WO2014080895A1 - 電気デバイス用負極、及びこれを用いた電気デバイス - Google Patents
電気デバイス用負極、及びこれを用いた電気デバイス Download PDFInfo
- Publication number
- WO2014080895A1 WO2014080895A1 PCT/JP2013/081146 JP2013081146W WO2014080895A1 WO 2014080895 A1 WO2014080895 A1 WO 2014080895A1 JP 2013081146 W JP2013081146 W JP 2013081146W WO 2014080895 A1 WO2014080895 A1 WO 2014080895A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- active material
- alloy
- electrode active
- cycle
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0408—Light metal alloys
- C22C1/0416—Aluminium-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/045—Alloys based on refractory metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0483—Alloys based on the low melting point metals Zn, Pb, Sn, Cd, In or Ga
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C13/00—Alloys based on tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C24/00—Alloys based on an alkali or an alkaline earth metal
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C27/00—Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
- C22C27/02—Alloys based on vanadium, niobium, or tantalum
- C22C27/025—Alloys based on vanadium, niobium, or tantalum alloys based on vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C28/00—Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/18—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on silicides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/04—Alloys containing less than 50% by weight of each constituent containing tin or lead
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/06—Alloys containing less than 50% by weight of each constituent containing zinc
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0422—Cells or battery with cylindrical casing
- H01M10/0427—Button cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/387—Tin or alloys based on tin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/42—Alloys based on zinc
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
- H01M4/623—Binders being polymers fluorinated polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1084—Alloys containing non-metals by mechanical alloying (blending, milling)
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/30—Batteries in portable systems, e.g. mobile phone, laptop
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a negative electrode for an electrical device, and an electrical device using the same.
- the negative electrode for an electric device of the present invention and the electric device using the same are used, for example, as a secondary battery or a capacitor as a driving power source or auxiliary power source for a motor of vehicles such as electric vehicles, fuel cell vehicles and hybrid electric vehicles.
- a motor drive secondary battery As a motor drive secondary battery, it is required to have extremely high output characteristics and high energy as compared with a consumer lithium ion secondary battery used for a mobile phone, a notebook personal computer and the like. Therefore, a lithium ion secondary battery having the highest theoretical energy among all the batteries has attracted attention, and is currently being rapidly developed.
- a lithium ion secondary battery comprises a positive electrode obtained by applying a positive electrode active material etc. on both sides of a positive electrode current collector using a binder, and a negative electrode obtained by applying a negative electrode active material etc. on both sides of a negative electrode current collector using a binder Are connected via the electrolyte layer and stored in the battery case.
- a battery using a material that is alloyed with Li for the negative electrode is expected to be a negative electrode material for use in vehicles because the energy density is improved as compared to conventional carbon / graphite based negative electrode materials.
- a lithium ion secondary battery using a material that is alloyed with Li for the negative electrode has a large amount of expansion and contraction at the negative electrode during charge and discharge.
- the volume expansion when occluding Li ions is about 1.2 times in the case of a graphite material, while in the case of Si material, when Si and Li are alloyed, it changes from an amorphous state to a crystalline state and a large volume change
- the Si negative electrode active material there is a trade-off relationship between capacity and cycle durability, and there is a problem that it is difficult to improve high cycle durability while showing high capacity.
- a negative electrode active material for a lithium ion secondary battery which includes an amorphous alloy having the formula; Si x M y Al z .
- Patent Document 1 it is described that, in addition to the high capacity, a good cycle life is exhibited by minimizing the content of the metal M in paragraph “0018”.
- an object of the present invention is to provide a negative electrode for an electric device such as a Li-ion secondary battery which exhibits high cycle characteristics and high initial capacity and well balanced characteristics.
- the present inventors apply a ternary Si-Zn-M alloy as the negative electrode active material and set the elongation of the electrode layer (negative electrode active material layer) in a predetermined range. It has been found that the problem can be solved, and the present invention has been made based on such findings.
- BRIEF DESCRIPTION OF THE DRAWINGS It is the cross-sectional schematic which represented typically the outline
- BRIEF DESCRIPTION OF THE DRAWINGS It is the perspective view which represented typically the external appearance of the lamination-type flat lithium ion secondary battery which is typical embodiment of the electric device which concerns on this invention. It is a ternary composition chart which plots and shows the alloy component formed into a film by the reference example A with the composition range of the Si-Zn-V type-alloy which comprises the negative electrode active material which the negative electrode for electric devices of this invention has.
- FIG. 6 is a composition diagram of a ternary alloy of the Si—Zn—Al system.
- the discharge capacity retention ratio (%) of the battery using each sample (sample numbers 1 to 48) performed in the reference example C of the present invention at 50 cycles was color-coded according to the magnitude of the discharge capacity retention ratio (density FIG.
- the lithium ion secondary battery described above contains a ternary Si-Zn-M alloy as a negative electrode active material, and the elongation ( ⁇ ) of the negative electrode active material layer further satisfies 1.29 ⁇ ⁇ 1. It is characterized by the negative electrode being in the range of 70%.
- main components of the battery including the negative electrode will be described.
- NiMn-based material examples include LiNi 0.5 Mn 1.5 O 4 and the like.
- NiCo Li (NiCo) O 2, and the like.
- two or more positive electrode active materials may be used in combination.
- a lithium-transition metal complex oxide is used as a positive electrode active material.
- positive electrode active materials other than those described above may be used.
- the particle sizes optimum for expressing the unique effects of each material may be blended and used. It is not necessary to make the particle size uniform.
- Examples of other additives that may be contained in the positive electrode active material layer include a conductive aid, an electrolyte salt (lithium salt), an ion conductive polymer, and the like.
- Carbon powder such as graphite (graphite) such as natural graphite and artificial graphite; vapor-grown carbon fiber or liquid-phase carbon fiber (carbon nanotube (CNT), graphite fiber, etc.) carbon fiber such as carbon nanofiber (carbon fiber) )
- Carbon materials such as vulcan, black pearl, carbon nanohorn, carbon nanoballoon, hard carbon, fullerene, expanded graphite and the like can be mentioned, but it goes without saying that it is not limited thereto.
- the carbon fibers are CNTs and carbon fibers (graphitic, hard carbon, etc. (changed depending on the combustion temperature at the time of synthesis)), but these can be synthesized by a liquid phase method or a gas phase method.
- a conductive binder having both the functions of the conductive aid and the binder may be used instead of the conductive aid and the binder, or one or both of the conductive aid and the binder may be used in combination.
- a commercially available TAB-2 (manufactured by Takasen Co., Ltd.) can be used as the conductive binder.
- M is at least one metal selected from the group consisting of V, Sn, Al, C and combinations thereof. Therefore, Si alloys of Si x Zn y V z A a , Si x Zn y Sn z A a , Si x Zn y Al z A a and Si x Zn y C z A a will be respectively described below.
- Si alloy represented by Si x Zn y V z A a Si alloy represented by Si x Zn y V z A a
- the above-mentioned Si x Zn y V z A a is an amorphous-crystalline phase during Li alloying by selecting Zn as the first additive element and V as the second additive element. Transition can be suppressed to improve cycle life.
- the capacity is higher than that of a conventional negative electrode active material, for example, a carbon-based negative electrode active material.
- x is 33 to 50 or more
- y is more than 0 and 46 or less
- z is 21 to 67. Note that this numerical range corresponds to the range indicated by the symbol A in FIG.
- this Si alloy negative electrode active material is used for the negative electrode of an electric device, for example, the negative electrode of a lithium ion secondary battery.
- the alloy contained in the negative electrode active material absorbs lithium ions at the time of charge of the battery, and releases lithium ions at the time of discharge.
- x is more than 23 and less than 64
- y is more than 0 and less than 65
- z is 4 or more and 58 or less.
- This numerical range corresponds to the range indicated by the symbol X in FIG.
- this Si alloy negative electrode active material is used for the negative electrode of an electric device, for example, the negative electrode of a lithium ion secondary battery.
- the alloy contained in the negative electrode active material absorbs lithium ions at the time of charge of the battery, and releases lithium ions at the time of discharge.
- the negative electrode active material is a Si alloy negative electrode active material, to which zinc (Zn) as a first additive element and tin (Sn) as a second additive element are added. It is. And, by appropriately selecting Zn as the first additive element and Sn as the second additive element, when alloying with lithium, suppressing the phase transition of amorphous-crystal and improving the cycle life Can. In addition, the capacity can be made higher than that of the carbon-based negative electrode active material.
- the value a is preferably 0 ⁇ a ⁇ 0.5, and preferably 0 ⁇ a ⁇ 0.1.
- Si alloy represented by Si x Zn y Al z A a Si alloy represented by Si x Zn y Al z A a
- the above-mentioned Si x Zn y Al z A a is an amorphous-crystalline phase during Li alloying by selecting Zn as the first additive element and Al as the second additive element. Transition can be suppressed to improve cycle life.
- the capacity is higher than that of a conventional negative electrode active material, for example, a carbon-based negative electrode active material.
- x, y, and z satisfy 21 ⁇ x ⁇ 100, 0 ⁇ y ⁇ 79, and preferably 0 ⁇ z ⁇ 79.
- the first additive element Zn which suppresses the phase transition of the amorphous-crystal phase and improves the cycle life at the time of Li alloying, and the concentration of the first additive element increases.
- the second additive element type Al which does not reduce the capacity as an electrode is selected, and these additive element species and the high capacity element Si are made to have an appropriate composition ratio.
- the existing carbon-based negative electrode active material is within the range enclosed by the thick solid line in FIG. 14 (inside of the triangle). It is possible to realize much higher capacity that can not be realized. Similarly, higher capacity (initial capacity 824 mAh / g or more) can be realized even compared to existing Sn-based alloy negative electrode active materials.
- the cycle durability which has a trade-off relationship with the increase in capacity, is also compared to a Sn-based negative electrode active material having high capacity but poor cycle durability or the multi-element alloy negative electrode active material described in Patent Document 1. Can achieve extremely superior cycle durability. In particular, a high discharge capacity maintenance rate at the 50th cycle can be realized. Thereby, an excellent Si alloy negative electrode active material can be provided.
- the x, y, and z are 26 ⁇ x ⁇ 78, 16 ⁇ y ⁇ 69, and 0 ⁇ z ⁇ 51.
- the composition ratio of the first additive element Zn to the second additive element Al, and the composition ratio of the high-capacitance element Si is in the appropriate range defined above, a Si alloy negative electrode active material having good characteristics is obtained. Can be provided. Specifically, even when the composition ratio of the Si-Zn-Al alloy is within the range enclosed by the thick solid line in FIG. 15 (inside the hexagon in FIG. 15), it can not be realized with the existing carbon-based negative electrode active material A much higher capacity can be realized.
- composition range in which a high discharge capacity retention rate of 85% or more at the 50th cycle can be realized is selected (a hexagonal shape surrounded by a thick solid line in FIG. 15).
- An excellent Si alloy negative electrode active material with well-balanced cycle durability can be provided (see Table 3 and FIG. 15).
- x, y, and z are 26 ⁇ x ⁇ 66, 16 ⁇ y ⁇ 69, and 2 ⁇ z ⁇ 51.
- a Si alloy having very good characteristics when the composition ratio of Zn as the first additive element to Al as the second additive element and the composition ratio of the high capacity element Si is in the appropriate range defined above.
- An anode active material can be provided. Specifically, even when the composition ratio of the Si-Zn-Al alloy is within the range surrounded by the thick solid line in FIG. 16 (inside of the small hexagon), the existing carbon-based negative electrode active material can not be realized. High capacity can be realized.
- the x, y, and z are 26 ⁇ x ⁇ 47, 18 ⁇ y ⁇ 44, and 22 ⁇ z ⁇ 46.
- the Si alloy negative electrode having the best characteristics when the composition ratio of Zn as the first additive element to Al as the second additive element and the composition ratio of the high capacity element Si is in the appropriate range defined above. It can provide an active material. Specifically, even when the composition ratio of the Si-Zn-Aln alloy is within the range enclosed by the thick solid line in FIG. 17 (inside of the smallest hexagon), it can not be realized with the existing carbon-based negative electrode active material A much higher capacity can be realized.
- Si alloy negative electrode active material of the Si-Zn-Al system in the production state (uncharged state), expressed by a composition formula having the appropriate composition ratio described above Si x Zn y Al z A a Is a ternary amorphous alloy.
- Si-Zn-Al Si alloy negative electrode active material even when Si and Li are alloyed by charge and discharge, the amorphous state is transformed to the crystalline state and the large volume It has remarkable characteristics that can suppress the occurrence of change.
- the cycle characteristics are rapidly degraded (deteriorated). That is, in the ternary and quaternary alloys of Patent Document 1, the initial capacity (discharge capacity at the first cycle) is significantly higher than the existing carbon-based negative electrode active material (theoretical capacity: 372 mAh / g). The capacity is high, even compared to the Sn-based negative electrode active material (theoretical capacity is about 600 to 700 mAh / g). However, when compared with the discharge capacity maintenance rate (about 60%) of the 50th cycle of the Sn-based negative electrode active material that can increase the capacity to about 600 to 700 mAh / g, the cycle characteristics are very poor and sufficient. It was not.
- the description of the initial capacity is Although it is not, it is shown from Table 2 of Patent Document 1 that the circulating capacity after only 5 to 6 cycles is already a low value of 700 to 1200 mAh / g.
- the alloy composition of Patent Document 1 is described as an atomic ratio, in the example of Patent Document 1, about 20 mass% of Fe is contained in the example of Patent Document 1, as in the present embodiment. It can be said that an alloy composition which is an additive element is disclosed.
- Si—Zn—Al alloy negative electrode active material will be described in detail.
- Total mass% value the Si-Zn-Al-based alloy for the above alloy is an alloy represented by a composition formula Si x Zn y Al z A a .
- A is an unavoidable impurity.
- the negative electrode active material layer 15 of the present embodiment a combination of at least one composition formula Si x Zn y Al z A a may be contained the alloy having two or more different the alloy compositions You may use it. Moreover, you may use together with other negative electrode active materials, such as a carbonaceous material, if it is in the range which does not impair the effect of this invention.
- Mass% value of Si in the above alloy As a range of x in the formula, which is a mass% value of Si in the alloy having the above composition formula Si x Zn y Al z A a , preferably 21 ⁇ x ⁇ 100, more preferably 26 ⁇ x ⁇ 78, still more preferably 26 ⁇ x ⁇ 66, and particularly preferably 26 ⁇ x ⁇ 47 (see Table 3 and FIGS. 14 to 17).
- the initial capacity also exhibits high characteristics in a well-balanced manner while maintaining preferably high cycle characteristics (particularly, high discharge capacity retention rate at 50 cycles).
- the range of 26 ⁇ x ⁇ 78 is more desirable.
- good characteristics in the case of an existing alloy-based negative electrode active material, the capacity is increased It is possible to realize a Si alloy negative electrode active material having excellent characteristics (both excellent in both cycle durability and cycle durability).
- a negative electrode active material exhibiting well-balanced characteristics with high initial capacity while maintaining higher cycle characteristics (higher discharge capacity retention rate) From the viewpoint of providing, the range of 26 ⁇ x ⁇ 66 can be said to be more desirable.
- a Si alloy negative electrode active material having better characteristics can be provided (Table 3 and FIG. Internal reference enclosed by thick solid lines in FIG.
- a negative electrode active material that exhibits particularly high initial capacity in a well-balanced manner while maintaining particularly high cycle characteristics (particularly high discharge capacity retention rate) as mass% value (x value) of high capacity element Si in the alloy
- the range of 26 ⁇ x ⁇ 47 is particularly desirable from the viewpoint of providing
- the composition ratio of Zn, which is a first additive element to be described later, and Al as a second additive element is more appropriate, it is possible to provide a high performance Si alloy negative electrode active material having the best characteristics ( Internal reference enclosed by thick solid lines in Table 3 and FIG.
- the high discharge capacity retention rate at the 50th cycle can not be sufficiently maintained, and the cycle characteristics are degraded (deteriorated). Therefore, in addition to the above-described increase in capacity, it has not been possible to achieve a particularly high discharge capacity retention rate in the 50th cycle in a most balanced manner.
- x 100 (in the case of pure Si (pure Si) containing no additive metal element Zn to Al and Al at all), the capacity and the cycle durability are in a trade-off relationship, showing high capacity and high It is extremely difficult to improve cycle durability.
- the content ratio of the high capacity Si material having an initial capacity as high as 3200 mAh / g, Zn as the first additive element and Al as the second additive element can be in the optimum range (see the range surrounded by the thick solid line in FIGS. 15 to 17). Therefore, during the alloying of Si and Li, the phase transition between amorphous and crystalline can be remarkably suppressed, and the cycle life can be significantly improved. That is, the discharge capacity retention ratio at 50th cycle can be 85% or more, particularly 90% or more, and in particular 95% or more.
- Patent Document 1 exhibits the deterioration phenomenon of the cycle characteristics due to the considerable capacity reduction already in only about 5 to 6 cycles. That is, in the example of Patent Document 1, the discharge capacity retention rate at the 5th to 6th cycles has already dropped to 90 to 95%, and the discharge capacity retention rate at the 50th cycle drops to almost 50 to 0%. It will be.
- Si-based alloy combinations of mutually complementary relationships of the first additive element Zn and the second additive element Al to the high-capacity Si material can be said to include many trial and error, and various additions (metal or nonmetal ) It is possible to select (only one combination) through excessive experiments with combinations of elements.
