[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016152772A1 - 半導体発光素子及びその製造方法 - Google Patents

半導体発光素子及びその製造方法 Download PDF

Info

Publication number
WO2016152772A1
WO2016152772A1 PCT/JP2016/058676 JP2016058676W WO2016152772A1 WO 2016152772 A1 WO2016152772 A1 WO 2016152772A1 JP 2016058676 W JP2016058676 W JP 2016058676W WO 2016152772 A1 WO2016152772 A1 WO 2016152772A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
sub
base
base layer
light emitting
Prior art date
Application number
PCT/JP2016/058676
Other languages
English (en)
French (fr)
Inventor
博行 十川
正和 杉山
Original Assignee
スタンレー電気株式会社
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スタンレー電気株式会社, 国立大学法人東京大学 filed Critical スタンレー電気株式会社
Priority to EP16768675.7A priority Critical patent/EP3276676B1/en
Priority to US15/561,028 priority patent/US10193021B2/en
Publication of WO2016152772A1 publication Critical patent/WO2016152772A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure

Definitions

  • the present invention relates to a semiconductor light emitting device such as a light emitting diode (LED) and a method for manufacturing the same.
  • LED light emitting diode
  • a semiconductor structure layer composed of an n-type semiconductor layer, an active layer, and a p-type semiconductor layer is usually grown on a growth substrate, and a voltage is applied to the n-type semiconductor layer and the p-type semiconductor layer, respectively.
  • An electrode and a p-electrode are formed.
  • Patent Document 1 discloses a white light emitting diode in which red, green and blue light emitting diodes are stacked in this order so that they emit light in the same direction.
  • Patent Document 2 discloses a GaN-based semiconductor light-emitting element that includes an AlN uneven layer disposed between an n-type layer and an active layer, and in which the active layer is formed uneven according to the shape of the AlN uneven layer. Yes.
  • the semiconductor light emitting device emits light when electrons and holes injected from the electrode into the device are combined (recombined) in the active layer.
  • the wavelength of light emitted from the active layer (that is, the emission color) is determined by the band gap of the semiconductor material constituting the active layer. For example, in the case of a light emitting element using a nitride-based semiconductor, blue light is emitted from the active layer.
  • color rendering properties may be required for the light source, for example, for lighting purposes.
  • a light source having a high color rendering property is a light source that emits light close to natural light. In order to obtain high color rendering properties, it is preferable that light having a wavelength in almost the entire visible range is extracted from the light source. For example, light extracted from a light source having high color rendering properties is observed as white light.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a semiconductor light emitting device having a high color rendering property and a high light emission intensity having a wide emission wavelength band (spectrum width) and a method for manufacturing the same. .
  • a semiconductor light emitting device includes a first semiconductor layer having a first conductivity type, a light emitting functional layer including a light emitting layer formed on the first semiconductor layer, a light emitting functional layer, A semiconductor light emitting device having a second semiconductor layer having a conductivity type opposite to that of the first semiconductor layer, wherein the light emitting layer has a composition that receives stress strain from the first semiconductor layer and has a random network shape.
  • a base layer having a plurality of base segments formed on the base layer, and a quantum well structure layer including at least one quantum well layer and at least one barrier layer formed on the base layer.
  • the method of manufacturing a semiconductor light emitting device includes a step of forming a first semiconductor layer having a first conductivity type on a substrate, and stress strain from the first semiconductor on the first semiconductor layer.
  • a step of forming a first sub-base layer having a groove formed in a random network having a composition to be received, a step of forming a trench for removing the groove, and embedding the first sub-base layer A step of forming a second sub-base layer; a step of forming a quantum well structure layer comprising at least one quantum well structure layer and at least one barrier layer on the second sub-base layer; and a quantum well structure layer
  • a step of forming a second semiconductor layer having a second conductivity type opposite to the first conductivity type is a step of forming a first semiconductor layer having a first conductivity type on a substrate, and stress strain from the first semiconductor on the first semiconductor layer.
  • FIG. 6 is a cross-sectional view showing a structure of a semiconductor light emitting element according to a modification of Example 1.
  • FIG. 6 is a cross-sectional view showing a structure of a semiconductor light emitting device according to Example 2.
  • FIG. 6 is a graph showing an emission spectrum of a semiconductor light emitting device according to Example 2.
  • FIG. 6 is a cross-sectional view showing a structure of a semiconductor light emitting element according to a modification of Example 2.
  • FIG. 1A is a cross-sectional view showing the structure of the semiconductor light emitting device 10 of the first embodiment (hereinafter sometimes simply referred to as a light emitting device or an element).
  • the semiconductor light emitting device 10 has a structure in which a semiconductor structure layer SS is formed on a mounting substrate (hereinafter sometimes simply referred to as a substrate) 11.
  • the semiconductor structure layer SS includes an n-type semiconductor layer (first semiconductor layer) 12 formed on the mounting substrate 11, a light-emitting functional layer 13 including a light-emitting layer formed on the n-type semiconductor layer 12, and a light-emitting functional layer 13.
  • An electron block layer 14 formed thereon, and a p-type semiconductor layer (second semiconductor layer, semiconductor layer having a conductivity type opposite to that of the first semiconductor layer 12) 15 formed on the electron block layer 14. .
  • the mounting substrate 11 is a growth substrate used for growing the semiconductor structure layer SS, and is made of, for example, sapphire, Si, or GaN.
  • the semiconductor structure layer SS is made of a nitride semiconductor.
  • the semiconductor light-emitting element 10 uses the C-plane of the sapphire substrate as a crystal growth surface, and grows the semiconductor structure layer SS on the sapphire substrate by using metal-organic-chemical-vapor-deposition (MOCVD) method. Can be produced.
  • MOCVD metal-organic-chemical-vapor-deposition
  • the light emitting element 10 has an n electrode and a p electrode for applying a voltage to the n type semiconductor layer 12 and the p type semiconductor layer 15, respectively.
  • the light emitting element 10 has a structure in which the semiconductor structure layer SS is formed on the growth substrate as the mounting substrate 11
  • the mounting substrate 11 is a growth substrate.
  • the semiconductor light emitting device 10 has a structure in which a semiconductor structure layer SS is grown on a growth substrate, the semiconductor structure layer SS is bonded to another substrate (support substrate), and the growth substrate is removed. Also good. In this case, the other bonded substrate is provided on the p-type semiconductor layer 15.
  • the bonding substrate for example, a material with high heat dissipation such as Si, AlN, Mo, W, or CuW can be used.
  • a buffer layer (underlayer) may be provided between the mounting substrate 11 and the n-type semiconductor layer 12.
  • an n-type semiconductor layer 12 was laminated.
  • the n-type semiconductor layer 12 is made of, for example, a GaN layer containing an n-type dopant (for example, Si).
  • the electron block layer 14 is made of, for example, an AlGaN layer.
  • the p-type semiconductor layer 15 is made of, for example, a GaN layer containing a p-type dopant (for example, Mg).
  • the electron block layer 14 may contain a p-type dopant.
  • the p-type semiconductor layer 15 may have a contact layer on the main surface opposite to the interface with the electron block layer 14.
  • the light emitting functional layer 13 may have a plurality of light emitting layers, in this embodiment, the case where the light emitting functional layer 13 is composed of one light emitting layer will be described.
  • the light emitting layer 13 is formed on the n-type semiconductor layer 12 and has a quantum well (QW) structure.
  • the light emitting layer 13 has a base layer BL having a composition (crystal composition) different from that of the n-type semiconductor layer 12.
  • the base layer BL has a groove GR formed in a random mesh shape under stress from the n-type semiconductor layer 12. That is, the groove GR is formed in a mesh shape in which a plurality of groove portions generated by stress strain generated in the base layer BL due to different compositions between the n-type semiconductor layer 12 and the base layer BL are combined.
  • the stress strain generated in the base layer BL means that the crystal structure of the base layer BL is distorted due to a difference in lattice constant between the n-type semiconductor layer 12 and the base layer BL.
  • the light emitting layer 13 has a quantum well structure layer QW formed of a quantum well layer WA and a barrier layer BA formed on the base layer BL.
  • the quantum well layer WA is formed on the base layer BL
  • the barrier layer BA is formed on the quantum well layer WA.
  • the base layer BL functions as a barrier layer with respect to the quantum well layer WA.
  • FIG. 1B is a diagram schematically showing the upper surface of the base layer BL.
  • the base layer BL has a large number of fine base segments BS which are defined by the grooves GR and are formed at random sizes.
  • Each of the base segments BS has a composition in which the base layer is subjected to stress strain by the n-type semiconductor layer 12, so that the base segment BS is partitioned into a random network.
  • the groove GR is composed of groove portions having different lengths and shapes at random from each other.
  • the groove GR is formed to be stretched in a mesh shape (mesh shape) on the surface of the base layer BL.
  • Each of the base segments BS is a portion (segment) that is randomly partitioned in the base layer BL by the groove GR.
  • Each base segment BS has various top shapes such as a substantially circular shape, a substantially elliptical shape, and a polygonal shape.
  • the groove GR has, for example, a V shape, and has a line-shaped bottom portion BP.
  • each of the base segments BS has the bottom BP in the groove GR as its end.
  • Each base segment BS is adjacent to another base segment BS at the bottom BP.
  • the base layer BL has a flat portion FL corresponding to each of the base segments BS.
  • the surface of the base layer BL is constituted by the flat portion FL and the inner wall surface of the groove GR.
  • Each of the flat portions FL is partitioned for each base segment BS by the groove GR.
  • the base segment BS has an upper surface made of the flat portion FL and a side surface made of the inner wall surface of the groove GR.
  • each base segment BS has an inclined side surface, and has, for example, a substantially trapezoidal shape in its cross section.
  • the base layer BL includes a first sub-base layer BL1, a trench TR that partitions the first sub-base layer BL1 for each base segment BS, and the first sub-base layer BL1. And a second sub-base layer BL2 formed by embedding.
  • the trench TR formed in the first sub-base layer BL1 is formed with a depth extending from the surface of the first sub-base layer BL1 into the n-type semiconductor layer 12. That is, the bottom of the trench TR is formed in the n-type semiconductor layer 12.
  • the first sub base layer BL1 is partitioned for each base segment BS by the trench TR.
  • the second sub-base layer BL2 is formed on the surface of the first sub-base layer BL1 and the inner surface of the trench TR. Further, a flat portion FL and a groove GR are formed on the surface of the second sub base layer BL2. That is, the surface of the second sub-base layer BL2 is formed as the surface of the base layer BL.
