[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016017260A1 - 半導体モジュール - Google Patents

半導体モジュール Download PDF

Info

Publication number
WO2016017260A1
WO2016017260A1 PCT/JP2015/065607 JP2015065607W WO2016017260A1 WO 2016017260 A1 WO2016017260 A1 WO 2016017260A1 JP 2015065607 W JP2015065607 W JP 2015065607W WO 2016017260 A1 WO2016017260 A1 WO 2016017260A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor module
circuit pattern
insulating layer
radiator
capacitor
Prior art date
Application number
PCT/JP2015/065607
Other languages
English (en)
French (fr)
Inventor
忠彦 佐藤
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2016538189A priority Critical patent/JP6354845B2/ja
Priority to CN201580003657.6A priority patent/CN105874596B/zh
Priority to DE112015000245.6T priority patent/DE112015000245T5/de
Publication of WO2016017260A1 publication Critical patent/WO2016017260A1/ja
Priority to US15/200,746 priority patent/US9865529B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49568Lead-frames or other flat leads specifically adapted to facilitate heat dissipation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/053Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
    • H01L23/057Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body the leads being parallel to the base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/06Containers; Seals characterised by the material of the container or its electrical properties
    • H01L23/08Containers; Seals characterised by the material of the container or its electrical properties the material being an electrical insulator, e.g. glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • H01L23/49506Lead-frames or other flat leads characterised by the die pad an insulative substrate being used as a diepad, e.g. ceramic, plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/4952Additional leads the additional leads being a bump or a wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/49524Additional leads the additional leads being a tape carrier or flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49589Capacitor integral with or on the leadframe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/4901Structure
    • H01L2224/4903Connectors having different sizes, e.g. different diameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • H01L23/49844Geometry or layout for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5386Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration

Definitions

  • the present invention relates to a semiconductor module, and more particularly to a semiconductor module (Power module) used in a power conversion device such as an inverter device for driving a motor or a DC-DC converter device.
  • a semiconductor module Power module
  • a power conversion device such as an inverter device for driving a motor or a DC-DC converter device.
  • a semiconductor module used in a power conversion apparatus integrates a plurality of power semiconductor element chips for power conversion in one package, and performs circuit wiring suitable for a desired application inside the package, thereby making the entire application apparatus Contributes to miniaturization of
  • an IPM Intelligent Power Module
  • a driver for driving a power semiconductor element and a control IC having a function of detecting and protecting an abnormal state such as an overcurrent
  • Patent Document 1 the structural example of the semiconductor module which comprised the inverter apparatus which drives a three-phase alternating current motor is disclosed.
  • FIG. 12 is a circuit diagram showing an example of an inverter device using a conventional semiconductor module
  • FIG. 13 is a plan view showing a configuration example of a conventional semiconductor module
  • FIG. 14 is a cross-sectional view showing a configuration example of a conventional semiconductor module
  • 15 is a cross-sectional view showing an example of mounting a conventional semiconductor module.
  • the conventional semiconductor module 100 includes three sets of upper and lower arms as shown in FIG. 12, and constitutes a three-phase inverter circuit.
  • This semiconductor module 100 uses IGBT (Insulated Gate Bipolar Transistor) and FWD (Free Wheeling Diode) as power semiconductor elements.
  • IGBT Insulated Gate Bipolar Transistor
  • FWD Free Wheeling Diode
  • the first upper and lower arms are configured by connecting the IGBTs 101 and FWDs 102 connected in reverse parallel and the IGBTs 103 and FWD 104 connected in reverse parallel in series.
  • the second upper and lower arm portions are configured by serially connecting IGBTs 107 and FWDs 108 connected in reverse parallel with IGBTs 105 and FWD 106 connected in reverse parallel.
  • the third upper and lower arm portions are configured by serially connecting IGBTs 109 and FWDs 112 connected in reverse parallel with IGBTs 109 and FWDs 110 connected in reverse parallel.
  • the collector terminals of the IGBTs 101, 105, and 109 in the first to third upper and lower arm portions are connected to the power source positive terminal P, and the emitter terminals of the IGBTs 103, 107, and 111 in the first to third upper and lower arm portions are connected to the power source negative electrode. Connected to terminal N.
  • the midpoint of each of the first to third upper and lower arm portions is connected to main current output terminals U, V, and W.
  • the main current output terminals U, V, and W are connected to input terminals of corresponding phases of the motor 120.
  • description of the control ICs that control the IGBTs 101 and 103, the IGBTs 105 and 107, and the IGBTs 109 and 111 is omitted.
  • two capacitors 131 and 132 connected in series are connected between a power supply positive terminal P and a power supply negative terminal N, and a common connection point of these capacitors 131 and 132 is the casing of the inverter device. Is connected to the ground.
  • the configuration of the semiconductor module 100 is such that six circuit patterns 141 are formed on an AL (aluminum) insulating substrate 140, and the IGBT chip 142 and the FWD are formed on each circuit pattern 141.
  • a chip 143 is mounted.
  • the circuit blocks of the AL insulating substrate 140, the circuit pattern 141, the IGBT chip 142, and the FWD chip 143 are bonded to the lower surface so as to close the central opening of the terminal case 150.
  • a control IC 152 is mounted on a lead terminal (lead frame) 151 inserted when the terminal case 150 is molded.
  • the lead wire 151 a and the control IC 152 and the control IC 152 and the IGBT chip 142 are electrically connected by the bonding wires 153.
  • the bonding wires 154 are electrically connected between the IGBT chip 142 and the FWD chip 143 and between the FWD chip 143 and the lead terminal 151b.
  • electrical connection is made between the circuit pattern 141 and the lead terminal 151 b and between the control IC 152 and the sense emitter terminal of the IGBT chip 142.
  • the terminal case 150 is filled with the resin 160, and the circuit block, the control IC 152, and the bonding wires 153 and 154 are resin-sealed.
  • the heat dissipating body 113 is bonded to the surface opposite to the surface on which the circuit pattern 141 is formed.
  • the heat dissipating body 113 is for radiating heat generated by the IGBT chip 142 and the FWD chip 143 to the outside.
  • the semiconductor module 100 is attached to a heat radiator 170, for example, as shown in FIG.
  • the semiconductor module 100 is arranged such that the heat dissipating body 113 contacts the heat dissipator 170 through the thermal compound 171.
  • the semiconductor module 100 is also mounted on a printed circuit board 180 on which capacitors 131 and 132 are mounted.
  • the printed circuit board 180 is fixed to the heat radiator 170 by screws 190.
  • the screw 190 electrically connects the circuit pattern 181 of the common connection portion of the capacitors 131 and 132 and the radiator 170, the common connection point of the capacitors 131 and 132 is the radiator 170 or the radiator 170. It is grounded by connecting to the case that also serves as the
  • the control IC 152 can control the motor 120 to a desired rotational speed by switching the IGBTs 101 and 103, the IGBTs 105 and 107, and the IGBTs 109 and 111 at an arbitrary timing. Noise generated during this switching control is bypassed by the capacitors 131 and 132 and suppressed by being grounded. Hereinafter, this grounding is referred to as chassis ground.
  • the semiconductor module 100 has been described by taking as an example the case where the power semiconductor element is formed of an IGBT.
  • a power transistor or MOSFET Metal Oxide Semiconductor Semiconductor Field Field Effect Transistor
  • MOSFET Metal Oxide Semiconductor Semiconductor Field Field Effect Transistor
  • the heat radiating body is electrically insulated from the circuit block in a direct current by the AL insulating substrate.
  • the circuit pattern is capacitively coupled to the heat radiating body via the AL insulating substrate (by the parasitic capacitance 114 in FIG. 12)
  • the heat radiating body is caused by capacitive coupling.
  • the radiation noise increases by changing the potential of.
  • the heat radiating body and the housing are electrically connected, the noise current accompanying the potential change of the heat radiating body is returned to the module through the housing.
  • the present invention has been made in view of these points, and an object thereof is to provide a semiconductor module in which the noise current loop is minimized and the noise suppression effect is increased.
  • an electrical insulating layer, a plurality of circuit patterns formed of a conductive plate or foil on one surface of the electrical insulating layer, and the circuit pattern are mounted.
  • a semiconductor module including a circuit block having a power semiconductor and a heat radiator formed of a conductive plate on the other surface of the electrically insulating layer. This semiconductor module is characterized in that at least one circuit pattern penetrates an electrical insulating layer by a capacitor and is electrically connected to a heat radiator.
  • the noise current loop is minimized by arranging the capacitor so that the circuit pattern and the radiator are electrically connected through the electrical insulating layer.
  • the semiconductor module having the above configuration has an advantage that the noise suppression effect can be increased because the noise current loop is minimized. Further, since the semiconductor module itself has a noise suppressing effect, it is possible to easily realize downsizing and low noise of the inverter device without adding / changing any process during assembly.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. It is a figure which shows the structural example of the semiconductor module which concerns on 2nd Embodiment, Comprising: (A) is a top view of a semiconductor module, (B) is a figure which shows the expanded cross section of the B section in (A).
  • FIG. 7 is a circuit diagram showing an example of a secondary side circuit of a DC-DC converter using a semiconductor module, in which (A) shows a circuit using a conventional semiconductor module, and (B) shows a sixth embodiment; The circuit using the semiconductor module which concerns on is shown. It is a circuit diagram which shows an example of the inverter apparatus using the conventional semiconductor module. It is a top view which shows the structural example of the conventional semiconductor module. It is sectional drawing which shows the structural example of the conventional semiconductor module. It is sectional drawing which shows the example of attachment of the conventional semiconductor module.
  • FIG. 1 is a circuit diagram showing an example of an inverter device using the semiconductor module of the present invention.
  • the semiconductor module 1 according to the present invention includes three sets of upper and lower arm portions between a power supply positive terminal P and a power supply negative terminal N, and constitutes a three-phase inverter circuit.
  • an IGBT is used as a power semiconductor element for switching.
  • the first upper and lower arm portions have IGBT11, FWD12, IGBT13 and FWD14.
  • the power supply positive terminal P is connected to the collector terminal of the IGBT 11 and the cathode terminal of the FWD 12
  • the power supply negative terminal N is connected to the emitter terminal of the IGBT 13 and the anode terminal of the FWD 14.
  • the emitter terminal of the IGBT 11, the anode terminal of the FWD 12, the collector terminal of the IGBT 13, and the cathode terminal of the FWD 14 are connected together, and are also connected to the main current output terminal U.
  • the second upper and lower arm part has IGBT15, FWD16, IGBT17 and FWD18.
  • the power source positive terminal P is connected to the collector terminal of the IGBT 15 and the cathode terminal of the FWD 16
  • the power source negative terminal N is connected to the emitter terminal of the IGBT 17 and the anode terminal of the FWD 18.
  • the emitter terminal of the IGBT 15, the anode terminal of the FWD 16, the collector terminal of the IGBT 17, and the cathode terminal of the FWD 18 are connected together, and are also connected to the main current output terminal V.
  • the third upper and lower arm part has an IGBT 19, FWD 20, IGBT 21 and FWD 22.
  • the power source positive terminal P is connected to the collector terminal of the IGBT 19 and the cathode terminal of the FWD 20, and the power source negative terminal N is connected to the emitter terminal of the IGBT 21 and the anode terminal of the FWD 22.
  • the emitter terminal of the IGBT 19, the anode terminal of the FWD 20, the collector terminal of the IGBT 21, and the cathode terminal of the FWD 22 are connected together and are also connected to the main current output terminal W.
  • the main current output terminals U, V, and W of the semiconductor module 1 are connected to the corresponding phase input terminals of the motor 30, respectively.
  • one terminal of the capacitor 23 is further connected to the power supply positive terminal P to which the maximum potential is applied, and one terminal of the capacitor 24 is connected to the power supply negative terminal N to which the minimum potential is applied. Yes.
  • the other terminals of the capacitors 23 and 24 are connected together and electrically connected to the heat radiating body 25 of the semiconductor module 1.
  • the common connection point of the capacitors 23 and 24 penetrates the electrical insulating layer in the semiconductor module 1 and is electrically connected to the heat radiator 25 to minimize the noise current loop.
  • a capacitor 26 is connected between the circuit pattern 26 a on which the IGBT 13 and the FWD 14 are mounted and the radiator 25.
  • the capacitor 27 is connected between the circuit pattern 27a on which the IGBT 17 and the FWD 18 are mounted and the radiator 25, and the capacitor 28 is connected between the circuit pattern 28a on which the IGBT 21 and the FWD 22 are mounted and the radiator 25. It is connected.
  • the capacitors 26, 27, and 28 penetrate the electrical insulating layer in the semiconductor module 1 and are electrically connected to the heat radiator 25 to minimize the noise current loop.
  • the IGBTs 13, 17, and 21 that perform the switching operation are mounted, and the circuit patterns 26a, 27a, and 28a having a large potential change (dv / dt) are connected to the radiator 25 through a minimal noise current loop.
  • circuit patterns 26a, 27a, 28a on which the IGBTs 13, 17, 21 are mounted and the circuit patterns (not shown) on which the IGBTs 11, 15, 19 are mounted are connected to the radiator 25 and the parasitic capacitance 29 via an electrical insulating layer. Are capacitively coupled.
  • the noise current of the upper arm portion is a circuit pattern (not shown) in which the IGBTs 11, 15, and 19 are mounted via the parasitic capacitance 29, the radiator 25 and the capacitor 23. Flow through a very small loop.
  • Two types of noise currents flow in the lower arm portions of the first to third upper and lower arm portions.
  • the first noise current is a minimum flowing through the circuit pattern 26a via the parasitic capacitance 29, the heat radiator 25, the capacitor 24, and the potential of the power supply negative terminal N. Flow through the loop.
  • the second noise current flows through a minimal loop that flows to the circuit pattern 26 a via the parasitic capacitance 29, the heat radiator 25, and the capacitor 26.
  • the capacitors 23, 24, 26, 27, and 28 in the semiconductor module 1 do not necessarily have to be mounted all, but are mounted as necessary, such as at a particularly high noise level. .
  • the radiator 25 of the semiconductor module 1 is further attached to the casing of the inverter device, so that noise bypassed by the capacitors 23, 24, 26, 27, and 28 flows to the chassis ground.
  • FIG. 2 is a plan view showing a configuration example of the semiconductor module according to the first embodiment
  • FIG. 3 is a cross-sectional view taken along the line AA in FIG.
  • the semiconductor module 2 has an AL insulating substrate 41 as an electrically insulating layer, a circuit pattern 42 is formed on the AL insulating substrate 41, and power is supplied on the circuit pattern 42.
  • Semiconductor chips 43 and 44 and capacitors 45 and 46 are mounted.
  • the AL insulating substrate 41 has a radiator 47 bonded to the surface opposite to the surface on which the circuit pattern 42 is formed.
  • the circuit block having the AL insulating substrate 41, the circuit pattern 42, the power semiconductor chips 43 and 44, and the capacitors 45 and 46 is accommodated in a terminal case 48 made of PPS (Poly Phenylene Sulfide) resin and sealed with a resin 49 such as epoxy. Stopped.
  • PPS Poly Phenylene Sulfide
  • the AL insulating substrate 41 can be an organic insulating layer made of a combination of aluminum having a high thermal conductivity and an insulating resin having a low thermal resistance, such as epoxy and liquid crystal polymer.
  • the electrical insulating layer can be an inorganic insulating layer made of ceramic such as silicon nitride, and a DCB (Direct Copper Bond) substrate in which copper foil is bonded to both surfaces of the inorganic insulating layer is used. You can also.
  • the circuit pattern 42 is generated by etching a conductive plate or foil formed on one surface of the AL insulating substrate 41 or by bonding a conductive plate to one surface of the AL insulating substrate 41. Is done.
  • the power semiconductor chip 43 can be the IGBTs 11, 13, 15, 17, 19, and 21 shown in FIG. 1, and the power semiconductor chip 44 is the FWD 12, 14, 16, 18, and 20 shown in FIG. , 22.
  • the capacitors 45 and 46 may be the capacitors 23 and 24 shown in FIG.
  • the radiator 47 corresponds to the radiator 25 shown in FIG. 1, and is made of a copper or aluminum plate.
  • one terminal of the capacitors 45 and 46 is common to the circuit pattern 42 a formed on the AL insulating substrate 41 approximately at the center in the long side direction of the radiator 47 having a rectangular shape. It is installed.
  • the circuit pattern 42 a is electrically connected to the radiator 47 by press-fitting conductive pins 50 into holes formed in the circuit pattern 42 a, the AL insulating substrate 41, and the radiator 47.
  • the change in the potential of the circuit pattern 42a and the noise current that has flowed to the radiator 47 due to the parasitic capacitance 29 are returned from the pin 50 and the capacitors 45 and 46 to the circuit pattern 42 having the same potential as the power supply positive terminal P and the power supply negative terminal N. Therefore, it becomes a very small noise current loop.
  • FIGS. 4A and 4B are diagrams illustrating a configuration example of the semiconductor module according to the second embodiment, in which FIG. 4A is a plan view of the semiconductor module, and FIG. 4B is an enlarged cross-sectional view of a portion B in FIG. is there.
  • FIG. 4 the same or corresponding components as those shown in FIGS. 2 and 3 are denoted by the same reference numerals.
  • the semiconductor module 3 according to the second embodiment electrically connects the capacitors 45 and 46 and the radiator 47 with a minimal noise current loop.
  • the means have been changed. That is, the opening 51 is formed in the AL insulating substrate 41 at the substantially center in the long side direction of the heat sink 47 having a rectangular shape, and the surface of the heat sink 47 that contacts the AL insulating substrate 41 is exposed.
  • the AL insulating substrate 41 is also formed with circuit patterns 42b and 42c adjacent to the opening 51 in the direction of the long side of the radiator 47. Each of the circuit patterns 42b and 42c has one of capacitors 45 and 46, respectively. Terminals are joined.
  • the circuit patterns 42 b and 42 c are connected to the heat radiating body 47 through the opening 51 by the bonding wire 52.
  • the bonding wire 52 is a copper wire, an aluminum wire or a gold wire.
  • one terminal of the capacitors 45 and 46 is electrically connected to the heat radiating body 47 by the bonding wire 52 in the immediate vicinity thereof.
  • the circuit pattern having the same potential as that of the power supply positive terminal P and the power supply negative terminal N from the bonding wire 52 and the capacitors 45 and 46 is caused by the potential change of the circuit patterns 42b and 42c and the noise current flowing to the heat radiating body 47 by the parasitic capacitance 29. Since it is returned to 42, it becomes a minimal noise current loop.
  • FIG. 5 is a view showing a modification of the means for electrically connecting the capacitor to the radiator with a very small noise current loop.
  • FIG. 5A shows a first modification of the connection means, and FIG. The 2nd modification of a means is shown.
  • FIG. 5 the same or corresponding components as those shown in FIGS. 3 and 4 are denoted by the same reference numerals.
  • the connecting means is realized by the conductive screw 53 as shown in FIG. That is, the common circuit pattern 42a to which one terminal of the capacitors 45 and 46 is connected is formed by screwing the screw 53 into the heat radiating body 47 through the circuit pattern 42a and the hole formed in the AL insulating substrate 41. , Electrically connected to the radiator 47.
  • the second modification of the connecting means is provided with a hole penetrating through the AL insulating substrate 41 and the heat radiating body 47, and plating 54 is provided on the inner wall of the hole. I try to give it. By this plating process, the circuit pattern 42 a is electrically connected to the radiator 47 through the plating 54.
  • FIG. 6 is a diagram illustrating a first configuration example of a semiconductor module according to the third embodiment
  • FIG. 7 is a diagram illustrating a second configuration example of the semiconductor module according to the third embodiment. 6 and 7, the same or corresponding components as those shown in FIG. 2 are denoted by the same reference numerals.
  • the position of the pin 50 that is electrically connected to the radiator 47 is different from that of the terminal case 48 or the radiator 47. It has changed to the approximate center of the long side direction and the short side direction.
  • the first configuration example shown in FIG. 6 is applied to the three-phase inverter circuit shown in FIG. 1, and the other end of the capacitor 45 whose one end is connected to the power supply negative terminal N is added to the circuit pattern 42a. Is connected, and the other end of the capacitor 46 having one end connected to the power supply positive terminal P is connected.
  • the noise current that has flowed to the radiator 47 due to the potential change of the circuit pattern 42 a and the parasitic capacitance 29 is generated from the pin 50 and the capacitors 45 and 46 from the substantially central position of the radiator 47 to the power supply positive terminal P and the power supply negative terminal N. Since it is returned to the circuit pattern 42 of the same potential, it becomes a minimal noise current loop. Further, the noise current flows to the chassis ground, which is a stable potential, through the radiator 47.
  • the semiconductor module 4a according to the third embodiment is applied to a two-phase inverter circuit having two output terminals OUT1 and OUT2, and the lead terminals are arranged in two directions. It is the one that was put out. Also in this semiconductor module 4a, the other end of the capacitor 45 whose one end is connected to the power source negative terminal N is connected to the circuit pattern 42a, and the other end of the capacitor 46 whose one end is connected to the power source positive terminal P is connected. Yes.
  • the circuit pattern 42 a is electrically connected to the radiator 47 by a pin 50 at a substantially central position of the radiator 47.
  • the noise current that has flowed to the radiator 47 due to the potential change of the circuit pattern 42a and the parasitic capacitance 29 is generated from the pin 50, the capacitors 45 and 46 from the approximate center position of the radiator 47, Since it is returned to the circuit pattern 42 of the same potential, it becomes a minimal noise current loop. Further, the noise current flows to the chassis ground, which is a stable potential, through the radiator 47.
  • FIG. 8 is a diagram illustrating a configuration example of a semiconductor module according to the fourth embodiment.
  • the same or corresponding components as those shown in FIG. 7 are denoted by the same reference numerals.
  • the semiconductor module 5 according to the fourth embodiment is different from the semiconductor modules 2, 3, 4 and 4a according to the first to third embodiments by changing a circuit pattern in which noise is bypassed. Yes. That is, in the semiconductor modules 2, 3, 4 and 4a according to the first to third embodiments, the circuit pattern 42 connected to the power source negative terminal N and the power source positive terminal P is bypassed by the capacitors 45 and 46. ing. In contrast, in the semiconductor module 5 according to the fourth embodiment, the circuit pattern 42d having a large potential change (dv / dt) in the circuit block is bypassed by the capacitors 55 and 56.
  • a circuit pattern 42d having a large potential change (dv / dt) is a portion on which the power semiconductor chips 43 and 44 of the lower arm portion are mounted, and the capacitors 55 and 56 are connected to the capacitors 26, 27 and 28 shown in FIG. Corresponding.
  • the noise current that has flowed to the radiator 47 due to the potential change (dv / dt) of the circuit pattern 42 d and the parasitic capacitance 29 is supplied from the pin 50 and the capacitors 45, 46 to the power supply positive terminal P and the power supply negative terminal N. Is returned to the circuit pattern 42 having the same potential as the first and second circuits, so that a minimal noise current loop is obtained.
  • FIG. 9 is a diagram illustrating a configuration example of a semiconductor module according to the fifth embodiment.
  • the same or corresponding components as those shown in FIG. 4 are given the same reference numerals.
  • the semiconductor module 3 according to the second embodiment shown in FIG. 4 is electrically connected to the radiator 47 at the approximate center in the long side direction of the radiator 47.
  • the electrical connection to the heat radiating body 47 is made at the approximate center of the heat radiating body 47.
  • the AL insulating substrate 41 is provided with an opening 51 in the vicinity of the center of the radiator 47, and the circuit patterns 42 b and 42 c on which the capacitors 45 and 46 are mounted radiate heat by the bonding wire 52 through the opening 51. It is electrically connected to the body 47.
  • the noise current that has flowed to the heat radiating body 47 due to the potential change of the circuit patterns 42b and 42c and the parasitic capacitance 29 is caused by the bonding wire 52 and the capacitors 45 and 46 from the power supply positive terminal P and the power supply negative terminal Since it is returned to the circuit pattern 42 having the same potential as the terminal N, a minimal noise current loop is formed. Further, the noise current flows to the chassis ground, which is a stable potential, through the radiator 47.
  • the capacitors 45, 46, 55, and 56 are disposed at the approximate center of the terminal case 48 or the radiator 47. Connected to. Thereby, when attaching such semiconductor modules 4, 4a, 5, and 6 in the state pressed against a heat radiator or a housing
  • a specific mounting example in which the effect is expected will be described.
  • the outer surface of the radiator 47 bulges out within the operating temperature range due to the effect that the resin 49 cures and shrinks when the circuit block is sealed with resin. It is desirable that the shape is a straight warp that is a convex shape.
  • FIG. 10A and 10B are diagrams showing mounting examples of the semiconductor module according to the third to fifth embodiments.
  • FIG. 10A is a first mounting example
  • FIG. 10B is a second mounting example
  • FIG. A third mounting example (D) shows a fourth mounting example
  • (E) shows a fifth mounting example.
  • the warpage of the circuit block and the heat radiating body 47 is exaggerated for easy understanding.
  • the semiconductor module 4 according to the third embodiment is representatively shown as a semiconductor module pressed against the radiator 57 (or the housing).
  • the 10A shows a case where the semiconductor module 4 is directly pressed against the radiator 57.
  • the first mounting example shown in FIG. the location where the semiconductor module 4 is electrically connected to the radiator 57 is one location in the substantially central portion of the semiconductor module 4. For this reason, when the semiconductor module 4 is fixed to the radiator 57 with four screws, the electrical connection location between the semiconductor module 4 and the radiator 57 is suppressed from being changed depending on the degree of screw tightening. Less variation in characteristics.
  • FIG. 10B shows a case where a conductive thermal compound 58 is interposed between the semiconductor module 4 and the radiator 57.
  • the second mounting example shown in FIG. the entire heat dissipation body 47 of the semiconductor module 4 is electrically connected via the conductive thermal compound 58.
  • the semiconductor module 4 in which the thickness of the conductive thermal compound 58 is the thinnest. Is substantially electrically connected. For this reason, even if there are variations in the screw tightening of the four screws for fixing the semiconductor module 4 to the radiator 57, the good electrical connection location is only at the substantially central portion of the semiconductor module 4, so that the noise characteristics vary. Less.
  • FIG. 10C shows a case where a nonconductive thermal compound 59 is interposed between the semiconductor module 4 and the radiator 57.
  • the third mounting example shown in FIG. the heat radiator 57 has a circular hole 60 recessed at a position corresponding to the substantially central portion of the semiconductor module 4.
  • FIG. 10D shows a case where a non-conductive thermal compound 59 is interposed between the semiconductor module 4 and the radiator 57.
  • the radiator 57 has a circular hole 60 recessed at a position corresponding to the substantially central portion of the semiconductor module 4, and a conductive leaf spring 61 is disposed in the hole 60.
  • the fifth mounting example shown in FIG. 10E shows a case where a nonconductive thermal compound 59 is interposed between the semiconductor module 4 and the radiator 57.
  • the heat radiator 57 has a plurality of circular holes 60 recessed around the position corresponding to the substantially central portion of the semiconductor module 4, and the conductive lead rod 62 and the lead rod 62 are inserted into the holes 60.
  • a conductive coil spring 63 that biases in the direction of the semiconductor module 4 is disposed.
  • the heat dissipation body 47 of the semiconductor module 4 can maintain a good electrical connection with the heat dissipator 57 by the lead rod 62 and the coil spring 63 on the spherical surface, which is the outer surface thereof. Can be reduced.
  • FIG. 11 is a circuit diagram showing an example of a secondary side circuit of a DC-DC converter using a semiconductor module, where (A) shows a circuit using a conventional semiconductor module, and (B) shows a sixth circuit. 1 shows a circuit using a semiconductor module according to an embodiment.
  • the conventional semiconductor module 200 includes two diodes 201 and 202 and a radiator 203 as shown in FIG. Also in this semiconductor module 200, the circuit block is mounted with a circuit pattern formed on one surface of an insulating substrate, and diodes 201 and 202 are soldered to the circuit pattern. A radiator 203 is joined to the other surface of the insulating substrate with solder. Therefore, the circuit pattern on which the diodes 201 and 202 are mounted is capacitively coupled by the heat dissipating body 203 and the parasitic capacitance 204 through the insulating substrate. In addition, when the semiconductor module 200 is attached to the housing via, for example, a non-conductive thermal compound, the heat dissipating body 203 is capacitively coupled to the housing by the parasitic capacitance 205.
  • the secondary circuit of the DC-DC converter includes a transformer 210 that transforms an AC voltage into a predetermined voltage, a semiconductor module 200 that performs full-wave rectification, and a capacitor 220 that smoothes the rectified voltage.
  • the transformer 210 has two secondary windings 211 and 212, and a center tap portion in which these are connected in series is connected to the casing. Terminals at both ends of the secondary windings 211 and 212 are connected to anode terminals of the diodes 201 and 202, respectively.
  • the cathode terminals of the diodes 201 and 202 are connected to one end of the capacitor 220 and the output terminal, and the other end of the capacitor 220 is connected to the housing.
  • the transient component of the potential change generated in the secondary winding 211 of the transformer 210 is the parasitic capacitance 204 of the semiconductor module 200 and the parasitic capacitance between the radiator 203 and the housing.
  • a noise current loop 206 is formed by 205.
  • the parasitic capacitance 205 varies in connection points with the housing depending on the fixing method of the semiconductor module 200, so that individual differences in noise characteristics occur.
  • the transient component of the potential change of the electrodes corresponding to the cathode terminals of the diodes 201 and 202 is caused by the parasitic capacitance 204 of the semiconductor module 200, the parasitic capacitance 205 between the radiator 203 and the casing, the casing, and the capacitor 220. Flowing. At this time, a noise current loop 207 is formed in which noise generated in the semiconductor module 200 returns to the semiconductor module 200 via the housing and the capacitor 220.
  • the semiconductor module 7 includes two diodes 71 and 72 and a radiator 73 as shown in FIG. Also in this semiconductor module 7, the circuit block has a circuit pattern formed on one surface of the insulating substrate, and diodes 71 and 72 are mounted on the circuit pattern by soldering their cathode terminals. A heat radiator 73 is joined to the other surface of the insulating substrate with solder. Further, the circuit pattern to which the cathode terminals of the diodes 71 and 72 are connected is electrically connected to the heat radiating body 73 via the capacitor 74. This electrical connection method is performed by any one of the methods implemented in the first to fifth embodiments.
  • the electrical connection between the radiator 73 and the housing can be reliably performed by fixing the semiconductor module 7 to the housing using any one of the methods described in FIG.
  • the noise current flowing through the noise current loop 75 does not vary at the connection point with the housing due to the fixing method of the semiconductor module 7, so that individual differences in noise characteristics do not occur.
  • the secondary circuit of the DC-DC converter includes a transformer 80 that transforms an AC voltage into a predetermined voltage, a semiconductor module 7 that performs full-wave rectification, and a capacitor 90 that smoothes the rectified voltage.
  • the transformer 80 has two secondary windings 81 and 82, and a center tap portion in which these are connected in series is connected to the casing.
  • the terminals at both ends of the secondary windings 81 and 82 are connected to the anode terminals of the diodes 71 and 72, respectively.
  • the cathode terminals of the diodes 71 and 72 are connected to one end of the capacitor 90 and the output terminal, and the other end of the capacitor 90 is connected to the housing.
  • the circuit pattern of the cathode terminals of the diodes 71 and 72 is electrically connected to the heat radiator 73 by the capacitor 74. For this reason, the transient component of the potential change in the circuit pattern flows through the minimum noise current loop 77 due to the parasitic capacitance 76 and the capacitor 74 between the circuit pattern and the radiator 73.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

ノイズ電流ループを極小にしてノイズ抑制効果を大きくした半導体モジュールにする。半導体モジュール(2)は、AL絶縁基板(41)、このAL絶縁基板(41)の一方の面に形成された回路パターン(42,42a)および電力用半導体チップ(43,44)を有する回路ブロックと、AL絶縁基板(41)の他方の面に形成された放熱体(47)とを備えている。回路ブロック内の最大電位および最低電位が印加される回路パターン(42)は、コンデンサ(45,46)、回路パターン(42a)およびAL絶縁基板(41)を貫通して配置されたピン(50)を介して放熱体(47)と電気的に接続される。これにより、回路ブロック内の回路パターンの電位変化およびパターンと放熱体間の寄生容量によるノイズ電流は、コンデンサ(45,46)およびピン(50)を含む極小のノイズ電流ループを流れる。

Description

半導体モジュール
 本発明は半導体モジュールに関し、特にモータ駆動用インバータ装置やDC-DCコンバータ装置などの電力変換装置に用いられる半導体モジュール(Power Module)に関するものである。
 電力変換装置に用いられる半導体モジュールは、電力変換のための複数の電力用半導体素子のチップを1つのパッケージに集積し、所望のアプリケーションに適した回路配線をパッケージ内部で行うことにより、アプリケーション装置全体の小型化に貢献している。半導体モジュールは、さらに、電力用半導体素子を駆動するためのドライバや過電流などの異常状態を検出して保護する機能を備えた制御ICを搭載したIPM(Intelligent Power Module)が知られている(たとえば、特許文献1参照)。この特許文献1では、三相交流モータを駆動するインバータ装置を構成した半導体モジュールの構成例が開示されている。
 図12は従来の半導体モジュールを使用したインバータ装置の一例を示す回路図、図13は従来の半導体モジュールの構成例を示す平面図、図14は従来の半導体モジュールの構成例を示す断面図、図15は従来の半導体モジュールの取り付け例を示す断面図である。
 従来の半導体モジュール100は、図12に示したように、3組の上下アーム部を備え、三相のインバータ回路を構成している。この半導体モジュール100は、電力用半導体素子としてIGBT(Insulated Gate Bipolar Transistor)およびFWD(Free Wheeling Diode:還流ダイオード)を使用している。
 半導体モジュール100において、第1の上下アーム部は、逆並列接続したIGBT101およびFWD102と逆並列接続したIGBT103およびFWD104とを直列に接続して構成されている。第2の上下アーム部は、逆並列接続したIGBT105およびFWD106と逆並列接続したIGBT107およびFWD108とを直列に接続して構成されている。第3の上下アーム部は、逆並列接続したIGBT109およびFWD110と逆並列接続したIGBT111およびFWD112とを直列に接続して構成されている。第1ないし第3の上下アーム部のIGBT101,105,109のコレクタ端子は、電源正極端子Pに接続され、第1ないし第3の上下アーム部のIGBT103,107,111のエミッタ端子は、電源負極端子Nに接続されている。第1ないし第3の上下アーム部のそれぞれの中点は、主電流出力端子U,V,Wに接続されている。主電流出力端子U,V,Wは、モータ120の対応する相の入力端子に接続されている。なお、この回路図では、IGBT101,103、IGBT105,107およびIGBT109,111を制御する制御ICについては、記載を省略してある。
 この半導体モジュール100は、電源正極端子Pと電源負極端子Nとの間に、直列接続した2つのコンデンサ131,132が接続され、これらコンデンサ131,132の共通の接続点は、インバータ装置の筐体に接続されることで接地される。
 半導体モジュール100の構成は、図13および図14に示したように、AL(アルミニウム)絶縁基板140の上に6つの回路パターン141が形成され、それぞれの回路パターン141の上にIGBTチップ142およびFWDチップ143が搭載されている。このAL絶縁基板140、回路パターン141、IGBTチップ142およびFWDチップ143の回路ブロックは、端子ケース150の中央開口部を塞ぐように下面に接着されている。端子ケース150の成型時にインサートされたリード端子(リードフレーム)151には、制御IC152が搭載されている。この状態で、リード端子151aと制御IC152との間および制御IC152とIGBTチップ142との間がボンディングワイヤ153によって電気的に接続される。また、IGBTチップ142とFWDチップ143との間およびFWDチップ143とリード端子151bとの間がボンディングワイヤ154によって電気的に接続される。他にも、図13,14に示したように、回路パターン141とリード端子151bとの間および制御IC152とIGBTチップ142のセンスエミッタ端子との間の電気的接続が行われている。その後、端子ケース150に樹脂160が充填され、回路ブロック、制御IC152およびボンディングワイヤ153,154が樹脂封止される。
 AL絶縁基板140は、また、回路パターン141の形成面とは反対側の面に放熱体113が接合されている。この放熱体113は、IGBTチップ142およびFWDチップ143によって発熱された熱を外部に放熱するためのものである。
 この半導体モジュール100は、たとえば、図15に示したように、放熱器170に取り付けられる。すなわち、半導体モジュール100は、サーマルコンパウンド171を介して放熱体113が放熱器170に接触するように配置される。半導体モジュール100は、また、コンデンサ131,132が搭載されたプリント基板180に実装され、このプリント基板180は、ねじ190によって放熱器170に固定されている。このとき、ねじ190は、コンデンサ131,132の共通接続部分の回路パターン181と放熱器170とを電気的に接続しているので、コンデンサ131,132の共通接続点が放熱器170または放熱器170を兼ねた筐体に接続されることで接地される。
 以上の構成により、制御IC152がIGBT101,103、IGBT105,107およびIGBT109,111を任意のタイミングでスイッチング制御することによりモータ120を所望の回転数に制御することができる。このスイッチング制御のときに発生するノイズは、コンデンサ131,132によりバイパスされて、アースに落とされることで抑制される。以後、この接地をシャーシアースと称する。
 なお、ここでは、半導体モジュール100は、電力用半導体素子をIGBTで構成した場合を例にして説明した。しかし、電力用半導体素子に、パワートランジスタまたはMOSFET(Metal Oxide Semiconductor Field Effect Transistor)を使用しても、IGBTと同じように半導体モジュールを構成することができる。
特開2013-258321号公報
 従来の半導体モジュールにおいては、電力用半導体素子をスイッチング制御したときに発生するノイズは、外付けのコンデンサによりバイパスされて、アースに落とされることで抑制されている。また、従来の半導体モジュールでは、放熱体は、AL絶縁基板により回路ブロックに対して直流的には電気的に絶縁されている。しかしながら、従来の半導体モジュールでは、回路パターンがAL絶縁基板を介して放熱体と容量結合(図12の寄生容量114により)しているので、回路パターンに電位変化があれば、容量結合により放熱体の電位も変化することで放射ノイズが増大する。一方、放熱体と筐体とが電気的に接続されている場合、放熱体の電位変化に伴うノイズ電流は、筐体を介してモジュール内へ戻される。しかし、放熱体と筐体との間に絶縁性のサーマルコンパウンドが塗布されている場合、モジュールの押さえ方や放熱面の平坦度により、放熱体と筐体との間に容量結合(図12の寄生容量115)があったり、部分的に直接的な電気的接続箇所があったりする。このため、放熱体と筐体との間における電気的接続箇所が不定となるため、ノイズ特性に個体差が生じ易くなる。さらに、ノイズ電流をバイパスするコンデンサが半導体モジュールの外部で接続されている場合、この半導体モジュールを搭載する回路基板が大型になる他、図12に破線の矢印で示すように、ノイズ電流ループが大きくなり、ノイズ抑制効果が小さいという問題があった。
 本発明はこのような点に鑑みてなされたものであり、このノイズ電流ループを極小にしてノイズ抑制効果を大きくした半導体モジュールを提供することを目的とする。
 本発明では、上記の課題を解決するために、電気的絶縁層、この電気的絶縁層の一方の面に導電性の板または箔で形成された複数の回路パターンおよびこの回路パターンに搭載された電力用半導体を有する回路ブロックと、電気的絶縁層の他方の面に導電性の板で形成された放熱体とを備えた半導体モジュールが提供される。この半導体モジュールは、少なくとも1つの回路パターンがコンデンサにより電気的絶縁層を貫通して放熱体に電気的に接続されていることを特徴とする。
 このような半導体モジュールによれば、電気的絶縁層を貫通して回路パターンと放熱体とが電気的に接続されるようにコンデンサを配置したことで、ノイズ電流ループが極小になる。
 上記構成の半導体モジュールは、ノイズ電流ループが極小になるため、ノイズ抑制効果を大きくすることができるという利点がある。また、半導体モジュール自体にノイズ抑制効果があるので、組み立ての際に、何らかの工程を追加・変更することなく、容易にインバータ装置の小型化と低ノイズ化とを実現することができる。
 本発明の上記および他の目的、特徴および利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
本発明の半導体モジュールを使用したインバータ装置の一例を示す回路図である。 第1の実施の形態に係る半導体モジュールの構成例を示す平面図である。 図2のA-A矢視断面図である。 第2の実施の形態に係る半導体モジュールの構成例を示す図であって、(A)は半導体モジュールの平面図、(B)は(A)におけるB部の拡大断面を示す図である。 コンデンサを極小のノイズ電流ループで放熱体に電気的に接続する手段の変形例を示す図であって、(A)は接続手段の第1の変形例を示し、(B)は接続手段の第2の変形例を示している。 第3の実施の形態に係る半導体モジュールの第1の構成例を示す図である。 第3の実施の形態に係る半導体モジュールの第2の構成例を示す図である。 第4の実施の形態に係る半導体モジュールの構成例を示す図である。 第5の実施の形態に係る半導体モジュールの構成例を示す図である。 第3ないし第5の実施の形態に係る半導体モジュールの実装例を示す図であって、(A)は第1の実装例、(B)は第2の実装例、(C)は第3の実装例、(D)は第4の実装例、(E)は第5の実装例を示している。 半導体モジュールを使用したDC-DCコンバータの二次側回路の一例を示す回路図であって、(A)は、従来の半導体モジュールを使用した回路を示し、(B)は第6の実施の形態に係る半導体モジュールを使用した回路を示している。 従来の半導体モジュールを使用したインバータ装置の一例を示す回路図である。 従来の半導体モジュールの構成例を示す平面図である。 従来の半導体モジュールの構成例を示す断面図である。 従来の半導体モジュールの取り付け例を示す断面図である。
 以下、本発明の実施の形態について、インバータ装置に適用した場合を例に図面を参照して詳細に説明する。なお、各実施の形態は、矛盾のない範囲で複数の実施の形態を組み合わせて実施することができる。
 図1は本発明の半導体モジュールを使用したインバータ装置の一例を示す回路図である。
 本発明による半導体モジュール1は、電源正極端子Pと電源負極端子Nとの間に、3組の上下アーム部を備え、三相のインバータ回路を構成している。この半導体モジュール1では、スイッチング用の電力用半導体素子としてIGBTを使用している。
 第1の上下アーム部は、IGBT11、FWD12、IGBT13およびFWD14を有している。電源正極端子Pには、IGBT11のコレクタ端子とFWD12のカソード端子とが接続され、電源負極端子Nには、IGBT13のエミッタ端子とFWD14のアノード端子とが接続されている。IGBT11のエミッタ端子とFWD12のアノード端子とIGBT13のコレクタ端子とFWD14のカソード端子とは、ともに接続され、主電流出力端子Uにも接続されている。
 第2の上下アーム部は、IGBT15、FWD16、IGBT17およびFWD18を有している。電源正極端子Pには、IGBT15のコレクタ端子とFWD16のカソード端子とが接続され、電源負極端子Nには、IGBT17のエミッタ端子とFWD18のアノード端子とが接続されている。IGBT15のエミッタ端子とFWD16のアノード端子とIGBT17のコレクタ端子とFWD18のカソード端子とは、ともに接続され、主電流出力端子Vにも接続されている。
 第3の上下アーム部は、IGBT19、FWD20、IGBT21およびFWD22を有している。電源正極端子Pには、IGBT19のコレクタ端子とFWD20のカソード端子とが接続され、電源負極端子Nには、IGBT21のエミッタ端子とFWD22のアノード端子とが接続されている。IGBT19のエミッタ端子とFWD20のアノード端子とIGBT21のコレクタ端子とFWD22のカソード端子とは、ともに接続され、主電流出力端子Wにも接続されている。
 半導体モジュール1の主電流出力端子U,V,Wは、モータ30の対応する相の入力端子にそれぞれ接続されている。
 この半導体モジュール1では、さらに、最大電位が印加される電源正極端子Pにコンデンサ23の一方の端子が接続され、最小電位が印加される電源負極端子Nにコンデンサ24の一方の端子が接続されている。コンデンサ23,24の他方の端子は、ともに接続され、かつ、半導体モジュール1の放熱体25に電気的に接続されている。ここで、コンデンサ23,24の共通の接続点は、半導体モジュール1内にて電気的絶縁層を貫通して放熱体25に電気的に接続され、ノイズ電流ループを極小にしている。
 また、半導体モジュール1は、IGBT13およびFWD14を搭載している回路パターン26aと放熱体25との間にコンデンサ26が接続されている。同様に、IGBT17およびFWD18を搭載している回路パターン27aと放熱体25との間にコンデンサ27が接続され、IGBT21およびFWD22を搭載している回路パターン28aと放熱体25との間にコンデンサ28が接続されている。ここでも、コンデンサ26,27,28は、半導体モジュール1内にて電気的絶縁層を貫通して放熱体25に電気的に接続され、ノイズ電流ループを極小にしている。これにより、スイッチング動作をするIGBT13,17,21が搭載されて電位変化(dv/dt)の大きな回路パターン26a,27a,28aは、極小のノイズ電流ループで放熱体25に接続される。
 また、IGBT13,17,21が搭載されている回路パターン26a,27a,28aおよびIGBT11,15,19が搭載されている図示しない回路パターンは、電気的絶縁層を介して放熱体25と寄生容量29により容量結合されている。
 ここで、第1ないし第3の上下アーム部のうち、上アーム部のノイズ電流は、寄生容量29、放熱体25およびコンデンサ23を介してIGBT11,15,19が搭載されている図示しない回路パターンに流れる極小のループを流れる。第1ないし第3の上下アーム部の下アーム部においては、2種類のノイズ電流が流れている。たとえば、第1の上下アーム部の下アーム部で説明すると、第1のノイズ電流は、寄生容量29、放熱体25、コンデンサ24および電源負極端子Nの電位を介して回路パターン26aに流れる極小のループを流れる。第2のノイズ電流は、寄生容量29、放熱体25およびコンデンサ26を介して回路パターン26aに流れる極小のループを流れる。
 なお、半導体モジュール1内のコンデンサ23,24,26,27,28は、この図1に示す例では、必ずしもすべて実装する必要はなく、ノイズレベルが特に大きい箇所など必要に応じて、実装される。
 この半導体モジュール1の放熱体25は、さらに、インバータ装置の筐体に取り付けられることで、コンデンサ23,24,26,27,28によりバイパスされたノイズは、シャーシアースに流されることになる。
 次に、半導体モジュール1の具体的な実施の形態について説明する。
 図2は第1の実施の形態に係る半導体モジュールの構成例を示す平面図、図3は図2のA-A矢視断面図である。
 第1の実施の形態に係る半導体モジュール2は、電気的絶縁層とするAL絶縁基板41を有し、そのAL絶縁基板41の上に回路パターン42が形成され、その回路パターン42の上に電力用半導体チップ43,44およびコンデンサ45,46が搭載されている。AL絶縁基板41は、また、回路パターン42が形成されている面とは反対側の面に放熱体47が接合されている。AL絶縁基板41、回路パターン42、電力用半導体チップ43,44およびコンデンサ45,46を有する回路ブロックは、PPS(Poly Phenylene Sulfide)樹脂製の端子ケース48に収容され、エポキシなどの樹脂49により封止される。
 AL絶縁基板41は、熱伝導率の高いアルミニウムと熱抵抗の小さいエポキシ、液晶ポリマーなどの絶縁樹脂の組み合わせによる有機絶縁層とすることができる。なお、電気的絶縁層としては、窒化ケイ素などセラミックで構成される無機絶縁層とすることができ、その無機絶縁層の両面に銅箔が接合されたDCB(Direct Copper Bond)基板を使用することもできる。回路パターン42は、AL絶縁基板41の一方の面に形成された導電性の板または箔をエッチングして生成されるか、導電性の板をAL絶縁基板41の一方の面に貼り合わせて生成される。
 電力用半導体チップ43は、図1に示されるIGBT11,13,15,17,19,21とすることができ、電力用半導体チップ44は、図1に示されるFWD12,14,16,18,20,22とすることができる。また、コンデンサ45,46は、図1に示されるコンデンサ23,24とすることができる。放熱体47は、図1に示される放熱体25に対応するもので、銅またはアルミニウムの板からなる。
 コンデンサ45,46の一方の端子は、図2に示した平面図によれば、長方形を有する放熱体47の長辺方向の略中央のAL絶縁基板41上に形成された回路パターン42aに共通して搭載されている。その回路パターン42aは、回路パターン42a、AL絶縁基板41および放熱体47に穿設された穴に導電性のピン50が圧入されることにより、放熱体47と電気的に接続されている。これにより、回路パターン42aの電位変化と寄生容量29により放熱体47に流れたノイズ電流は、ピン50、コンデンサ45、46から電源正極端子Pおよび電源負極端子Nと同電位の回路パターン42へ返されるため、極小のノイズ電流ループとなる。
 図4は第2の実施の形態に係る半導体モジュールの構成例を示す図であって、(A)は半導体モジュールの平面図、(B)は(A)におけるB部の拡大断面を示す図である。なお、図4において、図2および図3に示した構成要素と同じまたは対応する構成要素については、同じ符号を付してある。
 第2の実施の形態に係る半導体モジュール3は、第1の実施の形態に係る半導体モジュール2と比較して、コンデンサ45,46と放熱体47とを極小のノイズ電流ループで電気的に接続する手段を変更している。すなわち、長方形を有する放熱体47の長辺方向の略中央のAL絶縁基板41に開口部51が形成され、放熱体47のAL絶縁基板41と接する面が露出するようにしている。AL絶縁基板41は、また、放熱体47の長辺の方向に開口部51に隣接して回路パターン42b,42cが形成され、これら回路パターン42b,42cには、それぞれコンデンサ45,46の一方の端子が接合されている。回路パターン42b,42cは、ボンディングワイヤ52により開口部51を通して放熱体47と結線される。ボンディングワイヤ52は、銅ワイヤまたはアルミニウムワイヤまたは金ワイヤが使用される。
 このように、コンデンサ45,46の一方の端子は、その直近でボンディングワイヤ52によって放熱体47と電気的に接続される。このため、回路パターン42b、42cの電位変化と寄生容量29により放熱体47に流れたノイズ電流は、ボンディングワイヤ52、コンデンサ45,46から電源正極端子Pおよび電源負極端子Nと同電位の回路パターン42へ返されるため、極小のノイズ電流ループとなる。
 図5はコンデンサを極小のノイズ電流ループで放熱体に電気的に接続する手段の変形例を示す図であって、(A)は接続手段の第1の変形例を示し、(B)は接続手段の第2の変形例を示している。なお、図5において、図3および図4に示した構成要素と同じまたは対応する構成要素については、同じ符号を付してある。
 接続手段の第1の変形例では、図5の(A)に示したように、導電性のねじ53によって接続手段を実現している。すなわち、コンデンサ45,46の一方の端子が接続される共通の回路パターン42aは、この回路パターン42aおよびAL絶縁基板41に形成された穴を介して放熱体47にねじ53をねじ込み結合することによって、放熱体47に電気的に接続される。
 接続手段の第2の変形例は、図5の(B)に示したように、接合されたAL絶縁基板41および放熱体47にこれらを貫通する穴を設け、その穴の内壁にめっき54を施すようにしている。このめっき処理により、回路パターン42aは、めっき54を介して放熱体47と電気的に接続される。
 図6は第3の実施の形態に係る半導体モジュールの第1の構成例を示す図、図7は第3の実施の形態に係る半導体モジュールの第2の構成例を示す図である。なお、図6および図7において、図2に示した構成要素と同じまたは対応する構成要素については、同じ符号を付してある。
 第3の実施の形態に係る半導体モジュール4は、第1の実施の形態に係る半導体モジュールと比較して、放熱体47に電気的に接続するピン50の位置を端子ケース48または放熱体47の長辺方向および短辺方向の略中央に変更している。
 まず、図6に示した第1の構成例は、図1に示した三相のインバータ回路に適用したもので、回路パターン42aに、一端が電源負極端子Nに接続されたコンデンサ45の他端が接続され、一端が電源正極端子Pに接続されたコンデンサ46の他端が接続されている。これにより、回路パターン42aの電位変化と寄生容量29により放熱体47に流れたノイズ電流は、放熱体47の略中央位置からピン50、コンデンサ45,46から電源正極端子Pおよび電源負極端子Nと同電位の回路パターン42へ返されるため、極小のノイズ電流ループとなる。また、ノイズ電流は、放熱体47を介して安定電位であるシャーシアースに流れる。
 一方、図7に示した第2の構成例は、第3の実施の形態に係る半導体モジュール4aを2つの出力端子OUT1,OUT2を有する二相のインバータ回路に適用し、リード端子を二方向に出した構成にしたものである。この半導体モジュール4aにおいても、回路パターン42aに、一端が電源負極端子Nに接続されたコンデンサ45の他端が接続され、一端が電源正極端子Pに接続されたコンデンサ46の他端が接続されている。そして、この回路パターン42aは、放熱体47の略中央位置にてピン50により放熱体47に電気的に接続されている。これにより、回路パターン42aの電位変化と寄生容量29により放熱体47に流れたノイズ電流は、放熱体47の略中央位置からピン50、コンデンサ45,46から電源正極端子Pおよび電源負極端子Nと同電位の回路パターン42へ返されるため、極小のノイズ電流ループとなる。また、ノイズ電流は、放熱体47を介して安定電位であるシャーシアースに流れる。
 図8は第4の実施の形態に係る半導体モジュールの構成例を示す図である。なお、図8において、図7に示した構成要素と同じまたは対応する構成要素については、同じ符号を付してある。
 この第4の実施の形態に係る半導体モジュール5は、第1ないし第3の実施の形態に係る半導体モジュール2,3,4,4aと比較して、ノイズがバイパスされる回路パターンを変更している。すなわち、第1ないし第3の実施の形態に係る半導体モジュール2,3,4,4aでは、電源負極端子Nおよび電源正極端子Pに接続された回路パターン42をコンデンサ45,46でバイパスするようにしている。これに対し、第4の実施の形態に係る半導体モジュール5では、回路ブロック内で電位変化(dv/dt)が大きい回路パターン42dをコンデンサ55,56でバイパスするようにしている。電位変化(dv/dt)が大きい回路パターン42dは、下アーム部の電力用半導体チップ43,44を搭載した部分であり、コンデンサ55,56は、図1に示されるコンデンサ26,27,28に対応するものである。
 この半導体モジュール5においても、回路パターン42dの電位変化(dv/dt)と寄生容量29により放熱体47に流れたノイズ電流は、ピン50、コンデンサ45,46から電源正極端子Pおよび電源負極端子Nと同電位の回路パターン42へ返されるため、極小のノイズ電流ループとなる。
 図9は第5の実施の形態に係る半導体モジュールの構成例を示す図である。なお、図9において、図4に示した構成要素と同じまたは対応する構成要素については、同じ符号を付してある。
 第5の実施の形態に係る半導体モジュール6は、図4に示した第2の実施の形態に係る半導体モジュール3が放熱体47の長辺方向の略中央で放熱体47への電気的接続をしているのに対し、放熱体47の略中央で放熱体47への電気的接続をしている。すなわち、AL絶縁基板41には、放熱体47の略中央近傍に開口部51が設けられ、コンデンサ45,46が搭載された回路パターン42b,42cは、その開口部51を通して、ボンディングワイヤ52により放熱体47に電気的に接続されている。これにより、回路パターン42b,42cの電位変化と寄生容量29により放熱体47に流れたノイズ電流は、放熱体47の略中央位置からボンディングワイヤ52、コンデンサ45,46から電源正極端子Pおよび電源負極端子Nと同電位の回路パターン42へ返されるため、極小のノイズ電流ループとなる。また、ノイズ電流は、放熱体47を介して安定電位であるシャーシアースに流れる。
 以上のように、第3ないし第5の実施の形態に係る半導体モジュール4,4a,5,6では、端子ケース48または放熱体47の略中央でコンデンサ45,46,55,56を放熱体47に接続している。これにより、このような半導体モジュール4,4a,5,6を放熱器または筐体に押し付けた状態で取り付ける場合、放熱器または筐体との接続位置が変わることなく一定にすることができるという効果がある。以下、その効果が見込まれる具体的な実装例について説明する。なお、この場合、半導体モジュール4,4a,5,6は、回路ブロック上を樹脂封止したときに樹脂49が硬化収縮する作用により使用温度範囲内で放熱体47の外表面が膨出して緩やかな凸状となる正反りの形状になっていることが望ましい。
 図10は第3ないし第5の実施の形態に係る半導体モジュールの実装例を示す図であって、(A)は第1の実装例、(B)は第2の実装例、(C)は第3の実装例、(D)は第4の実装例、(E)は第5の実装例を示している。なお、これらの図において、回路ブロックおよび放熱体47の正反りは、理解が容易なように、誇張して示してある。また、この図10では、放熱器57(または筐体)に押し付けられる半導体モジュールとして第3の実施の形態に係る半導体モジュール4を代表して示している。
 図10の(A)に示す第1の実装例は、半導体モジュール4を放熱器57に直接押し付けた場合を示している。この場合、半導体モジュール4が放熱器57に電気的に接続される箇所は、半導体モジュール4の略中央部の一箇所である。このため、半導体モジュール4を放熱器57に4本のねじで固定するときに、半導体モジュール4と放熱器57との電気的接続箇所がねじ締めの程度によって変わることが抑制され、結果として、ノイズ特性がばらつくことが少なくなる。
 図10の(B)に示す第2の実装例は、半導体モジュール4と放熱器57との間に導電性のサーマルコンパウンド58が介在している場合を示している。この場合、半導体モジュール4の放熱体47は、その全体が導電性のサーマルコンパウンド58を介して電気的に接続されるが、特に、導電性のサーマルコンパウンド58の厚さが最も薄くなる半導体モジュール4の略中央部が良好に電気的接続される。このため、半導体モジュール4を放熱器57に固定する4本のねじのねじ締めにばらつきがあっても、良好な電気的接続箇所が半導体モジュール4の略中央部のみであるので、ノイズ特性がばらつくことが少なくなる。
 図10の(C)に示す第3の実装例は、半導体モジュール4と放熱器57との間に非導電性のサーマルコンパウンド59が介在している場合を示している。この場合、放熱器57は、半導体モジュール4の略中央部に対応する位置に、円形の穴60が凹設されている。これにより、半導体モジュール4は、その放熱体47の外表面である球面が穴60の周囲のエッジと確実に接触されることになるため、押さえ方によるノイズ特性のばらつきが少なくなる。
 図10の(D)に示す第4の実装例は、半導体モジュール4と放熱器57との間に非導電性のサーマルコンパウンド59が介在している場合を示している。この場合、放熱器57は、半導体モジュール4の略中央部に対応する位置に、円形の穴60が凹設され、さらにその穴60に導電性の板ばね61が配置されている。これにより、半導体モジュール4の放熱体47は、その外表面である球面が板ばね61によって接触されることになるため、押さえ方によるノイズ特性のばらつきが少なくなる。
 図10の(E)に示す第5の実装例は、半導体モジュール4と放熱器57との間に非導電性のサーマルコンパウンド59が介在している場合を示している。この場合、放熱器57は、半導体モジュール4の略中央部に対応する位置周辺に、複数の円形の穴60が凹設され、それらの穴60に導電性のリード棒62およびこのリード棒62を半導体モジュール4の方向に付勢する導電性のコイルばね63が配置されている。これにより、半導体モジュール4の放熱体47は、その外表面である球面がリード棒62およびコイルばね63によって放熱器57と電気的接続を良好に保つことができるため、押さえ方によるノイズ特性のばらつきを少なくすることができる。
 図11は半導体モジュールを使用したDC-DCコンバータの二次側回路の一例を示す回路図であって、(A)は、従来の半導体モジュールを使用した回路を示し、(B)は第6の実施の形態に係る半導体モジュールを使用した回路を示している。
 従来の半導体モジュール200は、図11の(A)に示したように、2つのダイオード201,202と、放熱体203とを備えている。この半導体モジュール200においても、回路ブロックは、絶縁基板の一方の面に回路パターンが形成され、その回路パターンにダイオード201,202がそれらのカソード端子をはんだ接合することで搭載されている。絶縁基板の他方の面には、放熱体203がはんだで接合されている。したがって、ダイオード201,202が搭載されている回路パターンは、絶縁基板を介して放熱体203と寄生容量204により容量結合されていることになる。また、半導体モジュール200をたとえば非導電性のサーマルコンパウンドを介して筐体に取り付けたときには、放熱体203は、寄生容量205により筐体と容量結合されていることになる。
 DC-DCコンバータの二次側回路は、交流電圧を所定の電圧に変圧するトランス210と、全波整流を行う半導体モジュール200と、整流された電圧を平滑するコンデンサ220とを備えている。トランス210は、2つの二次巻線211,212を有し、これらが直列に接続されたセンタータップ部は、筐体に接続されている。二次巻線211,212の両端の端子は、それぞれダイオード201,202のアノード端子に接続されている。ダイオード201,202のカソード端子は、コンデンサ220の一端と出力端子とに接続され、コンデンサ220の他端は、筐体に接続されている。
 このDC-DCコンバータの二次側回路では、トランス210の二次巻線211に発生する電位変化の過渡成分は、半導体モジュール200の寄生容量204および放熱体203と筐体との間の寄生容量205によりノイズ電流ループ206が形成される。このとき、寄生容量205は、半導体モジュール200の固定方法により筐体との接続点にばらつきが生じるため、ノイズ特性の個体差が発生することになる。また、ダイオード201,202のカソード端子に相当する電極の電位変化の過渡成分は、半導体モジュール200の寄生容量204、放熱体203と筐体との間の寄生容量205、筐体、およびコンデンサ220を流れる。このとき、半導体モジュール200で発生したノイズが、筐体およびコンデンサ220を介して半導体モジュール200に戻るノイズ電流ループ207が形成されることになる。
 第6の実施の形態に係る半導体モジュール7は、図11の(B)に示したように、2つのダイオード71,72と、放熱体73とを備えている。この半導体モジュール7においても、回路ブロックは、絶縁基板の一方の面に回路パターンが形成され、その回路パターンにダイオード71,72がそれらのカソード端子をはんだ接合することで搭載されている。絶縁基板の他方の面には、放熱体73がはんだで接合されている。さらに、ダイオード71,72のカソード端子が接続された回路パターンは、コンデンサ74を介して放熱体73に電気的に接続されている。この電気的接続方法は、第1ないし第5の実施の形態にて実施されているいずれか1つの方法にて行われている。また、放熱体73と筐体との電気的接続は、図10で説明したいずれか1つの方法を用いて半導体モジュール7を筐体に固定することにより、確実に行うことができる。これにより、ノイズ電流ループ75を流れるノイズ電流は、半導体モジュール7の固定方法により筐体との接続点にばらつきが生じることがないため、ノイズ特性の個体差が発生することはない。
 DC-DCコンバータの二次側回路は、交流電圧を所定の電圧に変圧するトランス80と、全波整流を行う半導体モジュール7と、整流された電圧を平滑するコンデンサ90とを備えている。トランス80は、2つの二次巻線81,82を有し、これらが直列に接続されたセンタータップ部は、筐体に接続されている。二次巻線81,82の両端の端子は、それぞれダイオード71,72のアノード端子に接続されている。ダイオード71,72のカソード端子は、コンデンサ90の一端と出力端子とに接続され、コンデンサ90の他端は、筐体に接続されている。
 この半導体モジュール7では、ダイオード71,72のカソード端子の回路パターンがコンデンサ74により放熱体73に電気的に接続されている。このため、その回路パターンでの電位変化の過渡成分は、回路パターンと放熱体73との間の寄生容量76とコンデンサ74とによる最小のノイズ電流ループ77を流れることになる。
 上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用例に限定されるものではなく、対応するすべての変形例および均等物は、添付の請求項およびその均等物による本発明の範囲とみなされる。
 1,2,3,4,4a,5,6,7 半導体モジュール
 11,13,15,17,19,21 IGBT
 12,14,16,18,20,22 FWD
 23,24,26,27,28 コンデンサ
 25 放熱体
 26a,27a,28a 回路パターン
 29 寄生容量
 30 モータ
 41 AL絶縁基板
 42,42a,42b,42c,42d 回路パターン
 43,44 電力用半導体チップ
 45,46 コンデンサ
 47 放熱体
 48 端子ケース
 49 樹脂
 50 ピン
 51 開口部
 52 ボンディングワイヤ
 53 ねじ
 54 めっき
 55,56 コンデンサ
 57 放熱器
 58,59 サーマルコンパウンド
 60 穴
 61 板ばね
 62 リード棒
 63 コイルばね
 71,72 ダイオード
 73 放熱体
 74 コンデンサ
 75 ノイズ電流ループ
 76 寄生容量
 77 ノイズ電流ループ
 80 トランス
 81,82 二次巻線
 90 コンデンサ

Claims (17)

  1.  電気的絶縁層、前記電気的絶縁層の一方の面に導電性の板または箔で形成された複数の回路パターンおよび前記回路パターンに搭載された電力用半導体を有する回路ブロックと、前記電気的絶縁層の他方の面に導電性の板で形成された放熱体とを備えた半導体モジュールにおいて、
     少なくとも1つの前記回路パターンは、コンデンサにより前記電気的絶縁層を貫通して前記放熱体に電気的に接続されていることを特徴とする半導体モジュール。
  2.  前記コンデンサの一端は、前記回路ブロック内で最大電位が印加される前記回路パターンに接続されていることを特徴とする請求項1記載の半導体モジュール。
  3.  前記コンデンサの一端は、前記回路ブロック内で最小電位が印加される前記回路パターンに接続されていることを特徴とする請求項1記載の半導体モジュール。
  4.  前記コンデンサの一端は、前記回路ブロック内で電位変化が大きい前記回路パターンに接続されていることを特徴とする請求項1記載の半導体モジュール。
  5.  前記コンデンサの他端が搭載された前記回路パターンは、前記電気的絶縁層に圧入された導電性のピンにより前記放熱体と電気的に接続されていることを特徴とする請求項1記載の半導体モジュール。
  6.  前記コンデンサの他端が搭載された前記回路パターンは、前記電気的絶縁層に貫通して形成された開口部を介して延びる導電性のワイヤにより前記放熱体と電気的に接続されていることを特徴とする請求項1記載の半導体モジュール。
  7.  前記コンデンサの他端が搭載された前記回路パターンは、前記電気的絶縁層を貫通して配置された導電性のねじで前記放熱体に螺着することにより前記放熱体と電気的に接続されていることを特徴とする請求項1記載の半導体モジュール。
  8.  前記コンデンサの他端が搭載された前記回路パターンは、前記電気的絶縁層および前記放熱体に形成したスルーホールをめっき処理することにより前記放熱体と電気的に接続されていることを特徴とする請求項1記載の半導体モジュール。
  9.  前記電気的絶縁層を貫通して前記放熱体に電気的に接続される箇所は、モジュール外形または前記電気的絶縁層の長辺または短辺の何れかまたは両方の方向の略中央に配置されていることを特徴とする請求項1記載の半導体モジュール。
  10.  前記電気的絶縁層、前記回路パターン、前記電力用半導体、前記コンデンサおよび前記放熱体は、端子とするリードフレームをインサートして成型した樹脂ケースに設置されていることを特徴とする請求項1記載の半導体モジュール。
  11.  樹脂ケースは、前記回路パターン、前記電力用半導体および前記コンデンサが配置されている側の空間を樹脂によって封止していることを特徴とする請求項10記載の半導体モジュール。
  12.  前記放熱体は、使用温度範囲内で外表面が膨出する正反りの形状を有していることを特徴とする請求項1記載の半導体モジュール。
  13.  前記電気的絶縁層は、有機絶縁層であることを特徴とする請求項1記載の半導体モジュール。
  14.  前記電気的絶縁層は、無機絶縁層であることを特徴とする請求項1記載の半導体モジュール。
  15.  前記回路パターンは、前記電気的絶縁層の一方の面に形成された導電性の板または箔をエッチングして生成されることを特徴とする請求項1記載の半導体モジュール。
  16.  前記回路パターンは、導電性の板を前記電気的絶縁層の一方の面に貼り合わせて生成されることを特徴とする請求項1記載の半導体モジュール。
  17.  前記放熱体は、銅またはアルミニウムで構成されていることを特徴とする請求項1記載の半導体モジュール。
PCT/JP2015/065607 2014-07-30 2015-05-29 半導体モジュール WO2016017260A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016538189A JP6354845B2 (ja) 2014-07-30 2015-05-29 半導体モジュール
CN201580003657.6A CN105874596B (zh) 2014-07-30 2015-05-29 半导体模块
DE112015000245.6T DE112015000245T5 (de) 2014-07-30 2015-05-29 Halbleitermodul
US15/200,746 US9865529B2 (en) 2014-07-30 2016-07-01 Semiconductor module with conductive pin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014154626 2014-07-30
JP2014-154626 2014-07-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/200,746 Continuation US9865529B2 (en) 2014-07-30 2016-07-01 Semiconductor module with conductive pin

Publications (1)

Publication Number Publication Date
WO2016017260A1 true WO2016017260A1 (ja) 2016-02-04

Family

ID=55217165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065607 WO2016017260A1 (ja) 2014-07-30 2015-05-29 半導体モジュール

Country Status (5)

Country Link
US (1) US9865529B2 (ja)
JP (1) JP6354845B2 (ja)
CN (1) CN105874596B (ja)
DE (1) DE112015000245T5 (ja)
WO (1) WO2016017260A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142735A1 (ja) * 2017-02-06 2018-08-09 株式会社デンソー 半導体装置
EP3376658A1 (en) * 2017-03-13 2018-09-19 Omron Corporation Power conversion device and power supply apparatus
JP2019149896A (ja) * 2018-02-28 2019-09-05 富士電機株式会社 3レベル電力変換装置
WO2021187409A1 (ja) * 2020-03-19 2021-09-23 ローム株式会社 半導体装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106663677B (zh) * 2014-08-22 2019-07-16 三菱电机株式会社 电力变换装置
JP6447391B2 (ja) * 2015-06-30 2019-01-09 オムロン株式会社 電力変換装置
JP6642719B2 (ja) * 2016-08-10 2020-02-12 三菱電機株式会社 半導体装置
JP6852513B2 (ja) * 2017-03-30 2021-03-31 株式会社オートネットワーク技術研究所 回路装置
US10477686B2 (en) * 2017-07-26 2019-11-12 Canon Kabushiki Kaisha Printed circuit board
WO2019073505A1 (ja) * 2017-10-10 2019-04-18 新電元工業株式会社 モジュールおよび電力変換装置
CN108447827B (zh) * 2018-03-17 2020-04-17 临沂金霖电子有限公司 一种电力转换电路的封装模块
JP6952894B2 (ja) * 2018-06-21 2021-10-27 三菱電機株式会社 パワーモジュール装置
EP3731605A1 (en) * 2019-04-23 2020-10-28 Mahle International GmbH Electric circuit arrangement for a power converter
JP2021125547A (ja) * 2020-02-05 2021-08-30 富士電機株式会社 電力用半導体モジュール
US20230307406A1 (en) * 2022-03-22 2023-09-28 Toyota Motor Engineering & Manufacturing North America, Inc. Electronics assemblies with power electronic devices and three-dimensionally printed circuit boards having reduced joule heating
CN114765434A (zh) * 2022-04-21 2022-07-19 苏州汇川联合动力系统有限公司 功率模块和电机控制器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270612A (ja) * 1997-03-21 1998-10-09 Toyota Motor Corp 放熱板接合用基板
JP2002171768A (ja) * 2000-11-29 2002-06-14 Toshiba Corp 電力変換装置
JP2009010143A (ja) * 2007-06-27 2009-01-15 Sanyo Electric Co Ltd 回路装置
JP2014038982A (ja) * 2012-08-20 2014-02-27 Ihi Corp 半導体パワーモジュール

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754760Y2 (ja) 1990-10-29 1995-12-18 株式会社イトー技研 薄型温水器
JP2574194Y2 (ja) 1992-10-12 1998-06-11 ネミック・ラムダ株式会社 メタルコア基板の取付構造
GB2418539A (en) * 2004-09-23 2006-03-29 Vetco Gray Controls Ltd Electrical circuit package
JP4801603B2 (ja) 2007-02-20 2011-10-26 Tdkラムダ株式会社 電源モジュール
JP5280102B2 (ja) * 2008-05-26 2013-09-04 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP2013258321A (ja) 2012-06-13 2013-12-26 Fuji Electric Co Ltd 半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270612A (ja) * 1997-03-21 1998-10-09 Toyota Motor Corp 放熱板接合用基板
JP2002171768A (ja) * 2000-11-29 2002-06-14 Toshiba Corp 電力変換装置
JP2009010143A (ja) * 2007-06-27 2009-01-15 Sanyo Electric Co Ltd 回路装置
JP2014038982A (ja) * 2012-08-20 2014-02-27 Ihi Corp 半導体パワーモジュール

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142735A1 (ja) * 2017-02-06 2018-08-09 株式会社デンソー 半導体装置
JP2018129336A (ja) * 2017-02-06 2018-08-16 株式会社デンソー 半導体装置
EP3376658A1 (en) * 2017-03-13 2018-09-19 Omron Corporation Power conversion device and power supply apparatus
JP2019149896A (ja) * 2018-02-28 2019-09-05 富士電機株式会社 3レベル電力変換装置
JP7043887B2 (ja) 2018-02-28 2022-03-30 富士電機株式会社 3レベル電力変換装置
WO2021187409A1 (ja) * 2020-03-19 2021-09-23 ローム株式会社 半導体装置

Also Published As

Publication number Publication date
DE112015000245T5 (de) 2016-09-15
US20160315038A1 (en) 2016-10-27
US9865529B2 (en) 2018-01-09
CN105874596A (zh) 2016-08-17
JPWO2016017260A1 (ja) 2017-04-27
CN105874596B (zh) 2019-03-08
JP6354845B2 (ja) 2018-07-11

Similar Documents

Publication Publication Date Title
JP6354845B2 (ja) 半導体モジュール
US9887183B2 (en) Power module with the integration of control circuit
US6373705B1 (en) Electronic semiconductor module
US9704831B2 (en) Power semiconductor module
US8987777B2 (en) Stacked half-bridge power module
US7045884B2 (en) Semiconductor device package
US9572291B2 (en) Semiconductor device and method for manufacturing same
JP6597902B2 (ja) 半導体装置及び振動抑制装置
US20120235162A1 (en) Power converter
US20160079156A1 (en) Power semiconductor module and method of manufacturing the same
US8373197B2 (en) Circuit device
WO2019144422A1 (en) Power device package
JP2007234690A (ja) パワー半導体モジュール
US9159715B2 (en) Miniaturized semiconductor device
US9105601B2 (en) Power module package
CN113161309B (zh) 载板及其适用的功率模块
US20180174987A1 (en) Semiconductor device
US9655265B2 (en) Electronic module
JP5172290B2 (ja) 半導体装置
JP6892006B2 (ja) 半導体装置
CN108323211B (zh) 功率器件封装
JP2020184561A (ja) 半導体装置
JP7392319B2 (ja) 半導体装置
WO2013105456A1 (ja) 回路基板および電子デバイス
US20230361009A1 (en) Semiconductor package having an embedded electrical conductor connected between pins of a semiconductor die and a further device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15826674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016538189

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015000245

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15826674

Country of ref document: EP

Kind code of ref document: A1