- the content of the high-capacity Si material in the optimum range described above in the combination, it is also excellent in that the decrease in the discharge capacity retention rate at the 50th cycle can be significantly reduced together with the increase in capacity. . That is, when Si and Li are alloyed, the crystalline state is changed from the amorphous state by the particularly remarkable synergy (effect) by the optimum range of the first additive element Zn and the second additive element Al mutually complementary to the Zn. It is possible to suppress the transition to the state and prevent a large volume change. Furthermore, it is also excellent in that high cycle durability of the electrode can be improved while exhibiting high capacity (see Table 3 and FIGS. 15 to 17).
- Mass% value of Zn in the above alloy As the range of y in the formula, which is the mass% value of Zn in the alloy having the above composition formula Si x Zn y Al z A a , preferably 0 ⁇ y ⁇ 79, more preferably 16 ⁇ y ⁇ 69, and particularly preferably 18 ⁇ y ⁇ 44.
- the numerical value of the mass% value (y value) of the first additive element Zn in the alloy is within the preferable range of 0 ⁇ y ⁇ 79, the characteristic of Zn (also by the synergistic characteristic with Al is high Amorphous-crystalline phase transition of capacity Si material can be effectively suppressed, as a result, high discharge capacity retention rate (more than 85%, especially 90%) at cycle life (cycle durability), especially at 50th cycle As described above, it is possible to exhibit an excellent effect, particularly, 95% or more) (see FIGS. 15 to 17) Further, the value of the content x value of the high capacity Si material is made to be a certain value or more (21 ⁇ x ⁇ 100).
- the initial capacity is also balanced with high characteristics
- the range of 16 ⁇ y ⁇ 69 is more desirable.
- a Si alloy negative electrode active material having excellent characteristics when the content ratio of the first additive element Zn having the effect of suppressing the phase transition of the amorphous-crystal and improving the cycle life at the time of Li alloying is appropriate It can be provided (see the composition range surrounded by thick solid lines in Table 3 and FIGS. 15 and 16).
- the numerical value of the mass% value (y value) of the first additive element Zn in the alloy is in the more preferable range of 16 ⁇ y ⁇ 69, the phase transition of the amorphous-crystal is suppressed during alloying, and the cycle is It is more preferable in that the effect of improving the life can be effectively exhibited, and the high discharge capacity maintenance rate (85% or more, particularly 90% or more) at the 50th cycle can be maintained (Table 3, FIG. 15 and FIG. 16).
- a composition range in particular, 16 ⁇ y ⁇ 69 with respect to the Zn content in which high capacity could be realized specifically in Samples 1 to 35 of Reference Example C was selected (thick in FIGS.
- the mass% value (y value) of the first additive element Zn in the alloy is particularly preferably the highest balance of characteristics with the highest initial capacity while maintaining higher cycle characteristics (high discharge capacity retention ratio at 50th cycle).
- the range of 18 ⁇ y ⁇ 44 is desirable from the viewpoint of providing a well-known negative electrode active material.
- the Si alloy negative electrode active having the best characteristics when the content ratio of the first additive element Zn having the effect of suppressing the phase transition of amorphous-crystal and improving the cycle life is the most suitable at the time of Li alloying Substances can be provided (see Table 3 and Figure 17).
- the high discharge capacity retention rate at the 50th cycle can not be sufficiently maintained, and the cycle characteristics are degraded (deteriorated). Therefore, it has not been possible to provide the Si alloy negative electrode active material having the best balance among excellent cycle durability (particularly, high discharge capacity maintenance rate at 50th cycle) as well as the above-described increase in capacity.
- the content ratio (balance) of the high-capacity Si material having an initial capacity as high as 3200 mAh / g and the first additional element Zn (and the remaining second additional element Al) can be the optimum range (see the range enclosed by thick solid lines in FIGS. 15 to 17). Therefore, it is possible to effectively suppress the phase transition of the amorphous-crystal of the Si material, which is a characteristic of Zn (and also a synergistic characteristic with Al), and to remarkably improve the cycle life (in particular, the discharge capacity retention ratio). it can. That is, the discharge capacity retention rate of 50th cycle can be 85% or more, particularly 90% or more, and in particular 95% or more.
- the discharge capacity retention rate of 50th cycle can be 85% or more, particularly 90% or more, and in particular 95% or more.
- y is out of the above-described optimum range (16 ⁇ y ⁇ 69, particularly 18 ⁇ y ⁇ 44), it is a range that can effectively exhibit the above-described effects of the present embodiment. It goes without saying that they are included in the technical scope (scope of right) of the present invention.
- Patent Document 1 exhibits the deterioration phenomenon of the cycle characteristics due to the considerable capacity reduction already in only about 5 to 6 cycles. That is, in the example of Patent Document 1, the discharge capacity retention rate at the 5th to 6th cycles has already dropped to 90 to 95%, and the discharge capacity retention rate at the 50th cycle drops to almost 50 to 0%. It will be.
- Zn as a first addition element to a high-capacity Si material (more preferably, a combination having a mutually complementary relation of Al as a second addition element) It can be selected (only one combination) through excessive experiments with combinations of (metallic or nonmetallic) elements.
- the reduction of the discharge capacity retention ratio at the 50th cycle can be significantly reduced. That is, when Si and Li are alloyed, the crystalline state is changed from the amorphous state by the particularly remarkable synergy (effect) by the optimum range of the first additive element Zn (and further the second additive element Al mutually complementary to Zn). It is possible to suppress the transition to the state and prevent a large volume change. Furthermore, it is also excellent in that high cycle durability of the electrode can be improved while exhibiting high capacity (see Table 3 and FIGS. 15 to 17).
- Mass% value of Al in the above-mentioned alloy As a range of z in the formula, which is a mass% value of Al in the alloy having the above composition formula Si x Zn y Al z A a , preferably 0 ⁇ z ⁇ 79, more preferably 0 ⁇ z ⁇ 51, still more preferably 2 ⁇ z ⁇ 51, and particularly preferably 22 ⁇ z ⁇ 46. This is because the numerical value of the mass% value (z value) of the second additive element species Al does not decrease the capacity as an electrode even if the concentration of the first additive element in the alloy increases.
- an alloy having a higher capacity (initial capacity of 824 mAh / g or more, particularly 1072 mAh / g or more) can be obtained similarly to the existing Sn-based alloy negative electrode active material (see Table 3 and FIGS. 14 to 17). ).
- the mass% value (z value) of the second additive element Al in the alloy it is more preferable to maintain high cycle characteristics (in particular, a high discharge capacity retention ratio at 50th cycle) and balance characteristics with high initial capacity
- the range of 0 ⁇ z ⁇ 51 is desirable.
- the capacity as a negative electrode active material (negative electrode) does not decrease even if the concentration of the first additive element and the first additive element Zn, which suppresses the phase transition between amorphous and crystal, and improves the cycle life Selection of the second additive element Al is extremely important and useful in the present embodiment.
- first and second additive elements With such first and second additive elements, it is possible to use a conventionally known ternary alloy or quaternary alloy such as that disclosed in Patent Document 1 or a binary alloy such as a Si-Zn alloy or a Si-Al alloy. It was found that a significant difference in action and effect was observed.
- a binary alloy such as a Si-Zn alloy or a Si-Al alloy.
- the initial capacity is also very high characteristics.
- the range of 2 ⁇ z ⁇ 51 is desirable.
- Si alloy represented by Si x Zn y C z A a Si alloy represented by Si x Zn y C z A a
- the above-mentioned Si x Zn y C z A a is an amorphous-crystalline phase during Li alloying by selecting Zn as the first additive element and C as the second additive element. Transition can be suppressed to improve cycle life.
- the capacity is higher than that of a conventional negative electrode active material, for example, a carbon-based negative electrode active material.
- the content of the predetermined Si alloy in 100% by mass of the total amount of the negative electrode active material is, from the viewpoint of sufficiently exhibiting the function and effect exhibited by using the predetermined Si alloy as the negative electrode active material, Preferably, it is 50 to 100% by mass, more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, particularly preferably 95 to 100% by mass, and most preferably 100% by mass. is there.
- the negative electrode active material further includes a carbon-based material in addition to the ternary Si—Zn—M-based Si alloy.
- carbon-based materials are less likely to cause a volume change when reacting with Li ions, in contrast to Si alloys. Therefore, when the Si alloy and the carbon-based material are used in combination, even if the volume change of the Si alloy is large, the effect of the volume change of the negative electrode active material due to the Li reaction when the negative electrode active material is viewed as a whole Can be relatively minor. In addition, the effect in the case of using such a Si alloy and a carbon-based material in combination also shows that the cycle characteristics become higher as the content of the carbon-based material is larger (the content of the Si alloy is smaller). It can be understood (see Table 7 and FIG. 25).
- the shape of the carbon-based material is not particularly limited, and may be spherical, elliptical, cylindrical, polygonal columnar, scaly, indeterminate or the like.
- the ratio of the particle size of the average particle size of the carbon-based material to the average particle size of the Si alloy is And preferably less than 1/250 to 1, more preferably 1/100 to 1/4.
- the content of the Si alloy in the negative electrode active material is preferably 3% by mass or more because a high initial capacity can be obtained.
- the content of the Si alloy of 70% by mass or less is preferable because high cycle characteristics can be obtained.
- the means for adjusting the elongation ( ⁇ ) of the negative electrode active material layer to the above range is not particularly limited, and among the components in the negative electrode active material layer, it can contribute to the elongation ( ⁇ ) of the negative electrode active material layer
- the kind and content of the conductive additive, the binder and the like can be appropriately adjusted.
- the compounding ratio of each component in the negative electrode active material layer has a range that is generally optimum, and changing the optimum range changes the compounding ratio (content) of the conductive aid, the binder, etc. (Variation) may impair the battery performance. Therefore, adjustment is made by changing the type of conductive additive, binder, etc.
- the binder and the like since the binding ability and the like change when the type is changed, it is more preferable to use an optimum binder and, without affecting the conductive performance, the elongation of the negative electrode active material layer. It is desirable to appropriately adjust the material (type) of the conductive additive capable of adjusting ( ⁇ ). Specifically, it is desirable to use short chain-like or fibrous materials having a predetermined bulk density (volume) or a predetermined length as the carbon material used as the conductive aid.
- a three-dimensional electron (conductive) network is formed in a state in which there is a sufficient expansion margin.
- the above-described short chain-like or fibrous conductive auxiliary agent holds a state of being entangled with a plurality of volume-expanded alloy active material particles. It can maintain a stretched state (follow the volume change). Therefore, even when the alloy active material expands in volume, it can be said that the three-dimensional electron (conductive) network can be sufficiently held.
- the carbon fibers are CNTs and carbon fibers (graphitic, hard carbon, etc. (changed depending on the combustion temperature at the time of synthesis)), but these can be synthesized by a liquid phase method or a gas phase method.
- the negative electrode active material layer containing the above-described ternary Si-Zn-M alloy active material contains a conductive aid, the three-dimensional electron (conductive) network in the inside of the negative electrode active material layer is effective. Can be formed to contribute to the improvement of the output characteristics of the battery.
- the above-mentioned binder for a negative electrode contains a resin having an E elastic modulus of more than 1.00 GPa and less than 7.40 GPa.
- the binder can not follow the volume change of the Si alloy regardless of whether the E modulus of the binder is 1.00 GPa or less or 7.40 or more, and sufficient discharge capacity can be achieved. It is because there is a possibility that it can not be done. That is, the binder has a function to bond the Si alloy, but when the E modulus of the binder is 1.00 GPa or less, the binder is soft, so it withstands the pressure applied to the binder at the time of expansion of the Si alloy.
- the amount of binder contained in the negative electrode active material layer is not particularly limited as long as it can bind a negative electrode active material containing a ternary Si-Zn-M alloy having a large volume change. Although not preferred, it is preferably 0.5 to 15% by mass, more preferably 1 to 10% by mass, with respect to the active material layer.
- electrolyte salt examples include Li (C 2 F 5 SO 2 ) 2 N, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 and the like.
- a conductive filler may be added to the above-mentioned conductive polymer material or non-conductive polymer material as required.
- the conductive filler is necessarily essential to impart conductivity to the resin.
- the conductive filler can be used without particular limitation as long as it is a substance having conductivity.
- metals, conductive carbon and the like can be mentioned as materials excellent in conductivity, potential resistance, or lithium ion blocking properties.
- the metal is not particularly limited, but at least one metal selected from the group consisting of Ni, Ti, Al, Cu, Pt, Fe, Cr, Sn, Zn, In, Sb, and K or a metal thereof
- it contains an alloy or a metal oxide.
- electroconductive carbon Preferably, it contains at least one selected from the group consisting of acetylene black, vulcan, black pearl, carbon nanofibers, ketjen black, carbon nanotubes, carbon nanohorns, carbon nanoballoons, and fullerenes.
- the addition amount of the conductive filler is not particularly limited as long as it can impart sufficient conductivity to the current collector, and is generally about 5 to 35% by mass.
- the shape of the current collector is not particularly limited.
- a mesh shape expanded grid etc. or the like can be used in addition to the current collector foil, but in the present embodiment, it is desirable to use the current collector foil.
- the material constituting the current collector there is no particular limitation on the material constituting the current collector.
- a metal or a resin in which a conductive filler is added to a conductive polymer material or a nonconductive polymer material may be employed.
- the metal includes copper, aluminum, nickel, iron, stainless steel, titanium, etc., or an alloy of these. Besides these, a clad material of nickel and aluminum, a clad material of copper and aluminum, or a plated material of a combination of these metals may be used. In addition, it may be a foil in which a metal surface is coated with aluminum. From the viewpoint of electron conductivity, battery operation potential, adhesion of the negative electrode active material by sputtering to a current collector, etc., copper can be preferably used as described later.
- Examples of the conductive polymer material include polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyacrylonitrile, and polyoxadiazole. Such a conductive polymer material has sufficient conductivity even without the addition of a conductive filler, and thus is advantageous in facilitating the manufacturing process or reducing the weight of the current collector.
- nonconductive polymer material for example, polyethylene (PE; high density polyethylene (HDPE), low density polyethylene (LDPE), etc.), polypropylene (PP), polyethylene terephthalate (PET), polyether nitrile (PEN), polyimide (PI), polyamideimide (PAI), polyamide (PA), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA) And polyvinyl chloride (PVC), polyvinylidene fluoride (PVdF), or polystyrene (PS).
- PE polyethylene
- HDPE high density polyethylene
- LDPE low density polyethylene
- PP polypropylene
- PET polyethylene terephthalate
- PEN polyether nitrile
- PI polyimide
- PAI polyamideimide
- PA polyamide
- PTFE polytetrafluoroethylene
- a conductive filler may be added to the above-mentioned conductive polymer material or non-conductive polymer material as required.
- the conductive filler is necessarily essential to impart conductivity to the resin.
- the conductive filler can be used without particular limitation as long as it is a substance having conductivity.
- metals, conductive carbon and the like can be mentioned as materials excellent in conductivity, potential resistance, or lithium ion blocking properties.
- the metal is not particularly limited, but at least one metal selected from the group consisting of Ni, Ti, Al, Cu, Pt, Fe, Cr, Sn, Zn, In, Sb, and K or a metal thereof Preferably, it contains an alloy or a metal oxide.
- it contains at least one selected from the group consisting of acetylene black, vulcan, black pearl, carbon nanofibers, ketjen black, carbon nanotubes, carbon nanohorns, carbon nanoballoons, and fullerenes.
- the addition amount of the conductive filler is not particularly limited as long as it can impart sufficient conductivity to the current collector, and is generally about 5 to 35% by mass.
- the negative electrode of the present embodiment is characterized in that the elastic elongation in the planar direction of the current collector is 1.30% or more.
- the elastic elongation (%) of the current collector is a ratio (%) to the original size of the elastic elongation up to the proportional limit in the tensile direction.
- the negative electrode of the present embodiment by applying a specific ternary Si alloy as the negative electrode active material, a high initial discharge capacity similar to that of the Si negative electrode can be obtained, and at the same time, amorphous when Si and Li are alloyed. The effect of suppressing the phase transition of crystals and improving the cycle life is obtained.
- the negative electrode when a battery is manufactured using a negative electrode in which a negative electrode active material layer having the above specific ternary Si alloy together with a binder and a conductive additive is coated on a negative electrode current collector, the negative electrode is accompanied by charge and discharge of the battery. Expansion and contraction of the active material may occur. Along with this, the volume of the negative electrode active material layer changes, and stress acts on the current collector in close contact with the negative electrode active material layer. At this time, if the current collector can not follow the volume change of the negative electrode active material layer, the current collector is plastically deformed, and the current collector is wrinkled.
- the current collector When the current collector is wrinkled, the negative electrode active material layer is distorted and the distance between the positive electrode and the positive electrode becomes uneven, so that the Li reactivity may decrease or electrode concentration may occur. Furthermore, the plastic deformation of the current collector may cause cracking or breakage of the current collector, or may lead to direct destruction of the negative electrode active material layer. As a result, the discharge capacity of the battery is reduced.
- the negative electrode of the present embodiment solves such a problem, and by using a negative electrode having an elastic elongation of 1.30% or more, the negative electrode active material layer of the negative electrode active material layer due to expansion and contraction of the negative electrode active material by charge and discharge.
- the current collector can elastically follow the volume change. Therefore, it is possible to suppress wrinkles that may be generated due to stress acting on the current collector in close contact with the negative electrode active material layer, so that distortion of the negative electrode active material layer or breakage of the negative electrode active material layer or current collector can be prevented. It can prevent. As a result, the inter-electrode distance from the positive electrode can be kept uniform. Furthermore, side reactions are less likely to occur. Therefore, high discharge capacity can be obtained. Furthermore, since plastic deformation of the current collector does not easily occur even if charge and discharge are repeated, cycle durability can also be improved.