  • the light emitting layer 13 has a quantum well layer WA formed on the base layer BL.
  • the quantum well layer WA is formed by filling the trench GR.
  • the quantum well layer WA is formed on the second sub-base layer BL2.
  • the upper surface of the quantum well layer WA is formed as a flat surface (hereinafter referred to as a first flat surface) FS1.
  • the quantum well layer WA has an uneven shape corresponding to the groove GR at the interface (lower surface) with the base layer BL, and has a flat shape at the upper surface.
  • the quantum well layer WA has a first flat surface FS1 that is flattened by embedding the base layer BL.
  • the quantum well layer WA is formed as a strained quantum well layer.
  • the light emitting layer 13 has a barrier layer BA formed on the quantum well layer WA.
  • the barrier layer BA is formed such that both main surfaces are flat surfaces.
  • the barrier layer BA is formed on the first flat surface FS1 of the quantum well layer WA, and the upper surface is formed as a flat surface (hereinafter referred to as a second flat surface) FS2.
  • FIG. 2A and 2B are cross-sectional views showing the structure of the light emitting layer 13.
  • FIG. 2A is a partial enlarged cross-sectional view showing an enlarged portion surrounded by a broken line in FIG.
  • the light emitting layer 13 will be described in more detail with reference to FIG.
  • the base layer BL of the light emitting layer 13 is formed on the first sub-base layer BL1 having a composition of Al x Ga 1-x N (0 ⁇ x ⁇ 1) and the first sub-base layer BL1, and Al y
  • a second sub-base layer BL2 having a composition of Ga 1-y N (0 ⁇ y ⁇ 1) is included.
  • the quantum well layer WA has an InGaN composition.
  • the barrier layer BA has a GaN composition.
  • the electron block layer 14 has a composition of AlGaN.
  • the second sub-base layer BL2 has an Al composition y higher than that of the first sub-base layer BL1. That is, the Al composition y of the second sub-base layer BL2 is not less than the Al composition x of the first sub-base layer BL1. In this embodiment, the Al composition y is larger than the Al composition x, and 0 ⁇ x ⁇ y ⁇ 1.
  • the second sub base layer BL2 is formed by embedding the first sub base layer BL1. More specifically, the shape of the trench TR formed in the first base layer BL1 is inherited by the second sub-base layer BL2 (having the groove GR in the region on the trench TR). However, the depth of the groove GR is smaller than the depth of the trench TR. Therefore, as shown in FIG. 2B, the layer thickness of the second sub-base layer BL2 differs between the flat portion FL (layer thickness T1) and the groove GR portion (layer thickness T2). Specifically, the second sub-base layer BL2 has a layer thickness T2 larger than the flat portion FL (outside the trench TR) in the trench GR portion (inside the trench TR). Further, the angle of the side wall (groove GR) of the second sub base layer BL2 is an obtuse angle than the angle of the side wall (trench TR) of the first sub base layer BL1.
  • the electric resistance value is non-uniform in the base layer BL.
  • the region in trench TR has a larger electrical resistance value than the region outside trench TR. Therefore, as shown in FIG. 2B, the base layer BL corresponds to a region in the trench TR, and is formed in a high resistance region HA having a high electric resistance value and a region on the flat portion FL (outside the trench TR). And a low resistance region LA having a low electrical resistance value.
  • the base segment BS in the base layer BL can be formed by growing the AlGaN layers BL1 and BL2 as the base layer BL on the GaN layer as the n-type semiconductor layer 12 at a relatively low growth temperature.
  • the base layer BL has a lattice constant smaller than that of the n-type semiconductor layer 12.
  • the AlGaN layer grows three-dimensionally. That is, the AlGaN layer grows three-dimensionally and a plurality of fine irregularities (base segments BS) are formed.
  • the quantum well layer WA is formed as a strained quantum well layer. Further, a distribution occurs in the In content in the quantum well layer WA. That is, in the quantum well layer WA, for example, the region on the flat portion FL and the region on the trench GR are formed so as to have different In compositions.
  • the layer thickness of the quantum well layer WA differs between the upper surface and the side surface of the base segment BS. Therefore, the band gap is not constant in the quantum well layer WA. In this way, light of various colors is emitted from the light emitting layer 13 having fine island-shaped irregularities.
  • the inventors have noted that when the base layer BL does not have the trench TR, many carriers perform non-radiative recombination in the region between the base segments BS, that is, in the region of the groove GR. Specifically, when the base layer BL does not have the trench TR, the current is concentrated in the region of the trench GR that is a region having a lower resistance than the flat portion FL in the base layer BL. Then flow. Further, the region of the groove GR is a portion having lower crystallinity than the flat portion FL, and the current (carrier) flowing through the region of the groove GR is highly likely not to contribute to light emission.
  • the base layer BL has two sub-base layers BL1 and BL2.
  • the first base layer BL1 has a trench TR formed so as to remove a relatively low crystallinity region corresponding to the groove GR.
  • a second sub-base layer BL2 is formed by embedding the first base layer BL1 (so as to cover the whole). Accordingly, it is possible to suppress a decrease in luminous efficiency due to a current flowing in a region having low crystallinity.
  • the quantum well layer WA is formed on the second sub-base layer BL2, the emission wavelength can be broadened. That is, the light emitting layer 13 emits light having a wide spectral band of emission wavelength and excellent emission intensity. Therefore, the light emitting element 10 has high color rendering properties and high light emission intensity.
  • the inside of the trench TR becomes the high resistance region HA, and the trench Outside the TR is the low resistance region LA. Therefore, a large amount of current flows in the region outside the trench TR having a relatively high crystallinity (region on the flat portion FL). This further improves the luminous efficiency.
  • the thickness of the quantum well layer WA is almost constant on the flat portion FL, but the degree of stress received by the base layer BL is not constant. That is, the degree of distortion is not uniform even in the region on the flat portion FL. Accordingly, the band gap fluctuates not only in the region of the trench GR but also in the whole of the quantum well layer WA. Therefore, it is possible to improve both the luminous efficiency and broaden the emission wavelength.
  • the amount of In taken in the base layer BL increases, and the emission wavelength shifts to the longer wavelength side. Furthermore, by forming an InGaN layer on the second sub-base layer BL2 having a high Al composition y, an InGaN layer having a high In composition can be formed. Thereby, the band gap in the InGaN layer, that is, the energy between the quantum levels is reduced. From the quantum well layer WA, light having a longer emission wavelength is emitted.
  • the size of the base segment BS is preferably small in consideration of the color rendering properties, that is, the broadening of the spectrum band. Therefore, it is preferable that the second sub-base layer BL2 has a high Al composition y, for example, the second sub-base layer BL2 has a composition of AlN. This is because the quantum well layer WA is greatly distorted by this, and its band gap fluctuates.
  • the Al composition y of the second sub-base layer BL2 is larger than the Al composition x of the first sub-base layer BL1 has been described.
  • the inside of the trench TR is defined as the high resistance region HA.
  • the Al compositions x and y may be equal. That is, the Al composition y may be greater than or equal to the Al composition x.
  • the surface shape of the base layer BL is not limited to this case.
  • the upper surface of the base segment BS may have a curved surface shape.
  • the quantum well structure layer QW may be composed of a plurality of quantum well layers WA and a plurality of barrier layers BA. That is, the quantum well structure layer QW may have a single quantum well (SQW) structure or a multiple quantum well (MQW) structure. That is, the quantum well structure layer QW only needs to be composed of at least one quantum well layer WA and at least one barrier layer BA formed on the base layer BL.
  • SQW single quantum well
  • MQW multiple quantum well
  • FIGS. 3A to 3D are views showing a method for manufacturing the semiconductor light emitting device 10 of the first embodiment.
  • the semiconductor light emitting element 10 can be formed by, for example, the MOCVD method.
  • FIG. 3A is a cross-sectional view of the wafer in a state where the first sub-base layer BL1 is formed.
  • the n-type semiconductor layer 12 is formed on the growth substrate 11.
  • a sapphire substrate was used as the growth substrate 11, and a buffer layer (not shown) was formed on the sapphire substrate.
  • an n-GaN layer was formed as the n-type semiconductor layer 12 on the buffer layer.
  • a first sub-base layer BL1 having a groove GR0 having a composition that receives stress strain from the n-type semiconductor layer 12 and formed in a random network shape is formed.
  • an AlGaN layer was formed on the n-GaN layer 12 as the first sub-base layer BL1.
  • the AlGaN layer was grown three-dimensionally by lowering the growth temperature.
  • a groove GR0 was (naturally) formed in the AlGaN layer.
  • FIG. 3B is a cross-sectional view of the wafer in a state where the trench TR is formed in the first sub-base layer BL1.
  • a trench TR for removing the groove GR0 formed in the first sub-base layer BL1 is formed.
  • the trench TR is formed by performing etching using H 2 gas on the first sub-base layer BL1.
  • the step of forming the trench TR includes a step of etching the first sub base layer BL1 using H 2 gas.
  • the trench TR is formed with a depth reaching the n-type semiconductor layer 12 (GaN layer). That is, the n-type semiconductor layer 12 is partially etched (removed) in the groove GR0. Therefore, the groove GR0 was completely removed, and the portion having low crystallinity was completely removed. By completely removing the groove GR0, it is possible to suppress non-radiative recombination of carriers in the groove GR0, that is, a decrease in light emission efficiency.
  • FIG. 3C is a cross-sectional view of the wafer in a state where the second sub-base layer BL2 is formed.
  • the second sub base layer BL2 is formed so as to embed the first sub base layer BL1.
  • an AlGaN layer having an Al composition (composition y) larger than that of the first sub-base layer BL1 was formed as the second sub-base layer BL2.
  • the second sub-base layer BL2 is formed to have a flat portion FL and a groove GR that inherits the shape of the trench TR. That is, the second sub base layer BL2 is formed so that the upper surface thereof is not completely planarized.
  • a quantum well structure layer QW including at least one quantum well layer WA and a barrier layer BA is formed so as to embed the second sub-base layer BL2.
  • one InGaN layer and one GaN layer were formed as the quantum well layer WA and the barrier layer BA, respectively.
  • the electron block layer 14 is formed on the barrier layer BA.
  • an AlGaN layer was formed as the electron block layer 14.
  • a p-type semiconductor layer 15 is formed on the electron block layer 14.
  • a p-GaN layer was formed as the p-type semiconductor layer 15.
  • an n-electrode and a p-electrode for applying a voltage were formed on the n-type semiconductor layer 12 and the p-type semiconductor layer 15 respectively, and the wafer was divided into devices to produce the semiconductor light emitting device 10.
  • the thickness of the first sub-base layer BL1 is 4 nm, and the thickness of the second sub-base layer BL2 is 1.5 nm.
  • the first sub-base layer BL1 is formed, and the trench TR for removing the groove GR0 (part having low crystallinity) is formed. Further, after the first sub-base layer BL1 is embedded to form the second sub-base layer BL2, the quantum well structure layer QW is formed. As a result, the semiconductor light emitting device 10 excellent in luminous efficiency and color rendering can be produced.
  • FIG. 4 is a cross-sectional view illustrating a structure of a semiconductor light emitting element 10A according to a modification of the first embodiment.
  • the semiconductor light emitting device 10A has the same structure as the semiconductor light emitting device 10 except for the structure of the light emitting layer 13A.
  • the upper surface of the light emitting layer 13 is completely flattened. More specifically, the quantum well layer WA and the barrier layer BA are formed by completely filling the trench GR of the base layer BL, and the top surfaces of the quantum well layer WA and the barrier layer BA are the first and second flat surfaces, respectively. The surfaces FS1 and FS2 are formed.
  • the upper surface of the light emitting layer 13A has a groove GR2 that inherits the groove GR1 of the base layer BL (a groove corresponding to the groove GR in the light emitting layer 13). have.
  • a region corresponding to the upper portion of the light emitting layer 13A immediately above the flat portion FL1 is formed as the flat portion FL2, and a concave portion (groove GR2) is formed at a position corresponding to the upper portion of the groove GR1.
  • the quantum well layer WA and the barrier layer BA do not completely embed the base segment BS.
  • the base layer BL effectively functions also for the quantum well layer WA having the top surface of such a concavo-convex structure, and can provide the semiconductor light emitting device 10A having excellent light emission efficiency and color rendering. That is, the quantum well layer WA and the barrier layer BA may be formed on the base layer BL.
  • FIG. 5 is a cross-sectional view illustrating the structure of the semiconductor light emitting device 30 according to the second embodiment.
  • the light emitting element 30 has the same configuration as the light emitting element 10 except for the structure of the light emitting functional layer (light emitting layer) 33.
  • the light emitting layer 33 has a base layer BLA composed of three sub-base layers.
  • the light emitting layer 33 is formed on the third sub-base layer BL3 formed on the n-type semiconductor layer 12 and the third sub-base layer BL3, and reaches the third sub-base layer BL3 between the base segments BS.
  • a first sub-base layer BL1 having a trench TRA and a second sub-base layer BL2 formed by embedding the first sub-base layer BL1 are included.
  • the base layer BLA has a plurality of base segments BS having a composition that receives stress strain from the n-type semiconductor layer 12 and formed in a random network.
  • the base layer BLA has a third sub-base layer BL3 between the n-type semiconductor layer 12 and the first sub-base layer BL1.
  • the third sub-base layer BL3 is made of an AlGaN layer having an Al composition smaller than those of the first and second sub-base layers BL1 and BL2.
  • the third sub base layer BL3 is composed of an undoped AlGaN layer or a GaN layer.
  • the first sub base layer BL1 has a composition that receives stress strain from the third sub base layer BL3.
  • the third sub base layer BL3 has a layer thickness of 10 nm, for example.
  • the trench TRA formed in the first sub-base layer BL1 is formed to a depth reaching the third sub-base layer BL3. Accordingly, the trench TR is not formed in the n-type semiconductor layer 12. Accordingly, the crystallinity of the interface between the n-type semiconductor layer 12 and the light emitting layer 33 is ensured. Further, by forming an AlGaN layer having a small Al composition z as the third sub-base layer BL3, the base layer BLA having good crystallinity as a whole is formed. Therefore, luminous efficiency is improved. Further, as in the first embodiment, it is possible to suppress the current from concentrating to flow in a portion having relatively low crystallinity between the base segments BS. Therefore, luminous efficiency is improved.
  • the surface of the base layer BLA has a groove GR formed by taking over the shape of the trench TR.
  • the quantum well structure layer QW having the strained quantum well layer WA can generate light having a spectral width over a wide range. Therefore, high color rendering properties are ensured.
  • the stress strain received by the first sub-base layer BL1 formed on the third sub-base layer BL3 can be adjusted. That is, the size of the base segment BS can be adjusted by the Al composition z of the third sub-base layer BL3. Therefore, the emission color can be adjusted with a higher degree of freedom.
  • FIG. 6 is a diagram showing an emission spectrum of the semiconductor light emitting device 30 of Example 2.
  • the horizontal axis in FIG. 6 indicates the wavelength, and the vertical axis indicates the emission intensity. Note that in order to compare the emission spectra of the light emitting elements 30, a light emitting element having a base layer similar to the light emitting element 30 was manufactured as a comparative example, except that the trench TRA was not provided. As shown in FIG. 6, the light emitting element 30 has a spectrum width over a wide range, and can emit light with high color rendering properties.
  • the light emitting element 30 has a peak light emission intensity of about 1.5 times or more compared to the comparative example. This is because the relatively low crystalline portion formed in the first sub-base layer BL1 is removed by the trench TRA, and the second sub-base layer BL2 makes the trench TRA more resistant than the other portions. This is considered to be caused by the fact that the current does not flow easily in the region in the trench TRA. That is, it is considered that a large amount of current flows in a portion having good crystallinity other than the trench TRA (for example, the region of the flat portion FL), and many carriers are recombined with light emission.
  • FIG. 7 is a cross-sectional view showing the structure of a semiconductor light emitting device 30A according to a modification of the second embodiment.
  • the light emitting element 30A has the same structure as the light emitting element 30 except for the structure of the light emitting functional layer 33A.
  • the light emitting functional layer 33A has a structure in which the first and second light emitting layers 33A1 and 33A2 are stacked.
  • the first and second light emitting layers 33A1 and 33A2 have the same structure as the light emitting layer 33, respectively. That is, the light emitting functional layer 33A has a structure in which a plurality of light emitting layers 33 are stacked.
  • the first light emitting layer 33A1 has the same structure as the light emitting layer 33.
  • the first, second, and third sub-base layers BL1, BL2, and BL3 and the trench TRA are the first, second, and third sub-base layers BL1, BL2, and BL3 of the light emitting layer 33 and the trench. It has the same configuration as TRA.
  • the quantum well structure layer QWA of the first light emitting layer 33A1 includes a quantum well structure layer WAA and a barrier layer BAA having the same configuration as the quantum well structure layer WA and the barrier layer BA of the light emitting layer 33, respectively.
  • the base layer BLA of the first light emitting layer 33A1 has a plurality of base segments BSA having a composition that receives stress strain from the n-type semiconductor layer 12 and formed in a random network shape.
  • the second light emitting layer 33A2 includes a base layer BLB and a quantum well structure layer QWB formed on the quantum well structure layer QWA (barrier layer BAA) of the first light emitting layer 33A1.
  • the base layer BLB has a plurality of base segments BSB having a composition that receives stress strain from the barrier layer BAA of the first light emitting layer 33A1 and formed in a random network.
  • the base layer BLB includes first, second, and third sub-base layers BLB1, BLB2, and BLB3 that have the same configuration as the first, second, and third sub-base layers BLA1, BLA2, and BL3.
  • the first sub base layer BLA1 has a trench TRB reaching the third sub base layer BL3 between the base segments BSB.
  • the quantum well structure layer QWB has the same configuration as the quantum well structure layer QWA and the barrier layer BAA of the first light emitting layer 33A1.
  • the electron block layer 14 is formed on the barrier layer BAB.
  • the groove GRA formed on the surface of the base layers BLA and BLB is adjusted by adjusting the Al composition and the layer thickness of the base layers BLA and BLB in the first and second light emitting layers 33A1 and 33A2.
  • GRB size and depth can be adjusted.
  • the base layers BLA and BLB in the first and second light emitting layers 33A1 and 33A2 have different compositions.
  • the emission wavelengths from the quantum well structure layers QWA and QWB can be adjusted, and a spectrum width over a wider range can be obtained.
  • the grooves GRA and GRB are positioned independently of each other. And can be formed in size. That is, the base segments BSA and BSB can be formed independently of each other. Therefore, the emission spectrum can be adjusted with a higher degree of freedom.
  • the light emitting functional layer 33A is composed of the first and second light emitting layers 33A1 and 33A2 has been described, but the light emitting functional layer 33A may have another light emitting layer.
  • at least one uniformly flat quantum well layer includes a plurality of barriers between the n-type semiconductor layer 12 and the first light emitting layer 33A1 or between the second light emitting layer 33A2 and the electron blocking layer 14.
  • the third light emitting layer is formed by stacking a plurality of GaN barrier layers and InGaN quantum well layers, light emission having a peak in a pure blue region can be obtained. As a result, the light emission intensity on the short wavelength side can be supplemented, and the color rendering is further improved.
  • the electron blocking layer 14 is formed between the light emitting functional layers (light emitting layers) 13, 33, 33A and the p-type semiconductor layer 15 has been described.
  • the present invention is limited to the case where the electron blocking layer 14 is provided. Is not to be done.
  • the p-type semiconductor layer 15 may be formed on the light emitting functional layer 13.
  • the electronic block layer 14 has a larger band gap than the n-type semiconductor layer 12, the light emitting functional layer 13, and the p-type semiconductor layer 15. Therefore, it is possible to suppress the electrons from overflowing to the p-type semiconductor layer 15 side beyond the light emitting functional layer 13. Therefore, it is preferable to provide the electronic block layer 14 at the time of high current driving and at the time of high temperature operation.
  • first embodiment, the second embodiment, and the modified examples thereof can be combined with each other.
  • a light emitting functional layer including the light emitting layer 13 and the light emitting layer 33 can be formed.
  • the light emitting layer 13 includes a base layer BL having a plurality of base segments BS having a crystal composition that receives stress strain from the n-type semiconductor layer 12 and formed in a random network shape. , And a quantum well structure layer including at least one quantum well layer WA and at least one barrier layer BA formed on the base layer BL.
  • the base layer includes a first sub-base layer, a first sub-base layer, and a first sub-base layer. A trench that divides the base layer into a plurality of base segments; and a second sub-base layer formed by embedding the first sub-base layer.
  • the base layer has a composition that receives stress strain from the n-type semiconductor (or barrier layer) and has a step of forming a first sub-base layer having grooves formed in a random network shape, and the grooves are removed. Forming a trench, and forming a second sub-base layer so as to embed the first sub-base layer. Therefore, a light-emitting element having high color rendering properties and light emission efficiency can be reliably manufactured.
  • the first conductivity type is the n-type conductivity type and the second conductivity type is the p-type has been described, but the first conductivity type is the p-type,
  • the conductivity type of 2 may be n-type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

 発光層は、第1の半導体層から応力歪を受ける組成を有してランダムな網目状に形成された複数のベースセグメントを有するベース層と、ベース層上に形成された少なくとも1つの量子井戸層及び少なくとも1つの障壁層からなる量子井戸構造層と、を有し、ベース層は、第1の副ベース層と、第1の副ベース層を複数のベースセグメント毎に区画するトレンチと、第1の副ベース層を埋め込んで形成された第2の副ベース層とを有する。

Description

半導体発光素子及びその製造方法
 本発明は、発光ダイオード(LED)などの半導体発光素子及びその製造方法に関する。
 半導体発光素子は、通常、成長用基板上に、n型半導体層、活性層及びp型半導体層からなる半導体構造層を成長し、それぞれn型半導体層及びp型半導体層に電圧を印加するn電極及びp電極を形成して作製される。
 特許文献1には、赤色、緑色及び青色発光ダイオードが同一方向に発光するようにこの順で積層された白色発光ダイオードが開示されている。特許文献2には、n型層と活性層の間に配置されたAlN凹凸層を備え、活性層がAlN凹凸層の形状に基づいて凹凸に形成されているGaN系半導体発光素子が開示されている。
特開2006-339646号公報 特開2005-093682号公報
 半導体発光素子は、電極から素子内に注入された電子と正孔(ホール)とが活性層において結合(再結合)することによって発光する。活性層から放出される光の波長(すなわち発光色)は、活性層を構成する半導体材料のバンドギャップによって決まる。例えば、窒化物系半導体を用いた発光素子の場合、その活性層からは青色の光が放出される。
 一方、例えば照明用途など、光源に演色性が求められる場合がある。高い演色性を有する光源は自然光に近い光を発する光源である。高い演色性を得るためには、光源から可視域のほぼ全域の波長を有する光が取出されることが好ましい。例えば、演色性の高い光源から取出された光は白色光として観察される。
 これに対し、上記特許文献に記載されるように、半導体発光素子を用いて白色光を得る様々な手法が提案されている。例えば、異なる組成を有する複数の活性層を積層することで、蛍光体を用いずに発光波長の広帯域化を図る手法が提案されている。また、活性層とn型半導体層との間に凹凸構造を有する層を挿入することで、活性層内でのバンドギャップを不均一にし、発光波長を広帯域化することが提案されている。
 しかし、これらの手法によって発光装置を作製する場合、各発光色の均一化や製造工程の複雑化、発光強度の点で課題があった。その一例としては、半導体層の形成工程の追加、半導体層の加工工程の追加及び半導体層の結晶性の劣化などが挙げられる。
 本発明は上記した点に鑑みてなされたものであり、広範囲に亘る発光波長帯域(スペクトル幅)を有する高い演色性かつ高い発光強度の半導体発光素子及びその製造方法を提供することを目的としている。
 本発明による半導体発光素子は、第1の導電型を有する第1の半導体層と、第1の半導体層上に形成された発光層を含む発光機能層と、発光機能層上に形成され、第1の半導体層とは反対の導電型を有する第2の半導体層とを有する半導体発光素子であって、発光層は、第1の半導体層から応力歪を受ける組成を有してランダムな網目状に形成された複数のベースセグメントを有するベース層と、ベース層上に形成された少なくとも1つの量子井戸層及び少なくとも1つの障壁層からなる量子井戸構造層と、を有し、ベース層は、第1の副ベース層と、第1の副ベース層を複数のベースセグメント毎に区画するトレンチと、第1の副ベース層を埋め込んで形成された第2の副ベース層とを有することを特徴としている。
 また、本発明による半導体発光素子の製造方法は、基板上に第1の導電型を有する第1の半導体層を形成する工程と、第1の半導体層上に、第1の半導体から応力歪を受ける組成を有してランダムな網目状に形成された溝を有する第1の副ベース層を形成する工程と、溝を除去するトレンチを形成する工程と、第1の副ベース層を埋め込むように第2の副ベース層を形成する工程と、第2の副ベース層上に、少なくとも1つの量子井戸構造層及び少なくとも1つの障壁層からなる量子井戸構造層を形成する工程と、量子井戸構造層上に、第1の導電型とは反対の第2の導電型を有する第2の半導体層を形成する工程と、を含むことを特徴としている。
(a)は実施例1に係る半導体発光素子の構造を示す断面図であり、(b)は発光層のベース層を模式的に示す上面図である。 (a)及び(b)は、実施例1に係る半導体発光素子における発光層の構造を示す部分拡大断面図である。 (a)~(d)は、実施例1に係る半導体発光素子の製造方法を示す断面図である。 実施例1の変形例に係る半導体発光素子の構造を示す断面図である。 実施例2に係る半導体発光素子の構造を示す断面図である。 実施例2に係る半導体発光素子の発光スペクトルを示す図である。 実施例2の変形例に係る半導体発光素子の構造を示す断面図である。
 以下に本発明の実施例について詳細に説明する。本明細書においては、同一の構成要素に同一の参照符号を付している。
 図1(a)は、実施例1の半導体発光素子(以下、単に発光素子又は素子と称する場合がある)10の構造を示す断面図である。半導体発光素子10は、搭載基板(以下、単に基板と称する場合がある)11上に半導体構造層SSが形成された構造を有している。半導体構造層SSは、搭載基板11上に形成されたn型半導体層(第1の半導体層)12、n型半導体層12上に形成された発光層を含む発光機能層13、発光機能層13上に形成された電子ブロック層14、電子ブロック層14上に形成されたp型半導体層(第2の半導体層、第1の半導体層12とは反対の導電型を有する半導体層)15を含む。
 本実施例においては、搭載基板11は、例えば半導体構造層SSの成長に用いる成長用基板であり、例えばサファイア、Si又はGaNからなる。また、半導体構造層SSは、窒化物系半導体からなる。半導体発光素子10は、例えば、サファイア基板のC面を結晶成長面とし、サファイア基板上に有機金属気相成長法(Metal Organic Chemical Vapor Deposition:MOCVD法)を用いて半導体構造層SSを成長することによって、作製することができる。なお、図示していないが、発光素子10は、n型半導体層12及びp型半導体層15にそれぞれ電圧を印加するn電極及びp電極を有している。
 なお、本実施例においては、発光素子10が搭載基板11としての成長用基板上に半導体構造層SSが形成された構造を有する場合について説明するが、搭載基板11は成長用基板である場合に限定されるものではない。例えば、半導体発光素子10は、成長用基板上に半導体構造層SSを成長した後、半導体構造層SSを他の基板(支持基板)に貼り合わせ、成長用基板を除去した構造を有していてもよい。この場合、当該貼り合わせた他の基板はp型半導体層15上に設けられる。当該貼り合わせ用の基板としては、例えばSi、AlN、Mo、W、CuWなどの放熱性の高い材料を用いることができる。
 なお、図示していないが、搭載基板11とn型半導体層12との間にバッファ層(下地層)が設けられていてもよい。本実施例においては、サファイア基板(搭載基板11)上にバッファ層としてアンドープのGaN層を成長した後、n型半導体層12を積層した。
 n型半導体層12は、例えば、n型ドーパント(例えばSi)を含むGaN層からなる。電子ブロック層14は、例えばAlGaN層からなる。p型半導体層15は、例えば、p型ドーパント(例えばMg)を含むGaN層からなる。なお、電子ブロック層14は、p型ドーパントを含んでいてもよい。また、p型半導体層15は、電子ブロック層14との界面とは反対側の主面にコンタクト層を有していてもよい。
 なお、発光機能層13は複数の発光層を有していてもよいが、本実施例においては、発光機能層13が1つの発光層からなる場合について説明する。発光層13は、n型半導体層12上に形成され、量子井戸(QW)構造を有している。
 発光層13は、n型半導体層12とは異なる組成(結晶組成)を有するベース層BLを有している。ベース層BLは、n型半導体層12から応力を受けてランダムな網目状に形成された溝GRを有している。すなわち、溝GRは、n型半導体層12とベース層BLとの間の異なる組成によってベース層BLに生じた応力歪によって生じた複数の溝部が結合したメッシュ形状として形成されている。なお、ベース層BLに生じた応力歪とは、n型半導体層12とベース層BLとの間の格子定数の差によって、ベース層BLの結晶構造が歪むことをいう。
 また、発光層13は、ベース層BL上に形成された量子井戸層WA及び障壁層BAからなる量子井戸構造層QWを有している。量子井戸層WAはベース層BL上に形成され、障壁層BAは量子井戸層WA上に形成されている。なお、ベース層BLは、量子井戸層WAに対して障壁層として機能する。
 ここで、図1(b)を参照して、ベース層BLについて説明する。図1(b)は、ベース層BLの上面を模式的に示す図である。また、ベース層BLは、溝GRによって区画され、かつランダムなサイズで形成された多数の微細なベースセグメントBSを有している。ベースセグメントBSの各々は、ベース層がn型半導体層12によって応力歪を受ける組成を有することによって、ランダムな網目状に区画されている。
 溝GRは、互いにランダムにかつ異なる長さ及び形状の溝部から構成されている。溝GRは、ベース層BLの表面において網目状(メッシュ状)に張り巡らされるように形成されている。ベースセグメントBSの各々は、この溝GRによってベース層BL内にランダムに区画形成された部分(セグメント)である。なお、ベースセグメントBSの各々は、略円形や略楕円形、多角形状など、様々な上面形状を有している。
 図1(a)に示すように、溝GRは、例えばV字形状を有し、ライン状の底部BPを有している。本実施例においては、ベースセグメントBSの各々は、溝GRにおける底部BPをその端部とする。ベースセグメントBSの各々は、底部BPにおいて他のベースセグメントBSに隣接している。
 また、ベース層BLは、ベースセグメントBSの各々に対応する平坦部FLを有している。ベース層BLの表面は、平坦部FLと溝GRの内壁面とによって構成されている。平坦部FLの各々は、溝GRによってベースセグメントBS毎に区画されている。ベースセグメントBSは、平坦部FLからなる上面と溝GRの内壁面からなる側面とを有している。
 すなわち、平坦部FLはベースセグメントBSの各々における上面を構成し、溝GRの内壁面はベースセグメントBSの側面を構成する。従って、ベースセグメントBSの各々は、傾斜した側面を有し、またその断面において例えば略台形の形状を有している。
 図1(a)に示すように、ベース層BLは、第1の副ベース層BL1と、第1の副ベース層BL1をベースセグメントBS毎に区画するトレンチTRと、第1の副ベース層BL1を埋め込んで形成された第2の副ベース層BL2とからなる。本実施例においては、第1の副ベース層BL1に形成されたトレンチTRは、第1の副ベース層BL1の表面からn型半導体層12内に至る深さで形成されている。すなわち、トレンチTRの底部はn型半導体層12内に形成されている。また、第1の副ベース層BL1は、トレンチTRによってベースセグメントBS毎に区画されている。
 第2の副ベース層BL2は、第1の副ベース層BL1の表面及びトレンチTRの内面上に形成されている。また、第2の副ベース層BL2の表面には平坦部FL及び溝GRが形成されている。すなわち、第2の副ベース層BL2の表面はベース層BLの表面として形成されている。
 発光層13は、ベース層BL上に形成された量子井戸層WAを有している。量子井戸層WAは、溝GRを埋め込んで形成されている。本実施例においては、量子井戸層WAは第2の副ベース層BL2上に形成されている。また、量子井戸層WAは、その上面が平坦面(以下、第1の平坦面と称する)FS1として形成されている。量子井戸層WAは、ベース層BLとの界面(下面)においては溝GRに対応する凹凸形状を有する一方で、上面においては平坦形状を有している。量子井戸層WAは、図1(a)に示すように、ベース層BLを埋め込んで平坦化された第1の平坦面FS1を有している。量子井戸層WAは、歪み量子井戸層として形成されている。
 また、発光層13は、量子井戸層WA上に形成された障壁層BAを有している。障壁層BAは、その両主面が平坦面として形成されている。具体的には、障壁層BAは、量子井戸層WAの第1の平坦面FS1上に形成され、上面が平坦面(以下、第2の平坦面と称する)FS2として形成されている。
 図2(a)及び(b)は、発光層13の構造を示す断面図である。図2(a)は、図1(a)の破線で囲まれた部分を拡大して示す部分拡大断面図である。図2(a)を用いて発光層13についてより詳細に説明する。発光層13のベース層BLは、AlxGa1-xN(0<x≦1)の組成を有する第1の副ベース層BL1と、第1の副ベース層BL1上に形成され、AlyGa1-yN(0<y≦1)の組成を有する第2の副ベース層BL2と有している。また、量子井戸層WAは、InGaNの組成を有している。障壁層BAは、GaNの組成を有している。電子ブロック層14は、AlGaNの組成を有している。
 第2の副ベース層BL2は、第1の副ベース層BL1以上のAl組成yを有している。すなわち、第2の副ベース層BL2のAl組成yは、第1の副ベース層BL1のAl組成x以上である。なお、本実施例においては、Al組成yはAl組成xよりも大きく、0<x<y<1である。
 また、第2の副ベース層BL2は、第1の副ベース層BL1を埋め込んで形成されている。より具体的には、第1のベース層BL1に形成されたトレンチTRの形状は、第2の副ベース層BL2に引き継がれる(トレンチTR上の領域に溝GRを有する)。しかし、溝GRの深さはトレンチTRの深さよりも小さい。従って、図2(b)に示すように、第2の副ベース層BL2の層厚は、平坦部FL(層厚T1)と溝GRの部分(層厚T2)とで異なる。具体的には、第2の副ベース層BL2は、溝GRの部分(トレンチTR内)において平坦部FL(トレンチTR外)よりも大きな層厚T2を有している。また、第2の副ベース層BL2の側壁(溝GR)の角度は、第1の副ベース層BL1の側壁(トレンチTR)の角度よりも鈍角となっている。
 上記した第1及び第2の副ベース層BL1及びBL2の層厚及びAl組成の関係により、ベース層BLの層内において電気抵抗値に不均一さが生ずる。具体的には、トレンチTR内領域はトレンチTR外領域よりも大きな電気抵抗値を有する。従って、図2(b)に示すように、ベース層BLは、トレンチTR内の領域に対応し、高い電気抵抗値を有する高抵抗領域HAと、平坦部FL上(トレンチTR外)の領域に対応し、低い電気抵抗値を有する低抵抗領域LAとを有する。
 ここで、発光層13について説明する。ベース層BLにおけるベースセグメントBSは、ベース層BLとしてのAlGaN層BL1及びBL2を、成長温度を比較的低温でn型半導体層12としてのGaN層上に成長することで形成することができる。
 まず、n型半導体層12上に、これとは異なる結晶組成のベース層BLを成長した場合、ベース層BLには応力(歪)が生ずる。例えば、ベース層BLは、n型半導体層12よりも小さな格子定数を有する。例えば、n型半導体層12としてのGaN層に第1の副ベース層BL1としてのAlGaN層を成長する場合、AlGaN層にはGaN層によって伸張歪が生ずる。従って、AlGaN層は3次元的に成長する。すなわち、AlGaN層は立体的に成長し、複数の微細な凹凸(ベースセグメントBS)が形成される。
 このベース層BL上に量子井戸層WAとしてのInGaN層を形成すると、量子井戸層WAは歪み量子井戸層として形成される。また、量子井戸層WA内におけるInの含有量に分布が生ずる。すなわち、量子井戸層WAのうち、例えば平坦部FL上の領域と溝GR上の領域とでIn組成が異なるように形成される。また、ベースセグメントBSの上面上と側面上とでは量子井戸層WAの層厚が異なる。従って、量子井戸層WAの層内においてはバンドギャップが一定ではない。このようにして微細な島状の凹凸を有する発光層13からは、様々な色の光が放出されることとなる。
 ここで、発明者らは、ベース層BLがトレンチTRを有さない場合、ベースセグメントBS間の領域、すなわち溝GRの領域において多くのキャリアが非発光再結合を行っていることに着目した。具体的には、ベース層BLがトレンチTRを有さない場合、半導体構造層SS内において、電流は、ベース層BLのうちの平坦部FLよりも低抵抗な領域である溝GRの領域に集中して流れる。また、溝GRの領域は平坦部FLよりも結晶性の低い部分であり、溝GRの領域に流れる電流(キャリア)は発光に寄与しない可能性が高い。
 これに対し、本実施例においては、上記したように、ベース層BLは2つの副ベース層BL1及びBL2を有する。また、第1のベース層BL1は、溝GRの部分に対応する比較的結晶性の低い領域を除去するように形成されたトレンチTRを有する。さらに、第1のベース層BL1を埋め込んで(全体をカバーするように)第2の副ベース層BL2が形成されている。従って、結晶性の低い領域に電流が流れて発光効率を低下させることが抑制される。また、第2の副ベース層BL2上に量子井戸層WAが形成されることで、発光波長の広帯域化が実現される。すなわち、発光層13からは、発光波長のスペクトル帯域が広く、かつ発光強度に優れた光が放出される。従って、発光素子10は高い演色性及び高い発光強度を有する。
 さらに、図2(b)に示すように、第1及び第2の副ベース層BL1及びBL2が上記したAl組成及び層厚の関係を有することで、トレンチTR内が高抵抗領域HAとなり、トレンチTR外が低抵抗領域LAとなる。従って、比較的結晶性の高いトレンチTR外領域(平坦部FL上の領域)に多くの電流が流れる。これによって、さらに発光効率は向上する。
 また、本実施例においては平坦部FL上の領域に多くの電流が流れる構成となっているが、仮に平坦部FL上の領域のみに電流が流れた場合でも、スペクトル幅の広い光を得ることは可能である。より具体的には、平坦部FL上においては量子井戸層WAの層厚は一定に近いが、ベース層BLによって受ける応力の程度は一定ではない。すなわち、平坦部FL上の領域内においても歪の程度は不均一である。従って、溝GRの領域のみならず、量子井戸層WAの層内の全体でバンドギャップは揺らぐこととなる。従って、発光効率の向上と発光波長の広帯域化の両立が可能となる。
 なお、ベースセグメントBSのサイズが小さくなるほど、ベース層BL内におけるInの取り込み量が増加し、発光波長は長波長側にシフトしていく。さらに、高いAl組成yを有する第2の副ベース層BL2上にInGaN層を形成することで、高いIn組成のInGaN層を形成することが可能となる。これによって、InGaN層におけるバンドギャップ、すなわち量子準位間のエネルギーは小さくなる。量子井戸層WAからは、より長波長側の発光波長を有する光が放出される。
 なお、演色性、すなわちスペクトル帯域の広域化を考慮すると、ベースセグメントBSのサイズは小さい方が好ましい。従って、第2の副ベース層BL2は高いAl組成yを有すること、例えば第2の副ベース層BL2がAlNの組成を有することが好ましい。これによって量子井戸層WAが大きく歪を受け、そのバンドギャップが揺らぐからである。
 なお、本実施例においては、第2の副ベース層BL2のAl組成yが第1の副ベース層BL1のAl組成xよりも大きな場合について説明したが、トレンチTR内を高抵抗領域HAとすることができれば、Al組成x及びyは等しくても良い。すなわち、Al組成yはAl組成x以上であればよい。例えば、第1及び第2の副ベース層BL1及びBL2の両方がAlNの組成を有していてもよい(x=y=1であってもよい)。
 なお、本実施例においては、ベース層BLが平坦部FL及び溝GRからなる場合について説明したが、ベース層BLの表面形状はこの場合に限定されない。例えば、ベースセグメントBSの上面が曲面形状を有していてもよい。
 なお、本実施例においては、量子井戸構造層QWが1つの量子井戸層WA及び1つの障壁層BAからなる構造を有する場合について説明したが、この場合に限定されない。量子井戸構造層QWは複数の量子井戸層WA及び複数の障壁層BAから構成されていてもよい。すなわち、量子井戸構造層QWは単一量子井戸(SQW)構造を有していてもよいし、多重量子井戸(MQW)構造を有していてもよい。すなわち、量子井戸構造層QWは、ベース層BL上に形成された少なくとも1つの量子井戸層WA及び少なくとも1つの障壁層BAから構成されていればよい。
 図3(a)~(d)は、実施例1の半導体発光素子10の製造方法を示す図である。上記したように、半導体発光素子10は、例えばMOCVD法によって形成することができる。
 [n型半導体層12の形成工程及び第1の副ベース層BL1の形成工程]
 図3(a)は、第1の副ベース層BL1を形成した状態のウェハの断面図である。まず、成長基板11上にn型半導体層12を形成する。本実施例においては、成長基板11としてサファイア基板を用い、サファイア基板上にバッファ層(図示せず)を形成した。次に、バッファ層上にn型半導体層12としてn-GaN層を形成した。
 次に、n型半導体層12上に、n型半導体層12から応力歪を受ける組成を有してランダムな網目状に形成された溝GR0を有する第1の副ベース層BL1を形成する。本実施例においては、n-GaN層12上に、第1の副ベース層BL1としてAlGaN層を形成した。この際、成長温度を低温とすることで、AlGaN層を3次元的に成長させた。これによって、AlGaN層内に(自然に)溝GR0が形成された。
 [トレンチTRの形成工程]
 図3(b)は、第1の副ベース層BL1にトレンチTRを形成した状態のウェハの断面図である。次に、図3(b)に示すように、第1の副ベース層BL1に形成された溝GR0を除去するトレンチTRを形成する。本実施例においては、第1の副ベース層BL1にH2ガスを用いたエッチングを行ってトレンチTRを形成した。
 AlGaN及びGaNは、高温下でH2にさらすと、その結晶性の低い部分が優先的にエッチングされることで知られている。従って、第1の副ベース層BL1としてのAlGaN層にH2を用いたガスエッチングを行うことで、溝GR0(結晶性の比較的低い部分)を選択的にエッチングすることができる。このようにして、容易に溝GR0を除去し、溝GR0の部分以外の第1の副ベース層BL1を残すことができる。従って、トレンチTRを形成する工程は、第1の副ベース層BL1にH2ガスを用いたエッチングを行う工程を含むことが好ましい。
 なお、本実施例においては、トレンチTRをn型半導体層12(GaN層)内に至る深さで形成した。すなわち、溝GR0の部分においては、n型半導体層12は部分的にエッチング(除去)されている。従って、溝GR0が完全に除去され、結晶性の低い部分が完全に除去された。溝GR0を完全に除去することで、溝GR0におけるキャリアの非発光再結合、すなわち発光効率の低下を抑制することが可能となる。
 [第2の副ベース層BL2の形成工程]
 図3(c)は、第2の副ベース層BL2を形成した状態のウェハの断面図である。図3(c)に示すように、第1の副ベース層BL1を埋め込むように第2の副ベース層BL2を形成する。具体的には、上記したように、第2の副ベース層BL2として、第1の副ベース層BL1よりも大きなAl組成(組成y)を有するAlGaN層を形成した。第2の副ベース層BL2は、平坦部FLと、トレンチTRの形状を引き継いだ溝GRとを有するように形成する。すなわち、第2の副ベース層BL2は、その上面が完全に平坦化されないように形成する。
 [量子井戸構造層QW、電子ブロック層14及びp型半導体層15の形成工程]
 続いて、図3(d)に示すように、第2の副ベース層BL2を埋め込むように少なくとも1つの量子井戸層WA及び障壁層BAからなる量子井戸構造層QWを形成する。本実施例においては、量子井戸層WA及び障壁層BAとして、それぞれInGaN層及びGaN層を1層ずつ形成した。次に、障壁層BA上に電子ブロック層14を形成する。本実施例においては、電子ブロック層14としてAlGaN層を形成した。続いて、電子ブロック層14上にp型半導体層15を形成する。本実施例においては、p型半導体層15としてp-GaN層を形成した。
 また、図示していないが、n型半導体層12及びp型半導体層15にそれぞれ電圧を印加するn電極及びp電極を形成し、ウェハを素子毎に分割して半導体発光素子10を作製した。
 なお、本実施例においては、第1の副ベース層BL1の層厚を4nmとし、第2の副ベース層BL2の層厚を1.5nmとした。
 本実施例においては、第1の副ベース層BL1を形成し、溝GR0(結晶性の低い部分)を除去するトレンチTRを形成する。また、第1の副ベース層BL1を埋め込んで第2の副ベース層BL2を形成したのち、量子井戸構造層QWを形成する。これによって、発光効率及び演色性に優れた半導体発光素子10を作製することができる。
 図4は、実施例1の変形例に係る半導体発光素子10Aの構造を示す断面図である。半導体発光素子10Aは、発光層13Aの構造を除いては半導体発光素子10と同様の構造を有している。
 実施例1で示した半導体発光素子10においては、発光層13の上面は完全に平坦化されている。より具体的には、量子井戸層WA及び障壁層BAがベース層BLの溝GRを完全に埋め込んで形成されており、量子井戸層WA及び障壁層BAの上面がそれぞれ第1及び第2の平坦面FS1及びFS2として形成されている。一方、図4に示すように、本変形例の半導体発光素子10Aにおいては、発光層13Aの上面は、ベース層BLの溝GR1(発光層13における溝GRに相当する溝)を引き継いだ溝GR2を有している。すなわち、発光層13Aの上面における平坦部FL1の直上に相当する領域は平坦部FL2として形成されており、溝GR1の直上に対応する位置には凹部(溝GR2)が形成されている。
 本変形例においては、量子井戸層WA及び障壁層BAがベースセグメントBSを完全には埋め込んでいない。ベース層BLは、このような凹凸構造の上面を有する量子井戸層WAに対しても有効に機能し、発光効率及び演色性に優れた半導体発光素子10Aを提供することができる。すなわち、量子井戸層WA及び障壁層BAは、ベース層BL上に形成されていればよい。
 図5は、実施例2に係る半導体発光素子30の構造を示す断面図である。発光素子30は、発光機能層(発光層)33の構造を除いては、発光素子10と同様の構成を有している。発光層33は、3つの副ベース層からなるベース層BLAを有している。発光層33は、n型半導体層12上に形成された第3の副ベース層BL3と、第3の副ベース層BL3上に形成され、ベースセグメントBS間において第3の副ベース層BL3に至るトレンチTRAを有する第1の副ベース層BL1と、第1の副ベース層BL1を埋め込んで形成された第2の副ベース層BL2と、を有している。ベース層BLAは、ベース層BLと同様に、n型半導体層12から応力歪を受ける組成を有してランダムな網目状に形成された複数のベースセグメントBSを有している。
 本実施例においては、ベース層BLAは、n型半導体層12と第1の副ベース層BL1との間に第3の副ベース層BL3を有している。第3の副ベース層BL3は、第1及び第2の副ベース層BL1及びBL2よりも小さなAl組成を有するAlGaN層からなる。具体的には、第3の副ベース層BL3は、AlzGa1-zN(0≦z<x≦y=1)の組成を有している。例えば、第3の副ベース層BL3は、アンドープのAlGaN層又はGaN層からなる。第1の副ベース層BL1は、第3の副ベース層BL3から応力歪を受ける組成を有する。第3の副ベース層BL3は、例えば10nmの層厚を有する。
 本実施例においては、第1の副ベース層BL1に形成されたトレンチTRAは、第3の副ベース層BL3内に至る深さで形成されている。従って、n型半導体層12内にトレンチTRは形成されない。従って、n型半導体層12と発光層33との界面の結晶性が確保される。また、第3の副ベース層BL3として小さなAl組成zを有するAlGaN層を形成することで、全体として良好な結晶性を有するベース層BLAが形成される。従って、発光効率が向上する。また、実施例1と同様に、ベースセグメントBS間の比較的結晶性の低い部分に電流が集中して流れることが抑制される。従って、発光効率が向上する。さらに、ベース層BLAの表面はトレンチTRの形状を引き継いで形成された溝GRを有する。歪量子井戸層WAを有する量子井戸構造層QWによって、広範囲に亘るスペクトル幅を有する光を生成することができる。従って、高い演色性が確保される。
 なお、第3の副ベース層BL3のAl組成zを調節することで、第3の副ベース層BL3上に形成される第1の副ベース層BL1が受ける応力歪を調節することができる。すなわち、第3の副ベース層BL3のAl組成zによってベースセグメントBSのサイズを調節することができる。従って、より高い自由度で発光色を調節することができる。
 図6は、実施例2の半導体発光素子30の発光スペクトルを示す図である。図6の横軸は波長を、縦軸は発光強度を示している。なお、発光素子30の発光スペクトルを比較するために、比較例として、トレンチTRAを有していない点を除いては発光素子30と同様のベース層を有する発光素子を作製した。図6に示すように、発光素子30は、広範囲に亘るスペクトル幅を有しており、高い演色性の発光を得ることができている。
 また、発光素子30は、比較例に比べて約1.5倍以上のピーク発光強度を有していることがわかる。これは、第1の副ベース層BL1に形成された比較的結晶性の低い部分がトレンチTRAによって除去されていること、及び第2の副ベース層BL2によってトレンチTRAを他の部分よりも高抵抗化してトレンチTRA内領域に電流を流れにくくしていることに起因していると考えられる。すなわち、トレンチTRA以外の良好な結晶性を有する部分(例えば平坦部FLの領域)に多くの電流が流れ、多くのキャリアが発光を伴って再結合していると考えられる。
 図7は、実施例2の変形例に係る半導体発光素子30Aの構造を示す断面図である。発光素子30Aは、発光機能層33Aの構造を除いては発光素子30と同様の構造を有している。発光機能層33Aは、第1及び第2の発光層33A1及び33A2が積層された構造を有する。第1及び第2の発光層33A1及び33A2は、それぞれ発光層33と同様の構造を有している。すなわち、発光機能層33Aは、発光層33が複数層積層された構造を有している。
 具体的には、第1の発光層33A1は、発光層33と同様の構造を有している。具体的には、第1、第2及び第3の副ベース層BL1、BL2及びBL3並びにトレンチTRAは、発光層33の第1、第2及び第3の副ベース層BL1、BL2及びBL3並びにトレンチTRAと同様の構成を有している。また、第1の発光層33A1の量子井戸構造層QWAは、それぞれ発光層33の量子井戸構造層WA及び障壁層BAと同様の構成を有する量子井戸構造層WAA及び障壁層BAAを有している。また、第1の発光層33A1のベース層BLAは、n型半導体層12から応力歪を受ける組成を有してランダムな網目状に形成された複数のベースセグメントBSAを有している。
 第2の発光層33A2は、第1の発光層33A1の量子井戸構造層QWA(障壁層BAA)上に形成されたベース層BLB及び量子井戸構造層QWBを有している。ベース層BLBは、第1の発光層33A1の障壁層BAAから応力歪を受ける組成を有してランダムな網目状に形成された複数のベースセグメントBSBを有している。ベース層BLBは、第1、第2及び第3の副ベース層BLA1、BLA2及びBL3と同様の構成を有する第1、第2及び第3の副ベース層BLB1、BLB2及びBLB3を有している。また、第1の副ベース層BLA1は、ベースセグメントBSB間において第3の副ベース層BL3に至るトレンチTRBを有している。また、量子井戸構造層QWBは、第1の発光層33A1の量子井戸構造層QWA及び障壁層BAAと同様の構成を有している。電子ブロック層14は障壁層BAB上に形成されている。
 本変形例においては、第1及び第2の発光層33A1及び33A2におけるそれぞれのベース層BLA及びBLBのAl組成や層厚を調節することで、ベース層BLA及びBLBの表面に形成される溝GRA及びGRBのサイズ及び深さを調節することができる。例えば、第1及び第2の発光層33A1及び33A2におけるベース層BLA及びBLBは互いに異なる組成を有している。これによって、量子井戸構造層QWA及びQWBからの発光波長を調節することができ、より広範囲に亘るスペクトル幅を得ることが可能となる。
 また、第1の発光層33A1の表面(障壁層BAAの表面)及び第2の発光層33A2の表面(障壁層BABの表面)を平坦面とすることで、溝GRA及びGRBを互いに無関係な位置及びサイズで形成することができる。すなわち、ベースセグメントBSA及びBSBを互いに無関係に形成することができる。従って、より高い自由度で発光スペクトルを調節することができる。
 なお、本変形例においては、発光機能層33Aが第1及び第2の発光層33A1及び33A2からなる場合について説明したが、発光機能層33Aは他の発光層を有していていもよい。例えば、n型半導体層12と第1の発光層33A1との間、又は第2の発光層33A2と電子ブロック層14との間に、少なくとも1つの一様に平坦な量子井戸層が複数の障壁層の各々に挟まれた構造を有する発光層(第3の発光層)を有していてもよい。例えば第3の発光層として、GaNからなる障壁層及びInGaNからなる量子井戸層を複数層積層して形成した場合、純粋な青色領域にピークを有する発光を得ることができる。これによって、短波長側の発光強度を補充することができ、より演色性が向上する。
 また、上記においては、発光機能層(発光層)13、33、33Aとp型半導体層15との間に電子ブロック層14を形成する場合について説明したが、電子ブロック層14を設ける場合に限定されるものではない。例えば発光機能層13上にp型半導体層15が形成されていてもよい。
 なお、電子ブロック層14は、n型半導体層12、発光機能層13及びp型半導体層15よりも大きなバンドギャップを有している。従って、電子が発光機能層13を越えてp型半導体層15側にオーバーフローすることを抑制することが可能となる。従って、大電流駆動時及び高温動作時においては電子ブロック層14を設けることが好ましい。
 また、実施例1、実施例2及びその変形例は、互いに組み合わせることが可能である。例えば発光層13及び発光層33からなる発光機能層を形成することができる。
 本実施例及びその変形例においては、発光層13は、n型半導体層12から応力歪を受ける結晶組成を有してランダムな網目状に形成された複数のベースセグメントBSを有するベース層BLと、ベース層BL上に形成された少なくとも1つの量子井戸層WA及び少なくとも1つの障壁層BAからなる量子井戸構造層とを有し、ベース層は、第1の副ベース層と、第1の副ベース層を複数のベースセグメント毎に区画するトレンチと、第1の副ベース層を埋め込んで形成された第2の副ベース層とを有する。
 また、ベース層は、n型半導体(又は障壁層)から応力歪を受ける組成を有してランダムな網目状に形成された溝を有する第1の副ベース層を形成する工程と、溝を除去するトレンチを形成する工程と、第1の副ベース層を埋め込むように第2の副ベース層を形成する工程と、によって形成される。従って、高い演色性及び発光効率を有する発光素子を確実に作製することができる。
 なお、本実施例においては、第1の導電型がn型の導電型であり、第2の導電型がp型である場合について説明したが、第1の導電型がp型であり、第2の導電型がn型であってもよい。
10、10A、30、30A 半導体発光素子
12 n型半導体層(第1の半導体層)
13、33、33A、33A1、33A2 発光機能層(発光層)
14 電子ブロック層
15 p型半導体層(第2の半導体層)
BL、BLA、BLB ベース層
BL1、BLA1、BLB1 第1の副ベース層
BL2、BLA2、BLB2 第2の副ベース層
BL3、BLA3、BLB3 第3の副ベース層
BS、BSA、BSB ベースセグメント
GR、GR0、GRA、GRB 溝

Claims (9)

  1.  第1の導電型を有する第1の半導体層と、前記第1の半導体層上に形成された発光層を含む発光機能層と、前記発光機能層上に形成され、前記第1の半導体層とは反対の導電型を有する第2の半導体層とを有する半導体発光素子であって、
     前記発光層は、前記第1の半導体層から応力歪を受ける組成を有してランダムな網目状に形成された複数のベースセグメントを有するベース層と、前記ベース層上に形成された少なくとも1つの量子井戸層及び少なくとも1つの障壁層からなる量子井戸構造層と、を有し、
     前記ベース層は、第1の副ベース層と、前記第1の副ベース層を前記複数のベースセグメント毎に区画するトレンチと、前記第1の副ベース層を埋め込んで形成された第2の副ベース層とを有することを特徴とする半導体発光素子。
  2.  前記第1の半導体層はGaNの組成を有し、
     前記少なくとも1つの量子井戸層の各々はInGaNの組成を有し、
     前記第1の副ベース層はAlGaNの組成を有し、前記第2の副ベース層は前記第1の副ベース層以上のAl組成を有するAlGaNからなることを特徴とする請求項1に記載の半導体発光素子。
  3.  前記トレンチは、前記第1の副ベース層の表面から前記第1の半導体層内に至る深さで形成されていることを特徴とする請求項1又は2に記載の半導体発光素子。
  4.  前記ベース層は、前記第1の半導体層と前記第1の副ベース層との間に形成された第3の副ベース層を有し、
     前記トレンチは、前記第1の副ベース層の表面から前記第3の副ベース層内に至る深さで形成されていることを特徴とする請求項1又は2に記載の半導体発光素子。
  5.  前記第2の副ベース層は、AlNの組成を有することを特徴とする請求項1乃至4のいずれか1つに記載の半導体発光素子。
  6.  前記発光機能層は、複数の前記発光層が積層された構造を有していることを特徴とする請求項4又は5に記載の半導体発光素子。
  7.  前記複数の前記発光層の各々における前記ベース層の各々は、互いに組成が異なることを特徴とする請求項6に記載の半導体発光素子。
  8.  基板上に第1の導電型を有する第1の半導体層を形成する工程と、
     前記第1の半導体層上に、前記第1の半導体から応力歪を受ける組成を有してランダムな網目状に形成された溝を有する第1の副ベース層を形成する工程と、
     前記溝を除去するトレンチを形成する工程と、
     前記第1の副ベース層を埋め込むように第2の副ベース層を形成する工程と、
     前記第2の副ベース層上に、少なくとも1つの量子井戸構造層及び少なくとも1つの障壁層からなる量子井戸構造層を形成する工程と、
     前記量子井戸構造層上に、前記第1の導電型とは反対の第2の導電型を有する第2の半導体層を形成する工程と、を含むことを特徴とする半導体発光素子の製造方法。
  9.  前記第1の半導体層はGaNの組成を有し、
     前記少なくとも1つの量子井戸層の各々はInGaNの組成を有し、
     前記第1の副ベース層はAlGaNの組成を有し、
     前記トレンチを形成する工程は、前記第1の副ベース層にH2ガスを用いたエッチングを行う工程を含むことを特徴とする請求項8に記載の半導体発光素子の製造方法。
PCT/JP2016/058676 2015-03-23 2016-03-18 半導体発光素子及びその製造方法 WO2016152772A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16768675.7A EP3276676B1 (en) 2015-03-23 2016-03-18 Semiconductor light-emitting element and method of manufacturing the same
US15/561,028 US10193021B2 (en) 2015-03-23 2016-03-18 Semiconductor light-emitting element, and manufacturing method for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015059260A JP6651167B2 (ja) 2015-03-23 2015-03-23 半導体発光素子及びその製造方法
JP2015-059260 2015-03-23

Publications (1)

Publication Number Publication Date
WO2016152772A1 true WO2016152772A1 (ja) 2016-09-29

Family

ID=56978493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058676 WO2016152772A1 (ja) 2015-03-23 2016-03-18 半導体発光素子及びその製造方法

Country Status (4)

Country Link
US (1) US10193021B2 (ja)
EP (1) EP3276676B1 (ja)
JP (1) JP6651167B2 (ja)
WO (1) WO2016152772A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6433246B2 (ja) 2014-11-07 2018-12-05 スタンレー電気株式会社 半導体発光素子
EP3252873B1 (en) 2016-06-02 2019-07-24 TE Connectivity Germany GmbH Lubricated contact element and method for production thereof
KR102320022B1 (ko) * 2017-03-09 2021-11-02 서울바이오시스 주식회사 반도체 발광 소자
WO2023122589A2 (en) 2021-12-22 2023-06-29 Nautilus Subsidiary, Inc. Systems and methods for carrying out highly multiplexed bioanalyses
CN116454186A (zh) * 2023-06-15 2023-07-18 江西兆驰半导体有限公司 发光二极管外延片及其制备方法、发光二极管

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093682A (ja) * 2003-09-17 2005-04-07 Toyoda Gosei Co Ltd GaN系半導体発光素子及びその製造方法
JP2008053608A (ja) * 2006-08-28 2008-03-06 Stanley Electric Co Ltd 窒化物半導体結晶ないしそれを用いた発光素子及びその製造方法
JP2008199016A (ja) * 2007-02-09 2008-08-28 Koga Koden Kofun Yugenkoshi 発光素子のエピタキシャル構造
JP2009124149A (ja) * 2007-11-14 2009-06-04 Advanced Optoelectronic Technology Inc Iii族元素窒化物半導体発光デバイス及びその作成方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6608330B1 (en) 1998-09-21 2003-08-19 Nichia Corporation Light emitting device
JP4047150B2 (ja) 2002-11-28 2008-02-13 ローム株式会社 半導体発光素子
US20070145386A1 (en) 2004-12-08 2007-06-28 Samsung Electro-Mechanics Co., Ltd. Semiconductor light emitting device and method of manufacturing the same
TWI247439B (en) 2004-12-17 2006-01-11 Genesis Photonics Inc Light-emitting diode device
KR100691177B1 (ko) 2005-05-31 2007-03-09 삼성전기주식회사 백색 발광소자
JP2008071805A (ja) 2006-09-12 2008-03-27 Institute Of National Colleges Of Technology Japan 複数種の蛍光体を2種類以上の半導体発光素子上に塗布した多波長発光装置。
JP2010510661A (ja) 2006-11-15 2010-04-02 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 複数の抽出器による高い光抽出効率の発光ダイオード(led)
KR100809229B1 (ko) 2006-11-20 2008-03-05 삼성전기주식회사 질화물 반도체 발광 소자 및 제조방법
JP5050574B2 (ja) 2007-03-05 2012-10-17 住友電気工業株式会社 Iii族窒化物系半導体発光素子
JP2010232597A (ja) 2009-03-30 2010-10-14 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子及びその製造方法
JP2011249460A (ja) 2010-05-25 2011-12-08 Meijo University 白色発光ダイオード
CN108198749A (zh) 2010-11-04 2018-06-22 皇家飞利浦电子股份有限公司 基于结晶弛豫结构的固态发光器件
JP2012169383A (ja) 2011-02-11 2012-09-06 Toyoda Gosei Co Ltd Iii族窒化物半導体発光素子およびその製造方法
CN104094419A (zh) 2012-01-31 2014-10-08 索泰克公司 具有电荷载流子的改进分布的光敏器件及其形成方法
KR20130106690A (ko) 2012-03-20 2013-09-30 삼성전자주식회사 백색 발광 다이오드
US9401453B2 (en) 2012-05-24 2016-07-26 The University Of Hong Kong White nanoLED without requiring color conversion
US9024292B2 (en) 2012-06-02 2015-05-05 Xiaohang Li Monolithic semiconductor light emitting devices and methods of making the same
US9318600B2 (en) * 2013-04-16 2016-04-19 Panasonic Intellectual Property Management Co., Ltd. Silicon carbide semiconductor device and method for manufacturing same
WO2014181558A1 (ja) * 2013-05-09 2014-11-13 国立大学法人東京大学 発光ダイオード素子およびその製造方法
CN103746052B (zh) 2013-12-27 2016-08-17 太原理工大学 一种InGaN基多量子阱结构及其制备方法
KR102212561B1 (ko) * 2014-08-11 2021-02-08 삼성전자주식회사 반도체 발광 소자 및 반도체 발광 소자 패키지
JP6457784B2 (ja) 2014-11-07 2019-01-23 スタンレー電気株式会社 半導体発光素子
CN105355741B (zh) 2015-11-02 2017-09-29 厦门市三安光电科技有限公司 一种led外延结构及制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093682A (ja) * 2003-09-17 2005-04-07 Toyoda Gosei Co Ltd GaN系半導体発光素子及びその製造方法
JP2008053608A (ja) * 2006-08-28 2008-03-06 Stanley Electric Co Ltd 窒化物半導体結晶ないしそれを用いた発光素子及びその製造方法
JP2008199016A (ja) * 2007-02-09 2008-08-28 Koga Koden Kofun Yugenkoshi 発光素子のエピタキシャル構造
JP2009124149A (ja) * 2007-11-14 2009-06-04 Advanced Optoelectronic Technology Inc Iii族元素窒化物半導体発光デバイス及びその作成方法

Also Published As

Publication number Publication date
US10193021B2 (en) 2019-01-29
EP3276676A1 (en) 2018-01-31
JP2016178268A (ja) 2016-10-06
EP3276676A4 (en) 2018-10-31
JP6651167B2 (ja) 2020-02-19
US20180062037A1 (en) 2018-03-01
EP3276676B1 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
JP6457784B2 (ja) 半導体発光素子
JP6433246B2 (ja) 半導体発光素子
JP6433247B2 (ja) 半導体発光素子
JP6433248B2 (ja) 半導体発光素子
WO2016152772A1 (ja) 半導体発光素子及びその製造方法
JP6605213B2 (ja) 半導体発光素子
JP2017220586A (ja) 半導体発光素子
JP6885675B2 (ja) 半導体発光素子
JP6552234B2 (ja) 半導体発光素子
KR101903359B1 (ko) 반도체 발광소자
JP2017126684A (ja) 半導体発光素子
JP6605214B2 (ja) 半導体発光素子
JP2016178267A (ja) 半導体発光素子
KR101479317B1 (ko) 낮은 휨값을 갖는 3d led 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768675

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016768675

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15561028

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE