[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016013859A1 - 실리콘 이차전지 - Google Patents

실리콘 이차전지 Download PDF

Info

Publication number
WO2016013859A1
WO2016013859A1 PCT/KR2015/007583 KR2015007583W WO2016013859A1 WO 2016013859 A1 WO2016013859 A1 WO 2016013859A1 KR 2015007583 W KR2015007583 W KR 2015007583W WO 2016013859 A1 WO2016013859 A1 WO 2016013859A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
layer
secondary battery
active material
electrode active
Prior art date
Application number
PCT/KR2015/007583
Other languages
English (en)
French (fr)
Inventor
류병훈
공재경
Original Assignee
주식회사 이엠따블유에너지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이엠따블유에너지 filed Critical 주식회사 이엠따블유에너지
Priority to JP2017525490A priority Critical patent/JP2017526151A/ja
Priority to EP15824876.5A priority patent/EP3182498B1/en
Priority to US15/328,305 priority patent/US10050302B2/en
Priority to CN201580039508.5A priority patent/CN107078349A/zh
Publication of WO2016013859A1 publication Critical patent/WO2016013859A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/808Foamed, spongy materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/025Electrodes composed of, or comprising, active material with shapes other than plane or cylindrical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/029Bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/40Printed batteries, e.g. thin film batteries
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10037Printed or non-printed battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a silicon secondary battery, and more particularly to a solid silicon secondary battery having a solid electrolyte.
  • a secondary battery converts chemical energy into electrical energy and supplies power to an external circuit. When a secondary battery is discharged, the secondary battery receives external power and converts electrical energy into chemical energy to store electricity. It is generally called a storage battery. .
  • Such secondary batteries include lead storage batteries, nickel-cadmium secondary batteries, and lithium secondary batteries.
  • Lead-acid batteries have high voltage but are bulky and heavy, and are used for automobiles.
  • Nickel-cadmium secondary batteries are used as a substitute for batteries.
  • Lithium secondary batteries are used as power sources for cameras and mobile phones. Recently, lithium secondary batteries are widely used among secondary batteries due to the proliferation of personal portable terminal devices such as smart phones and tablet PCs.
  • a lithium secondary battery has a problem that lithium, which is a main material, is considerably expensive, and when the lithium secondary battery at the end of its life is discarded, lithium is leaked from a waste place and environmental pollution is accompanied.
  • a first object of the present invention is to provide a silicon secondary battery of high output and high efficiency that can replace the lithium secondary battery.
  • a second object of the present invention is to provide a silicon secondary battery capable of increasing the current density and capacity by increasing the density of the positive electrode or negative electrode active material by stacking and compressing a positive electrode or negative electrode material many times. .
  • a third object of the present invention is to provide a silicon secondary battery capable of efficiently transporting electrons by embedding a mesh plate inside the cathode active material and the anode active material.
  • a fourth object of the present invention is to provide a silicon secondary battery assembly capable of reducing the thickness of the silicon secondary battery assembly and increasing the output voltage by making the electrodes of the silicon secondary battery connected when the silicon secondary batteries are connected in series.
  • a fifth object of the present invention is to provide a silicon secondary battery which is formed integrally with a PCB or a chip and supplies power to serve as a backup power supply for instantaneous discharge.
  • silicon anodization made of a first silicon compound for generating a silicon cation during charging and a silicon anion during discharge
  • a first silicon multi-layer thin film unit in which a plurality of thin film layers are stacked
  • a second silicon multiple laminated thin film portion in which a plurality of silicon negative electrode thin film layers formed of a second silicon compound for generating silicon anions during charge and a silicon cation during discharge
  • the solid electrolyte layer may include a first intermediate layer including a first silicon compound and a solid electrolyte component between the solid electrolyte layer and the first silicon plural laminated thin film portions.
  • the first intermediate layer may have a content of the first silicon compound greater than that of the solid electrolyte component.
  • the thickness of the first intermediate layer may be thinner than the thickness of the solid electrolyte layer and / or the first silicon plural laminated thin film portions.
  • first intermediate layer may have protrusions formed on one or both surfaces thereof.
  • the solid electrolyte layer may include a second intermediate layer including a second silicon compound and a solid electrolyte component between the solid electrolyte layer and the second silicon multilayer thin film portion.
  • the second intermediate layer may have a content of the second silicon compound greater than that of the solid electrolyte component.
  • the thickness of the second intermediate layer may be thinner than the thickness of the solid electrolyte layer and / or the second plurality of silicon thin film portions.
  • the second intermediate layer may have protrusions formed on one or both surfaces thereof.
  • the solid electrolyte layer may include any one or more of polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE).
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • the solid electrolyte layer may further include a conductive polymer.
  • the present invention is a silicon secondary battery that performs the charge and discharge using silicon ions, the positive electrode active material layer for generating a silicon cation during charging and generating a silicon anion during discharge; A negative electrode active material layer which generates a silicon anion during charging and a silicon cation during discharge; And a solid electrolyte layer positioned between the positive electrode active material layer and the negative electrode active material layer and transferring silicon ions during charge and discharge between the positive electrode active material layer and the negative electrode active material layer.
  • the solid electrolyte layer may be formed between the solid electrolyte layer and the positive electrode active material layer, a first intermediate layer including a positive electrode active material layer component and a solid electrolyte component.
  • the first intermediate layer may have a content of the positive electrode active material layer component greater than the content of the solid electrolyte component.
  • the thickness of the first intermediate layer may be thinner than the thickness of the solid electrolyte layer and / or the positive electrode active material layer.
  • first intermediate layer may have protrusions formed on one or both surfaces thereof.
  • the present invention is a silicon secondary battery that performs the charge and discharge using silicon ions, the positive electrode active material layer for generating a silicon cation during charging and generating a silicon anion during discharge; A negative electrode active material layer which generates a silicon anion during charging and a silicon cation during discharge; And a solid electrolyte layer positioned between the positive electrode active material layer and the negative electrode active material layer and transferring silicon ions during charge and discharge between the positive electrode active material layer and the negative electrode active material layer.
  • the solid electrolyte layer may be formed between the solid electrolyte layer and the negative electrode active material layer a second intermediate layer including a negative electrode active material layer component and a solid electrolyte component.
  • the content of the negative electrode active material layer component may be greater than that of the solid electrolyte component of the second intermediate layer.
  • the thickness of the second intermediate layer may be thinner than the thickness of the solid electrolyte layer and / or the negative electrode active material layer.
  • the second intermediate layer may have protrusions formed on one or both surfaces thereof.
  • the present invention is a silicon secondary battery that performs the charge and discharge using silicon ions, the positive electrode active material layer for generating a silicon cation during charging and generating a silicon anion during discharge; A negative electrode active material layer which generates a silicon anion during charging and a silicon cation during discharge; And a solid electrolyte layer positioned between the positive electrode active material layer and the negative electrode active material layer and transferring silicon ions during charge and discharge between the positive electrode active material layer and the negative electrode active material layer.
  • the solid electrolyte layer may include any one or more of polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE).
  • the solid electrolyte layer may further include a conductive polymer.
  • FIG. 1 illustrates a structure of a silicon secondary battery according to the present invention.
  • FIG. 2 illustrates a structure of a silicon secondary battery according to a first embodiment of the present invention.
  • FIG 3 illustrates a structure of a silicon secondary battery according to a second exemplary embodiment of the present invention.
  • FIG. 4 illustrates an example of a mesh plate included in an active material of a silicon secondary battery according to a third exemplary embodiment of the present invention.
  • FIG. 5 illustrates a structure of a silicon secondary battery unit according to a fourth embodiment of the present invention.
  • FIG. 6 illustrates an example of a battery module for an electric vehicle to which the silicon secondary battery unit according to the fourth embodiment of the present invention is applied.
  • FIG. 7 illustrates an example of a micro battery according to a sixth embodiment of the present invention.
  • the silicon secondary battery according to the present invention relates to a secondary battery that performs charging and discharging using silicon ions.
  • a cathode for generating a silicon cation during charging and a silicon anion during discharge is shown.
  • a positive electrode current collector 30 is coupled to the positive electrode active material layer 20, and a negative electrode current collector 50 is coupled to the negative electrode active material layer 40.
  • the cathode current collector 30 is provided as a metal plate having a predetermined thickness, and a cathode active material layer 20 is coated on one side thereof.
  • the positive electrode active material layer 20 may be formed of silicon carbide (SiC), but is not necessarily limited thereto. For example, a small amount of germanium (ge) may be added to silicon carbide (SiC) and used. This is possible by doping, and may be used as a positive electrode active material by adding elements located in the same group as carbon (C) and the periodic table of the elements.
  • the negative electrode current collector 50 is formed of a metal plate having a predetermined thickness, and the negative electrode active material layer 40 is coated on one side thereof.
  • the negative electrode active material layer 40 may be formed of silicon nitrate (Si 3 N 4 ), but is not necessarily limited thereto.
  • the negative electrode active material layer 40 may also be used as a negative electrode active material by adding a small amount of elements located in the same group as nitrogen (N) and the periodic table of elements to silicon nitrate (Si 3 N 4 ).
  • the electrode serves to generate a voltage with a potential difference due to the separation of electrons generated in the ionization process.
  • Silicon has an anodicity as an element having an ionization degree of +4, and a silicon electrode doped with N and C is used in this bipolarity for ease of electron separation and acceptability.
  • silicon carbide and silicon nitride are hexagonal crystalline materials, and electrons in the crystal phase are easily generated at the crystal surface, and in particular, the electron leaving phenomenon may change according to the orientation of the crystal.
  • transition metals such as Al, Fe, Mg, Zn, and Mn
  • the electron mobility can be controlled by adding a transition metal of 4 cycles and 5 cycles having a larger ionic diameter than silicon to give orientation to the crystal.
  • a transition metal of 4 cycles and 5 cycles having a larger ionic diameter than silicon to give orientation to the crystal.
  • a combination of three elements, such as Al, P, S, Mg, and Na, which are similar in diameter to silicon, is added the shape change of the crystal phase can be minimized, and the electron escape can be controlled.
  • the solid electrolyte layer 10 is a nonaqueous electrolyte in a fixed state, it may be provided with an ion exchange inorganic compound, such as ion exchange resin and a metal oxide by a polymer.
  • ion exchange resins include cationic sulfonic acid groups (-SO 3 H), carboxyl groups (-COOH), anionic quaternary ammonium groups (-N (CH 3 ) 2 C 2 H 4 OH), and substituted amino groups (-NH (CH 3
  • Any of the polymers having any one of ( 2 ) and the like as a linking group can be employed. However, it can be suitably employed in the point that facilitates the sulfonic acid group (-SO 3 H) with polyacrylamide methylpropane sulfonic acid (PAMPS), which the moves the electron (e-).
  • PAMPS polyacrylamide methylpropane sulfonic acid
  • the solid electrolyte layer 10 is to increase the utility of the battery by adding a polymer to the electrolyte to impart a gel-like fixability.
  • the polymer is composed of a chain consisting of a single bond or a chain consisting of a double bond, the electron sharing alone in the chain is very low and the electron mobility is reduced compared to using only the liquid electrolyte.
  • These polymers must transport electrons and ions in large quantities in a short time, and further increase the fixation of the electrolyte liquid to increase safety and stability.
  • Polymers for the fixation of liquid phase require high molecular weight materials for high viscosity, but the polymer tends to have low conductivity as the molecular weight increases, resulting in polymers having high conductivity and low molecular weight, low polymerization degree and high polymerization degree for high viscosity. It is possible to compensate the ion mobility and the electron mobility by mixing two or more kinds of the polymer.
  • the cathode current collector 30 and the anode current collector 50 coated with the cathode active material layer 20 and the anode active material layer 40 are combined with the solid electrolyte layer 10 to form a silicon secondary battery.
  • the positive electrode active material layer 20 and the negative electrode active material layer 40 are bonded to contact both surfaces of the solid electrolyte layer 10.
  • the silicon secondary battery configured as described above is charged and discharged by the movement of electrons to function as a battery.
  • the silicon secondary battery has both physical fast charging characteristics and chemical stable charging characteristics.
  • the positive electrode active material layer 20 and / or the negative electrode active material layer 40 is elastic carbon in order to prevent the charge and discharge characteristics of the active material layer from increasing in size as the charge and discharge of the silicon secondary battery is repeated. It may include. Since the positive electrode active material layer 20 and / or the negative electrode active material layer 40 includes elastic carbon, even if the silicon particles increase as the charge and discharge are repeated, the volume offset effect by the elastic carbon can be seen as much as the enlarged amount. Therefore, volume enlargement can be suppressed as a whole of an active material layer.
  • the positive electrode active material layer 20 and / or the negative electrode active material layer 40 includes elastic carbon
  • ion mobility or electronic conductivity may be somewhat lowered due to the gap between the silicon particles and the elastic carbon. It may be preferable to further include conductive carbon or to use fullerene having elasticity as the elastic carbon and having very high ion mobility or electron conductivity.
  • the positive electrode active material layer 20 and / or the negative electrode active material layer 40 in the present invention prevents the charge / discharge characteristics from deteriorating as the volume of the active material layer increases due to repeated charge and discharge of the silicon secondary battery.
  • it may include inert material particles that are not involved in the volume enlargement reaction of the active material layer.
  • the inert material particles are any one or more metal particles selected from the group consisting of Mo, Cu, Fe, Co, Ca, Cr, Mg, Mn, Nb, Ni, Ta, Ti and V.
  • the positive electrode active material layer 20 and / or the negative electrode active material layer 40 includes inactive material particles as described above, since the capacitance of the silicon secondary battery may decrease somewhat, the conductive carbon or the conductive polymer may be further reduced. It may be desirable to include.
  • the positive electrode active material layer 20 and / or the negative electrode active material layer 40 may be any shape as long as it can form a layer, but the expansion and contraction of the active material layer is repeated as the charge and discharge of the silicon secondary battery are repeated. In order to minimize the risk of damage to the active material layer due to it may be desirable to have a mesh (mesh) shape.
  • the positive electrode active material layer 20 and / or the negative electrode active material layer 40 are not particularly limited in surface shape, but may be formed with the solid electrolyte layer 10 and / or the positive electrode and negative electrode current collectors 30 and 50. In order to increase the interfacial contact area of and reduce the interfacial resistance, it may be desirable to form irregularities on one or both surfaces of the active material layer.
  • the solid electrolyte layer 10 includes a positive electrode active material layer component and a solid electrolyte component between the solid electrolyte layer and the positive electrode active material layer to increase the battery capacity by reducing the interface resistance between the solid electrolyte layer and the positive electrode active material layer It may be desirable to form a first intermediate layer (not shown).
  • the content ratio of the first intermediate layer is not particularly limited, but in order to further increase the capacitance of the silicon secondary battery, the content of the positive electrode active material layer component is preferably higher than the content of the solid electrolyte component.
  • the thickness of the intermediate layer is also not particularly limited, but in order to further increase the capacitance of the silicon secondary battery, the thickness of the intermediate layer is preferably thinner than that of the solid electrolyte layer and / or the positive electrode active material layer.
  • the first intermediate layer has protrusions formed on one or both surfaces thereof in order to further reduce the interfacial resistance with the adjacent layer.
  • the solid electrolyte layer 10 may have a negative electrode active material layer component and a solid electrolyte between the solid electrolyte layer and the negative electrode active material layer to increase the battery capacity by reducing the interface resistance between the solid electrolyte layer and the negative electrode active material layer. It may be desirable to form a second intermediate layer (not shown) comprising components.
  • the content ratio of the second intermediate layer is not particularly limited, in order to further increase the capacitance of the silicon secondary battery, the content of the negative electrode active material layer component is preferably higher than the content of the solid electrolyte component.
  • the thickness of the intermediate layer is also not particularly limited, but in order to further increase the capacitance of the silicon secondary battery, the thickness of the intermediate layer is preferably thinner than that of the solid electrolyte layer and / or the negative electrode active material layer.
  • the second intermediate layer has protrusions formed on one or both surfaces thereof in order to further reduce the interfacial resistance with the adjacent layer.
  • the solid electrolyte layer 10 may further include any one or more of polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE) in order to further increase the mechanical strength, and improve the processability, in this case the electronic conductivity is It may be even more desirable to further include the conductive polymer as it may be somewhat reduced.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • the positive electrode current collector 30 and the negative electrode current collector 50 are respectively coupled to the positive electrode active material layer and the negative electrode active material layer to collect electric charge, and materials such as stainless steel and nickel may be used.
  • the positive electrode current collector and / or the negative electrode current collector is not particularly limited in shape, but increases the interfacial contact area between the current collector and the active material layer to lower the interface resistance and improves the interfacial adhesion when compressed. It may be desirable to have a foam shape.
  • the porous network shape may be a two-dimensional planar porous network shape, or may be a three-dimensional mesh porous network shape.
  • the positive electrode current collector and / or the negative electrode current collector is porous or foamed
  • any one of gold, silver, and conductive polymer on the surface of the positive electrode current collector and / or negative electrode current collector, there is an advantage that can further reduce the interface resistance.
  • the conductive polymer is coated, since the conductive polymer serves as a binder and a binder, the interfacial adhesion can be further enhanced.
  • the conductive polymer may be any kind of polymer having conductivity, but it is preferable to use any one selected from the group consisting of polypyrrole, polyaniline, polythiophene and polyacetylene in view of improving conductivity and interfacial adhesion of the current collector.
  • a first silicon in which a plurality of silicon anodization thin film layers 210 are formed of a first silicon compound for generating a silicon cation during charging and a silicon anion during discharge.
  • the first silicon multi-layer thin film unit 200 is formed by stacking and compressing a plurality of silicon anodization thin film layers 210.
  • the silicon anodization thin film layer 210 is formed by compressing the first silicon compound mixed with the bonding material.
  • the first silicone compound coated with the bonding material may be formed by pressing.
  • the plurality of silicon anodization thin film layers 210 formed as described above are stacked, and then pressed to form a first silicon plurality of laminated thin film portions 200 by applying pressure.
  • the first silicon compound may be formed of silicon carbide
  • the bonding material may be formed of a polymer crosslinking agent.
  • the first silicon multi-layer thin film unit 200 formed as described above is coupled to the current collector 300 to form a positive electrode current collector.
  • the current collector 300 may be provided with a porous network made of metal, and a terminal for supplying current may be formed at an end thereof.
  • the combination of the first silicon multi-layer thin film unit 200 and the current collector 300 may be combined by a separate bonding material or a coupling member, or may be combined by simple attachment, printing, or pressing.
  • the second silicon multi-layer thin film unit 400 is formed by stacking a plurality of silicon negative electrode thin film layers 410 and pressing them.
  • the silicon negative electrode thin film layer 410 is formed by compressing the second silicon compound mixed with the bonding material.
  • the second silicon compound coated with the bonding material may be formed by pressing.
  • the pressure is compressed to form a second silicon plural laminated thin film part 400.
  • the second silicon compound may be formed of silicon nitride, and the bonding material may be formed of a polymer crosslinking agent.
  • the second silicon multi-layer thin film unit 400 formed as described above is coupled to the current collector 500 to form a positive electrode current collector.
  • the current collector 500 may be provided with a porous network made of metal, and a terminal for supplying current may be formed at an end thereof.
  • the combination of the second silicon multi-layer thin film unit 400 and the current collector 500 may be combined by a separate bonding material or a coupling member, or may be combined by simple attachment, printing, or pressing.
  • the positive and negative electrode current collectors formed as described above are coupled to the solid electrolyte layer 100 such that the first and second silicon multilayer thin film portions 200 and 400 meet the outer surface of the solid electrolyte layer 100.
  • the first and second silicon multi-layered thin film parts 200 and 400 and the solid electrolyte layer 100 may be combined by separate bonding materials or bonding members, and are bonded by simple attachment, printing, spraying, or pressing. May be
  • the solid electrolyte layer 100 is formed to have a wider width than the first and second silicon multi-layer thin film portions 200 and 400 to block short circuits between the anode and the cathode.
  • the silicon secondary battery according to the first embodiment of the present invention by stacking and compressing a first silicon compound or a second silicon compound a plurality of times, the first or second silicon multilayer thin film parts 200 and 400 are manufactured.
  • the current density and capacity of the silicon secondary battery may be increased by increasing the density of the first or second silicon multilayer thin film parts 200 and 400.
  • the solid electrolyte layer 100 is a solid electrolyte layer and the first silicon multi-layer thin film portion to increase the battery capacity by reducing the interface resistance between the solid electrolyte layer and the first silicon multi-layer thin film portion It may be preferable that a first intermediate layer including a first silicon compound and a solid electrolyte component is formed therebetween.
  • the content ratio of the component is not particularly limited in the first intermediate layer, in order to further increase the capacitance of the silicon secondary battery, it is preferable that the content of the first silicon compound is higher than the content of the solid electrolyte component.
  • the thickness of the intermediate layer is also not particularly limited, but in order to further increase the capacitance of the silicon secondary battery, it is preferable that the thickness of the intermediate layer is smaller than the thickness of the solid electrolyte layer and / or the first silicon plural laminated thin film portions.
  • the first intermediate layer has protrusions formed on one or both surfaces thereof in order to further reduce the interfacial resistance with the adjacent layer.
  • the solid electrolyte layer 100 is a solid electrolyte layer and the second silicon in order to increase the battery capacity by reducing the interface resistance between the solid electrolyte layer and the second silicon multi-layer thin film portion It may be preferable that a second intermediate layer including the second silicon compound and the solid electrolyte component is formed between the plurality of laminated thin film portions.
  • the content ratio of the component is not particularly limited in the second intermediate layer, in order to further increase the capacitance of the silicon secondary battery, it is preferable that the content of the second silicon compound is higher than the content of the solid electrolyte component.
  • the thickness of the intermediate layer is also not particularly limited, but in order to further increase the capacitance of the silicon secondary battery, the thickness of the intermediate layer is preferably thinner than the thickness of the solid electrolyte layer and / or the second silicon multi-layer thin film portion.
  • the second intermediate layer has protrusions formed on one or both surfaces thereof in order to further reduce the interfacial resistance with the adjacent layer.
  • the solid electrolyte layer 100 may further include any one or more of polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE) in order to further increase the mechanical strength and improve the processability, in this case the electronic conductivity is It may be even more desirable to further include the conductive polymer as it may be somewhat reduced.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • a first silicon in which a plurality of silicon anodization thin film layers 210 are formed of a first silicon compound for generating silicon cations during charging and silicon anions during discharge.
  • the first silicon multi-layer thin film unit 200 is formed by stacking and compressing a plurality of silicon anodization thin film layers 210.
  • the silicon anodization thin film layer 210 is formed by compressing the first silicon compound mixed with the bonding material.
  • the first silicone compound coated with the bonding material may be formed by pressing.
  • the plurality of silicon anodization thin film layers 210 formed as described above are stacked, and then pressed to form a first silicon plurality of laminated thin film portions 200 by applying pressure.
  • the first silicon compound may be formed of silicon carbide
  • the bonding material may be formed of a polymer crosslinking agent.
  • the first silicon multi-layer thin film unit 200 formed as described above is coupled to the current collector 300 to form a positive electrode current collector.
  • the current collector 300 may be provided with a porous network made of metal, and a terminal for supplying current may be formed at an end thereof.
  • the combination of the first silicon multi-layer thin film unit 200 and the current collector 300 may be combined by a separate bonding material or a coupling member, or may be combined by simple attachment, printing, or pressing.
  • the second silicon multi-layer thin film unit 400 is formed by stacking a plurality of silicon negative electrode thin film layers 410 and pressing them.
  • the silicon negative electrode thin film layer 410 is formed by compressing the second silicon compound mixed with the bonding material.
  • the second silicon compound coated with the bonding material may be formed by pressing.
  • the pressure is compressed to form a second silicon plural laminated thin film part 400.
  • the second silicon compound may be formed of silicon nitride, and the bonding material may be formed of a polymer crosslinking agent.
  • the second silicon multi-layer thin film unit 400 formed as described above is coupled to the current collector 500 to form a positive electrode current collector.
  • the current collector 500 may be provided with a porous network made of metal, and a terminal for supplying current may be formed at an end thereof.
  • the combination of the second silicon multi-layer thin film unit 400 and the current collector 500 may be combined by a separate bonding material or a coupling member, or may be combined by simple attachment, printing, or pressing.
  • a separator 600 is interposed between the first and second silicon multilayer thin film parts 200 and 400 to block a short circuit between the positive electrode and the negative electrode.
  • the first and second silicon multilayer thin film parts 200 and 400 and the separator 600 are bonded to each other in the form of being impregnated with the liquid electrolyte 100 ′.
  • the first silicon compound or the second silicon compound is laminated and compressed a plurality of times to manufacture the first or second silicon multiple laminated thin film parts 200 and 400.
  • the current density and capacity of the silicon secondary battery may be increased by increasing the density of the first or second silicon multilayer thin film parts 200 and 400.
  • the volume of the active material layer is increased to decrease the charge and discharge characteristics. It may include elastic carbon to prevent that. Since the first silicon compound and / or the second silicon compound contain elastic carbon, even if the silicon particles are enlarged as charging and discharging are repeated, the volume offset effect by the elastic carbon can be seen as much as it is enlarged. It is possible to suppress the bulk enlargement as a whole.
  • first silicon compound and / or the second silicon compound include elastic carbon
  • ion mobility or electronic conductivity may be slightly lowered due to the gap between the silicon particles and the elastic carbon. It may be desirable to use fullerenes that include or are highly elastic and have very high ion mobility or electron conductivity.
  • the volume of the active material layer is increased to decrease the charge and discharge characteristics.
  • it may include inert material particles that are not involved in the volume-extension reaction of the active material layer.
  • the inert material particles are any one or more metal particles selected from the group consisting of Mo, Cu, Fe, Co, Ca, Cr, Mg, Mn, Nb, Ni, Ta, Ti and V.
  • the first silicon compound and / or the second silicon compound include inactive material particles as described above, since the capacitance of the silicon secondary battery may decrease somewhat, it is preferable to further include a conductive carbon or a conductive polymer. can do.
  • the anodic thin film layer and / or the cathodic thin film layer may be any shape as long as it can form a layer, but as the charge and discharge of the silicon secondary battery is repeated, the anodic thin film layer and / or It may be desirable to have a mesh shape in order to minimize the risk of thin film layer breakage due to expansion and contraction of the cathodic thin film layer.
  • the anodic thin film layer and / or the cathodic thin film layer is not particularly limited in surface shape, but the surface of the thin film layer is reduced in order to increase the interfacial contact area with adjacent layers, thereby reducing the interface resistance. It may be preferable that irregularities are formed on one or both of them.
  • the first silicon multi-layer thin film unit and / or the second silicon multi-layer thin film unit may be formed of a metal or carbon allotrope to improve charge and discharge characteristics and to ensure uniform ion conductivity. It may be desirable to include an intervening layer.
  • the thickness of the intermediate layer is not particularly limited, it may be more advantageous in terms of increased capacitance than the thickness of the first silicon multi-layer thin film portion and the second silicon multi-layer thin film portion.
  • the metal constituting the intermediate layer may be any metal as long as it is a metal having high electrical conductivity, but it is preferable to use any one or two or more alloys selected from aluminum, gold, and silver in terms of maximizing charge / discharge performance of the battery.
  • the kind of carbon allotrope constituting the intermediate layer is not particularly limited, but any one selected from graphene, carbon nanotube, and fullerene ensures uniform ion conductivity in the electrode. It is preferable in terms of.
  • Method of manufacturing a silicon secondary battery comprises the steps of repeatedly stacking a plurality of silicon anodization thin film layer made of a first silicon compound to prepare a first silicon multi-layer thin film portion, a plurality of first silicon Preparing a positive electrode current collector by combining the laminated thin film unit with a current collector; repeatedly manufacturing a plurality of silicon negative electrode thin film layers made of a second silicon compound to prepare a second silicon multiple laminated thin film unit; and a second silicon multiple laminated thin film Coupling the part to a current collector to produce a negative electrode current collector; and coupling the first and second silicon plurality of laminated thin film parts to an electrolyte part.
  • the first silicon compound may be formed of silicon carbide
  • the bonding material may be formed of a polymer crosslinking agent
  • the mixed material is compressed to produce a silicon anodized thin film layer in the form of a thin film.
  • the first silicon plural laminated thin film portion is compressed.
  • the moldability is easy, but pores may occur in the first silicon multi-layer thin film portion, and the internal resistance of the battery may increase.
  • the first silicon multilayer thin film portion may be manufactured as follows.
  • the coated first silicone compound is dried to prepare a powder form.
  • the dried first silicon compound in the form of a powder is pressed into a silicon anodized thin film layer in the form of a thin film, and a plurality of the silicon anodized thin film layers are laminated and then compressed to prepare a first silicon multiple laminated thin film portion.
  • the first silicon multi-layer thin film portion is manufactured by the method as described above, molding is somewhat difficult, but since the pores do not occur in the first silicon multi-layer thin film portion, the internal resistance of the battery is reduced.
  • the positive electrode current collector is manufactured by combining the first silicon multi-layer thin film part with the current collector.
  • the combination of the first silicon multi-layer thin film portion and the current collector may be combined by a separate bonding material or a bonding member, or may be combined by simple attachment, printing, or pressing.
  • the current collector may be provided with a porous network made of metal, and a terminal for supplying current to an end thereof may be formed.
  • the manufacturing of the second silicon multi-layer thin film portion starts with mixing the second silicon compound and the bonding material.
  • the second silicon compound may be formed of silicon nitride
  • the bonding material may be formed of a polymer crosslinking agent.
  • the mixed material is compressed to prepare a silicon negative electrode thin film layer in the form of a thin film.
  • the second silicon multilayer thin film part may be manufactured as follows.
  • the coated second silicone compound is dried to prepare a powder form.
  • the dried second silicon compound in powder form is compressed to form a thin film silicon anode film, and a plurality of silicon anode film layers thus prepared are laminated and pressed to prepare a second silicon multilayer film.
  • the negative electrode current collector is manufactured by bonding the second silicon multilayer thin film part to the current collector.
  • the combination of the second silicon multi-layer thin film portion and the current collector may be combined by a separate bonding material or a coupling member, or may be combined by simple attachment, printing, or pressing.
  • the current collector may be provided with a porous network made of metal, and a terminal for supplying current to an end thereof may be formed.
  • the electrolyte part is a solid
  • the first and second silicon multilayer thin film parts of the positive electrode current collector and the negative electrode current collector are coupled to meet the outer surface of the solid electrolyte.
  • the first and second silicon multi-layer thin film portions and the solid electrolyte may be combined by separate bonding materials or bonding members, or may be combined by simple attachment, printing, spraying, or pressing.
  • the solid electrolyte is formed to have a wider width than the first and second silicon multi-layer thin film portions in order to block short circuits between the positive electrode and the negative electrode.
  • a separator is interposed between the first and second silicon multilayer thin film portions of the positive electrode current collector and the negative electrode current collector, and the first and second silicon multiple laminated thin film portions and the separator are disposed in the liquid electrolyte. Combined in impregnated form.
  • the first silicon compound or the second silicon compound is laminated and compressed a plurality of times, thereby manufacturing the first or second silicon multi-layer thin film portion, thereby forming the first or second silicon multi-layer thin film portion.
  • Increasing the density has the effect of increasing the current density and capacity of the silicon secondary battery.
  • the silicon secondary battery according to the third embodiment of the present invention is a positive electrode coated with a positive electrode active material that generates a silicon cation during charging and a silicon anion during discharge, generates a silicon anion during charging, and generates a silicon cation during discharge.
  • a positive electrode active material that generates a silicon cation during charging and a silicon anion during discharge, generates a silicon anion during charging, and generates a silicon cation during discharge.
  • Located between the negative electrode and the positive electrode and the negative electrode to which the negative electrode active material to be generated, comprising a solid electrolyte layer for transferring silicon ions during charge and discharge between the positive electrode active material and the negative electrode active material, the positive electrode active material and / or negative electrode active material It relates to a silicon secondary battery including a mesh plate (mesh plate) in the interior.
  • the positive electrode is a metal plate having a predetermined thickness, and a positive electrode active material is coated on one side thereof.
  • the cathode active material may be made of silicon carbide (SiC), but is not necessarily limited thereto.
  • the negative electrode is also provided as a metal plate having a predetermined thickness and a negative electrode active material is coated on one side thereof.
  • the negative electrode active material may be formed of silicon nitride (Si 3 N 4 ), but is not necessarily limited thereto.
  • the mesh plate is embedded in the positive electrode active material and the negative electrode active material coated as described above. As shown in FIG. 4, the mesh plate is formed of a net-like net having an empty space formed therein, and inserted into the positive electrode active material and the negative electrode active material.
  • the mesh plate is formed by metal paste.
  • the metal paste is a gel-like product prepared by mixing a metal powder with a liquid organic material, and is a metal material which is easy to form a metal pattern by a method such as silk screen or inkjet.
  • Metal paste has the property of leaving only metallic materials at low temperature by burning out or vaporizing liquid organic materials, so it can be easily manufactured. When manufacturing a pattern for printing like a silk screen, it can be manufactured up to 30um thick to increase thickness. Can also be represented very small.
  • the cathode and the anode coated with the cathode active material and the anode active material are combined with the solid electrolyte layer to form a silicon secondary battery.
  • the positive electrode and the negative electrode are combined with the solid electrolyte layer such that the positive electrode active material and the negative electrode active material contact the solid electrolyte layer.
  • the silicon secondary battery configured as described above is charged and discharged by the movement of electrons to function as a battery.
  • the base film is made of a synthetic resin material and has solubility.
  • a positive electrode active material is coated on one surface of the base film.
  • the positive electrode active material When the positive electrode active material is coated on one surface of the base film as described above, the positive electrode active material is punched to form a plurality of holes.
  • a metal paste is applied on the cathode active material to form a mesh plate.
  • the mesh plate is formed in the form of a mesh, as shown in Figure 4, is printed and formed by a silk screen.
  • the mesh plate is applied to the upper portion of the hole punched in the positive electrode active material so that the metal paste is introduced into the hole.
  • the positive electrode active material is applied again on the upper portion.
  • the substrate is pressed by applying heat and pressure to produce a cathode active material having a mesh plate embedded therein.
  • a negative electrode active material is produced by the same method as described above.
  • the base film is made of a synthetic resin material and has solubility.
  • a negative electrode active material is coated on one surface of the base film.
  • a metal paste is applied on top of the negative electrode active material to form a mesh plate.
  • the mesh plate is formed in the form of a net, as shown in Figure 4, is printed and formed by a silk screen.
  • the mesh plate is applied to the upper portion of the hole punched in the negative electrode active material so that the metal paste is introduced into the hole.
  • the negative electrode active material is applied again on the upper portion.
  • the negative electrode active material having a mesh plate embedded therein is produced.
  • the positive electrode and the negative electrode are manufactured, the positive electrode, the solid electrolyte layer, and the negative electrode are sequentially stacked. At this time, the positive electrode, the solid electrolyte layer and the negative electrode are laminated so that the positive electrode active material and the negative electrode active material contact the solid electrolyte layer.
  • the silicon secondary battery is manufactured by pressing with heat and pressure.
  • a mesh plate of a mesh type is embedded by using a metal paste inside the electrode, and a hole is formed in the connection portion of the mesh plate to seal the metal paste in the space inside the hole to generate between the electrode and the electrolyte. As electrons pass through the electrode, a higher electron transfer speed can be given.
  • the mesh-shaped mesh plate averaging the nonuniformity of reactivity between the planar electrode and the electrolyte can form a condition capable of uniformly withdrawing electrons.
  • the withdrawal of electrons may proceed rapidly through the holes formed in the electrode, the deposition may easily occur through the metal foil or the coating during the secondary battery stacking.
  • a cathode active material layer 1100 made of a first silicon compound for generating a silicon cation during charging and a silicon anion during discharge
  • a plurality of silicon secondary battery unit cells including a negative active material layer 1200 and a solid electrolyte layer 1000 made of a second silicon compound for generating a silicon anion during charging and a silicon cation during discharge are stacked.
  • One unit is formed, and the plurality of silicon secondary battery unit cells are connected and stacked in series, and one shared current collector layer 1300 is provided between the cathode active material layer 100 and the anode active material layer 200. It is characterized by collecting electrical charge.
  • the positive electrode active material layer 1100 may be either a single layer structure or a multilayer structure, but silicon may be charged during charging to maximize the capacitance and charge / discharge characteristics of the silicon secondary battery unit. It may be preferable that the first silicon plural laminated thin film portions in which a plurality of silicon anodized thin film layers made of a first silicon compound for generating cations and generating silicon anions during discharge are stacked.
  • the negative electrode active material layer may be either a single layer structure or a multilayer structure, but in order to maximize the capacitance and charge / discharge characteristics of the silicon secondary battery unit, silicon anions may be generated during charging and silicon cations during discharge. It may be preferable that the second silicon plural laminated thin film portion in which a plurality of silicon cathode thin film layers made of a second silicon compound are laminated.
  • the shared current collector layer 1300 is stacked between the positive electrode active material layer and the negative electrode active material layer in the silicon secondary battery unit of the present invention to serve as both a positive electrode current collector and a negative electrode current collector
  • Stainless, nickel, and the like may be used as the material, but the shape is not particularly limited, but the interface contact area between the shared current collector 1300 and the active material layers 1100 and 1200 is increased to lower the interface resistance, and the interface at the time of compression. It may be desirable to have a porous network shape or a foam shape in order to improve adhesion.
  • the porous network shape may be a two-dimensional planar porous network shape, or may be a three-dimensional mesh porous network shape.
  • the shared current collector layer 1300 is porous or foamed, by coating any one of gold, silver, and a conductive polymer on the surface of the shared current collector layer 1300, electrons of the shared current collector layer 1300 And it is possible to further increase the ion conductivity there is an advantage that can further reduce the interface resistance.
  • the conductive polymer when the conductive polymer is coated, since the conductive polymer serves as a binder and a binder, the interfacial adhesion can be further enhanced.
  • the conductive polymer may be any kind of polymer having conductivity, but it is preferable to use any one selected from the group consisting of polypyrrole, polyaniline, polythiophene and polyacetylene in view of improving conductivity and interfacial adhesion of the current collector.
  • the fourth embodiment of the present invention since a plurality of silicon secondary battery unit cells constituting the silicon secondary battery unit are directly connected and stacked in a stack, a higher voltage than the conventional secondary battery units having a structure connected in parallel. It has the advantage of having high output characteristics.
  • the number of current collectors included per silicon secondary battery unit may be reduced by almost half. Since the weight of the current collector portion having a relatively large proportion of the total weight of the silicon secondary battery unit is significantly reduced, it is possible to manufacture a silicon secondary battery unit product that is much lighter than a conventional silicon secondary battery unit product.
  • a battery module for supplying power to an electric vehicle as an application example of the silicon secondary battery unit according to the fourth embodiment of the present invention will be described in detail with reference to FIG. 6.
  • the battery module for an electric vehicle includes a case 2100 for accommodating a silicon secondary battery therein, a cover 2200 having an output terminal 2500 for covering an opening of the case and outputting power, and the case ( 2100 includes the plurality of silicon secondary battery units 2000 of the fourth embodiment, wherein the silicon secondary battery units 2000 are connected in series.
  • the case 2100 may have any structure as long as it can accommodate a silicon secondary battery therein. However, in order to overcome problems of deterioration of charge and discharge characteristics and shortened product life due to temperature rise and heat accumulation of the battery module, It is desirable to take a frame structure through which air can flow smoothly.
  • the case 2100 illustrated in FIG. 6 is merely an example of a frame structure, and various types of frame structures may be applied.
  • the cover 2200 is connected to the positive electrode terminals 2010 of the silicon secondary battery units 2000, and is connected to the positive electrode bus bar 2300 and the output terminal 2500, and the silicon secondary battery unit 2000. It may be desirable to include a negative electrode bus bar 2400 connected to the negative electrode terminals 2020 and electrically connected to the output terminal 2500 in consideration of the structural efficiency of the battery module.
  • case 2100 and the cover 2200 are not particularly limited in terms of materials, the case 2100 and the cover 2200 are preferably insulated materials in order to prevent the output power from being distributed to parts other than the output terminals to prevent electrical shorts. In order to secure sufficient durability of the case and cover and to reduce weight, it may be most preferable to use plastic as the insulating material.
  • the battery module of the present invention When the battery module of the present invention is applied to an electric vehicle, by using silicon secondary battery units including a common current collector layer, weight can be reduced compared to the existing battery module, thereby improving the fuel efficiency of the electric vehicle. There is this.
  • the plurality of silicon secondary battery units included in the battery module has a series connection structure of a plurality of silicon secondary battery unit cells, a battery module having a high capacity and a high output is possible, and further, a silicon secondary battery forming a silicon secondary battery unit
  • the active material layer of the unit cell has a laminated structure as described above, it is possible to manufacture a battery module product having a much higher capacity and higher output than the existing electric vehicle battery module in the same volume.
  • a fifth embodiment of the present invention relates to a silicon secondary battery that performs charging and discharging using silicon ions, and more specifically, a first silicon compound for generating a silicon cation during charging and a silicon anion during discharge.
  • a first silicon multi-layered thin film unit in which a plurality of silicon anodized thin films are formed, and a plurality of silicon anodized thin films made of a second silicon compound for generating silicon anions during charging and silicon cations during discharge.
  • a second silicon multi-layer thin film portion and a current collector for collecting the charge, the current collector is characterized in that the porous network shape.
  • the current collector is coupled to one end surface of each of the first silicon multi-layer thin film unit and the second silicon multi-layer thin film unit to collect electric charge. Can be used.
  • the current collector may have a porous network shape in order to increase the interface contact area between the current collector and the first and second plurality of silicon thin film portions to lower the interface resistance, and to improve the interfacial adhesion during compression. It may be preferable to have a foam shape.
  • the porous network shape may be a two-dimensional planar porous network shape, or may be a three-dimensional mesh porous network shape.
  • the current collector when the current collector is porous or foamed, by coating any one of gold, silver, and a conductive polymer on the surface of the current collector, it is possible to further increase the electronic and ion conductivity of the current collector to increase the interface resistance There is an advantage that can be further reduced.
  • the conductive polymer when the conductive polymer is coated, since the conductive polymer serves as a binder and a binder, the interfacial adhesion can be further enhanced.
  • the conductive polymer may be any kind of polymer having conductivity, but it is preferable to use any one selected from the group consisting of polypyrrole, polyaniline, polythiophene and polyacetylene in view of improving conductivity and interfacial adhesion of the current collector.
  • microcell including a silicon secondary battery according to a sixth embodiment of the present invention will be described in detail.
  • a sixth embodiment of the present invention relates to a microcell including a silicon secondary battery, wherein the microcell is a silicon anodization thin film layer formed of a first silicon compound for generating a silicon cation during charging and a silicon anion during discharge.
  • a plurality of first silicon multilayer thin film portions in which a plurality of layers are laminated, and a plurality of second silicon multilayer thin films in which a plurality of silicon negative electrode thin film layers comprising a second silicon compound for generating a silicon anion during charging and a silicon cation during discharge Located between the thin film unit, the first silicon multi-layer thin film unit and the second silicon multi-layer thin film unit, transfer silicon ions between the first silicon multi-layer thin film unit and the second silicon multi-layer thin film unit during charge and discharge.
  • a silicon secondary battery comprising a solid electrolyte layer for It shall be.
  • the first silicon multilayer thin film portion is coupled to a positive electrode current collector for collecting charges on one surface thereof
  • the second silicon multilayer thin film portion is a negative electrode current collector for collecting charges on one surface thereof.
  • the cathode current collector is electrically connected to a substrate so that one end of the cathode current collector is attached to a substrate
  • the anode current collector is connected to the second silicon multilayer thin film unit. It may be desirable for at least some of the portions other than the abutting surface to be attached to the substrate.
  • At least the second silicon multi-layer thin film portion, the solid electrolyte layer, and the negative electrode current collector have a structure insulated from the positive electrode current collector to prevent a short circuit between the electrodes.
  • a space portion is formed between the second silicon plural laminated thin film portion, the solid electrolyte layer, and the side portion of the negative electrode current collector and the positive electrode current collector.
  • the space may be an empty space, but the space may be more preferably filled with an insulating material in order to increase insulation and improve durability of the micro battery.
  • the first silicon compound and / or the second silicon compound is to prevent the charge and discharge characteristics of the active material layer is increased as the charge and discharge of the silicon secondary battery is repeated
  • elastic carbon Since the first silicon compound and / or the second silicon compound contain elastic carbon, even if the silicon particles are enlarged as charging and discharging are repeated, the volume offset effect by the elastic carbon can be seen as much as it is enlarged. It is possible to suppress the bulk enlargement as a whole.
  • first silicon compound and / or the second silicon compound include elastic carbon
  • ion mobility or electronic conductivity may be slightly lowered due to the gap between the silicon particles and the elastic carbon. It may be desirable to use fullerenes that include or are highly elastic and have very high ion mobility or electron conductivity.
  • the volume of the active material layer is increased to prevent the charge and discharge characteristics from being lowered.
  • it may include particles of inert materials that do not participate in the volume enlargement reaction of the active material layer.
  • the inert material particles are any one or more metal particles selected from the group consisting of Mo, Cu, Fe, Co, Ca, Cr, Mg, Mn, Nb, Ni, Ta, Ti and V.
  • the first silicon compound and / or the second silicon compound include inactive material particles as described above, since the capacitance of the silicon secondary battery may decrease somewhat, it is preferable to further include a conductive carbon or a conductive polymer. can do.
  • the anodic thin film layer and / or the cathodic thin film layer may be any shape as long as it can form a layer, but as the charge and discharge of the silicon secondary battery is repeated, the anodic thin film layer and / or the cathodic thin film layer may be used. It may be desirable to have a mesh shape in order to minimize the risk of breakage of the thin film layer due to expansion and contraction.
  • the anodic thin film layer and / or the cathodic thin film layer is not particularly limited in surface shape, but in order to increase the interfacial contact area with the adjacent layer and reduce the interfacial resistance, one of the surfaces of the thin film layer Or it may be preferable that irregularities are formed on both sides.
  • the first silicon multi-layer thin film unit and / or the second silicon multi-layer thin film unit may be formed of an intermediate layer made of metal or carbon allotrope to improve charge / discharge characteristics and ensure uniform ion conductivity. It may be desirable to include.
  • the thickness of the intermediate layer is not particularly limited, it may be more advantageous in terms of increased capacitance than the thickness of the first silicon multi-layer thin film portion and the second silicon multi-layer thin film portion.
  • the metal constituting the intermediate layer may be any metal as long as it is a metal having high electrical conductivity, but it is preferable to use any one or two or more alloys selected from aluminum, gold, and silver in terms of maximizing charge / discharge performance of the battery.
  • the kind of carbon allotrope constituting the intermediate layer is not particularly limited, but any one selected from graphene, carbon nanotube, and fullerene ensures uniform ion conductivity in the electrode. It is preferable in terms of.
  • FIG. 7 An example illustrated in FIG. 7 will be described below to help understand the micro battery according to the sixth embodiment of the present invention.
  • the micro battery of the present invention corresponds to a positive electrode active material layer, and corresponds to a first silicon plural laminated thin film part 3200, a solid electrolyte layer 3100, and a negative electrode active material layer.
  • the plurality of multilayer thin film portions 3300 are sequentially compressed and stacked, and an anode current collector 3400 is coupled to an upper surface of the first silicon multilayer thin film portion 3200, and the second silicon multilayer thin film portions 3300 are formed thereon.
  • the negative electrode current collector 3500 is coupled to a lower surface of the N-side.
  • one end of the cathode current collector 3400 is attached to the surface of the substrate 3000, and the anode current collector 3500 is in contact with the second silicon multilayer thin film part 3300.
  • the other side of the substrate 300 is attached to the substrate 3000, so that the micro battery of the present invention is electrically connected to the substrate, and charging and discharging are possible.
  • the electronic components constituting the PCB there is a device that consumes a constant current to maintain a continuous and constant function such as a timer operation.
  • a device that consumes a constant current to maintain a continuous and constant function such as a timer operation.
  • the accessory devices such as a button-type battery is inserted into the PCB or a lithium-based battery as an accessory to ensure the operation of the device.
  • the button-type battery has the advantage of long operation and maintenance time as a primary battery, but there is a burden for leakage and replacement after discharge, and lithium-based rechargeable battery has a disadvantage of large size and instability against impact heat generation.
  • the micro battery according to the sixth embodiment of the present invention can be manufactured in the form of a thin film and can also be manufactured in the form of a chip, a large-capacity power supply can be configured using a space without a cross-section or device arrangement of a PCB. As a rechargeable battery that can be charged and discharged, it can be charged during PCB operation.
  • micro battery according to the sixth embodiment of the present invention is not limited in shape when attached to a flat surface, and when manufactured in a chip shape can be mounted on a PCB by manufacturing a thickness of about 2mm.
  • another aspect of the present invention relates to a PCB substrate in which a microcell according to the sixth embodiment is mounted in one region as a backup power source.
  • micro-cell according to the present invention can be manufactured integrally by the deposition process on the top and bottom of the chip in the manufacturing process of the semiconductor chip, it is possible to manufacture a small size of the auxiliary components to be installed externally, Power supply can be maintained for a short time.
  • another aspect of the present invention relates to a semiconductor chip in which the micro battery according to the sixth embodiment is deposited and integrated in one region of the semiconductor chip as a backup power source.
  • micro battery according to the sixth embodiment of the present invention is provided as a device and can be utilized as a broadband semiconductor, a super capacitor, and the like.
  • the basic configuration of the silicon secondary battery according to the sixth embodiment of the present invention is a cathode made of silicon carbide having a chemical formula of SiC, a cathode made of silicon nitride having a chemical formula of Si 3 N 4 , between the positive electrode and the negative electrode
  • a cationic sulfonic acid group (-SO 3 H), a carboxyl group (-COOH), an anionic quaternary ammonium group (-N (CH 3 ) 2 C 2 H 4 OH), a substituted amino group (-NH (CH 3 ) 2 )
  • a nonaqueous electrolyte made of any one type of ion-exchange resin among polymers employed as a bonding group is employed, and silicon cations (Si + ) are generated at the anode during charging, and silicon anions (Si ⁇ ) are formed at the cathode. It is a solid secondary battery generated.
  • another configuration of the silicon secondary battery may be a silicon carbide having a chemical formula of Si 3 N 4 , and a cathode of a silicon carbide having a chemical formula of SiC.
  • Such a silicon secondary battery includes tin chloride (SnCl 3 ), a solid solution of zirconium magnesium oxide (ZrMgO 3 ), a solid solution of zirconium calcium (ZrCaO 3 ), zirconium oxide (ZrO 2 ), and silicon- ⁇ alumina between the positive electrode and the negative electrode.
  • a non-aqueous electrolyte made of any one of (Al 2 O 3 ), nitrogen monoxide carbide (SiCON), and silicon zirconium phosphate (Si 2 Zr 2 PO) is used.
  • the method for manufacturing the silicon secondary battery is based Forming a positive electrode current collector layer by metal sputtering), forming a positive electrode layer by vacuum deposition of silicon carbide (SiC) on the positive electrode current collector layer, and forming a nonaqueous electrolyte layer by coating the positive electrode layer And forming a cathode layer by vacuum deposition of silicon nitride (Si 3 N 4 ) on the nonaqueous electrolyte layer, and forming a cathode current collector layer by metal sputtering.
  • the basic principle of the silicon secondary battery employs a compound based on SiC, which is the most stable of silicon carbide in the positive electrode, and a compound based on Si 3 N 4 , which is the most stable of silicon nitride in the negative electrode.
  • silicon is more easily changed to oxidation water than carbon, and since the next stable state in silicon is bivalent, the following chemical reaction is carried out.
  • silicon nitride is a compound state of Si 2 N 3 which is next stabilized by changing silicon from tetravalent to trivalent and nitrogen from trivalent to divalent from the most stable Si 3 N 4 .
  • the chemical formula shown below is established.
  • the silicon secondary battery may express charge and discharge as the following chemical reaction, but may include an additional material to improve charge and discharge efficiency.
  • both the compound by SiC and the compound by Si 3 N 4 exhibit a crystal structure, and for example, when a positive electrode and a negative electrode are produced according to a conventional manufacturing method such as plasma discharge, a compound of SiC with a crystal structure. Silicon carbide by and a silicon nitride by a compound of Si 3 N 4 are formed.
  • each of the compounds is not in a crystal structure but in an amorphous state, that is, an amorphous structure.
  • both the cationic and anionic electrolytes are divided so that the space between the positive electrode and the negative electrode is divided into two, one side (for example, the upper side) is a cationic electrolyte, and the other side (for example, the lower side) is an anionic electrolyte. It is also possible to employ.
  • a nonaqueous electrolyte in a fixed state As the electrolyte of the silicon secondary battery, a nonaqueous electrolyte in a fixed state is employed.
  • the positive electrode and the negative electrode can be bonded in a stable state, and a thin film state is used. This allows the anode and cathode to approach each other, thereby enabling efficient conduction.
  • nonaqueous electrolyte either an ion exchange resin with a polymer, an ion exchange inorganic compound with a metal oxide, or the like can be employed.
  • ion exchange resins include cationic sulfonic acid groups (-SO 3 H), carboxyl groups (-COOH), anionic quaternary ammonium groups (-N (CH 3 ) 2 C 2 H 4 OH), and substituted amino groups (-NH (CH 3 Any of the polymers having any one of ( 2 ) and the like as a linking group can be employed.
  • a sulfonic acid group (-SO 3 H) polyacrylamide methylpropane sulfonic acid (PAMPS) with this can be suitably employed in the point to smoothly move the electron (e-) without any problem.
  • PAMPS polyacrylamide methylpropane sulfonic acid
  • an embodiment may be employed in which a polymer alloy having a crystal structure formed by blending an ion exchange resin with another crystalline polymer is employed as a nonaqueous electrolyte.
  • the crystalline polymer In order to achieve a blend between the ion exchange resin and another crystalline polymer, since the ion exchange resin has polarity, the crystalline polymer must be dealt with so as not to attenuate the polarity of the ion exchange resin.
  • the blend is allowed or not based on the difference in the solubility parameter (SP value) of the ion exchange resin and the crystalline polymer, and the numerical value of the ⁇ parameter based on the combination of the solubility parameters.
  • SP value solubility parameter
  • the solubility parameter
  • ions such as atactic polystyrene (AA) or acrylonitrile-styrene copolymer (AS) or copolymers of atactic polystyrene with acrylonitrile and styrene (AA-AS) It is easy to blend with exchange resin and is preferable in maintaining crystallinity.
  • the blended polymer alloy In order for the blended polymer alloy to maintain the crystal structure, it is necessary to consider the ratio of the amount of the ion exchange resin to the amount of the other crystalline polymer, and the specific value depends on the type of the ion exchange resin and the other crystalline polymer. do.
  • the weight ratio of the other crystalline polymer can be made to be more than half of the total.
  • crystalline polymers for cationic polyacrylamidemethylpropanesulfonic acid (PAMPS), as described above, as cationic ion exchange resins are atactic polystyrene (AA), or acrylonitrile-styrene copolymer (AS), or atactic
  • AA atactic polystyrene
  • AS acrylonitrile-styrene copolymer
  • the weight ratio of the former and the latter is preferably about 2: 3 to 1: 2.
  • the non-aqueous electrolyte is not limited to ion-exchange resin as described above, ion exchange mineral, of course employed possible, tin chloride (SnCl 3), solid solution (ZrMgO 3), a solid solution of zirconium oxide, calcium zirconium oxide, magnesium (ZrCaO 3 ), Zirconium oxide (ZrO 2 ), silicon- ⁇ alumina (Al 2 O 3 ), silicon monoxide carbide (SiCON), silicon zirconium phosphate (Si 2 Zr 2 PO) and the like can be illustrated as typical examples.
  • the shape and arrangement of the positive electrode and the negative electrode are not particularly limited.
  • bases are formed on both sides of the positive electrode and the negative electrode, and the positive electrode and the negative electrode are connected to each other with the positive electrode current collector layer and the negative electrode current collector layer interposed therebetween.
  • the discharge voltage between the positive electrode and the negative electrode depends on the degree of the charging voltage and the internal resistance of the electrode. However, in the secondary battery, as described later in Examples, when the charging voltage is 4 to 5.5 V, The design which keeps 4-3.5V as discharge voltage is fully possible.
  • Amount of current conduction between the electrodes is, as described later in the Examples but may be fixed in advance at the time of charge, by setting the unit area per 1cm 2 a current density of about 1.0A, the voltage charged in 4 ⁇ 5.5V It is possible to design sufficiently to change and maintain the discharge voltage at 4 to 3.5V.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Mounting, Suspending (AREA)
  • Cell Separators (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

본 발명은 실리콘 이차전지에 관한 것으로, 더욱 상세하게는 고체 전해질을 갖는 고체형 실리콘 이차전지 및 이의 제조방법에 관한 것이다. 본 발명에 의하면, 이차전지의 리튬을 실리콘으로 대체함으로써, 제조 비용 감소 및 이차전지 폐기 시 환경 오염을 최소화할 수 있는 효과가 있다. 또한, 양극 또는 음극 물질을 다수 회 적층 압착하여 양극 또는 음극 활물질을 제조함으로써, 양극 또는 음극 활물질의 밀도를 증가시켜 전류 밀도 및 용량을 증가시킬 수 있는 효과가 있다. 또한, 양극 활물질 및 음극 활물질의 내부에 메쉬 플레이트를 내장시킴으로써 전자를 효율적으로 이동시킬 수 있는 효과가 있다. 또한, 실리콘 이차전지의 직렬 연결 시 연결되는 실리콘 이차전지의 전극을 공용화함으로써, 실리콘 이차전지 어셈블리의 두께를 감소시키고 출력 전압을 증대시킬 수 있는 효과가 있다. 또한, PCB 또는 칩과 일체로 형성되어 전원을 공급함으로써 순간 방전에 대한 백업 전원의 역할을 할 수 있는 효과가 있다.

Description

실리콘 이차전지
본 발명은 실리콘 이차전지에 관한 것으로, 더욱 상세하게는 고체 전해질을 갖는 고체형 실리콘 이차전지에 관한 것이다.
이차전지는 화학적 에너지를 전기적 에너지로 변환시켜 외부의 회로에 전원을 공급하기도 하고, 방전되었을 때 외부의 전원을 공급받아 전기적 에너지를 화학적 에너지로 바꾸어 전기를 저장할 수 있는 전지로서, 일반적으로 축전지라고 부른다.
이러한 이차전지에는 납 축전지, 니켈-카드뮴 이차전지, 리튬 이차전지 등이 있다. 납 축전지는 전압이 높지만 부피가 크고 무거워 자동차용으로 사용되며, 니켈-카드뮴 이차전지는 건전지의 대용으로 사용하며, 리튬 이차전지는 매우 가벼워 카메라, 휴대폰 등의 전원으로 사용된다. 최근 급증하고 있는 스마트폰 및 태블릿 PC와 같은 개인 휴대 단말장치의 보급에 의해 상기한 이차전지 중 리튬 이차전지가 널리 사용되고 있는 실정이다.
그러나, 리튬 이차전지는 주 소재인 리튬이 상당히 고가이며, 수명이 다한 리튬 이차전지를 폐기할 경우, 리튬이 폐기장소에서 유출되어 환경 오염이 수반되는 문제점이 있다.
따라서, 리튬 이차전지를 대체할 수 있는 고출력 이차전지의 개발이 절실한 실정이다.
본 발명의 제1 목적은 리튬 이차전지를 대체할 수 있는 고출력 및 고효율의 실리콘 이차전지를 제공하는 것이다.
본 발명의 제2 목적은 양극 또는 음극 물질을 다수 회 적층 압착하여 양극 또는 음극 활물질을 제조함으로써, 양극 또는 음극 활물질의 밀도를 증가시켜 전류 밀도 및 용량을 증가시킬 수 있는 실리콘 이차전지를 제공하는 것이다.
본 발명의 제3 목적은 양극 활물질 및 음극 활물질의 내부에 메쉬 플레이트를 내장시킴으로써 전자를 효율적으로 이동시킬 수 있는 실리콘 이차전지를 제공하는 것이다.
본 발명의 제4 목적은 실리콘 이차전지의 직렬 연결 시 연결되는 실리콘 이차전지의 전극을 공용화함으로써, 실리콘 이차전지 어셈블리의 두께를 감소시키고 출력 전압을 증대시킬 수 있는 실리콘 이차전지 어셈블리를 제공하는 것이다.
본 발명의 제5 목적은 PCB 또는 칩과 일체로 형성되어 전원을 공급함으로써 순간 방전에 대한 백업 전원의 역할을 할 수 있는 실리콘 이차전지를 제공하는 것이다.
상기 목적은 본 발명에 따라, 실리콘 이온을 이용하여 충전 및 방전을 수행하는 실리콘 이차전지에 있어서, 충전 시에 실리콘 양이온을 발생시키고 방전 시에 실리콘 음이온을 발생시키기 위한 제1 실리콘 화합물로 이루어진 실리콘 양극화 박막층을 복수 개 적층한 제1 실리콘 복수 적층 박막부; 충전 시에 실리콘 음이온을 발생시키고 방전 시에 실리콘 양이온을 발생시키기 위한 제2 실리콘 화합물로 이루어진 실리콘 음극화 박막층을 복수 개 적층한 제2 실리콘 복수 적층 박막부; 및 상기 제1 실리콘 복수 적층 박막부 및 상기 제2 실리콘 복수 적층 박막부 사이에 위치하며, 제1 실리콘 복수 적층 박막부와 제2 실리콘 복수 적층 박막부간에 충전 및 방전 시에 실리콘 이온을 전달하기 위한 고체전해질층을 포함하는 것에 의해 달성된다.
또한, 상기 고체전해질층은 고체전해질층과 제1 실리콘 복수 적층 박막부 사이에 제1 실리콘 화합물과 고체전해질 성분을 포함하는 제1중간층이 형성될 수 있다.
또한, 상기 제1 중간층은 제1 실리콘 화합물의 함량이 고체전해질 성분의 함량보다 많을 수 있다.
또한, 상기 제1 중간층의 두께는 상기 고체전해질층 및/또는 제1 실리콘 복수 적층 박막부의 두께보다 얇을 수 있다.
또한, 상기 제1 중간층은 어느 한면 또는 양면의 표면에 돌기가 형성될 수 있다.
또한, 상기 고체전해질층은 고체전해질층과 제2 실리콘 복수 적층 박막부 사이에 제2 실리콘 화합물과 고체전해질 성분을 포함하는 제2 중간층이 형성될 수 있다.
또한, 상기 제2 중간층은 제2 실리콘 화합물의 함량이 고체전해질 성분의 함량보다 많을 수 있다.
또한, 상기 제2 중간층의 두께는 상기 고체전해질층 및/또는 제2 실리콘 복수 적층 박막부의 두께보다 얇을 수 있다.
또한, 상기 제2 중간층은 어느 한면 또는 양면의 표면에 돌기가 형성될 수 있다.
또한, 상기 고체전해질층은 PVDF(polyvinylidene fluoride) 및 PTFE(polytetrafluoroethylene) 중 어느 하나 이상을 포함할 수 있다.
또한, 상기 고체전해질층은 전도성 폴리머를 더 포함할 수 있다.
또한, 본 발명은 실리콘 이온을 이용하여 충전 및 방전을 수행하는 실리콘 이차전지에 있어서, 충전 시에 실리콘 양이온을 발생시키고 방전 시에 실리콘 음이온을 발생시키는 양극 활물질층; 충전 시에 실리콘 음이온을 발생시키고 방전 시에 실리콘 양이온을 발생시키는 음극 활물질층; 및 상기 양극 활물질층 및 음극 활물질층 사이에 위치하며, 양극 활물질층과 음극 활물질층간에 충전 및 방전 시에 실리콘 이온을 전달하기 위한 고체전해질층; 을 포함하되, 상기 고체전해질층은 고체전해질층과 양극 활물질층 사이에 양극 활물질층 성분과 고체전해질 성분을 포함하는 제1중간층이 형성될 수 있다.
또한, 상기 제1 중간층은 양극 활물질층 성분의 함량이 고체전해질 성분의 함량보다 많을 수 있다.
또한, 상기 제1 중간층의 두께는 상기 고체전해질층 및/또는 양극 활물질층의 두께보다 얇을 수 있다.
또한, 상기 제1 중간층은 어느 한면 또는 양면의 표면에 돌기가 형성될 수 있다.
또한, 본 발명은 실리콘 이온을 이용하여 충전 및 방전을 수행하는 실리콘 이차전지에 있어서, 충전 시에 실리콘 양이온을 발생시키고 방전 시에 실리콘 음이온을 발생시키는 양극 활물질층; 충전 시에 실리콘 음이온을 발생시키고 방전 시에 실리콘 양이온을 발생시키는 음극 활물질층; 및 상기 양극 활물질층 및 음극 활물질층 사이에 위치하며, 양극 활물질층과 음극 활물질층간에 충전 및 방전 시에 실리콘 이온을 전달하기 위한 고체전해질층; 을 포함하되, 상기 고체전해질층은 고체전해질층과 음극 활물질층 사이에 음극 활물질층 성분과 고체전해질 성분을 포함하는 제2 중간층이 형성될 수 있다.
또한, 상기 제2 중간층은 음극 활물질층 성분의 함량이 고체전해질 성분의 함량보다 많을 수 있다.
또한, 상기 제2 중간층의 두께는 상기 고체전해질층 및/또는 음극 활물질층의 두께보다 얇을 수 있다.
또한, 상기 제2 중간층은 어느 한면 또는 양면의 표면에 돌기가 형성될 수 있다.
또한, 본 발명은 실리콘 이온을 이용하여 충전 및 방전을 수행하는 실리콘 이차전지에 있어서, 충전 시에 실리콘 양이온을 발생시키고 방전 시에 실리콘 음이온을 발생시키는 양극 활물질층; 충전 시에 실리콘 음이온을 발생시키고 방전 시에 실리콘 양이온을 발생시키는 음극 활물질층; 및 상기 양극 활물질층 및 음극 활물질층 사이에 위치하며, 양극 활물질층과 음극 활물질층간에 충전 및 방전 시에 실리콘 이온을 전달하기 위한 고체전해질층; 을 포함하되, 상기 고체전해질층은 PVDF(polyvinylidene fluoride) 및 PTFE(polytetrafluoroethylene) 중 어느 하나 이상을 포함할 수 있다.
또한, 상기 고체전해질층은 전도성 폴리머를 더 포함할 수 있다.
이에 의해, 본 발명은 다음과 같은 효과를 갖는다.
첫째, 이차전지의 리튬을 실리콘으로 대체함으로써, 제조 비용 감소 및 이차전지 폐기 시 환경 오염을 최소화할 수 있는 효과가 있다.
둘째, 양극 또는 음극 물질을 다수 회 적층 압착하여 양극 또는 음극 활물질을 제조함으로써, 양극 또는 음극 활물질의 밀도를 증가시켜 전류 밀도 및 용량을 증가시킬 수 있는 효과가 있다.
셋째, 양극 활물질 및 음극 활물질의 내부에 메쉬 플레이트를 내장시킴으로써 전자를 효율적으로 이동시킬 수 있는 효과가 있다.
넷째, 실리콘 이차전지의 직렬 연결 시 연결되는 실리콘 이차전지의 전극을 공용화함으로써, 실리콘 이차전지 어셈블리의 두께를 감소시키고 출력 전압을 증대시킬 수 있는 효과가 있다.
다섯째, PCB 또는 칩과 일체로 형성되어 전원을 공급함으로써 순간 방전에 대한 백업 전원의 역할을 할 수 있는 효과가 있다.
도 1은 본 발명에 따른 실리콘 이차전지의 구조를 나타낸 것이다.
도 2는 본 발명의 제1 실시 예에 따른 실리콘 이차전지의 구조를 도시한 것이다.
도 3은 본 발명의 제2 실시 예에 따른 실리콘 이차전지의 구조를 도시한 것이다.
도 4는 본 발명의 제3 실시 예에 따른 실리콘 이차전지의 활물질에 포함되는 메쉬 플레이트의 일 예를 도시한 것이다.
도 5는 본 발명의 제4 실시 예에 따른 실리콘 이차전지 유닛의 구조를 나타낸 것이다.
도 6은 본 발명의 제4 실시 예에 따른 실리콘 이차전지 유닛이 적용된 전기 자동차용 전지 모듈의 일 예를 도시한 것이다.
도 7은 본 발명의 제6 실시예에 따른 마이크로 전지의 일 예를 도시한 것이다.
본 명세서 및 특허청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서 본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 가장 바람직한 하나의 실시 예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다. 아울러, 본 발명을 설명함에 있어 관련된 공지 기술 등이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우에는 그에 관한 자세한 설명은 생략하기로 한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 실리콘 이차전지 및 이의 제조방법에 관하여 살펴보기로 한다.
본 발명에 따른 실리콘 이차전지는 실리콘 이온을 이용하여 충전 및 방전을 수행하는 이차전지에 관한 것으로, 도 1에 도시된 바와 같이, 충전 시에 실리콘 양이온을 발생시키고 방전 시에 실리콘 음이온을 발생시키는 양극 활물질층(20), 충전 시에 실리콘 음이온을 발생시키고 방전 시에 실리콘 양이온을 발생시키는 음극 활물질층(40) 및 상기 양극 활물질층(20) 및 음극 활물질층(40) 사이에 위치하며, 양극 활물질층(20)과 음극 활물질층(40)간에 충전 및 방전 시에 실리콘 이온을 전달하기 위한 고체전해질층(10)을 포함한다.
또한, 도 1에 의하면, 상기 양극 활물질층(20)에는 양극 집전체(30)가 결합되고, 상기 음극 활물질층(40)에는 음극 집전체(50)가 결합된다.
도 1에서 양극 집전체(30)는 소정 두께를 갖는 금속 플레이트로 마련되며, 그 일 측면에 양극 활물질층(20)이 도포된다. 양극 활물질층(20)은 실리콘 카바이드(SiC)로 마련될 수 있으나, 반드시 이에 한정되는 것은 아니다. 예를 들어 설명하면, 실리콘 카바이드(SiC)에 게르마늄(ge)이 소량 첨가되어 사용될 수도 있다. 이는 도핑에 의해 가능한 것으로, 카본(C)과 원소 주기율표상 같은 족에 위치한 원소를 첨가하여 양극 활물질로 사용할 수 있다.
음극 집전체(50)는 소정의 두께를 갖는 금속 플레이트로 마련되어 그 일 측면에 음극 활물질층(40)이 도포된다. 음극 활물질층(40)은 실리콘 나이트레이트(Si3N4)로 마련될 수 있으나, 반드시 이에 한정되는 것은 아니다. 상기 음극 활물질층(40) 또한 실리콘 나이트레이트(Si3N4)에 질소(N)와 원소 주기율표상 같은 족에 위치한 원소를 소량 첨가하여 음극 활물질로 사용할 수 있다.
상기한 도핑에 대해 다시 한번 설명하면, 전극은 이온화 과정에서 발생하는 전자의 이탈에 의한 전위차로 전압을 발생시키는 역할을 한다. 실리콘은 +4 의 이온화도를 가지는 원소로서 양극성을 가지며, 이 양극성에서 전자의 이탈 용이성과 수용 용이성을 위하여 N와 C로 도핑된 실리콘 전극을 이용한다. 그러나 실리콘 카바이드와 실리콘 나이트레이드는 육방정 결정질의 물질로서 결정상에서의 전자의 이동이 결정 표면에서 발생이 쉽고, 특히 결정의 방향성에 따라서 전자의 이탈 현상이 변화될 수 있다. 실리콘 카바이드와 실리콘 나이트레이트의 원료에 Al, Fe, Mg, Zn, Mn등의 전이 금속을 첨가함으로, 결정의 방향성을 변경하여 전자의 이탈 및 수용을 용이하게 조절할 수 있다. 실리콘에 비하여 이온 지름이 큰 4주기 5주기의 전이 금속을 첨가하여 결정에 방향성을 부여함으로써 전자이동도를 조절할 수 있다. 실리콘과 지름이 비슷한 3주기 원소인 Al, P, S, Mg, Na등의 원소를 조합하여 첨가하였을 때, 결정상의 모양 변화를 최소화하며, 전자의 이탈도를 조절할 수 있다.
한편, 고체 전해질층(10)은 고정된 상태에 있는 비수 전해질로서, 폴리머에 의한 이온교환 수지 및 금속 산화물 등에 의한 이온 교환 무기 화합물 등으로 마련될 수 있다. 이온교환수지로서는, 양이온성인 술폰산기(-SO3H), 카르복실기(-COOH), 음이온성인 4급 암모늄기(-N(CH3)2C2H4OH), 치환 아미노기(-NH(CH3)2) 등 중 어느 1종류를 결합기로서 가지고 있는 폴리머의 어느 쪽도 채용 가능하다. 다만, 술폰산기(-SO3H)를 가지고 있는 폴리아크릴아미드메틸프로판술폰산(PAMPS)이 원활하게 전자(e-)를 이동시키는 점에 있어서 적합하게 채용할 수 있다.
상기한 고체 전해질층(10)은 전해질에 폴리머를 첨가하여 겔과 같은 형태의 고정성을 부여함으로써 전지의 활용성을 높이는 것이다. 그러나, 폴리머는 단일 결합으로 이루어진 체인 또는 이중결합으로 이루어진 체인으로 구성되므로, 체인 내 전자 공유만으로는 전자밀도가 매우 낮아 액상 전해질만 이용할 때보다 전자이동도가 감소한다. 이러한 폴리머는 빠른 시간에 전자와 이온을 대량으로 수송하고, 전해질 액체의 고정성을 더욱 높여 안전 및 안정성을 높여야 한다. 액상의 고정을 위한 폴리머는 고점도를 위해 고분자량의 재료가 필요하나, 고분자량으로 갈수록 폴리머의 전도성이 낮아지는 경향이 있어, 전도성이 높은 저분자량의 낮은 중합도를 가지는 폴리머와 고점도를 위한 높은 중합도를 가지는 폴리머를 2종 이상을 혼합하여, 이온 이동도와 전자 이동도를 보상할 수 있다.
상기와 같이 양극 활물질층(20) 및 음극 활물질층(40)이 도포된 양극집 전체(30) 및 음극 집전체(50)는 고체 전해질층(10)과 결합되어 실리콘 이차전지를 이루게 된다. 이때, 상기 양극 활물질층(20) 및 음극 활물질층(40)이 고체 전해질층(10)의 양면에 맞닿도록 결합된다.
상기와 같이 구성되는 실리콘 이차전지는 전자의 이동에 의해 충방전되어 전지의 기능을 하게 된다.
상기의 실리콘 이차전지는 양극 집전체(30)에 전류가 인가되면 음극 집전체(50)를 향하여 전자가 이동한다. 이동한 전자는 첫번째 단계로 고체 전해질층(10) 내부에 쌍극자 형성을 통해 만들어진 전기력장에 의해 전압 평형상태와 비교할 때 과량의 전자가 저장되고, 이 충전 속도는 매우 빠르다. 전자기력에 의해 충전된 전자들은 고체 전해질층(10)의 음극 활물질층(40) 쪽 계면으로 이동하여 음극 활물질층(40) 표면에 존재하는 실리콘 정공에 충진되어 순차적으로 이동하고, 이 과정에서 음극 활물질층(40)에 존재하는 실리콘 카바이드 분자들과 물리적 결합을 하게 된다. 물리적 결합이 일정 시간 진행되어 음극 활물질층(40)이 전자들로 포화되면 전자들은 물리적 결합을 유지하면서 궁극적으로 양극 집전체(30)에 인가된 전류에 의해 전달된 전자들은 음극 활물질층(40)의 실리콘 카바이드와 화학적 결합을 생성하여 전지 내부에 화학적인 충전을 완성하게 된다. 따라서, 실리콘 이차전지는 물리적인 고속 충전 특성과 화학적인 안정 충전 특성을 동시에 보유하게 된다.
본 발명에서 상기 양극 활물질층(20) 및/또는 음극 활물질층(40)은 실리콘 이차전지의 충·방전이 반복됨에 따라 활물질층의 부피가 비대해져 충·방전 특성이 저하되는 것을 방지하기 위하여 탄성탄소를 포함할 수 있다. 상기 양극 활물질층(20) 및/또는 음극 활물질층(40)은 탄성탄소를 포함함으로써, 충·방전이 반복됨에 따라 실리콘 입자가 비대해지더라도, 비대해지는 만큼 탄성탄소에 의한 부피 상쇄 효과를 볼 수 있으므로, 활물질층 전체적으로 부피 비대화를 억제할 수 있게 된다.
다만, 상기 양극 활물질층(20) 및/또는 음극 활물질층(40)이 탄성탄소를 포함하게 되면, 실리콘 입자와 탄성탄소간의 간극으로 인해 이온 이동성이나 전자 전도성이 다소 떨어질 수 있으므로, 이를 보완하기 위하여 전도성 탄소를 더 포함하거나, 상기 탄성탄소로 탄성을 가지면서 동시에 이온 이동성이나 전자 전도성이 매우 높은 플러렌(fullerene)을 사용하는 것이 바람직할 수 있다.
또 다른 예로, 본 발명에서 상기 양극 활물질층(20) 및/또는 음극 활물질층(40)은 실리콘 이차전지의 충·방전이 반복됨에 따라 활물질층의 부피가 비대해져 충·방전 특성이 저하되는 것을 방지하기 위하여, 활물질층의 부피 비대화 반응에 관여하지 않는 비활물질 입자를 포함할 수 있다. 상기 비활물질 입자는 Mo, Cu, Fe, Co, Ca, Cr, Mg, Mn, Nb, Ni, Ta, Ti 및 V로 이루어진 군으로부터 선택된 어느 1종 이상의 금속입자이다.
다만, 상기와 같이 상기 양극 활물질층(20) 및/또는 음극 활물질층(40)이 비활물질 입자를 포함하게 되면, 실리콘 이차전지의 전기용량이 다소 감소할 수 있으므로, 전도성 탄소 또는 전도성 고분자를 더 포함하는 것이 바람직할 수 있다.
본 발명에서 상기 양극 활물질층(20) 및/또는 음극 활물질층(40)은 층을 이룰 수 있는 형상이라면 어떠한 형상이라도 무방하나, 실리콘 이차전지의 충·방전이 반복됨에 따라 활물질층의 팽창·수축으로 인한 활물질층 파손 위험을 최소화하기 위해 메쉬(mesh)형상인 것이 바람직할 수 있다.
본 발명에서 상기 양극 활물질층(20) 및/또는 음극 활물질층(40)은 표면 형상에 있어 특별히 제한적인 것은 아니나, 고체 전해질층(10) 및/또는 양극·음극 집전체(30, 50)과의 계면 접촉면적을 넓혀, 계면저항을 감소시키기 위해 활물질층의 표면 중 어느 한면 또는 양면에 요철이 형성된 것이 바람직할 수 있다.
본 발명에서 상기 고체전해질층(10)은 고체전해질층과 양극 활물질층간의 계면저항을 감소시켜 전지용량을 증가시키기 위해 고체전해질층과 양극 활물질층 사이에 양극 활물질층 성분과 고체전해질 성분을 포함하는 제1중간층(도면 미도시)이 형성 되는 것이 바람직할 수 있다.
상기 제1 중간층은 구성 성분의 함량 비율이 특별히 제한적인 것은 아니나, 실리콘 이차전지의 전기용량을 보다 더 증가시키기 위해서는 양극 활물질층 성분의 함량이 고체전해질 성분의 함량 보다 많은 것이 바람직하며, 상기 제1 중간층의 두께 역시 특별히 한정적인 것은 아니나, 실리콘 이차전지의 전기용량을 보다 더 증가시키기 위해서는 상기 고체전해질층 및/또는 양극 활물질층의 두께보다 얇은 것이 바람직하다.
또한, 상기 제1 중간층은 인접 층과의 계면저항을 보다 더 감소시키기 위해 어느 한면 또는 양면의 표면에 돌기가 형성되어 있는 것이 바람직할 수 있다.
또 다른 예로, 본 발명에서 상기 고체전해질층(10)은 고체전해질층과 음극 활물질층간의 계면저항을 감소시켜 전지용량을 증가시키기 위해 고체전해질층과 음극 활물질층 사이에 음극 활물질층 성분과 고체전해질 성분을 포함하는 제2중간층(도면 미도시)이 형성 되는 것이 바람직할 수 있다.
상기 제2 중간층은 구성 성분의 함량 비율이 특별히 제한적인 것은 아니나, 실리콘 이차전지의 전기용량을 보다 더 증가시키기 위해서는 음극 활물질층 성분의 함량이 고체전해질 성분의 함량 보다 많은 것이 바람직하며, 상기 제2 중간층의 두께 역시 특별히 한정적인 것은 아니나, 실리콘 이차전지의 전기용량을 보다 더 증가시키기 위해서는 상기 고체전해질층 및/또는 음극 활물질층의 두께보다 얇은 것이 바람직하다.
또한, 상기 제2 중간층은 인접 층과의 계면저항을 보다 더 감소시키기 위해 어느 한면 또는 양면의 표면에 돌기가 형성되어 있는 것이 바람직할 수 있다.
한편, 상기 고체전해질층(10)은 기계적 강도를 한층 더 높이고, 가공성을 향상시키기 위해 PVDF(polyvinylidene fluoride) 및 PTFE(polytetrafluoroethylene) 중 어느 하나 이상을 포함하는 것이 바람직할 수 있으며, 이 경우 전자 전도성이 다소 감소할 수 있으므로 전도성 폴리머를 더 포함하는 것이 보다 더 바람직할 수 있다.
본 발명에서 상기 양극 집전체(30) 및 음극 집전체(50)는 각각 양극 활물질층 및 음극 활물질층에 결합되어 전하를 집전하는 것으로, 소재로는 스테인레스, 니켈 등이 사용될 수 있다.
상기 양극 집전체 및/또는 음극 집전체는 형상에 있어 특별히 제한적인 것은 아니나, 집전체와 활물질층 간의 계면 접촉면적을 증가시켜 계면저항을 낮추고, 압착시 계면 접착력을 향상시키기 위해 다공망 형상이거나, 발포 형상인 것이 바람직할 수 있다. 상기 다공망 형상은 2차원적인 평면 다공망 형상일 수 있고, 3차원적인 그물형 다공망 형상일 수도 있다.
또한, 상기 양극 집전체 및/또는 음극 집전체가 다공망 형상 또는 발포 형상일 경우, 상기 양극 집전체 및/또는 음극 집전체의 표면에 금, 은 및 전도성 폴리머 중 어느 하나를 코팅함으로서, 집전체의 전자 및 이온 전도성을 보다 더 높일 수 있어 계면저항을 한층 더 감소시킬 수 있는 이점이 있다. 특히, 상기 전도성 폴리머를 코팅할 경우에는 전도성 폴리머가 도전제 역할을 함과 동시에 결합제 역할까지 하기 때문에, 계면 접착력도 한층 더 높일 수 있다. 상기 전도성 폴리머는 전도성을 가지는 폴리머라면 어떠한 종류라도 무방하나, 폴리피롤, 폴리아닐린, 폴리티오펜 및 폴리아세틸렌으로 이루어진 군으로부터 선택된 어느 하나를 사용하는 것이 집전체의 도전성 및 계면접착력 향상 측면에서 바람직하다.
<제1 실시 예>
이하에서는, 도 2를 참조하여 본 발명의 제1 실시 예에 따른 실리콘 이차전지에 대해 상세하게 설명한다.
본 발명의 제1 실시 예에 따른 실리콘 이차전지는 충전 시에 실리콘 양이온을 발생시키고 방전 시에 실리콘 음이온을 발생시키기 위한 제1 실리콘 화합물로 이루어진 실리콘 양극화 박막층(210)을 복수 개 적층한 제1 실리콘 복수 적층 박막부(200), 제1 실리콘 복수 적층 박막부(200)와 결합되는 집전체(300), 충전 시에 실리콘 음이온을 발생시키고 방전 시에 실리콘 양이온을 발생시키기 위한 제2 실리콘 화합물로 이루어진 실리콘 음극화 박막층(410)을 복수 개 적층한 제2 실리콘 복수 적층 박막부(400), 제2 실리콘 복수 적층 박막부(400)와 결합되는 집전체(500), 제1 실리콘 복수 적층 박막부(200) 및 제2 실리콘 복수 적층 박막부(400) 사이에 위치하며 제1 실리콘 복수 적층 박막부(200)와 제2 실리콘 복수 적층 박막부(400)간에 충전 및 방전 시에 실리콘 이온을 전달하기 위한 고체전해질층(100)을 포함한다.
제1 실리콘 복수 적층 박막부(200)는 실리콘 양극화 박막층(210)이 복수 개 적층 압착되어 형성된다. 실리콘 양극화 박막층(210)은 접합 물질과 혼합된 제1 실리콘 화합물을 압착하여 형성시키게 된다. 또는, 접합 물질에 의해 코팅된 제1 실리콘 화합물을 압착하여 형성시킬 수도 있다. 상기와 같이 형성된 실리콘 양극화 박막층(210)은 복수 개 적층된 후, 압력을 가해 압착하여 제1 실리콘 복수 적층 박막부(200)를 형성하게 된다. 여기서, 제1 실리콘 화합물은 실리콘 카바이드(silicon carbide)로 마련될 수 있으며, 접합 물질은 고분자 가교제로 마련될 수 있다.
이와 같이 형성된 제1 실리콘 복수 적층 박막부(200)는 집전체(300)에 결합되어 양극 집전체를 이루게 된다. 이때, 집전체(300)는 금속 재질의 다공망으로 마련될 수 있으며, 그 단부에는 전류를 공급하기 위한 단자가 형성될 수 있다. 여기서, 제1 실리콘 복수 적층 박막부(200)와 집전체(300)의 결합은 별도의 결합 물질 또는 결합 부재에 의해 결합될 수 있으며, 단순 부착, 인쇄 또는 압착에 의해 결합될 수도 있다.
한편, 제2 실리콘 복수 적층 박막부(400)는 실리콘 음극화 박막층(410)이 복수 개 적층 압착되어 형성된다. 실리콘 음극화 박막층(410)은 접합 물질과 혼합된 제2 실리콘 화합물을 압착하여 형성시키게 된다. 또는, 접합 물질에 의해 코팅된 제2 실리콘 화합물을 압착하여 형성시킬 수도 있다. 상기와 같이 형성된 실리콘 음극화 박막층(410)은 복수 개 적층된 후, 압력을 가해 압착하여 제2 실리콘 복수 적층 박막부(400)를 형성하게 된다. 여기서, 제2 실리콘 화합물은 실리콘 나이트레이드로 마련될 수 있으며, 접합 물질은 고분자 가교제로 마련될 수 있다.
이와 같이 형성된 제2 실리콘 복수 적층 박막부(400)는 집전체(500)에 결합되어 양극 집전체를 이루게 된다. 이때, 집전체(500)는 금속 재질의 다공망으로 마련될 수 있으며, 그 단부에는 전류를 공급하기 위한 단자가 형성될 수 있다. 여기서, 제2 실리콘 복수 적층 박막부(400)와 집전체(500)의 결합은 별도의 결합 물질 또는 결합 부재에 의해 결합될 수 있으며, 단순 부착, 인쇄 또는 압착에 의해 결합될 수도 있다.
상기와 같이 형성된 양극 및 음극 집전체는 제1 및 제2 실리콘 복수 적층 박막부(200, 400)가 고체전해질층(100)의 외면과 만나도록 고체전해질층(100)에 결합된다. 이때, 제1 및 제2 실리콘 복수 적층 박막부(200, 400)와 고체 전해질층(100)은 별도의 결합 물질 또는 결합 부재에 의해 결합될 수 있으며, 단순 부착, 인쇄, 분무 또는 압착에 의해 결합될 수도 있다. 여기서 고체전해질층(100)은 양극과 음극의 단락을 차단하기 위해 제1 및 제2 실리콘 복수 적층 박막부(200, 400)보다 넓은 너비를 갖도록 형성된다.
상기한 바와 같은 본 발명의 제1 실시 예에 따른 실리콘 이차전지는 제1 실리콘 화합물 또는 제2 실리콘 화합물을 다수 회 적층 압착하여 제1 또는 제2 실리콘 복수 적층 박막부(200, 400)를 제조함으로써, 제1 또는 제2 실리콘 복수 적층 박막부(200, 400)의 밀도를 증가시켜 실리콘 이차전지의 전류 밀도 및 용량을 증가시킬 수 있는 효과가 있다.
본 발명의 실시예 1에서, 상기 고체전해질층(100)은 고체전해질층과 제1 실리콘 복수 적층 박막부간의 계면저항을 감소시켜 전지용량을 증가시키기 위해 고체전해질층과 제1 실리콘 복수 적층 박막부 사이에 제1 실리콘 화합물과 고체전해질 성분을 포함하는 제1중간층이 형성 되어 있는 것이 바람직할 수 있다.
상기 제1 중간층은 구성 성분의 함량 비율이 특별히 제한적인 것은 아니나, 실리콘 이차전지의 전기용량을 보다 더 증가시키기 위해서는 제1 실리콘 화합물의 함량이 고체전해질 성분의 함량 보다 많은 것이 바람직하며, 상기 제1 중간층의 두께 역시 특별히 한정적인 것은 아니나, 실리콘 이차전지의 전기용량을 보다 더 증가시키기 위해서는 상기 고체전해질층 및/또는 제1 실리콘 복수 적층 박막부의 두께보다 얇은 것이 바람직하다.
또한, 상기 제1 중간층은 인접 층과의 계면저항을 보다 더 감소시키기 위해 어느 한면 또는 양면의 표면에 돌기가 형성되어 있는 것이 바람직할 수 있다.
또 다른 예로, 본 발명의 실시예 1에서, 상기 고체전해질층(100)은 고체전해질층과 제2 실리콘 복수 적층 박막부간의 계면저항을 감소시켜 전지용량을 증가시키기 위해 고체전해질층과 제2 실리콘 복수 적층 박막부 사이에 제2 실리콘 화합물과 고체전해질 성분을 포함하는 제2중간층이 형성 되어 있는 것이 바람직할 수 있다.
상기 제2 중간층은 구성 성분의 함량 비율이 특별히 제한적인 것은 아니나, 실리콘 이차전지의 전기용량을 보다 더 증가시키기 위해서는 제2 실리콘 화합물의 함량이 고체전해질 성분의 함량 보다 많은 것이 바람직하며, 상기 제2 중간층의 두께 역시 특별히 한정적인 것은 아니나, 실리콘 이차전지의 전기용량을 보다 더 증가시키기 위해서는 상기 고체전해질층 및/또는 제2 실리콘 복수 적층 박막부의 두께보다 얇은 것이 바람직하다.
또한, 상기 제2 중간층은 인접 층과의 계면저항을 보다 더 감소시키기 위해 어느 한면 또는 양면의 표면에 돌기가 형성되어 있는 것이 바람직할 수 있다.
한편, 상기 고체전해질층(100)은 기계적 강도를 한층 더 높이고, 가공성을 향상시키기 위해 PVDF(polyvinylidene fluoride) 및 PTFE(polytetrafluoroethylene) 중 어느 하나 이상을 포함하는 것이 바람직할 수 있으며, 이 경우 전자 전도성이 다소 감소할 수 있으므로 전도성 폴리머를 더 포함하는 것이 보다 더 바람직할 수 있다.
<제2 실시 예>
이하에서는, 도 3을 참조하여 본 발명의 제2 실시 예에 따른 실리콘 이차전지에 대해 설명한다.
본 발명의 제2 실시 예에 따른 실리콘 이차전지는 충전 시에 실리콘 양이온을 발생시키고 방전 시에 실리콘 음이온을 발생시키기 위한 제1 실리콘 화합물로 이루어진 실리콘 양극화 박막층(210)을 복수 개 적층한 제1 실리콘 복수 적층 박막부(200), 제1 실리콘 복수 적층 박막부(200)와 결합되는 집전체(300), 충전 시에 실리콘 음이온을 발생시키고 방전 시에 실리콘 양이온을 발생시키기 위한 제2 실리콘 화합물로 이루어진 실리콘 음극화 박막층(410)을 복수 개 적층한 제2 실리콘 복수 적층 박막부(400), 제2 실리콘 복수 적층 박막부(400)와 결합되는 집전체(500), 제1 실리콘 복수 적층 박막부(200) 및 제2 실리콘 복수 적층 박막부(400) 사이에 위치하는 분리막(600), 제1 실리콘 복수 적층 박막부(200)와 제2 실리콘 복수 적층 박막부(400)간에 충전 및 방전 시에 실리콘 이온을 전달하기 위한 액체 전해질(100')을 포함한다.
제1 실리콘 복수 적층 박막부(200)는 실리콘 양극화 박막층(210)이 복수 개 적층 압착되어 형성된다. 실리콘 양극화 박막층(210)은 접합 물질과 혼합된 제1 실리콘 화합물을 압착하여 형성시키게 된다. 또는, 접합 물질에 의해 코팅된 제1 실리콘 화합물을 압착하여 형성시킬 수도 있다. 상기와 같이 형성된 실리콘 양극화 박막층(210)은 복수 개 적층된 후, 압력을 가해 압착하여 제1 실리콘 복수 적층 박막부(200)를 형성하게 된다. 여기서, 제1 실리콘 화합물은 실리콘 카바이드(silicon carbide)로 마련될 수 있으며, 접합 물질은 고분자 가교제로 마련될 수 있다.
이와 같이 형성된 제1 실리콘 복수 적층 박막부(200)는 집전체(300)에 결합되어 양극 집전체를 이루게 된다. 이때, 집전체(300)는 금속 재질의 다공망으로 마련될 수 있으며, 그 단부에는 전류를 공급하기 위한 단자가 형성될 수 있다. 여기서, 제1 실리콘 복수 적층 박막부(200)와 집전체(300)의 결합은 별도의 결합 물질 또는 결합 부재에 의해 결합될 수 있으며, 단순 부착, 인쇄 또는 압착에 의해 결합될 수도 있다.
한편, 제2 실리콘 복수 적층 박막부(400)는 실리콘 음극화 박막층(410)이 복수 개 적층 압착되어 형성된다. 실리콘 음극화 박막층(410)은 접합 물질과 혼합된 제2 실리콘 화합물을 압착하여 형성시키게 된다. 또는, 접합 물질에 의해 코팅된 제2 실리콘 화합물을 압착하여 형성시킬 수도 있다. 상기와 같이 형성된 실리콘 음극화 박막층(410)은 복수 개 적층된 후, 압력을 가해 압착하여 제2 실리콘 복수 적층 박막부(400)를 형성하게 된다. 여기서, 제2 실리콘 화합물은 실리콘 나이트레이드로 마련될 수 있으며, 접합 물질은 고분자 가교제로 마련될 수 있다.
이와 같이 형성된 제2 실리콘 복수 적층 박막부(400)는 집전체(500)에 결합되어 양극 집전체를 이루게 된다. 이때, 집전체(500)는 금속 재질의 다공망으로 마련될 수 있으며, 그 단부에는 전류를 공급하기 위한 단자가 형성될 수 있다. 여기서, 제2 실리콘 복수 적층 박막부(400)와 집전체(500)의 결합은 별도의 결합 물질 또는 결합 부재에 의해 결합될 수 있으며, 단순 부착, 인쇄 또는 압착에 의해 결합될 수도 있다.
상기와 같이 형성된 양극 및 음극 집전체는 제1 및 제2 실리콘 복수 적층 박막부(200, 400)의 사이에 분리막(600)이 개재되어 양극과 음극의 단락을 차단하게 된다. 그리고, 제1 및 제2 실리콘 복수 적층 박막부(200, 400)와 분리막(600)이 액체 전해질(100')에 함침되는 형태로 결합하게 된다.
상기한 바와 같은 본 발명의 제2 실시 예에 따른 실리콘 이차전지는 제1 실리콘 화합물 또는 제2 실리콘 화합물을 다수 회 적층 압착하여 제1 또는 제2 실리콘 복수 적층 박막부(200, 400)를 제조함으로써, 제1 또는 제2 실리콘 복수 적층 박막부(200, 400)의 밀도를 증가시켜 실리콘 이차전지의 전류 밀도 및 용량을 증가시킬 수 있는 효과가 있다.
본 발명의 제1 및 제2 실시 예에 있어서, 상기 제1 실리콘 화합물 및/또는 제2 실리콘 화합물은 실리콘 이차전지의 충·방전이 반복됨에 따라 활물질층의 부피가 비대해져 충·방전 특성이 저하되는 것을 방지하기 위하여 탄성탄소를 포함할 수 있다. 상기 제1 실리콘 화합물 및/또는 제2 실리콘 화합물은 탄성탄소를 포함함으로써, 충·방전이 반복됨에 따라 실리콘 입자가 비대해지더라도, 비대해지는 만큼 탄성탄소에 의한 부피 상쇄 효과를 볼 수 있으므로, 활물질층 전체적으로 부피 비대화를 억제할 수 있게 된다.
다만, 상기 제1 실리콘 화합물 및/또는 제2 실리콘 화합물이 탄성탄소를 포함하게 되면, 실리콘 입자와 탄성탄소간의 간극으로 인해 이온 이동성이나 전자 전도성이 다소 떨어질 수 있으므로, 이를 보완하기 위하여 전도성 탄소를 더 포함하거나, 상기 탄성탄소로 탄성을 가지면서 동시에 이온 이동성이나 전자 전도성이 매우 높은 플러렌(fullerene)을 사용하는 것이 바람직할 수 있다.
또한, 본 발명의 제1 및 제2 실시예에서 상기 제1 실리콘 화합물 및/또는 제2 실리콘 화합물은 실리콘 이차전지의 충·방전이 반복됨에 따라 활물질층의 부피가 비대해져 충·방전 특성이 저하되는 것을 방지하기 위하여, 활물질층의 부피 비대화 반응에 관여하지 않는 비활물질 입자를 포함할 수 있다. 상기 비활물질 입자는 Mo, Cu, Fe, Co, Ca, Cr, Mg, Mn, Nb, Ni, Ta, Ti 및 V로 이루어진 군으로부터 선택된 어느 1종 이상의 금속입자이다.
다만, 상기와 같이 상기 제1 실리콘 화합물 및/또는 제2 실리콘 화합물이 비활물질 입자를 포함하게 되면, 실리콘 이차전지의 전기용량이 다소 감소할 수 있으므로, 전도성 탄소 또는 전도성 고분자를 더 포함하는 것이 바람직할 수 있다.
본 발명의 제1 및 제2 실시예에서 상기 양극화 박막층 및/또는 음극화 박막층은 층을 이룰 수 있는 형상이라면 어떠한 형상이라도 무방하나, 실리콘 이차전지의 충·방전이 반복됨에 따라 양극화 박막층 및/또는 음극화 박막층의 팽창·수축으로 인한 박막층 파손 위험을 최소화하기 위해 메쉬(mesh)형상인 것이 바람직할 수 있다.
본 발명의 제1 및 제2 실시예에서 상기 양극화 박막층 및/또는 음극화 박막층은 표면 형상에 있어 특별히 제한적인 것은 아니나, 인접 층과의 계면 접촉면적을 넓혀, 계면저항을 감소시키기 위해 박막층의 표면 중 어느 한면 또는 양면에 요철이 형성된 것이 바람직할 수 있다.
본 발명의 제1 및 제2 실시예에서 상기 제1 실리콘 복수 적층 박막부 및/또는 제2 실리콘 복수 적층 박막부는 충·방전 특성을 향상시키고, 균일한 이온 전도성을 확보하기 위하여 금속 또는 탄소동소체로 이루어진 중간층을 포함하는 것이 바람직할 수 있다.
상기 중간층의 두께는 특별히 제한적인 것은 아니나, 제1 실리콘 복수 적층 박막부 및 제2 실리콘 복수 적층 박막부의 두께보다 얇은 것이 전기용량 증가 측면에서 보다 유리할 수 있다.
상기 중간층을 이루는 금속은 전기 전도성이 높은 금속이라면 어떠한 금속이라도 무방하나, 알루미늄, 금, 은 중 선택된 어느 하나 또는 2이상의 합금을 사용하는 것이 전지의 충·방전 성능을 극대화하는 측면에서 바람직하다.
또한, 상기 중간층을 이루는 탄소동소체는 그 종류가 특별히 한정적인 것은 아니나, 그래핀(graphene), 탄소나노튜브(carbon nano tube), 플러렌(fullerene) 중 선택된 어느 하나인 것이 전극 내 균일한 이온 전도성 확보 측면에서 바람직하다.
이하에서는 본 발명의 제1 및 제2 실시 예에 따른 실리콘 이차전지의 제조방법에 대해 설명하기로 한다.
본 발명의 제1 및 제2 실시 예에 따른 실리콘 이차전지의 제조방법은 제1 실리콘 화합물로 이루어진 실리콘 양극화 박막층을 반복적으로 복수 개 적층하여 제1 실리콘 복수 적층 박막부를 제조하는 단계, 제1 실리콘 복수 적층 박막부를 집전체에 결합하여 양극 집전체를 제조하는 단계, 제2 실리콘 화합물로 이루어진 실리콘 음극화 박막층을 반복적으로 복수 개 적층하여 제2 실리콘 복수 적층 박막부를 제조하는 단계, 제2 실리콘 복수 적층 박막부를 집전체에 결합하여 음극 집전체를 제조하는 단계, 제1 및 제2 실리콘 복수 적층 박막부를 전해질부와 결합하는 단계를 포함한다.
먼저, 제1 실리콘 복수 적층 박막부를 제조하는 단계는 제1 실리콘 화합물과 접합 물질을 혼합하는 단계로부터 시작된다. 여기서, 제1 실리콘 화합물은 실리콘 카바이드(silicon carbide)로 마련될 수 있으며, 접합 물질은 고분자 가교제로 마련될 수 있다.
상기와 같이 제1 실리콘 화합물과 접합 물질이 혼합되면, 이 혼합 물질을 압착하여 박막 형태의 실리콘 양극화 박막층을 제조하게 된다.
이와 같이 제조된 실리콘 양극화 박막층을 복수 개 적층한 후, 압착하여 제1 실리콘 복수 적층 박막부를 제조하게 된다.
상기와 같은 방법에 의해 제1 실리콘 복수 적층 박막부를 제조하게 되면 성형성은 용이하지만, 제1 실리콘 복수 적층 박막부에 다공이 발생하여 전지의 내부 저항이 상승할 수 있다.
또한, 제1 실리콘 복수 적층 박막부는 아래와 같이 제조될 수도 있다.
제1 실리콘 화합물의 각 입자를 접합 물질로 코팅한 후, 코팅된 제1 실리콘 화합물을 건조하여 분말 형태로 제조한다.
그 후, 건조된 분말 형태의 제1 실리콘 화합물을 압착하여 박막 형태의 실리콘 양극화 박막층으로 제조하고, 제조된 실리콘 양극화 박막층을 복수 개 적층한 후 압착하여 제1 실리콘 복수 적층 박막부를 제조하게 된다.
상기와 같은 방법에 의해 제1 실리콘 복수 적층 박막부를 제조하게 되면 성형이 다소 어렵지만, 제1 실리콘 복수 적층 박막부에 다공이 발생하지 않아 전지의 내부 저항이 감소하게 된다.
상기와 같이 제1 실리콘 복수 적층 박막부가 제조되면, 이를 집전체에 결합시켜 양극 집전체를 제조하게 된다. 여기서, 제1 실리콘 복수 적층 박막부와 집전체의 결합은 별도의 결합 물질 또는 결합 부재에 의해 결합될 수 있으며, 단순 부착, 인쇄 또는 압착에 의해 결합될 수도 있다. 이때, 집전체는 금속 재질의 다공망으로 마련될 수 있으며, 그 단부에 전류를 공급하기 위한 단자가 형성될 수 있다.
그리고, 제2 실리콘 복수 적층 박막부를 제조하는 단계는 제2 실리콘 화합물과 접합 물질을 혼합하는 단계로부터 시작된다. 여기서, 제2 실리콘 화합물은 실리콘 나이트레이드로 마련될 수 있으며, 접합 물질은 고분자 가교제로 마련될 수 있다.
상기와 같이 제2 실리콘 화합물과 접합 물질이 혼합되면, 이 혼합 물질을 압착하여 박막 형태의 실리콘 음극화 박막층을 제조하게 된다.
이와 같이 제조된 실리콘 음극화 박막층을 복수 개 적층한 후, 압착하여 제2 실리콘 복수 적층 박막부를 제조하게 된다.
상기와 같은 방법에 의해 제2 실리콘 복수 적층 박막부를 제조하게 되면 성형성은 용이하지만, 제2 실리콘 복수 적층 박막부에 다공이 발생하여 전지의 내부 저항이 상승할 수 있다.
또한, 제2 실리콘 복수 적층 박막부는 아래와 같이 제조될 수도 있다.
제2 실리콘 화합물의 각 입자를 접합 물질로 코팅한 후, 코팅된 제2 실리콘 화합물을 건조하여 분말 형태로 제조한다.
그 후, 건조된 분말 형태의 제2 실리콘 화합물을 압착하여 박막 형태의 실리콘 음극화 박막층으로 제조하고, 제조된 실리콘 음극화 박막층을 복수 개 적층한 후 압착하여 제2 실리콘 복수 적층 박막부를 제조하게 된다.
상기와 같은 방법에 의해 제2 실리콘 복수 적층 박막부를 제조하게 되면 성형이 다소 어렵지만, 제2 실리콘 복수 적층 박막부에 다공이 발생하지 않아 전지의 내부 저항이 감소하게 된다.
상기와 같이 제2 실리콘 복수 적층 박막부가 제조되면, 이를 집전체에 결합시켜 음극 집전체를 제조하게 된다. 여기서, 제2 실리콘 복수 적층 박막부와 집전체의 결합은 별도의 결합 물질 또는 결합 부재에 의해 결합될 수 있으며, 단순 부착, 인쇄 또는 압착에 의해 결합될 수도 있다. 이때, 집전체는 금속 재질의 다공망으로 마련될 수 있으며, 그 단부에 전류를 공급하기 위한 단자가 형성될 수 있다.
상기와 같이 양극 집전체 및 음극 집전체가 제조되면, 이를 전해질부와 결합하게 된다.
상기 전해질부가 고체일 경우에는 양극 집전체 및 음극 집전체의 제1 및 제2 실리콘 복수 적층 박막부가 고체 전해질의 외면과 만나도록 결합시키게 된다. 이때, 제1 및 제2 실리콘 복수 적층 박막부와 고체 전해질은 별도의 결합 물질 또는 결합 부재에 의해 결합될 수 있으며, 단순 부착, 인쇄, 분무 또는 압착에 의해 결합될 수도 있다. 여기서 고체 전해질은 양극과 음극의 단락을 차단하기 위해 제1 및 제2 실리콘 복수 적층 박막부보다 넓은 너비를 갖도록 형성된다.
또한, 상기 전해질부가 액체일 경우에는 양극 집전체 및 음극 집전체의 제1 및 제2 실리콘 복수 적층 박막부의 사이에 분리막이 개재되고, 제1 및 제2 실리콘 복수 적층 박막부와 분리막이 액체 전해질에 함침되는 형태로 결합하게 된다.
상기와 같은 방법에 의해 제조되는 실리콘 이차전지는 제1 실리콘 화합물 또는 제2 실리콘 화합물을 다수 회 적층 압착하여 제1 또는 제2 실리콘 복수 적층 박막부를 제조함으로써, 제1 또는 제2 실리콘 복수 적층 박막부의 밀도를 증가시켜 실리콘 이차전지의 전류 밀도 및 용량을 증가시킬 수 있는 효과가 있다.
<제3 실시 예>
이하에서는, 본 발명의 제3 실시 예에 따른 실리콘 이차전지에 대해 상세하게 설명한다.
본 발명의 제3 실시 예에 따른 실리콘 이차전지는 충전 시에 실리콘 양이온을 발생시키고 방전 시에 실리콘 음이온을 발생시키는 양극 활물질이 도포된 양극, 충전 시에 실리콘 음이온을 발생시키고 방전 시에 실리콘 양이온을 발생시키는 음극 활물질이 도포된 음극 및 상기 양극 및 음극 사이에 위치하며, 양극 활물질과 음극 활물질간에 충전 및 방전 시에 실리콘 이온을 전달하기 위한 고체 전해질층을 포함하되, 상기 양극 활물질 및/또는 음극 활물질의 내부에 메쉬 플레이트(mesh plate)를 포함하는 실리콘 이차전지에 관한 것이다.
먼저, 양극은 소정 두께를 갖는 금속 플레이트로서, 그 일 측면에 양극 활물질이 도포된다. 양극 활물질은 실리콘 카바이드(SiC)로 마련될 수 있으나, 반드시 이에 한정되는 것은 아니다.
음극 또한 소정 두께를 갖는 금속 플레이트로 마련되어 그 일 측면에 음극 활물질이 도포된다. 음극 활물질은 실리콘 나이트레이드(Si3N4)로 마련될 수 있으나, 반드시 이에 한정되는 것은 아니다.
상기와 같이 도포된 양극 활물질 및 음극 활물질의 내부에 메쉬 플레이트가 내장된다. 메쉬 플레이트는, 도 4에 나타난 바와 같이 내부에 빈 공간이 형성되는 그물 형태의 망으로 형성되어 양극 활물질 및 음극 활물질의 내부에 삽입되게 된다. 여기서, 메쉬 플레이트는 메탈 페이스트에 의해 형성된다. 상기한 메탈 페이스트는 금속의 분말을 액상 유기물질에 혼합하여 제조된 겔과 같은 형태의 제품으로 실크스크린 또는 잉크젯과 같은 방법으로 금속 패턴을 형성하기 쉬운 금속 재료이다. 메탈 페이스트는 액상 유기물질을 burn out 또는 vaporization함으로써 저온에서도 금속 재료만 남길 수 있는 특성이 있어 쉽게 제조가 가능하고, 인쇄를 위한 패턴을 실크 스크린과 같이 제작할 때, 30um 두께까지 제조가 가능하여 두께 증가도 매우 작게 나타낼 수 있다.
상기와 같이 양극 활물질 및 음극 활물질이 도포된 양극 및 음극은 고체 전해질층과 결합되어 실리콘 이차전지를 이루게 된다. 이때, 양극 및 음극은 양극 활물질 및 음극 활물질이 고체 전해질층과 맞닿도록 고체 전해질층과 결합된다.
상기와 같이 구성되는 실리콘 이차전지는 전자의 이동에 의해 충방전되어 전지의 기능을 하게 된다.
이하에서는 본 발명의 제3 실시 예에 따른 실리콘 이차전지의 제조방법에 대해 상세하게 설명한다.
먼저, 베이스 필름을 마련한다. 상기 베이스 필름은 합성수지 재질로 제작된 것으로 가용성을 가진다.
그 후, 베이스 필름의 일 면에 양극 활물질을 도포한다.
상기와 같이 베이스 필름의 일 면에 양극 활물질이 도포되면, 양극 활물질을 펀칭하여 복수 개의 홀을 형성시킨다.
그 후, 양극 활물질의 상부에 메탈 페이스트를 도포하여 메쉬 플레이트를 형성시킨다. 이때, 메쉬 플레이트는, 도 4와 같이 그물망의 형태로 형성되며, 실크 스크린에 의해 인쇄되어 형성된다. 여기서, 메쉬 플레이트는 양극 활물질에 펀칭된 홀의 상부에 도포되어 상기 홀에 메탈 페이스트가 인입된다.
상기와 같이 메쉬 플레이트가 형성되면, 그 상부에 양극 활물질을 재차 도포한다.
그 후, 열과 압력을 가해 프레스하여 내부에 메쉬 플레이트가 내장된 양극 활물질을 제작하게 된다.
상기와 같이 양극 활물질이 제작되면, 상술한 방법과 동일한 방법으로 음극 활물질을 제작한다.
먼저, 베이스 필름을 마련한다. 상기한 베이스 필름은 합성수지 재질로 제작된 것으로 가용성을 가진다.
그 후, 베이스 필름의 일 면에 음극 활물질을 도포한다.
상기와 같이 베이스 필름의 일 면에 음극 활물질이 도포되면, 음극 활물질을 펀칭하여 복수 개의 홀을 형성시킨다.
그 후, 음극 활물질의 상부에 메탈 페이스트를 도포하여 메쉬 플레이트를 형성시킨다. 이때, 메쉬 플레이트는, 도 4에 도시된 바와 같이 그물망의 형태로 형성되며, 실크 스크린에 의해 인쇄되어 형성된다. 여기서, 메쉬 플레이트는 음극 활물질에 펀칭된 홀의 상부에 도포되어 상기 홀에 메탈 페이스트가 인입된다.
상기와 같이 메쉬 플레이트가 형성되면, 그 상부에 음극 활물질을 재차 도포한다.
그 후, 열과 압력을 가해 프레스하여 내부에 메쉬 플레이트가 내장된 음극 활물질을 제작하게 된다.
상기와 같이 양극 활물질 및 음극 활물질이 제작되면 양극 활물질 및 음극 활물질에서 베이스 필름을 제거한 후, 베이스 필름 대신 금속 플레이트를 설치하여 양극 및 음극을 제작한다.
이와 같이, 양극 및 음극이 제작되면, 양극, 고체 전해질층 및 음극을 순차적으로 적층한다. 이때, 양극 활물질 및 음극 활물질이 고체 전해질층과 맞닿도록 양극, 고체 전해질층 및 음극을 적층시킨다.
그 후, 열과 압력을 가해 프레스하여 실리콘 이차전지를 제조하게 된다.
고체 전해질을 이용한 실리콘 이차전지에서 전극의 내부에 메탈 페이스트를 이용하여 그물망 형태의 메쉬 플레이트를 내장하고, 메쉬 플레이트의 연결부에 홀을 가공하여 홀 내부 공간에 메탈 페이스트를 봉입함으로써 전극과 전해질 간에서 발생된 전자가 전극을 통과함에 있어 더욱 빠른 전자 이송 속도를 부여할 수 있다.
또한, 평면으로 이루어진 전극과 전해질 간에 반응성이 불균일함을 그물망 형태의 메쉬 플레이트가 평균화하여 줌으로써 전자의 일정한 인출이 가능한 조건을 형성 할 수 있다. 그리고, 전극에 생성한 홀을 통하여 전자의 인출이 빠르게 진행될 수 있으므로, 이차 전지 적층 시에 금속 박 또는 코팅을 통하여 적층이 쉽게 일어날 수 있다.
<제4 실시 예>
이하에서는, 본 발명의 제4 실시 예에 따른 실리콘 이차전지 유닛에 대해 상세하게 설명한다.
본 발명의 제4 실시 예에 따른 실리콘 이차전지 유닛은, 도 5를 참고할 때, 충전 시에 실리콘 양이온을 발생시키고 방전 시에 실리콘 음이온을 발생시키기 위한 제1 실리콘 화합물로 이루어진 양극 활물질층(1100), 충전 시에 실리콘 음이온을 발생시키고 방전 시에 실리콘 양이온을 발생시키기 위한 제2 실리콘 화합물로 이루어진 음극 활물질층(1200) 및 고체전해질층(1000)을 포함하는 실리콘 이차전지 단위 셀들이 복수 개 적층되어 하나의 유닛을 형성하고 있으며, 상기 복수의 실리콘 이차 전지 단위 셀들은 직렬로 연결되어 적층되고, 양극 활물질층(100)과 음극활물질층(200) 사이에 하나의 공유 집전층(1300)이 구비되어 전하를 집전하는 것을 특징으로 한다.
상기 제1 실리콘 화합물 및 제2 실리콘 화합물에 대한 상세한 설명은 이미 설명하였으므로, 별도의 설명은 생략한다.
본 발명의 제4 실시 예에서, 상기 양극 활물질층(1100)은 단층 구조 이든, 복층 구조이든 모두 가능하나, 실리콘 이차전지 유닛의 체적 대비 전기용량 및 충·방전 특성을 극대화하기 위해 충전 시에 실리콘 양이온을 발생시키고 방전 시에 실리콘 음이온을 발생시키기 위한 제1 실리콘 화합물로 이루어진 실리콘 양극화 박막층을 복수 개 적층한 제1 실리콘 복수 적층 박막부인 것이 바람직할 수 있다.
상기 음극 활물질층 역시 단층 구조 이든, 복층 구조이든 모두 가능하나, 실리콘 이차전지 유닛의 체적 대비 전기용량 및 충·방전 특성을 극대화하기 위해 충전 시에 실리콘 음이온을 발생시키고 방전 시에 실리콘 양이온을 발생시키기 위한 제2 실리콘 화합물로 이루어진 실리콘 음극화 박막층을 복수 개 적층한 제2 실리콘 복수 적층 박막부인 것이 바람직할 수 있다.
본 발명의 제4 실시 예에서, 상기 공유 집전층(1300)은 본 발명의 실리콘 이차전지 유닛 내의 양극 활물질층 및 음극 활물질층 사이에 적층되어 양극 집전체 및 음극 집전체 역할을 모두 수행하는 것으로, 소재로는 스테인레스, 니켈 등이 사용될 수 있으며, 형상에 있어서는 특별히 제한적인 것은 아니나, 공유 집전체(1300)와 활물질층(1100, 1200) 간의 계면 접촉면적을 증가시켜 계면저항을 낮추고, 압착시 계면 접착력을 향상시키기 위해 다공망 형상이거나, 발포 형상인 것이 바람직할 수 있다. 상기 다공망 형상은 2차원적인 평면 다공망 형상일 수 있고, 3차원적인 그물형 다공망 형상일 수도 있다.
또한, 상기 공유 집전층(1300)이 다공망 형상 또는 발포 형상일 경우, 상기 공유 집전층(1300)의 표면에 금, 은 및 전도성 폴리머 중 어느 하나를 코팅함으로서, 공유 집전층(1300)의 전자 및 이온 전도성을 보다 더 높일 수 있어 계면저항을 한층 더 감소시킬 수 있는 이점이 있다.
특히, 상기 전도성 폴리머를 코팅할 경우에는 전도성 폴리머가 도전제 역할을 함과 동시에 결합제 역할까지 하기 때문에, 계면 접착력도 한층 더 높일 수 있다. 상기 전도성 폴리머는 전도성을 가지는 폴리머라면 어떠한 종류라도 무방하나, 폴리피롤, 폴리아닐린, 폴리티오펜 및 폴리아세틸렌으로 이루어진 군으로부터 선택된 어느 하나를 사용하는 것이 집전체의 도전성 및 계면접착력 향상 측면에서 바람직하다.
본 발명의 제4 실시 예에 의하면, 실리콘 이차전지 유닛을 이루는 복수의 실리콘 이차전지 단위 셀들이 직결로 연결 적층되는 구조로 되어 있어, 병렬로 연결되는 구조를 가지고 있는 기존 이차전지 유닛에 비해 보다 고전압·고출력 특성을 가질 수 있는 이점이 있다.
또한, 복수의 실리콘 이차 전지 단위 셀을 직렬로 연결하여 일체화된 실리콘 이차전지 유닛을 형성함에 있어, 공유 집전층을 적용함으로써 실리콘 이차전지 유닛 당 포함되는 집전체 수를 절반 가까이 줄일 수 있으며, 이로 인해 실리콘 이차전지 유닛 전체 무게에서 차지하는 비중이 상대적으로 큰 집전체 부분의 무게를 현저히 감소시킬 수 있어, 기존의 실리콘 이차전지 유닛 제품 보다 훨씬 더 경량화된 실리콘 이차전지 유닛 제품을 제조할 수 있다.
본 발명의 제4 실시예에 따른 실리콘 이차전지 유닛의 응용예로 전기 자동차에 전원을 공급하는 전지모듈에 대해 도 6을 통해 보다 구체적으로 설명하면 다음과 같다.
본 발명에 따른 전기 자동차용 전지모듈은 내부에 실리콘 이차전지를 수용하는 케이스(2100), 상기 케이스의 개방부를 덮고, 전원을 출력하는 출력단자(2500)를 구비한 커버(2200) 및 상기 케이스(2100) 내에 복수 개 배치되는 상기 제4 실시예의 실리콘 이차전지 유닛(2000)들을 포함하되, 상기 실리콘 이차전지 유닛(2000)들이 직렬로 연결배치되는 것을 특징으로 한다.
상기 케이스(2100)는 내부에 실리콘 이차전지를 수용할 수 있는 구조라면 어떠한 구조라도 가능하나, 전지모듈의 온도 상승 및 열 누적에 따른 충·방전 특성 저하 및 제품 수명 단축 문제를 극복하기 위해, 외부 공기가 원활하게 통할 수 있는 프레임 구조를 취하는 것이 바람직하다. 도 6에 도시된 케이스(2100) 구조는 프레임 구조의 일 예를 도시한 것에 지나지 않으며, 이외에 다양한 형태의 프레임 구조들이 적용될 수 있다.
상기 커버(2200)는 상기 실리콘 이차전지 유닛(2000)들의 양극 단자(2010)들과 접속하고 출력단자(2500)와 전기적으로 연결되는 양극 버스바(2300) 및 상기 상기 실리콘 이차전지 유닛(2000)들의 음극 단자(2020)들과 접속하고 출력단자(2500)와 전기적으로 연결되는 음극 버스바(2400)를 포함하는 것이 전지모듈의 구조적 효율성을 고려할 때 바람직할 수 있다.
상기 케이스(2100) 및 커버(2200)는 소재에 있어 특별히 한정적인 것은 아니나, 출력 전원이 출력단자 이외의 부분으로 분산되어 전기적으로 쇼트가 발생하는 것 방지하기 위해 절연 소재인 것이 바람직하며, 특히, 케이스 및 커버의 충분한 내구성을 확보하고, 무게 경량화를 위해서는 상기 절연 소재로 플라스틱을 사용하는 것이 가장 바람직할 수 있다.
본 발명의 전지모듈을 전기자동차에 적용할 경우, 공유 집전층을 포함하는 실리콘 이차전지 유닛들을 사용함으로써, 기존 전지모듈에 비해 무게 경량화가 가능하며, 이로 인해 전기자동차의 연비를 향상시킬 수 있는 이점이 있다.
특히, 상기 전지모듈에 포함되는 복수의 실리콘 이차전지 유닛이 복수의 실리콘 이차전지 단위 셀들의 직렬 연결 구조로 이루어져 있어, 고용량·고출력의 전지모듈이 가능하며, 나아가 실리콘 이차전지 유닛을 이루는 실리콘 이차전지 단위 셀의 활물질층을 상기에서 설명한 바와 같이 적층구조로 할 경우에는 동일 체적에서 기존 전기자동차 전지모듈 보다 훨씬 고용량·고출력의 전지모듈 제품을 제조할 수 있다.
<제5 실시 예>
이하에서는, 본 발명의 제5 실시 예에 따른 실리콘 이차전지에 대해 상세하게 설명한다.
본 발명의 제5 실시 예는 실리콘 이온을 이용하여 충전 및 방전을 수행하는 실리콘 이차전지에 관한 것으로, 보다 구체적으로 충전 시에 실리콘 양이온을 발생시키고 방전 시에 실리콘 음이온을 발생시키기 위한 제1 실리콘 화합물로 이루어진 실리콘 양극화 박막층을 복수 개 적층한 제1 실리콘 복수 적층 박막부, 충전 시에 실리콘 음이온을 발생시키고 방전 시에 실리콘 양이온을 발생시키기 위한 제2 실리콘 화합물로 이루어진 실리콘 음극화 박막층을 복수 개 적층한 제2 실리콘 복수 적층 박막부 및 전하를 집전하는 집전체를 포함하되, 상기 집전체는 다공망 형상인 것을 특징으로 한다.
본 발명의 제5 실시 예에서 상기 집전체는 제1 실리콘 복수 적층 박막부 및 제2 실리콘 복수 적층 박막부 각각의 일 측 끝단면에 결합되어 전하를 집전하는 것으로, 소재로는 스테인레스, 니켈 등이 사용될 수 있다.
상기 집전체는 형상에 있어 특별히 제한적인 것은 아니나, 집전체와 제1 및 제 2 실리콘 복수 적층 박막부 간의 계면 접촉면적을 증가시켜 계면저항을 낮추고, 압착시 계면 접착력을 향상시키기 위해 다공망 형상이거나, 발포 형상인 것이 바람직할 수 있다. 상기 다공망 형상은 2차원적인 평면 다공망 형상일 수 있고, 3차원적인 그물형 다공망 형상일 수도 있다.
또한, 상기 집전체가 다공망 형상 또는 발포 형상일 경우, 상기 집전체의 표면에 금, 은 및 전도성 폴리머 중 어느 하나를 코팅함으로서, 집전체의 전자 및 이온 전도성을 보다 더 높일 수 있어 계면저항을 한층 더 감소시킬 수 있는 이점이 있다.
특히, 상기 전도성 폴리머를 코팅할 경우에는 전도성 폴리머가 도전제 역할을 함과 동시에 결합제 역할까지 하기 때문에, 계면 접착력도 한층 더 높일 수 있다. 상기 전도성 폴리머는 전도성을 가지는 폴리머라면 어떠한 종류라도 무방하나, 폴리피롤, 폴리아닐린, 폴리티오펜 및 폴리아세틸렌으로 이루어진 군으로부터 선택된 어느 하나를 사용하는 것이 집전체의 도전성 및 계면접착력 향상 측면에서 바람직하다.
<제6 실시 예>
이하에서는, 본 발명의 제6 실시 예에 따른 실리콘 이차전지를 포함하는 마이크로전지에 대해 상세하게 설명한다.
본 발명의 제6 실시 예는 실리콘 이차전지를 포함하는 마이크로전지에 관한 것으로, 상기 마이크로 전지는 충전 시에 실리콘 양이온을 발생시키고 방전 시에 실리콘 음이온을 발생시키기 위한 제1 실리콘 화합물로 이루어진 실리콘 양극화 박막층을 복수 개 적층한 제1 실리콘 복수 적층 박막부, 충전 시에 실리콘 음이온을 발생시키고 방전 시에 실리콘 양이온을 발생시키기 위한 제2 실리콘 화합물로 이루어진 실리콘 음극화 박막층을 복수 개 적층한 제2 실리콘 복수 적층 박막부 및 상기 제1 실리콘 복수 적층 박막부 및 상기 제2 실리콘 복수 적층 박막부 사이에 위치하며, 제1 실리콘 복수 적층 박막부와 제2 실리콘 복수 적층 박막부간에 충전 및 방전 시에 실리콘 이온을 전달하기 위한 고체 전해질층을 포함하는 실리콘 이차전지를 포함하는 것을 특징으로 한다.
또한, 본 발명의 제6 실시 예에서 상기 제1 실리콘 복수 적층 박막부는 일측 표면에 전하를 집전하는 양극 집전체가 결합되고, 상기 제2 실리콘 복수 적층 박막부는 일측 표면에 전하를 집전하는 음극 집전체가 결합되며, 기판(substrate)에 전지적으로 연결되어 충·방전을 수행하기 위해 상기 양극 집전체는 일측 끝단이 기판(substrate)에 부착되고, 상기 음극 집전체는 상기 제2 실리콘 복수 적층 박막부와 맞닿는 면 이외의 부분 중 적어도 일부가 기판에 부착되는 것이 바람직할 수 있다.
또한, 본 발명의 제6 실시예에 따른 마이크로 전지는 전극 간의 단락을 방지하기 위하여 적어도 상기 제2 실리콘 복수 적층 박막부, 고체 전해질층 및 음극 집전체는 양극 집전체와 절연되는 구조를 취하는 것이 바람직하며, 이를 위해 상기 제2 실리콘 복수 적층 박막부, 고체 전해질층 및 음극 집전체의 측면부와 양극 집전체 사이에 공간부가 형성된 것이 바람직할 수 있다.
상기 공간부는 빈 공간일 수도 있으나, 절연성을 보다 높이고, 마이크로 전지의 내구성을 보다 향상시키기 위해 상기 공간부는 절연 물질로 충진된 것이 보다 바람직할 수 있다.
본 발명의 제6 실시예에 있어서, 상기 제1 실리콘 화합물 및/또는 제2 실리콘 화합물은 실리콘 이차전지의 충·방전이 반복됨에 따라 활물질층의 부피가 비대해져 충·방전 특성이 저하되는 것을 방지하기 위하여 탄성탄소를 포함할 수 있다. 상기 제1 실리콘 화합물 및/또는 제2 실리콘 화합물은 탄성탄소를 포함함으로써, 충·방전이 반복됨에 따라 실리콘 입자가 비대해지더라도, 비대해지는 만큼 탄성탄소에 의한 부피 상쇄 효과를 볼 수 있으므로, 활물질층 전체적으로 부피 비대화를 억제할 수 있게 된다.
다만, 상기 제1 실리콘 화합물 및/또는 제2 실리콘 화합물이 탄성탄소를 포함하게 되면, 실리콘 입자와 탄성탄소간의 간극으로 인해 이온 이동성이나 전자 전도성이 다소 떨어질 수 있으므로, 이를 보완하기 위하여 전도성 탄소를 더 포함하거나, 상기 탄성탄소로 탄성을 가지면서 동시에 이온 이동성이나 전자 전도성이 매우 높은 플러렌(fullerene)을 사용하는 것이 바람직할 수 있다.
또한, 본 발명의 제6 실시예에서 상기 제1 실리콘 화합물 및/또는 제2 실리콘 화합물은 실리콘 이차전지의 충·방전이 반복됨에 따라 활물질층의 부피가 비대해져 충·방전 특성이 저하되는 것을 방지하기 위하여, 활물질층의 부피 비대화 반응에 관여하지 않는 비활물질 입자를 포함할 수 있다. 상기 비활물질 입자는 Mo, Cu, Fe, Co, Ca, Cr, Mg, Mn, Nb, Ni, Ta, Ti 및 V로 이루어진 군으로부터 선택된 어느 1종 이상의 금속입자이다.
다만, 상기와 같이 상기 제1 실리콘 화합물 및/또는 제2 실리콘 화합물이 비활물질 입자를 포함하게 되면, 실리콘 이차전지의 전기용량이 다소 감소할 수 있으므로, 전도성 탄소 또는 전도성 고분자를 더 포함하는 것이 바람직할 수 있다.
본 발명의 제6 실시예에서 상기 양극화 박막층 및/또는 음극화 박막층은 층을 이룰 수 있는 형상이라면 어떠한 형상이라도 무방하나, 실리콘 이차전지의 충·방전이 반복됨에 따라 양극화 박막층 및/또는 음극화 박막층의 팽창·수축으로 인한 박막층 파손 위험을 최소화하기 위해 메쉬(mesh)형상인 것이 바람직할 수 있다.
본 발명의 제6 실시예에서 상기 양극화 박막층 및/또는 음극화 박막층은 표면 형상에 있어 특별히 제한적인 것은 아니나, 인접 층과의 계면 접촉면적을 넓혀, 계면저항을 감소시키기 위해 박막층의 표면 중 어느 한면 또는 양면에 요철이 형성된 것이 바람직할 수 있다.
본 발명의 제6 실시예에서 상기 제1 실리콘 복수 적층 박막부 및/또는 제2 실리콘 복수 적층 박막부는 충·방전 특성을 향상시키고, 균일한 이온 전도성을 확보하기 위하여 금속 또는 탄소동소체로 이루어진 중간층을 포함하는 것이 바람직할 수 있다.
상기 중간층의 두께는 특별히 제한적인 것은 아니나, 제1 실리콘 복수 적층 박막부 및 제2 실리콘 복수 적층 박막부의 두께보다 얇은 것이 전기용량 증가 측면에서 보다 유리할 수 있다.
상기 중간층을 이루는 금속은 전기 전도성이 높은 금속이라면 어떠한 금속이라도 무방하나, 알루미늄, 금, 은 중 선택된 어느 하나 또는 2이상의 합금을 사용하는 것이 전지의 충·방전 성능을 극대화하는 측면에서 바람직하다.
또한, 상기 중간층을 이루는 탄소동소체는 그 종류가 특별히 한정적인 것은 아니나, 그래핀(graphene), 탄소나노튜브(carbon nano tube), 플러렌(fullerene) 중 선택된 어느 하나인 것이 전극 내 균일한 이온 전도성 확보 측면에서 바람직하다.
본 발명의 제6 실시예에 따른 마이크로 전지에 대한 이해를 돕기위해 도 7에 도시된 일 예를 들어 설명하면 다음과 같다.
도 7에 의하면, 본 발명의 마이크로 전지는 양극 활물질층에 해당하며 적층구조인 제1 실리콘 복수 적층 박막부(3200), 고체 전해질층(3100), 음극 활물질층에 해당하며 적층구조인 제2 실리콘 복수 적층 박막부(3300)가 순차적으로 압착 적층되어 있으며, 상기 제1 실리콘 복수 적층 박막부(3200)의 상부 면에는 양극 집전체(3400)가 결합되어 있고, 제2 실리콘 복수 적층 박막부(3300)의 하부 면에는 음극 집전체(3500)가 결합되어 있다.
특히, 도 7에 의하면, 상기 양극 집전체(3400)는 일측 끝단이 기판(3000) 표면에 부착되어 있고, 상기 음극 집전체(3500)는 상기 제2 실리콘 복수 적층 박막부(3300)와 맞닿는 면의 반대쪽 면이 기판(3000)에 부착되어 있어, 본 발명의 마이크로 전지가 기판과 전기적으로 연결되고, 충·방전이 가능해진다.
또한, 도 7에 의하면, 제1 실리콘 복수 적층 박막부(3200), 고체 전해질층(3100), 제2 실리콘 복수 적층 박막부(3300) 및 음극 집전체(3500)의 오른쪽 측면부와 양극 집전체(3400) 사이에는 공간부(3700)가 존재하며, 도 7에서는 상기 공간부(3700)에 절연물질이 충진되어 있다.
PCB를 구성하는 전자 부품들 중에는 일정 전류를 소모하여 타이머 동작과 같은 지속적이고 상시적인 기능을 유지하는 소자들이 존재한다. 이와 같은 부속 소자들의 동작을 유지하기 위하여 버튼형 전지를 PCB에 삽입하거나 리튬 계열의 배터리를 부속으로 설치하여 소자의 동작을 보장하고 있다.
버튼형 전지는 1차 전지로서 운용유지시간이 길다는 장점이 있으나 방전 후에 누액 및 교체에 대한 부담이 있고, 리튬계 충전지의 경우 덩치가 크고 충격 발열에 대한 불안정성이 있다는 단점이 있다.
그러나, 본 발명의 제6 실시예에 따른 마이크로 전지는 박막의 형태로 제조가 가능하고, 칩 형태의 제조 또한 가능하므로, PCB의 단면 또는 소자 배열이 없는 공간을 이용하여 대용량 전원 구성이 가능하며, 충·방전이 가능한 이차 전지로서 PCB 작동시에는 충전이 가능 하도록 할 수 있다.
또한, 본 발명의 제6 실시예에 따른 마이크로 전지는 평면에 부착할 때 형상에 제한이 없으며, 칩형으로 제조할 때는 두께가 2mm 가량으로 제조하여 PCB에 실장이 가능하다.
따라서, 본 발명의 다른 양태는 상기 제6 실시예에 따른 마이크로 전지가 백업전원으로서 일 영역에 실장된 PCB 기판에 관한 것이다.
또한, 본 발명에 따른 마이크로 전지는 반도체 칩의 제조 공정상에서 칩의 상단 및 하단부에 증착 공정으로 일체화하여 제조할 수 있어, 외부에 설치하여야 하는 보조 부품의 크기를 소형으로 제작할 수 있고, 순간 방전에 대한 백업 전원으로 단시간 전원을 유지할 수 있다.
따라서, 본 발명의 또 다른 양태는 상기 제6 실시예에 따른 마이크로 전지가 백업전원으로서 반도체 칩의 일 영역에 증착되어 일체화된 반도체 칩에 관한 것이다.
그리고, 본 발명의 제6 실시예에 따른 마이크로 전지는 소자로 마련되어 광대역 반도체 및 슈퍼 커패시터 등으로 활용 가능하다.
<제7 실시 예>
이하에서는, 본 발명의 제7 실시 예에 따른 실리콘 이차전지에 대해 상세하게 설명한다.
본 발명의 제6 실시 예에 따른 실리콘 이차전지의 기본 구성은 양극을 SiC의 화학식을 가지고 있는 탄화규소로 하고, 음극을 Si3N4의 화학식을 가지고 있는 질화규소로 하고, 양극과 음극과의 사이에 양이온성인 술폰산기(-SO3H), 카르복실기(-COOH), 음이온성인 4급 암모늄기(-N(CH3)2C2H4OH), 치환 아미노기(-NH(CH3)2)를 결합기로서 가지고 있는 폴리머 중 어느 1종류의 이온교환 수지에 의한 비수전해질을 채용하고 있고, 충전시에 양극에 있어서 규소의 양이온 (Si+)을 발생하고, 음극에 있어서 규소의 음이온(Si-)을 발생하는 고체형 이차전지이다.
또한, 상기 실리콘 이차전지의 다른 구성은 양극을 SiC의 화학식을 가지고 있는 탄화규소로 하고, 음극을 Si3N4의 화학식을 가지고 있는 질화규소로 할 수 있다.
이러한 실리콘 이차전지는 양극과 음극과의 사이에 염화주석(SnCl3), 산화지르코늄마그네슘의 고용체(ZrMgO3), 산화지르코늄칼슘의 고용체(ZrCaO3), 산화지르코늄(ZrO2), 실리콘-β알루미나(Al2O3), 일산화질소탄화규소(SiCON), 인산지르코늄화규소(Si2Zr2PO) 중 어느 1종류의 이온 교환 무기물에 의한 비수전해질을 채용하고 있고, 충전시에 양극에 있어서 규소의 양이온(Si+)을 발생하고, 음극에 있어서 규소의 음이온(Si-)을 발생하는 고체전해질부를 포함한 이차전지이며, 상기 전해질부를 액체형으로 구성할 수 있다.
상기 실리콘 이차전지의 제조방법은 기반(基)에 대한 금속 스퍼터링에 의한 양극 집전층의 형성하는 단계, 양극 집전층에 대한 탄화규소(SiC)의 진공 증착에 의한 양극층의 형성하는 단계, 상기 양극층에 대한 코팅에 의한 비수전해질층의 형성하는 단계, 상기 비수전해질층에 대한 질화규소(Si3N4)의 진공 증착에 의한 음극층의 형성하는 단계, 금속 스퍼터링에 의한 음극 집전층을 형성하는 단계로 이루어진다.
상기 실리콘 이차전지의 기본 원리는 양극에 있어서는 탄화규소 중 가장 안정되어 있는 SiC에 의한 화합물을 채용하고 있고, 음극에 있어서는 질화규소 중 가장 안정되어 있는 Si3N4에 의한 화합물을 채용하고 있다.
양극에 의한 충전시에는, 탄소보다 규소가 산화수로 변화하기 쉽고, 게다가 규소에 있어서 4가 다음으로 안정된 상태는 2가이기 때문에, 이하와 같은 화학반응이 행하여지게 된다.
2SiC → SiC2 + Si+ + e-
반대로 방전시에는 이하와 같은 화학반응이 행하여지게 된다.
Sic2 + Si+ + e- → 2SiC
음극에 있어서는, 질화규소는 가장 안정되어 있는 Si3N4로부터 규소가 4가에서 3가로 변화하고, 질소가 3가에서 2가로 변화하는 것에 의해서, 다음으로 안정되어 있는 Si2N3라고 하는 화합물 상태로 변화하여, 이하와 같은 화학식이 성립하게 된다.
3Si3N4 + e- → 4Si2N3 + Si-
반대로 방전시에는 이하와 같은 화학반응이 행하여지게 된다.
4Si2N3 + Si- → 3Si3N4 + e-
상기 실리콘 이차전지는 충방전을 이하와 같은 화학반응으로 표현할 수 있으나, 추가적인 물질을 포함하여 충방전 효율을 향상시킬 수 있다.
통상, SiC에 의한 화합물 및 Si3N4에 의한 화합물은 모두 결정 구조를 나타내고 있고, 예를 들면 플라즈마 방전 등의 통상의 제법에 따라 양극 및 음극을 작성한 경우에는, 결정 구조를 수반하는 SiC의 화합물에 의한 탄화규소 및 Si3N4의 화합물에 의한 질화규소가 형성되게 된다.
그러나, 규소 이온(Si+ 및 Si-)의 생성을 수반하는 충방전을 용이하고 원활하게 추진하기 위해서는, 상기 각 화합물이 결정 구조가 아니고, 비정질(非晶質)상태, 즉 아몰퍼스 구조인 것이 바람직하다.
그 때문에 후술하는 바와 같이, 상기 양극 및 음극을 모두 진공 증착에 의해서 적층하는 방법이 적합하게 채용되고 있다.
게다가, 양극과 음극과의 사이의 공간을 둘로 나누고, 한쪽(예를 들면 위쪽)을 양이온성의 전해질로 하고, 다른쪽(예를 들면 아래쪽)을 음이온성의 전해질로 하도록 양이온성 및 음이온성의 쌍방의 전해질을 채용하는 것도 가능하다.
실리콘 이차전지의 전해질로서는, 고정된 상태에 있는 비수전해질을 채용하고 있지만, 그 근거는, 이러한 고정 상태인 비수전해질의 경우에는, 양극과 음극을 안정된 상태에서 접합하는 것이 가능한 동시에, 박막상태로 하는 것에 의해서 양극과 음극을 접근시켜, 효율적인 도전을 가능하게 하는 것에 있다.
비수전해질로서는, 폴리머에 의한 이온교환 수지 및 금속 산화물 등에 의한 이온 교환 무기 화합물의 어느 쪽도 채용할 수 있다.
이온교환수지로서는, 양이온성인 술폰산기(-SO3H), 카르복실기(-COOH), 음이온성인 4급 암모늄기(-N(CH3)2C2H4OH), 치환 아미노기(-NH(CH3)2) 등 중 어느 1종류를 결합기로서 가지고 있는 폴리머의 어느 쪽도 채용 가능하다.
다만, 술폰산기(-SO3H)를 가지고 있는 폴리아크릴아미드메틸프로판술폰산(PAMPS)이, 원활하게 전자(e-)를 지장 없이 이동시키는 점에 있어서 적합하게 채용할 수 있다.
그러나, 폴리머에 의한 이온교환 수지를 채용하는 경우, 단순히 상기 이온교환 수지에만 의해서 양극과 음극 사이를 충전한 경우에는, 전자(e-)가 원활하게 이동하기 위해서 적절한 공극을 형성할 수 없는 경우가 생길 수 있다.
이러한 상황에 대처하기 위해서는, 이온교환 수지와 다른 결정성 폴리머와의 블렌드에 의해서 형성한 결정 구조를 가지는 폴리머 얼로이를 비수전해질로서 채용하는 것을 특징으로 하는 실시형태를 채용하면 좋다.
그리고, 이온교환 수지와 다른 결정성 폴리머와의 블렌드가 실현되기 위해서는, 이온교환 수지가 극성을 갖기 때문에, 결정성 폴리머에 의해서 이온교환 수지가 가지고 있는 극성을 감쇄시키지 않도록 대처해야 한다.
상기 블렌드의 경우에는, 이온 교환수지 및 결정성 폴리머가 각각 가지고 있는 용해도 파라미터(SP치)의 차, 나아가서는 상기 용해도 파라미터의 결합에 기초하는 χ파라미터의 수치를 기준으로 하는 것에 의해서, 블렌드의 가부(可否)를 상당한 확률로 예측할 수 있다.
상기 판의 결정성 폴리머로서는, 어택틱폴리스티렌(atactic polystyrene(AA), 또는 아크릴니트릴-스티렌 공중 합체(AS), 또는 어택틱폴리스티렌과 아크릴니트릴과 스티렌과의 공중합체(AA-AS)와 같은 이온교환수지와 블렌드하기 쉽고, 또한 결정성을 유지하는데 있어서 바람직하다.
상호 블렌드된 폴리머 얼로이가 결정 구조를 유지하기 위해서는, 이온교환수지의 양과 다른 결정성 폴리머의 양과의 비율을 감안할 필요가 있고, 구체적인 수치는 이온교환성 수지 및 다른 결정성 폴리머의 종류에 따라서 좌우된다.
다만, 이온교환수지의 극성이 강한 경우에는, 다른 결정성 폴리머의 중량비를 전체의 1/2보다 많은 상태로 할 수 있다.
양이온성 이온교환수지로서 상기와 같이, 양이온성의 폴리아크릴아미드메틸프로판술폰산(PAMPS)에 대한 다른 결정성 폴리머로서, 어택틱폴리스티렌(AA), 또는 아크릴니트릴-스티렌공중합체(AS), 또는 어택틱폴리스티렌과 아크릴니트릴과 스티렌과의 공중합체(AA-AS)를 채용한 경우에는, 전자와 후자의 중량비로서는, 2:3~1:2의 정도가 적절하다.
비수전해질은, 상기와 같은 이온교환수지에 한정되는 것이 아니고, 이온 교환 무기물도 물론 채용 가능하고, 염화주석(SnCl3), 산화지르코늄마그네슘의 고용체 (ZrMgO3), 산화지르코늄칼슘의 고용체(ZrCaO3), 산화지르코늄(ZrO2), 실리콘-β알루미나(Al2O3), 일산화질소탄화규소(SiCON), 인산지르코늄화 규소(Si2Zr2PO) 등을 전형예로서 예시할 수 있다.
고체형 이차전지에 있어서는, 양극 및 음극의 형상 및 배치 상태는 특별히 한정되지 것은 아니다.
다만, 판 형상의 적층체에 의한 배치 상태 및 원통형상의 배치 상태를 채용할 수 있다.
실제의 고체형 이차전지에 있어서는, 양극 및 음극의 양측에 기반을 형성하고, 양극 및 음극에 대해, 각각 양극 집전층 및 음극 집전층을 사이에 두고 접속하고 있다.
양극 및 음극 사이의 방전 전압은, 충전 전압의 정도 및 전극이 가지고 있는 내부 저항에 의해서 좌우되지만, 이차전지에 있어서는, 실시예에 있어서 후술하는 바와 같이, 충전 전압을 4~5.5V로 한 경우에는, 방전 전압으로서 4~3.5V를 유지하는 설계는 충분히 가능하다.
전극 사이를 도통하는 전류량은, 충전시에 미리 고정될 수 있지만, 실시예에 있어서 후술하는 바와 같이, 단위면적 1cm2당의 전류밀도를 1.0A 정도로 설정하는 것에 의해서, 충전 전압을 4~5.5V로 변화시키고, 또한 방전 전압을 4~3.5V로 유지하는 설계는 충분히 가능하다.
이상으로 본 발명에 따른 실리콘 이차전지 및 이의 제조방법에 대한 바람직한 실시 예에 관하여 설명하였다.
전술된 실시 예는 모든 면에서 예시적인 것이며, 한정적인 것이 아닌 것으로 이해되어야 하며, 본 발명의 범위는 전술된 상세한 설명보다는 후술 될 특허청구범위에 의하여 나타내어질 것이다. 그리고 이 특허청구범위의 의미 및 범위는 물론, 그 등가 개념으로부터 도출되는 모든 변경 및 변형 가능한 형태가 본 발명의 범주에 포함되는 것으로 해석되어야 한다.

Claims (21)

  1. 실리콘 이온을 이용하여 충전 및 방전을 수행하는 실리콘 이차전지에 있어서,
    충전 시에 실리콘 양이온을 발생시키고 방전 시에 실리콘 음이온을 발생시키기 위한 제1 실리콘 화합물로 이루어진 실리콘 양극화 박막층을 복수 개 적층한 제1 실리콘 복수 적층 박막부;
    충전 시에 실리콘 음이온을 발생시키고 방전 시에 실리콘 양이온을 발생시키기 위한 제2 실리콘 화합물로 이루어진 실리콘 음극화 박막층을 복수 개 적층한 제2 실리콘 복수 적층 박막부; 및
    상기 제1 실리콘 복수 적층 박막부 및 상기 제2 실리콘 복수 적층 박막부 사이에 위치하며, 제1 실리콘 복수 적층 박막부와 제2 실리콘 복수 적층 박막부간에 충전 및 방전 시에 실리콘 이온을 전달하기 위한 고체전해질층을 포함하는 실리콘 이차전지.
  2. 제 1항에 있어서,
    상기 고체전해질층은 고체전해질층과 제1 실리콘 복수 적층 박막부 사이에 제1 실리콘 화합물과 고체전해질 성분을 포함하는 제1중간층이 형성 되어 있는 것을 특징으로 하는 실리콘 이차전지.
  3. 제 2항에 있어서,
    상기 제1 중간층은 제1 실리콘 화합물의 함량이 고체전해질 성분의 함량 보다 많은 것을 특징으로 하는 실리콘 이차전지.
  4. 제 2항에 있어서,
    상기 제1 중간층의 두께는 상기 고체전해질층 및/또는 제1 실리콘 복수 적층 박막부의 두께보다 얇은 것을 특징으로 하는 실리콘 이차전지.
  5. 제 2항에 있어서,
    상기 제1 중간층은 어느 한면 또는 양면의 표면에 돌기가 형성되어 있는 것을 특징으로 하는 실리콘 이차전지.
  6. 제 1항에 있어서,
    상기 고체전해질층은 고체전해질층과 제2 실리콘 복수 적층 박막부 사이에 제2 실리콘 화합물과 고체전해질 성분을 포함하는 제2 중간층이 형성 되어 있는 것을 특징으로 하는 실리콘 이차전지.
  7. 제 6항에 있어서,
    상기 제2 중간층은 제2 실리콘 화합물의 함량이 고체전해질 성분의 함량 보다 많은 것을 특징으로 하는 실리콘 이차전지.
  8. 제 6항에 있어서,
    상기 제2 중간층의 두께는 상기 고체전해질층 및/또는 제2 실리콘 복수 적층 박막부의 두께보다 얇은 것을 특징으로 하는 실리콘 이차전지.
  9. 제 6항에 있어서,
    상기 제2 중간층은 어느 한면 또는 양면의 표면에 돌기가 형성되어 있는 것을 특징으로 하는 실리콘 이차전지.
  10. 제 1항에 있어서,
    상기 고체전해질층은 PVDF(polyvinylidene fluoride) 및 PTFE(polytetrafluoroethylene) 중 어느 하나 이상을 포함하는 것을 특징으로 하는 실리콘 이차전지.
  11. 제 10항에 있어서,
    상기 고체전해질층은 전도성 폴리머를 더 포함하는 것을 특징으로 하는 실리콘 이차전지.
  12. 실리콘 이온을 이용하여 충전 및 방전을 수행하는 실리콘 이차전지에 있어서,
    충전 시에 실리콘 양이온을 발생시키고 방전 시에 실리콘 음이온을 발생시키는 양극 활물질층;
    충전 시에 실리콘 음이온을 발생시키고 방전 시에 실리콘 양이온을 발생시키는 음극 활물질층; 및
    상기 양극 활물질층 및 음극 활물질층 사이에 위치하며, 양극 활물질층과 음극 활물질층간에 충전 및 방전 시에 실리콘 이온을 전달하기 위한 고체전해질층; 을 포함하되,
    상기 고체전해질층은 고체전해질층과 양극 활물질층 사이에 양극 활물질층 성분과 고체전해질 성분을 포함하는 제1중간층이 형성 되어 있는 실리콘 이차전지.
  13. 제 12항에 있어서,
    상기 제1 중간층은 양극 활물질층 성분의 함량이 고체전해질 성분의 함량 보다 많은 것을 특징으로 하는 실리콘 이차전지.
  14. 제 12항에 있어서,
    상기 제1 중간층의 두께는 상기 고체전해질층 및/또는 양극 활물질층의 두께보다 얇은 것을 특징으로 하는 실리콘 이차전지.
  15. 제 12항에 있어서,
    상기 제1 중간층은 어느 한면 또는 양면의 표면에 돌기가 형성되어 있는 것을 특징으로 하는 실리콘 이차전지.
  16. 실리콘 이온을 이용하여 충전 및 방전을 수행하는 실리콘 이차전지에 있어서,
    충전 시에 실리콘 양이온을 발생시키고 방전 시에 실리콘 음이온을 발생시키는 양극 활물질층;
    충전 시에 실리콘 음이온을 발생시키고 방전 시에 실리콘 양이온을 발생시키는 음극 활물질층; 및
    상기 양극 활물질층 및 음극 활물질층 사이에 위치하며, 양극 활물질층과 음극 활물질층간에 충전 및 방전 시에 실리콘 이온을 전달하기 위한 고체전해질층; 을 포함하되,
    상기 고체전해질층은 고체전해질층과 음극 활물질층 사이에 음극 활물질층 성분과 고체전해질 성분을 포함하는 제2 중간층이 형성되어 있는 실리콘 이차전지.
  17. 제 16항에 있어서,
    상기 제2 중간층은 음극 활물질층 성분의 함량이 고체전해질 성분의 함량 보다 많은 것을 특징으로 하는 실리콘 이차전지.
  18. 제 16항에 있어서,
    상기 제2 중간층의 두께는 상기 고체전해질층 및/또는 음극 활물질층의 두께보다 얇은 것을 특징으로 하는 실리콘 이차전지.
  19. 제 16항에 있어서,
    상기 제2 중간층은 어느 한면 또는 양면의 표면에 돌기가 형성되어 있는 것을 특징으로 하는 실리콘 이차전지.
  20. 실리콘 이온을 이용하여 충전 및 방전을 수행하는 실리콘 이차전지에 있어서,
    충전 시에 실리콘 양이온을 발생시키고 방전 시에 실리콘 음이온을 발생시키는 양극 활물질층;
    충전 시에 실리콘 음이온을 발생시키고 방전 시에 실리콘 양이온을 발생시키는 음극 활물질층; 및
    상기 양극 활물질층 및 음극 활물질층 사이에 위치하며, 양극 활물질층과 음극 활물질층간에 충전 및 방전 시에 실리콘 이온을 전달하기 위한 고체전해질층; 을 포함하되,
    상기 고체전해질층은 PVDF(polyvinylidene fluoride) 및 PTFE(polytetrafluoroethylene) 중 어느 하나 이상을 포함하는 것을 특징으로 하는 실리콘 이차전지.
  21. 제 20항에 있어서,
    상기 고체전해질층은 전도성 폴리머를 더 포함하는 것을 특징으로 하는 실리콘 이차전지.
PCT/KR2015/007583 2014-07-22 2015-07-21 실리콘 이차전지 WO2016013859A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017525490A JP2017526151A (ja) 2014-07-22 2015-07-21 シリコン二次電池
EP15824876.5A EP3182498B1 (en) 2014-07-22 2015-07-21 Silicon secondary battery
US15/328,305 US10050302B2 (en) 2014-07-22 2015-07-21 Silicon secondary battery
CN201580039508.5A CN107078349A (zh) 2014-07-22 2015-07-21 硅二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20140092518 2014-07-22
KR10-2014-0092518 2014-07-22

Publications (1)

Publication Number Publication Date
WO2016013859A1 true WO2016013859A1 (ko) 2016-01-28

Family

ID=55163329

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/KR2015/007583 WO2016013859A1 (ko) 2014-07-22 2015-07-21 실리콘 이차전지
PCT/KR2015/007587 WO2016013862A1 (ko) 2014-07-22 2015-07-21 마이크로 전지와 이를 이용한 pcb 기판 및 반도체 칩
PCT/KR2015/007584 WO2016013860A1 (ko) 2014-07-22 2015-07-21 실리콘 이차전지 유닛 및 이를 이용한 전기 자동차용 전지모듈
PCT/KR2015/007585 WO2016013861A1 (ko) 2014-07-22 2015-07-21 실리콘 이차전지
PCT/KR2015/007578 WO2016013856A1 (ko) 2014-07-22 2015-07-21 실리콘 이차전지

Family Applications After (4)

Application Number Title Priority Date Filing Date
PCT/KR2015/007587 WO2016013862A1 (ko) 2014-07-22 2015-07-21 마이크로 전지와 이를 이용한 pcb 기판 및 반도체 칩
PCT/KR2015/007584 WO2016013860A1 (ko) 2014-07-22 2015-07-21 실리콘 이차전지 유닛 및 이를 이용한 전기 자동차용 전지모듈
PCT/KR2015/007585 WO2016013861A1 (ko) 2014-07-22 2015-07-21 실리콘 이차전지
PCT/KR2015/007578 WO2016013856A1 (ko) 2014-07-22 2015-07-21 실리콘 이차전지

Country Status (6)

Country Link
US (5) US11024875B2 (ko)
EP (5) EP3179549B1 (ko)
JP (5) JP2017522710A (ko)
KR (5) KR102297687B1 (ko)
CN (5) CN107078349A (ko)
WO (5) WO2016013859A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102440683B1 (ko) * 2017-09-04 2022-09-05 현대자동차주식회사 전고체 전지의 제조 방법 및 이에 의해 제조된 전고체 전지
CN110197895A (zh) * 2018-02-26 2019-09-03 华为技术有限公司 一种复合材料及其制备方法
NL2020560B1 (en) * 2018-03-09 2019-09-13 Univ Eindhoven Tech Photovoltaic cell and a method for manufacturing the same
JP7289659B2 (ja) * 2019-01-29 2023-06-12 現代自動車株式会社 全固体電池の筐体構造及びこれを用いたモジュール構造
CN113196519B (zh) * 2019-02-15 2024-11-08 松下知识产权经营株式会社 电池
CN113169300B (zh) * 2019-02-15 2024-10-29 松下知识产权经营株式会社 电池
JP7204617B2 (ja) * 2019-03-20 2023-01-16 株式会社東芝 二次電池、電池パック、及び車両
US20230402655A1 (en) * 2020-10-29 2023-12-14 Lg Energy Solution, Ltd. Bipolar all-solid-state battery including porous support layer
KR102486923B1 (ko) * 2020-11-18 2023-01-10 주식회사 아모센스 데이터 로거 장치
CN116830334A (zh) * 2021-01-15 2023-09-29 松下知识产权经营株式会社 电池和层叠电池
CN114300656B (zh) * 2021-12-30 2023-05-05 上海兰钧新能源科技有限公司 一种负极片的制备方法、负极片及其应用
WO2024123012A1 (ko) * 2022-12-05 2024-06-13 주식회사 엘지에너지솔루션 배터리 팩

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251219A (ja) * 2007-03-29 2008-10-16 Tdk Corp 全固体リチウムイオン二次電池及びその製造方法
KR20100063194A (ko) * 2008-12-03 2010-06-11 현대자동차주식회사 리튬 이차 전지용 음극
KR20120010957A (ko) * 2010-07-27 2012-02-06 후쿠요 이치무라 실리콘 화합물에 의한 고체형 이차전지 및 그 제조방법
JP2013065496A (ja) * 2011-09-20 2013-04-11 Yoshiaki Nagaura シリコン二次電池アモルファス電極の高周波大気圧プラズマcvdによる製造方法
JP2014060137A (ja) * 2012-08-22 2014-04-03 Yoshiaki Nagaura シリカ電極の二次電池モジュール、及び製造方法

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238772A (ja) 1990-02-16 1991-10-24 Showa Denko Kk 二次電池
DE69415911T2 (de) * 1993-09-17 1999-06-10 Kabushiki Kaisha Toshiba, Kawasaki, Kanagawa Lithium Sekundärbatterie
JPH11233100A (ja) * 1998-02-12 1999-08-27 Kao Corp 非水系二次電池
JPH11283664A (ja) * 1998-03-27 1999-10-15 Kyocera Corp 固体電解質電池
JP2000164466A (ja) * 1998-11-26 2000-06-16 Toyota Motor Corp キャパシタまたは電池に使用される電極の製造方法
JP2000208168A (ja) * 1999-01-12 2000-07-28 Toshiba Battery Co Ltd ポリマ―リチウム二次電池
JP2001035482A (ja) * 1999-07-26 2001-02-09 Japan Storage Battery Co Ltd 非水電解質二次電池用電極の製造法及びそれを用いた非水電解質二次電池
US6664006B1 (en) * 1999-09-02 2003-12-16 Lithium Power Technologies, Inc. All-solid-state electrochemical device and method of manufacturing
KR100362281B1 (ko) * 2000-04-12 2002-11-23 삼성에스디아이 주식회사 도전성 폴리머가 코팅된 캐소드 집전체를 이용한 리튬이온 폴리머 전지
JP2002134078A (ja) * 2000-10-26 2002-05-10 Toyota Motor Corp 集合電池パック
US20020092558A1 (en) * 2001-01-18 2002-07-18 Kim Seong Bae Integrated thin film cell and fabrication method thereof
JP2002279974A (ja) 2001-03-19 2002-09-27 Sanyo Electric Co Ltd 二次電池用電極の製造方法
EP1244168A1 (en) * 2001-03-20 2002-09-25 Francois Sugnaux Mesoporous network electrode for electrochemical cell
JP2002313300A (ja) * 2001-04-10 2002-10-25 Mitsubishi Materials Corp 二次電池及びそれを用いた電池ユニット
TW560102B (en) * 2001-09-12 2003-11-01 Itn Energy Systems Inc Thin-film electrochemical devices on fibrous or ribbon-like substrates and methd for their manufacture and design
WO2004082969A2 (de) 2003-03-17 2004-09-30 W.E.T. Automotive Systems Ag Vorrichtung zur klimatisierung eines fahrzeuges
WO2005057715A1 (ja) * 2003-12-15 2005-06-23 Nec Corporation 二次電池
JP2005310502A (ja) * 2004-04-20 2005-11-04 Sanyo Electric Co Ltd 化学電池用電極の製造方法及び電池
JP5076134B2 (ja) * 2004-06-08 2012-11-21 国立大学法人東京工業大学 リチウム電池素子
CN100485999C (zh) * 2004-06-15 2009-05-06 三菱化学株式会社 非水电解质二次电池及其负极
KR100537745B1 (ko) * 2004-06-21 2005-12-19 한국전기연구원 리튬이차전지용 음극 활물질 및 그 제조방법
KR101387855B1 (ko) * 2005-07-15 2014-04-22 사임베트 코퍼레이션 연질 및 경질 전해질층을 가진 박막 배터리 및 그 제조방법
US7553582B2 (en) 2005-09-06 2009-06-30 Oak Ridge Micro-Energy, Inc. Getters for thin film battery hermetic package
KR100907624B1 (ko) * 2005-10-26 2009-07-15 주식회사 엘지화학 금속이온의 제거에 의해 수명 특성이 향상된 이차전지
JP2007329107A (ja) * 2006-06-09 2007-12-20 Arisawa Mfg Co Ltd リチウムイオン二次電池
JP4438784B2 (ja) * 2006-08-25 2010-03-24 トヨタ自動車株式会社 蓄電装置
US20080057390A1 (en) * 2006-08-31 2008-03-06 Seiko Epson Corporation Secondary battery
KR20080021945A (ko) 2006-09-05 2008-03-10 삼성에스디아이 주식회사 전지용 전극과 이를 이용한 이차 전지
JP2008117587A (ja) 2006-11-02 2008-05-22 Matsushita Electric Ind Co Ltd 制御弁式鉛蓄電池
KR100914108B1 (ko) * 2007-05-03 2009-08-27 삼성에스디아이 주식회사 전극 조립체 및 이를 구비하는 이차 전지
US20100216032A1 (en) * 2007-05-11 2010-08-26 Namics Corporation Lithium ion rechargeable battery and process for producing the lithium ion rechargeable battery
JP2011119290A (ja) 2008-04-01 2011-06-16 Nippon Zeon Co Ltd 電気化学素子用電極の製造方法
JP5540570B2 (ja) * 2008-09-26 2014-07-02 日産自動車株式会社 双極型二次電池、双極型二次電池の製造方法、双極型電極、双極型電極の製造方法、組電池
JP4728385B2 (ja) * 2008-12-10 2011-07-20 ナミックス株式会社 リチウムイオン二次電池、及び、その製造方法
KR101368602B1 (ko) 2009-02-03 2014-02-27 가부시끼가이샤 도시바 비수 전해질 이차 전지, 전지 팩 및 자동차
JP5333184B2 (ja) * 2009-03-16 2013-11-06 トヨタ自動車株式会社 全固体二次電池
US20100285358A1 (en) * 2009-05-07 2010-11-11 Amprius, Inc. Electrode Including Nanostructures for Rechargeable Cells
EP2474056B1 (en) 2009-09-01 2016-05-04 Sapurast Research LLC Printed circuit board with integrated thin film battery
JP2011141982A (ja) * 2010-01-06 2011-07-21 Sumitomo Electric Ind Ltd 非水電解質電池
JP2011210666A (ja) * 2010-03-30 2011-10-20 Mitsubishi Chemicals Corp 非水系二次電池電極用の樹脂被覆活物質
JP5648828B2 (ja) * 2010-04-26 2015-01-07 日産自動車株式会社 リチウムイオン二次電池
CN102959769A (zh) * 2010-04-28 2013-03-06 弗莱克赛尔有限责任公司 薄的柔性电化学能量电池
JP2011238354A (ja) * 2010-05-06 2011-11-24 Daido Steel Co Ltd リチウム二次電池用負極の製造方法
GB201014706D0 (en) * 2010-09-03 2010-10-20 Nexeon Ltd Porous electroactive material
JP5900343B2 (ja) * 2010-10-20 2016-04-06 新東工業株式会社 全固体電池を構成する層構造体の製造方法、製造装置及びその層構造体を備えた全固体電池
US8795893B2 (en) * 2010-10-21 2014-08-05 Kabushiki Kaisha Toyota Chuo Kenkyusho Nonaqueous secondary battery electrode, nonaqueous secondary battery including the same, and assembled battery
JP4800440B1 (ja) * 2010-12-22 2011-10-26 富久代 市村 シリコン化合物による固体型二次電池及びその製造方法
JP2012204160A (ja) * 2011-03-25 2012-10-22 Kyocera Corp 二次電池
CN102208632A (zh) 2011-04-12 2011-10-05 湘潭大学 锂离子电池用硅纳米线-富勒烯综合体负极材料及其制备方法
US20120276434A1 (en) * 2011-04-27 2012-11-01 Palo Alto Research Center Incorporated Highly flexible printed alkaline batteries based on mesh embedded electrodes
FR2975229B1 (fr) * 2011-05-13 2013-07-05 Commissariat Energie Atomique Architecture a empilement d'elements de stockage et/ou de generation d'energie electrique a sortie electrique configurable, procede de realisation d'une telle architecture
TWI582041B (zh) * 2011-06-03 2017-05-11 半導體能源研究所股份有限公司 單層和多層石墨烯,彼之製法,含彼之物件,以及含彼之電器裝置
WO2013008677A1 (ja) 2011-07-08 2013-01-17 株式会社 村田製作所 全固体電池およびその製造方法
KR20130011374A (ko) * 2011-07-21 2013-01-30 주식회사 칩테크놀러지 자외선 발광 다이오드용 다중 양자 우물 및 그의 제조 방법
JP6190101B2 (ja) 2011-08-23 2017-08-30 株式会社日本触媒 ゲル電解質又は負極合剤、及び、該ゲル電解質又は負極合剤を使用した電池
JP5006462B1 (ja) 2011-09-09 2012-08-22 ファイラックインターナショナル株式会社 固体型二次電池の製造方法及び当該製造方法に基づく固体型二次電池
WO2013035525A1 (ja) * 2011-09-09 2013-03-14 株式会社 村田製作所 全固体電池用積層成形体、全固体電池およびその製造方法
WO2013047853A1 (ja) * 2011-09-26 2013-04-04 住友化学株式会社 二次電池用接着樹脂組成物
JP2013080610A (ja) * 2011-10-04 2013-05-02 Yoshiaki Nagaura ゼオライト混合のシリコン化合物電極及び電解質の二次電池モジュール、及び製造方法
JP2013110004A (ja) * 2011-11-22 2013-06-06 Yoshiaki Nagaura シリカ電極の二次電池モジュール、及び製造方法
CN102403491A (zh) 2011-11-30 2012-04-04 奇瑞汽车股份有限公司 一种锂离子电池硅碳复合负极材料及其制备方法及锂离子电池
WO2013100001A1 (ja) * 2011-12-28 2013-07-04 株式会社 村田製作所 全固体電池およびその製造方法
CN104106164A (zh) 2012-02-17 2014-10-15 索尼公司 二次电池、二次电池的制造方法、用于二次电池的电极以及电子装置
JP2013187109A (ja) * 2012-03-09 2013-09-19 Yoshiaki Nagaura シリカ電極の二次電池モジュール、及び製造方法
US9123955B2 (en) * 2012-04-06 2015-09-01 Samsung Sdi Co., Ltd. Negative active material, lithium battery including the material, and method for manufacturing the material
KR101366064B1 (ko) * 2012-04-06 2014-02-21 주식회사 루트제이제이 규소 화합물과 고분자 전해질을 이용한 이차전지 및 이의 제조방법
US9735443B2 (en) * 2012-04-17 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US10079389B2 (en) * 2012-05-18 2018-09-18 Xg Sciences, Inc. Silicon-graphene nanocomposites for electrochemical applications
GB2502625B (en) * 2012-06-06 2015-07-29 Nexeon Ltd Method of forming silicon
JP6269914B2 (ja) * 2012-06-18 2018-01-31 Jsr株式会社 蓄電デバイス用電極、電極用スラリー、および蓄電デバイス
FR2993098B1 (fr) * 2012-07-09 2019-11-01 Commissariat A L'energie Atomique Et Aux Energies Alternatives Collecteur de courant pour batterie lithium
US9692039B2 (en) 2012-07-24 2017-06-27 Quantumscape Corporation Nanostructured materials for electrochemical conversion reactions
JP6274388B2 (ja) * 2012-07-27 2018-02-07 セイコーインスツル株式会社 電気化学セル及びその製造方法
JP6026823B2 (ja) * 2012-08-30 2016-11-16 トヨタ自動車株式会社 二次電池用電極の製造方法
JP5927702B2 (ja) * 2012-09-12 2016-06-01 株式会社日立製作所 電池パック及びそれを備えたコンテナ
JP5900281B2 (ja) * 2012-10-19 2016-04-06 トヨタ自動車株式会社 全固体電池およびその製造方法
WO2014080895A1 (ja) 2012-11-22 2014-05-30 日産自動車株式会社 電気デバイス用負極、及びこれを用いた電気デバイス
JP5757284B2 (ja) * 2012-12-27 2015-07-29 トヨタ自動車株式会社 硫化物固体電解質材料、リチウム固体電池、および、硫化物固体電解質材料の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251219A (ja) * 2007-03-29 2008-10-16 Tdk Corp 全固体リチウムイオン二次電池及びその製造方法
KR20100063194A (ko) * 2008-12-03 2010-06-11 현대자동차주식회사 리튬 이차 전지용 음극
KR20120010957A (ko) * 2010-07-27 2012-02-06 후쿠요 이치무라 실리콘 화합물에 의한 고체형 이차전지 및 그 제조방법
JP2013065496A (ja) * 2011-09-20 2013-04-11 Yoshiaki Nagaura シリコン二次電池アモルファス電極の高周波大気圧プラズマcvdによる製造方法
JP2014060137A (ja) * 2012-08-22 2014-04-03 Yoshiaki Nagaura シリカ電極の二次電池モジュール、及び製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3182498A4 *

Also Published As

Publication number Publication date
EP3182498A4 (en) 2018-02-21
WO2016013856A1 (ko) 2016-01-28
KR20160011589A (ko) 2016-02-01
EP3174154A4 (en) 2018-02-28
JP2017527094A (ja) 2017-09-14
CN106688132A (zh) 2017-05-17
EP3182498B1 (en) 2019-04-24
WO2016013862A1 (ko) 2016-01-28
EP3188300A4 (en) 2018-03-28
KR102382292B1 (ko) 2022-04-04
JP2017522709A (ja) 2017-08-10
KR102345369B1 (ko) 2021-12-30
EP3174154A1 (en) 2017-05-31
EP3174155A1 (en) 2017-05-31
EP3174155B1 (en) 2019-04-10
CN106688132B (zh) 2020-09-04
EP3179549A4 (en) 2017-06-14
EP3188300B1 (en) 2019-04-10
KR20160011591A (ko) 2016-02-01
EP3179549A1 (en) 2017-06-14
EP3174154B1 (en) 2019-05-01
CN107078348A (zh) 2017-08-18
EP3174155A4 (en) 2018-03-28
KR102297687B1 (ko) 2021-09-03
JP2017526151A (ja) 2017-09-07
US20170214093A1 (en) 2017-07-27
US20170214080A1 (en) 2017-07-27
JP2017522710A (ja) 2017-08-10
EP3179549B1 (en) 2019-04-17
EP3188300A1 (en) 2017-07-05
US11024875B2 (en) 2021-06-01
JP6622802B2 (ja) 2019-12-18
CN106663834A (zh) 2017-05-10
US20170222253A1 (en) 2017-08-03
EP3182498A1 (en) 2017-06-21
CN107078349A (zh) 2017-08-18
KR20160011587A (ko) 2016-02-01
KR20160011590A (ko) 2016-02-01
WO2016013860A1 (ko) 2016-01-28
US20170214086A1 (en) 2017-07-27
US10418661B2 (en) 2019-09-17
KR102382294B1 (ko) 2022-04-04
KR102345388B1 (ko) 2021-12-30
CN107078347A (zh) 2017-08-18
JP2017526150A (ja) 2017-09-07
KR20160011588A (ko) 2016-02-01
US20170214058A1 (en) 2017-07-27
US10050302B2 (en) 2018-08-14
US10468716B2 (en) 2019-11-05
WO2016013861A1 (ko) 2016-01-28

Similar Documents

Publication Publication Date Title
WO2016013859A1 (ko) 실리콘 이차전지
WO2013157744A1 (ko) 전극 조립체, 이를 포함하는 전지셀 및 디바이스
WO2014081163A1 (ko) 전폭의 길이가 동일하고 전장의 길이가 상이한 전극 유닛들로 이루어진 전극 조립체, 이를 포함하는 전지셀 및 디바이스
WO2019139445A1 (ko) 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2019103470A2 (en) All-solid-state secondary battery and method of charging the same
WO2014081164A1 (ko) 전장의 길이가 동일하고 전폭의 길이가 상이한 전극 유닛들로 이루어진 전극 조립체, 이를 포함하는 전지셀 및 디바이스
WO2021235794A1 (ko) 이차전지
WO2020242138A1 (ko) 리튬 이차전지용 양극, 이의 제조방법 및 이를 포함한 리튬 이차전지
WO2022108027A1 (ko) 이차전지용 복합고체 전해질, 이를 포함하는 이차전지 및 그 제조방법
WO2023008821A1 (ko) 전고체 이차전지, 전고체 이차전지 구조체 및 전고체 이차전지 제조방법
WO2019013501A1 (ko) 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2022092831A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2021015535A1 (ko) 리튬 이차전지
WO2019039903A2 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021075873A1 (ko) 음극 전극, 전해 증착을 이용한 그 제조 방법, 및 그 제조 장치
WO2020036444A1 (ko) 리튬 이차 전지용 음극의 제조방법 및 이를 이용하여 제조한 리튬 이차 전지용 음극
WO2021158027A1 (ko) 박형 리튬 전지 및 이의 제조방법
WO2021075621A1 (ko) 음극, 이를 포함하는 이차 전지, 및 이의 제조 방법
WO2020067769A1 (ko) 고체 전해질 및 이의 제조방법
WO2024029913A1 (ko) 집전체
WO2024085690A1 (ko) 전극용 집전체
WO2024029912A1 (ko) 집전체
WO2024136601A1 (ko) 고체 전해질막 및 이를 포함하는 전고체 전지
WO2024035201A1 (ko) 양극, 양극의 제조 방법 및 상기 양극을 포함하는 리튬 이차전지
WO2024085668A1 (ko) 집전체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824876

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017525490

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15328305

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015824876

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015824876

Country of ref document: EP