- the current collector has an elastic elongation of 1.30% or more, even if the elasticity of the negative electrode active material layer is lost due to expansion and contraction of the negative electrode active material due to charge and discharge, the current collector is Since it adheres to the negative electrode active material layer and is elastically deformed, it is possible to minimize the decrease in capacity and cycle durability.
- the elastic elongation of the current collector used in the negative electrode of the present embodiment is preferably 1.40% or more. If the elastic elongation of the current collector is 1.40% or more, it is easier to follow when considering the degree of volume change associated with charge and discharge of the negative electrode active material used in the present embodiment. Therefore, the improvement rate of the discharge capacity is high, and the cycle characteristics can be further improved. In addition, when the elastic elongation of the current collector is 1.50% or more, higher effects can be obtained when the negative electrode active material of the present embodiment is used.
- the upper limit value of the elastic elongation is not particularly limited because the larger the elastic elongation of the current collector, the more elastically following the volume change of the negative electrode active material layer.
- the negative electrode active material used in the present embodiment has a large volume change due to charge and discharge as compared with a carbon material such as graphite, but the plastic deformation of the current collector can be suppressed by using the above current collector. It is possible to suppress the distortion of the negative electrode active material layer and the decrease in discharge capacity resulting therefrom.
- the volume change due to charge and discharge is even larger, so even if the current collector as described above is used, the volume change of the negative electrode active material layer can not sufficiently follow. It may be difficult to prevent capacity loss.
- the elastic elongation of the current collector may be 1.30% or more, and a battery excellent in discharge capacity and cycle characteristics can be obtained (see FIG. 25). ).
- the elastic elongation (%) of the current collector is a value measured according to the tensile test method of JIS K 6251 (2010). Further, the elastic elongation (%) of the current collector is a value measured at 25 ° C.
- the current collector in the present embodiment preferably has a tensile strength of 150 N / mm 2 or more.
- the tensile strength is 150 N / mm 2 or more, the effect of preventing the breakage of the current collector is high.
- the tensile strength (N / mm 2 ) of the current collector is a value measured according to the tensile test method of JIS K 6251 (2010).
- the tensile strength (N / mm 2 ) of the current collector is a value measured at 25 ° C.
- the collector in the present embodiment is not particularly limited as described above if the elastic elongation is 1.30% or more, as described above, and preferably copper, aluminum, nickel, iron, stainless steel Metals such as titanium, cobalt, or alloys of these metals may be used.
- metal foils using copper, nickel, stainless steel, or an alloy obtained by adding other metals to these metals exhibit mechanical strength, adhesion to the active material layer, chemical stability, and battery reaction. It is preferable from the viewpoint of the electrochemical stability in potential, conductivity, cost and the like. In particular copper or copper alloys are particularly preferred because of the standard redox potential.
- a rolled copper foil (copper foil obtained by a rolling method) or an electrolytic copper foil (copper foil obtained by an electrolytic method) can be used.
- copper alloy foils either electrolytic copper alloy foils or rolled copper alloy foils can be used.
- the softening point of the alloy is higher than the heat treatment temperature (about 300 ° C.) at which the slurry containing the negative electrode active material is applied onto the current collector and dried in the manufacturing process of the negative electrode, elasticity is maintained even after heat treatment. It is preferable because it can be maintained.
- an alloy to which Cr, Zn, or Sn is added is preferable for maintaining elasticity after heat treatment.
- These alloying elements may be contained alone or in combination of two or more. The total content of these alloying elements is, for example, 0.01 to 0.9% by mass, preferably 0.03 to 0.9% by mass, and more preferably 0.3 to 0.9 It is mass%. If the content of the alloying element is 0.03% by mass or more, it is preferable for maintaining elasticity after heat treatment.
- the method for obtaining a current collector having an elastic elongation of 1.30% or more is not particularly limited.
- the current collector of the present embodiment is made of metal foil, the mechanical characteristics can be changed by heating, heating, cooling, pressure, and addition of an impurity element.
- the thickness of the current collector of the negative electrode is not particularly limited, but in the negative electrode of the present embodiment, the thickness is preferably 5 to 15 ⁇ m, and more preferably 5 to 10 ⁇ m. If it is 5 micrometers or more, since sufficient mechanical strength is obtained, it is preferable. If it is 15 micrometers or less, it is preferable at the point of thickness reduction of a battery.
- the same one as the negative electrode current collector may be used.
- a liquid electrolyte or a polymer electrolyte may be used as the electrolyte constituting the electrolyte layer 17.
- the liquid electrolyte has a form in which a lithium salt as a support salt is dissolved in an organic solvent as a plasticizer.
- an organic solvent which can be used as a plasticizer carbonates, such as ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), are illustrated, for example.
- a supporting salt lithium salt
- the compound which may be added to the active material layer of electrodes, such as LiBETI may be employ
- polymer electrolytes are classified into gel electrolytes containing an electrolyte solution and intrinsic polymer electrolytes not containing an electrolyte solution.
- the gel electrolyte has a configuration in which the above-mentioned liquid electrolyte (electrolyte solution) is injected into a matrix polymer made of an ion conductive polymer.
- the ion conductive polymer used as a matrix polymer include polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers of these.
- Electrolyte salts such as lithium salts can be well dissolved in such polyalkylene oxide polymers.
- the proportion of the liquid electrolyte (electrolyte solution) in the gel electrolyte should not be particularly limited, but is preferably about several mass% to about 98 mass% from the viewpoint of ion conductivity and the like.
- the present embodiment is particularly effective for a gel electrolyte containing a large amount of electrolyte solution in which the ratio of the electrolyte solution is 70% by mass or more.
- a separator may be used for the electrolyte layer.
- the separator include, for example, a microporous film made of a polyolefin such as polyethylene and polypropylene, a porous flat plate, and a non-woven fabric.
- the intrinsic polymer electrolyte has a constitution in which a support salt (lithium salt) is dissolved in the above-mentioned matrix polymer, and does not contain an organic solvent which is a plasticizer. Therefore, when the electrolyte layer is composed of an intrinsic polymer electrolyte, there is no concern of liquid leakage from the battery, and the reliability of the battery can be improved.
- a support salt lithium salt
- a gel electrolyte or a matrix polymer of an intrinsic polymer electrolyte can exhibit excellent mechanical strength by forming a crosslinked structure.
- thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam polymerization, etc. may be performed on a polymerizable polymer (eg, PEO or PPO) for forming a polymer electrolyte using an appropriate polymerization initiator.
- a polymerization treatment may be applied.
- a current collector may be used for the purpose of extracting current outside the battery.
- the current collector plate is electrically connected to the current collector and the leads, and is taken out of the laminate sheet which is a battery exterior material.
- the material which comprises a current collection board is not restrict
- a constituent material of the current collector plate for example, metal materials such as aluminum, copper, titanium, nickel, stainless steel (SUS) and alloys thereof are preferable, more preferably aluminum from the viewpoint of light weight, corrosion resistance and high conductivity. Copper is preferred.
- the same material may be used for the positive electrode current collector plate and the negative electrode current collector plate, or different materials may be used.
- the positive electrode terminal lead and the negative electrode terminal lead are also used as needed.
- terminal leads used in known lithium ion secondary batteries can be used.
- the heat-resistant insulation property does not affect the product (for example, automobile parts, especially electronic devices etc.) because the portion taken out from the battery exterior material 29 contacts with peripheral devices or wiring to cause electric leakage. It is preferable to coat with a heat-shrinkable tube or the like.
- FIG. 2 is a perspective view showing the appearance of a laminated flat lithium ion secondary battery.
- the laminated flat lithium ion secondary battery 50 has a rectangular flat shape, and from both side portions thereof, a positive electrode current collector plate 58 for extracting electric power, a negative electrode current collector The electric plate 59 is pulled out.
- the power generation element 57 is wrapped by the battery exterior material 52 of the lithium ion secondary battery 50, and the periphery thereof is heat-fused, and the power generation element 57 draws the positive electrode current collector plate 58 and the negative electrode current collector plate 59 to the outside. It is sealed tightly.
- the power generation element 57 corresponds to the power generation element 21 of the lithium ion secondary battery (stacked battery) 10 shown in FIG.
- the power generation element 57 is formed by stacking a plurality of unit cell layers (single cells) 19 each including the positive electrode (positive electrode active material layer) 13, the electrolyte layer 17, and the negative electrode (negative electrode active material layer) 15.
- the said lithium ion secondary battery is not restrict
- a wound type lithium ion battery one having a cylindrical shape (coin cell) or one having a prismatic shape (square cell), or such one obtained by deforming such a cylindrical shape into a rectangular flat shape
- cylindrical cells there is no particular limitation, such as cylindrical cells.
- a laminate film may be used as the exterior material, or a conventional cylindrical can (metal can) may be used, and the like.
- the power generation element is coated with an aluminum laminate film. Weight reduction can be achieved by the form.
- the removal of the positive electrode current collector plate 58 and the negative electrode current collector plate 59 shown in FIG. 2 is not particularly limited.
- the positive electrode current collector plate 58 and the negative electrode current collector plate 59 may be drawn out from the same side, or the positive electrode current collector plate 58 and the negative electrode current collector plate 59 may be divided into a plurality and taken out from each side.
- the terminal may be formed using, for example, a cylindrical can (metal can) instead of the current collector plate.
- the negative electrode and the lithium ion secondary battery using the negative electrode active material for a lithium ion secondary battery of the present embodiment are large in such as electric vehicles, hybrid electric vehicles, fuel cell vehicles, and hybrid fuel cell vehicles. It can be suitably used as a capacitive power source. That is, it can be suitably used for a vehicle drive power supply or an auxiliary power supply where high volume energy density and high volume output density are required.
- the lithium ion battery was illustrated as an electric device in the said embodiment, it is not necessarily restricted to this, It is applicable also to the secondary battery of another type, and also a primary battery. Moreover, it can apply not only to a battery but to a capacitor.
- Target manufactured by High Purity Chemical Laboratory Co., Ltd., Purity: 4 N
- Si 50.8 mm diameter, 3 mm thickness (with 2 mm thick oxygen free copper backing plate)
- Zn 50.8 mm diameter, 5 mm thickness
- V 50.8 mm diameter, 5 mm thickness.
- the sputtering time was fixed at 10 minutes, and the power of the DC power supply was changed in the above range.
- an alloy thin film in an amorphous state was formed on a Ni substrate to obtain a negative electrode sample provided with alloy thin films of various compositions.
- the DC power supply 1 (Si target) is 185 W
- the DC power supply 2 (Zn target) is 40 W
- the DC power supply 3 (V target) is 75 W.
- the DC power supply 1 (Si target) is 185 W
- the DC power supply 2 (Zn target) is 0 W
- the DC power supply 3 (V target) is 80 W.
- sample no. in 35 (comparative reference example) the DC power supply 1 (Si target) is 185 W
- the DC power supply 2 (Zn target) is 42 W
- the DC power supply 3 (V target) is 0 W.
- the component compositions of these alloy thin films are shown in Table 1 and FIG.
- the analysis of the obtained alloy thin film was performed by the following analysis method and analyzer.
- the battery was charged from 2 V to 10 mV at 0.1 mA as a constant current / constant voltage mode.
- a constant current mode was set and discharge was performed from 0.1 mA, 10 mV to 2 V.
- the above charge / discharge cycle was repeated 50 times as one cycle.
- initial capacity in the present specification corresponds to “discharge capacity (mAh / g)" of the initial cycle (first cycle).
- the batteries of 1, 4, 7, 10, 13, 15, 17, 18 and 22 (Reference Examples A1 to A9) were found to exhibit an initial capacity exceeding 800 mAh / g and a discharge capacity retention rate of 89% or more . From this, it was confirmed that the batteries of Reference Examples A1 to A9 were particularly excellent in the balance between the initial capacity and the cycle characteristics.
- the sputtering time was fixed to 10 minutes using the Si target, the Zn target, and the Al target as described above, and the power of the DC power supply was changed in the above range.
- an alloy thin film in an amorphous state was formed on a Ni substrate to obtain a negative electrode sample provided with alloy thin films of various compositions.
- the deterioration mode of the electrolyte is also included in the cycle characteristics (conversely, the cycle characteristics become better when using a high-performance electrolyte), so the 50th cycle data of which the component characteristics derived from the alloy are remarkable Using.
- sample 14 a ternary alloy thin film of Si-Zn-Al of the present reference example C in which an element (Zn, Al) is added other than Si
- there is no steep peak downward and It was also confirmed that decomposition (around 0.4 V) was suppressed.
- the curve is smooth, and a downward convex gentle peak is also observed, which indicates that the amorphous state is changed to the crystallized state. It was confirmed that crystallization of the Li-Si alloy was suppressed.
- the ternary alloys of samples 1 to 35 of this reference example C particularly the ternary alloys of the sample of the composition range surrounded by the thick solid line in FIGS.
- the discharge capacity of the 1st cycle can also be estimated (estimated) as follows with respect to the mechanism (action mechanism) exhibiting high balanced characteristics.
- the volume change of the active material becomes large when this phase transition occurs. By these, the destruction of the active material itself, the destruction of the electrode and the chain start. Looking at the dQ / dV curve in FIG. 18, the sample 14 of the ternary alloy of the composition range surrounded by the thick solid lines in FIGS. 15 to 17 has less peaks due to the phase transition and is smooth. It can be judged that the phase transition can be suppressed.
- the reason for this is that, as shown in Reference Examples A to D, the other alloys used in the present invention have the same characteristics as Si 41 Zn 20 Sn 39 . That is, when an alloy having similar properties is used, similar results can be obtained even if the type of alloy is changed.
- the obtained negative electrode slurry is uniformly applied on both sides of a negative electrode current collector made of a 10 ⁇ m thick copper foil (elastic elongation: 1.4%) so that the thickness of the negative electrode active material layer is 30 ⁇ m. After drying in vacuum for 24 hours, a negative electrode was obtained.
- the positive electrode produced above was made to face the negative electrode, and a separator (microporous membrane made of polypropylene, film thickness 20 ⁇ m) was disposed therebetween.
- a laminate of a negative electrode, a separator, and a positive electrode was disposed on the bottom side of a coin cell (CR2032, material: stainless steel (SUS316)).
- a gasket is attached, the following electrolytic solution is injected by a syringe, a spring and a spacer are stacked, and the upper side of the coin cell is overlapped and sealed by caulking.
- the lithium ion secondary battery was obtained.
- Example 1-1 A negative electrode and a battery were produced in the same manner as in Example 1-1 except that the conductive additive of the negative electrode was changed to long chain acetylene black which is long chain carbon black.
- Example 1-3 A negative electrode and a battery were produced in the same manner as in Example 1-1 except that the conductive additive for the negative electrode was changed to ketjen black.
- Example 1-4 The method was the same as in Example 1-1 except that the conductive auxiliary agent for the negative electrode was changed to graphite fiber which is a vapor grown carbon fiber, and the negative electrode active material was changed to pure Si (purity 99.999%). The negative electrode and the battery were produced.
- Example 1-5 A negative electrode and a battery were produced in the same manner as in Example 1-1 except that the negative electrode active material was changed to pure Si (purity 99.999%) and the binder for the negative electrode was changed to PVdF.
- the elongation (%) of the negative electrode active material layer was measured by the following method for each of the lithium ion secondary batteries manufactured above. Specifically, the elongation (%) of the negative electrode active material layer was measured by the value measured according to the tensile test method of JIS K 7163 (1994). The elongation (%) of the negative electrode active material layer was measured in the same manner as described above for each of the lithium ion secondary batteries produced in the following Examples and Comparative Examples.
- the elongation ( ⁇ ) is 1.40 ⁇ ⁇ ⁇ 1.70%, preferably 1.40 ⁇ ⁇ ⁇ 1.66%, more preferably 1.40 ⁇ ⁇ ⁇ 1.57%, still more preferably 1.47 ⁇
- ⁇ ⁇ 1.57% particularly preferably 1.53 ⁇ ⁇ ⁇ 1.57%
- the discharge capacity improvement rate can be further improved.
- Example 2 performance evaluation of an anode for an electric device having an anode active material layer containing Si 41 Zn 20 Sn 39 of the above-mentioned Si alloys as an anode active material and containing it together with various binders is evaluated. went.
- Example 2-1 [Manufacturing of Si alloy]
- the Si alloy was manufactured by mechanical alloying (or arc plasma melting). Specifically, using a German Fritsch planetary ball mill P-6, zirconia raw balls of the zirconia and the raw material powders of the respective alloys were charged into a zirconia grinding pot and alloyed at 600 rpm for 48 hours.
- the obtained negative electrode slurry is uniformly coated on both sides of a negative electrode current collector made of a 10 ⁇ m copper foil (elastic elongation: 1.4%) so that the thickness of the negative electrode active material layer is 30 ⁇ m, and vacuum After drying for 24 hours, a negative electrode was obtained.
- the positive electrode active material Li 1.85 Ni 0.18 Co 0.10 Mn 0.87 O 3 was prepared by the method described in Example 1 (paragraph 0046) of JP 2012-185913 A. did.
- acetylene black was used as a conductive support agent
- PVdF polyvinylidene fluoride
- the obtained positive electrode slurry is uniformly coated on both sides of a positive electrode current collector made of an aluminum foil with a thickness of 20 ⁇ m so that the thickness of the positive electrode active material layer is 30 ⁇ m, and dried to obtain a positive electrode.
- the positive electrode produced above was made to face the negative electrode, and a separator (microporous membrane made of polypropylene, film thickness 20 ⁇ m) was disposed therebetween.
- a laminate of a negative electrode, a separator, and a positive electrode was disposed on the bottom side of a coin cell (CR2032, material: stainless steel (SUS316)).
- a gasket is attached to maintain insulation between the positive electrode and the negative electrode, the following electrolytic solution is injected by a syringe, a spring and a spacer are laminated, and the upper side of the coin cell is overlapped and sealed by caulking.
- the lithium ion secondary battery was obtained.
- Lithium (LiPF 6 ) was used at a concentration of 1 mol / L.
- Example 2-2 A negative electrode and a battery were produced in the same manner as in Example 2-1 except that polyimide (E modulus of 2.10 GPa) was used instead of polyamideimide (E modulus of 2.00 GPa) as the binder. .
- Example 2-3 A negative electrode and a battery were produced in the same manner as in Example 2-1, except that polyimide (E modulus of 3.30 GPa) was used instead of polyamideimide (E modulus of 2.00 GPa) as the binder. .
- Example 2-4 A negative electrode and a battery were produced in the same manner as in Example 2-1, except that polyimide (E modulus of 3.73 GPa) was used instead of polyamideimide (E modulus of 2.00 GPa) as the binder. .
- Example 2-5 A negative electrode and a battery were produced in the same manner as in Example 2-1, except that polyimide (E modulus 7.00 GPa) was used instead of polyamideimide (E modulus 2.00 GPa) as the binder. .
- Example 2-1 A negative electrode was prepared in the same manner as in Example 2-1, except that polyvinylidene fluoride (PVdF) (E modulus 1.00 GPa) was used instead of polyamideimide (E modulus 2.00 GPa) as a binder. And a battery.
- PVdF polyvinylidene fluoride
- E modulus 2.00 GPa polyamideimide
- Example 2-2 A negative electrode and a battery were produced in the same manner as in Example 2-1, except that polyimide (E modulus 7.40 GPa) was used instead of polyamideimide (E modulus 2.00 GPa) as the binder. .
- Example 2-3 A negative electrode and a battery were produced in the same manner as in Example 2-4 except that pure Si was used as the negative electrode active material in place of the Si alloy.
- Comparative Example 2-4 A negative electrode and a battery were produced in the same manner as in Comparative Example 2-1 except that pure Si was used as the negative electrode active material instead of the Si alloy.
- Example 3 performance evaluation is performed on a negative electrode for an electric device in which the type of the current collector (elastic elongation) is changed using Si 41 Zn 20 Sn 39 of the above-described Si alloys as a negative electrode active material.
- Example 3-1 Manufacturing of Si alloy
- the said Si alloy was manufactured by the mechanical alloy method (or arc plasma melting method). Specifically, using a German Fritsch planetary ball mill P-6, zirconia raw balls of the zirconia and the raw material powders of the respective alloys were charged into a zirconia grinding pot and alloyed at 600 rpm for 48 hours.
- NMP N-methyl-2-pyrrolidone
- the Si alloy powder (Si 42 Ti 7 Sn 51 , average particle diameter of primary particles 0.3 ⁇ m) manufactured above was used as the negative electrode active material.
- a short chain acetylene black was used as a short chain carbon black for the conductive aid, and a polyimide (E elastic modulus 2.1 GPa) was used for the binder.
- a copper alloy foil (copper alloy 1: Cu with about 0.3 mass% of each of Cr, Sn and Zn added) having a thickness of 10 ⁇ m having an elastic elongation of 1.43% and a tensile strength of 580 N / mm 2 was prepared.
- the elastic elongation (%) and the tensile strength (N / mm 2 ) of the current collector are measured at a test speed of 10 mm / min and a chuck distance of 50 mm using a digital material tester 5565 manufactured by INSTRON. did.
- a current collector foil formed into a bowl shape having a total length of 70 mm and a parallel part width of 5 mm was used.
- the obtained negative electrode active material slurry is applied to both surfaces of the above copper alloy foil (copper alloy 1) so that the thickness after drying is 50 ⁇ m respectively, and dried in vacuum for 24 hours to obtain a negative electrode.
- Example 3-2 A 10- ⁇ m-thick copper alloy foil (copper alloy 2: Cu containing about 0.3 mass% of Zr added) having an elastic elongation of 1.53% and a tensile strength of 450 N / mm 2 was used as a negative electrode current collector The negative electrode was produced in the same manner as in Example 3-1.
- Example 3-3 As a negative electrode current collector, a copper alloy foil having a thickness of 10 ⁇ m (copper alloy 3: Cu containing about 0.1 mass% of Zr added) having an elastic elongation of 1.39% and a tensile strength of 420 N / mm 2 is used The negative electrode was produced in the same manner as in Example 3-1.
- Comparative Example 3-2 A negative electrode was produced in the same manner as in Comparative Example 3-1 except that 80 parts by mass of silicon (pure Si) powder (purity: 99.999 mass%, average particle diameter of primary particles 45 ⁇ m) was used as the negative electrode active material. .
- Comparative Example 3-3 A negative electrode was produced in the same manner as in Comparative Example 3-2 except that polyvinylidene fluoride (PVdF) was used as the binder material.
- PVdF polyvinylidene fluoride
- Li 1.85 Ni 0.18 Co 0.10 Mn 0.87 O 3 which is a positive electrode active material was produced by the method described in Example 1 (paragraph 0046) of JP 2012-185913A. Then, 90 parts by mass of the positive electrode active material, 5 parts by mass of acetylene black as a conductive additive, and 5 parts by mass of polyvinylidene fluoride (PVdF) as a binder are mixed to obtain N-methyl-2-pyrrolidone (NMP). ) To obtain a positive electrode slurry.
- PVdF polyvinylidene fluoride
- the obtained positive electrode slurry is uniformly coated on both sides of a positive electrode current collector made of an aluminum foil with a thickness of 20 ⁇ m so that the thickness of the positive electrode active material layer is 30 ⁇ m, and dried to obtain a positive electrode.
- the positive electrode produced above was made to face the negative electrode, and a separator (microporous membrane made of polypropylene, film thickness 20 ⁇ m) was disposed therebetween.
- a laminate of a negative electrode, a separator, and a positive electrode was disposed on the bottom side of a coin cell (CR2032, material: stainless steel (SUS316)).
- a gasket is attached to maintain insulation between the positive electrode and the negative electrode, the following electrolytic solution is injected by a syringe, a spring and a spacer are laminated, and the upper side of the coin cell is overlapped and sealed by caulking.
- the lithium ion secondary battery was obtained.
- Lithium (LiPF 6 ) was used at a concentration of 1 mol / L.
- discharge capacity maintenance rate (%) represents an index of “how much capacity is maintained from the initial capacity”.
- the formula for calculating the discharge capacity retention rate (%) is as follows.
- the volume change due to the expansion and contraction of the negative electrode active material accompanying charge and discharge of the battery is larger than that of the Si alloy. Therefore, since the volume change of the negative electrode active material layer is larger, it is considered that the decrease in capacity caused by the fact that the current collector can not follow the volume change of the negative electrode active material layer is larger.
- the discharge capacity retention rate is lower.
- the elastic modulus (1.0 GPa) of PVdF which is a binder used in Comparative Example 3-3 is the elasticity of the polyimide used in Examples 3-1 to 3-3 and Comparative Examples 3-1 and 3-2. Because the ratio is smaller than 3.73 GPa, the binder can not follow expansion and contraction of the active material due to charge and discharge, and the volume change of the negative electrode active material layer is considered to be large. As a result, it is considered that the decrease in capacity due to the inability of the current collector to follow the volume change of the negative electrode active material layer is further increased.
- Example 4 performance evaluation was performed on a negative electrode for an electric device including a negative electrode active material formed by mixing with graphite using Si 41 Zn 20 Sn 39 out of the above-described Si alloys.
- Example 4-1 Manufacturing of Si alloy
- the Si alloy was manufactured by mechanical alloying (or arc plasma melting). Specifically, using a German Fritsch planetary ball mill PP-6, zirconia raw balls of the zirconia and the raw material powders of the respective alloys were charged into a zirconia grinding pot, and alloying was performed at 600 rpm for 48 hours.
- the obtained negative electrode slurry is uniformly applied on both sides of a negative electrode current collector made of a 10 ⁇ m thick copper foil (elastic elongation: 1.4%) so that the thickness of the negative electrode active material layer is 30 ⁇ m. After drying in vacuum for 24 hours, a negative electrode was obtained. In addition, the content rate of Si alloy in a negative electrode active material is 3%.
- Li 1.85 Ni 0.18 Co 0.10 Mn 0.87 O 3 which is a positive electrode active material was produced by the method described in Example 1 (paragraph 0046) of JP 2012-185913A. Then, 90 parts by mass of the positive electrode active material, 5 parts by mass of acetylene black as a conductive additive, and 5 parts by mass of polyvinylidene fluoride as a binder are mixed and dispersed in N-methylpyrrolidone to obtain a positive electrode slurry.
- the obtained positive electrode slurry is uniformly coated on both sides of a positive electrode current collector made of an aluminum foil with a thickness of 20 ⁇ m so that the thickness of the positive electrode active material layer is 30 ⁇ m, and dried to obtain a positive electrode.
- the positive electrode produced above was made to face the negative electrode, and a separator (microporous membrane made of polypropylene, film thickness 20 ⁇ m) was disposed therebetween.
- a laminate of a negative electrode, a separator, and a positive electrode was disposed on the bottom side of a coin cell (CR2032, material: stainless steel (SUS316)).
- a gasket is attached to maintain insulation between the positive electrode and the negative electrode, the following electrolytic solution is injected by a syringe, a spring and a spacer are laminated, and the upper side of the coin cell is overlapped and sealed by caulking. , Obtained a lithium ion secondary battery.
- Lithium (LiPF 6 ) was used at a concentration of 1 mol / L.
- Example 4-2 A negative electrode and a battery were produced in the same manner as in Example 4-1 except that the Si alloy was changed to 4.6 parts by mass and graphite was changed to 87.4 parts by mass. The content of Si alloy in the negative electrode active material is 5%.
- Example 4-4 A negative electrode and a battery were produced in the same manner as in Example 4-1 except that the Si alloy was changed to 9.2 parts by mass and the graphite was changed to 82.8 parts by mass.
- the content of Si alloy in the negative electrode active material is 10%.
- Example 4-5 A negative electrode and a battery were produced in the same manner as in Example 4-1 except that the Si alloy was changed to 11.0 parts by mass and graphite was changed to 80.96 parts by mass. The content of Si alloy in the negative electrode active material is 12%.
- Example 4-6 A negative electrode and a battery were produced in the same manner as in Example 4-1 except that the Si alloy was changed to 13.8 parts by mass and graphite was changed to 78.2 parts by mass. The content of Si alloy in the negative electrode active material is 15%.
- Example 4-7 A negative electrode and a battery were produced in the same manner as in Example 4-1 except that the Si alloy was changed to 18.4 parts by mass and graphite was changed to 73.6 parts by mass. The content of Si alloy in the negative electrode active material is 20%.
- Example 4-8 A negative electrode and a battery were produced in the same manner as in Example 4-1 except that the Si alloy was changed to 23.0 parts by mass and graphite was changed to 69.0 parts by mass. In addition, the content rate of Si alloy in a negative electrode active material is 25%.
- Example 4-9 A negative electrode and a battery were produced in the same manner as in Example 4-1 except that the Si alloy was changed to 27.6 parts by mass and graphite was changed to 64.4 parts by mass. The content of Si alloy in the negative electrode active material is 30%.
- Example 4-10 A negative electrode and a battery were produced in the same manner as in Example 4-1 except that the Si alloy was changed to 36.8 parts by mass and graphite was changed to 55.2 parts by mass.
- the content of Si alloy in the negative electrode active material is 40%.
- Example 4-11 A negative electrode and a battery were produced in the same manner as in Example 4-1 except that the Si alloy was changed to 46.0 parts by mass and graphite was changed to 46.0 parts by mass.
- the content of Si alloy in the negative electrode active material is 50%.
- Example 4-12 A negative electrode and a battery were produced in the same manner as in Example 4-1 except that the Si alloy was changed to 55.2 parts by mass and graphite was changed to 36.8 parts by mass.
- the content of Si alloy in the negative electrode active material is 60%.
- Example 4-13 A negative electrode and a battery were produced in the same manner as in Example 4-1 except that the Si alloy was changed to 64.4 parts by mass and graphite was changed to 27.6 parts by mass.
- the content of Si alloy in the negative electrode active material is 70%.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
Description
図1は、本発明の電気デバイスの代表的な一実施形態である、扁平型(積層型)のリチウムイオン二次電池(以下、単に「積層型電池」ともいう)の全体構造を模式的に表した断面概略図である。
活物質層13または15は活物質を含み、必要に応じてその他の添加剤をさらに含む。
正極活物質層13は、正極活物質を含む。
正極活物質としては、例えば、リチウム-遷移金属複合酸化物、リチウム-遷移金属リン酸化合物、リチウム-遷移金属硫酸化合物、固溶体系、3元系、NiMn系、NiCo系、スピネルMn系などが挙げられる。
正極活物質層は、バインダを含む。正極活物質層に用いられるバインダとしては、特に限定されないが、例えば、以下の材料が挙げられる。ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリアクリロニトリル、ポリイミド、ポリアミド、ポリアミドイミド、セルロース、カルボキシメチルセルロース(CMC)、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体およびその水素添加物、スチレン・イソプレン・スチレンブロック共重合体およびその水素添加物などの熱可塑性高分子、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド-ヘキサフルオロプロピレン系フッ素ゴム(VDF-HFP系フッ素ゴム)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-HFP-TFE系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン系フッ素ゴム(VDF-PFP系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-PFP-TFE系フッ素ゴム)、ビニリデンフルオライド-パーフルオロメチルビニルエーテル-テトラフルオロエチレン系フッ素ゴム(VDF-PFMVE-TFE系フッ素ゴム)、ビニリデンフルオライド-クロロトリフルオロエチレン系フッ素ゴム(VDF-CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂等が挙げられる。中でも、ポリフッ化ビニリデン、ポリイミド、スチレン・ブタジエンゴム、カルボキシメチルセルロース、ポリプロピレン、ポリテトラフルオロエチレン、ポリアクリロニトリル、ポリアミド、ポリアミドイミドであることがより好ましい。これらの好適なバインダは、耐熱性に優れ、さらに電位窓が非常に広く正極電位、負極電位双方に安定であり正極活物質層に使用が可能となる。これらのバインダは、1種単独で用いてもよいし、2種併用してもよい。
正極活物質層は、導電助剤を含む。ここでいう正極用導電助剤とは、正極活物質層の導電性を向上させるために配合される添加物をいう。この導電助剤としては、短鎖状カーボンブラック(短鎖状アセチレンブラック等)、長鎖状カーボンブラック(長鎖状アセチレンブラック)ケッチェンブラック(ファーネスブラック)、チャネルブラック、サーマルブラック等のカーボンブラック、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)等のカーボン粉末;気相法炭素繊維又は液相法炭素繊維(カーボンナノチューブ(CNT)、黒鉛ファイバー等)、カーボンナノファイバなどの炭素繊維(カーボンファイバ);バルカン、ブラックパール、カーボンナノホーン、カーボンナノバルーン、ハードカーボン、フラーレン、膨張黒鉛などの炭素材料が挙げられるが、これらに限定されないことはいうまでもない。尚、上記炭素繊維はCNTや炭素ファイバー(黒鉛状、ハードカーボン状等(合成時の燃焼温度によって変化))であるが、これらは液相法でも気相法でも合成可能である。正極活物質層が導電助剤を含むことで、正極活物質層の内部における3次元の電子(導電性)ネットワークが効果的に形成され、電池の出力特性の向上に寄与しうる。
正極(正極活物質層)は、通常のスラリーを塗布(コーティング)する方法のほか、混練法、スパッタ法、蒸着法、CVD法、PVD法、イオンプレーティング法および溶射法のいずれかの方法によっても形成することができる。
負極活物質層15は、負極活物質として3元系のSi-Zn-M系の合金を含み、さらに負極活物質層の伸び(δ)が1.29<δ<1.70%の範囲であることを特徴とする。本実施形態の負極活物質層を適用することで、高容量・高サイクル耐久性を有する良好なリチウムイオン二次電池用負極となる。また、本実施形態の負極活物質層を有する負極を用いることで、高容量でサイクル耐久性、特に放電容量向上率に優れる良好な電池特性を有するリチウムイオン二次電池となる。
本実施形態において、負極活物質として用いられる3元系のSi-Zn-M系の合金は、下記化学式(1)で表される。
上記SixZnyVzAaは、上述のように、第1添加元素であるZnと、第2添加元素であるVを選択したことによって、Li合金化の際に、アモルファス-結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質、例えば炭素系負極活物質よりも高容量のものとなる。
上記SixZnySnzAaは、上述のように、第1添加元素であるZnと、第2添加元素であるSnを選択したことによって、Li合金化の際に、アモルファス-結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質、例えば炭素系負極活物質よりも高容量のものとなる。
上記SixZnyAlzAaは、上述のように、第1添加元素であるZnと、第2添加元素であるAlを選択したことによって、Li合金化の際に、アモルファス-結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質、例えば炭素系負極活物質よりも高容量のものとなる。
上記Si-Zn-Al系の合金は、組成式SixZnyAlzAaで表される合金である。ここで、式中、Aは、不可避不純物である。また式中、x、y、zおよびaは、質量%の値を表し、この際、0<x<100、0<y<100、0<z<100、および0≦a<0.5である。そして上記組成式SixZnyAlzAaを有する合金の合計の質量%値である、式中のx+y+z+a=100である。即ち、Si-Zn-Al系の3元系の合金からなるものでなければならない。言い換えれば、2元系の合金、他の組成の3元系の合金、或いは別の金属を添加した4元系以上の合金は含まれないものと言える。但し、上記したように不可避不純物である、式中のAを0≦a<0.5の範囲で含み得る。なお、本実施形態の負極活物質層15には、少なくとも1種の組成式SixZnyAlzAaを有する合金が含まれていればよく、2種以上の組成の異なる当該合金を併用して用いてもよい。また本発明の作用効果を損なわない範囲内であれば、炭素系材料等の他の負極活物質と併用してもよい。
上記組成式SixZnyAlzAaを有する合金中のSiの質量%値である、式中のxの範囲としては、好ましくは21≦x<100、より好ましくは26≦x≦78であり、さらに好ましくは26≦x≦66であり、特に好ましくは26≦x≦47である(表3、図14~図17参照)。これは、合金中の高容量元素Siの質量%値(x値)の数値が高いほど高容量化でき、好ましい範囲である21≦x<100であれば、既存のカーボン系負極活物質では実現不可能な格段に高い高容量(824mAh/g以上)を実現できるためである。同様に、Sn系負極活物質と比較してもより高い高容量の合金を得ることができるためである(図14参照)。さらに21≦x<100の範囲であれば、50サイクル目の放電容量維持率(サイクル耐久性)にも優れるためである。
上記組成式SixZnyAlzAaを有する合金中のZnの質量%値である、式中のyの範囲としては、好ましくは0<y<79であり、より好ましくは16≦y≦69であり、特に好ましくは18≦y≦44である。これは、合金中の第1添加元素Znの質量%値(y値)の数値が、好ましい範囲である0<y<79であれば、Znの持つ特性(更にAlとの相乗特性により、高容量Si材料のアモルファス-結晶の相転移を効果的に抑制することができる。その結果、サイクル寿命(サイクル耐久性)、特に50サイクル目での高い放電容量維持率(85%以上、特に90%以上、中でも95%以上)に優れた効果を発現することができる(図15~図17参照)。また、高容量Si材料の含有量x値の数値を一定以上(21≦x<100)に保持し得ることができ、既存のカーボン系負極活物質では実現不可能な格段に高い高容量化を実現できる。同様に既存のSn系合金負極活物質と比較してもより高い高容量(初期容量824mAh/g以上、特に1072mAh/g以上)の合金を得ることができる(表3及び図15~図17参照)。
上記組成式SixZnyAlzAaを有する合金中のAlの質量%値である、式中のzの範囲としては、好ましくは0<z<79であり、より好ましくは0<z≦51であり、さらに好ましくは2≦z≦51であり、特に好ましくは22≦z≦46である。これは、合金中の第1添加元素濃度が増加しても電極としての容量が減少しない第2添加元素種Alの質量%値(z値)の数値が、好ましい範囲である0<z<79であれば、Znの持つ特性とAlとの相乗特性により、高容量Si材料のアモルファス-結晶の相転移を効果的に抑制することができる。その結果、サイクル寿命(サイクル耐久性)、特に50サイクル目での高い放電容量維持率(85%以上、特に90%以上、中でも95%以上)に優れた効果を発現することができる(表3、図15~図17参照)。また、高容量Si材料の含有量x値の数値を一定以上(21≦x<100)に保持し得ることができ、既存のカーボン系負極活物質では実現不可能な格段に高い高容量化を実現できる。同様に既存のSn系合金負極活物質と比較しても同様以上の高容量(初期容量824mAh/g以上、特に1072mAh/g以上)の合金を得ることができる(表3及び図14~17参照)。
上記組成式SixZnyAlzAaを有する合金中のAの質量%値である、式中のaの範囲は、0≦a<0.5であり、好ましくは0≦a<0.1である。Aは、上述のように、Si合金において、原料中に存在したり、製造工程において不可避的に混入するものであり、本来は不要なものであるが、微量であり、Si合金の特性に影響を及ぼさないため、合金中に含有されることが許容される。
上記SixZnyCzAaは、上述のように、第1添加元素であるZnと、第2添加元素であるCを選択したことによって、Li合金化の際に、アモルファス-結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質、例えば炭素系負極活物質よりも高容量のものとなる。
上記Si合金の平均粒子径は、既存の負極活物質層15に含まれる負極活物質の平均粒子径と同程度であればよく、特に制限されない。高出力化の観点からは、好ましくは1~20μmの範囲であればよい。ただし、上記範囲に何ら制限されるものではなく、本実施形態の作用効果を有効に発現できるものであれば、上記範囲を外れていてもよいことは言うまでもない。なお、Si合金の形状としては、特に制限はなく、球状、楕円状、円柱状、多角柱状、鱗片状、不定形などでありうる。
本形態に係る組成式SixZnyMzAaを有する合金の製造方法としては、特に制限されるものではなく、従来公知の各種の製造を利用して製造することができる。即ち、作製方法による合金状態・特性の違いはほとんどないので、ありとあらゆる作製方法が適用できる。
本実施形態の一態様としては、負極活物質として、上記3元系のSi-Zn-M系のSi合金に加えて、更に炭素系材料を含むものである。
また、炭素系材料の平均粒子径としては、特に制限されないが、5~25μmであることが好ましく、5~10μmであることがより好ましい。この際、上述のSi合金との平均粒子径との対比については、炭素系材料の平均粒子径は、Si合金の平均粒子径と同一であっても、異なっていてもよいが、異なることが好ましい。特に、前記合金の平均粒子径が、前記炭素系材料の平均粒子径よりも小さいことがより好ましい。炭素系材料の平均粒子径が合金の平均粒子径よりも相対的に大きいと、均一に炭素系材料の粒子が配置され、当該炭素系材料の粒子間にSi合金が配置した構成を有するため、負極活物質層内においてSi合金が均一に配置されうる。
負極活物質は、特に制限されず、公知の方法によって製造することができる。通常、負極活物質層は、上記Si合金の製造方法が用いられうる。具体的には、メカニカルアロイ法、アークプラズマ溶融法等を利用して、粒子形態のSi合金を製造した後、炭素系材料(Si合金および炭素系材料を併用する場合)、バインダ、導電助剤、および粘液調整剤を加えてスラリーを調製し、該スラリーを用いてスラリー電極を形成することができる。この際、Si合金および炭素系材料を併用する場合には、粒子形態のSi合金の量および炭素系材料の量を適宜変更することで、Si合金が所望の含有量となる負極活物質を製造することができる。
本実施形態では、負極活物質として上記した3元系のSi-Zn-M系の合金を含み、負極活物質層の伸び(δ)が、1.29<δ<1.70%の範囲であることを特徴とする。上記した3元系のSi-Zn-M系の合金を適用した上で負極活物質層の伸び(δ)を1.29%超にすることで、充放電による負極活物質の膨張・収縮による体積変化に対し、活物質以外の電極(負極活物質層)の構成要素が追従することができる。その結果、電極(負極活物質層)全体の体積変化を抑制することができ、放電容量の向上率を大幅に高めることができる。また、上記した3元系のSi-Zn-M系の合金を適用した上で負極活物質層の伸び(δ)を1.70%未満にすることで、負極活物質層の伸びが充放電に伴う負極活物質へのリチウムイオンの反応(挿入・脱離)を阻害するのを抑制することができる。その結果、高容量・高サイクル耐久性を有する良好なリチウムイオン二次電池用負極となる。また、本実施形態の負極活物質層を用いてなるリチウムイオン二次電池用負極を用いることで、高容量でサイクル耐久性、特に放電容量向上率に優れる良好な電池特性を有するリチウムイオン二次電池となる。即ち、上記した3元系のSi-Zn-M系の合金を適用した上で負極活物質層の伸び(δ)が、1.29以下、および1.70%以上の場合には、図22に示すように、放電容量の向上率が不十分となる。また3元系のSi-Zn-M系の合金に代えて、高容量(3200mAh/g)の純Siを適用した場合には、負極活物質層の伸び(δ)を上記範囲内に調整しても、純Siの持つ大きな体積変化(約4倍)により、放電容量の向上率が著しく低下する(図22の比較例1-4、1-5参照)。
上記した3元系のSi-Zn-M系の合金活物質を含む負極活物質層は、導電助剤を含む。ここで、導電助剤とは、負極活物質層の導電性を向上させるために配合される添加物をいう。これは、負極活物質にLiの挿入・脱離が可能な既存のカーボン(炭素材料)を用いる場合には、導電助剤は特に必要ないが、3元系のSi-Zn-M系の合金活物質のように十分な導電性を有しない場合には、導電助剤が必要である。かかる導電助剤としては、短鎖状カーボンブラック(短鎖状アセチレンブラック等)、長鎖状カーボンブラック(長鎖状アセチレンブラック)ケッチェンブラック(ファーネスブラック)、チャネルブラック、サーマルブラック等のカーボンブラック、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)等のカーボン粉末;気相法炭素繊維又は液相法炭素繊維(カーボンナノチューブ(CNT)、黒鉛ファイバー等)、カーボンナノファイバなどの炭素繊維(カーボンファイバ);バルカン、ブラックパール、カーボンナノホーン、カーボンナノバルーン、ハードカーボン、フラーレン、膨張黒鉛などの炭素材料が挙げられるが、これらに限定されないことはいうまでもない。尚、上記炭素繊維はCNTや炭素ファイバー(黒鉛状、ハードカーボン状等(合成時の燃焼温度によって変化))であるが、これらは液相法でも気相法でも合成可能である。上記した3元系のSi-Zn-M系の合金活物質を含む負極活物質層が導電助剤を含むことで、当該負極活物質層の内部における3次元の電子(導電性)ネットワークが効果的に形成され、電池の出力特性の向上に寄与しうる。
負極活物質層15は、バインダを含む。負極用のバインダは、活物質同士または活物質と集電体とを結着させて電極構造を維持する目的で添加される。負極活物質層に用いられるバインダとしては、特に限定されないが、例えば、以下の材料が挙げられる。ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリアクリロニトリル、ポリイミド、ポリアミド、ポリアミドイミド、セルロース、カルボキシメチルセルロース(CMC)、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体およびその水素添加物、スチレン・イソプレン・スチレンブロック共重合体およびその水素添加物などの熱可塑性高分子、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド-ヘキサフルオロプロピレン系フッ素ゴム(VDF-HFP系フッ素ゴム)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-HFP-TFE系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン系フッ素ゴム(VDF-PFP系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-PFP-TFE系フッ素ゴム)、ビニリデンフルオライド-パーフルオロメチルビニルエーテル-テトラフルオロエチレン系フッ素ゴム(VDF-PFMVE-TFE系フッ素ゴム)、ビニリデンフルオライド-クロロトリフルオロエチレン系フッ素ゴム(VDF-CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂等が挙げられる。中でも、ポリフッ化ビニリデン、ポリイミド、スチレン・ブタジエンゴム、カルボキシメチルセルロース、ポリプロピレン、ポリテトラフルオロエチレン、ポリアクリロニトリル、ポリアミド、ポリアミドイミドであることがより好ましい。これらの好適なバインダは、耐熱性に優れ、さらに電位窓が非常に広く正極電位、負極電位双方に安定であり負極活物質層に使用が可能となる。また、ポリアミドのような相対的に結着力が強いバインダは、Si合金を炭素系材料に好適に保持することができる。更に負極活物質層に用いられるバインダとしては、上記したように3元系のSi-Zn-M系の合金活物質の所定範囲の体積変化に追従し得る弾性率(伸縮性)を有し、その結着力を確保することができるものを用いるのが特に望ましい。充電時にSiの中にLiが入っていくことで合金活物質が膨張する。その場合に膨張した活物質粒子間に挟まれて存在するバインダは圧縮されるが、その圧縮力に抗することができる弾性率を有する必要がある。逆に膨張した活物質粒子間を繋ぎとめる位置に存在するバインダは引き伸ばされるが、この場合にも弾性を保持する必要がある。引き伸ばされすぎて弾性体として機能しなくなった場合には、収縮時に引き伸ばされたバインダが元に戻らなくなるため、バインダとして機能しなくなる。従って、バインダの弾性率が以下に規定する下限側の1GPa超であれば、合金活物質の膨張に対してバインダが圧縮されて損傷したり、引き伸ばされて弾性を損なうことなく、高い放電容量の向上率を発現することができる。またバインダのE弾性率が以下に規定する上限側の7.4GPa未満であれば、バインダが硬すぎることもなく、充電時にSiの中にLiが容易に挿入することができる。即ち、バインダの弾性率が高すぎなければ、充放電電時に伴う負極活物質へのLiの挿入・脱離を阻害することなく最適な範囲まで体積変化(膨張収縮)することができる。その結果、負極活物質(Si)へのLiイオンの反応を阻害するのを抑制することができ、高い放電容量の向上率を発現することができる。かかる観点から、上記弾性率を有する、ポリアミド、ポリイミド、ポリアミドイミドを用いるのが好ましい。これらのバインダは、1種単独で用いてもよいし、2種併用してもよい。特に、上記したように3元系のSi-Zn-M系の合金活物質の所定範囲の体積変化に追従し得るバインダのE弾性率(伸縮性)については、以下に説明する好適な態様にて、説明する。
以下に、正極及び負極活物質層13、15に共通する要件につき、説明する。
電解質塩(リチウム塩)としては、Li(C2F5SO2)2N、LiPF6、LiBF4、LiClO4、LiAsF6、LiCF3SO3等が挙げられる。
イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系およびポリプロピレンオキシド(PPO)系のポリマーが挙げられる。
正極活物質層および負極活物質層中に含まれる成分の配合比は、特に限定されない。配合比は、非水溶媒系二次電池についての公知の知見を適宜参照することにより、調整されうる。
各活物質層(集電体片面の活物質層)の厚さについても特に制限はなく、電池についての従来公知の知見が適宜参照されうる。一例を挙げると、各活物質層の厚さは、電池の使用目的(出力重視、エネルギー重視など)、イオン伝導性を考慮し、通常1~500μm程度、好ましくは2~100μmである。
(正極集電体)
正極集電体11は導電性材料から構成される。集電体の大きさは、電池の使用用途に応じて決定される。例えば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。集電体の厚さについても特に制限はない。集電体の厚さは、通常は1~100μm程度である。集電体の形状についても特に制限されない。図1に示す積層型電池10では、集電箔のほか、網目形状(エキスパンドグリッド等)等を用いることができる。なお、負極活物質をスパッタ法等により薄膜合金を負極集電体12上に直接形成する場合には、集電箔を用いるのが望ましい。
負極集電体12は導電性材料から構成される。集電体の大きさは、電池の使用用途に応じて決定される。例えば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。
電解質層17を構成する電解質としては、液体電解質またはポリマー電解質が用いられうる。
電池外部に電流を取り出す目的で、集電板を用いてもよい。集電板は集電体やリードに電気的に接続され、電池外装材であるラミネートシートの外部に取り出される。
電池外装材29としては、公知の金属缶ケースを用いることができるほか、発電要素を覆うことができる、アルミニウムを含むラミネートフィルムを用いた袋状のケースが用いられうる。該ラミネートフィルムには、例えば、PP、アルミニウム、ナイロンをこの順に積層してなる3層構造のラミネートフィルム等を用いることができるが、これらに何ら制限されるものではない。高出力化や冷却性能に優れ、EV、HEV用の大型機器用電池に好適に利用することができるという観点から、ラミネートフィルムが望ましい。
図2は、積層型の扁平なリチウムイオン二次電池の外観を表した斜視図である。
[1]負極の作製
スパッタ装置として、独立制御方式の3元DCマグネトロンスパッタ装置(大和機器工業株式会社製、コンビナトリアルスパッタコーティング装置、ガン-サンプル間距離:約100mm)を使用した。この装置を用い、厚さ20μmのニッケル箔から成る基板(集電体)上に、下記のターゲット及び成膜条件のもとで、各組成を有する負極活物質合金の薄膜をそれぞれ成膜した。その結果、表1に示す組成を有する負極活物質合金の薄膜を備えた、都合31種の負極サンプルを得た(参考例1~9および参考比較例1~27)。
Si:50.8mm径、3mm厚さ(厚さ2mmの無酸素銅製バッキングプレート付)
Zn:50.8mm径、5mm厚さ
V:50.8mm径、5mm厚さ。
ベース圧力:~7×10-6Pa
スパッタガス種:Ar(99.9999%以上)
スパッタガス導入量:10sccm
スパッタ圧力:30mTorr
DC電源:Si(185W)、Zn(0~50W)、V(0~150W)
プレスパッタ時間:1min.
スパッタ時間:10min.
基板温度:室温(25℃)。
組成分析:SEM-EDX分析(日本電子株式会社製)、EPMA分析(日本電子株式会社製)
膜厚測定(スパッタレート算出のため):膜厚計(株式会社東京インスツルメンツ製)
膜状態分析:ラマン分光測定(ブルカー社製)。
上記により得られた各負極サンプルとリチウム箔から成る対極(正極)とをセパレータを介して対向させたのち、電解液を注入することによって、IEC60086に規定されたCR2032型コインセルをそれぞれ作製した。
上記により得られたそれぞれの電池に対して下記の充放電試験を実施した。
[1]負極の作製
参考例Aの(1)におけるターゲットの「Zn:50.8mm径、5mm厚さ」を「Zn:50.8mm径、3mm厚さ」に、「V:50.8mm径、5mm厚さ」を「Sn:50.8mm径、5mm厚さ」に変更した。さらに(2)におけるDC電源の「Zn(0~50W)、V(0~150W)」を「Zn(0~150W)、Sn(0~40W)」に変更した、上記変更を除いては、参考例Aと同様の方法で、都合44種の負極サンプルを作製した(参考例B1~B32および参考比較例B1~B14)。
参考例Aと同様の方法でCR2032型コインセルを作製した。
参考例Aと同様の方法で電池の充放電試験を行った。ただし、参考例Aでは、充放電サイクルを50回繰り返したのに対し、本参考例Bでは充放電サイクルを100回繰り返した。
[1]負極の作製
参考例Aの(1)におけるターゲットの「V(純度:4N):50.8mm径、5mm厚さ」を「Al(純度:5N):50.8mm径(直径2インチ)、5mm厚さ」に変更した。さらに(2)におけるDC電源の「Zn(0~50W)、V(0~150W)」を「Zn(30~90W)、Al(30~180W)」に変更した。上記変更を除いては、参考例Aと同様の方法で、都合48種の負極サンプルを作製した(参考例Cのサンプル1~48)。
参考例Aと同様の方法でCR2032型コインセルを作製した。
参考例Aと同様の方法で電池の充放電試験を行った。
[1]負極の作製
参考例Aの(1)におけるターゲットの「Zn:50.8mm径、5mm厚さ」を「Zn:50.8mm径、3mm厚さ」に、「V:50.8mm径、5mm厚さ」を「C:50.8mm径、3mm厚さ(厚さ2mmの無酸素銅製パッキングプレート付)」に変更した。さらに(2)におけるDC電源の「Zn(0~50W)、V(0~150W)」を「Zn(20~90W)、C(30~90W)」に変更した。上記変更を除いては、参考例Aと同様の方法で、都合29種の負極サンプルを作製した(参考例Dのサンプル1~29)。
参考例Aと同様の方法でCR2032型コインセルを作製した。
参考例Aと同様の方法で電池の充放電試験を行った。なお、1サイクル目の充電容量、放電容量及び50サイクル目の放電容量を測定し、表4の各項目を算出した。この結果を表4に併せて示す。表4中の50サイクル後の放電容量維持率(%)とは、1サイクル目の放電容量に対する50サイクル目の放電容量の割合((50サイクル目の放電容量)/(1サイクル目の放電容量))×100を示す。また、「充放電効率」とは、充電容量に対する放電容量の割合(放電容量/充電容量×100)を示す。
[Si合金の製造]
上記Si合金は、メカニカルアロイ法(または、アークプラズマ溶融法)により製造した。具体的には、ドイツ フリッチュ社製遊星ボールミル装置P-6を用いて、ジルコニア製粉砕ポットにジルコニア製粉砕ボールと各合金の各原料粉末を投入し、600rpm、48hかけて合金化させた。
負極活物質90質量部と、導電助剤5質量部と、バインダ5質量部とを混合し、N-メチル-2-ピロリドン(NMP)に分散させて負極スラリーを得た。ここで、負極活物質には、上記で製造したSi合金(Si41Zn20Sn39、平均粒子径0.3μm)を用いた。また導電助剤には短鎖状カーボンブラックとして短鎖状アセチレンブラックを用い、バインダにはポリイミド(E弾性率2.1GPa)を用いた。次いで、得られた負極スラリーを、厚さ10μmの銅箔(弾性伸び1.4%)よりなる負極集電体の両面にそれぞれ負極活物質層の厚さが30μmとなるように均一に塗布し、真空中で24時間乾燥させて、負極を得た。
正極活物質90質量部と、導電助剤5質量部と、バインダ5質量部とを混合し、NMPに分散させて正極スラリーを得た。ここで、正極活物質には、Li1.85Ni0.18Co0.10Mn0.87O3を、特開2012-185913号公報の実施例1(段落0046)に記載の手法により作製した。また導電助剤にはアセチレンブラックを用い、バインダにはポリフッ化ビニリデン(PVdF)を用いた。次いで、得られた正極スラリーを、厚さ20μmのアルミニウム箔よりなる正極集電体の両面にそれぞれ正極活物質層の厚さが30μmとなるように均一に塗布し、乾燥させて、正極を得た。
上記で作製した正極と、負極とを対向させ、この間にセパレータ(ポリプロピレン製の微多孔膜、膜厚20μm)を配置した。次いで、負極、セパレータ、および正極の積層体をコインセル(CR2032、材質:ステンレス鋼(SUS316))の底部側に配置した。さらに、正極と負極との間の絶縁性を保つためガスケットを装着し、下記電解液をシリンジにより注入し、スプリング及びスペーサを積層し、コインセルの上部側を重ねあわせ、かしこめることにより密閉して、リチウムイオン二次電池を得た。
負極の導電助剤を液相法炭素繊維であるカーボンナノチューブに変更したことを除いては、実施例1-1と同様の方法で負極および電池を作製した。
負極の導電助剤を気相法炭素繊維である黒鉛ファイバーに変更したことを除いては、実施例1-1と同様の方法で負極および電池を作製した。
負極の導電助剤を長鎖状カーボンブラックである長鎖状アセチレンブラックに変更したことを除いては、実施例1-1と同様の方法で負極および電池を作製した。
負極の導電助剤を人造黒鉛に変更したことを除いては、実施例1-1と同様の方法で負極および電池を作製した。
負極の導電助剤をケッチェンブラックに変更したことを除いては、実施例1-1と同様の方法で負極および電池を作製した。
負極の導電助剤を気相法炭素繊維である黒鉛ファイバーに変更し、負極活物質を純Si(純度99.999%)に変更したことを除いては、実施例1-1と同様の方法で負極および電池を作製した。
負極活物質を純Si(純度99.999%)に変更し、負極のバインダをPVdFに変更したことを除いては、実施例1-1と同様の方法で負極および電池を作製した。
上記で作製した各リチウムイオン二次電池について以下の方法で負極活物質層の伸び(%)の測定を行った。詳しくは、JIS K 7163(1994年)の引張試験方法に準じて測定した値により、負極活物質層の伸び(%)を測定した。なお、以下の実施例及び比較例で作製した各リチウムイオン二次電池についても上記と同様にして負極活物質層の伸び(%)の測定を行った。
[サイクル特性の評価]
上記で作製した各リチウムイオン二次電池について以下の方法でサイクル特性評価を行った。各電池について、30℃の雰囲気下、定電流方式(CC、電流:0.1C)で2.0Vまで充電し、10分間休止させた後、定電流(CC、電流:0.1C)で0.01Vまで放電し、放電後10分間休止させた。この充放電過程を1サイクルとし、100サイクルの充放電試験を行い、1サイクル目の放電容量に対する100サイクル目の放電容量の割合(放電容量維持率[%])を求めた。比較例1-1の放電容量維持率を100として、他の実施例及び比較例の放電容量維持率の割合を放電容量向上率(%)とした。得られた結果を下記の表5および図22に示す。
[Si合金の製造]
Si合金は、メカニカルアロイ法(または、アークプラズマ溶融法)により製造した。具体的には、ドイツ フリッチュ社製遊星ボールミル装置P-6を用いて、ジルコニア製粉砕ポットにジルコニア製粉砕ボールと各合金の各原料粉末を投入し、600rpm、48hかけて合金化させた。
負極活物質80質量部と、導電助剤5質量部と、バインダ15質量部とを混合し、N-メチル-2-ピロリドン(NMP)に分散させて負極スラリーを得た。ここで、負極活物質には、上記で製造したSi合金(Si42Ti7Sn51、平均粒子径0.3μm)を用いた。また導電助剤には短鎖状カーボンブラックとして短鎖状アセチレンブラックを用い、バインダにはポリアミドイミド(E弾性率2.00GPa)を用いた。次いで、得られた負極スラリーを、10μmの銅箔(弾性伸び1.4%)よりなる負極集電体の両面にそれぞれ負極活物質層の厚さが30μmとなるように均一に塗布し、真空中で24時間乾燥させて、負極を得た。
正極活物質90質量部と、導電助剤5質量部と、バインダ5質量部とを混合し、NMPに分散させて正極スラリーを得た。ここで、正極活物質には、Li1.85Ni0.18Co0.10Mn0.87O3を、特開2012-185913号公報の実施例1(段落0046)に記載の手法により作製した。また導電助剤にはアセチレンブラックを用い、バインダにはポリフッ化ビニリデン(PVdF)を用いた。次いで、得られた正極スラリーを、厚さ20μmのアルミニウム箔よりなる正極集電体の両面にそれぞれ正極活物質層の厚さが30μmとなるように均一に塗布し、乾燥させて、正極を得た。
上記で作製した正極と、負極とを対向させ、この間にセパレータ(ポリプロピレン製の微多孔膜、膜厚20μm)を配置した。次いで、負極、セパレータ、および正極の積層体をコインセル(CR2032、材質:ステンレス鋼(SUS316))の底部側に配置した。さらに、正極と負極との間の絶縁性を保つためガスケットを装着し、下記電解液をシリンジにより注入し、スプリングおよびスペーサを積層し、コインセルの上部側を重ねあわせ、かしこめることにより密閉して、リチウムイオン二次電池を得た。
バインダとして、ポリアミドイミド(E弾性率2.00GPa)に代えてポリイミド(E弾性率2.10GPa)を用いたことを除いては、実施例2-1と同様の方法で負極および電池を作製した。
バインダとして、ポリアミドイミド(E弾性率2.00GPa)に代えてポリイミド(E弾性率3.30GPa)を用いたことを除いては、実施例2-1と同様の方法で負極および電池を作製した。
バインダとして、ポリアミドイミド(E弾性率2.00GPa)に代えてポリイミド(E弾性率3.73GPa)を用いたことを除いては、実施例2-1と同様の方法で負極および電池を作製した。
バインダとして、ポリアミドイミド(E弾性率2.00GPa)に代えてポリイミド(E弾性率7.00GPa)を用いたことを除いては、実施例2-1と同様の方法で負極および電池を作製した。
バインダとして、ポリアミドイミド(E弾性率2.00GPa)に代えてポリフッ化ビニリデン(PVdF)(E弾性率1.00GPa)を用いたことを除いては、実施例2-1と同様の方法で負極および電池を作製した。
バインダとして、ポリアミドイミド(E弾性率2.00GPa)に代えてポリイミド(E弾性率7.40GPa)を用いたことを除いては、実施例2-1と同様の方法で負極および電池を作製した。
負極活物質として、Si合金に代えて純Siを用いたことを除いては、実施例2-4と同様の方法で負極および電池を作製した。
負極活物質として、Si合金に代えて純Siを用いたことを除いては、比較例2-1と同様の方法で負極および電池を作製した。
[放電容量の評価]
上記で作製した各リチウムイオン二次電池について以下の方法で放電容量の評価を行った。各電池について、30℃の雰囲気下、定電流方式(CC、電流:0.1C)で2.0Vまで充電し、10分間休止させた後、定電流(CC、電流:0.1C)で0.01Vまで放電し、放電後10分間休止させた。この放電時の放電容量を測定した結果を下記の表6および図23に示す。なお、表6および図23に示す放電容量の結果は、比較例2-1の放電容量の値を100としたときの相対値である。
[Si合金の製造]
上記Si合金は、メカニカルアロイ法(または、アークプラズマ溶融法)により製造した。具体的には、ドイツ フリッチュ社製遊星ボールミル装置P-6を用いて、ジルコニア製粉砕ポットにジルコニア製粉砕ボールと各合金の各原料粉末を投入し、600rpm、48hかけて合金化させた。
負極活物質80質量部、導電助剤5質量部、およびバインダ材料15質量部を溶媒としてのN-メチル-2-ピロリドン(NMP)中で混合し、負極活物質スラリーを調製した。ここで、負極活物質には、上記で製造したSi合金粉末(Si42Ti7Sn51、一次粒子の平均粒子径0.3μm)を用いた。また、導電助剤には、短鎖状カーボンブラックとして短鎖状アセチレンブラックを用い、バインダにはポリイミド(E弾性率2.1GPa)を用いた。
負極集電体として、弾性伸び1.53%、引張強度450N/mm2である厚さ10μmの銅合金箔(銅合金2:Zrが約0.3質量%添加されたCu)を用いた以外は、実施例3-1と同様の方法で負極を作製した。
負極集電体として、弾性伸び1.39%、引張強度420N/mm2である厚さ10μmの銅合金箔(銅合金3:Zrが約0.1質量%添加されたCu)を用いた以外は、実施例3-1と同様の方法で負極を作製した。
負極集電体として、弾性伸び1.28%、引張強度139N/mm2である厚さ10μmの銅箔(タフピッチ銅:Cuの純度が99.9質量%以上)を用いた以外は、実施例3-1と同様の方法で負極を作製した。
負極活物質としてケイ素(純Si)粉末(純度:99.999質量%、一次粒子の平均粒子径45μm)80質量部を用いた以外は、比較例3-1と同様の方法で負極を作製した。
バインダ材料としてポリフッ化ビニリデン(PVdF)を用いたことを除いては、比較例3-2と同様の方法で負極を作製した。
正極活物質であるLi1.85Ni0.18Co0.10Mn0.87O3を、特開2012-185913号公報の実施例1(段落0046)に記載の手法により作製した。そして、この正極活物質90質量部と、導電助剤であるアセチレンブラック5質量部と、バインダであるポリフッ化ビニリデン(PVdF)5質量部と、を混合し、N-メチル-2-ピロリドン(NMP)に分散させて正極スラリーを得た。次いで、得られた正極スラリーを、厚さ20μmのアルミニウム箔よりなる正極集電体の両面にそれぞれ正極活物質層の厚さが30μmとなるように均一に塗布し、乾燥させて、正極を得た。
上記で作製した正極と、負極とを対向させ、この間にセパレータ(ポリプロピレン製の微多孔膜、膜厚20μm)を配置した。次いで、負極、セパレータ、および正極の積層体をコインセル(CR2032、材質:ステンレス鋼(SUS316))の底部側に配置した。さらに、正極と負極との間の絶縁性を保つためガスケットを装着し、下記電解液をシリンジにより注入し、スプリングおよびスペーサを積層し、コインセルの上部側を重ねあわせ、かしこめることにより密閉して、リチウムイオン二次電池を得た。
参考例Aと同様の方法で電池の充放電試験を行った。
[Si合金の製造]
Si合金は、メカニカルアロイ法(または、アークプラズマ溶融法)により製造した。具体的には、ドイツ フリッチュ社製遊星ボールミル装置PP-6を用いて、ジルコニア製粉砕ポットにジルコニア製粉砕ボールと各合金の各原料粉末を投入し、600rpm、48hかけて合金化させた。
負極活物質である上記で製造したSi合金(Si41Zn20Sn39、平均粒子径0.3μm)2.76質量部および黒鉛(天然黒鉛;平均粒子径22μm)89.24質量部と、導電助剤である短鎖状アセチレンブラック4質量部と、バインダであるポリイミド(E弾性率2.1GPa)4質量部と、を混合し、N-メチルピロリドンに分散させて負極スラリーを得た。次いで、得られた負極スラリーを、厚さ10μmの銅箔(弾性伸び1.4%)よりなる負極集電体の両面にそれぞれ負極活物質層の厚さが30μmとなるように均一に塗布し、真空中で24時間乾燥させて、負極を得た。なお、負極活物質中のSi合金の含有率は、3%である。
正極活物質であるLi1.85Ni0.18Co0.10Mn0.87O3を、特開2012-185913号公報の実施例1(段落0046)に記載の手法により作製した。そして、この正極活物質90質量部と、導電助剤であるアセチレンブラック5質量部と、バインダであるポリフッ化ビニリデン5質量部と、を混合し、N-メチルピロリドンに分散させて正極スラリーを得た。次いで、得られた正極スラリーを、厚さ20μmのアルミニウム箔よりなる正極集電体の両面にそれぞれ正極活物質層の厚さが30μmとなるように均一に塗布し、乾燥させて、正極を得た。
上記で作製した正極と、負極とを対向させ、この間にセパレータ(ポリプロピレン製の微多孔膜、膜厚20μm)を配置した。次いで、負極、セパレータ、および正極の積層体をコインセル(CR2032、材質:ステンレス鋼(SUS316))の底部側に配置した。さらに、正極と負極との間の絶縁性を保つためガスケットを装着し、下記電解液をシリンジにより注入し、スプリング及びスペーサを積層し、コインセルの上部側を重ねあわせ、かしめることにより密閉して、リチウムイオン二次電池を得た。
Si合金を4.6質量部に変更し、黒鉛を87.4質量部に変更したことを除いては、実施例4-1と同様の方法で負極および電池を作製した。なお、負極活物質中のSi合金の含有率は、5%である。
Si合金を6.4質量部に変更し、黒鉛を85.5質量部に変更したことを除いては、実施例4-1と同様の方法で負極および電池を作製した。なお、負極活物質中のSi合金の含有率は、7%である。
Si合金を9.2質量部に変更し、黒鉛を82.8質量部に変更したことを除いては、実施例4-1と同様の方法で負極および電池を作製した。なお、負極活物質中のSi合金の含有率は、10%である。
Si合金を11.0質量部に変更し、黒鉛を80.96質量部に変更したことを除いては、実施例4-1と同様の方法で負極および電池を作製した。なお、負極活物質中のSi合金の含有率は、12%である。
Si合金を13.8質量部に変更し、黒鉛を78.2質量部に変更したことを除いては、実施例4-1と同様の方法で負極および電池を作製した。なお、負極活物質中のSi合金の含有率は、15%である。
Si合金を18.4質量部に変更し、黒鉛を73.6質量部に変更したことを除いては、実施例4-1と同様の方法で負極および電池を作製した。なお、負極活物質中のSi合金の含有率は、20%である。
Si合金を23.0質量部に変更し、黒鉛を69.0質量部に変更したことを除いては、実施例4-1と同様の方法で負極および電池を作製した。なお、負極活物質中のSi合金の含有率は、25%である。
Si合金を27.6質量部に変更し、黒鉛を64.4質量部に変更したことを除いては、実施例4-1と同様の方法で負極および電池を作製した。なお、負極活物質中のSi合金の含有率は、30%である。
Si合金を36.8質量部に変更し、黒鉛を55.2質量部に変更したことを除いては、実施例4-1と同様の方法で負極および電池を作製した。なお、負極活物質中のSi合金の含有率は、40%である。
Si合金を46.0質量部に変更し、黒鉛を46.0質量部に変更したことを除いては、実施例4-1と同様の方法で負極および電池を作製した。なお、負極活物質中のSi合金の含有率は、50%である。
Si合金を55.2質量部に変更し、黒鉛を36.8質量部に変更したことを除いては、実施例4-1と同様の方法で負極および電池を作製した。なお、負極活物質中のSi合金の含有率は、60%である。
Si合金を64.4質量部に変更し、黒鉛を27.6質量部に変更したことを除いては、実施例4-1と同様の方法で負極および電池を作製した。なお、負極活物質中のSi合金の含有率は、70%である。
[サイクル特性の評価]
上記で作製した各リチウムイオン二次電池について以下の方法でサイクル特性評価を行った。各電池について、30℃の雰囲気下、定電流方式(CC、電流:0.1C)で2.0Vまで充電し、10分間休止させた後、定電流(CC、電流:0.1C)で0.01Vまで放電し、放電後10分間休止させた。この充放電過程を1サイクルとし、100サイクルの充放電試験を行い、1サイクル目の放電容量に対する100サイクル目の放電容量の割合(放電容量維持率[%])を求めた。得られた結果を下記の表8および図25に示す。
上記で作製した各リチウムイオン二次電池について以下の方法でサイクル特性評価を行った。各電池について、まず初期充放電として正極の理論容量に対して0.2C相当の電流で、定電流充電後、4.2Vの定電圧充電を合計10時間行い、その後0.2Cの放電電流にて2.7Vまで定電流放電を行った。このときの充放電曲線から電池のエネルギーを算出し、電池質量で除して電池のエネルギー密度を算出した。得られた結果を下記の表8および図25に示す。
11 正極集電体、
12 負極集電体、
13 正極活物質層、
15 負極活物質層、
17 電解質層、
19 単電池層、
21、57 発電要素、
25、58 正極集電板、
27、59 負極集電板、
29、52 電池外装材(ラミネートフィルム)。
Claims (27)
- 集電体と、前記集電体の表面に配置された負極活物質、導電助剤、およびバインダを含む電極層と、を有する電気デバイス用負極であって、
前記負極活物質が、下記式(1):
Mは、V、Sn、Al、Cおよびこれらの組み合わせからなる群から選択される少なくとも1つの金属であり、
前記Aは、不可避不純物であり、
x、y、z、およびaは、質量%の値を表し、この際、0<x<100、0<y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である。)で表される合金を含み、
かつ、電極層における伸び(δ)が、1.29<δ<1.70%であることを特徴とする電気デバイス用負極。 - 前記δが、1.40≦δ<1.70%であることを特徴とする請求項1に記載の電気デバイス用負極。
- 前記δが、1.40≦δ≦1.66%であることを特徴とする請求項1または2に記載の電気デバイス用負極。
- 前記δが、1.40≦δ≦1.57%であることを特徴とする請求項1~3のいずれか1項に記載の電気デバイス用負極。
- 前記δが、1.47≦δ≦1.57%であることを特徴とする請求項1~4のいずれか1項に記載の電気デバイス用負極。
- 前記δが、1.53≦δ≦1.57%であることを特徴とする請求項1~5のいずれか1項に記載の電気デバイス用負極。
- 前記バインダが、1.00GPa超7.40GPa未満のE弾性率を有する樹脂を含むことを特徴とする請求項1~6のいずれか1項に記載の電気デバイス用負極。
- 前記集電体の弾性伸びが、1.30%以上であることを特徴とする請求項1~7のいずれか1項に記載の電気デバイス用負極。
- 前記負極活物質が、前記式(1)で表される合金と、炭素系材料とが混合されてなることを特徴とする請求項1~8のいずれか1項に記載の電気デバイス用負極。
- 前記Mが、Vであり、
前記xが33~50であり、前記yが0を超え46以下であり、前記zが21~67である、請求項1~9のいずれか1項に記載の電気デバイス用負極。 - 前記Mが、Vであり、
前記xが33~47であり、前記yが11~27であり、前記zが33~56である、請求項1~10のいずれか1項に記載の電気デバイス用負極。 - 前記Mが、Snであり、
前記xが23を超え64未満であり、yが0を超え65未満であり、zが4以上58以下である、請求項1~9のいずれか1項に記載の電気デバイス用負極。 - 前記zが34未満である、請求項12に記載の電気デバイス用負極。
- 前記xが44未満であり、zが34以上である、請求項12に記載の電気デバイス用負極。
- 前記yが27を超え61未満である、請求項13に記載の電気デバイス用負極。
- 前記xが34未満である、請求項14に記載の電気デバイス用負極。
- 前記yが38を超え、前記zが24未満であることを特徴とする請求項15に記載の電気デバイス用負極。
- 前記xが24以上38未満である、請求項15に記載の電気デバイス用負極活物質。
- 前記xが38未満であり、前記yが27を超え、前記zが40未満である、請求項14に記載の電気デバイス用負極。
- 前記xが29未満であり、前記zが40以上である、請求項14に記載の電気デバイス用負極。
- 前記Mが、Alであり、
前記x、yおよびzが、21≦x<100であり、0<y<79であり、0<z<79である、請求項1~9のいずれか1項に記載の電気デバイス用の負極。 - 前記x、yおよびzが、26≦x≦78であり、16≦y≦69であり、0<z≦51である、請求項21に記載の電気デバイス用負極。
- 前記x、y、およびzが、26≦x≦66であり、16≦y≦69であり、2≦z≦51である、請求項21または22に記載の電気デバイス用負極。
- 前記x、y、およびzが、26≦x≦47であり、18≦y≦44であり、22≦z≦46である、請求項21~23のいずれかに記載の電気デバイス用負極。
- 前記Mが、Cであり、
前記xが25を超え54未満であり、前記yが13を超え69未満であり、前記zが1を超え47未満である、請求項1~9のいずれか1項に記載の電気デバイス用負極。 - 前記yが17を超え、前記zが34未満である、請求項25に記載の電気デバイス用負極。
- 請求項1~26のいずれか1項に記載の電気デバイス用負極を含む、電気デバイス。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380061087.7A CN104813513B (zh) | 2012-11-22 | 2013-11-19 | 电气设备用负极和使用了其的电气设备 |
US14/442,289 US10290855B2 (en) | 2012-11-22 | 2013-11-19 | Negative electrode for electrical device, and electrical device using the same |
JP2014548572A JP6123807B2 (ja) | 2012-11-22 | 2013-11-19 | リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池 |
KR1020157010487A KR101841819B1 (ko) | 2012-11-22 | 2013-11-19 | 전기 디바이스용 부극, 및 이것을 사용한 전기 디바이스 |
KR1020187007478A KR20180031067A (ko) | 2012-11-22 | 2013-11-19 | 전기 디바이스용 부극, 및 이것을 사용한 전기 디바이스 |
EP13857382.9A EP2924778B1 (en) | 2012-11-22 | 2013-11-19 | Negative electrode for electrical device and electrical device provided with same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-256896 | 2012-11-22 | ||
JP2012256896 | 2012-11-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014080895A1 true WO2014080895A1 (ja) | 2014-05-30 |
Family
ID=50776076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/081146 WO2014080895A1 (ja) | 2012-11-22 | 2013-11-19 | 電気デバイス用負極、及びこれを用いた電気デバイス |
Country Status (6)
Country | Link |
---|---|
US (1) | US10290855B2 (ja) |
EP (1) | EP2924778B1 (ja) |
JP (1) | JP6123807B2 (ja) |
KR (2) | KR101841819B1 (ja) |
CN (1) | CN104813513B (ja) |
WO (1) | WO2014080895A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017527094A (ja) * | 2014-07-22 | 2017-09-14 | リクリッス カンパニー リミテッド | マイクロ電池とこれを利用したpcb基板および半導体チップ |
EP3236520A4 (en) * | 2014-12-17 | 2017-11-22 | Nissan Motor Co., Ltd. | Negative-electrode active material for electrical device, and electrical device using same |
US20220311047A1 (en) * | 2021-03-24 | 2022-09-29 | Samsung Electronics Co., Ltd. | All-solid secondary battery |
JP2023503203A (ja) * | 2020-10-15 | 2023-01-27 | 寧徳新能源科技有限公司 | 電気化学装置及び電子装置 |
US12148876B2 (en) | 2020-10-15 | 2024-11-19 | Ningde Amperex Technology Limited | Electrochemical apparatus and electronic apparatus |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014080895A1 (ja) * | 2012-11-22 | 2014-05-30 | 日産自動車株式会社 | 電気デバイス用負極、及びこれを用いた電気デバイス |
KR20160100348A (ko) | 2014-01-24 | 2016-08-23 | 닛산 지도우샤 가부시키가이샤 | 전기 디바이스 |
KR20160102026A (ko) | 2014-01-24 | 2016-08-26 | 닛산 지도우샤 가부시키가이샤 | 전기 디바이스 |
CN105970022A (zh) * | 2016-05-09 | 2016-09-28 | 山东菲达电力电缆股份有限公司 | 一种耐热铝合金导线、制备方法以及耐热钢芯铝合金绞线 |
US10686193B2 (en) * | 2016-07-25 | 2020-06-16 | Lg Chem, Ltd. | Negative electrode comprising mesh-type current collector, lithium secondary battery comprising the same, and manufacturing method thereof |
EP3595073B1 (en) * | 2017-03-07 | 2022-08-03 | Envision AESC Japan Ltd. | Secondary battery and method for manufacturing secondary battery |
RU2020107103A (ru) * | 2017-07-18 | 2021-08-18 | Ниппон Стил Корпорейшн | Активный материал отрицательного электрода, отрицательный электрод и аккумулятор |
EP3547424B1 (en) * | 2018-03-29 | 2024-06-05 | Toyota Jidosha Kabushiki Kaisha | Anode, and sulfide solid-state battery |
CN115394956A (zh) * | 2022-08-19 | 2022-11-25 | 成都理工大学 | 一种由3d集流体-碳层-硅层构成的一体化负极材料 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004004031A1 (ja) * | 2002-06-26 | 2004-01-08 | Sanyo Electric Co., Ltd. | リチウム二次電池用負極及びリチウム二次電池 |
JP2004228059A (ja) * | 2002-11-29 | 2004-08-12 | Mitsui Mining & Smelting Co Ltd | 非水電解液二次電池用負極及びその製造方法並びに非水電解液二次電池 |
JP2004311429A (ja) * | 2003-03-26 | 2004-11-04 | Canon Inc | リチウム二次電池用の電極材料、該電極材料を有する電極構造体、及び該電極構造体を有する二次電池 |
JP2009517850A (ja) | 2005-12-01 | 2009-04-30 | スリーエム イノベイティブ プロパティズ カンパニー | ケイ素含有量が高いアモルファス合金に基づく電極組成物 |
WO2011065504A1 (ja) * | 2009-11-27 | 2011-06-03 | 日産自動車株式会社 | 電気デバイス用Si合金負極活物質 |
WO2012121240A1 (ja) * | 2011-03-08 | 2012-09-13 | 日産自動車株式会社 | 電気デバイス用負極活物質 |
JP2012185913A (ja) | 2011-03-03 | 2012-09-27 | Nissan Motor Co Ltd | リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池 |
Family Cites Families (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4560524A (en) | 1983-04-15 | 1985-12-24 | Smuckler Jack H | Method of manufacturing a positive temperature coefficient resistive heating element |
JPH08250117A (ja) | 1995-03-09 | 1996-09-27 | Shin Kobe Electric Mach Co Ltd | リチウム二次電池負極用炭素材料及びその製造方法 |
JP4029235B2 (ja) | 1998-10-02 | 2008-01-09 | 大阪瓦斯株式会社 | リチウム二次電池用負極 |
CA2305837C (en) | 1999-04-14 | 2011-05-31 | Sony Corporation | Material for negative electrode and nonaqueous-electrolyte battery incorporating the same |
JP2000299108A (ja) | 1999-04-14 | 2000-10-24 | Sony Corp | 非水電解質電池 |
JP3733067B2 (ja) | 1999-10-22 | 2006-01-11 | 三洋電機株式会社 | リチウム電池用電極及びリチウム二次電池 |
EP1244164A4 (en) | 1999-10-22 | 2007-11-14 | Sanyo Electric Co | ELECTRODE FOR LITHIUM CENTRIC CELL AND LITHIUM CENTRIC CELL |
JP2002083594A (ja) | 1999-10-22 | 2002-03-22 | Sanyo Electric Co Ltd | リチウム電池用電極並びにこれを用いたリチウム電池及びリチウム二次電池 |
US7192673B1 (en) | 1999-10-22 | 2007-03-20 | Sanyo Electric Co., Ltd. | Electrode for rechargeable lithium battery and rechargeable lithium battery |
WO2001029914A1 (fr) | 1999-10-22 | 2001-04-26 | Sanyo Electric Co., Ltd. | Procede de production d'une electrode destine a un accumulateur au lithium |
KR100520872B1 (ko) | 1999-10-22 | 2005-10-12 | 산요덴키가부시키가이샤 | 리튬 전지용 전극 및 리튬 2차전지 |
JP2001196052A (ja) | 2000-01-12 | 2001-07-19 | Sony Corp | 負極及び非水電解質電池 |
US6680143B2 (en) | 2000-06-22 | 2004-01-20 | The University Of Chicago | Lithium metal oxide electrodes for lithium cells and batteries |
JP3848065B2 (ja) | 2000-08-08 | 2006-11-22 | キヤノン株式会社 | 画像形成装置 |
CN1278438C (zh) | 2000-09-25 | 2006-10-04 | 三星Sdi株式会社 | 用于可充电锂电池的正电极活性材料及其制备方法 |
EP1313158A3 (en) | 2001-11-20 | 2004-09-08 | Canon Kabushiki Kaisha | Electrode material for rechargeable lithium battery, electrode comprising said electrode material, rechargeable lithium battery having said electrode , and process for the production thereof |
JP4225727B2 (ja) | 2001-12-28 | 2009-02-18 | 三洋電機株式会社 | リチウム二次電池用負極及びリチウム二次電池 |
JP3744462B2 (ja) | 2002-05-08 | 2006-02-08 | ソニー株式会社 | 非水電解質電池 |
JP4385589B2 (ja) | 2002-11-26 | 2009-12-16 | 昭和電工株式会社 | 負極材料及びそれを用いた二次電池 |
EP2317592B1 (en) | 2002-11-26 | 2019-06-05 | Showa Denko K.K. | Electrode material comprising silicon and/or tin particles and production method and use thereof |
US7811709B2 (en) | 2002-11-29 | 2010-10-12 | Mitsui Mining & Smelting Co., Ltd. | Negative electrode for nonaqueous secondary battery, process of producing the negative electrode, and nonaqueous secondary battery |
JP3643108B2 (ja) | 2003-07-23 | 2005-04-27 | 三井金属鉱業株式会社 | 非水電解液二次電池用負極及び非水電解液二次電池 |
JP4046601B2 (ja) | 2002-12-03 | 2008-02-13 | 大阪瓦斯株式会社 | リチウム二次電池用負極材及びそれを用いたリチウム二次電池 |
US20040137327A1 (en) | 2003-01-13 | 2004-07-15 | Gross Karl J. | Synthesis of carbon/silicon composites |
CA2462168C (en) | 2003-03-26 | 2010-05-11 | Canon Kabushiki Kaisha | Electrode material for lithium secondary battery, electrode structure comprising the electrode material and secondary battery comprising the electrode structure |
US20060040182A1 (en) * | 2003-03-26 | 2006-02-23 | Canon Kabushiki Kaisha | Electrode material for lithium secondary battery and electrode structure having the electrode material |
JP4366222B2 (ja) | 2003-03-26 | 2009-11-18 | キヤノン株式会社 | リチウム二次電池用の電極材料、該電極材料を有する電極構造体、該電極構造体を有する二次電池 |
JP4366101B2 (ja) | 2003-03-31 | 2009-11-18 | キヤノン株式会社 | リチウム二次電池 |
WO2004095612A1 (ja) | 2003-04-23 | 2004-11-04 | Mitsui Mining & Smelting Co., Ltd. | 非水電解液二次電池用負極及びその製造方法並びに非水電解液二次電池 |
JP4029291B2 (ja) | 2003-09-02 | 2008-01-09 | 福田金属箔粉工業株式会社 | リチウム二次電池用負極材料及びその製造方法 |
JP3746501B2 (ja) | 2003-10-09 | 2006-02-15 | 三星エスディアイ株式会社 | リチウム二次電池用電極材料及びリチウム二次電池及びリチウム二次電池用電極材料の製造方法 |
US7479351B2 (en) | 2003-10-09 | 2009-01-20 | Samsung Sdi Co., Ltd. | Electrode material for a lithium secondary battery, lithium secondary battery, and preparation method for the electrode material for a lithium secondary battery |
JP4625672B2 (ja) | 2003-10-30 | 2011-02-02 | 株式会社東芝 | 非水電解質二次電池 |
CN100413122C (zh) | 2004-11-03 | 2008-08-20 | 深圳市比克电池有限公司 | 含锰的多元金属氧化物、锂离子二次电池的正极材料及其制备方法 |
KR100905369B1 (ko) | 2005-01-14 | 2009-07-01 | 파나소닉 주식회사 | 리튬이온 이차전지용 음극 및 그 제조방법과 리튬이온이차전지 및 그 제조방법 |
JP2006216277A (ja) | 2005-02-01 | 2006-08-17 | Canon Inc | リチウム二次電池用電極材料の製造方法、電極構造体および二次電池 |
JP5076288B2 (ja) | 2005-07-14 | 2012-11-21 | 日本電気株式会社 | 二次電池用負極およびそれを用いた二次電池 |
JP2007026926A (ja) | 2005-07-19 | 2007-02-01 | Nec Corp | 二次電池用負極およびこれを用いた二次電池 |
WO2007015508A1 (ja) | 2005-08-02 | 2007-02-08 | Showa Denko K.K. | リチウム二次電池負極用合金 |
CN101233632B (zh) * | 2005-08-02 | 2010-11-24 | 昭和电工株式会社 | 用于锂二次电池负极的合金 |
JP2007149604A (ja) | 2005-11-30 | 2007-06-14 | Sanyo Electric Co Ltd | リチウム二次電池用負極及びリチウム二次電池 |
US7906238B2 (en) | 2005-12-23 | 2011-03-15 | 3M Innovative Properties Company | Silicon-containing alloys useful as electrodes for lithium-ion batteries |
JP2007305424A (ja) | 2006-05-11 | 2007-11-22 | Sony Corp | 負極活物質およびそれを用いた電池 |
US8080335B2 (en) | 2006-06-09 | 2011-12-20 | Canon Kabushiki Kaisha | Powder material, electrode structure using the powder material, and energy storage device having the electrode structure |
JP2008016446A (ja) | 2006-06-09 | 2008-01-24 | Canon Inc | 粉末材料、粉末材料を用いた電極構造体及び該電極構造体を有する蓄電デバイス、並びに粉末材料の製造方法 |
KR101375455B1 (ko) | 2006-08-29 | 2014-03-26 | 강원대학교산학협력단 | 이차 전지용 전극 활물질 |
US10665892B2 (en) | 2007-01-10 | 2020-05-26 | Eocell Limited | Lithium batteries with nano-composite positive electrode material |
EP2122723B1 (en) | 2007-02-06 | 2017-04-12 | 3M Innovative Properties Company | Electrodes including novel binders and methods of making and using the same |
US7875388B2 (en) | 2007-02-06 | 2011-01-25 | 3M Innovative Properties Company | Electrodes including polyacrylate binders and methods of making and using the same |
CN101687404B (zh) | 2007-06-06 | 2013-06-05 | 旭化成电子材料株式会社 | 多层多孔膜 |
JP5343342B2 (ja) | 2007-06-26 | 2013-11-13 | 大同特殊鋼株式会社 | リチウム二次電池用負極活物質およびリチウム二次電池 |
US8105718B2 (en) * | 2008-03-17 | 2012-01-31 | Shin-Etsu Chemical Co., Ltd. | Non-aqueous electrolyte secondary battery, negative electrode material, and making method |
JP2009224239A (ja) | 2008-03-18 | 2009-10-01 | Nissan Motor Co Ltd | 電池用電極 |
JP5046302B2 (ja) | 2008-03-28 | 2012-10-10 | 日立マクセルエナジー株式会社 | 非水二次電池 |
JP5357565B2 (ja) | 2008-05-27 | 2013-12-04 | 株式会社神戸製鋼所 | リチウムイオン二次電池用負極材、および、その製造方法、ならびに、リチウムイオン二次電池 |
US9012073B2 (en) * | 2008-11-11 | 2015-04-21 | Envia Systems, Inc. | Composite compositions, negative electrodes with composite compositions and corresponding batteries |
JP2010205609A (ja) * | 2009-03-04 | 2010-09-16 | Nissan Motor Co Ltd | 電極およびこれを用いた電池 |
KR20110118129A (ko) | 2009-03-24 | 2011-10-28 | 후루카와 덴키 고교 가부시키가이샤 | 리튬 이온 이차 전지, 상기 전지용 전극, 상기 전지 전극용 전해 동박 |
EP2239803A1 (fr) | 2009-04-10 | 2010-10-13 | Saft Groupe Sa | Composition de matiere active pour electrode negative d'accumulateur lithium-ion. |
US20100288077A1 (en) | 2009-05-14 | 2010-11-18 | 3M Innovative Properties Company | Method of making an alloy |
JPWO2010150513A1 (ja) | 2009-06-23 | 2012-12-06 | キヤノン株式会社 | 電極構造体及び蓄電デバイス |
WO2011010421A1 (ja) * | 2009-07-21 | 2011-01-27 | パナソニック株式会社 | 角形の非水電解質二次電池及びその製造方法 |
JP2011048969A (ja) | 2009-08-26 | 2011-03-10 | Toyobo Co Ltd | リチウムイオン二次電池用負極及びこれを用いた二次電池 |
JP6162402B2 (ja) | 2009-08-27 | 2017-07-12 | エンビア・システムズ・インコーポレイテッドEnvia Systems, Inc. | 高い比容量および優れたサイクルを有する積層リチウムリッチ錯体金属酸化物 |
CN102576858B (zh) | 2009-09-25 | 2015-09-30 | 日本瑞翁株式会社 | 锂离子二次电池负极及锂离子二次电池 |
RU2509819C2 (ru) | 2009-11-27 | 2014-03-20 | Ниссан Мотор Ко., Лтд. | Активный материал отрицательного электрода на основе кремниевого сплава для электрического устройства |
US9876221B2 (en) | 2010-05-14 | 2018-01-23 | Samsung Sdi Co., Ltd. | Negative active material for rechargeable lithium battery and rechargeable lithium battery including same |
JP5128695B2 (ja) | 2010-06-28 | 2013-01-23 | 古河電気工業株式会社 | 電解銅箔、リチウムイオン二次電池用電解銅箔、該電解銅箔を用いたリチウムイオン二次電池用電極、該電極を使用したリチウムイオン二次電池 |
JP5850611B2 (ja) * | 2010-11-17 | 2016-02-03 | 三井金属鉱業株式会社 | リチウムイオン二次電池負極集電体用の銅箔、リチウムイオン二次電池負極材及びリチウムイオン二次電池負極集電体選定方法。 |
KR101823187B1 (ko) | 2010-12-27 | 2018-01-29 | 후루카와 덴키 고교 가부시키가이샤 | 리튬이온 이차전지, 그 이차전지용 전극, 그 이차전지의 전극용 전해 동박 |
KR20120090594A (ko) | 2011-02-08 | 2012-08-17 | 삼성전자주식회사 | 고분자 전극의 제조방법 및 고분자 전극을 채용한 고분자 구동기 |
JP5741908B2 (ja) | 2011-03-09 | 2015-07-01 | 日産自動車株式会社 | リチウムイオン二次電池用正極活物質 |
JP2012238581A (ja) | 2011-04-28 | 2012-12-06 | Nichia Chem Ind Ltd | 非水電解液二次電池用正極活物質 |
JP5776888B2 (ja) | 2011-05-25 | 2015-09-09 | 日産自動車株式会社 | 電気デバイス用負極活物質 |
JP5751448B2 (ja) | 2011-05-25 | 2015-07-22 | 日産自動車株式会社 | リチウムイオン二次電池用負極活物質 |
JP5751449B2 (ja) | 2011-05-25 | 2015-07-22 | 日産自動車株式会社 | リチウムイオン二次電池用負極活物質 |
JP5776931B2 (ja) | 2011-05-25 | 2015-09-09 | 日産自動車株式会社 | リチウムイオン二次電池用負極活物質 |
KR20130037091A (ko) | 2011-10-05 | 2013-04-15 | 삼성에스디아이 주식회사 | 음극 활물질 및 이를 채용한 리튬 전지 |
WO2013055646A1 (en) | 2011-10-10 | 2013-04-18 | 3M Innovative Properties Company | Amorphous alloy negative electrode compositions for lithium-ion electrochemical cells |
JP5945903B2 (ja) * | 2011-12-16 | 2016-07-05 | 日産自動車株式会社 | 電気デバイス用負極活物質 |
JP5904363B2 (ja) | 2011-12-27 | 2016-04-13 | 日産自動車株式会社 | 電気デバイス用負極活物質 |
JP5904364B2 (ja) | 2011-12-27 | 2016-04-13 | 日産自動車株式会社 | 電気デバイス用負極活物質 |
JP6465538B2 (ja) | 2012-02-01 | 2019-02-06 | 日産自動車株式会社 | 固溶体リチウム含有遷移金属酸化物の製造方法、非水電解質二次電池用正極の製造方法及び非水電解質二次電池の製造方法 |
US20130202967A1 (en) | 2012-02-07 | 2013-08-08 | Jae-Hyuk Kim | Negative active material for rechargeable lithium battery and rechargeable lithium battery including same |
JP6268729B2 (ja) | 2012-03-23 | 2018-01-31 | 三菱ケミカル株式会社 | 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池 |
JPWO2013145913A1 (ja) | 2012-03-26 | 2015-12-10 | ソニー株式会社 | 正極活物質、正極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 |
JP5999968B2 (ja) * | 2012-05-02 | 2016-09-28 | セイコーインスツル株式会社 | 扁平形一次電池、扁平形一次電池用負極合剤及びその製造方法 |
CN104813511B (zh) | 2012-11-22 | 2017-03-22 | 日产自动车株式会社 | 电气设备用负极、及使用其的电气设备 |
KR20150082516A (ko) | 2012-11-22 | 2015-07-15 | 닛산 지도우샤 가부시키가이샤 | 전기 디바이스용 부극, 및 이것을 사용한 전기 디바이스 |
WO2014080883A1 (ja) | 2012-11-22 | 2014-05-30 | 日産自動車株式会社 | 電気デバイス用負極、及びこれを用いた電気デバイス |
KR101805996B1 (ko) | 2012-11-22 | 2017-12-06 | 닛산 지도우샤 가부시키가이샤 | 전기 디바이스용 부극, 및 이것을 사용한 전기 디바이스 |
CN104781955B (zh) | 2012-11-22 | 2017-05-10 | 日产自动车株式会社 | 电气设备用负极、及使用其的电气设备 |
US20150303464A1 (en) | 2012-11-22 | 2015-10-22 | Nissan Motor Co., Ltd, | Negative electrode for electrical device, and electrical device using the same |
WO2014080895A1 (ja) * | 2012-11-22 | 2014-05-30 | 日産自動車株式会社 | 電気デバイス用負極、及びこれを用いた電気デバイス |
EP2924770B1 (en) | 2012-11-22 | 2018-05-02 | Nissan Motor Co., Ltd | Negative electrode for a lithium-ion battery and electrical device provided with same |
KR20150065815A (ko) | 2012-11-22 | 2015-06-15 | 닛산 지도우샤 가부시키가이샤 | 전기 디바이스용 부극, 및 이것을 사용한 전기 디바이스 |
US20160285088A1 (en) | 2012-11-22 | 2016-09-29 | Nissan Motor Co., Ltd. | Negative electrode for electric device and electric device using the same |
WO2015111190A1 (ja) | 2014-01-24 | 2015-07-30 | 日産自動車株式会社 | 電気デバイス |
KR20160102026A (ko) | 2014-01-24 | 2016-08-26 | 닛산 지도우샤 가부시키가이샤 | 전기 디바이스 |
WO2015111188A1 (ja) | 2014-01-24 | 2015-07-30 | 日産自動車株式会社 | 電気デバイス |
CN106415896B (zh) | 2014-01-24 | 2019-08-09 | 日产自动车株式会社 | 电器件 |
-
2013
- 2013-11-19 WO PCT/JP2013/081146 patent/WO2014080895A1/ja active Application Filing
- 2013-11-19 KR KR1020157010487A patent/KR101841819B1/ko active IP Right Grant
- 2013-11-19 EP EP13857382.9A patent/EP2924778B1/en active Active
- 2013-11-19 KR KR1020187007478A patent/KR20180031067A/ko active IP Right Grant
- 2013-11-19 JP JP2014548572A patent/JP6123807B2/ja active Active
- 2013-11-19 CN CN201380061087.7A patent/CN104813513B/zh active Active
- 2013-11-19 US US14/442,289 patent/US10290855B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004004031A1 (ja) * | 2002-06-26 | 2004-01-08 | Sanyo Electric Co., Ltd. | リチウム二次電池用負極及びリチウム二次電池 |
JP2004228059A (ja) * | 2002-11-29 | 2004-08-12 | Mitsui Mining & Smelting Co Ltd | 非水電解液二次電池用負極及びその製造方法並びに非水電解液二次電池 |
JP2004311429A (ja) * | 2003-03-26 | 2004-11-04 | Canon Inc | リチウム二次電池用の電極材料、該電極材料を有する電極構造体、及び該電極構造体を有する二次電池 |
JP2009517850A (ja) | 2005-12-01 | 2009-04-30 | スリーエム イノベイティブ プロパティズ カンパニー | ケイ素含有量が高いアモルファス合金に基づく電極組成物 |
WO2011065504A1 (ja) * | 2009-11-27 | 2011-06-03 | 日産自動車株式会社 | 電気デバイス用Si合金負極活物質 |
JP2012185913A (ja) | 2011-03-03 | 2012-09-27 | Nissan Motor Co Ltd | リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池 |
WO2012121240A1 (ja) * | 2011-03-08 | 2012-09-13 | 日産自動車株式会社 | 電気デバイス用負極活物質 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017527094A (ja) * | 2014-07-22 | 2017-09-14 | リクリッス カンパニー リミテッド | マイクロ電池とこれを利用したpcb基板および半導体チップ |
US10418661B2 (en) | 2014-07-22 | 2019-09-17 | Rekrix Co., Ltd. | Micro-battery, and PCB and semiconductor chip using same |
EP3236520A4 (en) * | 2014-12-17 | 2017-11-22 | Nissan Motor Co., Ltd. | Negative-electrode active material for electrical device, and electrical device using same |
US10505184B2 (en) | 2014-12-17 | 2019-12-10 | Nissan Motor Co., Ltd. | Negative electrode active material for electric device and electric device using the same |
JP2023503203A (ja) * | 2020-10-15 | 2023-01-27 | 寧徳新能源科技有限公司 | 電気化学装置及び電子装置 |
JP7431846B2 (ja) | 2020-10-15 | 2024-02-15 | 寧徳新能源科技有限公司 | 電気化学装置及び電子装置 |
US12148876B2 (en) | 2020-10-15 | 2024-11-19 | Ningde Amperex Technology Limited | Electrochemical apparatus and electronic apparatus |
US20220311047A1 (en) * | 2021-03-24 | 2022-09-29 | Samsung Electronics Co., Ltd. | All-solid secondary battery |
Also Published As
Publication number | Publication date |
---|---|
KR101841819B1 (ko) | 2018-03-23 |
US20160285076A1 (en) | 2016-09-29 |
EP2924778A4 (en) | 2015-10-28 |
KR20150068405A (ko) | 2015-06-19 |
US10290855B2 (en) | 2019-05-14 |
KR20180031067A (ko) | 2018-03-27 |
CN104813513B (zh) | 2017-06-16 |
JPWO2014080895A1 (ja) | 2017-01-05 |
EP2924778B1 (en) | 2018-09-19 |
CN104813513A (zh) | 2015-07-29 |
EP2924778A1 (en) | 2015-09-30 |
JP6123807B2 (ja) | 2017-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6020591B2 (ja) | リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池 | |
WO2014080895A1 (ja) | 電気デバイス用負極、及びこれを用いた電気デバイス | |
JP6032288B2 (ja) | 電気デバイス用負極、及びこれを用いた電気デバイス | |
WO2014080886A1 (ja) | 電気デバイス用負極、及びこれを用いた電気デバイス | |
EP2645456B1 (en) | Si alloy-containing negative electrode active material for electrical devices | |
JP6040995B2 (ja) | リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池 | |
JP6052299B2 (ja) | 電気デバイス用負極、及びこれを用いた電気デバイス | |
WO2014080887A1 (ja) | 電気デバイス用負極、及びこれを用いた電気デバイス | |
WO2014080893A1 (ja) | 電気デバイス用負極、及びこれを用いた電気デバイス | |
JP6028811B2 (ja) | リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池 | |
JP6052298B2 (ja) | 電気デバイス用負極、及びこれを用いた電気デバイス | |
JP6015769B2 (ja) | リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池 | |
WO2014080883A1 (ja) | 電気デバイス用負極、及びこれを用いた電気デバイス | |
WO2014080900A1 (ja) | 電気デバイス用負極、及びこれを用いた電気デバイス | |
WO2014080898A1 (ja) | 電気デバイス用負極、及びこれを用いた電気デバイス | |
WO2014080903A1 (ja) | 電気デバイス用負極、及びこれを用いた電気デバイス | |
WO2014080902A1 (ja) | 電気デバイス用負極、及びこれを用いた電気デバイス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13857382 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20157010487 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013857382 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14442289 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2014548572 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |