timing control unit 360 generates a latch set signal LT_Set. At timing T12 synchronized with the vertical synchronization signal XVS, the timing generation unit 340 generates a read transfer signal RD_R3. Then, the timing generation unit 340 generates the read transfer signal RD_R4 at the timing T13 when the period of the horizontal synchronization signal has elapsed from the timing T12.
- the timing control unit 360 sequentially generates four additional shutter signals SH_Add. As a result, four transfer signals Txn are supplied to each of the 0th to 2nd thinning lines.
- the vertical scanning circuit 300 selects a plurality of continuous lines in the column direction as readout lines, so that a part of the image is not reduced without reducing the resolution. Can be cut out.
- the processing procedure described in the above embodiment may be regarded as a method having a series of these procedures, and a program for causing a computer to execute these series of procedures or a recording medium storing the program. You may catch it.
- a recording medium for example, a CD (Compact Disc), an MD (MiniDisc), a DVD (Digital Versatile Disc), a memory card, a Blu-ray disc (Blu-ray (registered trademark) Disc), or the like can be used.
- this technique can also take the following structures.
- a plurality of pixels, each of which is provided with a transfer transistor for transferring the charge by transitioning to a conductive state by a transfer signal instructing transfer of the charge from the photodiode to the charge storage unit, is arranged in a two-dimensional lattice.
- a pixel array unit A selection unit that selects, as a readout line, a remaining line obtained by thinning out some lines as thinning lines from all of the pixels arranged in a predetermined direction in the pixel array unit;
- a read line transfer signal supply unit configured to control the transfer transistor of the read line to the conductive state over a certain period from a predetermined timing by supplying the transfer signal to the read line;
- a readout unit that reads out a pixel signal corresponding to the amount of the charge from the readout line;
- Thinning line transfer for controlling at least one of the accumulated time of the conducting state in the transfer transistor of the thinning line and the number of transitions to the conducting state to be substantially the same as the readout line by supplying the transfer signal to the thinning line
- a solid-state imaging device comprising a signal supply unit.
- the solid-state imaging device (2) The solid-state imaging device according to (1), wherein the thinning line transfer signal supply unit supplies the same number of transfer signals to the thinning line as the number transferred by the read line transfer signal supply unit. (3) The decimation line transfer signal supply unit extends over a period substantially equal to the accumulated time of the conduction state by the predetermined number of transfer signals each time a predetermined number of the transfer signals are transferred to the read line.
- the read line transfer signal supply unit inputs the transfer signal to the read line to the OR gate corresponding to the read line and uses the transfer signal as the reset signal corresponding to the read line to the latch circuit.
- the thinning line transfer signal supply unit generates a logical product signal of the output signal of the latch circuit corresponding to the thinning line and a predetermined additional shutter signal as the transfer signal to the thinning line, and supplies the signal to the thinning line.
- the solid-state imaging device according to any one of (1) to (3), which is input to the corresponding OR gate.
- the selection unit switches a position and the number of lines to be selected as the readout line among the plurality of lines according to a predetermined mode signal.
- the solid-state imaging device according to (4), wherein the set signal is input to the latch circuit every time the position and number of the readout lines are switched by the mode signal.
- the selection unit selects, as the read line, each of the lines arranged at regular intervals in a direction perpendicular to the predetermined direction among the plurality of lines.
- the solid-state imaging device according to any one of (1) to (6), wherein the selection unit selects lines adjacent to each other in the direction perpendicular to the predetermined direction among the plurality of lines as the readout line. .
- the read line transfer signal supply unit supplies the transfer signal to each of some of the pixels of the read line and the remaining pixels at different timings,
- the thinning line transfer signal supply unit supplies any of the transfer signals to the pixels of the thinning line and the remaining pixels at timings different from each other.
- a plurality of pixels each provided with a transfer transistor for transferring the charge by transitioning to a conductive state by a transfer signal instructing transfer of the charge from the photodiode to the charge storage unit are arranged in a two-dimensional lattice pattern A pixel array unit, A selection unit that selects, as a readout line, a remaining line obtained by thinning out some lines as thinning lines from all of the pixels arranged in a predetermined direction in the pixel array unit; A read line transfer signal supply unit configured to control the transfer transistor of the read line to the conductive state over a certain period from a predetermined timing by supplying the transfer signal to the read line; A readout unit that reads out a pixel signal corresponding to the amount of the charge from the readout line; Thinning line transfer for controlling at least one of the accumulated time of the conducting state in the transfer transistor of the thinning line and the number of transitions to the conducting state to be substantially the same as the readout line by supplying the transfer signal to the thinning line A signal
- a plurality of pixels each of which is provided with a transfer transistor for transferring the charge by transitioning to a conductive state by a transfer signal instructing transfer of the charge from the photodiode to the charge storage unit, is arranged in a two-dimensional lattice.
- Thinning line transfer for controlling at least one of the accumulation time of the conduction state in the transfer transistor of the thinning line and the number of transitions to the conduction state to be substantially the same as the readout line by supplying the transfer signal to the thinning line.
- a control method of a solid-state imaging device comprising a signal supply procedure.
- DESCRIPTION OF SYMBOLS 100 Image pick-up device 110 Imaging lens 120 Image processing part 130 Recording part 140 Control part 150 Display part 200 Solid-state image sensor 210 Pixel array part 220, 230, 240, 250 Pixel 221,231 Transfer transistor 222,232 Photodiode 233 Reset transistor 234 Floating Diffusion layer 235 Amplifying transistor 236 Select transistor 260 Column CDS section 261 CDS circuit 270 Timing signal generating circuit 280 Output circuit 290 Horizontal scanning circuit 300 Vertical scanning circuit 310 Transfer signal generating section 320 Transfer signal generating circuit 321 324 OR (logical sum) gate 322 AND (logical product) gate 323 latch circuit 330 level shifter 340 timing generation unit 341, 343 read transfer signal generation circuit 342, 344 Transfer signal generation circuit 345 reset signal generation circuit 346 selection signal generation circuit 350 address decoder 360 timing control unit
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
トランジスタの制御により間引き読出しが行われるトランジスタが設けられた固体撮像素子において画像データの画質を向上させる。 選択部は、画素アレイ部において所定の方向に沿って配列された画素からなる全てのラインから一部のラインを間引きラインとして間引いた残りのラインを読出しラインとして選択する。読出しライン転送信号供給部は、読出しラインへの転送信号の供給により所定のタイミングから一定期間に亘って読出しラインの転送トランジスタを導通状態に制御する。読出し部は、読出しラインから前記電荷の量に応じた画素信号を読み出す。間引きライン転送信号供給部は、間引きラインの転送トランジスタにおける導通状態の累積時間と導通状態への遷移回数との少なくとも一方を間引きラインへの転送信号の供給により読出しラインと同一に制御する。
Description
本技術は、固体撮像素子、電子機器および固体撮像素子の制御方法に関する。詳しくは、トランジスタが設けられた固体撮像素子、電子機器および固体撮像素子の制御方法に関する。
従来より、撮像機能を持つ電子機器では、画像データを撮像するために固体撮像素子が用いられている。この固体撮像素子を露光させる方式は、複数のラインの全てを同時に露光させるグローバルシャッター方式と、それらのラインを順に露光させるローリングシャッター方式とに分類される。特に、CMOS(Complementary Metal Oxide Semiconductor)の固体撮像素子では、ローリングシャッター方式が用いられることが多い。このローリングシャッター方式を用いる場合、読出し期間を短くするために一部のラインを間引いて読み出す間引き読出しが行われることがある。例えば、動画を撮像する際や、画像をリアルタイムにモニタに表示する場合などにおいて間引き読出しが行われる。
間引き読出しを行う場合に固体撮像素子内の走査回路は、露光開始時と露光終了時とにおいて、読み出す対象の読出しラインに転送信号を供給する。これにより、転送信号が供給された読出しライン内の転送トランジスタは、導通状態に遷移してフォトダイオードから浮遊拡散層に電荷を転送する。ここで、間引く対象の間引きラインには転送信号を供給する必要はないものの、仮に間引きラインに転送信号を供給しない構成とすると、間引きラインのフォトダイオードの電荷が画素から溢れて画像データに白い帯が生じるおそれがある。この現象はブルーミングと呼ばれる。このブルーミングを防止するために、転送信号の電位をハイレベルに固定して、間引きライン内の転送トランジスタを導通状態のままにする固体撮像素子が提案されている(例えば、特許文献1参照。)。
上述の固体撮像素子では、間引きラインの転送トランジスタの駆動条件が読出しラインと異なるために、これらのラインにおいて異なる速度で転送トランジスタの劣化が進行するおそれがある。この劣化速度の相違により、読出しラインと間引きラインとのそれぞれの転送トランジスタの劣化の度合いが異なる状態になると、全ラインを読み出した際に画像データにおいてラインに沿って筋状のノイズが現れ、画質が著しく低下するという問題がある。
本技術はこのような状況に鑑みて生み出されたものであり、トランジスタの制御により間引き読出しが行われる固体撮像素子において画像データの画質を向上させることを目的とする。
本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、フォトダイオードから電荷蓄積部への電荷の転送を指示する転送信号により導通状態に遷移して上記電荷を転送する転送トランジスタがそれぞれに設けられた複数の画素が二次元格子状に配列された画素アレイ部と、上記画素アレイ部において所定の方向に沿って配列された上記画素からなる全てのラインから一部のラインを間引きラインとして間引いた残りのラインを読出しラインとして選択する選択部と、上記読出しラインへの上記転送信号の供給により所定のタイミングから一定期間に亘って上記読出しラインの上記転送トランジスタを上記導通状態に制御する読出しライン転送信号供給部と、上記読出しラインから上記電荷の量に応じた画素信号を読み出す読出し部と、上記間引きラインの上記転送トランジスタにおける上記導通状態の累積時間と当該導通状態への遷移回数との少なくとも一方を上記間引きラインへの上記転送信号の供給により上記読出しラインと略同一に制御する間引きライン転送信号供給部とを具備する固体撮像素子、および、その制御方法である。これにより、間引きラインの転送トランジスタにおける導通状態の累積時間と導通状態への遷移回数との少なくとも一方が読出しラインと略同一に制御されるという作用をもたらす。
また、この第1の側面において、上記間引きライン転送信号供給部は、上記読出しライン転送信号供給部が転送する個数と同じ個数の上記転送信号を上記間引きラインに供給してもよい。これにより、読出しライン転送信号供給部が転送する個数と同じ個数の転送信号が間引きラインに供給されるという作用をもたらす。
また、この第1の側面において、上記間引きライン転送信号供給部は、上記読出しラインへ所定個数の上記転送信号が転送されるたびに当該所定個数の上記転送信号による上記導通状態の累積時間に略一致する期間に亘って上記転送信号を上記間引きラインに供給してもよい。これにより、読出しラインへ所定個数の転送信号が転送されるたびに、その所定個数の転送信号による導通状態の累積時間に略一致する期間に亘って転送信号が間引きラインに供給されるという作用をもたらす。
また、この第1の側面において、セット信号が入力された場合には特定の値の出力信号を出力し、リセット信号が入力された場合には上記特定の値と異なる値の出力信号を出力するラッチ回路と、入力された2つの信号のいずれかを上記転送トランジスタに出力する論理和ゲートとを上記ラインごとにさらに具備し、上記読出しライン転送信号供給部は、上記読出しラインに対応する上記論理和ゲートに当該読出しラインへの上記転送信号を入力するとともに上記転送信号を上記読出しラインに対応する上記リセット信号として上記ラッチ回路に入力し、上記間引きライン転送信号供給部は、上記間引きラインに対応する上記ラッチ回路の出力信号と所定の追加シャッター信号との論理積の信号を上記間引きラインへの上記転送信号として生成して当該間引きラインに対応する上記論理和ゲートに入力する。これにより、間引きラインに対応するラッチ回路の出力信号と所定の追加シャッター信号との論理積の信号が間引きラインへの上記転送信号として生成されるという作用をもたらす。
また、この第1の側面において、上記選択部は、所定のモード信号に従って上記複数のラインのうち上記読出しラインとして選択するラインの位置および個数を切り替え、上記ラッチ回路には、上記モード信号により前記読出しラインの位置および個数が切り替えられるたびに上記セット信号が入力されてもよい。これにより、モード信号により読出しラインの位置および個数が切り替えられるたびにラッチ回路にセット信号が入力されるという作用をもたらす。
また、この第1の側面において、上記選択部は、上記複数のラインのうち上記所定方向に垂直な方向において一定間隔で配置されたラインのそれぞれを上記読出しラインとして選択してもよい。これにより、所定方向に垂直な方向において一定間隔で配置されたラインのそれぞれが読出しラインとして選択されるという作用をもたらす。
また、この第1の側面において、上記選択部は、上記複数のラインのうち上記所定方向に垂直な方向において互いに隣接するラインを上記読出しラインとして選択してもよい。これにより、所定方向に垂直な方向において互いに隣接するラインが読出しラインとして選択されるという作用をもたらす。
また、この第1の側面において、上記読出しライン転送信号供給部は、上記読出しラインの上記画素のうち一部の画素と残りの画素とのそれぞれに互いに異なるタイミングで上記転送信号を供給し、上記間引きライン転送信号供給部は、上記間引きラインの上記画素のうち一部の画素と残りの画素とのそれぞれに互いに異なるタイミングで上記転送信号を供給してもよい。これにより、画素のうち一部の画素と残りの画素とのそれぞれに互いに異なるタイミングで転送信号が供給されるという作用をもたらす。
また、この第1の側面において、上記複数の画素のうち上記所定の方向に垂直な方向において隣接する一対の画素は、上記電荷蓄積部を共有し、上記間引きライン転送信号供給部は、上記読出しラインのいずれにも上記転送信号が供給されていない期間において上記間引きラインへ上記転送信号を供給してもよい。これにより、読出しラインのいずれにも転送信号が供給されていない期間において間引きラインへ転送信号が供給されるという作用をもたらす。
また、本技術の第2の側面は、フォトダイオードから電荷蓄積部への電荷の転送を指示する転送信号により導通状態に遷移して上記電荷を転送する転送トランジスタがそれぞれに設けられた複数の画素が二次元格子状に配列された画素アレイ部と、上記画素アレイ部において所定の方向に沿って配列された上記画素からなる全てのラインから一部のラインを間引きラインとして間引いた残りのラインを読出しラインとして選択する選択部と、上記読出しラインへの上記転送信号の供給により所定のタイミングから一定期間に亘って上記読出しラインの上記転送トランジスタを上記導通状態に制御する読出しライン転送信号供給部と、上記読出しラインから上記電荷の量に応じた画素信号を読み出す読出し部と、上記間引きラインの上記転送トランジスタにおける上記導通状態の累積時間と当該導通状態への遷移回数との少なくとも一方を上記間引きラインへの上記転送信号の供給により上記読出しラインと略同一に制御する間引きライン転送信号供給部と、上記読み出された画素信号を処理する処理部とを具備する電子機器である。これにより、間引きラインの転送トランジスタにおける導通状態の累積時間と導通状態への遷移回数との少なくとも一方が読出しラインと略同一に制御されるという作用をもたらす。
本技術によれば、トランジスタの制御により間引き読出しが行われる固体撮像素子において画像データの画質を向上させることができるという優れた効果を奏し得る。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
1.第1の実施の形態(各ラインの導通状態の累積時間を同一に制御する例)
2.第2の実施の形態(1/5間引き読出しモードで各ラインの導通状態の累積時間を同一に制御する例)
3.第3の実施の形態(間引き読出しモードを切り替えて各ラインの導通状態の累積時間を同一に制御する例)
4.第4の実施の形態(窓読出しモードで各ラインの導通状態の累積時間を同一に制御する例)
1.第1の実施の形態(各ラインの導通状態の累積時間を同一に制御する例)
2.第2の実施の形態(1/5間引き読出しモードで各ラインの導通状態の累積時間を同一に制御する例)
3.第3の実施の形態(間引き読出しモードを切り替えて各ラインの導通状態の累積時間を同一に制御する例)
4.第4の実施の形態(窓読出しモードで各ラインの導通状態の累積時間を同一に制御する例)
<1.第1の実施の形態>
[撮像装置の構成例]
図1は、第1の実施の形態における撮像装置100の一構成例を示すブロック図である。この撮像装置100は、画像データを撮像するものであり、撮像レンズ110、固体撮像素子200、画像処理部120、記録部130、制御部140および表示部150を備える。
[撮像装置の構成例]
図1は、第1の実施の形態における撮像装置100の一構成例を示すブロック図である。この撮像装置100は、画像データを撮像するものであり、撮像レンズ110、固体撮像素子200、画像処理部120、記録部130、制御部140および表示部150を備える。
撮像レンズ110は、光を集光して固体撮像素子200に導くものである。固体撮像素子200は、制御部140の制御に従って撮像レンズ110からの光を電気信号に変換して画像データを生成するものである。例えば、CMOSセンサーが固体撮像素子200として用いられる。この固体撮像素子200は、画像データを信号線209を介して画像処理部120に供給する。
ここで、固体撮像素子200には、複数の画素が二次元格子状に配列されているものとする。以下、固体撮像素子200において所定の方向に配列された複数の画素を「行」または「ライン」と称し、行(ライン)に垂直な方向に配列された複数の画素を「列」と称する。固体撮像素子200は、制御部140により、全ラインから画素信号を読み出す通常読出しモードと、全ラインの1/3から画素信号を読み出す1/3間引き読出しモードとのいずれかに制御される。1/3間引き読出しモードは、例えば、表示部150に画像データをリアルタイムに表示する場合に用いられる。一方、通常読出しモードは、例えば、1/3間引き読出しモードよりも高い解像度で静止画や動画を撮像する場合に用いられる。
画像処理部120は、制御部140の制御に従ってAD(Analog to Digital)変換処理、ノイズ除去処理、デモザイク処理、および、ホワイトバランス処理などの各種の画像処理を画像データに対して行うものである。また、1/3間引き読出しモードで生成された画像データに対しては、通常読出しモードとアスペクト比を同一にするために、ラインのそれぞれにおいて2/3の画素を間引く処理がさらに行われる。画像処理部120は、通常読出しモードで生成された画像処理後の画像データを記録部130に信号線128を介して供給する。また、画像処理部120は、1/3間引き読出しモードで生成された画像処理後の画像データを表示部150に信号線129を介して供給する。なお、画像処理部120は、特許請求の範囲に記載の処理部の一例である。
記録部130は、画像データを記録するものである。表示部150は、画像データを表示するものである。制御部140は、撮像装置100全体を制御するものである。この制御部140は、ユーザの操作に従って、各種の制御信号を生成する。例えば、制御信号として、撮像の開始または終了を指示する撮像制御信号と、通常読出しモードまたは1/3間引き読出しモードを指示するモード信号とが生成される。制御部140は、これらの制御信号を信号線149を介して固体撮像素子200に供給して撮像を開始または終了させる。また、制御部140は、画像処理部120にも信号線148を介して制御信号を供給して画像処理を行わせる。
なお、制御部140は、画像データをリアルタイムに表示させる際に1/3間引き読出しモードに制御しているが、この構成に限定されない。例えば、制御部140は、静止画を撮像させる際に通常読出しモードに制御し、動画を撮像させる際に1/3間引き読出しモードに制御する構成であってもよい。また、固体撮像素子200は、間引き読出しの際に全ラインの1/3を読み出しているが、読み出す比率は1/3に限定されず、1/2のラインや1/5のラインを読み出してもよい。また、撮像装置100は、外部インターフェースをさらに備え、画像データを外部の装置に出力してもよい。
また、撮像レンズ110、固体撮像素子200、画像処理部120、記録部130、制御部140および表示部150を同一の機器に設けているが、別々の機器に設けてもよい。例えば、撮像レンズ110および固体撮像素子200を撮像装置に設け、画像処理部120等を画像処理装置に設ける構成であってもよい。また、固体撮像素子200を撮像装置100に設けているが、携帯電話機やタブレット端末など、撮像装置以外の電子機器に設けてもよい。なお、撮像装置100は、特許請求の範囲における電子機器の一例である。
[固体撮像素子の構成例]
図2は、第1の実施の形態における固体撮像素子200の一構成例を示すブロック図である。この固体撮像素子200は、画素アレイ部210、カラムCDS部260、タイミング信号発生回路270、出力回路280、水平走査回路290および垂直走査回路300を備える。また、画素アレイ部210には、複数のラインが配列され、そのうち2m(mは0以上の整数)番目のラインに複数の画素220が配置され、2m+1番目のラインに複数の画素230が配置される。また、カラムCDS部260には、ラインに垂直な方向に配列された画素(220または230)からなる列ごとに、CDS回路261が設けられる。
図2は、第1の実施の形態における固体撮像素子200の一構成例を示すブロック図である。この固体撮像素子200は、画素アレイ部210、カラムCDS部260、タイミング信号発生回路270、出力回路280、水平走査回路290および垂直走査回路300を備える。また、画素アレイ部210には、複数のラインが配列され、そのうち2m(mは0以上の整数)番目のラインに複数の画素220が配置され、2m+1番目のラインに複数の画素230が配置される。また、カラムCDS部260には、ラインに垂直な方向に配列された画素(220または230)からなる列ごとに、CDS回路261が設けられる。
タイミング信号発生回路270は、垂直同期信号や水平同期信号などのタイミング信号を発生するものである。このタイミング信号発生回路270は、例えば、撮像の開始を指示する撮像制御信号が制御部140から供給されると、タイミング信号として垂直同期信号、クロック信号および水平同期信号を生成する。ここで、垂直同期信号は、ラインに垂直な方向に画素信号の読出し(言い換えれば、走査)を行うタイミングを示す一定周波数の同期信号であり、水平同期信号は、ラインに水平な方向に走査を行うタイミングを示す一定周波数の同期信号である。この水平同期信号の周波数は、垂直同期信号よりも高いものとする。タイミング信号発生回路270は、垂直同期信号を垂直走査回路300に供給し、クロック信号をカラムCDS部260に供給し、水平走査回路290に水平同期信号を供給する。また、タイミング信号発生回路270は、例えば、撮像の停止を指示する撮像制御信号が供給されると、タイミング信号の生成を停止する。
画素220および230は、垂直走査回路300の制御に従って、光を電気信号に変換し、画素信号として出力するものである。
垂直走査回路300は、画素220または230からなるラインを順に選択し、その選択したラインに画素信号を出力させるものである。通常読出しモードにおいて垂直走査回路300は、タイミング信号発生回路270からの垂直同期信号に同期して全ラインを順に選択する。一方、1/3間引き読出しモードにおいて垂直走査回路300は、垂直同期信号に同期して全ラインの1/3を読出しラインとして順に選択する。
CDS回路261は、垂直信号線219を介して画素から画素信号を読み出して、クロック信号に同期して相関二重サンプリング(CDS:Correlated Double Sampling)処理を行うものである。このCDS回路261は、対応する列から画素信号を読み出し、その画素信号に対するCDS処理を行う。そして、CDS回路261は、CDS処理後の画素信号を水平走査回路290の制御に従って出力回路280に供給する。なお、カラムCDS部260は、特許請求の範囲に記載の読出し部の一例である。
水平走査回路290は、水平同期信号に同期してCDS回路261に順に画素信号を出力させるものである。出力回路280は、画素信号を記録部130等に出力するものである。
なお、CDS回路261は、CDS処理のみを行っているが、CDS処理に加えてAD変換処理を実行してもよい。この場合に後段の画像処理部120は、AD変換処理を行う必要はなく、AD変換処理以外の画像処理を実行する。
[画素の構成例]
図3は、第1の実施の形態における画素220および230の一構成例を示す回路図である。画素220は、転送トランジスタ221およびフォトダイオード222を備える。また、画素230は、転送トランジスタ231、フォトダイオード232、リセットトランジスタ233、浮遊拡散層234、増幅トランジスタ235および選択トランジスタ236を備える。転送トランジスタ221、転送トランジスタ231、リセットトランジスタ233、増幅トランジスタ235および選択トランジスタ236として、例えば、N型の電界効果トランジスタが用いられる。また、画素220には、1本の水平信号線229が転送信号線として接続される。画素230には、転送信号線、リセット信号線および選択信号線からなる水平信号線239が接続される。ここで、画素220は、0行目に配列され、画素230は、1行目に配列されるものとする。
図3は、第1の実施の形態における画素220および230の一構成例を示す回路図である。画素220は、転送トランジスタ221およびフォトダイオード222を備える。また、画素230は、転送トランジスタ231、フォトダイオード232、リセットトランジスタ233、浮遊拡散層234、増幅トランジスタ235および選択トランジスタ236を備える。転送トランジスタ221、転送トランジスタ231、リセットトランジスタ233、増幅トランジスタ235および選択トランジスタ236として、例えば、N型の電界効果トランジスタが用いられる。また、画素220には、1本の水平信号線229が転送信号線として接続される。画素230には、転送信号線、リセット信号線および選択信号線からなる水平信号線239が接続される。ここで、画素220は、0行目に配列され、画素230は、1行目に配列されるものとする。
転送トランジスタ221のゲートは水平信号線229(転送信号線)に接続され、ソースはフォトダイオード222に接続され、ドレインは浮遊拡散層234に接続される。転送トランジスタ231のゲートは転送信号線に接続され、ソースはフォトダイオード232に接続され、ドレインは浮遊拡散層234に接続される。
また、リセットトランジスタ233のゲートはリセット信号線に接続され、ソースは浮遊拡散層234に接続され、ドレインは電源に接続される。増幅トランジスタ235のゲートは浮遊拡散層234に接続され、ソースは選択トランジスタ236に接続され、ドレインは電源に接続される。また、選択トランジスタ236のゲートは選択信号線に接続され、ソースは垂直信号線219に接続され、ドレインは増幅トランジスタ235に接続される。
フォトダイオード222および232は、光電変換により光から電荷を生成するものである。転送トランジスタ221は、転送信号Tx0に従ってフォトダイオード222から浮遊拡散層234に電荷を転送するものである。転送トランジスタ231は、転送信号Tx1に従ってフォトダイオード232から浮遊拡散層234に電荷を転送するものである。
浮遊拡散層234は、転送された電荷を蓄積して、蓄積された電荷の量に応じた電圧の電気信号を生成するものである。なお、浮遊拡散層234は、特許請求の範囲に記載の電荷蓄積部の一例である。
リセットトランジスタ233は、リセット信号RST0が供給されると、浮遊拡散層234の電荷を放出して電荷量を初期値にリセットするものである。増幅トランジスタ235は、浮遊拡散層234で生成された電気信号を増幅するものである。選択トランジスタ236は、選択信号SEL0が供給されると、増幅された電気信号を画素信号としてカラムCDS部260に供給するものである。
なお、垂直方向において隣接した一対の画素220および230が、リセットトランジスタ233、浮遊拡散層234、増幅トランジスタ235および選択トランジスタ236を共有しているが、この構成に限定されない。例えば、隣接する4つの画素が浮遊拡散層234等を共有してもよい。また、浮遊拡散層234等を共有せず、それらを画素毎に設けてもよい。
[垂直走査回路の構成例]
図4は、第1の実施の形態における垂直走査回路300の一構成例を示すブロック図である。この垂直走査回路300は、転送信号生成部310、レベルシフタ330、タイミング生成部340、アドレスデコーダ350およびタイミング制御部360を備える。
図4は、第1の実施の形態における垂直走査回路300の一構成例を示すブロック図である。この垂直走査回路300は、転送信号生成部310、レベルシフタ330、タイミング生成部340、アドレスデコーダ350およびタイミング制御部360を備える。
転送信号生成部310は、全ラインの転送信号を生成するものである。この転送信号生成部310は、ラインごとに転送信号生成回路320を備える。全ての転送信号生成回路320には、追加シャッター信号SH_Addおよびラッチセット信号LT_Setがレベルシフタ330により共通に入力される。また、n(nは0以上の整数)番目のラインに対応する転送信号生成回路320には、リード転送信号RD_Rnおよびシャッター転送信号SH_Rnが入力される。
ここで、追加シャッター信号SH_Addは、間引く対象の間引きラインへの転送信号を生成するタイミングを示す信号である。また、ラッチセット信号LT_Setは、転送信号生成回路320内のラッチ回路にハイレベルの信号を保持させるための信号である。ラッチ回路については後述する。リード転送信号RD_Rnは、n番目のラインの露光を終了して画素信号を読み出すタイミングを示す信号である。シャッター転送信号SH_Rnは、n番目のラインの露光を開始するタイミングを示す信号である。
転送信号生成回路320は、対応するラインへの転送信号を生成するものである。この転送信号生成回路320は、追加シャッター信号SH_Add、ラッチセット信号LT_Set、リード転送信号RD_Rnおよびシャッター転送信号SH_Rnから、転送信号Txnを生成して対応するラインに供給する。
タイミング制御部360は、垂直走査回路300全体を制御するものである。このタイミング制御部360は、垂直同期信号の供給が開始されると、その垂直同期信号を逓倍したパルス信号を生成し、タイミング生成部340に供給する。また、タイミング制御部360は、読出しラインのアドレスを示すアドレスデータをモード信号から生成する。通常読出しモードである場合には、全ラインを示すアドレスデータが生成され、1/3間引き読出しモードである場合には全ラインの1/3を示すアドレスデータが生成される。タイミング制御部360は、生成したアドレスデータをアドレスデコーダ350に供給する。
また、タイミング制御部360は、1/3間引き読出しモードにおいて追加シャッター信号SH_Addを生成してレベルシフタ330へ供給する。1/3間引き読出しモードにおいてタイミング制御部360は、フレーム当たり平均2個の追加シャッター信号SH_Addを生成する。それぞれの追加シャッター信号SH_Addは、例えば、一定のパルス期間W1に亘ってハイレベルとなる信号である。
さらに、タイミング制御部360は、モードが切り替えられたとき、または、撮像が開始されたときに、ラッチセット信号LAT_Setを生成してレベルシフタ330へ供給する。
アドレスデコーダ350は、アドレスデータをデコードするものである。このアドレスデコーダ350は、ラインごとに、そのラインが読出しラインであるか否かを示すデコード信号DECnをアドレスデータから生成してタイミング生成部340に供給する。なお、アドレスデコーダ350は、特許請求の範囲に記載の選択部の一例である。
タイミング生成部340は、リード転送信号RD_Rn、シャッター転送信号SH_Rn、リセット信号RSTmおよび選択信号SELmを生成するものである。ここで、mは0以上の整数であり、リセット信号RSTmは、2m+1番目のラインのリセットトランジスタ233にリセットを行わせるタイミングを示す信号である。また、選択信号SELmは、2m+1番目のラインの選択トランジスタ236に画素信号を出力させるタイミングを示す信号である。
タイミング生成部340は、パルス信号およびデコード信号から、リード転送信号RD_Rn等の信号を生成してレベルシフタ330に供給する。ここで、リード転送信号RD_Rnおよびシャッター転送信号SH_Rnは、ラインごとに生成される。また、リセット信号RSTmおよび選択信号SELmは、全ラインのうち2m+1番目のラインのそれぞれについて生成される。例えば、0番目のラインについて、リード転送信号RD_R0およびシャッター転送信号SH_R0が生成される。また、1番目のラインについて、リード転送信号RD_R1、シャッター転送信号SH_R1、リセット信号RST0および選択信号SEL0が生成される。
レベルシフタ330は、タイミング制御部360およびタイミング生成部340からのラッチセット信号LAT_Set等の電圧を後段の転送信号生成部310あるいはドライバを駆動するに足る電圧に昇圧するものである。なお、転送信号生成部310と画素アレイ部210との間にはドライバが配置されているが、このドライバは図4において省略されている。
図5は、第1の実施の形態におけるデコード信号の一例を示す図である。通常読出しモードの際にデータAがアドレスデータとして入力され、1/3間引き読出しモードの際にデータBが入力されるものとする。
データAが入力された場合(通常読出しモード)に、アドレスデコーダ350は、全ラインのデコード信号に、読出しラインを示す「1」を設定して出力する。一方、データBが入力された場合(1/3間引き読出しモード)に、アドレスデコーダ350は、全ラインの1/3のデコード信号に「1」(読出しライン)を設定し、残りに、間引きラインを示す「0」を設定して出力する。例えば、0番目のラインのデコード信号DEC0に「1」が設定され、1番目および2番目のラインのデコード信号DEC1およびDEC2に「0」が設定される。また、3番目のデコード信号DEC3に「1」が設定され、4番目および5番目のデコード信号DEC4およびDEC5に「0」が設定される。以降も同様に、3ラインごとに、そのうちの1ラインが読出しラインに設定される。
[タイミング生成部の構成例]
図6は、第1の実施の形態におけるタイミング生成部340の一構成例を示すブロック図である。このタイミング生成部340は、2m番目のラインのそれぞれについて、リード転送信号生成回路341およびシャッター転送信号生成回路342を備える。さらにタイミング生成部340は、2m+1番目のラインのそれぞれについて、リード転送信号生成回路343、シャッター転送信号生成回路344、リセット信号生成回路345および選択信号生成回路346を備える。
図6は、第1の実施の形態におけるタイミング生成部340の一構成例を示すブロック図である。このタイミング生成部340は、2m番目のラインのそれぞれについて、リード転送信号生成回路341およびシャッター転送信号生成回路342を備える。さらにタイミング生成部340は、2m+1番目のラインのそれぞれについて、リード転送信号生成回路343、シャッター転送信号生成回路344、リセット信号生成回路345および選択信号生成回路346を備える。
リード転送信号生成回路341は、2m(=n)番目のラインへのリード転送信号RD_Rnを生成してレベルシフタ330へ供給するものである。このリード転送信号RD_Rnは、例えば、一定のパルス期間W1に亘ってハイレベルとなる信号である。リード転送信号生成回路341は、アドレスデコーダ350からのデコード信号DECnが、「1」であれば、タイミング制御部360からのパルス信号を用いて、予め設定された露光終了のタイミングでリード転送信号RD_Rnを生成する。例えば、リード転送信号生成回路341は、パルス信号のパルス数を計数して、その計数値が所定値になったタイミング(すなわち、露光終了のタイミング)でリード転送信号RD_Rnを生成し、計数値を初期値にする動作を繰り返す。露光終了のタイミングは、測光量に応じて露光時間を設定する露光制御部(不図示)や、ユーザの操作により設定される。
シャッター転送信号生成回路342は、2m(=n)番目のラインへのシャッター転送信号SH_Rnを生成してレベルシフタ330へ供給するものである。このシャッター転送信号SH_Rnは、例えば、一定のパルス期間W1に亘ってハイレベルとなる信号である。シャッター転送信号生成回路342は、アドレスデコーダ350からのデコード信号DECnが、「1」であれば、タイミング制御部360からのパルス信号を用いて、予め設定された露光終了のタイミングでシャッター転送信号SH_Rnを生成する。例えば、シャッター転送信号生成回路342は、パルス数を計数して、その計数値が所定値になったタイミング(すなわち、露光開始のタイミング)でシャッター転送信号SH_Rnを生成し、計数値を初期値にする動作を繰り返す。露光開始のタイミングは、測光量に応じて露光時間を設定する露光制御部や、ユーザの操作により設定される。
リード転送信号生成回路343の構成は、2m+1(=n)番目のラインへのリード転送信号RD_Rnを生成する点以外は、リード転送信号生成回路341と同様である。シャッター転送信号生成回路344の構成は、2m+1(=n)番目のラインへのリード転送信号SH_Rnを生成する点以外は、シャッター転送信号生成回路342と同様である。
リセット信号生成回路345は、2m番目および2m+1番目のラインにおいて共有されるリセットトランジスタ233へのリセット信号RSTmを生成してレベルシフタ330へ供給するものである。2m番目のラインのデコード信号DECnが「1」である場合にリセット信号生成回路345は、パルス信号を用いて2m番目のラインのリード転送前にリセット信号線をローレベルにし、そのリード転送後にリセット信号線をハイレベルにする。また、2m+1番目のラインへのデコード信号DECnが「1」である場合にリセット信号生成回路345は、パルス信号を用いて2m+1番目のラインのリード転送前にリセット信号線をローレベルにし、そのリード転送後にリセット信号線をハイレベルにする。このような制御により、ハイレベルのリセット信号RSTmが供給される。
選択信号生成回路346は、2m番目および2m+1番目のラインにおいて共有される選択トランジスタ236への選択信号SELmを生成してレベルシフタ330へ供給するものである。2m番目のラインのデコード信号DECnが「1」である場合に選択信号生成回路346は、パルス信号を用いて2m番目のラインのリード転送前に選択信号線をハイレベルにし、そのリード転送後に選択信号線をローレベルにする。また、2m+1番目のラインのデコード信号DECnが「1」である場合に選択信号生成回路346は、パルス信号を用いて2m+1番目のラインのリード転送前に選択信号線をハイレベルにし、そのリード転送後に選択信号線をローレベルにする。このような制御により、ハイレベルの選択信号SELmが供給される。
[タイミング生成部の動作例]
図7は、第1の実施の形態におけるリード転送信号生成回路341の動作の一例を示す表である。デコード信号DECnが、「1」であれば、n番目のラインに対応するリード転送信号生成回路341は、垂直同期信号の周期が経過するたびに(言い換えれば、フレームごとに)露光終了のタイミングでリード転送信号RD_Rnを生成する。
図7は、第1の実施の形態におけるリード転送信号生成回路341の動作の一例を示す表である。デコード信号DECnが、「1」であれば、n番目のラインに対応するリード転送信号生成回路341は、垂直同期信号の周期が経過するたびに(言い換えれば、フレームごとに)露光終了のタイミングでリード転送信号RD_Rnを生成する。
図8は、第1の実施の形態におけるシャッター転送信号生成回路342の動作の一例を示す表である。デコード信号DECnが、「1」であれば、n番目のラインに対応するシャッター転送信号生成回路342は、フレームごとに露光開始のタイミングでシャッター転送信号SH_Rnを生成する。
図9は、第1の実施の形態におけるリセット信号生成回路345の動作の一例を示す表である。デコード信号DEC0およびDEC1のうちDEC1のみが「1」(読出しライン)である場合にリセット信号生成回路345は、1行目のリード転送前にリセット信号線をローレベルにし、そのリード転送後にリセット信号線をハイレベルにする。また、デコード信号DEC0のみが「1」(読出しライン)である場合に、リセット信号生成回路345は、0行目のリード転送前にリセット信号線をローレベルにし、そのリード転送後にリセット信号線をハイレベルにする。デコード信号DEC0およびDEC1の両方が「1」(読出しライン)である場合に、リセット信号生成回路345は、0行目および1行目のリード転送前にリセット信号線をローレベルにし、それらのリード転送後にリセット信号線をハイレベルにする。このような制御により、ハイレベルのリセット信号RTS0が供給される。2行目以降のリセット信号RSTmも同様に、2m番目および2m+1番目のデコード信号から生成される。
図10は、第1の実施の形態における選択信号生成回路346の動作の一例を示す表である。デコード信号DEC0およびDEC1のうちDEC1のみが「1」(読出しライン)である場合に選択信号生成回路346は、1行目のリード転送前に選択信号線をハイレベルにし、そのリード転送後に選択信号線をハイレベルにする。デコード信号DEC0のみが「1」(読出しライン)である場合に選択信号生成回路346は、0行目のリード転送前に選択信号線をハイレベルにし、そのリード転送後に選択信号線をローレベルにする。デコード信号DEC0およびDEC1の両方が「1」(読出しライン)である場合に選択信号生成回路346は、0行目および1行目のリード転送前に選択信号線をハイレベルにし、それらのリード転送後に選択信号線をローレベルにする。このような制御により、ハイレベルの選択信号SEL0が供給される。2行目以降の選択信号SELmも同様に、2m番目および2m+1番目のデコード信号から生成される。
[転送信号生成回路の構成例]
図11は、第1の実施の形態における転送信号生成回路320の一構成例を示す回路図である。この転送信号生成回路320は、OR(論理和)ゲート321および324と、AND(論理積)ゲート322と、ラッチ回路323とを備える。
図11は、第1の実施の形態における転送信号生成回路320の一構成例を示す回路図である。この転送信号生成回路320は、OR(論理和)ゲート321および324と、AND(論理積)ゲート322と、ラッチ回路323とを備える。
ラッチ回路323は、1ビットのデータを保持するものである。このラッチ回路323は、セット端子S、リセット端子Rおよび出力端子Qを備える。ラッチ回路323のセット端子Sには、レベルシフタ330からのラッチセット信号LT_Setが入力される。また、ラッチ回路323のリセット端子RはORゲート324の出力端子に接続され、出力端子QはANDゲート322の入力端子に接続される。
ラッチ回路323は、セット端子Sからラッチセット信号LT_Setが入力されるとハイレベルの信号をラッチ出力信号LAT_Qnとして出力する。また、リセット端子Rからハイレベルの信号がリセット信号として入力されるとラッチ回路323は、ローレベルの信号を出力する。また、ラッチセット信号LT_Setおよびリセット信号のいずれも入力されない場合にラッチ回路323は、状態を保持する。
ORゲート324は、入力値の論理和を出力するものである。このORゲート324の2つの入力端子の一方にはリード転送信号RD_Rnが入力され、他方にはシャッター転送信号SH_Rnが入力される。ORゲート324は、2つの入力端子の値の論理和をリセット信号としてラッチ回路323に出力する。
また、ORゲート324からのハイレベルの信号は、読出しラインへの転送信号としてORゲート321に入力される。なお、ORゲート324は、特許請求の範囲に記載の読出しライン転送信号供給部の一例である。
ANDゲート322は、入力値の論理積を出力するものである。このANDゲート322の2つの入力端子の一方には追加シャッター信号SH_Addが入力され、他方にはラッチ回路323からのラッチ出力信号LAT_Qnが入力される。ANDゲート322は、2つの入力端子の値の論理積をORゲート321の入力端子に出力する。
このANDゲート322からのハイレベルの信号は、間引きラインへの転送信号としてORゲート321に入力される。なお、ANDゲート322は、特許請求の範囲に記載の間引きライン転送信号供給部の一例である。
ORゲート321は、入力値の論理和を出力するものである。このORゲート321は、ANDゲート322からの転送信号とORゲート324からの転送信号とのいずれかを、nラインの転送信号Txnとして画素アレイ部210へ出力する。なお、ORゲート321は、特許請求の範囲に記載の論理和ゲートの一例である。
このような構成により、ラッチセット信号LT_Setが入力されると、ラッチ回路323にハイレベルが保持(言い換えれば、セット)される。そして、リード転送信号RD_Rnまたはシャッター転送信号SH_Rnが入力されるとラッチ回路323にローレベルが保持(言い換えれば、リセット)され、転送信号生成回路320は、転送信号Txnを出力する。これらのリード転送信号RD_Rnまたはシャッター転送信号SH_Rnは、間引きラインにおいては生成されないため、間引きラインでは、ラッチ回路323がセットされたままである。
ここで、追加シャッター信号SH_Addが入力されると、セットされたラッチ回路323を含む転送信号生成回路320は、転送信号Txnを出力する。このため、追加シャッター信号SH_Addの入力により、間引きラインに対応する転送信号生成回路320に転送信号Txnを出力させることができる。
また、間引きラインの転送信号Txnの単位時間当たりの個数は、読出しラインと同一に設定される。これにより、転送トランジスタ221が導通状態である累積時間と、その導通状態への遷移回数とが間引きラインと読出しラインとにおいて同一になる。なお、間引きラインの導通状態の累積時間と、導通状態への遷移回数とは、読出しラインと完全に同一でなく、差が所定の許容値以内の略同一の値であってもよい。
[転送信号生成回路の動作例]
図12は、第1の実施の形態におけるラッチ回路323の動作の一例を示す表である。セット端子Sおよびリセット端子Rの両方の値が「0」の場合にラッチ回路323は状態を保持する。また、セット端子Sが「0」でリセット端子Rが「1」の場合にラッチ回路323はリセットされて出力端子Qから「0」の信号を出力する。また、セット端子Sが「1」でリセット端子Rが「0」の場合にラッチ回路323はセットされて「1」の信号を出力する。
図12は、第1の実施の形態におけるラッチ回路323の動作の一例を示す表である。セット端子Sおよびリセット端子Rの両方の値が「0」の場合にラッチ回路323は状態を保持する。また、セット端子Sが「0」でリセット端子Rが「1」の場合にラッチ回路323はリセットされて出力端子Qから「0」の信号を出力する。また、セット端子Sが「1」でリセット端子Rが「0」の場合にラッチ回路323はセットされて「1」の信号を出力する。
図13は、第1の実施の形態における転送信号生成回路320の動作の一例を示す表である。ラッチセット信号LT_Setが入力されると、全ラインの転送信号生成回路320はラッチ回路323をセットし、ラッチ出力信号LAT_Qnを生成する。
また、露光終了時にリード転送信号RD_Rnが入力されると、nライン目の転送信号生成回路320は、ラッチ回路323をリセットして転送信号Txnを出力する。また、露光開始時にシャッター転送信号SH_Rnが入力されると、nライン目の転送信号生成回路320は、ラッチ回路323をリセットして転送信号Txnを出力する。
ラッチセット信号LT_Set、リード転送信号RD_Rnおよびシャッター転送信号SH_Rnのいずれも入力されない場合には、nライン目の転送信号生成回路320は、ラッチ回路323の状態を保持する。そして、ラッチ回路323がセットされた状態で追加シャッター信号SH_Addが入力されると、転送信号生成回路320は、転送信号Txnを出力する。間引きラインのラッチ回路323はセットされているため、追加シャッター信号SH_Addにより間引きラインへ転送信号Txnが出力される。一方、ラッチ回路323がリセットされた状態で追加シャッター信号SH_Addが入力されても転送信号生成回路320は、転送信号Txnを出力しない。1フレーム目の読出し以降では読出しラインのラッチ回路323はリセットされるため、追加シャッター信号SH_Addが入力されても読出しラインへ転送信号Txnは出力されない。
[固体撮像素子の動作例]
図14は、第1の実施の形態における垂直走査回路300の通常読出しモードの動作の一例を示すタイミングチャートである。タイミングT11において通常読出しモードで撮像が開始されると、垂直走査回路300内のタイミング制御部360は、ラッチセット信号LT_Setを生成する。これにより、全ラインのラッチ回路323がセットされる。そして、露光終了のタイミングT12においてタイミング生成部340は、リード転送信号RD_R0を生成する。これにより、0番目のラインに対応するラッチ回路323がリセットされ、0番目に対応する転送信号生成回路320内のORゲート321は、転送信号Tx0を生成する。
図14は、第1の実施の形態における垂直走査回路300の通常読出しモードの動作の一例を示すタイミングチャートである。タイミングT11において通常読出しモードで撮像が開始されると、垂直走査回路300内のタイミング制御部360は、ラッチセット信号LT_Setを生成する。これにより、全ラインのラッチ回路323がセットされる。そして、露光終了のタイミングT12においてタイミング生成部340は、リード転送信号RD_R0を生成する。これにより、0番目のラインに対応するラッチ回路323がリセットされ、0番目に対応する転送信号生成回路320内のORゲート321は、転送信号Tx0を生成する。
そして、タイミングT12から水平同期信号の周期が経過したタイミングT13においてタイミング生成部340は、リード転送信号RD_R1を生成する。これにより、1番目のラインに対応するラッチ回路323がリセットされ、1番目に対応するORゲート321は、転送信号Tx1を生成する。また、タイミングT13において、タイミング生成部340は、シャッター転送信号SH_R0を生成する。これにより、0番目のラインに対応するORゲート321は、転送信号Tx0を生成する。この転送信号Tx0により、0番目のラインの露光が開始される。そして、1番目以降のそれぞれのラインの露光が順に開始される。
そして、0番目のラインの露光期間が経過したタイミングT22でタイミング生成部340は、リード転送信号RD_R0を生成する。これにより、0番目に対応するORゲート321は、転送信号Tx1を生成する。この転送信号Tx0により、0番目のラインの露光が終了して0番目のラインから画素信号が読み出される。そして、1番目以降のそれぞれのラインの露光が順に終了する。
図15は、第1の実施の形態における固体撮像素子200の通常読出しモードの動作の一例を示すタイミングチャートである。タイミング信号発生回路270がタイミングT11で垂直同期信号XVSの生成を開始すると、タイミング生成部340は、ラッチセット信号LT_Setを生成する。そして、垂直同期信号XVSに同期したタイミングT12の直前において、タイミング生成部340は、選択信号線をハイレベルにし、リセット信号線をローレベルにする。そして、タイミングT12においてORゲート321は、転送信号Tx0を生成し、その転送信号Tx0の生成後に、タイミング生成部340は、リセット信号線をハイレベルにし、選択信号線をローレベルにする。
そして、タイミングT13の直前においてタイミング生成部340は、選択信号線をハイレベルにし、リセット信号線をローレベルにする。そして、タイミングT13においてORゲート321は、転送信号Tx1を生成し、その転送信号Tx1の生成後に、タイミング生成部340は、リセット信号線をハイレベルにし、選択信号線をローレベルにする。これにより、0ライン目の露光が開始される。そして、1ライン目以降において、同様の手順で順に露光が開始される。
タイミングT11から垂直同期信号XVSの周期が経過したタイミングT21で、タイミング信号発生回路270は垂直同期信号XVSを生成する。その垂直同期信号XVSに同期したタイミングT22の直前において、タイミング生成部340は、選択信号線をハイレベルにし、リセット信号線をローレベルにする。そして、タイミングT22においてORゲート321は、転送信号Tx0を生成する。これにより、0ライン目の露光が終了して画素信号が読み出される。1ライン目以降においても、同様の手順で順に露光が終了する。このように、通常読出しモードでは、全ラインが順に露光されて画素信号が読み出される。
図16は、第1の実施の形態における垂直走査回路300の1/3間引き読出しモードの動作の一例を示すタイミングチャートである。タイミングT11において通常読出しモードから1/3間引き読出しモードへと切り替えられたものとする。このタイミングT11においてタイミング制御部360は、ラッチセット信号LT_Setを生成する。これにより、全ラインのラッチ回路323がセットされる。垂直同期信号XVSに同期したタイミングT12においてタイミング生成部340は、リード転送信号RD_R0を生成する。これにより、0番目のラインに対応するラッチ回路323がリセットされ、0番目に対応するORゲート321は、転送信号Tx0を生成する。
そして、タイミングT12から水平同期信号の周期が経過したタイミングT13においてタイミング生成部340は、リード転送信号RD_R3を生成する。これにより、3番目のラインに対応するラッチ回路323がリセットされ、3番目に対応するORゲート321は、転送信号Tx3を生成する。また、タイミングT13において、タイミング生成部340は、シャッター転送信号SH_R0を生成する。これにより、0番目のラインに対応するORゲート321は、転送信号Tx0を生成する。この転送信号Tx0により、0番目のラインの露光が開始される。そして、1番目以降のそれぞれの読出しラインの露光が順に開始される。
そして、タイミングT11から垂直同期信号XVSの周期が経過したタイミングT21においてタイミング制御部360は、4つの追加シャッター信号SH_Addを順に生成する。これにより、ラッチ回路323がセットされたライン(すなわち、間引きライン)において、4つの転送信号Txnが生成される。
ここで、追加シャッター信号SH_Addは、読出しラインへの転送信号Txnが生成されない期間に供給されることが望ましい。これは、画素信号を読み出す期間に間引きラインへ転送信号が供給されると、電源およびグランドや信号線の揺れなどの特性条件が変わることにより、追加シャッター信号を供給しない期間との差異が出て画像にノイズが生じるおそれがあるためである。なお、浮遊拡散層234を複数の画素で共有しない構成など、電源およびグランドや信号線の揺れが発生しにくく、特性条件に影響しない場合には、追加シャッター信号SH_Addを供給するタイミングを任意に設定することができる。
また、最初のタイミングT11において追加シャッター信号SH_Addが生成されないのは、この時点では全ラインのラッチ回路323がセットされており、間引きラインのみに転送信号を供給することができないためである。
4つの追加シャッター信号SH_Addの出力後にタイミング生成部340は、タイミングT22においてリード転送信号RD_R0を生成する。これにより、0番目のラインの露光が終了して画素信号が読み出される。そして、1番目以降のそれぞれの読出しラインの露光が順に終了する。
タイミングT21から垂直同期信号XVSの周期が経過したタイミングT31においてタイミング制御部360は、2つの追加シャッター信号SH_Addを順に生成する。これにより、間引きラインにおいて2つの転送信号Txnが生成される。以降は、垂直同期信号XVSの周期が経過するたびに2つの追加シャッター信号SH_Addが生成され、間引きラインにおいて2つの転送信号Txnが生成される。
上述したように、垂直同期信号XVSの周期が経過するたびに、読出しラインにおいて2つの転送信号Txnが生成される。一方、間引きラインにおいて最初の周期では転送信号Txnが生成されず、2周期目では4つの転送信号Txnが生成され、以降は、周期ごとに2つの転送信号Txnが生成される。このため、周期ごとの転送信号Txnの個数は、平均2つである。このように、読出しラインと、間引きラインとで同じ個数の転送信号が生成されるため、それらのラインの転送トランジスタ221および231の導通状態の累積時間と導通状態への遷移回数とが同一になる。この結果、ラインごとの転送トランジスタ(221等)のそれぞれの劣化の進行速度が同程度となる。
図17は、第1の実施の形態における固体撮像素子200の1/3間引き読出しモードの動作の一例を示すタイミングチャートである。タイミング信号発生回路270がタイミングT11で垂直同期信号XVSの生成を開始すると、タイミング制御部360は、ラッチセット信号LT_Setを生成する。垂直同期信号XVSに同期したタイミングT12の直前において、タイミング生成部340は、選択信号線をハイレベルにし、リセット信号線をローレベルにする。そして、タイミングT12においてORゲート321は、転送信号Tx0を生成し、その後に、タイミング生成部340は、リセット信号線をハイレベルにし、選択信号線をローレベルにする。
そして、タイミングT12から水平同期信号の周期が経過したタイミングT13において0ラインに対応するORゲート321は、転送信号Tx0を生成する。この転送信号Tx0により、0番目のラインの露光が開始される。そして、1番目以降のそれぞれの読出しラインの露光が順に開始される。
タイミングT11から垂直同期信号XVSの周期が経過したタイミングT22においてタイミング生成部340は、4つの追加シャッター信号SH_Addを順に生成する。これにより、ラッチ回路323がセットされたライン(すなわち、間引きライン)において、4つの転送信号Txnが生成される。
4つの追加シャッター信号SH_Addの出力後のタイミングT22においてタイミング生成部340は、リード転送信号RD_R0を生成する。これにより、0番目のラインの露光が終了して画素信号が読み出される。そして、1番目以降のそれぞれの読出しラインの露光が順に終了する。このように、1/3間引き読出しモードでは、全ラインの1/3が順に露光されて読み出される。
図18は、比較例における固体撮像素子の1/3間引き読出しモードの動作の一例を示すタイミングチャートである。この比較例では、特許文献1に記載のように、間引きラインの転送線は、ハイレベルに固定されるものとする。この場合、間引きラインと読出しラインとで、転送トランジスタの導通状態の累積時間や、導通状態への遷移回数が同一にならない。このため、間引きラインと読出しラインとのそれぞれにおいて転送トランジスタの劣化が異なる速度で進行し、転送トランジスタの劣化の度合いが異なる状態となる。この劣化の度合いの相違により、全ラインを読み出した際に、画像データに筋状のノイズが生じてしまう。
ブルーミングが問題にならない場合、間引きラインの転送線をローレベルに固定することもできるが、この場合も間引きラインと読出しラインとの転送トランジスタの駆動条件が同一とならずに同様のノイズが生じる。
これに対して、垂直走査回路300は、間引きラインと読出しラインとのそれぞれへ、同一の個数の転送信号を供給する。このため、それらのラインにおいて転送トランジスタの導通状態の累積時間と、導通状態への遷移回数とが同一になり、劣化が同程度の速度で進行する。これにより、画像データに筋状のノイズが生じなくなり、画質を向上させることができる。
図19は、第1の実施の形態における固体撮像素子200の動作の一例を示すフローチャートである。この動作は、例えば、撮像制御信号により撮像の開始が指示されたときに開始する。固体撮像素子200は、モード信号が1/3間引き読出しモードを示すか否かを判断する(ステップS901)。通常読出しモードである場合(ステップS901:No)、固体撮像素子200は、全ラインを順に読み出す通常読出し処理を実行する(ステップS910)。一方、1/3間引き読出しモードである場合(ステップS901:Yes)、固体撮像素子200は、全ラインの1/3を順に読み出す1/間引き読出し処理を実行する(ステップS920)。
ステップS910またはS920の後、固体撮像素子200は、読み出された画像データに対して、所定の画像処理を行う(ステップS902)。そして、固体撮像素子200は、撮像制御信号により撮像の終了が指示されたか否かを判断する(ステップS903)。撮像の終了が指示されていない場合に(ステップS903:No)、固体撮像素子200は、ステップS901以降を繰り返し実行する。一方、撮像の終了が指示された場合に(ステップS903:Yes)、固体撮像素子200は、撮像を終了する。
図20は、第1の実施の形態における通常読出し処理の一例を示すフローチャートである。垂直走査回路300は、2mラインを選択して対応する選択信号線をハイレベルにし、そして、対応するリセット信号線をローレベルにする(ステップS911)。垂直走査回路300は、2mラインへのリード転送信号を供給する(ステップS912)。mが1以上の際には、同時に2m-1ラインへのシャッター転送信号も同時に供給される。リード転送後に垂直走査回路300は、対応するリセット信号線をハイレベルにし、そして、対応する選択信号線をローレベルにする(ステップS913)。次いで、垂直走査回路300は、2m+1ラインを選択して対応する選択信号線をハイレベルにし、そして、対応するリセット信号線をローレベルにする(ステップS914)。垂直走査回路300は、2m+1ラインへのリード転送信号を2mラインへのシャッター転送信号とともに供給する(ステップS915)。リード転送後に垂直走査回路300は、対応するリセット信号線をハイレベルにし、そして、対応する選択信号線をローレベルにする(ステップS916)。垂直走査回路300は、2m+1ラインが最後のラインであるか否かを判断する(ステップS917)。最後のラインでない場合(ステップS917:No)、垂直走査回路300は、ステップS911以降を繰り返す。一方、最後のラインである場合に(ステップS917:Yes)、垂直走査回路300は、そのラインへシャッター転送信号を供給し(ステップS918)、通常読出し処理を終了する。
図21は、第1の実施の形態における1/3間引き読出し処理の一例を示すフローチャートである。垂直走査回路300は、1/3間引き読出しモードにおける撮像開始直後の時刻(T11など)であるか否かを判断する(ステップS921)。撮像開始直後でない場合に(ステップS922:No)、垂直走査回路300は、間引きラインに一定個数の転送信号を供給する(ステップS922)。
撮像開始直後(ステップS921:Yes)、または、ステップS922の後、垂直走査回路300は、いずれかのラインに着目し、そのラインが読出しラインであるか否かを判断する(ステップS923)。読出しラインである場合(ステップS923:Yes)、垂直走査回路300は、対応する選択信号線をハイレベルにし、対応するリセット信号線をローレベルにする(ステップS924)。垂直走査回路300は、リード転送信号を送信して画素信号を出力させる(ステップS925)。リード転送後に垂直走査回路300は、対応するリセット信号線をハイレベルにし、対応する選択信号線をローレベルにする(ステップS926)。続いて、垂直走査回路300は、シャッター転送信号を送信して露光を開始させる(ステップS927)。着目したラインが間引きラインである場合(ステップS923:No)またはステップS927の後、垂直走査回路300は、全ての読出しラインの読出しが終了したか否かを判断する(ステップS928)。
全ての読出しラインの読出しが終了していない場合に(ステップS928:No)、垂直走査回路300は、ステップS923以降を繰り返す。一方、全ての読出しラインの読出しが終了した場合に(ステップS928:Yes)、垂直走査回路300は、1/3間引き読出し処理を終了する。
このように、本技術の第1の実施の形態によれば、垂直走査回路300が、間引きラインの転送トランジスタの導通状態の累積時間と導通状態への遷移回数とを読出しラインと同一になるように制御するため、それらのラインの劣化度を同程度にすることができる。これにより、全ラインを読出した際に画像データに筋状のノイズが生じることが無くなり、画質を向上させることができる。
[第1の変形例]
上述の第1の実施の形態では、垂直走査回路300は、最初のラインの露光終了(T22)の前に追加シャッター信号SH_Addを生成していたが、最後のラインの露光開始の後に追加シャッター信号SH_Addを生成してもよい。この第1の実施の形態の第1の変形例の垂直走査回路300は、最後のラインの露光開始の後に追加シャッター信号SH_Addを生成する点において第1の実施の形態と異なる。
上述の第1の実施の形態では、垂直走査回路300は、最初のラインの露光終了(T22)の前に追加シャッター信号SH_Addを生成していたが、最後のラインの露光開始の後に追加シャッター信号SH_Addを生成してもよい。この第1の実施の形態の第1の変形例の垂直走査回路300は、最後のラインの露光開始の後に追加シャッター信号SH_Addを生成する点において第1の実施の形態と異なる。
図22は、第1の実施の形態の第1の変形例における固体撮像素子200の1/3間引き読出しモードの動作の一例を示すタイミングチャートである。タイミングT14の直前において、最後の読出しラインの露光が開始されたものとする。このタイミングT14において、全ての読出しラインのラッチ回路323がリセットされているため、垂直走査回路300は、間引きラインにのみ転送信号を供給することができる。そこで、タイミング制御部360は、2つの追加シャッター信号SH_Addを順に生成する。これにより、全ての間引きラインのORゲート321は、2つの転送信号Txnを生成する。タイミングT14以降においても同様に、最後の読出しラインの露光が開始されるたびに2つの転送信号Txnが生成される。
このように、本技術の第1の実施の形態の第1の変形例によれば、垂直走査回路300が最後のラインの露光開始の後に間引きラインへ2つの転送信号を順に供給するため、フレームごとの間引きラインへの転送信号の個数を2つに揃えることができる。これにより、2フレーム目のみ、間引きラインへ4つの転送信号を供給する必要のあった第1の実施の形態と比較して、垂直走査回路300の制御が簡易なものとなる。
[第2の変形例]
上述の第1の実施の形態では、垂直走査回路300は、間引きラインにおいて、転送トランジスタの導通状態の累積時間と導通状態への遷移回数との両方を読出しラインと同一に制御していたが、この構成に限定されない。転送トランジスタの構成によっては、導通状態への遷移回数よりも、導通状態の累積時間の方が劣化の進行に大きく影響することがある。この場合には、遷移回数を同一にする必要性が乏しく、導通状態の累積時間のみが同一であれば劣化の進行速度を同程度にすることができる。この第1の実施の形態の第2の変形例の垂直走査回路300は、間引きラインにおいて、転送トランジスタの導通状態の累積時間のみを読出しラインと同一に制御する点において第1の実施の形態と異なる。
上述の第1の実施の形態では、垂直走査回路300は、間引きラインにおいて、転送トランジスタの導通状態の累積時間と導通状態への遷移回数との両方を読出しラインと同一に制御していたが、この構成に限定されない。転送トランジスタの構成によっては、導通状態への遷移回数よりも、導通状態の累積時間の方が劣化の進行に大きく影響することがある。この場合には、遷移回数を同一にする必要性が乏しく、導通状態の累積時間のみが同一であれば劣化の進行速度を同程度にすることができる。この第1の実施の形態の第2の変形例の垂直走査回路300は、間引きラインにおいて、転送トランジスタの導通状態の累積時間のみを読出しラインと同一に制御する点において第1の実施の形態と異なる。
図23は、第1の実施の形態の第2の変形例における固体撮像素子200の1/3間引き読出しモードの動作の一例を示すタイミングチャートである。第1の実施の形態の第2の変形例の垂直走査回路300は、タイミングT21において、4つでなく、1つの追加シャッター信号SH_Addを生成する。この追加シャッター信号SH_Addのパルス幅W2は、読出しラインへの転送信号Txnのパルス幅W1の4倍であるものとする。また、垂直走査回路300は、タイミングT31において、W1の2倍のパルス幅W2の追加シャッター信号SH_Addを1つ生成する。以降は、垂直同期信号XVSの周期が経過するたびに、パルス幅W2の追加シャッター信号SH_Addが1つ生成される。これにより、間引きラインにおいて、転送トランジスタの導通状態の累積時間が読出しラインと同一になる。
このように、本技術の第1の実施の形態の第2の変形例によれば、垂直走査回路300が、間引きラインにおいて、転送トランジスタの導通状態の累積時間を読出しラインと同一に制御するため、それらのラインの劣化の度合いを同程度にすることができる。
[第3の変形例]
上述の第1の実施の形態では、ラインごとに1本の転送線を配線していたが、ラインごとに2本の転送線を配線することもできる。2本の転送線の一方にライン内の一部の画素(R画素やB画素など)を接続し、他方に残りの画素(G画素など)を接続すれば、垂直走査回路300は、R画素やB画素とG画素とを異なるタイミングで露光制御することができる。ここで、R画素は、赤色の可視光を受光する画素を示し、G画素は緑色の可視光を受光する画素を示す。B画素は、青色の可視光を受光する画素を示す。この第1の実施の形態の第3の変形例の固体撮像素子200は、ラインごとに2本の転送線が配線される点において第1の実施の形態と異なる。
上述の第1の実施の形態では、ラインごとに1本の転送線を配線していたが、ラインごとに2本の転送線を配線することもできる。2本の転送線の一方にライン内の一部の画素(R画素やB画素など)を接続し、他方に残りの画素(G画素など)を接続すれば、垂直走査回路300は、R画素やB画素とG画素とを異なるタイミングで露光制御することができる。ここで、R画素は、赤色の可視光を受光する画素を示し、G画素は緑色の可視光を受光する画素を示す。B画素は、青色の可視光を受光する画素を示す。この第1の実施の形態の第3の変形例の固体撮像素子200は、ラインごとに2本の転送線が配線される点において第1の実施の形態と異なる。
図24は、第1の実施の形態の第3の変形例における画素アレイ部210の一構成例を示す回路図である。第1の実施の形態の第3の変形例の画素アレイ部210は、画素220および230に加えて、画素240および250をさらに備える点において第1の実施の形態と異なる。
画素220は、2m番目のラインのR画素であり、画素230は、2m+1番目のラインのGb画素である。また、画素240は、2m番目のラインのGr画素であり、画素250は、2m+1番目のラインのB画素である。ここで、Gr画素は、R画素と同じラインに配列されたG画素であり、Gb画素は、B画素と同じラインに配列されたG画素である。
画素240の構成は、画素220と同様であり、画素250の構成は、画素230と同様である。また、R、Gr、BおよびGb画素のそれぞれは、ベイヤー配列に従って配置される。
また、ラインごとに2本の転送線が配列される。2m番目のラインにおいて2本の転送線の一方はR画素(220)の転送トランジスタ221に接続され、他方はGr画素(240)の転送トランジスタ221に接続される。また、2m+1番目のラインにおいて2本の転送線の一方はGb画素(230)の転送トランジスタ231に接続され、他方はB画素(250)の転送トランジスタ231に接続される。また、2m(=n)番目のラインのR画素(220)に転送信号Txbnが供給され、2m番目のラインのGr画素(240)に転送信号Txanが供給される。2m+1(=n)番目のラインのGb画素(230)に転送信号Txbnが供給され、1番目のラインのB画素(250)に転送信号Txanが供給される。
これらの転送信号により、垂直走査回路300は、R、Gr、BおよびGb画素のそれぞれに異なるタイミングで転送信号を供給して、それらの画素の露光開始タイミングおよび露光終了タイミングを個別に制御することができる。これにより、垂直走査回路300は、R、Gr、BおよびGb画素のそれぞれの露光時間を異なる値に制御することができる。
このように、本技術の第1の実施の形態の第3の変形例によれば、垂直走査回路300は、R、Gr、BおよびGb画素のそれぞれに異なるタイミングで転送信号を供給するため、それらの画素の露光時間を異なる値に制御することができる。
<2.第2の実施の形態>
上述の第1の実施の形態において垂直走査回路300は、間引き読出しの際に全ラインの1/3を読出しラインとして選択していたが、1/3以外の比率のラインを選択してもよい。例えば、垂直走査回路300は、全ラインの1/5を読出しラインとして選択してもよい。この第2の実施の形態の垂直走査回路300は、全ラインの1/5を読出しラインとして選択する点において第1の実施の形態と異なる。
上述の第1の実施の形態において垂直走査回路300は、間引き読出しの際に全ラインの1/3を読出しラインとして選択していたが、1/3以外の比率のラインを選択してもよい。例えば、垂直走査回路300は、全ラインの1/5を読出しラインとして選択してもよい。この第2の実施の形態の垂直走査回路300は、全ラインの1/5を読出しラインとして選択する点において第1の実施の形態と異なる。
図25は、第2の実施の形態におけるデコード信号の一例を示す図である。第2の実施の形態では、通常読出しモードの際にデータAがアドレスデータとして入力され、全ラインの1/5を選択する1/5間引き読出しモードの際にデータCが入力されるものとする。
データCが入力された場合(1/5間引き読出しモード)に、アドレスデコーダ350は、全ラインの1/5のデコード信号に「1」(読出しライン)を設定し、残りに「0」(間引きライン)を設定して出力する。例えば、0番目のデコード信号DEC0に「1」が設定され、1乃至4番目のデコード信号DEC1乃至DEC4の全てに「0」が設定される。また、5番目のデコード信号DEC5に「1」が設定される。以降も同様に、5ラインごとに、そのうちの1ラインが読出しラインに設定される。
図26は、第2の実施の形態における垂直走査回路300の1/5間引き読出しモードの動作の一例を示すタイミングチャートである。タイミングT11において通常読出しモードから1/5間引き読出しモードへと切り替えられたものとする。このタイミングT11においてタイミング制御部360は、ラッチセット信号LT_Setを生成する。垂直同期信号XVSに同期したタイミングT12においてタイミング生成部340は、リード転送信号RD_R0を生成する。そして、タイミングT12から水平同期信号の周期が経過したタイミングT13においてタイミング生成部340は、リード転送信号RD_R0を生成する。
タイミングT11から垂直同期信号XVSの周期が経過したタイミングT21においてタイミング制御部360は、4つの追加シャッター信号SH_Addを順に生成する。これにより、1ライン目乃至4ライン目などの間引きラインのそれぞれへ4つの転送信号Txnが供給される。1つの追加シャッター信号SH_Addにより、全ての間引きラインに同時に転送信号Txnを供給する構成であるため、図26に例示するように、間引くライン数を変えても、追加シャッター信号SH_Addの供給のタイミングを変更する必要はない。
このように、本技術の第2の実施の形態によれば、垂直走査回路300は、全ラインの1/5を選択するため、全ラインの1/3を選択する場合よりも画像データのデータ量を少なくすることができる。
<3.第3の実施の形態>
上述の第1の実施の形態において固体撮像素子200は、通常読出しモードと1/3間引き読出しモードとの2つのモードのいずれかに切り替えて読出しを行っていた。しかし、さらに1/5間引き読出しモードを追加し、固体撮像素子200が、3つのモードのいずれかに切り替えて読出しを行ってもよい。この第3の実施の形態の固体撮像素子200は、通常読出しモード、1/3間引き読出しモードおよび1/5間引き読出しモードのいずれかに切り替えて読出しを行う点において第1の実施の形態と異なる。
上述の第1の実施の形態において固体撮像素子200は、通常読出しモードと1/3間引き読出しモードとの2つのモードのいずれかに切り替えて読出しを行っていた。しかし、さらに1/5間引き読出しモードを追加し、固体撮像素子200が、3つのモードのいずれかに切り替えて読出しを行ってもよい。この第3の実施の形態の固体撮像素子200は、通常読出しモード、1/3間引き読出しモードおよび1/5間引き読出しモードのいずれかに切り替えて読出しを行う点において第1の実施の形態と異なる。
図27は、第3の実施の形態におけるデコード信号の一例を示す図である。第3の実施の形態では、通常読出しモードの際にデータAがアドレスデータとして入力され、1/3間引き読出しモードの際にデータBが入力され、1/5間引き読出しモードの際にデータCが入力されるものとする。データAまたはBが入力された場合には、第1の実施の形態と同様のデコード信号が生成され、データCが入力された場合には、第2の実施の形態と同様のデコード信号が生成される。
図28は、第3の実施の形態における垂直走査回路300の間引き読出しモードの動作の一例を示すタイミングチャートである。タイミングT11までは、1/3間引き読出しモードに設定され、その後のタイミング21で1/5間引き読出しモードに切り替えられたものとする。このタイミングT21においてタイミング制御部360は、ラッチセット信号LT_Setを供給する。タイミングT21の前の垂直走査回路300の動作は、第1の実施の形態の1/3間引き読出しモードと同様である。タイミングT21以降の垂直走査回路300の動作は、第2の実施の形態の1/5間引き読出しモードと同様である。
このように、本技術の第3の実施の形態によれば、固体撮像素子200は、1/3間引き読出しモードと1/5間引き読出しモードとを切り替えることができるため、間引き読出しにおける画像データのデータ量をユーザの操作に従って変更することができる。
<4.第4の実施の形態>
上述の第1の実施の形態において垂直走査回路300は、ラインに垂直な方向(すなわち、列方向)において一定の間隔を空けて配置されたラインを読出しラインとして選択していたが、列方向において連続する複数のラインを読出しラインとして選択してもよい。このような間引き読出しは、窓読出しとも呼ばれる。この窓読出しは、解像度を低下させずに画像の一部を切り出す場合などに用いられる。この第4の実施の形態の垂直走査回路300は窓読出しを行う点において第1の実施の形態と異なる。
上述の第1の実施の形態において垂直走査回路300は、ラインに垂直な方向(すなわち、列方向)において一定の間隔を空けて配置されたラインを読出しラインとして選択していたが、列方向において連続する複数のラインを読出しラインとして選択してもよい。このような間引き読出しは、窓読出しとも呼ばれる。この窓読出しは、解像度を低下させずに画像の一部を切り出す場合などに用いられる。この第4の実施の形態の垂直走査回路300は窓読出しを行う点において第1の実施の形態と異なる。
図29は、第4の実施の形態におけるデコード信号の一例を示す図である。第4の実施の形態では、通常読出しモードの際にデータAがアドレスデータとして入力され、1/3間引き読出しモードの際にデータBが入力され、窓読出しを行う窓読み出しモードの際にデータDが入力されるものとする。
データDが入力された場合(窓読出しモード)に、アドレスデコーダ350は、列方向において連続する複数のラインのデコード信号に「1」(読出しライン)を設定し、残りに「0」(間引きライン)を設定して出力する。例えば、0番目、1番目および2番目のデコード信号DEC0、DEC1およびDEC2に「0」が設定される。また、3番目、4番目および5番目のデコード信号DEC3、DEC4およびDEC5に「1」が設定される。6番目以降のデコード信号には「0」が設定される。これらのデコード信号により、3番目乃至5番目のラインのみが読み出される。
図30は、第4の実施の形態における垂直走査回路300の窓読出しモードの動作の一例を示すタイミングチャートである。タイミングT11において通常読出しモードから窓読出しモードへと切り替えられたものとする。このタイミングT11においてタイミング制御部360は、ラッチセット信号LT_Setを生成する。垂直同期信号XVSに同期したタイミングT12においてタイミング生成部340は、リード転送信号RD_R3を生成する。そして、タイミングT12から水平同期信号の周期が経過したタイミングT13においてタイミング生成部340は、リード転送信号RD_R4を生成する。
タイミングT11から垂直同期信号XVSの周期が経過したタイミングT21においてタイミング制御部360は、4つの追加シャッター信号SH_Addを順に生成する。これにより、0番目乃至2番目などの間引きラインのそれぞれに4つの転送信号Txnが供給される。
このように、本技術の第4の実施の形態によれば、垂直走査回路300は、列方向において連続した複数のラインを読出しラインとして選択するため、解像度を低下させずに画像の一部を切り出すことができる。
なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。
また、上述の実施の形態において説明した処理手順は、これら一連の手順を有する方法として捉えてもよく、また、これら一連の手順をコンピュータに実行させるためのプログラム乃至そのプログラムを記憶する記録媒体として捉えてもよい。この記録媒体として、例えば、CD(Compact Disc)、MD(MiniDisc)、DVD(Digital Versatile Disc)、メモリカード、ブルーレイディスク(Blu-ray(登録商標)Disc)等を用いることができる。
なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
なお、本技術は以下のような構成もとることができる。
(1)フォトダイオードから電荷蓄積部への電荷の転送を指示する転送信号により導通状態に遷移して前記電荷を転送する転送トランジスタがそれぞれに設けられた複数の画素が二次元格子状に配列された画素アレイ部と、
前記画素アレイ部において所定の方向に沿って配列された前記画素からなる全てのラインから一部のラインを間引きラインとして間引いた残りのラインを読出しラインとして選択する選択部と、
前記読出しラインへの前記転送信号の供給により所定のタイミングから一定期間に亘って前記読出しラインの前記転送トランジスタを前記導通状態に制御する読出しライン転送信号供給部と、
前記読出しラインから前記電荷の量に応じた画素信号を読み出す読出し部と、
前記間引きラインの前記転送トランジスタにおける前記導通状態の累積時間と当該導通状態への遷移回数との少なくとも一方を前記間引きラインへの前記転送信号の供給により前記読出しラインと略同一に制御する間引きライン転送信号供給部と
を具備する固体撮像素子。
(2)前記間引きライン転送信号供給部は、前記読出しライン転送信号供給部が転送する個数と同じ個数の前記転送信号を前記間引きラインに供給する
前記(1)記載の固体撮像素子。
(3)前記間引きライン転送信号供給部は、前記読出しラインへ所定個数の前記転送信号が転送されるたびに当該所定個数の前記転送信号による前記導通状態の累積時間に略一致する期間に亘って前記転送信号を前記間引きラインに供給する
前記(1)記載の固体撮像素子。
(4)セット信号が入力された場合には特定の値の出力信号を出力し、リセット信号が入力された場合には前記特定の値と異なる値の出力信号を出力するラッチ回路と、
入力された2つの信号のいずれかを前記転送トランジスタに出力する論理和ゲートと
を前記ラインごとにさらに具備し、
前記読出しライン転送信号供給部は、前記読出しラインに対応する前記論理和ゲートに当該読出しラインへの前記転送信号を入力するとともに前記転送信号を前記読出しラインに対応する前記リセット信号として前記ラッチ回路に入力し、
前記間引きライン転送信号供給部は、前記間引きラインに対応する前記ラッチ回路の出力信号と所定の追加シャッター信号との論理積の信号を前記間引きラインへの前記転送信号として生成して当該間引きラインに対応する前記論理和ゲートに入力する
前記(1)から(3)のいずれかに記載の固体撮像素子。
(5) 前記選択部は、所定のモード信号に従って前記複数のラインのうち前記読出しラインとして選択するラインの位置および個数を切り替え、
前記ラッチ回路には、前記モード信号により前記読出しラインの位置および個数が切り替えられるたびに前記セット信号が入力される
前記(4)記載の固体撮像素子。
(6)前記選択部は、前記複数のラインのうち前記所定方向に垂直な方向において一定間隔で配置されたラインのそれぞれを前記読出しラインとして選択する
前記(1)から(5)のいずれかに記載の固体撮像素子。
(7)前記選択部は、前記複数のラインのうち前記所定方向に垂直な方向において互いに隣接するラインを前記読出しラインとして選択する
前記(1)から(6)のいずれかに記載の固体撮像素子。
(8)前記読出しライン転送信号供給部は、前記読出しラインの前記画素のうち一部の画素と残りの画素とのそれぞれに互いに異なるタイミングで前記転送信号を供給し、
前記間引きライン転送信号供給部は、前記間引きラインの前記画素のうち一部の画素と残りの画素とのそれぞれに互いに異なるタイミングで前記転送信号を供給する
前記(1)から(9)のいずれかに記載の固体撮像素子。
(9)前記複数の画素のうち前記所定の方向に垂直な方向において隣接する一対の画素は、前記電荷蓄積部を共有し、
前記間引きライン転送信号供給部は、前記読出しラインのいずれにも前記転送信号が供給されていない期間において前記間引きラインへ前記転送信号を供給する
前記(1)から(8)のいずれかに記載の固体撮像素子。
(10)フォトダイオードから電荷蓄積部への電荷の転送を指示する転送信号により導通状態に遷移して前記電荷を転送する転送トランジスタがそれぞれに設けられた複数の画素が二次元格子状に配列された画素アレイ部と、
前記画素アレイ部において所定の方向に沿って配列された前記画素からなる全てのラインから一部のラインを間引きラインとして間引いた残りのラインを読出しラインとして選択する選択部と、
前記読出しラインへの前記転送信号の供給により所定のタイミングから一定期間に亘って前記読出しラインの前記転送トランジスタを前記導通状態に制御する読出しライン転送信号供給部と、
前記読出しラインから前記電荷の量に応じた画素信号を読み出す読出し部と、
前記間引きラインの前記転送トランジスタにおける前記導通状態の累積時間と当該導通状態への遷移回数との少なくとも一方を前記間引きラインへの前記転送信号の供給により前記読出しラインと略同一に制御する間引きライン転送信号供給部と、
前記読み出された画素信号を処理する処理部と
を具備する電子機器。
(11)フォトダイオードから電荷蓄積部への電荷の転送を指示する転送信号により導通状態に遷移して前記電荷を転送する転送トランジスタがそれぞれに設けられた複数の画素が二次元格子状に配列された画素アレイ部において所定の方向に沿って配列された前記画素からなる全てのラインから一部のラインを間引きラインとして間引いた残りのラインを読出しラインとして選択する選択手順と、
前記読出しラインへの前記転送信号の供給により所定のタイミングから一定期間に亘って前記読出しラインの前記転送トランジスタを前記導通状態に制御する読出しライン転送信号供給手順と、
前記読出しラインから前記電荷の量に応じた画素信号を読み出す読出し手順と、
前記間引きラインの前記転送トランジスタにおける前記導通状態の累積時間と当該導通状態への遷移回数との少なくとも一方を前記間引きラインへの前記転送信号の供給により前記読出しラインと略同一に制御する間引きライン転送信号供給手順と
を具備する固体撮像素子の制御方法。
(1)フォトダイオードから電荷蓄積部への電荷の転送を指示する転送信号により導通状態に遷移して前記電荷を転送する転送トランジスタがそれぞれに設けられた複数の画素が二次元格子状に配列された画素アレイ部と、
前記画素アレイ部において所定の方向に沿って配列された前記画素からなる全てのラインから一部のラインを間引きラインとして間引いた残りのラインを読出しラインとして選択する選択部と、
前記読出しラインへの前記転送信号の供給により所定のタイミングから一定期間に亘って前記読出しラインの前記転送トランジスタを前記導通状態に制御する読出しライン転送信号供給部と、
前記読出しラインから前記電荷の量に応じた画素信号を読み出す読出し部と、
前記間引きラインの前記転送トランジスタにおける前記導通状態の累積時間と当該導通状態への遷移回数との少なくとも一方を前記間引きラインへの前記転送信号の供給により前記読出しラインと略同一に制御する間引きライン転送信号供給部と
を具備する固体撮像素子。
(2)前記間引きライン転送信号供給部は、前記読出しライン転送信号供給部が転送する個数と同じ個数の前記転送信号を前記間引きラインに供給する
前記(1)記載の固体撮像素子。
(3)前記間引きライン転送信号供給部は、前記読出しラインへ所定個数の前記転送信号が転送されるたびに当該所定個数の前記転送信号による前記導通状態の累積時間に略一致する期間に亘って前記転送信号を前記間引きラインに供給する
前記(1)記載の固体撮像素子。
(4)セット信号が入力された場合には特定の値の出力信号を出力し、リセット信号が入力された場合には前記特定の値と異なる値の出力信号を出力するラッチ回路と、
入力された2つの信号のいずれかを前記転送トランジスタに出力する論理和ゲートと
を前記ラインごとにさらに具備し、
前記読出しライン転送信号供給部は、前記読出しラインに対応する前記論理和ゲートに当該読出しラインへの前記転送信号を入力するとともに前記転送信号を前記読出しラインに対応する前記リセット信号として前記ラッチ回路に入力し、
前記間引きライン転送信号供給部は、前記間引きラインに対応する前記ラッチ回路の出力信号と所定の追加シャッター信号との論理積の信号を前記間引きラインへの前記転送信号として生成して当該間引きラインに対応する前記論理和ゲートに入力する
前記(1)から(3)のいずれかに記載の固体撮像素子。
(5) 前記選択部は、所定のモード信号に従って前記複数のラインのうち前記読出しラインとして選択するラインの位置および個数を切り替え、
前記ラッチ回路には、前記モード信号により前記読出しラインの位置および個数が切り替えられるたびに前記セット信号が入力される
前記(4)記載の固体撮像素子。
(6)前記選択部は、前記複数のラインのうち前記所定方向に垂直な方向において一定間隔で配置されたラインのそれぞれを前記読出しラインとして選択する
前記(1)から(5)のいずれかに記載の固体撮像素子。
(7)前記選択部は、前記複数のラインのうち前記所定方向に垂直な方向において互いに隣接するラインを前記読出しラインとして選択する
前記(1)から(6)のいずれかに記載の固体撮像素子。
(8)前記読出しライン転送信号供給部は、前記読出しラインの前記画素のうち一部の画素と残りの画素とのそれぞれに互いに異なるタイミングで前記転送信号を供給し、
前記間引きライン転送信号供給部は、前記間引きラインの前記画素のうち一部の画素と残りの画素とのそれぞれに互いに異なるタイミングで前記転送信号を供給する
前記(1)から(9)のいずれかに記載の固体撮像素子。
(9)前記複数の画素のうち前記所定の方向に垂直な方向において隣接する一対の画素は、前記電荷蓄積部を共有し、
前記間引きライン転送信号供給部は、前記読出しラインのいずれにも前記転送信号が供給されていない期間において前記間引きラインへ前記転送信号を供給する
前記(1)から(8)のいずれかに記載の固体撮像素子。
(10)フォトダイオードから電荷蓄積部への電荷の転送を指示する転送信号により導通状態に遷移して前記電荷を転送する転送トランジスタがそれぞれに設けられた複数の画素が二次元格子状に配列された画素アレイ部と、
前記画素アレイ部において所定の方向に沿って配列された前記画素からなる全てのラインから一部のラインを間引きラインとして間引いた残りのラインを読出しラインとして選択する選択部と、
前記読出しラインへの前記転送信号の供給により所定のタイミングから一定期間に亘って前記読出しラインの前記転送トランジスタを前記導通状態に制御する読出しライン転送信号供給部と、
前記読出しラインから前記電荷の量に応じた画素信号を読み出す読出し部と、
前記間引きラインの前記転送トランジスタにおける前記導通状態の累積時間と当該導通状態への遷移回数との少なくとも一方を前記間引きラインへの前記転送信号の供給により前記読出しラインと略同一に制御する間引きライン転送信号供給部と、
前記読み出された画素信号を処理する処理部と
を具備する電子機器。
(11)フォトダイオードから電荷蓄積部への電荷の転送を指示する転送信号により導通状態に遷移して前記電荷を転送する転送トランジスタがそれぞれに設けられた複数の画素が二次元格子状に配列された画素アレイ部において所定の方向に沿って配列された前記画素からなる全てのラインから一部のラインを間引きラインとして間引いた残りのラインを読出しラインとして選択する選択手順と、
前記読出しラインへの前記転送信号の供給により所定のタイミングから一定期間に亘って前記読出しラインの前記転送トランジスタを前記導通状態に制御する読出しライン転送信号供給手順と、
前記読出しラインから前記電荷の量に応じた画素信号を読み出す読出し手順と、
前記間引きラインの前記転送トランジスタにおける前記導通状態の累積時間と当該導通状態への遷移回数との少なくとも一方を前記間引きラインへの前記転送信号の供給により前記読出しラインと略同一に制御する間引きライン転送信号供給手順と
を具備する固体撮像素子の制御方法。
100 撮像装置
110 撮像レンズ
120 画像処理部
130 記録部
140 制御部
150 表示部
200 固体撮像素子
210 画素アレイ部
220、230、240、250 画素
221、231 転送トランジスタ
222、232フォトダイオード
233 リセットトランジスタ
234 浮遊拡散層
235 増幅トランジスタ
236 選択トランジスタ
260 カラムCDS部
261 CDS回路
270 タイミング信号発生回路
280 出力回路
290 水平走査回路
300 垂直走査回路
310 転送信号生成部
320 転送信号生成回路
321、324 OR(論理和)ゲート
322 AND(論理積)ゲート
323 ラッチ回路
330 レベルシフタ
340 タイミング生成部
341、343 リード転送信号生成回路
342、344 シャッター転送信号生成回路
345 リセット信号生成回路
346 選択信号生成回路
350 アドレスデコーダ
360 タイミング制御部
110 撮像レンズ
120 画像処理部
130 記録部
140 制御部
150 表示部
200 固体撮像素子
210 画素アレイ部
220、230、240、250 画素
221、231 転送トランジスタ
222、232フォトダイオード
233 リセットトランジスタ
234 浮遊拡散層
235 増幅トランジスタ
236 選択トランジスタ
260 カラムCDS部
261 CDS回路
270 タイミング信号発生回路
280 出力回路
290 水平走査回路
300 垂直走査回路
310 転送信号生成部
320 転送信号生成回路
321、324 OR(論理和)ゲート
322 AND(論理積)ゲート
323 ラッチ回路
330 レベルシフタ
340 タイミング生成部
341、343 リード転送信号生成回路
342、344 シャッター転送信号生成回路
345 リセット信号生成回路
346 選択信号生成回路
350 アドレスデコーダ
360 タイミング制御部
Claims (11)
- フォトダイオードから電荷蓄積部への電荷の転送を指示する転送信号により導通状態に遷移して前記電荷を転送する転送トランジスタがそれぞれに設けられた複数の画素が二次元格子状に配列された画素アレイ部と、
前記画素アレイ部において所定の方向に沿って配列された前記画素からなる全てのラインから一部のラインを間引きラインとして間引いた残りのラインを読出しラインとして選択する選択部と、
前記読出しラインへの前記転送信号の供給により所定のタイミングから一定期間に亘って前記読出しラインの前記転送トランジスタを前記導通状態に制御する読出しライン転送信号供給部と、
前記読出しラインから前記電荷の量に応じた画素信号を読み出す読出し部と、
前記間引きラインの前記転送トランジスタにおける前記導通状態の累積時間と当該導通状態への遷移回数との少なくとも一方を前記間引きラインへの前記転送信号の供給により前記読出しラインと略同一に制御する間引きライン転送信号供給部と
を具備する固体撮像素子。 - 前記間引きライン転送信号供給部は、前記読出しライン転送信号供給部が転送する個数と同じ個数の前記転送信号を前記間引きラインに供給する
請求項1記載の固体撮像素子。 - 前記間引きライン転送信号供給部は、前記読出しラインへ所定個数の前記転送信号が転送されるたびに当該所定個数の前記転送信号による前記導通状態の累積時間に略一致する期間に亘って前記転送信号を前記間引きラインに供給する
請求項1記載の固体撮像素子。 - セット信号が入力された場合には特定の値の出力信号を出力し、リセット信号が入力された場合には前記特定の値と異なる値の出力信号を出力するラッチ回路と、
入力された2つの信号のいずれかを前記転送トランジスタに出力する論理和ゲートと
を前記ラインごとにさらに具備し、
前記読出しライン転送信号供給部は、前記読出しラインに対応する前記論理和ゲートに当該読出しラインへの前記転送信号を入力するとともに前記転送信号を前記読出しラインに対応する前記リセット信号として前記ラッチ回路に入力し、
前記間引きライン転送信号供給部は、前記間引きラインに対応する前記ラッチ回路の出力信号と所定の追加シャッター信号との論理積の信号を前記間引きラインへの前記転送信号として生成して当該間引きラインに対応する前記論理和ゲートに入力する
請求項1記載の固体撮像素子。 - 前記選択部は、所定のモード信号に従って前記複数のラインのうち前記読出しラインとして選択するラインの位置および個数を切り替え、
前記ラッチ回路には、前記モード信号により前記読出しラインの位置および個数が切り替えられるたびに前記セット信号が入力される
請求項4記載の固体撮像素子。 - 前記選択部は、前記複数のラインのうち前記所定方向に垂直な方向において一定間隔で配置されたラインのそれぞれを前記読出しラインとして選択する
請求項1記載の固体撮像素子。 - 前記選択部は、前記複数のラインのうち前記所定方向に垂直な方向において互いに隣接するラインを前記読出しラインとして選択する
請求項1記載の固体撮像素子。 - 前記読出しライン転送信号供給部は、前記読出しラインの前記画素のうち一部の画素と残りの画素とのそれぞれに互いに異なるタイミングで前記転送信号を供給し、
前記間引きライン転送信号供給部は、前記間引きラインの前記画素のうち一部の画素と残りの画素とのそれぞれに互いに異なるタイミングで前記転送信号を供給する
請求項1記載の固体撮像素子。 - 前記複数の画素のうち前記所定の方向に垂直な方向において隣接する一対の画素は、前記電荷蓄積部を共有し、
前記間引きライン転送信号供給部は、前記読出しラインのいずれにも前記転送信号が供給されていない期間において前記間引きラインへ前記転送信号を供給する
請求項1記載の固体撮像素子。 - フォトダイオードから電荷蓄積部への電荷の転送を指示する転送信号により導通状態に遷移して前記電荷を転送する転送トランジスタがそれぞれに設けられた複数の画素が二次元格子状に配列された画素アレイ部と、
前記画素アレイ部において所定の方向に沿って配列された前記画素からなる全てのラインから一部のラインを間引きラインとして間引いた残りのラインを読出しラインとして選択する選択部と、
前記読出しラインへの前記転送信号の供給により所定のタイミングから一定期間に亘って前記読出しラインの前記転送トランジスタを前記導通状態に制御する読出しライン転送信号供給部と、
前記読出しラインから前記電荷の量に応じた画素信号を読み出す読出し部と、
前記間引きラインの前記転送トランジスタにおける前記導通状態の累積時間と当該導通状態への遷移回数との少なくとも一方を前記間引きラインへの前記転送信号の供給により前記読出しラインと略同一に制御する間引きライン転送信号供給部と、
前記読み出された画素信号を処理する処理部と
を具備する電子機器。 - フォトダイオードから電荷蓄積部への電荷の転送を指示する転送信号により導通状態に遷移して前記電荷を転送する転送トランジスタがそれぞれに設けられた複数の画素が二次元格子状に配列された画素アレイ部において所定の方向に沿って配列された前記画素からなる全てのラインから一部のラインを間引きラインとして間引いた残りのラインを読出しラインとして選択する選択手順と、
前記読出しラインへの前記転送信号の供給により所定のタイミングから一定期間に亘って前記読出しラインの前記転送トランジスタを前記導通状態に制御する読出しライン転送信号供給手順と、
前記読出しラインから前記電荷の量に応じた画素信号を読み出す読出し手順と、
前記間引きラインの前記転送トランジスタにおける前記導通状態の累積時間と当該導通状態への遷移回数との少なくとも一方を前記間引きラインへの前記転送信号の供給により前記読出しラインと略同一に制御する間引きライン転送信号供給手順と
を具備する固体撮像素子の制御方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015081509 | 2015-04-13 | ||
JP2015-081509 | 2015-04-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016167021A1 true WO2016167021A1 (ja) | 2016-10-20 |
Family
ID=57125755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/054987 WO2016167021A1 (ja) | 2015-04-13 | 2016-02-22 | 固体撮像素子、電子機器および固体撮像素子の制御方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016167021A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021192459A1 (ja) * | 2020-03-23 | 2021-09-30 | ソニーセミコンダクタソリューションズ株式会社 | 撮像装置 |
CN113572969A (zh) * | 2020-04-29 | 2021-10-29 | 浙江大华技术股份有限公司 | 频闪补光方法、计算机设备、图像采集装置及存储介质 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003079675A1 (fr) * | 2002-03-20 | 2003-09-25 | Sony Corporation | Dispositif capteur d'image a semiconducteurs et son procede d'attaque |
JP2008172607A (ja) * | 2007-01-12 | 2008-07-24 | Sony Corp | 固体撮像装置、撮像装置 |
-
2016
- 2016-02-22 WO PCT/JP2016/054987 patent/WO2016167021A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003079675A1 (fr) * | 2002-03-20 | 2003-09-25 | Sony Corporation | Dispositif capteur d'image a semiconducteurs et son procede d'attaque |
JP2008172607A (ja) * | 2007-01-12 | 2008-07-24 | Sony Corp | 固体撮像装置、撮像装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021192459A1 (ja) * | 2020-03-23 | 2021-09-30 | ソニーセミコンダクタソリューションズ株式会社 | 撮像装置 |
CN113572969A (zh) * | 2020-04-29 | 2021-10-29 | 浙江大华技术股份有限公司 | 频闪补光方法、计算机设备、图像采集装置及存储介质 |
CN113572969B (zh) * | 2020-04-29 | 2023-04-07 | 浙江大华技术股份有限公司 | 频闪补光方法、计算机设备、图像采集装置及存储介质 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4500862B2 (ja) | 固体撮像装置の駆動方法 | |
JP4587184B2 (ja) | 固体撮像装置及び固体撮像装置の駆動方法 | |
JP5224925B2 (ja) | 撮像装置 | |
EP2375729B1 (en) | Solid-state image pickup device and method of driving the same | |
JP2008219423A (ja) | 撮像装置及び撮像システム | |
JP2010103708A (ja) | 撮像センサ及び撮像装置 | |
US8610809B2 (en) | Solid-state imaging device and camera system that controls a unit of plural rows | |
JP6445866B2 (ja) | 撮像装置、撮像システム、および撮像装置の駆動方法 | |
JP2017103571A (ja) | 撮像装置の駆動方法、撮像装置、撮像システム | |
JP4490491B2 (ja) | 固体撮像装置、撮像システム及び固体撮像装置の駆動方法 | |
JP4693863B2 (ja) | 固体撮像装置及び固体撮像装置の駆動方法 | |
JP2012049912A (ja) | 光電変換装置および撮像システム | |
US20150288903A1 (en) | Solid-state image sensor, image capturing apparatus and control method thereof, and storage medium | |
JP6164049B2 (ja) | 駆動装置、駆動方法及び電子機器 | |
JP2009246729A (ja) | 固体撮像装置及び固体撮像装置の駆動方法 | |
JP4692196B2 (ja) | 固体撮像装置、固体撮像装置の駆動方法および撮像装置 | |
WO2016167021A1 (ja) | 固体撮像素子、電子機器および固体撮像素子の制御方法 | |
JP5530284B2 (ja) | 固体撮像装置及び撮像装置 | |
KR20140107212A (ko) | 고체 촬상 소자 및 그 구동 방법, 카메라 시스템 | |
JP2015173389A (ja) | 撮像素子、その制御方法、および制御プログラム | |
JP2010068414A (ja) | 撮像装置 | |
JP2014057367A (ja) | 固体撮像素子およびカメラシステム | |
JP6393087B2 (ja) | 撮像素子及び撮像装置 | |
JP2009081760A (ja) | 固体撮像装置、その駆動方法及びカメラ | |
JP2015167283A (ja) | 撮像装置、固体撮像素子及び固体撮像素子の駆動方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16779813 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16779813 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |