[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016000523A1 - 一种数据传输的方法、系统和设备 - Google Patents

一种数据传输的方法、系统和设备 Download PDF

Info

Publication number
WO2016000523A1
WO2016000523A1 PCT/CN2015/081552 CN2015081552W WO2016000523A1 WO 2016000523 A1 WO2016000523 A1 WO 2016000523A1 CN 2015081552 W CN2015081552 W CN 2015081552W WO 2016000523 A1 WO2016000523 A1 WO 2016000523A1
Authority
WO
WIPO (PCT)
Prior art keywords
feature pattern
domain
signal
orthogonal feature
signals
Prior art date
Application number
PCT/CN2015/081552
Other languages
English (en)
French (fr)
Inventor
康绍莉
孙韶辉
戴晓明
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to KR1020177001658A priority Critical patent/KR101919717B1/ko
Priority to US15/322,079 priority patent/US10454636B2/en
Priority to EP15815217.3A priority patent/EP3166247A4/en
Priority to JP2016575399A priority patent/JP6513108B2/ja
Publication of WO2016000523A1 publication Critical patent/WO2016000523A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • H04L1/0042Encoding specially adapted to other signal generation operation, e.g. in order to reduce transmit distortions, jitter, or to improve signal shape
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular, to a method, system, and device for data transmission.
  • Mobile communication requires all users to share limited wireless resources to achieve simultaneous communication between different users and to minimize interference. This is the multiple access technology.
  • the traditional mobile communication (1G-4G) adopts orthogonal multiple access technology, such as frequency division multiple access, time division multiple access, code division multiple access, orthogonal frequency division multiplexing multiple access, and the like.
  • Time division multiple access is affected by transmission delay and signal multipath propagation. To ensure that users are orthogonal to each other, the protection time needs to be added to the system design. Similarly, due to the non-ideality of the filter, the edge of the signal bandwidth is unlikely to drop, and the out-of-band spread of the signal is inevitable. To ensure orthogonality, the guard bandwidth needs to be added in the frequency division multiple access system. Due to the influence of multipath, code division multiple access cannot be guaranteed to be completely orthogonal between code words, which also brings loss of capacity. The orthogonal frequency division multiplexing multiple access sub-channels have a certain bandwidth overlap, which improves the frequency band utilization.
  • the conventional mobile communication system is designed based on orthogonal multiple access technology and a linear receiver.
  • the orthogonal method can only achieve multi-purpose
  • the inner boundary of the user capacity sector results in a relatively low utilization of radio resources.
  • the present disclosure provides a method, system and device for data transmission.
  • a joint processing between a transmitting end and a receiving end is used to distinguish between non-orthogonal feature patterns based on a plurality of signal domains at a transmitting end.
  • the serial interference cancellation method is used to implement multi-user detection, so that multiple users can further reuse the existing time-frequency radio resources to solve the problem in the prior art.
  • the handover mode can only reach the inner boundary of the multi-user capacity circle, resulting in a problem of low utilization of radio resources.
  • a method based on such a method, system, and device for data transmission is called a pattern segmentation non-orthogonal multiple access technology, or simply a pattern division multiple access (Pattern Division Multiple Access) technique.
  • the transmitting end sends and processes signals of one or more user equipments
  • the transmitting end performs non-orthogonal feature pattern mapping on the processed signals of one or more user equipments, so that signals of different user equipments are superimposed on corresponding radio resources;
  • the transmitting end sends a signal of the processed one or more user equipments according to the result of the non-orthogonal feature pattern mapping.
  • the sending end performs non-orthogonal feature pattern mapping on the processed signal of one or more user equipments, including:
  • the transmitting end uses a single signal domain non-orthogonal feature pattern or a joint signal domain non-orthogonal feature pattern to perform non-orthogonal feature pattern mapping on the processed signal of one or more user equipments.
  • the signal domain comprises part or all of the following:
  • the sending end is a network side device
  • the non-orthogonal feature pattern is a power domain non-orthogonal feature pattern; the transmitting end performs non-orthogonal feature pattern mapping on the processed signals of the plurality of user equipments, including:
  • the transmitting end allocates the same transmission time and frequency resources for the signals of the multiple user equipments, and allocates the transmission power for the signals of the multiple user equipments according to the non-orthogonal feature pattern of the power domain, where the transmission power allocated to all the user equipments The sum is equal to the total power available to the system; or
  • the non-orthogonal feature pattern is a spatial non-orthogonal feature pattern; the transmitting end performs non-orthogonal feature pattern mapping on the processed signals of the plurality of user equipments, including:
  • the transmitting end allocates the same transmission time and frequency resources to the signals of the multiple user equipments, and allocates at least two transmitting antenna ports and at least one transmitting antenna port to the signals of the at least one user equipment according to the spatial non-orthogonal feature pattern. Signals of at least two user equipments; or
  • the non-orthogonal feature pattern is a coding domain non-orthogonal feature pattern; the transmitting end performs non-orthogonal feature pattern mapping on the processed signals of the multiple user equipments, including:
  • the transmitting end allocates the same transmission time and frequency resources for the signals of the multiple user equipments, and allocates different coding modes and different transmission delay differences for the signals of each user equipment according to the non-orthogonal feature pattern of the coding domain.
  • the sending end is a network side device
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the power domain and the spatial domain joint signal domain; the transmitting end performs non-orthogonal feature pattern mapping on the processed signals of the plurality of user equipments, including:
  • the transmitting end allocates the same transmission time and frequency resources for the signals of the multiple user equipments, and allocates the transmission power for the signals of the multiple user equipments according to the non-orthogonal feature pattern of the power domain and the spatial domain joint signal domain, where all users are allocated.
  • the sum of the transmit powers allocated by the device is equal to the total available power of the system, and the signals for the at least one transmit antenna port and the at least one transmit antenna port correspond to the at least two user devices for the signals of the at least one user equipment; or
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the combined signal domain of the power domain and the coding domain; the transmitting end performs non-orthogonal feature pattern mapping on the processed signals of the multiple user equipments, including:
  • the transmitting end allocates the same transmission time and frequency resources for the signals of the multiple user equipments, and allocates the transmission power for the signals of the multiple user equipments according to the non-orthogonal feature pattern of the power domain and the coding domain joint signal domain, where all The sum of the transmit powers allocated by the user equipment is equal to the total available power of the system, and different coding modes and different transmission delay differences are assigned to the signals of each user equipment; or
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the combined signal domain of the spatial domain and the coding domain; the transmitting end performs non-orthogonal feature pattern mapping on the processed signals of the plurality of user equipments, including:
  • the transmitting end allocates the same transmission time and frequency resources for the signals of the multiple user equipments, and allocates at least two transmit antenna ports to the signals of the at least one user equipment according to the non-orthogonal feature pattern of the spatial domain and the coding domain joint signal domain, At least one transmit antenna port corresponds to signals of at least two user equipments, and different coding modes and different transmission delay differences are assigned to signals of each user equipment; or
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the combined signal domain of the power domain, the spatial domain, and the coding domain; and the transmitting end performs non-orthogonal feature pattern mapping on the signals of the processed multiple user equipments, including:
  • the transmitting end allocates the same transmission time and frequency resources for the signals of the multiple user equipments, and allocates the transmission power to the signals of the multiple user equipments according to the non-orthogonal feature patterns of the combined signal domain of the power domain, the air domain, and the coding domain, where The sum of the transmit powers allocated for all user equipments is equal to the total available power of the system, and the signals for the at least one user equipment are assigned at least two transmit antenna ports, the at least one transmit antenna port corresponds to at least two user equipments, and for each The signal of the user equipment is assigned different coding modes and different transmission delay differences.
  • the sending end is a user equipment
  • the non-orthogonal feature pattern is a power domain non-orthogonal feature pattern; the transmitting end performs non-orthogonal feature pattern mapping on the processed signal of a user equipment, including:
  • the transmitting end determines the transmission time and frequency resources of its own signal, and determines the transmission power of its own signal according to the corresponding non-orthogonal feature pattern of the power domain, wherein the transmission time and frequency resources of the signal at the transmitting end and other The signal of the user equipment is transmitted at the same time and frequency; or
  • the non-orthogonal feature pattern is a spatial non-orthogonal feature pattern; the transmitting end performs non-orthogonal feature pattern mapping on the processed signal of a user equipment, including:
  • the transmitting end determines the transmission time and frequency resources of its own signal, and determines the transmitting antenna port corresponding to its own signal according to its corresponding spatial non-orthogonal feature pattern, wherein the transmitting time and frequency resources of the transmitting end are The signal transmission time and frequency resources of other user equipments are the same; or
  • the non-orthogonal feature pattern is a coding domain non-orthogonal feature pattern; the transmitting end performs non-orthogonal feature pattern mapping on the processed signal of a user equipment, including:
  • the transmitting end determines the transmission time and frequency resources of its own signal, and determines the coding mode and the transmission delay difference of the signal according to the non-orthogonal feature pattern of the coding domain; wherein the transmission time and frequency resources of the signal at the transmitting end
  • the transmission time and frequency resources of the signals of other user equipments are the same, and the coding manner of the signals of the transmitting end is different from the coding manner of the signals of other user equipments, and the transmission delay difference of the signals of the transmitting end and the transmission of the signals of other user equipments The delay is different.
  • the sending end is a user equipment
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the power domain and the spatial domain joint signal domain; the transmitting end performs non-orthogonal feature pattern mapping on the processed signal of the user equipment, including:
  • the transmitting end determines a transmission time and a frequency resource of the signal, and determines a transmit power of the signal and a corresponding transmit antenna port according to the non-orthogonal feature pattern of the power domain and the spatial joint signal domain corresponding to the mobile terminal, where
  • the transmission time and frequency resources of the signal at the transmitting end are the same as the transmission time and frequency resources of the signals of other user equipments; or
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the combined signal domain of the power domain and the coding domain; the transmitting end performs non-orthogonal feature pattern mapping on the signal of the processed user equipment, including:
  • the transmitting end determines a transmission time and a frequency resource of the signal, and determines a transmission power, an encoding mode, and a transmission delay difference of the signal according to the non-orthogonal feature pattern of the corresponding power domain and the coding domain joint signal domain;
  • the sending time and the frequency resource of the signal of the sending end are the same as the sending time and the frequency resource of the signal of the other user equipment, and the encoding manner of the signal of the transmitting end is different from the encoding mode of the signal of other user equipment, and the sending of the signal of the transmitting end is performed.
  • the delay difference is different from the delay of the transmission of signals of other user equipment; or
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the combined signal domain of the spatial domain and the coding domain; the transmitting end performs non-orthogonal feature pattern mapping on the signal of the processed user equipment, including:
  • the transmitting end determines the transmission time and frequency resources of its own signal, and determines the transmit antenna port, coding mode, and transmission delay difference corresponding to its own signal according to the corresponding non-orthogonal feature pattern of the spatial domain and the code domain joint signal domain.
  • the sending time and frequency resource of the signal of the transmitting end are the same as the sending time and frequency resource of the signal of the other user equipment, and the encoding manner of the signal of the transmitting end is different from the encoding manner of the signal of other user equipment, and the signal of the transmitting end is The difference in transmission delay is different from the delay of transmission of signals from other user equipment; or
  • the non-orthogonal feature pattern is a non-orthogonal feature map of a joint signal domain of a power domain, a spatial domain, and a coding domain.
  • the transmitting end performs non-orthogonal feature pattern mapping on the signal of the processed user equipment, including:
  • the transmitting end determines the transmission time and frequency resources of its own signal, and determines the transmit antenna port, the transmit power, and the code corresponding to the signal of the corresponding signal domain according to the corresponding non-orthogonal feature pattern of the power domain, the spatial domain and the code domain.
  • Mode and transmission delay difference wherein the transmission time and frequency resources of the signal of the transmitting end are the same as the transmission time and frequency resources of signals of other user equipments, and the coding manner of the signal of the transmitting end is different from the coding manner of the signals of other user equipments.
  • the transmission delay difference of the signal at the transmitting end is different from the transmission delay difference of the signals of other user equipments.
  • the receiving end performs non-orthogonal feature pattern detection on the received signal corresponding to the plurality of user equipments, and determines a non-orthogonal feature pattern corresponding to the received signal;
  • the receiving end performs multi-user equipment detection of the received signal in the serial interference cancellation mode by using the detected non-orthogonal feature pattern, and performs receiving processing to determine data of different user equipments.
  • the receiving end performs non-orthogonal feature pattern detection on the received signal corresponding to the user equipment, including:
  • the receiving end uses a single signal domain non-orthogonal feature pattern or a joint signal domain non-orthogonal feature pattern to perform non-orthogonal feature pattern detection on the received signal.
  • the method before the receiving end performs the non-orthogonal feature pattern detection on the received signal corresponding to the user equipment, the method further includes:
  • the receiving end receives or blindly detects the non-orthogonal feature pattern of the individual signal domain or the non-orthogonal feature pattern of the joint signal domain by signaling.
  • the signal domain comprises part or all of the following:
  • the receiving end performs non-orthogonal feature pattern detection on the received signals corresponding to the multiple user equipments, including:
  • the receiving end determines that the signals received by the multiple user equipments correspond to the same transmission time and frequency resources, but each user equipment has a different transmission power, and then determines that the received signal includes
  • the non-orthogonal feature pattern is a power domain non-orthogonal feature pattern
  • the receiving end determines that a plurality of user equipments are received.
  • the number corresponds to the same transmission time and frequency resource, and the signal of at least one user equipment corresponds to at least two transmit antenna ports, and the at least one receive antenna port corresponds to a transmit signal of at least two user equipments, and then the non-positive included in the received signal is determined.
  • the intersection feature pattern is a spatial non-orthogonal feature pattern; or
  • the receiving end determines that the signals received by the multiple user equipments correspond to the same transmission time and frequency resources, different coding modes, and different transmission delay differences, and then determine the received signal.
  • the included non-orthogonal feature pattern is a code domain non-orthogonal feature pattern.
  • the receiving end performs non-orthogonal feature pattern detection on the received signals corresponding to the multiple user equipments, including:
  • the receiving end determines that the signals received by the multiple user equipments correspond to the same transmission time and frequency resources, and the signals of each user equipment have different transmission powers, and Determining, by the at least one user equipment, the signal corresponding to the at least two transmit antenna ports and the at least one receive antenna port corresponding to the at least two user equipments, determining that the non-orthogonal feature pattern included in the received signal is a power domain and a spatial domain joint signal domain Non-orthogonal feature pattern; or
  • the receiving end determines that the signals received by the multiple user equipments correspond to the same transmission time and frequency resources, different transmission powers, different coding modes, and different Transmitting the delay difference, determining that the non-orthogonal feature pattern included in the received signal is a non-orthogonal feature pattern of the power domain and the coding domain joint signal domain; or
  • the receiving end determines that the signals received by the multiple user equipments correspond to the same transmission time and frequency resources, different coding modes, and different transmission delay differences, and at least The signal of one user equipment corresponds to at least two transmit antenna ports, and the at least one receive antenna port corresponds to a transmit signal of at least two user equipments, and then the non-orthogonal feature pattern included in the received signal is determined to be a spatial domain and a code domain joint signal domain. Orthogonal feature pattern; or
  • the receiving end determines that the signals received by the multiple user equipments correspond to the same transmission time and frequency resources, different transmission powers, different coding modes, and Different transmission delay differences, and at least one user equipment signal corresponding to at least two transmit antenna ports, and at least one receive antenna port corresponding to at least two user equipment transmission signals, determining non-orthogonal feature patterns included in the received signal For power domain, airspace and Coding domain joint signal domain non-orthogonal feature pattern.
  • a first processing module configured to send a signal to one or more user equipments
  • a feature pattern mapping module configured to perform non-orthogonal feature pattern mapping on the processed signals of one or more user equipments, so that signals of different user equipments are superimposed on corresponding radio resources;
  • a sending module configured to send, according to a result of the non-orthogonal feature pattern mapping, a signal of the processed one or more user equipments.
  • the feature pattern mapping module uses a single signal domain non-orthogonal feature pattern or a joint signal domain non-orthogonal feature pattern to perform non-orthogonal feature pattern mapping on the processed signal of one or more user equipments.
  • the signal domain comprises part or all of the following:
  • the sending device is a network side device
  • the feature pattern mapping module allocates the same transmission time and frequency resources for signals of multiple user equipments, and according to the power domain non-orthogonal feature pattern, The signals of the plurality of user equipments are allocated transmit power, wherein the sum of the transmit powers allocated to all user equipments is equal to the total available power of the system; or
  • the feature pattern mapping module allocates the same transmission time and frequency resources for signals of multiple user equipments, and is at least one according to the spatial non-orthogonal feature pattern.
  • the signal of the user equipment is allocated to at least two transmit antenna ports, and the at least one transmit antenna port corresponds to signals of at least two user equipments; or
  • the feature pattern mapping module allocates the same transmission time and frequency resources for signals of multiple user equipments, and according to the non-orthogonal feature pattern of the coding domain, The signal of each user equipment is assigned different coding modes and different transmission delay differences.
  • the sending device is a network side device
  • the feature pattern mapping module allocates the same transmission time and frequency resources for signals of multiple user equipments, and according to the power domain and the air domain.
  • Joint signal domain non-orthogonal feature pattern a letter for multiple user equipment Assigning transmit power, wherein the sum of transmit power allocated for all user equipments is equal to the total available power of the system, and at least two transmit antenna ports are allocated for signals of at least one user equipment, and at least one transmit antenna port corresponds to at least two user equipments Signal; or
  • the feature pattern mapping module allocates the same transmission time and frequency resources for signals of multiple user equipments, and according to the power domain and The coding domain joint signal domain non-orthogonal feature pattern allocates transmit power for signals of multiple user equipments, wherein the sum of the transmit powers allocated to all user equipments is equal to the total available power of the system, and the signal distribution for each user equipment is different. Coding method and different transmission delay differences; or
  • the feature pattern mapping module allocates the same transmission time and frequency resources for signals of multiple user equipments, and according to the air domain and the coding domain.
  • the non-orthogonal feature pattern of the joint signal domain is configured to allocate signals of at least two transmit antenna ports, at least one transmit antenna port, and at least two user equipments for signals of at least one user equipment, and assign different codes to signals of each user equipment. Mode and different transmission delay differences; or
  • the feature pattern mapping module allocates the same transmission time and frequency resources for signals of multiple user equipments, and according to the power
  • the non-orthogonal feature pattern of the combined signal domain of the domain, the airspace, and the coding domain allocates transmit power for signals of multiple user equipments, wherein the sum of transmit power allocated to all user equipments is equal to the total available power of the system, and is at least one user equipment
  • the signal distributes signals of at least two transmit antenna ports, at least one transmit antenna port corresponds to at least two user equipments, and assigns different coding modes and different transmission delay differences to signals of each user equipment.
  • the sending device is a user equipment
  • the feature pattern mapping module determines a transmission time and a frequency resource of its own signal, and determines its own according to its corresponding power domain non-orthogonal feature pattern.
  • a transmission power of a signal wherein a transmission time and a frequency resource of a signal of the transmitting device are the same as a transmission time and a frequency resource of a signal of another user equipment; or
  • the feature pattern mapping module determines a transmission time and a frequency resource of the signal, and according to its corresponding spatial non-orthogonal feature a pattern, determining a transmit antenna port corresponding to the signal of the own device, wherein a sending time and a frequency resource of the signal of the sending device are the same as a sending time and a frequency resource of a signal of another user equipment; or
  • the feature pattern mapping module determines a transmission time and a frequency resource of the signal, and determines a coding of the signal according to the non-orthogonal feature pattern of the coding domain.
  • Mode and transmission delay difference wherein the transmission time and frequency resource of the signal of the sending device are the same as the transmission time and frequency resource of the signal of the other user equipment, and the coding mode of the signal of the transmitting device and the coding of the signal of other user equipment The manner is different, and the difference in the transmission delay of the signal of the transmitting device is different from the delay of the sending delay of the signals of other user equipments.
  • the sending device is a user equipment
  • the feature pattern mapping module determines a transmission time and a frequency resource of the signal, and according to the power domain and the spatial domain joint signal corresponding thereto a non-orthogonal feature pattern of the domain, determining a transmit power of the signal of the own device and a corresponding transmit antenna port, where a sending time and a frequency resource of the signal of the sending device are the same as a sending time and a frequency resource of a signal of another user equipment; or
  • the feature pattern mapping module determines a transmission time and a frequency resource of the signal, and according to its corresponding power domain and coding domain.
  • the non-orthogonal feature pattern of the joint signal domain is used to determine the transmit power, the coding mode, and the transmission delay difference of the signal, and the transmission time and frequency resources of the signal of the transmitting device and the transmission time and frequency of the signals of other user equipments
  • the coding mode of the signal of the transmitting device is different from the coding mode of the signal of the other user equipment
  • the difference of the transmission delay of the signal of the transmitting device is different from the transmission delay of the signal of the other user equipment
  • the feature pattern mapping module determines a transmission time and a frequency resource of the signal, and according to the corresponding spatial and coding domain joint signal
  • the non-orthogonal feature pattern of the domain determines the transmit antenna port, the coding mode, and the transmission delay difference corresponding to the signal of the local device; wherein the sending time and the frequency resource of the transmitting device and the sending time and frequency resources of the signals of other user equipments The same, and the coding mode of the signal of the transmitting device is different from the coding mode of the signal of the other user equipment, and the difference of the transmission delay of the signal of the transmitting device is different from the transmission delay of the signal of the other user equipment; or
  • the feature pattern mapping module determines a transmission time and a frequency resource of the signal, and determines a transmit antenna port corresponding to the signal according to the non-orthogonal feature pattern of the corresponding signal domain of the power domain, the air domain, and the code domain.
  • the coding mode of the signal is different, and the transmission delay difference of the signal of the transmitting device is different from the transmission delay difference of the signals of other user equipments.
  • a memory coupled to the processor via a bus interface and configured to store programs and data used by the processor in performing operations
  • transceiver coupled to the processor and the memory via a bus interface and for receiving and transmitting data under control of the processor
  • a first processing module configured to send a signal to one or more user equipments
  • a feature pattern mapping module configured to perform non-orthogonal feature pattern mapping on the processed signals of one or more user equipments, so that signals of different user equipments are superimposed on corresponding radio resources;
  • a sending module configured to send, according to a result of the non-orthogonal feature pattern mapping, a signal of the processed one or more user equipments to the transceiver for data transmission.
  • a feature pattern detecting module configured to perform non-orthogonal feature pattern detection on the received signals corresponding to the plurality of user equipments, and determine a non-orthogonal feature pattern corresponding to the received signal
  • the second processing module is configured to perform multi-user device detection of the received received signal in a serial interference cancellation manner by using the detected non-orthogonal feature pattern, and perform receiving processing to determine data of different user equipments.
  • the feature pattern detecting module performs non-orthogonal feature pattern detection on the received signal by using a single signal domain non-orthogonal feature pattern or a joint signal domain non-orthogonal feature pattern.
  • the feature pattern detection module further receives or blindly detects a single signal domain non-orthogonal feature pattern or a joint signal domain non-orthogonal feature pattern by signaling.
  • the signal domain comprises part or all of the following:
  • the feature pattern detecting module is specifically configured to:
  • the power domain non-orthogonal feature pattern it is determined that the signals received by the multiple user equipments correspond to the same transmission time and the different transmission powers of the frequency resources, and then the non-orthogonal feature pattern included in the received signal is determined to be a power domain Submit a feature pattern; or
  • the spatial non-orthogonal feature pattern it is determined that the signals received by the multiple user equipments correspond to the same transmission time and frequency resources, and the signals of the at least one user equipment correspond to at least two transmit antenna ports, and at least one receive antenna port corresponds to at least two. Sending signals of the user equipment, determining that the non-orthogonal feature pattern included in the received signal is a spatial non-orthogonal feature pattern; or
  • the coding domain non-orthogonal feature pattern it is determined that the signals received by the multiple user equipments correspond to the same transmission time and frequency resources, different coding modes, and different transmission delay differences, and then the non-positive included in the received signal is determined.
  • the intersection feature pattern is a non-orthogonal feature pattern of the coding domain.
  • the feature pattern detecting module is specifically configured to:
  • the non-orthogonal feature pattern of the joint signal domain of the power domain and the air domain is used, it is determined that the signals received by the multiple user equipments correspond to the same transmission time and frequency resources, and the signals of each user equipment have different transmit powers, and at least one user equipment The signal corresponding to the at least two transmit antenna ports and the at least one receive antenna port corresponding to the transmit signals of the at least two user equipments, determining that the non-orthogonal feature pattern included in the received signal is a non-orthogonal feature of the power domain and the spatial domain joint signal domain Drawing; or
  • the power domain and the coding domain are combined with the non-orthogonal feature pattern of the signal domain, it is determined that the signals received by the multiple user equipments correspond to the same transmission time and frequency resources, different transmission powers, different coding modes, and different transmission delay differences. And determining that the non-orthogonal feature pattern included in the received signal is a non-orthogonal feature pattern of the power domain and the code domain joint signal domain; or
  • the non-orthogonal feature pattern of the combined signal domain of the airspace and the coding domain is used to determine that the signals received by the multiple user equipments correspond to the same transmission time and frequency resources, different coding modes, and different transmission delay differences, and at least one user equipment
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the combined signal domain of the spatial domain and the coding domain; or
  • the power domain, the air domain, and the coded joint signal domain non-orthogonal feature pattern are used, it is determined that the signals received by the multiple user equipments correspond to the same transmission time and frequency resources, different transmit powers, different coding modes, and different transmission delays. If the signal of the at least one user equipment corresponds to the at least two transmit antenna ports and the at least one receive antenna port corresponds to the transmit signal of the at least two user equipments, determining that the non-orthogonal feature pattern included in the received signal is a power domain and a spatial domain And the coding domain joint signal domain non-orthogonal feature pattern.
  • a memory coupled to the processor via a bus interface and configured to store programs and data used by the processor in performing operations
  • transceiver coupled to the processor and the memory via a bus interface and for receiving and transmitting data under control of the processor
  • a feature pattern detecting module configured to perform non-orthogonal feature pattern detection on the received signals corresponding to the plurality of user equipments, and determine a non-orthogonal feature pattern corresponding to the received signal
  • a second processing module configured to perform multi-user device detection of the received received signal in a serial interference cancellation manner by using the detected non-orthogonal feature pattern, and enable the transceiver to perform data receiving processing to determine different users Device data.
  • a sending device configured to send a signal to one or more user equipments; perform non-orthogonal feature pattern mapping on the processed signals of the one or more user equipments, so that signals of different user equipments are in corresponding radio resources Superimposing; transmitting a signal of one or more user equipments after processing according to the result of the non-orthogonal feature pattern mapping;
  • a receiving device configured to perform non-orthogonal feature pattern detection on the received signal corresponding to the plurality of user equipments, determine a non-orthogonal feature pattern corresponding to the received signal, and use the detected non-orthogonal feature pattern to receive the received signal
  • the received signal is subjected to multi-user device detection in a serial interference cancellation mode, and performs reception processing to determine data of different user equipments.
  • the transmitting end performs a transmission process on the signals of one or more user equipments; and performs non-orthogonal feature pattern mapping on the signals of the one or more user equipments after the processing to enable signals of different user equipments.
  • the corresponding radio resource is superimposed, and the signal of the processed one or more user equipments is sent according to the result of the non-orthogonal feature pattern mapping. Since the signals of one or more user equipments can be non-orthogonally superimposed on the radio resources, non-orthogonal multiple access transmission is realized, thereby improving the utilization of radio resources.
  • FIG. 1 is a schematic structural diagram of a system for performing data transmission according to Embodiment 1 of the present disclosure
  • FIG. 2 is a schematic diagram of a bitmap multiple access frame in accordance with an embodiment of the present disclosure
  • 3A is a schematic diagram of a downlink of a bitmap multiple access frame in accordance with an embodiment of the present disclosure
  • 3B is an uplink schematic diagram of a bitmap multiple access frame in accordance with an embodiment of the present disclosure
  • 4A is a schematic diagram of power domain orthogonal and non-orthogonal multiple access techniques in accordance with an embodiment of the present disclosure
  • 4B is a schematic diagram of spatial orthogonal and non-orthogonal multiple access techniques in accordance with an embodiment of the present disclosure
  • 4C is a schematic diagram of a coding domain orthogonal and non-orthogonal multiple access technique in accordance with an embodiment of the present disclosure
  • 4D is a schematic diagram of a power domain and air domain joint non-orthogonal multiple access technology in accordance with an embodiment of the present disclosure
  • 5A is a schematic diagram of an uplink of a power domain non-orthogonal feature pattern mapping process in accordance with an embodiment of the present disclosure
  • FIG. 5B is a downlink diagram of a power domain non-orthogonal feature pattern mapping process according to an embodiment of the present disclosure.
  • 6A is a schematic diagram of an uplink of a spatial domain non-orthogonal feature pattern mapping process according to an embodiment of the present disclosure
  • 6B is a schematic diagram of a downlink of a spatial domain non-orthogonal feature pattern mapping process according to an embodiment of the present disclosure
  • FIG. 7A is a schematic diagram of an uplink of a coding domain non-orthogonal feature pattern mapping process according to an embodiment of the present disclosure
  • FIG. 7B is a schematic diagram of a downlink of a coding domain non-orthogonal feature pattern mapping process according to an embodiment of the present disclosure
  • 8A is a schematic diagram of an uplink of a power domain and spatial domain joint signal domain non-orthogonal feature pattern mapping process according to an embodiment of the present disclosure
  • 8B is a schematic diagram of a downlink of a power domain and spatial domain joint signal domain non-orthogonal feature pattern mapping process according to an embodiment of the present disclosure
  • 9A is a schematic diagram of an uplink of a power domain and a coding domain joint signal domain non-orthogonal feature pattern mapping process according to an embodiment of the present disclosure
  • 9B is a schematic diagram of a downlink of a power domain and a coding domain joint signal domain non-orthogonal feature pattern mapping process according to an embodiment of the present disclosure
  • FIG. 10 is a schematic structural diagram of a transmitting device in a system for performing data transmission according to Embodiment 2 of the present disclosure
  • FIG. 11 is a schematic structural diagram of a receiving device in a system for performing data transmission according to Embodiment 3 of the present disclosure
  • FIG. 12 is a schematic structural diagram of a transmitting device in a system for performing data transmission according to Embodiment 4 of the present disclosure
  • FIG. 13 is a schematic structural diagram of a receiving device in a system for performing data transmission according to Embodiment 5 of the present disclosure
  • FIG. 14 is a schematic flow chart of a method for performing data transmission according to Embodiment 6 of the present disclosure.
  • FIG. 15 is a schematic flowchart of a method for performing data transmission according to Embodiment 7 of the present disclosure.
  • the transmitting end performs a transmission process on the signals of one or more user equipments, and performs non-orthogonal feature pattern mapping on the signals of the one or more user equipments after the processing, so that the signals of different user equipments correspond to each other.
  • the wireless resources are superimposed, and the processed signals of one or more user equipments are transmitted according to the result of the non-orthogonal feature pattern mapping. Since the signals of one or more user equipments can be non-orthogonally superimposed on the radio resources, non-orthogonal multiple access transmission is realized, thereby improving the utilization of radio resources.
  • the non-orthogonal feature pattern mentioned above refers to superimposing signal patterns having certain characteristics on the same time domain and frequency domain resources, so that these signals cannot be orthogonal on the same time domain and frequency domain resources.
  • the way is divided.
  • the non-orthogonal feature pattern mapping mentioned above refers to non-orthogonal signals to multiple users when performing multi-user transmission on the same time domain and frequency domain resources.
  • the feature pattern is superimposed to perform signal superposition transmission, and each user's signal corresponds to a signal pattern in the non-orthogonal feature pattern.
  • the embodiments of the present disclosure may perform further multi-user multiplexing on resources of the existing orthogonal multiple access, thereby implementing non-orthogonal multiple access transmission; or directly multiplexing multiple users, thereby implementing Non-orthogonal multiple access transmission.
  • the transmitting end is a user equipment, and the receiving end is a network side device;
  • the transmitting end is a network side device, and the receiving end is a user equipment.
  • the network side device of the embodiment of the present disclosure may be a base station (such as a macro base station, a micro base station, a home base station, etc.), or may be an RN (Relay) device, and may also be other network side devices that are known or unknown.
  • a base station such as a macro base station, a micro base station, a home base station, etc.
  • RN Relay
  • a system for performing data transmission in Embodiment 1 of the present disclosure includes: a transmitting device 10 and a receiving device 20.
  • the sending device 10 is configured to perform a sending process on the signals of the one or more user equipments, and perform non-orthogonal feature pattern mapping on the processed signals of the one or more user equipments, so that the signals of the different user equipments are in the corresponding wireless Resource superposition; transmitting the signal of one or more user equipments after processing according to the result of the non-orthogonal feature pattern mapping.
  • the receiving device 20 is configured to perform non-orthogonal feature pattern detection on the received signals corresponding to the plurality of user equipments, determine a non-orthogonal feature pattern corresponding to the received signal, and use the detected non-orthogonal feature pattern to collect
  • the received signal is subjected to multi-user equipment detection by Serial Interference Cancellation (SIC), and receiving processing is performed to determine data of different user equipments.
  • SIC Serial Interference Cancellation
  • the sending device performs non-orthogonal feature pattern mapping on the processed signals of the one or more user equipments, including:
  • the transmitting device performs non-orthogonal feature pattern mapping on the processed signal of one or more user equipments by using a separate signal domain non-orthogonal feature pattern or a joint signal domain non-orthogonal feature pattern.
  • the receiving device performs non-orthogonal feature pattern detection on the received signal by using a single signal domain non-orthogonal feature pattern or a joint signal domain non-orthogonal feature pattern.
  • the signal domain includes but is not limited to some or all of the following:
  • the transmitting device is a user equipment
  • the receiving device is a network side device.
  • the transmitting device is a network side device
  • the receiving device is a user device.
  • Case 1 For downlink transmission, the transmitting device is a network side device, and the receiving device is a user device.
  • the non-orthogonal feature pattern is a power domain non-orthogonal feature pattern.
  • the sending device performs non-orthogonal feature pattern mapping on the signals of the processed multiple user equipments, including:
  • the transmitting device allocates the same transmission time and frequency resources for the signals of the multiple user equipments, and allocates transmit power for the signals of the multiple user equipments according to the non-orthogonal feature pattern of the power domain, where the transmit power allocated for all user equipments The sum is equal to the total available power of the system to distinguish between different user devices.
  • the receiving device uses the power domain non-orthogonal feature pattern to determine that the signals received by the multiple user equipments correspond to the same transmission time and frequency resources, and each user equipment has different transmit power, determine the received
  • the non-orthogonal feature pattern included in the signal is a power domain non-orthogonal feature pattern.
  • All user equipments in the embodiments of the present disclosure are in the same area, such as the same cell, unless otherwise specified.
  • the transmit power is allocated for signals of a plurality of user equipments, wherein the sum of the transmit powers allocated for all user equipments is equal to the total available power of the system. That is, the transmit power of multiple user equipment signals overlapping on the same time-frequency resource is allocated on the maximum available transmit power of the time-frequency resource according to specific constraints.
  • the base station transmits signals of two user equipments
  • a power allocation factor ⁇ (0 ⁇ 1) is set, and the power equipment ⁇ P is allocated to the user equipment 1 as a user equipment. 2 distribute power (1- ⁇ )P.
  • the non-orthogonal feature pattern is a spatial non-orthogonal feature pattern.
  • the sending device performs non-orthogonal feature pattern mapping on the signals of the processed multiple user equipments, including:
  • the transmitting device allocates the same transmission time and frequency resources for the signals of the multiple user equipments, and allocates at least two transmit antenna ports and at least one transmit antenna port for the signals of the at least one user equipment according to the spatial non-orthogonal feature pattern.
  • the signal is transmitted on the corresponding transmitting antenna. For example, if a signal corresponds to two antennas, the signal is transmitted on the two antennas respectively.
  • the receiving device uses the spatial non-orthogonal feature pattern, it is determined that the signals received by the multiple user equipments correspond to the same transmission time and frequency resources, and the signals of the at least one user equipment correspond to at least two transmit antenna ports, at least A transmit antenna port corresponds to signals of at least two user equipments, and then determining that the non-orthogonal feature pattern included in the received signal is a spatial non-orthogonal feature pattern.
  • signals for at least one user equipment are assigned at least two transmit antenna ports, and at least one transmit antenna port corresponds to signals of at least two user equipments, wherein each antenna port is an identifiable baseband logic unit.
  • Each baseband logic unit may correspond to one physical antenna or a combination of multiple physical antennas.
  • the base station uses two antennas to transmit signals of two user equipments, if it is an orthogonal transmission mode, only one data stream can be transmitted for each user, and two data streams are transmitted without loss of generality.
  • the data stream of 1 is denoted as S 1 and transmitted on the first antenna
  • the data stream of user 2 is denoted as S 2 and transmitted on the second antenna.
  • the base station may transmit data streams is greater than two, without loss of generality, assume the base station can transmit a user data stream over 2 S 3.
  • the data stream S 1 of user 1 is transmitted on antenna 1
  • the data stream S 2 of user 2 is transmitted on antenna 1
  • the data stream S 3 of user 2 is transmitted on antenna 2. That is, the antenna 1 corresponds to the data stream S 1 of the user 1 and the data stream S 2 of the user 2, and the antenna 2 corresponds to the data stream S 3 of the user 2.
  • the data stream S 1 of user 1 is simultaneously transmitted on antenna 1 and antenna 2, the data stream S 2 of user 2 is transmitted on antenna 1, and the data stream S 3 of user 2 is
  • the antenna 2 transmits, that is, the antenna 1 corresponds to the data stream S 1 of the user 1 and the data stream S 2 of the user 2 , and the antenna 2 corresponds to the data stream S 1 of the user 1 and the data stream S 3 of the user 2.
  • the spatially non-orthogonal transmission method with spatial coding has higher detection performance for the corresponding receiving end because it has more transmission information.
  • the non-orthogonal feature pattern is a coding domain non-orthogonal feature pattern.
  • the sending device performs non-orthogonal feature pattern mapping on the signals of the processed multiple user equipments, including:
  • the transmitting device allocates the same transmission time and frequency resources for the signals of the multiple user equipments, and allocates different coding modes and different transmission delay differences for the signals of each user equipment according to the non-orthogonal feature pattern of the coding domain. To distinguish between different user devices.
  • the receiving device uses the coding domain non-orthogonal feature pattern to determine that the signals received by the multiple user equipments correspond to the same transmission time and frequency resources, different coding modes, and different transmission delay differences, determine the reception.
  • the non-orthogonal feature pattern included in the signal is a non-orthogonal feature pattern of the coding domain.
  • the base station transmits the signals of the three user equipments
  • the encoded data stream of the user equipment 1 is transmitted at a certain time
  • the encoded data stream of the user equipment 2 is delayed by t 1 with respect to the user equipment 1 .
  • the encoded data stream of the user equipment 3 is sent after being delayed by t 2 with respect to the user equipment 2.
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of a joint signal domain of a power domain and a spatial domain.
  • the sending device performs non-orthogonal feature pattern mapping on the signals of the processed multiple user equipments, including:
  • the transmitting device allocates the same transmission time and frequency resources for the signals of the multiple user equipments, and allocates the transmission power for the signals of the multiple user equipments according to the non-orthogonal feature patterns of the power domain and the spatial domain joint signal domain.
  • the sum of the transmit powers allocated to all user equipments is equal to the total available power of the system, and the signals of at least two transmit antenna ports and at least one transmit antenna port corresponding to at least two user equipments are allocated to signals of at least one user equipment to distinguish different User equipment.
  • the receiving device uses the non-orthogonal feature pattern of the power domain and the spatial domain joint signal domain, it is determined that the signals received by the multiple user equipments correspond to the same transmission time and frequency resources, and different user equipments have different transmit powers, and Determining, by the at least one user equipment, a signal corresponding to at least two transmit antenna ports and at least one transmit antenna port corresponding to at least two user equipments, determining that the non-orthogonal feature pattern included in the received signal is a power and air domain joint signal domain is not positive Cross the feature pattern.
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of a joint signal domain of a power domain and a coding domain.
  • the sending device performs non-orthogonal feature pattern mapping on the signals of the processed multiple user equipments, including:
  • the transmitting device allocates the same transmission time and frequency resources for the signals of the multiple user equipments, and allocates the transmission power for the signals of the multiple user equipments according to the non-orthogonal feature patterns of the power domain and the coding domain joint signal domain.
  • the sum of the transmit powers allocated to all user equipments is equal to the total available power of the system, and different coding modes and different transmission delay differences are assigned to the signals of each user equipment to distinguish different user equipments.
  • the receiving device uses the power domain and the coding domain joint signal domain non-orthogonal feature pattern, it is determined that the signals received by the multiple user equipments correspond to the same transmission time and frequency resources, different transmission powers, and different coding modes. And different transmission delay differences, it is determined that the non-orthogonal feature pattern included in the received signal is a non-orthogonal feature pattern of the power domain and the coding domain joint signal domain.
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of a joint signal domain of a spatial domain and a coding domain.
  • the sending device performs non-orthogonal feature pattern mapping on the signals of the processed multiple user equipments, including:
  • the transmitting device allocates the same transmission time and frequency resources for the signals of the multiple user equipments, and allocates at least two transmit antenna ports to the signals of the at least one user equipment according to the non-orthogonal feature pattern of the spatial domain and the coding domain joint signal domain, At least one transmit antenna port corresponds to signals of at least two user equipments, and different coding modes and different transmission delay differences are assigned to signals of each user equipment to distinguish different user equipments.
  • the receiving device uses the spatial and coding domain joint signal domain non-orthogonal feature pattern, it is determined that the signals received by the multiple user equipments correspond to the same transmission time and frequency resources, different coding modes, and different transmission delays. If the signal of the at least one user equipment corresponds to the signal of the at least two transmit antenna ports and the at least one transmit antenna port corresponds to the at least two user equipments, determining that the non-orthogonal feature pattern included in the received signal is a space domain and a code domain joint Signal domain non-orthogonal feature pattern.
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of a joint signal domain of a power domain, a spatial domain, and a coding domain.
  • the transmitting device performs non-orthogonal feature mapping on signals of the processed multiple user equipments Shooting, including:
  • the transmitting device allocates the same transmission time and frequency resources for the signals of the multiple user equipments, and allocates the transmission power to the signals of the multiple user equipments according to the non-orthogonal feature patterns of the power domain, the air domain, and the coding domain joint signal domain.
  • the sum of the transmit powers allocated for all user equipments is equal to the total available power of the system, and the signals for the at least one transmit antenna port, the at least one transmit antenna port corresponding to the at least two user equipments, and the The signals of the user equipments are assigned different coding modes and different transmission delay differences to distinguish different user equipments.
  • the receiving device uses the non-orthogonal feature pattern of the combined signal domain of the power domain, the air domain, and the coding domain, determining that the signals received by the multiple user equipments correspond to the same occurrence time and frequency resources, different transmit powers, and different Encoding mode and different transmission delay differences, and signals of at least one user equipment corresponding to at least two transmit antenna ports and at least one transmit antenna port corresponding to signals of at least two user equipments, determining non-orthogonality included in the received signal
  • the feature pattern is a non-orthogonal feature pattern of the joint signal domain of the power domain, the air domain and the coding domain.
  • Case 2 In the uplink transmission, the sending device is a user equipment, and the receiving device is a network side device.
  • the non-orthogonal feature pattern is a power domain non-orthogonal feature pattern.
  • the sending device performs non-orthogonal feature pattern mapping on the processed signal of the user equipment, including:
  • the transmitting device determines a transmission time and a frequency resource of its own signal, and determines a transmission power of its own signal according to a power domain non-orthogonal feature pattern corresponding thereto, wherein a transmission time and a frequency resource of the signal of the transmitting device are The signal transmission time and frequency resources of other user equipments are the same.
  • the receiving device uses the power domain non-orthogonal feature pattern to determine that the signals received by the multiple user equipments correspond to the same transmission time and frequency resources, and different user equipments have different transmission powers, determine the received signals.
  • the included non-orthogonal feature pattern is a power domain non-orthogonal feature pattern.
  • All user equipments in the embodiments of the present disclosure are in the same area, such as the same cell, unless otherwise specified.
  • the non-orthogonal feature pattern is a spatial non-orthogonal feature pattern.
  • the transmitting device performs non-orthogonal feature pattern mapping on the processed signal of one user equipment Shooting, including:
  • the transmitting device determines a transmission time and a frequency resource of the signal, and determines a transmitting antenna port corresponding to the signal according to the spatial non-orthogonal feature pattern corresponding to the mobile device, where the sending time and the frequency resource of the signal of the sending device.
  • the transmission time and frequency resources of the signals of other user equipments are the same.
  • the receiving device uses the spatial non-orthogonal feature pattern, it is determined that the signals received by the multiple user equipments correspond to the same transmission time and frequency resources, and the signals of the at least one user equipment correspond to at least two transmit antenna ports, at least A transmit antenna port corresponds to signals of at least two user equipments, and then determining that the non-orthogonal feature pattern included in the received signal is a spatial non-orthogonal feature pattern.
  • the user equipment uses two transmission antennas, the user equipment transmits only one data stream in the case of S 1, S 2 are transmitted on antennas 1 and 1; the user equipment transmits two data streams S 1 and S 2 is a case where, without loss of generality, a data stream may be transmitted in the S 1 antenna 1, antenna 2 in the transmission data stream S 2.
  • the non-orthogonal feature pattern is a coding domain non-orthogonal feature pattern.
  • the sending device performs non-orthogonal feature pattern mapping on the processed signal of the user equipment, including:
  • the transmitting device determines a transmission time and a frequency resource of its own signal, and determines a coding mode and a transmission delay difference of the signal according to the non-orthogonal feature pattern of the coding domain.
  • the sending time and the frequency resource of the signal of the sending device are the same as the sending time and the frequency resource of the signal of the other user equipment, and the encoding manner of the signal of the sending device is different from the encoding mode of the signal of the other user equipment, and the sending device is different.
  • the difference in the transmission delay of the signal is different from the delay in the transmission of the signals of other user equipments.
  • the receiving device uses the coding domain non-orthogonal feature pattern to determine that the signals received by the multiple user equipments correspond to the same occurrence time and frequency resources, different coding modes, and different transmission delay differences, determine the reception.
  • the non-orthogonal feature pattern included in the signal is a non-orthogonal feature pattern of the coding domain.
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of a joint signal domain of a power domain and a spatial domain.
  • the transmitting device performs non-orthogonal feature pattern mapping on the processed signal of one user equipment Shooting, including:
  • the transmitting device determines a transmission time and a frequency resource of the signal, and determines a transmit power of the signal and a corresponding transmit antenna port according to the non-orthogonal feature pattern of the power domain and the spatial joint signal domain corresponding to the mobile device, where The transmission time and frequency resources of the signal of the transmitting device are the same as the transmission time and frequency resources of the signals of other user equipments.
  • the receiving device uses the non-orthogonal feature pattern of the power domain and the spatial domain joint signal domain, it is determined that the signals received by the multiple user equipments correspond to the same transmission time and frequency resources, and at least two user equipments have different transmit powers. And determining, by the signal of the at least one user equipment, the signal corresponding to the at least two transmit antenna ports and the at least one transmit antenna port corresponding to the at least two user equipments, determining that the non-orthogonal feature pattern included in the received signal is a power domain and a spatial domain joint signal Domain non-orthogonal feature pattern.
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of a joint signal domain of a power domain and a coding domain.
  • the sending device performs non-orthogonal feature pattern mapping on the processed signal of the user equipment, including:
  • the transmitting device determines a transmission time and a frequency resource of its own signal, and determines a transmission power, an encoding mode, and a transmission delay difference of the signal according to the non-orthogonal feature pattern of the corresponding power domain and the coding domain joint signal domain.
  • the sending time and the frequency resource of the signal of the sending device are the same as the sending time and the frequency resource of the signal of the other user equipment, and the encoding manner of the signal of the sending device is different from the encoding mode of the signal of the other user equipment, and the sending device is different.
  • the difference in the transmission delay of the signal is different from the delay in the transmission of the signals of other user equipments.
  • the receiving device uses the power and coding domain joint signal domain non-orthogonal feature pattern, it is determined that the signals received by the multiple user equipments correspond to the same transmission time and frequency resources, and at least two users have different transmission powers. The at least two users have different coding modes and different transmission delay differences, and then determine that the non-orthogonal feature pattern included in the received signal is a power domain and a coding domain joint signal domain non-orthogonal feature pattern.
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of a joint signal domain of a spatial domain and a coding domain.
  • the transmitting device performs non-orthogonal feature pattern mapping on the processed signal of one user equipment Shooting, including:
  • the transmitting device determines a transmission time and a frequency resource of the signal, and determines a transmit antenna port, a coding mode, and a transmission delay difference corresponding to the signal according to the non-orthogonal feature pattern of the combined spatial domain and the code domain of the corresponding domain. .
  • the sending time and the frequency resource of the signal of the sending device are the same as the sending time and the frequency resource of the signal of the other user equipment, and the encoding manner of the signal of the sending device is different from the encoding mode of the signal of the other user equipment, and the sending device is different.
  • the difference in the transmission delay of the signal is different from the delay in the transmission of the signals of other user equipments.
  • the receiving device uses the spatial and coding domain joint signal domain non-orthogonal feature pattern, it is determined that the signals received by the multiple user equipments correspond to the same transmission time and frequency resources, and at least two users have different coding modes and Different transmission delay differences, and the signals of the at least one user equipment correspond to the signals of the at least two transmit antenna ports and the at least one transmit antenna port corresponding to the at least two user equipments, determining that the non-orthogonal feature pattern included in the received signal is The spatial and coding domain joint signal domain non-orthogonal feature patterns.
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of a joint signal domain of a power domain, a spatial domain, and a coding domain.
  • the sending device performs non-orthogonal feature pattern mapping on the processed signal of the user equipment, including:
  • the transmitting device determines a transmission time and a frequency resource of the signal, and determines a transmit antenna port, a transmit power, and a code corresponding to the signal according to the non-orthogonal feature pattern of the power domain, the air domain, and the code domain.
  • Mode and transmission delay difference The sending time and the frequency resource of the signal of the sending device are the same as the sending time and the frequency resource of the signal of the other user equipment, and the encoding manner of the signal of the sending device is different from the encoding mode of the signal of the other user equipment, and the sending device is different.
  • the difference in the transmission delay of the signal is different from the delay of the transmission of the signals of other user equipments to distinguish different user equipments.
  • the receiving device uses the non-orthogonal feature pattern of the combined signal domain of the power domain, the air domain, and the coding domain, it is determined that the signals received by the multiple user equipments correspond to the same transmission time and frequency resources, and at least two users have different Transmit power, at least two users have different coding modes and different transmission delay differences, and at least one user equipment signal corresponds to at least two transmit antenna ports, and at least one transmit antenna port corresponds to at least two user equipment signals, Determine the received signal
  • the non-orthogonal feature pattern included is a non-orthogonal feature pattern of the joint signal domain of the power domain, the spatial domain, and the coding domain.
  • the receiving device When the receiving device performs multi-user detection in the serial interference cancellation mode, the detection signals of multiple user equipments are separated step by step and the co-channel interference is eliminated in time, thereby achieving high-precision detection of multi-user equipment.
  • the embodiment of the present disclosure adopts a joint processing of a transmitting end and a receiving end, and uses a non-orthogonal feature pattern of multiple signal domains to distinguish users at the transmitting end, and adopts a serial interference canceling manner based on the feature structure of the user pattern at the receiving end. Multi-user detection, so that multiple users can further reuse existing time-frequency radio resources.
  • a technique based on such a method, system, and device for data transmission is called a pattern segmentation non-orthogonal multiple access technique, or simply a Pattern Division Multiple Access (PDMA) technique.
  • PDMA Pattern Division Multiple Access
  • the base station includes a transmitting end and a receiving end.
  • the base station When transmitting, the base station performs modulation and transmission of the downlink communication signal through the transmitting end.
  • the base station completes the reception and detection of the uplink communication signal through the receiving end.
  • FDMA/TDMA/CDMA/OFDMA which distinguishes multi-user information by orthogonal signal domain (time domain, frequency domain, code domain)
  • PDMA uses signal in the power domain, airspace, and coding domain alone or in combination.
  • the orthogonal signal feature pattern distinguishes multiple user signals, and the serial interference cancellation detection receiving method is used to effectively detect multi-user signals at the receiving end, thereby realizing multi-user non-orthogonal transmission in the time-frequency domain and improving the transmitted spectrum. effectiveness.
  • FIG. 3A shows a downlink diagram of the picture division multiple access system.
  • the transmitting end after transmitting and processing the signal of the multi-user equipment (such as encoding, modulation, etc.), performing non-orthogonal feature pattern mapping, and completing the non-orthogonal signal of the multi-user equipment at the transmitting end in the time-frequency domain. Superimposed.
  • the signal of the multi-user equipment such as encoding, modulation, etc.
  • the receiving end taking a user equipment as an example, first performing non-orthogonal feature pattern detection on the time-frequency domain superimposed signal of the received user equipment, and initially identifying the signal, and then using the string for the preliminary identification signal.
  • the detection of the active user equipment is performed by means of interference cancellation.
  • the above process is similar to single antenna reception, except that the front end of the receiving end is changed from single antenna reception to multi-antenna reception.
  • FIG. 3B shows an uplink diagram of the bitmap multiple access system.
  • the transmitting end in the case of N user equipments, each user equipment separately encodes and modulates the respective signals, and then performs non-orthogonal feature pattern mapping to complete the transmission signals of multiple users. Non-orthogonal superposition of the same time-frequency domain.
  • the receiving end the base station first performs non-orthogonal feature pattern detection on the received multi-user time-frequency domain superimposed signal, and performs preliminary identification on the signal, and then adopts serial interference cancellation mode on the initially identified multi-user signal. To perform detection of each user equipment.
  • the above process is similar to single antenna transmission, except that the back end of the transmitting end is transmitted from a single antenna to a multi-antenna transmission.
  • non-orthogonal feature pattern mapping it may be a single non-orthogonal feature pattern of a signal domain, or a joint non-orthogonal feature pattern of multiple signal domains, such as power domain non-orthogonal feature pattern mapping, spatial domain non- Orthogonal feature pattern mapping, coding domain non-orthogonal feature pattern mapping, power domain and spatial domain joint non-orthogonal feature pattern mapping, power domain and coding domain joint non-orthogonal feature pattern mapping, spatial domain and coding domain joint non-orthogonal feature pattern Mapping, power domain and spatial and coding domain joint non-orthogonal feature pattern mapping, and so on.
  • the power domain pattern segmentation technology performs power allocation according to the channel quality of the user equipment.
  • each user equipment can occupy all time-frequency resources of the system, assist the user scheduling algorithm at the transmitting end, and perform serial interference cancellation mode at the receiving end, in the system and Capacity, per-user capacity, and especially cell edge user capacity have all been improved.
  • 5A and 5B show an example to illustrate the specific process of power domain non-orthogonal feature pattern mapping on the uplink and downlink. It includes two basic processes of time-frequency resource allocation and power allocation. The order of the two processes can be reversed without following the order in the figure.
  • FIG. 4A shows the difference of non-orthogonal versus orthogonal pair radio resource occupation.
  • orthogonal mode different user equipments use different frequency resources.
  • non-orthogonal mode different user equipments use the same frequency resource and different powers to distinguish user equipment.
  • the power domain non-orthogonal feature pattern is a power vector corresponding to each user time-frequency resource block.
  • the spatial pattern segmentation technique is based on the serial interference cancellation method, and spatially encodes the signal of the user equipment, so that the signal of the user equipment can be effectively segmented after the serial interference cancellation detection, thereby realizing multiple access.
  • Figure 6A and Figure 6B show an example to illustrate spatial non-orthogonal feature pattern mapping The specific process in the uplink and downlink. It includes two basic processes of time-frequency resource allocation and spatial coding. The order of the two processes can be reversed without following the order in the figure.
  • Figure 4B shows the difference in radio resource occupancy between two non-orthogonal methods, spatial-free coding and spatial coding.
  • the signal of the user 1 is transmitted only on the antenna 1, and the signal of the user 2 is transmitted on the antenna 1 and the antenna 2, which makes it difficult to simultaneously detect the signals of the user 1 and the user 2 using only the antenna 1.
  • the signal of the user 1 is repeatedly transmitted on the antenna 1 and the antenna 2, so that each antenna has a superposition of multi-user signals, so that the receiving end can fully utilize the receiving information of the multiple antennas. For multi-user detection, the performance is more accurate.
  • This spatial non-orthogonal feature pattern is the spatial coding matrix of each user in different antenna elements.
  • the coding domain pattern segmentation technique performs multi-code stream superposition on the multi-user data stream before encoding and delaying, and realizes the similar channel coding structure connection between the data of multiple users, and performs structural optimization design based on channel coding theory.
  • 7A and 7B show an example to illustrate the specific process of coding domain non-orthogonal feature pattern mapping on the uplink and downlink. It includes three basic processes of copying, interleaving, and delay. Copying and interleaving are the processes of data encoding. The order of data encoding and delay can be reversed, not in the order of the figure.
  • Figure 4C shows the difference between non-orthogonal and orthogonal pairs of radio resources.
  • orthogonal mode different user equipments use different frequency resources.
  • non-orthogonal mode different user equipments use the same frequency resource, different coding modes, and different transmission delay differences to distinguish users. device.
  • the coding domain non-orthogonal feature pattern is the coding sequence of each user and the corresponding transmission delay difference.
  • 8A and 8B show the specific process of mapping the power domain and the spatial domain joint non-orthogonal feature pattern on the uplink and downlink.
  • 9A and 9B show the specific process of mapping the power domain and the coding domain joint non-orthogonal feature pattern on the uplink and downlink.
  • Other multi-domain joint non-orthogonal feature pattern mappings can be easily introduced, and will not be described here. The order of the various processes in the figure can be reversed without following the order in the figure.
  • FIG. 4D shows the superposition of signals of multiple user equipments in the power domain and the air domain.
  • Different user equipments can use the same time-frequency resource, but There is a distinction between power and spatial coding.
  • the non-orthogonal feature pattern of the joint domain of the power domain and the spatial domain is a combination of a power non-orthogonal feature pattern and a spatially encoded non-orthogonal feature pattern.
  • each data block can only transmit nine (9) symbols. That is, embodiments of the present disclosure have higher spectral efficiency and higher degree of diversity (lower errors) than orthogonal.
  • the embodiments of the present disclosure mainly illustrate the picture division multiple access technology in the three types of signal domains: power domain, air domain, and code domain.
  • the user's non-orthogonal feature pattern can be further extended to other potential signal domains.
  • the non-orthogonal feature pattern design of the transmitting end is easy to adopt the serial interference cancellation detection method at the receiving end, so that the system has high performance and low complexity.
  • the pattern mapping at the transmitting end can realize effective segmentation of user information, and the user pattern can be clearly distinguished at the receiving end; on the other hand, the receiving end can perform effective serial interference deletion for the selected transmitting end user pattern, thereby recovering more The user's sending information.
  • the embodiment of the present disclosure can be applied to the 3rd generation mobile communication system distinguished by code division multiple access, and can also be applied to the 4th generation mobile communication system distinguished by orthogonal frequency division multiplexing, which can be There are overlay technologies for mobile communication systems to further increase system capacity and spectrum efficiency. Furthermore, the technology of the embodiments of the present disclosure can also be applied to a future 5th generation mobile communication system (5G), which will satisfy its large capacity demand.
  • 5G 5th generation mobile communication system
  • the bitmap multiple access technology of the present disclosure can flexibly adapt the application scenario diversity of the 5G system. For example, by adaptively optimizing the allocation of power non-orthogonal patterns, the graph division multiple access technology can effectively overcome the user near-far effect and improve the cell edge coverage performance; in the heterogeneous network scenario in which the macrocell and the microcell are superimposed, the power is not positive.
  • graph division multiple access technology can dynamically adapt to network structure changes and increase the flexibility of multi-user signal transmission; in typical scenes such as distributed multi-antenna or dense cell, By jointly optimizing the spatial non-orthogonal pattern and multi-user coded non-orthogonal pattern, and even performing joint optimization of more signal domain feature patterns, the graph division multiple access technology can effectively suppress the same-frequency interference from multiple sources and achieve low energy consumption.
  • High-efficiency signal transmission in the low-power large-connected IoT application scenario, the graph-multiple access technology can multiply the number of uplink access users; in the low-latency, high-reliability IoT application scenario, Multiple access technology for redundant transmission can improve the reliability of transmission resources.
  • the user feature pattern in the graph division multiple access technology is non-orthogonal partitioning in multiple signal domain spaces (power domain, air domain, coding domain, etc.) for user attributes, without relying on time-frequency wireless
  • the orthogonal division of resources can relax the strict limitation of the number of wireless resources, and has the potential to greatly increase the system capacity, and has a high adaptability of dynamic scenes.
  • the sending device in the system for performing data transmission in Embodiment 2 of the present disclosure includes:
  • the first processing module 1000 is configured to send a signal to one or more user equipments
  • the feature pattern mapping module 1010 is configured to perform non-orthogonal feature pattern mapping on the processed signals of the one or more user equipments, so that signals of different user equipments are superimposed on the corresponding wireless resources;
  • the sending module 1020 is configured to send, according to a result of the non-orthogonal feature pattern mapping, a signal of the processed one or more user equipments.
  • the feature pattern mapping module 1010 is specifically configured to:
  • the non-orthogonal feature pattern mapping of the processed signal of one or more user equipments is performed by using a single signal domain non-orthogonal feature pattern or a joint signal domain non-orthogonal feature pattern.
  • the signal domain comprises part or all of the following:
  • the sending device is a network side device
  • the feature pattern mapping module 1010 is specifically configured to:
  • the signals of the multiple user equipments are allocated the same transmission time and frequency resources, and the signals of the multiple user equipments are according to the power domain non-orthogonal feature pattern. Allocating transmit power, wherein the sum of the transmit powers allocated for all user equipments is equal to the total available power of the system;
  • the non-orthogonal feature pattern is a spatial non-orthogonal feature pattern, allocate the same transmission time and frequency resources for signals of multiple user equipments, and allocate at least one user equipment signal according to the spatial non-orthogonal feature pattern.
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the coding domain
  • the signals of the multiple user equipments are allocated the same transmission time and frequency resources, and the signals of each user equipment are used according to the non-orthogonal feature pattern of the coding domain. Assign different coding methods and different transmission delay differences.
  • the sending device is a network side device
  • the feature pattern mapping module 1010 is specifically configured to:
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the power domain and the spatial joint signal domain
  • the signals of the multiple user equipments are allocated the same transmission time and frequency resources, and the signal domain is non-orthogonal according to the power domain and the air domain.
  • a feature pattern for allocating transmission power for signals of a plurality of user equipments wherein a sum of transmission powers allocated to all user equipments is equal to a total available power of the system, and at least two transmit antenna ports, at least one transmission are allocated for signals of at least one user equipment
  • the antenna port corresponds to signals of at least two user equipments; or
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the joint signal domain of the power domain and the coding domain
  • the signals of the multiple user equipments are allocated the same transmission time and frequency resources, and the signal domain is combined according to the power domain and the coding domain.
  • the orthogonal feature pattern allocates transmit power for signals of multiple user equipments, wherein the sum of the transmit powers allocated to all user equipments is equal to the total available power of the system, and different coding modes and different transmissions are assigned to the signals of each user equipment. Delay difference; or
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the combined signal domain of the spatial domain and the coding domain
  • the signals of the multiple user equipments are allocated the same transmission time and frequency resources, and the signal domain is non-orthogonal according to the spatial domain and the coding domain.
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of a joint signal domain of a power domain, a spatial domain, and a coding domain
  • the same transmission time and frequency resources are allocated to signals of multiple user equipments, and according to the power domain, the air domain, and the coding domain.
  • the non-orthogonal feature pattern of the joint signal domain allocates transmit power for signals of a plurality of user equipments, wherein a sum of transmit powers allocated to all user equipments is equal to a total available power of the system, and at least two transmissions are allocated for signals of at least one user equipment.
  • the antenna port, the at least one transmit antenna port correspond to signals of at least two user equipments, and the signals of each user equipment are assigned different coding modes and different transmission delay differences.
  • the sending device is a user equipment
  • the feature pattern mapping module 1010 is specifically configured to:
  • the non-orthogonal feature pattern is a power domain non-orthogonal feature pattern, determine a transmission time and frequency resource of the signal, and determine its own according to its corresponding power domain non-orthogonal feature pattern.
  • a transmission power of a signal wherein a transmission time and a frequency resource of a signal of the transmitting device are the same as a transmission time and a frequency resource of a signal of another user equipment; or
  • the non-orthogonal feature pattern is a spatial non-orthogonal feature pattern, determine a transmission time and a frequency resource of the signal, and determine a corresponding transmit antenna port according to the corresponding spatial non-orthogonal feature pattern, wherein
  • the sending time and frequency resources of the signal of the sending device are the same as the sending time and frequency resources of signals of other user equipments; or
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the coding domain, determine a transmission time and a frequency resource of the signal, and determine a coding mode and a transmission delay difference of the signal according to the non-orthogonal feature pattern of the coding domain.
  • the sending time and frequency resource of the signal of the sending device are the same as the sending time and frequency resource of the signal of the other user equipment, and the encoding mode of the signal of the sending device is different from the encoding mode of the signal of other user equipment, and the sending device
  • the difference in the transmission delay of the signal is different from the delay in the transmission of the signals of other user equipments.
  • the sending device is a user equipment
  • the feature pattern mapping module 1010 is specifically configured to:
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the power domain and the spatial joint signal domain, determine a transmission time and a frequency resource of the signal, and according to the corresponding non-orthogonal feature pattern of the power domain and the spatial domain combined signal domain Determining a transmit power of the signal of the own device and a corresponding transmit antenna port, wherein a transmission time and a frequency resource of the signal of the transmitting device are the same as a transmission time and a frequency resource of a signal of another user equipment; or
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the joint signal domain of the power domain and the coding domain, determine a transmission time and a frequency resource of the signal, and the non-orthogonal signal domain according to the corresponding power domain and the coding domain Deriving a characteristic pattern, determining a transmission power, an encoding mode, and a transmission delay difference of the signal of the own device; wherein a sending time and a frequency resource of the signal of the transmitting device are the same as a sending time and a frequency resource of the signal of the other user equipment, and the sending device is The coding mode of the signal is different from the coding mode of the signals of other user equipments, and the difference in the transmission delay of the signals of the transmitting device is different from the delay of the transmission of the signals of other user equipments; or
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the joint signal domain of the spatial domain and the coding domain, determine a transmission time and a frequency resource of the signal, and according to the corresponding non-orthogonal feature pattern of the spatial domain and the coding domain , determine the transmit antenna port corresponding to its own signal, the coding mode and Transmit delay difference; wherein the sending time and frequency resource of the signal of the sending device are the same as the sending time and frequency resource of the signal of the other user equipment, and the encoding mode of the signal of the sending device is different from the encoding mode of the signal of other user equipment And the transmission delay difference of the signal of the transmitting device is different from the transmission delay difference of the signals of other user equipments; or
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of a joint signal domain of a power domain, a spatial domain, and a coding domain, determining a transmission time and a frequency resource of the signal, and combining signals corresponding to the power domain, the airspace, and the coding domain corresponding thereto
  • the non-orthogonal feature pattern of the domain determines the transmit antenna port, the transmit power, the coding mode, and the transmission delay difference corresponding to the signal of the local device; wherein the sending time of the sending device and the sending time of the frequency resource and the signal of other user equipment The same as the frequency resource, and the coding mode of the signal of the transmitting device is different from the coding mode of the signal of the other user equipment, and the difference of the transmission delay of the signal of the transmitting device is different from the delay of the transmission of the signals of other user equipments.
  • a receiving device in a system for performing data transmission according to Embodiment 3 of the present disclosure includes:
  • the feature pattern detecting module 1100 is configured to perform non-orthogonal feature pattern detection on the received signals corresponding to the plurality of user equipments, and determine a non-orthogonal feature pattern corresponding to the received signal;
  • the second processing module 1110 is configured to perform multi-user device detection of the received received signal in a serial interference cancellation manner by using the detected non-orthogonal feature pattern, and perform receiving processing to determine data of different user equipments.
  • the feature pattern detecting module 1100 is specifically configured to:
  • the non-orthogonal feature pattern detection is performed on the received signal by using a non-orthogonal feature pattern of the signal domain or a non-orthogonal feature pattern of the joint signal domain.
  • the feature pattern detecting module 1100 is further configured to:
  • the non-orthogonal feature pattern of the individual signal domain or the non-orthogonal feature pattern of the joint signal domain is received by signaling or blindly.
  • the signal domain comprises part or all of the following:
  • the feature pattern detecting module 1100 is specifically configured to:
  • the intersection feature pattern is a power domain non-orthogonal feature pattern
  • the spatial non-orthogonal feature pattern it is determined that the signals received by the multiple user equipments correspond to the same transmission time and frequency resources, and the signals of the at least one user equipment correspond to at least two transmit antenna ports, and at least one receive antenna port corresponds to at least two. Sending signals of the user equipment, determining that the non-orthogonal feature pattern included in the received signal is a spatial non-orthogonal feature pattern; or
  • the coding domain non-orthogonal feature pattern it is determined that the signals received by the multiple user equipments correspond to the same occurrence time and frequency resources, different coding modes, and different transmission delay differences, and then the non-positive included in the received signal is determined.
  • the intersection feature pattern is a non-orthogonal feature pattern of the coding domain.
  • the feature pattern detecting module 1100 is specifically configured to:
  • the non-orthogonal feature pattern of the joint signal domain of the power domain and the air domain is used, it is determined that the signals received by the multiple user equipments correspond to different transmit powers of different occurrence time and frequency resources, and the signals of at least one user equipment correspond to at least two transmit antennas.
  • the port and the at least one receiving antenna port correspond to the sending signals of the at least two user equipments, and determining that the non-orthogonal feature pattern included in the received signal is a non-orthogonal feature pattern of the power domain and the spatial joint signal domain; or
  • the power domain and the coding domain are combined with the non-orthogonal feature pattern of the signal domain, it is determined that the signals received by the multiple user equipments correspond to the same occurrence time and frequency resources, different transmission powers, different coding modes, and different transmission delay differences. And determining that the non-orthogonal feature pattern included in the received signal is a non-orthogonal feature pattern of the power domain and the code domain joint signal domain; or
  • the non-orthogonal feature pattern of the combined signal domain of the airspace and the coding domain is used to determine that the signals received by the multiple user equipments correspond to the same occurrence time and frequency resources, different coding modes, and different transmission delay differences, and at least one user equipment
  • the power domain, the air domain, and the coding domain are combined with the non-orthogonal feature pattern of the signal domain, it is determined that the signals received by the multiple user equipments correspond to the same occurrence time and frequency resources, different transmit powers, different coding modes, and different transmission times. Determining, and the signal of the at least one user equipment corresponds to the at least two transmit antenna ports, and the at least one receive antenna port corresponds to the transmit signal of the at least two user equipments, and determining that the non-orthogonal feature pattern included in the received signal is a power domain, The spatial and coding domain joint signal domain non-orthogonal feature patterns.
  • the transmitting device may also act as a receiving device.
  • the receiving device may also function as a transmitting device, so the functions of the transmitting device and the receiving device may be combined in one entity (ie, the modules of FIGS. 10 and 11 may be combined in one entity), and the transmitting function or the receiving function may be selected as needed.
  • a transmitting device in a system for performing data transmission according to Embodiment 4 of the present disclosure includes:
  • the processor 1200 is configured to perform signal processing on signals of one or more user equipments, and perform non-orthogonal feature pattern mapping on the processed signals of one or more user equipments, so that signals of different user equipments are in corresponding wireless Resource stacking, according to the result of the non-orthogonal feature pattern mapping, transmitting the signal of the processed one or more user equipments through the transceiver 1210;
  • the transceiver 1210 is configured to receive and transmit data under the control of the processor 1200.
  • processor 1200 is specifically configured to:
  • the non-orthogonal feature pattern mapping of the processed signal of one or more user equipments is performed by using a single signal domain non-orthogonal feature pattern or a joint signal domain non-orthogonal feature pattern.
  • the signal domain comprises part or all of the following:
  • the sending device is a network side device
  • the processor 1200 is specifically configured to:
  • the signals of the multiple user equipments are allocated the same transmission time and frequency resources, and the signals of the multiple user equipments are according to the power domain non-orthogonal feature pattern. Allocating transmit power, wherein the sum of the transmit powers allocated for all user equipments is equal to the total available power of the system; or
  • the non-orthogonal feature pattern is a spatial non-orthogonal feature pattern, allocate the same transmission time and frequency resources for signals of multiple user equipments, and allocate at least one user equipment signal according to the spatial non-orthogonal feature pattern.
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the coding domain
  • the signals of the multiple user equipments are allocated the same transmission time and frequency resources, and the signals of each user equipment are used according to the non-orthogonal feature pattern of the coding domain. Assign different coding methods and different transmission delay differences.
  • the sending device is a network side device
  • the processor 1200 is specifically configured to:
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the power domain and the spatial joint signal domain
  • the signals of the multiple user equipments are allocated the same transmission time and frequency resources, and the signal domain is non-orthogonal according to the power domain and the air domain.
  • a feature pattern for allocating transmission power for signals of a plurality of user equipments wherein a sum of transmission powers allocated to all user equipments is equal to a total available power of the system, and at least two transmit antenna ports, at least one transmission are allocated for signals of at least one user equipment
  • the antenna port corresponds to signals of at least two user equipments; or
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the joint signal domain of the power domain and the coding domain
  • the signals of the multiple user equipments are allocated the same transmission time and frequency resources, and the signal domain is combined according to the power domain and the coding domain.
  • the orthogonal feature pattern allocates transmit power for signals of multiple user equipments, wherein the sum of the transmit powers allocated to all user equipments is equal to the total available power of the system, and different coding modes and different transmissions are assigned to the signals of each user equipment. Delay difference; or
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the combined signal domain of the spatial domain and the coding domain
  • the signals of the multiple user equipments are allocated the same transmission time and frequency resources, and the signal domain is non-orthogonal according to the spatial domain and the coding domain.
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of a joint signal domain of a power domain, a spatial domain, and a coding domain
  • the same transmission time and frequency resources are allocated to signals of multiple user equipments, and according to the power domain, the air domain, and the coding domain.
  • the non-orthogonal feature pattern of the joint signal domain allocates transmit power for signals of a plurality of user equipments, wherein a sum of transmit powers allocated to all user equipments is equal to a total available power of the system, and at least two transmissions are allocated for signals of at least one user equipment.
  • the antenna port, the at least one transmit antenna port correspond to signals of at least two user equipments, and the signals of each user equipment are assigned different coding modes and different transmission delay differences.
  • the sending device is a user equipment
  • the processor 1200 is specifically configured to:
  • the non-orthogonal feature pattern is a power domain non-orthogonal feature pattern, determine a transmission time and a frequency resource of the signal, and determine a transmit power of the signal according to the corresponding power domain non-orthogonal feature pattern, wherein Transmitting time and frequency resources of the signal of the transmitting device and other uses The signal of the household device is sent in the same time and frequency resource; or
  • the non-orthogonal feature pattern is a spatial non-orthogonal feature pattern, determine a transmission time and a frequency resource of the signal, and determine a corresponding transmit antenna port according to the corresponding spatial non-orthogonal feature pattern, wherein
  • the sending time and frequency resources of the signal of the sending device are the same as the sending time and frequency resources of signals of other user equipments; or
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the coding domain, determine a transmission time and a frequency resource of the signal, and determine a coding mode and a transmission delay difference of the signal according to the non-orthogonal feature pattern of the coding domain.
  • the sending time and frequency resource of the signal of the sending device are the same as the sending time and frequency resource of the signal of the other user equipment, and the encoding mode of the signal of the sending device is different from the encoding mode of the signal of other user equipment, and the sending device
  • the difference in the transmission delay of the signal is different from the delay in the transmission of the signals of other user equipments.
  • the sending device is a user equipment
  • the processor 1200 is specifically configured to:
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the power domain and the spatial joint signal domain, determine a transmission time and a frequency resource of the signal, and according to the corresponding non-orthogonal feature pattern of the power domain and the spatial domain combined signal domain Determining a transmit power of the signal of the own device and a corresponding transmit antenna port, wherein a transmission time and a frequency resource of the signal of the transmitting device are the same as a transmission time and a frequency resource of a signal of another user equipment; or
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the joint signal domain of the power domain and the coding domain, determine a transmission time and a frequency resource of the signal, and the non-orthogonal signal domain according to the corresponding power domain and the coding domain Deriving a characteristic pattern, determining a transmission power, an encoding mode, and a transmission delay difference of the signal of the own device; wherein a sending time and a frequency resource of the signal of the transmitting device are the same as a sending time and a frequency resource of the signal of the other user equipment, and the sending device is The coding mode of the signal is different from the coding mode of the signals of other user equipments, and the difference in the transmission delay of the signals of the transmitting device is different from the delay of the transmission of the signals of other user equipments; or
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the joint signal domain of the spatial domain and the coding domain, determine a transmission time and a frequency resource of the signal, and according to the corresponding non-orthogonal feature pattern of the spatial domain and the coding domain Determining a transmit antenna port, a coding mode, and a transmission delay difference corresponding to the signal of the own device; wherein the transmission time and frequency resources of the signal of the transmitting device are set by other users
  • the transmission time and the frequency resource of the standby signal are the same, and the coding mode of the signal of the transmitting device is different from the coding mode of the signal of the other user equipment, and the transmission delay difference of the signal of the transmitting device and the transmission delay of the signal of other user equipments are different.
  • Different or
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of a joint signal domain of a power domain, a spatial domain, and a coding domain, determining a transmission time and a frequency resource of the signal, and combining signals corresponding to the power domain, the airspace, and the coding domain corresponding thereto
  • the non-orthogonal feature pattern of the domain determines the transmit antenna port, the transmit power, the coding mode, and the transmission delay difference corresponding to the signal of the local device; wherein the sending time of the sending device and the sending time of the frequency resource and the signal of other user equipment The same as the frequency resource, and the coding mode of the signal of the transmitting device is different from the coding mode of the signal of the other user equipment, and the difference of the transmission delay of the signal of the transmitting device is different from the delay of the transmission of the signals of other user equipments.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1200 and various circuits of memory represented by memory 1220.
  • the bus architecture can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art, and thus will not be further described in this disclosure.
  • the bus interface provides an interface.
  • Transceiver 1210 may be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 1200 is responsible for managing the bus architecture and general processing, and the memory 1220 can store data used by the processor 1200 in performing operations.
  • the processor 1200 is responsible for managing the bus architecture and general processing, and the memory 1220 can store data and programs used by the processor 1200 in performing operations.
  • the receiving device in the system for performing data transmission in Embodiment 5 of the present disclosure includes:
  • the processor 1300 is configured to perform non-orthogonal feature pattern detection on the received signals corresponding to the plurality of user equipments by the transceiver 1310, determine a non-orthogonal feature pattern corresponding to the received signal, and use the detected non-orthogonal features. a pattern, performing multi-user device detection of the received interference signal in a serial interference cancellation manner, and performing reception processing to determine data of different user equipments;
  • the transceiver 1310 is configured to receive and transmit data under the control of the processor 1300.
  • the processor 1300 is specifically configured to:
  • processor 1300 is further configured to:
  • the non-orthogonal feature pattern of the individual signal domain or the non-orthogonal feature pattern of the joint signal domain is received by signaling or blindly.
  • the signal domain comprises part or all of the following:
  • the processor 1300 is specifically configured to:
  • the power domain non-orthogonal feature pattern it is determined that the signals received by the multiple user equipments correspond to the same transmission power with different occurrence time and frequency resources, and then the non-orthogonal feature pattern included in the received signal is determined to be a power domain non-positive Submit a feature pattern; or
  • the spatial non-orthogonal feature pattern it is determined that the signals received by the multiple user equipments correspond to the same occurrence time and frequency resources, and the signals of the at least one user equipment correspond to at least two transmit antenna ports, and at least one receive antenna port corresponds to at least two. Sending signals of the user equipment, determining that the non-orthogonal feature pattern included in the received signal is a spatial non-orthogonal feature pattern; or
  • the coding domain non-orthogonal feature pattern it is determined that the signals received by the multiple user equipments correspond to the same occurrence time and frequency resources, different coding modes, and different transmission delay differences, and then the non-positive included in the received signal is determined.
  • the intersection feature pattern is a non-orthogonal feature pattern of the coding domain.
  • the processor 1300 is specifically configured to:
  • the non-orthogonal feature pattern of the joint signal domain of the power domain and the air domain is used, it is determined that the signals received by the multiple user equipments correspond to different transmit powers of different occurrence time and frequency resources, and the signals of at least one user equipment correspond to at least two transmit antennas.
  • the port and the at least one receiving antenna port correspond to the sending signals of the at least two user equipments, and determining that the non-orthogonal feature pattern included in the received signal is a non-orthogonal feature pattern of the power domain and the spatial joint signal domain; or
  • the power domain and the coding domain are combined with the non-orthogonal feature pattern of the signal domain, it is determined that the signals received by the multiple user equipments correspond to the same occurrence time and frequency resources, different transmission powers, different coding modes, and different transmission delay differences. And determining that the non-orthogonal feature pattern included in the received signal is a non-orthogonal feature pattern of the power domain and the code domain joint signal domain; or
  • the non-orthogonal feature pattern of the combined signal domain of the airspace and the coding domain is used to determine that the signals received by multiple user equipments correspond to the same occurrence time and frequency resources, different coding modes, and different transmission times. Determining, and the signal of the at least one user equipment corresponds to the at least two transmit antenna ports, and the at least one receive antenna port corresponds to the transmit signal of the at least two user equipments, and determining that the non-orthogonal feature pattern included in the received signal is a spatial domain and a code Domain joint signal domain non-orthogonal feature pattern; or
  • the power domain, the air domain, and the coding domain are combined with the non-orthogonal feature pattern of the signal domain, it is determined that the signals received by the multiple user equipments correspond to the same occurrence time and frequency resources, different transmit powers, different coding modes, and different transmission times. Determining, and the signal of the at least one user equipment corresponds to the at least two transmit antenna ports, and the at least one receive antenna port corresponds to the transmit signal of the at least two user equipments, and determining that the non-orthogonal feature pattern included in the received signal is a power domain, The spatial and coding domain joint signal domain non-orthogonal feature patterns.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1300 and various circuits of memory represented by memory 1320.
  • the bus architecture can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art, and thus will not be further described in this disclosure.
  • the bus interface provides an interface.
  • Transceiver 1310 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 1300 is responsible for managing the bus architecture and general processing, and the memory 1320 can store data and programs used by the processor 1300 in performing operations.
  • the processor 1300 is responsible for managing the bus architecture and general processing, and the memory 1320 can store data used by the processor 1300 in performing operations.
  • the transmitting device may also act as a receiving device.
  • the receiving device may also function as a transmitting device, so the functions of the transmitting device and the receiving device may be combined in one entity (ie, the modules of FIGS. 12 and 13 may be combined in one entity), and the transmitting function or the receiving function may be selected as needed.
  • a method for performing data transmission is also provided in the embodiment of the present disclosure. Since the principle of solving the problem is similar to the system for data transmission in the embodiment of the present disclosure, an embodiment of the method may refer to the system. Implementation, repetition will not be repeated.
  • a method for performing data transmission according to Embodiment 6 of the present disclosure includes:
  • Step 1400 The sending end sends a signal to the signal of one or more user equipments.
  • Step 1410 The transmitting end performs non-orthogonal feature pattern mapping on the processed signals of one or more user equipments, so that signals of different user equipments are superimposed on corresponding radio resources;
  • Step 1420 The sending end sends the signal of the processed one or more user equipments according to the result of the non-orthogonal feature pattern mapping.
  • the sending end performs non-orthogonal feature pattern mapping on the processed signal of one or more user equipments, including:
  • the transmitting end uses a single signal domain non-orthogonal feature pattern or a joint signal domain non-orthogonal feature pattern to perform non-orthogonal feature pattern mapping on the processed signal of one or more user equipments.
  • the signal domain comprises part or all of the following:
  • the sending end is a network side device
  • the non-orthogonal feature pattern is a power domain non-orthogonal feature pattern; the transmitting end performs non-orthogonal feature pattern mapping on the processed signals of the plurality of user equipments, including:
  • the transmitting end allocates the same transmission time and frequency resources for the signals of the multiple user equipments, and allocates the transmission power for the signals of the multiple user equipments according to the non-orthogonal feature pattern of the power domain, where the transmission power allocated to all the user equipments The sum is equal to the total power available to the system; or
  • the non-orthogonal feature pattern is a spatial non-orthogonal feature pattern; the transmitting end performs non-orthogonal feature pattern mapping on the processed signals of the plurality of user equipments, including:
  • the transmitting end allocates the same transmission time and frequency resources to the signals of the multiple user equipments, and allocates at least two transmitting antenna ports and at least one transmitting antenna port to the signals of the at least one user equipment according to the spatial non-orthogonal feature pattern. Signals of at least two user equipments; or
  • the non-orthogonal feature pattern is a coding domain non-orthogonal feature pattern; the transmitting end performs non-orthogonal feature pattern mapping on the processed signals of the multiple user equipments, including:
  • the transmitting end allocates the same transmission time and frequency resources for the signals of the multiple user equipments, and allocates different coding modes and different transmission delay differences for the signals of each user equipment according to the non-orthogonal feature pattern of the coding domain.
  • the sending end is a network side device
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the power domain and the spatial domain joint signal domain; the transmitting end performs non-orthogonal feature pattern mapping on the processed signals of the plurality of user equipments, including:
  • the transmitting end allocates the same transmission time and frequency resources for the signals of the multiple user equipments, and allocates signals for multiple user equipments according to the non-orthogonal feature pattern of the power domain and the spatial domain joint signal domain.
  • a transmit power wherein a sum of transmit powers allocated to all user equipments is equal to a total available power of the system, and a signal for assigning at least two transmit antenna ports to at least one user equipment signal and at least one transmit antenna port corresponding to at least two user equipments; or
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the combined signal domain of the power domain and the coding domain; the transmitting end performs non-orthogonal feature pattern mapping on the processed signals of the multiple user equipments, including:
  • the transmitting end allocates the same transmission time and frequency resources for the signals of the multiple user equipments, and allocates the transmission power for the signals of the multiple user equipments according to the non-orthogonal feature pattern of the power domain and the coding domain joint signal domain, where all The sum of the transmit powers allocated by the user equipment is equal to the total available power of the system, and different coding modes and different transmission delay differences are assigned to the signals of each user equipment; or
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the combined signal domain of the spatial domain and the coding domain; the transmitting end performs non-orthogonal feature pattern mapping on the processed signals of the plurality of user equipments, including:
  • the transmitting end allocates the same transmission time and frequency resources for the signals of the multiple user equipments, and allocates at least two transmit antenna ports to the signals of the at least one user equipment according to the non-orthogonal feature pattern of the spatial domain and the coding domain joint signal domain, At least one transmit antenna port corresponds to signals of at least two user equipments, and different coding modes and different transmission delay differences are assigned to signals of each user equipment; or
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the combined signal domain of the power domain, the spatial domain, and the coding domain; and the transmitting end performs non-orthogonal feature pattern mapping on the signals of the processed multiple user equipments, including:
  • the transmitting end allocates the same transmission time and frequency resources for the signals of the multiple user equipments, and allocates the transmission power to the signals of the multiple user equipments according to the non-orthogonal feature patterns of the combined signal domain of the power domain, the air domain, and the coding domain, where The sum of the transmit powers allocated for all user equipments is equal to the total available power of the system, and the signals for the at least one user equipment are assigned at least two transmit antenna ports, the at least one transmit antenna port corresponds to at least two user equipments, and for each The signal of the user equipment is assigned different coding modes and different transmission delay differences.
  • the sending end is a user equipment
  • the non-orthogonal feature pattern is a power domain non-orthogonal feature pattern; the transmitting end performs non-orthogonal feature pattern mapping on the processed signal of a user equipment, including:
  • the transmitting end determines a transmission time and a frequency resource of its own signal, and according to its own corresponding a power domain non-orthogonal feature pattern for determining a transmit power of a signal of the same, wherein a transmit time and a frequency resource of the signal at the transmitting end are the same as a transmit time and a frequency resource of a signal of another user equipment; or
  • the non-orthogonal feature pattern is a spatial non-orthogonal feature pattern; the transmitting end performs non-orthogonal feature pattern mapping on the processed signal of a user equipment, including:
  • the transmitting end determines a transmission time and a frequency resource of the signal, and determines a transmitting antenna port corresponding to the signal according to the non-orthogonal feature pattern of the corresponding power domain, wherein the sending time and the frequency resource of the signal of the transmitting end Same as the transmission time and frequency resources of the signals of other user equipments; or
  • the non-orthogonal feature pattern is a coding domain non-orthogonal feature pattern; the transmitting end performs non-orthogonal feature pattern mapping on the processed signal of a user equipment, including:
  • the transmitting end determines the transmission time and frequency resources of its own signal, and determines the coding mode and the transmission delay difference of the signal according to the non-orthogonal feature pattern of the coding domain; wherein the transmission time and frequency resources of the signal at the transmitting end
  • the transmission time and frequency resources of the signals of other user equipments are the same, and the coding manner of the signals of the transmitting end is different from the coding manner of the signals of other user equipments, and the transmission delay difference of the signals of the transmitting end and the transmission of the signals of other user equipments The delay is different.
  • the sending end is a user equipment
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the power domain and the spatial domain joint signal domain; the transmitting end performs non-orthogonal feature pattern mapping on the processed signal of the user equipment, including:
  • the transmitting end determines a transmission time and a frequency resource of the signal, and determines a transmit power of the signal and a corresponding transmit antenna port according to the non-orthogonal feature pattern of the power domain and the spatial joint signal domain corresponding to the mobile terminal, where
  • the transmission time and frequency resources of the signal at the transmitting end are the same as the transmission time and frequency resources of the signals of other user equipments; or
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the combined signal domain of the power domain and the coding domain; the transmitting end performs non-orthogonal feature pattern mapping on the signal of the processed user equipment, including:
  • the transmitting end determines a transmission time and a frequency resource of the signal, and determines a transmission power, an encoding mode, and a transmission delay difference of the signal according to the non-orthogonal feature pattern of the corresponding power domain and the coding domain joint signal domain;
  • the sending time and the frequency resource of the signal at the transmitting end are the same as the sending time and frequency resource of the signal of the other user equipment, and the encoding manner of the signal at the transmitting end Different from the coding mode of the signals of other user equipments, and the difference of the transmission delay of the signals of the transmitting end is different from the delay of the sending of the signals of other user equipments; or
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the combined signal domain of the spatial domain and the coding domain; the transmitting end performs non-orthogonal feature pattern mapping on the signal of the processed user equipment, including:
  • the transmitting end determines the transmission time and frequency resources of its own signal, and determines the transmit antenna port, coding mode, and transmission delay difference corresponding to its own signal according to the corresponding non-orthogonal feature pattern of the spatial domain and the code domain joint signal domain.
  • the sending time and frequency resource of the signal of the transmitting end are the same as the sending time and frequency resource of the signal of the other user equipment, and the encoding manner of the signal of the transmitting end is different from the encoding manner of the signal of other user equipment, and the signal of the transmitting end is The difference in transmission delay is different from the delay of transmission of signals from other user equipment; or
  • the non-orthogonal feature pattern is a non-orthogonal feature pattern of the signal domain of the power domain, the air domain, and the code domain; the transmitting end performs non-orthogonal feature pattern mapping on the signal of the processed user equipment, including:
  • the transmitting end determines the transmission time and frequency resources of its own signal, and determines the transmit antenna port, the transmit power, and the code corresponding to the signal of the corresponding signal domain according to the corresponding non-orthogonal feature pattern of the power domain, the spatial domain and the code domain.
  • Mode and transmission delay difference wherein the transmission time and frequency resources of the signal of the transmitting end are the same as the transmission time and frequency resources of signals of other user equipments, and the coding manner of the signal of the transmitting end is different from the coding manner of the signals of other user equipments.
  • the transmission delay difference of the signal at the transmitting end is different from the transmission delay difference of the signals of other user equipments.
  • a method for performing data transmission according to Embodiment 7 of the present disclosure includes:
  • Step 1500 The receiving end performs non-orthogonal feature pattern detection on the received signal corresponding to the multiple user equipments, and determines a non-orthogonal feature pattern corresponding to the received signal;
  • Step 1510 The receiving end performs multi-user equipment detection of the received interference signal in a serial interference cancellation manner by using the detected non-orthogonal feature pattern, and performs receiving processing to determine data of different user equipments.
  • the receiving end performs non-orthogonal feature pattern detection on the received signal corresponding to the user equipment, including:
  • the receiving end uses a single signal domain non-orthogonal feature pattern or a joint signal domain non-orthogonal feature pattern to perform non-orthogonal feature pattern detection on the received signal.
  • the method before the receiving end performs the non-orthogonal feature pattern detection on the received signal corresponding to the user equipment, the method further includes:
  • the receiving end receives or blindly detects the non-orthogonal feature pattern of the individual signal domain or the non-orthogonal feature pattern of the joint signal domain by signaling.
  • the signal domain comprises part or all of the following:
  • the receiving end performs non-orthogonal feature pattern detection on the received signals corresponding to the multiple user equipments, including:
  • the receiving end determines that the signals received by the multiple user equipments correspond to the same transmit power with different occurrence time and frequency resources, and then determines that the non-orthogonal feature pattern included in the received signal is Power domain non-orthogonal feature pattern; or
  • the receiving end determines that the signals received by the multiple user equipments correspond to the same occurrence time and frequency resources, and the signals of the at least one user equipment correspond to at least two transmit antenna ports and at least one receive antenna.
  • the port corresponds to the transmission signal of the at least two user equipments, and determines that the non-orthogonal feature pattern included in the received signal is a spatial non-orthogonal feature pattern; or
  • the receiving end determines that the signals received by the multiple user equipments correspond to the same occurrence time and frequency resources, different coding modes, and different transmission delay differences, and then determine the received signal.
  • the included non-orthogonal feature pattern is a code domain non-orthogonal feature pattern.
  • the receiving end performs non-orthogonal feature pattern detection on the received signals corresponding to the multiple user equipments, including:
  • the receiving end determines that the signals received by the multiple user equipments correspond to different transmit powers of different occurrence times and frequency resources, and the signals of at least one user equipment correspond to at least The two transmit antenna ports and the at least one receive antenna port correspond to the transmit signals of the at least two user equipments, and determine that the non-orthogonal feature pattern included in the received signal is a non-orthogonal feature pattern of the power domain and the spatial joint signal domain; or
  • the receiving end determines that the signals received by the multiple user equipments correspond to the same occurrence time and frequency resources, different transmission powers, different coding modes, and different Transmitting the delay difference, determining that the non-orthogonal feature pattern included in the received signal is a non-orthogonal feature pattern of the power domain and the coding domain joint signal domain; or
  • the receiving end determines that the signals received by the multiple user equipments correspond to the same occurrence time and frequency resources, different coding modes, and different transmission delay differences, and at least The signal of one user equipment corresponds to at least two transmit antenna ports, and the at least one receive antenna port corresponds to a transmit signal of at least two user equipments, and then the non-orthogonal feature pattern included in the received signal is determined to be a spatial domain and a code domain joint signal domain.
  • Orthogonal feature pattern or
  • the receiving end determines that the signals received by the multiple user equipments correspond to the same occurrence time and frequency resources, different transmit powers, different coding modes, and Different transmission delay differences, and at least one user equipment signal corresponding to at least two transmit antenna ports, and at least one receive antenna port corresponding to at least two user equipment transmission signals, determining non-orthogonal feature patterns included in the received signal
  • a non-orthogonal feature pattern of the signal domain is combined for the power domain, the spatial domain, and the coding domain.
  • the transmitting end of the embodiment of the present disclosure sends a signal to one or more user equipments, and performs non-orthogonal feature pattern mapping on the signals of one or more user equipments after the processing.
  • the signals of different user equipments are superimposed on the corresponding radio resources, and the signals of the processed one or more user equipments are transmitted according to the result of the non-orthogonal feature pattern mapping. Since the signals of one or more user equipments can be non-orthogonally superimposed on the radio resources, non-orthogonal multiple access transmission is realized, thereby improving the utilization of radio resources.
  • embodiments of the present disclosure may be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开文本实施例涉及无线通信技术领域,特别涉及一种数据传输的方法、系统和设备,用以解决现有技术中存在正交方式只能达到多用户容量界的内界,造成无线资源利用率比较低的问题。本公开文本实施例发送端对一个或多个用户设备的信号进行发送处理;对发送处理后的一个或多个用户设备的信号进行非正交特征图样映射,以使不同用户设备的信号在对应的无线资源叠加,并根据非正交特征图样映射的结果,发送处理后的一个或多个用户设备的信号。由于能够使一个或多个用户设备的信号在无线资源进行非正交的叠加,实现了非正交多址接入传输,从而提高了无线资源利用率。

Description

一种数据传输的方法、系统和设备
相关申请的交叉参考
本申请主张在2014年7月2日在中国提交的中国专利申请号No.201410312309.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开文本涉及无线通信技术领域,特别涉及一种数据传输的方法、系统和设备。
背景技术
移动通信需要使所有的用户共享有限的无线资源,以实现不同用户不同地点同时通信并尽可能减少干扰的目的,这就是多址接入技术。
随着无线通信的快速发展,用户数和业务量呈爆炸式增长,这对无线网络的系统容量不断提出更高的要求。业界研究预测,每年移动数据业务流量以翻倍的速度增长,到2020年全球将有大约500亿用户设备接入无线移动网络。爆炸性的用户增长使得多址接入技术成为网络升级的核心问题。多址接入技术决定了网络的基本容量,并且对系统复杂度和部署成本有极大地影响。
传统的移动通信(1G-4G)采用正交多址接入技术,如频分多址,时分多址,码分多址,正交频分复用多址等。
时分多址因为传输时延及信号多径传播的影响,为保证用户相互正交,系统设计时需要加入保护时间。同样的,由于滤波器的非理想性,信号带宽边缘不可能突降,信号的带外扩散也不可避免,为保证正交性,在频分多址系统中就需要加入保护带宽。码分多址由于多径的影响,码字之间无法保证完全正交,同样带来了容量的损失。正交频分复用多址各子信道有一定的带宽重叠,提高了频带利用率,但在时域上为保证符号正交,也引入了循环前缀,同样牺牲了系统效率。为了使系统发送和接收简单,传统的移动通信系统采用正交多址技术和线性接收机作为基础来设计。
综上所述,目前从多用户信息理论的角度来看,正交方式只能达到多用 户容量界的内界,造成无线资源利用率比较低。
发明内容
(一)要解决的技术问题
本公开文本提供一种数据传输的方法、系统和设备,基于多用户通信系统整体优化观点,通过发送端和接收端的联合处理,在发送端,基于多个信号域的非正交特征图样来区分用户,在接收端,基于用户图样的特征结构,采用串行干扰抵消方式来实现多用户检测,从而做到多用户在已有时频无线资源的进一步复用,用以解决现有技术中存在正交方式只能达到多用户容量界的内界,造成无线资源利用率比较低的问题。基于这种数据传输的方法、系统和设备对应的技术,被称为图样分割非正交多址接入技术,或简称图分多址(Pattern Division Multiple Access)技术。
(二)技术方案
本公开文本所提供的技术方案如下:
本公开文本实施例提供的一种数据传输的方法,包括:
发送端对一个或多个用户设备的信号进行发送处理;
所述发送端对处理后的一个或多个用户设备的信号进行非正交特征图样映射,以使不同用户设备的信号在对应的无线资源叠加;以及
所述发送端根据非正交特征图样映射的结果,发送处理后的一个或多个用户设备的信号。
可选地,所述发送端对处理后的一个或多个用户设备的信号进行非正交特征图样映射,包括:
所述发送端采用单独信号域非正交特征图样或联合信号域非正交特征图样,对处理后的一个或多个用户设备的信号进行非正交特征图样映射。
可选地,所述信号域包括下列中的部分或全部:
功率域、空域和编码域。
可选地,所述发送端为网络侧设备;
所述非正交特征图样为功率域非正交特征图样;所述发送端对处理后的多个用户设备的信号进行非正交特征图样映射,包括:
所述发送端为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域非正交特征图样,为多个用户设备的信号分配发射功率,其中为所有用户设备分配的发射功率之和等于系统可用总功率;或者
所述非正交特征图样为空域非正交特征图样;所述发送端对处理后的多个用户设备的信号进行非正交特征图样映射,包括:
所述发送端为多个用户设备的信号分配相同的发送时间和频率资源,并根据空域非正交特征图样,为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号;或者
所述非正交特征图样为编码域非正交特征图样;所述发送端对处理后的多个用户设备的信号进行非正交特征图样映射,包括:
所述发送端为多个用户设备的信号分配相同的发送时间和频率资源,并根据编码域非正交特征图样,为每个用户设备的信号分配不同的编码方式和不同的发送时延差。
可选地,所述发送端为网络侧设备;
所述非正交特征图样为功率域和空域联合信号域非正交特征图样;所述发送端对处理后的多个用户设备的信号进行非正交特征图样映射,包括:
所述发送端为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域和空域联合信号域非正交特征图样,为多个用户设备的信号分配发射功率,其中为所有用户设备分配的发射功率之和等于系统可用总功率,以及为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号;或者
所述非正交特征图样为功率域和编码域联合信号域非正交特征图样;所述发送端对处理后的多个用户设备的信号进行非正交特征图样映射,包括:
所述发送端为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域和编码域联合信号域非正交特征图样,为多个用户设备的信号分配发射功率,其中为所有用户设备分配的发射功率之和等于系统可用总功率,以及为每个用户设备的信号分配不同的编码方式和不同的发送时延差;或者
所述非正交特征图样为空域和编码域联合信号域非正交特征图样;所述发送端对处理后的多个用户设备的信号进行非正交特征图样映射,包括:
所述发送端为多个用户设备的信号分配相同的发送时间和频率资源,并根据空域和编码域联合信号域非正交特征图样,为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号,以及为每个用户设备的信号分配不同的编码方式和不同的发送时延差;或者
所述非正交特征图样为功率域、空域和编码域联合信号域非正交特征图样;所述发送端对处理后的多个用户设备的信号进行非正交特征图样映射,包括:
所述发送端为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域、空域和编码域联合信号域非正交特征图样,为多个用户设备的信号分配发射功率,其中为所有用户设备分配的发射功率之和等于系统可用总功率,以及为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号,以及为每个用户设备的信号分配不同的编码方式和不同的发送时延差。
可选地,所述发送端为用户设备;
所述非正交特征图样为功率域非正交特征图样;所述发送端对处理后的一个用户设备的信号进行非正交特征图样映射,包括:
所述发送端确定自身的信号的发送时间和频率资源,并根据自身对应的功率域非正交特征图样,确定自身的信号的发射功率,其中所述发送端的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同;或者
所述非正交特征图样为空域非正交特征图样;所述发送端对处理后的一个用户设备的信号进行非正交特征图样映射,包括:
所述发送端确定自身的信号的发送时间和频率资源,并根据自身对应的空域非正交特征图样,确定自身的信号对应的发射天线端口,其中所述发送端的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同;或者
所述非正交特征图样为编码域非正交特征图样;所述发送端对处理后的一个用户设备的信号进行非正交特征图样映射,包括:
所述发送端确定自身的信号的发送时间和频率资源,并根据编码域非正交特征图样,确定自身的信号的编码方式和发送时延差;其中所述发送端的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送端的信号的编码方式与其他用户设备的信号的编码方式不同,且发送端的信号的发送时延差与其他用户设备的信号的发送时延差不同。
可选地,所述发送端为用户设备;
所述非正交特征图样为功率域和空域联合信号域非正交特征图样;所述发送端对处理后的一个用户设备的信号进行非正交特征图样映射,包括:
所述发送端确定自身的信号的发送时间和频率资源,并根据自身对应的功率域和空域联合信号域非正交特征图样,确定自身的信号的发射功率和对应的发射天线端口,其中所述发送端的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同;或者
所述非正交特征图样为功率域和编码域联合信号域非正交特征图样;所述发送端对处理后的一个用户设备的信号进行非正交特征图样映射,包括:
所述发送端确定自身的信号的发送时间和频率资源,并根据自身对应的功率域和编码域联合信号域非正交特征图样,确定自身的信号的发射功率、编码方式和发送时延差;其中所述发送端的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送端的信号的编码方式与其他用户设备的信号的编码方式不同,且发送端的信号的发送时延差与其他用户设备的信号的发送时延差不同;或者
所述非正交特征图样为空域和编码域联合信号域非正交特征图样;所述发送端对处理后的一个用户设备的信号进行非正交特征图样映射,包括:
所述发送端确定自身的信号的发送时间和频率资源,并根据自身对应的空域和编码域联合信号域非正交特征图样,确定自身的信号对应的发射天线端口、编码方式和发送时延差;其中所述发送端的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送端的信号的编码方式与其他用户设备的信号的编码方式不同,且发送端的信号的发送时延差与其他用户设备的信号的发送时延差不同;或者
所述非正交特征图样为功率域、空域和编码域联合信号域非正交特征图 样;所述发送端对处理后的一个用户设备的信号进行非正交特征图样映射,包括:
所述发送端确定自身的信号的发送时间和频率资源,并根据自身对应的功率域、空域和编码域联合信号域非正交特征图样,确定自身的信号对应的发射天线端口、发射功率、编码方式和发送时延差;其中所述发送端的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送端的信号的编码方式与其他用户设备的信号的编码方式不同,且发送端的信号的发送时延差与其他用户设备的信号的发送时延差不同。
本公开文本实施例提供的另一种数据传输的方法,包括:
接收端对收到的对应于多个用户设备的信号进行非正交特征图样检测,确定接收的信号对应的非正交特征图样;以及
所述接收端利用检测到的非正交特征图样,对收到的信号进行串行干扰抵消方式的多用户设备检测,并进行接收处理,确定不同用户设备的数据。
可选地,所述接收端对收到的对应于用户设备的信号进行非正交特征图样检测,包括:
所述接收端采用单独信号域非正交特征图样或联合信号域非正交特征图样,对接收的信号进行非正交特征图样检测。
可选地,所述接收端对收到的对应于用户设备的信号进行非正交特征图样检测之前,还包括:
所述接收端通过信令接收或者盲检测单独信号域非正交特征图样或联合信号域非正交特征图样。
可选地,所述信号域包括下列中的部分或全部:
功率域、空域和编码域。
可选地,所述接收端对收到的对应于多个用户设备的信号进行非正交特征图样检测,包括:
若采用功率域非正交特征图样,所述接收端确定接收到多个用户设备的信号对应相同的发送时间和频率资源,但每个用户设备具有不同的发射功率,则确定接收的信号中包含的非正交特征图样为功率域非正交特征图样;或者
若采用空域非正交特征图样,所述接收端确定接收到多个用户设备的信 号对应相同的发送时间和频率资源,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个接收天线端口对应至少两个用户设备的发送信号,则确定接收的信号中包含的非正交特征图样为空域非正交特征图样;或者
若采用编码域非正交特征图样,所述接收端确定接收到多个用户设备的信号对应相同的发送时间和频率资源、不同的编码方式和不同的发送时延差,则确定接收的信号中包含的非正交特征图样为编码域非正交特征图样。
可选地,所述接收端对收到的对应于多个用户设备的信号进行非正交特征图样检测,包括:
若采用功率域和空域联合信号域非正交特征图样,所述接收端确定接收到多个用户设备的信号对应相同的发送时间和频率资源,每个用户设备的信号具有不同的发射功率,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个接收天线端口对应至少两个用户设备的发送信号,则确定接收的信号中包含的非正交特征图样为功率域和空域联合信号域非正交特征图样;或者
若采用功率域和编码域联合信号域非正交特征图样,所述接收端确定接收到多个用户设备的信号对应相同的发送时间和频率资源、不同的发射功率、不同的编码方式和不同的发送时延差,则确定接收的信号中包含的非正交特征图样为功率域和编码域联合信号域非正交特征图样;或者
采用空域和编码域联合信号域非正交特征图样,所述接收端确定接收到多个用户设备的信号对应相同的发送时间和频率资源、不同的编码方式和不同的发送时延差,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个接收天线端口对应至少两个用户设备的发送信号,则确定接收的信号中包含的非正交特征图样为空域和编码域联合信号域非正交特征图样;或者
若采用功率域、空域和编码域联合信号域非正交特征图样,所述接收端确定接收到多个用户设备的信号对应相同的发送时间和频率资源、不同的发射功率、不同的编码方式和不同的发送时延差,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个接收天线端口对应至少两个用户设备的发送信号,则确定接收的信号中包含的非正交特征图样为功率域、空域和 编码域联合信号域非正交特征图样。
本公开文本实施例提供的一种数据传输的发送设备,包括:
第一处理模块,用于对一个或多个用户设备的信号进行发送处理;
特征图样映射模块,用于对处理后的一个或多个用户设备的信号进行非正交特征图样映射,以使不同用户设备的信号在对应的无线资源叠加;以及
发送模块,用于根据非正交特征图样映射的结果,发送处理后的一个或多个用户设备的信号。
可选地,所述特征图样映射模块采用单独信号域非正交特征图样或联合信号域非正交特征图样,对处理后的一个或多个用户设备的信号进行非正交特征图样映射。
可选地,所述信号域包括下列中的部分或全部:
功率域、空域和编码域。
可选地,所述发送设备为网络侧设备;
若所述非正交特征图样为功率域非正交特征图样,所述特征图样映射模块为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域非正交特征图样,为多个用户设备的信号分配发射功率,其中为所有用户设备分配的发射功率之和等于系统可用总功率;或者
若所述非正交特征图样为空域非正交特征图样,所述特征图样映射模块为多个用户设备的信号分配相同的发送时间和频率资源,并根据空域非正交特征图样,为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号;或者
若所述非正交特征图样为编码域非正交特征图样,所述特征图样映射模块为多个用户设备的信号分配相同的发送时间和频率资源,并根据编码域非正交特征图样,为每个用户设备的信号分配不同的编码方式和不同的发送时延差。
可选地,所述发送设备为网络侧设备;
若所述非正交特征图样为功率域和空域联合信号域非正交特征图样,所述特征图样映射模块为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域和空域联合信号域非正交特征图样,为多个用户设备的信 号分配发射功率,其中为所有用户设备分配的发射功率之和等于系统可用总功率,以及为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号;或者
若所述非正交特征图样为功率域和编码域联合信号域非正交特征图样,所述特征图样映射模块为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域和编码域联合信号域非正交特征图样,为多个用户设备的信号分配发射功率,其中为所有用户设备分配的发射功率之和等于系统可用总功率,以及为每个用户设备的信号分配不同的编码方式和不同的发送时延差;或者
若所述非正交特征图样为空域和编码域联合信号域非正交特征图样,所述特征图样映射模块为多个用户设备的信号分配相同的发送时间和频率资源,并根据空域和编码域联合信号域非正交特征图样,为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号,以及为每个用户设备的信号分配不同的编码方式和不同的发送时延差;或者
若所述非正交特征图样为功率域、空域和编码域联合信号域非正交特征图样,所述特征图样映射模块为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域、空域和编码域联合信号域非正交特征图样,为多个用户设备的信号分配发射功率,其中为所有用户设备分配的发射功率之和等于系统可用总功率,以及为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号,以及为每个用户设备的信号分配不同的编码方式和不同的发送时延差。
可选地,所述发送设备为用户设备;
若所述非正交特征图样为功率域非正交特征图样,所述特征图样映射模块确定自身的信号的发送时间和频率资源,并根据自身对应的功率域非正交特征图样,确定自身的信号的发射功率,其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同;或者
若所述非正交特征图样为空域非正交特征图样,所述特征图样映射模块确定自身的信号的发送时间和频率资源,并根据自身对应的空域非正交特征 图样,确定自身的信号对应的发射天线端口,其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同;或者
若所述非正交特征图样为编码域非正交特征图样,所述特征图样映射模块确定自身的信号的发送时间和频率资源,并根据编码域非正交特征图样,确定自身的信号的编码方式和发送时延差;其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送设备的信号的编码方式与其他用户设备的信号的编码方式不同,且发送设备的信号的发送时延差与其他用户设备的信号的发送时延差不同。
可选地,所述发送设备为用户设备;
若所述非正交特征图样为功率域和空域联合信号域非正交特征图样,所述特征图样映射模块确定自身的信号的发送时间和频率资源,并根据自身对应的功率域和空域联合信号域非正交特征图样,确定自身的信号的发射功率和对应的发射天线端口,其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同;或者
若所述非正交特征图样为功率域和编码域联合信号域非正交特征图样,所述特征图样映射模块确定自身的信号的发送时间和频率资源,并根据自身对应的功率域和编码域联合信号域非正交特征图样,确定自身的信号的发射功率、编码方式和发送时延差;其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送设备的信号的编码方式与其他用户设备的信号的编码方式不同,且发送设备的信号的发送时延差与其他用户设备的信号的发送时延差不同;或者
若所述非正交特征图样为空域和编码域联合信号域非正交特征图样,所述特征图样映射模块确定自身的信号的发送时间和频率资源,并根据自身对应的空域和编码域联合信号域非正交特征图样,确定自身的信号对应的发射天线端口、编码方式和发送时延差;其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送设备的信号的编码方式与其他用户设备的信号的编码方式不同,且发送设备的信号的发送时延差与其他用户设备的信号的发送时延差不同;或者
若所述非正交特征图样为功率域、空域和编码域联合信号域非正交特征 图样,所述特征图样映射模块确定自身的信号的发送时间和频率资源,并根据自身对应的功率域、空域和编码域联合信号域非正交特征图样,确定自身的信号对应的发射天线端口、发射功率、编码方式和发送时延差;其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送设备的信号的编码方式与其他用户设备的信号的编码方式不同,且发送设备的信号的发送时延差与其他用户设备的信号的发送时延差不同。
本公开文本实施例提供的另一种数据传输的发送设备,包括:
处理器;
存储器,通过总线接口与所述处理器相连接,并且用于存储所述处理器在执行操作时所使用的程序和数据;以及
收发机,通过总线接口与所述处理器和所述存储器相连接,并且用于在所述处理器的控制下接收和发送数据,
当处理器调用并执行所述存储器中所存储的程序和数据时,实现如下的功能模块:
第一处理模块,用于对一个或多个用户设备的信号进行发送处理;
特征图样映射模块,用于对处理后的一个或多个用户设备的信号进行非正交特征图样映射,以使不同用户设备的信号在对应的无线资源叠加;以及
发送模块,用于根据非正交特征图样映射的结果,将处理后的一个或多个用户设备的信号发送到所述收发机进行数据发送。
本公开文本实施例提供的一种数据传输的接收设备,包括:
特征图样检测模块,用于对收到的对应于多个用户设备的信号进行非正交特征图样检测,确定接收的信号对应的非正交特征图样;以及
第二处理模块,用于利用检测到的非正交特征图样,对收到的接收的信号进行串行干扰抵消方式的多用户设备检测,并进行接收处理,确定不同用户设备的数据。
可选地,所述特征图样检测模块采用单独信号域非正交特征图样或联合信号域非正交特征图样,对接收的信号进行非正交特征图样检测。
可选地,所述特征图样检测模块还通过信令接收或者盲检测单独信号域非正交特征图样或联合信号域非正交特征图样。
可选地,所述信号域包括下列中的部分或全部:
功率域、空域和编码域。
可选地,所述特征图样检测模块具体用于:
若采用功率域非正交特征图样,确定接收到多个用户设备的信号对应相同的发送时间和频率资源不同的发射功率,则确定接收的信号中包含的非正交特征图样为功率域非正交特征图样;或者
若采用空域非正交特征图样,确定接收到多个用户设备的信号对应相同的发送时间和频率资源,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个接收天线端口对应至少两个用户设备的发送信号,则确定接收的信号中包含的非正交特征图样为空域非正交特征图样;或者
若采用编码域非正交特征图样,确定接收到多个用户设备的信号对应相同的发送时间和频率资源、不同的编码方式和不同的发送时延差,则确定接收的信号中包含的非正交特征图样为编码域非正交特征图样。
可选地,所述特征图样检测模块具体用于:
若采用功率域和空域联合信号域非正交特征图样,确定接收到多个用户设备的信号对应相同的发送时间和频率资源,每个用户设备的信号具有不同的发射功率,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个接收天线端口对应至少两个用户设备的发送信号,则确定接收的信号中包含的非正交特征图样为功率域和空域联合信号域非正交特征图样;或者
若采用功率域和编码域联合信号域非正交特征图样,确定接收到多个用户设备的信号对应相同的发送时间和频率资源、不同的发射功率、不同的编码方式和不同的发送时延差,则确定接收的信号中包含的非正交特征图样为功率域和编码域联合信号域非正交特征图样;或者
采用空域和编码域联合信号域非正交特征图样,确定接收到多个用户设备的信号对应相同的发送时间和频率资源、不同的编码方式和不同的发送时延差,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个接收天线端口对应至少两个用户设备的发送信号,则确定接收的信号中包含的 非正交特征图样为空域和编码域联合信号域非正交特征图样;或者
若采用功率域、空域和编码联合信号域非正交特征图样,确定接收到多个用户设备的信号对应相同的发送时间和频率资源、不同的发射功率、不同的编码方式和不同的发送时延差,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个接收天线端口对应至少两个用户设备的发送信号,则确定接收的信号中包含的非正交特征图样为功率域、空域和编码域联合信号域非正交特征图样。
本公开文本实施例提供的另一种数据传输的接收设备,包括:
处理器;
存储器,通过总线接口与所述处理器相连接,并且用于存储所述处理器在执行操作时所使用的程序和数据;以及
收发机,通过总线接口与所述处理器和所述存储器相连接,并且用于在所述处理器的控制下接收和发送数据,
当处理器调用并执行所述存储器中所存储的程序和数据时,实现如下的功能模块:
特征图样检测模块,用于对收到的对应于多个用户设备的信号进行非正交特征图样检测,确定接收的信号对应的非正交特征图样;以及
第二处理模块,用于利用检测到的非正交特征图样,对收到的接收的信号进行串行干扰抵消方式的多用户设备检测,并使得所述收发机进行数据接收处理,确定不同用户设备的数据。
本公开文本实施例提供的一种数据传输系统,包括:
发送设备,用于对一个或多个用户设备的信号进行发送处理;对处理后的一个或多个用户设备的信号进行非正交特征图样映射,以使不同用户设备的信号在对应的无线资源叠加;根据非正交特征图样映射的结果,发送处理后的一个或多个用户设备的信号;以及
接收设备,用于对收到的对应于多个用户设备的信号进行非正交特征图样检测,确定接收的信号对应的非正交特征图样;利用检测到的非正交特征图样,对收到的接收的信号进行串行干扰抵消方式的多用户设备检测,并进行接收处理,确定不同用户设备的数据。
(三)有益效果
本公开文本的有益效果如下:
根据本公开文本实施例,发送端对一个或多个用户设备的信号进行发送处理;对发送处理后的一个或多个用户设备的信号进行非正交特征图样映射,以使不同用户设备的信号在对应的无线资源叠加,并根据非正交特征图样映射的结果,发送处理后的一个或多个用户设备的信号。由于能够使一个或多个用户设备的信号在无线资源进行非正交的叠加,实现了非正交多址接入传输,从而提高了无线资源利用率。
附图说明
为了更清楚地说明本公开文本实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开文本的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为根据本公开文本实施例一的进行数据传输的系统结构示意图;
图2为根据本公开文本实施例的图分多址框架示意图;
图3A为根据本公开文本实施例的图分多址框架的下行链路示意图;
图3B为根据本公开文本实施例的图分多址框架的上行链路示意图;
图4A为根据本公开文本实施例的功率域正交和非正交多址接入技术的示意图;
图4B为根据本公开文本实施例的空域正交和非正交多址接入技术的示意图;
图4C为根据本公开文本实施例的编码域正交和非正交多址接入技术的示意图;
图4D为根据本公开文本实施例的功率域和空域联合的非正交多址接入技术的示意图;
图5A为根据本公开文本实施例的功率域非正交特征图样映射过程上行链路示意图;
图5B为根据本公开文本实施例的功率域非正交特征图样映射过程下行 链路示意图;
图6A为根据本公开文本实施例的空域非正交特征图样映射过程上行链路示意图;
图6B为根据本公开文本实施例的空域非正交特征图样映射过程下行链路示意图;
图7A为根据本公开文本实施例的编码域非正交特征图样映射过程上行链路示意图;
图7B为根据本公开文本实施例的编码域非正交特征图样映射过程下行链路示意图;
图8A为根据本公开文本实施例的功率域和空域联合信号域非正交特征图样映射过程上行链路示意图;
图8B为根据本公开文本实施例的功率域和空域联合信号域非正交特征图样映射过程下行链路示意图;
图9A为根据本公开文本实施例的功率域和编码域联合信号域非正交特征图样映射过程上行链路示意图;
图9B为根据本公开文本实施例的功率域和编码域联合信号域非正交特征图样映射过程下行链路示意图;
图10为根据本公开文本实施例二的进行数据传输的系统中发送设备的结构示意图;
图11为根据本公开文本实施例三的进行数据传输的系统中接收设备的结构示意图;
图12为根据本公开文本实施例四的进行数据传输的系统中发送设备的结构示意图;
图13为根据本公开文本实施例五的进行数据传输的系统中接收设备的结构示意图;
图14为根据本公开文本实施例六的进行数据传输的方法流程示意图;以及
图15为根据本公开文本实施例七的进行数据传输的方法流程示意图。
具体实施方式
下面结合附图和实施例,对本公开文本的具体实施方式做进一步描述。以下实施例仅用于说明本公开文本,但不用来限制本公开文本的范围。
为使本公开文本实施例的目的、技术方案和优点更加清楚,下面将结合本公开文本实施例的附图,对本公开文本实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开文本的一部分实施例,而不是全部的实施例。基于所描述的本公开文本的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开文本保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开文本所属领域内具有一般技能的人士所理解的通常意义。本公开文本专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。
以下结合附图对本公开文本的原理和特征进行描述,所举实例只用于解释本公开文本,并非用于限定本公开文本的范围。
本公开文本实施例发送端对一个或多个用户设备的信号进行发送处理;对发送处理后的一个或多个用户设备的信号进行非正交特征图样映射,以使不同用户设备的信号在对应的无线资源叠加,并根据非正交特征图样映射的结果,发送处理后的一个或多个用户设备的信号。由于能够使一个或多个用户设备的信号在无线资源进行非正交的叠加,实现了非正交多址接入传输,从而提高了无线资源利用率。
这里,如上提及的非正交特征图样是指在相同的时域和频域资源上对具有一定特征的信号图样进行叠加,使得这些信号在相同时域和频域资源上不能够以正交的方式被分割。另一方面,如上提及的非正交特征图样映射是指在相同时域和频域资源上进行多用户传输时,对多个用户的信号按照非正交 特征图样叠加的方式来进行信号叠加传输,而每个用户的信号对应非正交特征图样中的一种信号图样。
在实施中,本公开文本实施例可以对现有正交多址接入的资源进行进一步多用户复用,从而实现非正交多址接入传输;也可以直接对多用户复用,从而实现非正交多址接入传输。
在实施中,若是上行传输,则发送端是用户设备,接收端是网络侧设备;
若是下行传输,则发送端是网络侧设备,接收端是用户设备。
本公开文本实施例的网络侧设备可以是基站(比如宏基站、微基站、家庭基站等),也可以是RN(中继)设备,还可以是已知或未知的其它网络侧设备。
下面结合说明书附图对本公开文本实施例作进一步详细描述。
如图1所示,本公开文本实施例一进行数据传输的系统包括:发送设备10和接收设备20。
发送设备10,用于对一个或多个用户设备的信号进行发送处理;对处理后的一个或多个用户设备的信号进行非正交特征图样映射,以使不同用户设备的信号在对应的无线资源叠加;根据非正交特征图样映射的结果,发送处理后的一个或多个用户设备的信号。
接收设备20,用于对收到的对应于多个用户设备的信号进行非正交特征图样检测,确定接收的信号对应的非正交特征图样;利用检测到的非正交特征图样,对收到的接收的信号进行串行干扰抵消(Serial Interference Cancellation,SIC)方式的多用户设备检测,并进行接收处理,确定不同用户设备的数据。
可选地,所述发送设备对处理后的一个或多个用户设备的信号进行非正交特征图样映射,包括:
所述发送设备采用单独信号域非正交特征图样或联合信号域非正交特征图样,对处理后的一个或多个用户设备的信号进行非正交特征图样映射。
相应的,所述接收设备采用单独信号域非正交特征图样或联合信号域非正交特征图样,对接收的信号进行非正交特征图样检测。
可选地,所述信号域包括但不限于下列中的部分或全部:
功率域、空域和编码域。
在实施中,若是上行传输,则发送设备是用户设备,接收设备是网络侧设备。
若是下行传输,则发送设备是网络侧设备,接收设备是用户设备。
下面分别进行介绍。
情况一、下行传输,则发送设备是网络侧设备,接收设备是用户设备。
方式一、非正交特征图样为功率域非正交特征图样。
所述发送设备对处理后的多个用户设备的信号进行非正交特征图样映射,包括:
所述发送设备为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域非正交特征图样,为多个用户设备的信号分配发射功率,其中为所有用户设备分配的发射功率之和等于系统可用总功率,以区分不同的用户设备。
相应的,所述接收设备若采用功率域非正交特征图样,确定接收到多个用户设备的信号对应相同的发送时间和频率资源,且每个用户设备具有不同的发射功率,则确定接收的信号中包含的非正交特征图样为功率域非正交特征图样。
如果没有特别说明,本公开文本实施例中的所有用户设备处于同一区域,比如同一个小区。
在实施中,为多个用户设备的信号分配发射功率,其中为所有用户设备分配的发射功率之和等于系统可用总功率。也就是说,同一时频资源上重叠的多个用户设备信号的发射功率,按特定约束条件在该时频资源的最大可用发射功率上进行分配。
例如,在基站发送两个用户设备的信号的情况下,假如可发送的总功率为P,则设置一个功率分配因子α(0<α<1),为用户设备1分配功率αP,为用户设备2分配功率(1-α)P。
方式二、所述非正交特征图样为空域非正交特征图样。
所述发送设备对处理后的多个用户设备的信号进行非正交特征图样映射,包括:
所述发送设备为多个用户设备的信号分配相同的发送时间和频率资源,并根据空域非正交特征图样,为至少一个用户设备的信号分配至少两个发射天线端口,且至少一个发射天线端口对应至少两个用户设备的信号,以区分不同的用户设备或同一用户设备的不同数据流。也就是说信号在对应的发射天线上发送,比如某信号对应两根天线,则该信号就会分别在这两根天线上发送。
相应的,所述接收设备若采用空域非正交特征图样,确定接收到多个用户设备的信号对应相同的发送时间和频率资源,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号,则确定接收的信号中包含的非正交特征图样为空域非正交特征图样。
在实施中,为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号,其中每个天线端口是一个可识别的基带逻辑单元。每个基带逻辑单元可以对应一根物理天线,也可以对应多根物理天线的组合。
例如,在基站采用两根天线发送两个用户设备的信号的情况下,如果是正交发送方式,则只能为每个用户传输一个数据流总计两个数据流,不失一般性,假设用户1的数据流记为S1,在第一根天线发送,用户2的数据流记为S2,在第二根天线发送。在空域非正交发送方式下,基站可以发送大于两个数据流,不失一般性,假设基站可以为用户2多发送一个数据流S3。如果采用无空间编码的空域非正交发送方式,则用户1的数据流S1在天线1发送,用户2的数据流S2在天线1发送,用户2的数据流S3在天线2发送,即天线1上对应用户1的数据流S1和用户2的数据流S2,天线2上对应用户2的数据流S3。如果采用带空间编码的空域非正交发送方式,则用户1的数据流S1同时在天线1和天线2发送,用户2的数据流S2在天线1发送,用户2的数据流S3在天线2发送,即天线1对应用户1的数据流S1和用户2的数据流S2,天线2对应用户1的数据流S1和用户2的数据流S3。和无空间编码的空域非正交发送方式相比,带空间编码的空域非正交发送方式因为具有更多的发送信息,其对应的接收端的检测性能更高。方式三、所述非正交特征图样为编码域非正交特征图样。
所述发送设备对处理后的多个用户设备的信号进行非正交特征图样映射,包括:
所述发送设备为多个用户设备的信号分配相同的发送时间和频率资源,并根据编码域非正交特征图样,为每个用户设备的信号分配不同的编码方式和不同的发送时延差,以区分不同的用户设备。
相应的,所述接收设备若采用编码域非正交特征图样,确定接收到多个用户设备的信号对应相同的发送时间和频率资源、不同的编码方式和不同的发送时延差,则确定接收的信号中包含的非正交特征图样为编码域非正交特征图样。
例如,在基站发送3个用户设备的信号的情况下,假如用户设备1的编码后的数据流在某时刻发送,则用户设备2的编码后的数据流相对于用户设备1延时t1后发送,用户设备3的编码后的数据流相对于用户设备2延时t2后发送。
方式四、所述非正交特征图样为功率域和空域联合信号域非正交特征图样。
所述发送设备对处理后的多个用户设备的信号进行非正交特征图样映射,包括:
所述发送设备为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域和空域联合信号域非正交特征图样,为多个用户设备的信号分配发射功率。其中为所有用户设备分配的发射功率之和等于系统可用总功率,以及为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号,以区分不同的用户设备。
相应的,所述接收设备若采用功率域和空域联合信号域非正交特征图样,确定接收到多个用户设备的信号对应相同的发送时间和频率资源,不同用户设备具有不同的发射功率,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号,则确定接收的信号中包含的非正交特征图样为功率和空域联合信号域非正交特征图样。
方式五、所述非正交特征图样为功率域和编码域联合信号域非正交特征图样。
所述发送设备对处理后的多个用户设备的信号进行非正交特征图样映射,包括:
所述发送设备为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域和编码域联合信号域非正交特征图样,为多个用户设备的信号分配发射功率。其中为所有用户设备分配的发射功率之和等于系统可用总功率,以及为每个用户设备的信号分配不同的编码方式和不同的发送时延差,以区分不同的用户设备。
相应的,所述接收设备若采用功率域和编码域联合信号域非正交特征图样,确定接收到多个用户设备的信号对应相同的发送时间和频率资源、不同的发射功率、不同的编码方式和不同的发送时延差,则确定接收的信号中包含的非正交特征图样为功率域和编码域联合信号域非正交特征图样。
方式六、所述非正交特征图样为空域和编码域联合信号域非正交特征图样。
所述发送设备对处理后的多个用户设备的信号进行非正交特征图样映射,包括:
所述发送设备为多个用户设备的信号分配相同的发送时间和频率资源,并根据空域和编码域联合信号域非正交特征图样,为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号,以及为每个用户设备的信号分配不同的编码方式和不同的发送时延差,以区分不同的用户设备。
相应的,所述接收设备若采用空域和编码域联合信号域非正交特征图样,确定接收到多个用户设备的信号对应相同的发送时间和频率资源、不同的编码方式和不同的发送时延差,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号,则确定接收的信号中包含的非正交特征图样为空域和编码域联合信号域非正交特征图样。
方式七、所述非正交特征图样为功率域、空域和编码域联合信号域非正交特征图样。
所述发送设备对处理后的多个用户设备的信号进行非正交特征图样映 射,包括:
所述发送设备为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域、空域和编码域联合信号域非正交特征图样,为多个用户设备的信号分配发射功率。其中为所有用户设备分配的发射功率之和等于系统可用总功率,以及为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号,以及为每个用户设备的信号分配不同的编码方式和不同的发送时延差,以区分不同的用户设备。
相应的,所述接收设备若采用功率域、空域和编码域联合信号域非正交特征图样,确定接收到多个用户设备的信号对应相同的发生时间和频率资源、不同的发射功率、不同的编码方式和不同的发送时延差,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号,则确定接收的信号中包含的非正交特征图样为功率域、空域和编码域联合信号域非正交特征图样。
情况二、上行传输,则发送设备是用户设备,接收设备是网络侧设备。
方式一、所述非正交特征图样为功率域非正交特征图样。
所述发送设备对处理后的一个用户设备的信号进行非正交特征图样映射,包括:
所述发送设备确定自身的信号的发送时间和频率资源,并根据自身对应的功率域非正交特征图样,确定自身的信号的发射功率,其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同。
相应的,所述接收设备若采用功率域非正交特征图样,确定接收到多个用户设备的信号对应相同的发送时间和频率资源、不同用户设备具有不同的发射功率,则确定接收的信号中包含的非正交特征图样为功率域非正交特征图样。
如果没有特别说明,本公开文本实施例中的所有用户设备处于同一区域,比如同一个小区。
方式二、所述非正交特征图样为空域非正交特征图样。
所述发送设备对处理后的一个用户设备的信号进行非正交特征图样映 射,包括:
所述发送设备确定自身的信号的发送时间和频率资源,并根据自身对应的空域非正交特征图样,确定自身的信号对应的发射天线端口,其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同。
相应的,所述接收设备若采用空域非正交特征图样,确定接收到多个用户设备的信号对应相同的发送时间和频率资源,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号,则确定接收的信号中包含的非正交特征图样为空域非正交特征图样。
例如,假设用户设备采用两根天线发送,在该用户设备只发送一个数据流S1的情况下,在天线1和天线2分别发送S1;在该用户设备发送两个数据流S1和S2的情况下,不失一般性,可以在天线1发送数据流S1,在天线2发送数据流S2
方式三、所述非正交特征图样为编码域非正交特征图样。
所述发送设备对处理后的一个用户设备的信号进行非正交特征图样映射,包括:
所述发送设备确定自身的信号的发送时间和频率资源,并根据编码域非正交特征图样,确定自身的信号的编码方式和发送时延差。其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送设备的信号的编码方式与其他用户设备的信号的编码方式不同,且发送设备的信号的发送时延差与其他用户设备的信号的发送时延差不同。
相应的,所述接收设备若采用编码域非正交特征图样,确定接收到多个用户设备的信号对应相同的发生时间和频率资源、不同的编码方式和不同的发送时延差,则确定接收的信号中包含的非正交特征图样为编码域非正交特征图样。
方式四、所述非正交特征图样为功率域和空域联合信号域非正交特征图样。
所述发送设备对处理后的一个用户设备的信号进行非正交特征图样映 射,包括:
所述发送设备确定自身的信号的发送时间和频率资源,并根据自身对应的功率域和空域联合信号域非正交特征图样,确定自身的信号的发射功率和对应的发射天线端口,其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同。
相应的,所述接收设备若采用功率域和空域联合信号域非正交特征图样,确定接收到多个用户设备的信号对应相同的发送时间和频率资源、至少两个用户设备具有不同的发射功率,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号,则确定接收的信号中包含的非正交特征图样为功率域和空域联合信号域非正交特征图样。
方式五、所述非正交特征图样为功率域和编码域联合信号域非正交特征图样。
所述发送设备对处理后的一个用户设备的信号进行非正交特征图样映射,包括:
所述发送设备确定自身的信号的发送时间和频率资源,并根据自身对应的功率域和编码域联合信号域非正交特征图样,确定自身的信号的发射功率、编码方式和发送时延差。其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送设备的信号的编码方式与其他用户设备的信号的编码方式不同,且发送设备的信号的发送时延差与其他用户设备的信号的发送时延差不同。
相应的,所述接收设备若采用功率和编码域联合信号域非正交特征图样,确定接收到多个用户设备的信号对应相同的发送时间和频率资源、至少两个用户具有不同的发射功率、至少两个用户具有不同的编码方式和不同的发送时延差,则确定接收的信号中包含的非正交特征图样为功率域和编码域联合信号域非正交特征图样。
方式六、所述非正交特征图样为空域和编码域联合信号域非正交特征图样。
所述发送设备对处理后的一个用户设备的信号进行非正交特征图样映 射,包括:
所述发送设备确定自身的信号的发送时间和频率资源,并根据自身对应的空域和编码域联合信号域非正交特征图样,确定自身的信号对应的发射天线端口、编码方式和发送时延差。其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送设备的信号的编码方式与其他用户设备的信号的编码方式不同,且发送设备的信号的发送时延差与其他用户设备的信号的发送时延差不同。
相应的,所述接收设备若采用空域和编码域联合信号域非正交特征图样,确定接收到多个用户设备的信号对应相同的发送时间和频率资源、至少两个用户具有不同的编码方式和不同的发送时延差,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号,则确定接收的信号中包含的非正交特征图样为空域和编码域联合信号域非正交特征图样。
方式七、所述非正交特征图样为功率域、空域和编码域联合信号域非正交特征图样。
所述发送设备对处理后的一个用户设备的信号进行非正交特征图样映射,包括:
所述发送设备确定自身的信号的发送时间和频率资源,并根据自身对应的功率域、空域和编码域联合信号域非正交特征图样,确定自身的信号对应的发射天线端口、发射功率、编码方式和发送时延差。其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送设备的信号的编码方式与其他用户设备的信号的编码方式不同,且发送设备的信号的发送时延差与其他用户设备的信号的发送时延差不同,以区分不同的用户设备。
相应的,所述接收设备若采用功率域、空域和编码域联合信号域非正交特征图样,确定接收到多个用户设备的信号对应相同的发送时间和频率资源、至少两个用户具有不同的发射功率、至少两个用户具有不同的编码方式和不同的发送时延差,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号,则确定接收的信号中 包含的非正交特征图样为功率域、空域和编码域联合信号域非正交特征图样。
对于接收设备在进行串行干扰抵消方式的多用户检测时,是逐级分离出多个用户设备的检测信号并及时地消除同信道干扰,从而做到对多用户设备的高精度检测。
本公开文本实施例通过发送端和接收端的联合处理,在发送端采用多个信号域的非正交特征图样来区分用户,在接收端基于用户图样的特征结构,采用串行干扰抵消方式来实现多用户检测,从而做到多用户在已有时频无线资源的进一步复用。基于这种数据传输的方法、系统和设备对应的技术,被称为图样分割非正交多址接入技术,或简称图分多址(Pattern Division Multiple Access,PDMA)技术。
本公开文本实施例的图分多址技术能够同时适用于通信系统的上下行链路。以基站为例,如图2所示,本公开文本实施例图分多址框架示意图中,基站包含发送端和接收端。基站在发送时,通过发送端来完成下行链路通信信号的调制和发送。基站在接收时,通过接收端来完成上行链路通信信号的接收和检测。与传统的FDMA/TDMA/CDMA/OFDMA通过正交信号域(时域、频域、码域)区别多用户信息不同,PDMA在发送端利用信号在功率域、空域、编码域的单独或者联合非正交信号特征图样对多个用户信号进行区分,并在接收端利用串行干扰抵消检测接收方法对多用户信号进行有效检测,实现多用户在时频域上非正交传输,提升传输的频谱效率。
为简化说明,假设基站是多天线发送,用户设备是单天线接收,图3A给出了图分多址系统的下行链路示意图。
图3A中,发送端:对多用户设备的信号进行发送处理(比如编码、调制等过程)后,再进行非正交特征图样映射,完成发送端的多用户设备的信号在时频域的非正交叠加。
图3A中,接收端:以某个用户设备为例,对收到的用户设备的时频域叠加信号先进行非正交特征图样检测,对信号进行初步识别,然后对初步识别的信号采用串行干扰抵消的方式来进行该有效用户设备的检测。
在用户设备多天线接收的情况下,上述过程与单天线接收类似,只是接收端的前端由单天线接收变成多天线接收。
为简化说明,假设用户设备单天线发送,基站多天线接收,图3B给出了图分多址系统的上行链路示意图。
图3B中,发送端:在N个用户设备的情况下,每个用户设备分别对各自的信号进行编码、调制等过程后,再进行非正交特征图样映射,完成多个用户的发送信号在相同时频域的非正交叠加。
图3B中,接收端:基站对所接收到的多用户时频域叠加信号先进行非正交特征图样检测,对信号进行初步识别,然后对初步识别的多用户信号采用串行干扰抵消的方式来进行各用户设备的检测。
在用户设备多天线发送的情况下,上述过程与单天线发送类似,只是发送端的后端由单天线发送变成多天线发送。
对于非正交特征图样映射,它可以是某个信号域的单独非正交特征图样,也可以是多个信号域的联合非正交特征图样,例如功率域非正交特征图样映射,空域非正交特征图样映射,编码域非正交特征图样映射,功率域和空域联合非正交特征图样映射,功率域和编码域联合非正交特征图样映射,空域和编码域联合非正交特征图样映射,功率域和空域和编码域联合非正交特征图样映射,等等。
功率域图样分割技术根据用户设备信道质量进行功率分配,理论上每个用户设备都可占用系统所有时频资源,在发送端辅助用户调度算法,在接收端进行串行干扰抵消方式,在系统和容量、每用户容量、尤其是小区边缘用户容量上都得到了提升。图5A和图5B给出了一个示例,来说明功率域非正交特征图样映射在上下行链路的具体过程。它包括时频资源分配和功率分配两个基本过程。这两个过程的顺序可以调换,不用按照图中的顺序。
以功率域非正交特征图样为例,图4A给出了非正交相对于正交对无线资源占用的差别。在正交方式下,不同用户设备使用不同的频率资源。但在非正交方式下,不同用户设备使用相同的频率资源,不同的功率,以此来区分用户设备。功率域非正交特征图样是各用户时频资源块所对应的功率矢量。
空域图样分割技术基于串行干扰抵消方式,对用户设备的信号进行空间编码,实现用户设备的信号在串行干扰抵消检测后可以有效分割,从而实现多址接入。图6A和图6B给出了一个示例,来说明空域非正交特征图样映射 在上下行链路的具体过程。它包括时频资源分配和空间编码两个基本过程。这两个过程的顺序可以调换,不用按照图中的顺序。
以空域非正交特征图样为例,图4B给出了无空间编码和有空间编码两种非正交方式对无线资源占用的差别。在无空间编码方式下,用户1的信号只在天线1上发送,用户2的信号在天线1和天线2上发送,导致仅仅使用天线1来同时检测用户1和用户2的信号很困难。。但在有空间编码非正交方式下,用户1的信号在天线1和天线2上重复发送,实现每根天线上都有多用户信号的叠加,使得接收端能够充分利用多根天线的接收信息来进行多用户的检测,性能更为准确,这种空域非正交特征图样是各用户在不同天线阵元的空间编码矩阵。
编码域图样分割技术对多用户数据流进行先编码再延迟的多码流叠加,通过在多用户的数据间建立类似信道编码结构联系来实现,并基于信道编码理论进行结构优化设计。图7A和图7B给出了一个示例,来说明编码域非正交特征图样映射在上下行链路的具体过程。它包括复制、交织、延时这三个基本过程,其中复制和交织就是数据编码的过程,数据编码和延时这两个过程的顺序可以调换,不用按照图中的顺序。
以编码域非正交特征图样为例,图4C给出了非正交相对于正交对无线资源占用的差别。在正交方式下,不同用户设备使用不同的频率资源;但在非正交方式下,不同的用户设备使用相同的频率资源,不同的编码方式和不同的发送时延差,以此来区分用户设备。编码域非正交特征图样是各用户的编码序列和对应的发送时延差。
图8A和图8B给出了功率域和空域联合非正交特征图样映射在上下行链路的具体过程。图9A和图9B给出了功率域和编码域联合非正交特征图样映射在上下行链路的具体过程。其他多域联合非正交特征图样映射能够易于推出,这里不再赘述。图中各个过程的顺序可以调换,不用按照图中的顺序。
以功率域和空域联合信号域非正交特征图样为例,图4D给出了多个用户设备的信号在功率域和空域的叠加情况,不同的用户设备可以使用相同的时频资源,但是在功率和空间编码上有所区分。功率域和空域联合信号域非正交特征图样为功率非正交特征图样和空间编码非正交特征图样的组合。
从图4D可以清楚看出,使用非正交能够使得每个数据块传输十(10)个符号,而使用正交方式每个数据块只能传输九(9)个符号。也就是说,本公开文本实施例相比正交会有更高的频谱效率和更高的分集度(低差错)。
其他非正交特征图样与上述类似,不再重复介绍。
本公开文本实施例主要以功率域、空域、编码域这三类信号域对图分多址技术进行了举例说明,实际使用中,用户的非正交特征图样可进一步拓展到其他的潜在信号域。尤其,发送端的非正交特征图样设计方式,易于在接收端采用串行干扰抵消的检测方式,使得系统具有高性能低复杂度可实现。一方面,发送端的图样映射能够实现用户信息的有效分割,用户图样在接收端可以明确区分;另一方面,接收端可以针对所选取的发送端用户图样进行有效的串行干扰删除,从而恢复多用户的发送信息。这两个方面相辅相成,缺一不可。
根据本公开文本实施例,既能够适用于以码分多址为区分的第3代移动通信系统,也能够适用于以正交频分复用为区分的第4代移动通信系统,可以是现有移动通信系统的叠加技术,来进一步提升系统的容量和频谱效率。此外,本公开文本实施例的技术,还能够适用于未来的第5代移动通信系统(5G),将满足其大容量需求。
通过单个信号域或多个信号域特征图样的自适应选择,本公开文本的图分多址技术,能够灵活适配5G系统的应用场景多样性。例如,通过功率非正交图样的自适应优化分配,图分多址技术能够有效克服用户远近效应,改善小区边缘覆盖性能;在宏蜂窝与微蜂窝叠加的异构网络场景中,通过功率非正交图样与多用户编码非正交图样的联合优化,图分多址技术能够动态适配网络结构的变化,增加多用户信号传输的灵活性;在分布式多天线或密集小区等典型场景中,通过将空域非正交图样与多用户编码非正交图样的联合优化,甚至进行更多信号域特征图样的联合优化,图分多址技术能够有效抑制多种来源的同频干扰,实现低能耗、高频谱效率的信号传输;在低功耗大连接物联网应用场景下,图分多址技术能够成倍增加上行接入用户数;在低时延高可靠物联网应用场景下,通过图分多址接入技术来进行冗余传输,能够提高传输资源的可靠性。
综上所述,图分多址技术中的用户特征图样,是针对用户属性,在多个信号域空间(功率域、空域、编码域等)中的非正交划分,无需依赖于时频无线资源的正交分割,因而可以放松无线资源数量的严格限制,既具有大幅度提高系统容量的潜力,又具有动态场景的高度适配性。
如图10所示,本公开文本实施例二进行数据传输的系统中的发送设备包括:
第一处理模块1000,用于对一个或多个用户设备的信号进行发送处理;
特征图样映射模块1010,用于对处理后的一个或多个用户设备的信号进行非正交特征图样映射,以使不同用户设备的信号在对应的无线资源叠加;
发送模块1020,用于根据非正交特征图样映射的结果,发送处理后的一个或多个用户设备的信号。
可选地,所述特征图样映射模块1010具体用于:
采用单独信号域非正交特征图样或联合信号域非正交特征图样,对处理后的一个或多个用户设备的信号进行非正交特征图样映射。
可选地,所述信号域包括下列中的部分或全部:
功率域、空域和编码域。
可选地,所述发送设备为网络侧设备;
所述特征图样映射模块1010具体用于:
若所述非正交特征图样为功率域非正交特征图样,为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域非正交特征图样,为多个用户设备的信号分配发射功率,其中为所有用户设备分配的发射功率之和等于系统可用总功率;
若所述非正交特征图样为空域非正交特征图样,为多个用户设备的信号分配相同的发送时间和频率资源,并根据空域非正交特征图样,为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号;
若所述非正交特征图样为编码域非正交特征图样,为多个用户设备的信号分配相同的发送时间和频率资源,并根据编码域非正交特征图样,为每个用户设备的信号分配不同的编码方式和不同的发送时延差。
可选地,所述发送设备为网络侧设备;
所述特征图样映射模块1010具体用于:
若所述非正交特征图样为功率域和空域联合信号域非正交特征图样,为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域和空域联合信号域非正交特征图样,为多个用户设备的信号分配发射功率,其中为所有用户设备分配的发射功率之和等于系统可用总功率,以及为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号;或者
若所述非正交特征图样为功率域和编码域联合信号域非正交特征图样,为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域和编码域联合信号域非正交特征图样,为多个用户设备的信号分配发射功率,其中为所有用户设备分配的发射功率之和等于系统可用总功率,以及为每个用户设备的信号分配不同的编码方式和不同的发送时延差;或者
若所述非正交特征图样为空域和编码域联合信号域非正交特征图样,为多个用户设备的信号分配相同的发送时间和频率资源,并根据空域和编码域联合信号域非正交特征图样,为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号,以及为每个用户设备的信号分配不同的编码方式和不同的发送时延差;或者
若所述非正交特征图样为功率域、空域和编码域联合信号域非正交特征图样,为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域、空域和编码域联合信号域非正交特征图样,为多个用户设备的信号分配发射功率,其中为所有用户设备分配的发射功率之和等于系统可用总功率,以及为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号,以及为每个用户设备的信号分配不同的编码方式和不同的发送时延差。
可选地,所述发送设备为用户设备;
所述特征图样映射模块1010具体用于:
若所述非正交特征图样为功率域非正交特征图样,确定自身的信号的发送时间和频率资源,并根据自身对应的功率域非正交特征图样,确定自身的 信号的发射功率,其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同;或者
若所述非正交特征图样为空域非正交特征图样,确定自身的信号的发送时间和频率资源,并根据自身对应的空域非正交特征图样,确定自身的信号对应的发射天线端口,其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同;或者
若所述非正交特征图样为编码域非正交特征图样,确定自身的信号的发送时间和频率资源,并根据编码域非正交特征图样,确定自身的信号的编码方式和发送时延差;其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送设备的信号的编码方式与其他用户设备的信号的编码方式不同,且发送设备的信号的发送时延差与其他用户设备的信号的发送时延差不同。
可选地,所述发送设备为用户设备;
所述特征图样映射模块1010具体用于:
若所述非正交特征图样为功率域和空域联合信号域非正交特征图样,确定自身的信号的发送时间和频率资源,并根据自身对应的功率域和空域联合信号域非正交特征图样,确定自身的信号的发射功率和对应的发射天线端口,其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同;或者
若所述非正交特征图样为功率域和编码域联合信号域非正交特征图样,确定自身的信号的发送时间和频率资源,并根据自身对应的功率域和编码域联合信号域非正交特征图样,确定自身的信号的发射功率、编码方式和发送时延差;其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送设备的信号的编码方式与其他用户设备的信号的编码方式不同,且发送设备的信号的发送时延差与其他用户设备的信号的发送时延差不同;或者
若所述非正交特征图样为空域和编码域联合信号域非正交特征图样,确定自身的信号的发送时间和频率资源,并根据自身对应的空域和编码域联合信号域非正交特征图样,确定自身的信号对应的发射天线端口、编码方式和 发送时延差;其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送设备的信号的编码方式与其他用户设备的信号的编码方式不同,且发送设备的信号的发送时延差与其他用户设备的信号的发送时延差不同;或者
若所述非正交特征图样为功率域、空域和编码域联合信号域非正交特征图样,确定自身的信号的发送时间和频率资源,并根据自身对应的功率域、空域和编码域联合信号域非正交特征图样,确定自身的信号对应的发射天线端口、发射功率、编码方式和发送时延差;其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送设备的信号的编码方式与其他用户设备的信号的编码方式不同,且发送设备的信号的发送时延差与其他用户设备的信号的发送时延差不同。
如图11所示,根据本公开文本实施例三进行数据传输的系统中的接收设备包括:
特征图样检测模块1100,用于对收到的对应于多个用户设备的信号进行非正交特征图样检测,确定接收的信号对应的非正交特征图样;以及
第二处理模块1110,用于利用检测到的非正交特征图样,对收到的接收的信号进行串行干扰抵消方式的多用户设备检测,并进行接收处理,确定不同用户设备的数据。
可选地,所述特征图样检测模块1100具体用于:
采用单独信号域非正交特征图样或联合信号域非正交特征图样,对接收的信号进行非正交特征图样检测。
可选地,所述特征图样检测模块1100还用于:
通过信令接收或者盲检测单独信号域非正交特征图样或联合信号域非正交特征图样。
可选地,所述信号域包括下列中的部分或全部:
功率域、空域和编码域。
可选地,所述特征图样检测模块1100具体用于:
若采用功率域非正交特征图样,确定接收到多个用户设备的信号对应相同的发生时间和频率资源不同的发射功率,则确定接收的信号中包含的非正 交特征图样为功率域非正交特征图样;或者
若采用空域非正交特征图样,确定接收到多个用户设备的信号对应相同的发送时间和频率资源,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个接收天线端口对应至少两个用户设备的发送信号,则确定接收的信号中包含的非正交特征图样为空域非正交特征图样;或者
若采用编码域非正交特征图样,确定接收到多个用户设备的信号对应相同的发生时间和频率资源、不同的编码方式和不同的发送时延差,则确定接收的信号中包含的非正交特征图样为编码域非正交特征图样。
可选地,所述特征图样检测模块1100具体用于:
若采用功率域和空域联合信号域非正交特征图样,确定接收到多个用户设备的信号对应相同的发生时间和频率资源不同的发射功率,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个接收天线端口对应至少两个用户设备的发送信号,则确定接收的信号中包含的非正交特征图样为功率域和空域联合信号域非正交特征图样;或者
若采用功率域和编码域联合信号域非正交特征图样,确定接收到多个用户设备的信号对应相同的发生时间和频率资源、不同的发射功率、不同的编码方式和不同的发送时延差,则确定接收的信号中包含的非正交特征图样为功率域和编码域联合信号域非正交特征图样;或者
采用空域和编码域联合信号域非正交特征图样,确定接收到多个用户设备的信号对应相同的发生时间和频率资源、不同的编码方式和不同的发送时延差,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个接收天线端口对应至少两个用户设备的发送信号,则确定接收的信号中包含的非正交特征图样为空域和编码域联合信号域非正交特征图样;或者
若采用功率域、空域和编码域联合信号域非正交特征图样,确定接收到多个用户设备的信号对应相同的发生时间和频率资源、不同的发射功率、不同的编码方式和不同的发送时延差,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个接收天线端口对应至少两个用户设备的发送信号,则确定接收的信号中包含的非正交特征图样为功率域、空域和编码域联合信号域非正交特征图样。
在实施中,发送设备也可能作为接收设备。接收设备也可能作为发送设备,所以发送设备和接收设备的功能可以合在一个实体中(即图10和图11的模块可以合在一个实体中),根据需要选择使用发送功能或接收功能。
如图12所示,根据本公开文本实施例四进行数据传输的系统中的发送设备包括:
处理器1200,用于对一个或多个用户设备的信号进行发送处理,对处理后的一个或多个用户设备的信号进行非正交特征图样映射,以使不同用户设备的信号在对应的无线资源叠加,根据非正交特征图样映射的结果,通过收发机1210发送处理后的一个或多个用户设备的信号;以及
收发机1210,用于在处理器1200的控制下接收和发送数据。
可选地,处理器1200具体用于:
采用单独信号域非正交特征图样或联合信号域非正交特征图样,对处理后的一个或多个用户设备的信号进行非正交特征图样映射。
可选地,所述信号域包括下列中的部分或全部:
功率域、空域和编码域。
可选地,所述发送设备为网络侧设备;
处理器1200具体用于:
若所述非正交特征图样为功率域非正交特征图样,为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域非正交特征图样,为多个用户设备的信号分配发射功率,其中为所有用户设备分配的发射功率之和等于系统可用总功率;或者
若所述非正交特征图样为空域非正交特征图样,为多个用户设备的信号分配相同的发送时间和频率资源,并根据空域非正交特征图样,为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号;或者
若所述非正交特征图样为编码域非正交特征图样,为多个用户设备的信号分配相同的发送时间和频率资源,并根据编码域非正交特征图样,为每个用户设备的信号分配不同的编码方式和不同的发送时延差。
可选地,所述发送设备为网络侧设备;
处理器1200具体用于:
若所述非正交特征图样为功率域和空域联合信号域非正交特征图样,为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域和空域联合信号域非正交特征图样,为多个用户设备的信号分配发射功率,其中为所有用户设备分配的发射功率之和等于系统可用总功率,以及为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号;或者
若所述非正交特征图样为功率域和编码域联合信号域非正交特征图样,为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域和编码域联合信号域非正交特征图样,为多个用户设备的信号分配发射功率,其中为所有用户设备分配的发射功率之和等于系统可用总功率,以及为每个用户设备的信号分配不同的编码方式和不同的发送时延差;或者
若所述非正交特征图样为空域和编码域联合信号域非正交特征图样,为多个用户设备的信号分配相同的发送时间和频率资源,并根据空域和编码域联合信号域非正交特征图样,为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号,以及为每个用户设备的信号分配不同的编码方式和不同的发送时延差;或者
若所述非正交特征图样为功率域、空域和编码域联合信号域非正交特征图样,为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域、空域和编码域联合信号域非正交特征图样,为多个用户设备的信号分配发射功率,其中为所有用户设备分配的发射功率之和等于系统可用总功率,以及为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号,以及为每个用户设备的信号分配不同的编码方式和不同的发送时延差。
可选地,所述发送设备为用户设备;
处理器1200具体用于:
若所述非正交特征图样为功率域非正交特征图样,确定自身的信号的发送时间和频率资源,并根据自身对应的功率域非正交特征图样,确定自身的信号的发射功率,其中所述发送设备的信号的发送时间和频率资源与其他用 户设备的信号的发送时间和频率资源相同;或者
若所述非正交特征图样为空域非正交特征图样,确定自身的信号的发送时间和频率资源,并根据自身对应的空域非正交特征图样,确定自身的信号对应的发射天线端口,其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同;或者
若所述非正交特征图样为编码域非正交特征图样,确定自身的信号的发送时间和频率资源,并根据编码域非正交特征图样,确定自身的信号的编码方式和发送时延差;其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送设备的信号的编码方式与其他用户设备的信号的编码方式不同,且发送设备的信号的发送时延差与其他用户设备的信号的发送时延差不同。
可选地,所述发送设备为用户设备;
处理器1200具体用于:
若所述非正交特征图样为功率域和空域联合信号域非正交特征图样,确定自身的信号的发送时间和频率资源,并根据自身对应的功率域和空域联合信号域非正交特征图样,确定自身的信号的发射功率和对应的发射天线端口,其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同;或者
若所述非正交特征图样为功率域和编码域联合信号域非正交特征图样,确定自身的信号的发送时间和频率资源,并根据自身对应的功率域和编码域联合信号域非正交特征图样,确定自身的信号的发射功率、编码方式和发送时延差;其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送设备的信号的编码方式与其他用户设备的信号的编码方式不同,且发送设备的信号的发送时延差与其他用户设备的信号的发送时延差不同;或者
若所述非正交特征图样为空域和编码域联合信号域非正交特征图样,确定自身的信号的发送时间和频率资源,并根据自身对应的空域和编码域联合信号域非正交特征图样,确定自身的信号对应的发射天线端口、编码方式和发送时延差;其中所述发送设备的信号的发送时间和频率资源与其他用户设 备的信号的发送时间和频率资源相同,且发送设备的信号的编码方式与其他用户设备的信号的编码方式不同,且发送设备的信号的发送时延差与其他用户设备的信号的发送时延差不同;或者
若所述非正交特征图样为功率域、空域和编码域联合信号域非正交特征图样,确定自身的信号的发送时间和频率资源,并根据自身对应的功率域、空域和编码域联合信号域非正交特征图样,确定自身的信号对应的发射天线端口、发射功率、编码方式和发送时延差;其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送设备的信号的编码方式与其他用户设备的信号的编码方式不同,且发送设备的信号的发送时延差与其他用户设备的信号的发送时延差不同。
其中,在图12中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1200代表的一个或多个处理器和存储器1220代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本公开文本不再对其进行进一步描述。总线接口提供接口。收发机1210可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。处理器1200负责管理总线架构和通常的处理,存储器1220可以存储处理器1200在执行操作时所使用的数据。
处理器1200负责管理总线架构和通常的处理,存储器1220可以存储处理器1200在执行操作时所使用的数据和程序。
如图13所示,本公开文本实施例五进行数据传输的系统中的接收设备包括:
处理器1300,用于通过收发机1310对收到的对应于多个用户设备的信号进行非正交特征图样检测,确定接收的信号对应的非正交特征图样,利用检测到的非正交特征图样,对收到的接收的信号进行串行干扰抵消方式的多用户设备检测,并进行接收处理,确定不同用户设备的数据;以及
收发机1310,用于在处理器1300的控制下接收和发送数据。
可选地,处理器1300具体用于:
采用单独信号域非正交特征图样或联合信号域非正交特征图样,对接收 的信号进行非正交特征图样检测。
可选地,处理器1300还用于:
通过信令接收或者盲检测单独信号域非正交特征图样或联合信号域非正交特征图样。
可选地,所述信号域包括下列中的部分或全部:
功率域、空域和编码域。
可选地,处理器1300具体用于:
若采用功率域非正交特征图样,确定接收到多个用户设备的信号对应相同的发生时间和频率资源不同的发射功率,则确定接收的信号中包含的非正交特征图样为功率域非正交特征图样;或者
若采用空域非正交特征图样,确定接收到多个用户设备的信号对应相同的发生时间和频率资源,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个接收天线端口对应至少两个用户设备的发送信号,则确定接收的信号中包含的非正交特征图样为空域非正交特征图样;或者
若采用编码域非正交特征图样,确定接收到多个用户设备的信号对应相同的发生时间和频率资源、不同的编码方式和不同的发送时延差,则确定接收的信号中包含的非正交特征图样为编码域非正交特征图样。
可选地,处理器1300具体用于:
若采用功率域和空域联合信号域非正交特征图样,确定接收到多个用户设备的信号对应相同的发生时间和频率资源不同的发射功率,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个接收天线端口对应至少两个用户设备的发送信号,则确定接收的信号中包含的非正交特征图样为功率域和空域联合信号域非正交特征图样;或者
若采用功率域和编码域联合信号域非正交特征图样,确定接收到多个用户设备的信号对应相同的发生时间和频率资源、不同的发射功率、不同的编码方式和不同的发送时延差,则确定接收的信号中包含的非正交特征图样为功率域和编码域联合信号域非正交特征图样;或者
采用空域和编码域联合信号域非正交特征图样,确定接收到多个用户设备的信号对应相同的发生时间和频率资源、不同的编码方式和不同的发送时 延差,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个接收天线端口对应至少两个用户设备的发送信号,则确定接收的信号中包含的非正交特征图样为空域和编码域联合信号域非正交特征图样;或者
若采用功率域、空域和编码域联合信号域非正交特征图样,确定接收到多个用户设备的信号对应相同的发生时间和频率资源、不同的发射功率、不同的编码方式和不同的发送时延差,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个接收天线端口对应至少两个用户设备的发送信号,则确定接收的信号中包含的非正交特征图样为功率域、空域和编码域联合信号域非正交特征图样。
其中,在图13中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1300代表的一个或多个处理器和存储器1320代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本公开文本不再对其进行进一步描述。总线接口提供接口。收发机1310可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。处理器1300负责管理总线架构和通常的处理,存储器1320可以存储处理器1300在执行操作时所使用的数据和程序。
处理器1300负责管理总线架构和通常的处理,存储器1320可以存储处理器1300在执行操作时所使用的数据。
在实施中,发送设备也可能作为接收设备。接收设备也可能作为发送设备,所以发送设备和接收设备的功能可以合在一个实体中(即图12和图13的模块可以合在一个实体中),根据需要选择使用发送功能或接收功能。
基于同一发明构思,本公开文本实施例中还提供了进行数据传输的方法,由于该方法解决问题的原理与本公开文本实施例进行数据传输的系统相似,因此该方法的实施例可以参见系统的实施,重复之处不再赘述。
如图14所示,根据本公开文本实施例六进行数据传输的方法包括:
步骤1400、发送端对一个或多个用户设备的信号进行发送处理;
步骤1410、所述发送端对处理后的一个或多个用户设备的信号进行非正交特征图样映射,以使不同用户设备的信号在对应的无线资源叠加;以及
步骤1420、所述发送端根据非正交特征图样映射的结果,发送处理后的一个或多个用户设备的信号。
可选地,所述发送端对处理后的一个或多个用户设备的信号进行非正交特征图样映射,包括:
所述发送端采用单独信号域非正交特征图样或联合信号域非正交特征图样,对处理后的一个或多个用户设备的信号进行非正交特征图样映射。
可选地,所述信号域包括下列中的部分或全部:
功率域、空域和编码域。
可选地,所述发送端为网络侧设备;
所述非正交特征图样为功率域非正交特征图样;所述发送端对处理后的多个用户设备的信号进行非正交特征图样映射,包括:
所述发送端为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域非正交特征图样,为多个用户设备的信号分配发射功率,其中为所有用户设备分配的发射功率之和等于系统可用总功率;或者
所述非正交特征图样为空域非正交特征图样;所述发送端对处理后的多个用户设备的信号进行非正交特征图样映射,包括:
所述发送端为多个用户设备的信号分配相同的发送时间和频率资源,并根据空域非正交特征图样,为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号;或者
所述非正交特征图样为编码域非正交特征图样;所述发送端对处理后的多个用户设备的信号进行非正交特征图样映射,包括:
所述发送端为多个用户设备的信号分配相同的发送时间和频率资源,并根据编码域非正交特征图样,为每个用户设备的信号分配不同的编码方式和不同的发送时延差。
可选地,所述发送端为网络侧设备;
所述非正交特征图样为功率域和空域联合信号域非正交特征图样;所述发送端对处理后的多个用户设备的信号进行非正交特征图样映射,包括:
所述发送端为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域和空域联合信号域非正交特征图样,为多个用户设备的信号分配 发射功率,其中为所有用户设备分配的发射功率之和等于系统可用总功率,以及为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号;或者
所述非正交特征图样为功率域和编码域联合信号域非正交特征图样;所述发送端对处理后的多个用户设备的信号进行非正交特征图样映射,包括:
所述发送端为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域和编码域联合信号域非正交特征图样,为多个用户设备的信号分配发射功率,其中为所有用户设备分配的发射功率之和等于系统可用总功率,以及为每个用户设备的信号分配不同的编码方式和不同的发送时延差;或者
所述非正交特征图样为空域和编码域联合信号域非正交特征图样;所述发送端对处理后的多个用户设备的信号进行非正交特征图样映射,包括:
所述发送端为多个用户设备的信号分配相同的发送时间和频率资源,并根据空域和编码域联合信号域非正交特征图样,为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号,以及为每个用户设备的信号分配不同的编码方式和不同的发送时延差;或者
所述非正交特征图样为功率域、空域和编码域联合信号域非正交特征图样;所述发送端对处理后的多个用户设备的信号进行非正交特征图样映射,包括:
所述发送端为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域、空域和编码域联合信号域非正交特征图样,为多个用户设备的信号分配发射功率,其中为所有用户设备分配的发射功率之和等于系统可用总功率,以及为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号,以及为每个用户设备的信号分配不同的编码方式和不同的发送时延差。
可选地,所述发送端为用户设备;
所述非正交特征图样为功率域非正交特征图样;所述发送端对处理后的一个用户设备的信号进行非正交特征图样映射,包括:
所述发送端确定自身的信号的发送时间和频率资源,并根据自身对应的 功率域非正交特征图样,确定自身的信号的发射功率,其中所述发送端的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同;或者
所述非正交特征图样为空域非正交特征图样;所述发送端对处理后的一个用户设备的信号进行非正交特征图样映射,包括:
所述发送端确定自身的信号的发送时间和频率资源,并根据自身对应的功率域非正交特征图样,确定自身的信号对应的发射天线端口,其中所述发送端的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同;或者
所述非正交特征图样为编码域非正交特征图样;所述发送端对处理后的一个用户设备的信号进行非正交特征图样映射,包括:
所述发送端确定自身的信号的发送时间和频率资源,并根据编码域非正交特征图样,确定自身的信号的编码方式和发送时延差;其中所述发送端的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送端的信号的编码方式与其他用户设备的信号的编码方式不同,且发送端的信号的发送时延差与其他用户设备的信号的发送时延差不同。
可选地,所述发送端为用户设备;
所述非正交特征图样为功率域和空域联合信号域非正交特征图样;所述发送端对处理后的一个用户设备的信号进行非正交特征图样映射,包括:
所述发送端确定自身的信号的发送时间和频率资源,并根据自身对应的功率域和空域联合信号域非正交特征图样,确定自身的信号的发射功率和对应的发射天线端口,其中所述发送端的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同;或者
所述非正交特征图样为功率域和编码域联合信号域非正交特征图样;所述发送端对处理后的一个用户设备的信号进行非正交特征图样映射,包括:
所述发送端确定自身的信号的发送时间和频率资源,并根据自身对应的功率域和编码域联合信号域非正交特征图样,确定自身的信号的发射功率、编码方式和发送时延差;其中所述发送端的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送端的信号的编码方式 与其他用户设备的信号的编码方式不同,且发送端的信号的发送时延差与其他用户设备的信号的发送时延差不同;或者
所述非正交特征图样为空域和编码域联合信号域非正交特征图样;所述发送端对处理后的一个用户设备的信号进行非正交特征图样映射,包括:
所述发送端确定自身的信号的发送时间和频率资源,并根据自身对应的空域和编码域联合信号域非正交特征图样,确定自身的信号对应的发射天线端口、编码方式和发送时延差;其中所述发送端的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送端的信号的编码方式与其他用户设备的信号的编码方式不同,且发送端的信号的发送时延差与其他用户设备的信号的发送时延差不同;或者
所述非正交特征图样为功率域、空域和编码域联合信号域非正交特征图样;所述发送端对处理后的一个用户设备的信号进行非正交特征图样映射,包括:
所述发送端确定自身的信号的发送时间和频率资源,并根据自身对应的功率域、空域和编码域联合信号域非正交特征图样,确定自身的信号对应的发射天线端口、发射功率、编码方式和发送时延差;其中所述发送端的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送端的信号的编码方式与其他用户设备的信号的编码方式不同,且发送端的信号的发送时延差与其他用户设备的信号的发送时延差不同。
如图15所示,根据本公开文本实施例七进行数据传输的方法包括:
步骤1500、接收端对收到的对应于多个用户设备的信号进行非正交特征图样检测,确定接收的信号对应的非正交特征图样;以及
步骤1510、所述接收端利用检测到的非正交特征图样,对收到的接收的信号进行串行干扰抵消方式的多用户设备检测,并进行接收处理,确定不同用户设备的数据。
可选地,所述接收端对收到的对应于用户设备的信号进行非正交特征图样检测,包括:
所述接收端采用单独信号域非正交特征图样或联合信号域非正交特征图样,对接收的信号进行非正交特征图样检测。
可选地,所述接收端对收到的对应于用户设备的信号进行非正交特征图样检测之前,还包括:
所述接收端通过信令接收或者盲检测单独信号域非正交特征图样或联合信号域非正交特征图样。
可选地,所述信号域包括下列中的部分或全部:
功率域、空域和编码域。
可选地,所述接收端对收到的对应于多个用户设备的信号进行非正交特征图样检测,包括:
若采用功率域非正交特征图样,所述接收端确定接收到多个用户设备的信号对应相同的发生时间和频率资源不同的发射功率,则确定接收的信号中包含的非正交特征图样为功率域非正交特征图样;或者
若采用空域非正交特征图样,所述接收端确定接收到多个用户设备的信号对应相同的发生时间和频率资源,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个接收天线端口对应至少两个用户设备的发送信号,则确定接收的信号中包含的非正交特征图样为空域非正交特征图样;或者
若采用编码域非正交特征图样,所述接收端确定接收到多个用户设备的信号对应相同的发生时间和频率资源、不同的编码方式和不同的发送时延差,则确定接收的信号中包含的非正交特征图样为编码域非正交特征图样。
可选地,所述接收端对收到的对应于多个用户设备的信号进行非正交特征图样检测,包括:
若采用功率域和空域联合信号域非正交特征图样,所述接收端确定接收到多个用户设备的信号对应相同的发生时间和频率资源不同的发射功率,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个接收天线端口对应至少两个用户设备的发送信号,则确定接收的信号中包含的非正交特征图样为功率域和空域联合信号域非正交特征图样;或者
若采用功率域和编码域联合信号域非正交特征图样,所述接收端确定接收到多个用户设备的信号对应相同的发生时间和频率资源、不同的发射功率、不同的编码方式和不同的发送时延差,则确定接收的信号中包含的非正交特征图样为功率域和编码域联合信号域非正交特征图样;或者
采用空域和编码域联合信号域非正交特征图样,所述接收端确定接收到多个用户设备的信号对应相同的发生时间和频率资源、不同的编码方式和不同的发送时延差,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个接收天线端口对应至少两个用户设备的发送信号,则确定接收的信号中包含的非正交特征图样为空域和编码域联合信号域非正交特征图样;或者
若采用功率域、空域和编码域联合信号域非正交特征图样,所述接收端确定接收到多个用户设备的信号对应相同的发生时间和频率资源、不同的发射功率、不同的编码方式和不同的发送时延差,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个接收天线端口对应至少两个用户设备的发送信号,则确定接收的信号中包含的非正交特征图样为功率域、空域和编码域联合信号域非正交特征图样。
从上述内容可以看出:本公开文本实施例发送端对一个或多个用户设备的信号进行发送处理;对发送处理后的一个或多个用户设备的信号进行非正交特征图样映射,以使不同用户设备的信号在对应的无线资源叠加,并根据非正交特征图样映射的结果,发送处理后的一个或多个用户设备的信号。由于能够使一个或多个用户设备的信号在无线资源进行非正交的叠加,实现了非正交多址接入传输,从而提高了无线资源利用率。
本领域内的技术人员应明白,本公开文本的实施例可提供为方法、系统、或计算机程序产品。因此,本公开文本可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开文本可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开文本是参照根据本公开文本实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机 器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本公开文本的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开文本范围的所有变更和修改。
显然,本领域的技术人员可以对本公开文本进行各种改动和变型而不脱离本公开文本的精神和范围。这样,倘若本公开文本的这些修改和变型属于本公开文本权利要求及其等同技术的范围之内,则本公开文本也意图包含这些改动和变型在内。

Claims (29)

  1. 一种数据传输的方法,包括:
    发送端对一个或多个用户设备的信号进行发送处理;
    所述发送端对处理后的一个或多个用户设备的信号进行非正交特征图样映射,以使不同用户设备的信号在对应的无线资源叠加;以及
    所述发送端根据非正交特征图样映射的结果,发送处理后的一个或多个用户设备的信号。
  2. 如权利要求1所述的方法,其中,所述发送端对处理后的一个或多个用户设备的信号进行非正交特征图样映射,包括:
    所述发送端采用单独信号域非正交特征图样或联合信号域非正交特征图样,对处理后的一个或多个用户设备的信号进行非正交特征图样映射。
  3. 如权利要求2所述的方法,其中,所述信号域包括下列中的部分或全部:
    功率域、空域和编码域。
  4. 如权利要求3所述的方法,其中,所述发送端为网络侧设备;
    所述非正交特征图样为功率域非正交特征图样;所述发送端对处理后的多个用户设备的信号进行非正交特征图样映射,包括:
    所述发送端为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域非正交特征图样,为多个用户设备的信号分配发射功率,其中为所有用户设备分配的发射功率之和等于系统可用总功率;或者
    所述非正交特征图样为空域非正交特征图样;所述发送端对处理后的多个用户设备的信号进行非正交特征图样映射,包括:
    所述发送端为多个用户设备的信号分配相同的发送时间和频率资源,并根据空域非正交特征图样,为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号;或者
    所述非正交特征图样为编码域非正交特征图样;所述发送端对处理后的多个用户设备的信号进行非正交特征图样映射,包括:
    所述发送端为多个用户设备的信号分配相同的发送时间和频率资源,并 根据编码域非正交特征图样,为每个用户设备的信号分配不同的编码方式和不同的发送时延差。
  5. 如权利要求3或4所述的方法,其中,所述发送端为网络侧设备;
    所述非正交特征图样为功率域和空域联合信号域非正交特征图样;所述发送端对处理后的多个用户设备的信号进行非正交特征图样映射,包括:
    所述发送端为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域和空域联合信号域非正交特征图样,为多个用户设备的信号分配发射功率,其中为所有用户设备分配的发射功率之和等于系统可用总功率,以及为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号;或者
    所述非正交特征图样为功率域和编码域联合信号域非正交特征图样;所述发送端对处理后的多个用户设备的信号进行非正交特征图样映射,包括:
    所述发送端为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域和编码域联合信号域非正交特征图样,为多个用户设备的信号分配发射功率,其中为所有用户设备分配的发射功率之和等于系统可用总功率,以及为每个用户设备的信号分配不同的编码方式和不同的发送时延差;或者
    所述非正交特征图样为空域和编码域联合信号域非正交特征图样;所述发送端对处理后的多个用户设备的信号进行非正交特征图样映射,包括:
    所述发送端为多个用户设备的信号分配相同的发送时间和频率资源,并根据空域和编码域联合信号域非正交特征图样,为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号,以及为每个用户设备的信号分配不同的编码方式和不同的发送时延差;或者
    所述非正交特征图样为功率域、空域和编码域联合信号域非正交特征图样;所述发送端对处理后的多个用户设备的信号进行非正交特征图样映射,包括:
    所述发送端为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域、空域和编码域联合信号域非正交特征图样,为多个用户设备的信号分配发射功率,其中为所有用户设备分配的发射功率之和等于系统可用 总功率,以及为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号,以及为每个用户设备的信号分配不同的编码方式和不同的发送时延差。
  6. 如权利要求3所述的方法,其中,所述发送端为用户设备;
    所述非正交特征图样为功率域非正交特征图样;所述发送端对处理后的一个用户设备的信号进行非正交特征图样映射,包括:
    所述发送端确定自身的信号的发送时间和频率资源,并根据自身对应的功率域非正交特征图样,确定自身的信号的发射功率,其中所述发送端的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同;或者
    所述非正交特征图样为空域非正交特征图样;所述发送端对处理后的一个用户设备的信号进行非正交特征图样映射,包括:
    所述发送端确定自身的信号的发送时间和频率资源,并根据自身对应的空域非正交特征图样,确定自身的信号对应的发射天线端口,其中所述发送端的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同;或者
    所述非正交特征图样为编码域非正交特征图样;所述发送端对处理后的一个用户设备的信号进行非正交特征图样映射,包括:
    所述发送端确定自身的信号的发送时间和频率资源,并根据编码域非正交特征图样,确定自身的信号的编码方式和发送时延差;其中所述发送端的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送端的信号的编码方式与其他用户设备的信号的编码方式不同,且发送端的信号的发送时延差与其他用户设备的信号的发送时延差不同。
  7. 如权利要求3或6所述的方法,其中,所述发送端为用户设备;
    所述非正交特征图样为功率域和空域联合信号域非正交特征图样;所述发送端对处理后的一个用户设备的信号进行非正交特征图样映射,包括:
    所述发送端确定自身的信号的发送时间和频率资源,并根据自身对应的功率域和空域联合信号域非正交特征图样,确定自身的信号的发射功率和对应的发射天线端口,其中所述发送端的信号的发送时间和频率资源与其他用 户设备的信号的发送时间和频率资源相同;或者
    所述非正交特征图样为功率域和编码域联合信号域非正交特征图样;所述发送端对处理后的一个用户设备的信号进行非正交特征图样映射,包括:
    所述发送端确定自身的信号的发送时间和频率资源,并根据自身对应的功率域和编码域联合信号域非正交特征图样,确定自身的信号的发射功率、编码方式和发送时延差;其中所述发送端的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送端的信号的编码方式与其他用户设备的信号的编码方式不同,且发送端的信号的发送时延差与其他用户设备的信号的发送时延差不同;或者
    所述非正交特征图样为空域和编码域联合信号域非正交特征图样;所述发送端对处理后的一个用户设备的信号进行非正交特征图样映射,包括:
    所述发送端确定自身的信号的发送时间和频率资源,并根据自身对应的空域和编码域联合信号域非正交特征图样,确定自身的信号对应的发射天线端口、编码方式和发送时延差;其中所述发送端的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送端的信号的编码方式与其他用户设备的信号的编码方式不同,且发送端的信号的发送时延差与其他用户设备的信号的发送时延差不同;或者
    所述非正交特征图样为功率域、空域和编码域联合信号域非正交特征图样;所述发送端对处理后的一个用户设备的信号进行非正交特征图样映射,包括:
    所述发送端确定自身的信号的发送时间和频率资源,并根据自身对应的功率域、空域和编码域联合信号域非正交特征图样,确定自身的信号对应的发射天线端口、发射功率、编码方式和发送时延差;其中所述发送端的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送端的信号的编码方式与其他用户设备的信号的编码方式不同,且发送端的信号的发送时延差与其他用户设备的信号的发送时延差不同。
  8. 一种数据传输的方法,包括:
    接收端对收到的对应于多个用户设备的信号进行非正交特征图样检测,确定接收的信号对应的非正交特征图样;以及
    所述接收端利用检测到的非正交特征图样,对接收的信号进行串行干扰抵消方式的多用户设备检测,并进行接收处理,确定不同用户设备的数据。
  9. 如权利要求8所述的方法,其中,所述接收端对收到的对应于用户设备的信号进行非正交特征图样检测,包括:
    所述接收端采用单独信号域非正交特征图样或联合信号域非正交特征图样,对接收的信号进行非正交特征图样检测。
  10. 如权利要求8或9所述的方法,其中,所述接收端对收到的对应于用户设备的信号进行非正交特征图样检测之前,还包括:
    所述接收端通过信令接收或者盲检测单独信号域非正交特征图样或联合信号域非正交特征图样。
  11. 如权利要求9所述的方法,其中,所述信号域包括下列中的部分或全部:
    功率域、空域和编码域。
  12. 如权利要求11所述的方法,其中,所述接收端对收到的对应于多个用户设备的信号进行非正交特征图样检测,包括:
    若采用功率域非正交特征图样,所述接收端确定接收到多个用户设备的信号对应相同的发送时间和频率资源不同的发射功率,则确定接收的信号中包含的非正交特征图样为功率域非正交特征图样;或者
    若采用空域非正交特征图样,所述接收端确定接收到多个用户设备的信号对应相同的发送时间和频率资源,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个接收天线端口对应至少两个用户设备的发送信号,则确定接收的信号中包含的非正交特征图样为空域非正交特征图样;或者
    若采用编码域非正交特征图样,所述接收端确定接收到多个用户设备的信号对应相同的发送时间和频率资源、不同的编码方式和不同的发送时延差,则确定接收的信号中包含的非正交特征图样为编码域非正交特征图样。
  13. 如权利要求11或12所述的方法,其中,所述接收端对收到的对应于多个用户设备的信号进行非正交特征图样检测,包括:
    若采用功率域和空域联合信号域非正交特征图样,所述接收端确定接收到多个用户设备的信号对应相同的发送时间和频率资源不同的发射功率,且 至少一个用户设备的信号对应至少两个发射天线端口、至少一个接收天线端口对应至少两个用户设备的发送信号,则确定接收的信号中包含的非正交特征图样为功率域和空域联合信号域非正交特征图样;或者
    若采用功率域和编码域联合信号域非正交特征图样,所述接收端确定接收到多个用户设备的信号对应相同的发送时间和频率资源、不同的发射功率、不同的编码方式和不同的发送时延差,则确定接收的信号中包含的非正交特征图样为功率域和编码域联合信号域非正交特征图样;或者
    采用空域和编码域联合信号域非正交特征图样,所述接收端确定接收到多个用户设备的信号对应相同的发送时间和频率资源、不同的编码方式和不同的发送时延差,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个接收天线端口对应至少两个用户设备的发送信号,则确定接收的信号中包含的非正交特征图样为空域和编码域联合信号域非正交特征图样;或者
    若采用功率域、空域和编码域联合信号域非正交特征图样,所述接收端确定接收到多个用户设备的信号对应相同的发送时间和频率资源、不同的发射功率、不同的编码方式和不同的发送时延差,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个接收天线端口对应至少两个用户设备的发送信号,则确定接收的信号中包含的非正交特征图样为功率域、空域和编码域联合信号域非正交特征图样。
  14. 一种数据传输的发送设备,包括:
    第一处理模块,用于对一个或多个用户设备的信号进行发送处理;
    特征图样映射模块,用于对处理后的一个或多个用户设备的信号进行非正交特征图样映射,以使不同用户设备的信号在对应的无线资源叠加;以及
    发送模块,用于根据非正交特征图样映射的结果,发送处理后的一个或多个用户设备的信号。
  15. 如权利要求14所述的发送设备,其中,所述特征图样映射模块采用单独信号域非正交特征图样或联合信号域非正交特征图样,对处理后的一个或多个用户设备的信号进行非正交特征图样映射。
  16. 如权利要求15所述的发送设备,其中,所述信号域包括下列中的部 分或全部:
    功率域、空域和编码域。
  17. 如权利要求16所述的发送设备,其中,所述发送设备为网络侧设备;
    若所述非正交特征图样为功率域非正交特征图样,所述特征图样映射模块为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域非正交特征图样,为多个用户设备的信号分配发射功率,其中为所有用户设备分配的发射功率之和等于系统可用总功率;或者
    若所述非正交特征图样为空域非正交特征图样,所述特征图样映射模块为多个用户设备的信号分配相同的发送时间和频率资源,并根据空域非正交特征图样,为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号;或者
    若所述非正交特征图样为编码域非正交特征图样,所述特征图样映射模块为多个用户设备的信号分配相同的发送时间和频率资源,并根据编码域非正交特征图样,为每个用户设备的信号分配不同的编码方式和不同的发送时延差。
  18. 如权利要求16或17所述的发送设备,其中,所述发送设备为网络侧设备;
    若所述非正交特征图样为功率域和空域联合信号域非正交特征图样,所述特征图样映射模块为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域和空域联合信号域非正交特征图样,为多个用户设备的信号分配发射功率,其中为所有用户设备分配的发射功率之和等于系统可用总功率,以及为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号;或者
    若所述非正交特征图样为功率域和编码域联合信号域非正交特征图样,所述特征图样映射模块为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域和编码域联合信号域非正交特征图样,为多个用户设备的信号分配发射功率,其中为所有用户设备分配的发射功率之和等于系统可用总功率,以及为每个用户设备的信号分配不同的编码方式和不同的发送时延差;或者
    若所述非正交特征图样为空域和编码域联合信号域非正交特征图样,所述特征图样映射模块为多个用户设备的信号分配相同的发送时间和频率资源,并根据空域和编码域联合信号域非正交特征图样,为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号,以及为每个用户设备的信号分配不同的编码方式和不同的发送时延差;或者
    若所述非正交特征图样为功率域、空域和编码域联合信号域非正交特征图样,所述特征图样映射模块为多个用户设备的信号分配相同的发送时间和频率资源,并根据功率域、空域和编码域联合信号域非正交特征图样,为多个用户设备的信号分配发射功率,其中为所有用户设备分配的发射功率之和等于系统可用总功率,以及为至少一个用户设备的信号分配至少两个发射天线端口、至少一个发射天线端口对应至少两个用户设备的信号,以及为每个用户设备的信号分配不同的编码方式和不同的发送时延差。
  19. 如权利要求16所述的发送设备,其中,所述发送设备为用户设备;
    若所述非正交特征图样为功率域非正交特征图样,所述特征图样映射模块确定自身的信号的发送时间和频率资源,并根据自身对应的功率域非正交特征图样,确定自身的信号的发射功率,其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同;或者
    若所述非正交特征图样为空域非正交特征图样,所述特征图样映射模块确定自身的信号的发送时间和频率资源,并根据自身对应的空域非正交特征图样,确定自身的信号对应的发射天线端口,其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同;或者
    若所述非正交特征图样为编码域非正交特征图样,所述特征图样映射模块确定自身的信号的发送时间和频率资源,并根据编码域非正交特征图样,确定自身的信号的编码方式和发送时延差;其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送设备的信号的编码方式与其他用户设备的信号的编码方式不同,且发送设备的信号的发送时延差与其他用户设备的信号的发送时延差不同。
  20. 如权利要求16或19所述的发送设备,其中,所述发送设备为用户 设备;
    若所述非正交特征图样为功率域和空域联合信号域非正交特征图样,所述特征图样映射模块确定自身的信号的发送时间和频率资源,并根据自身对应的功率域和空域联合信号域非正交特征图样,确定自身的信号的发射功率和对应的发射天线端口,其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同;或者
    若所述非正交特征图样为功率域和编码域联合信号域非正交特征图样,所述特征图样映射模块确定自身的信号的发送时间和频率资源,并根据自身对应的功率域和编码域联合信号域非正交特征图样,确定自身的信号的发射功率、编码方式和发送时延差;其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送设备的信号的编码方式与其他用户设备的信号的编码方式不同,且发送设备的信号的发送时延差与其他用户设备的信号的发送时延差不同;或者
    若所述非正交特征图样为空域和编码域联合信号域非正交特征图样,所述特征图样映射模块确定自身的信号的发送时间和频率资源,并根据自身对应的空域和编码域联合信号域非正交特征图样,确定自身的信号对应的发射天线端口、编码方式和发送时延差;其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送设备的信号的编码方式与其他用户设备的信号的编码方式不同,且发送设备的信号的发送时延差与其他用户设备的信号的发送时延差不同;或者
    若所述非正交特征图样为功率域、空域和编码域联合信号域非正交特征图样,所述特征图样映射模块确定自身的信号的发送时间和频率资源,并根据自身对应的功率域、空域和编码域联合信号域非正交特征图样,确定自身的信号对应的发射天线端口、发射功率、编码方式和发送时延差;其中所述发送设备的信号的发送时间和频率资源与其他用户设备的信号的发送时间和频率资源相同,且发送设备的信号的编码方式与其他用户设备的信号的编码方式不同,且发送设备的信号的发送时延差与其他用户设备的信号的发送时延差不同。
  21. 一种数据传输的发送设备,包括:
    处理器;
    存储器,通过总线接口与所述处理器相连接,并且用于存储所述处理器在执行操作时所使用的程序和数据;以及
    收发机,通过总线接口与所述处理器和所述存储器相连接,并且用于在所述处理器的控制下接收和发送数据,
    当处理器调用并执行所述存储器中所存储的程序和数据时,实现如下的功能模块:
    第一处理模块,用于对一个或多个用户设备的信号进行发送处理;
    特征图样映射模块,用于对处理后的一个或多个用户设备的信号进行非正交特征图样映射,以使不同用户设备的信号在对应的无线资源叠加;以及
    发送模块,用于根据非正交特征图样映射的结果,将处理后的一个或多个用户设备的信号发送到所述收发机进行数据发送。
  22. 一种数据传输的接收设备,包括:
    特征图样检测模块,用于对收到的对应于多个用户设备的信号进行非正交特征图样检测,确定接收的信号对应的非正交特征图样;以及
    第二处理模块,用于利用检测到的非正交特征图样,对收到的接收的信号进行串行干扰抵消方式的多用户设备检测,并进行接收处理,确定不同用户设备的数据。
  23. 如权利要求22所述的接收设备,其中,所述特征图样检测模块采用单独信号域非正交特征图样或联合信号域非正交特征图样,对接收的信号进行非正交特征图样检测。
  24. 如权利要求22或23所述的接收设备,其中,所述特征图样检测模块还通过信令接收或者盲检测单独信号域非正交特征图样或联合信号域非正交特征图样。
  25. 如权利要求23所述的接收设备,其中,所述信号域包括下列中的部分或全部:
    功率域、空域和编码域。
  26. 如权利要求25所述的接收设备,其中:
    若采用功率域非正交特征图样,所述特征图样检测模块确定接收到多个用户设备的信号对应相同的发送时间和频率资源不同的发射功率,则确定接收的信号中包含的非正交特征图样为功率域非正交特征图样;或者
    若采用空域非正交特征图样,所述特征图样检测模块确定接收到多个用户设备的信号对应相同的发送时间和频率资源,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个接收天线端口对应至少两个用户设备的发送信号,则确定接收的信号中包含的非正交特征图样为空域非正交特征图样;或者
    若采用编码域非正交特征图样,所述特征图样检测模块确定接收到多个用户设备的信号对应相同的发送时间和频率资源、不同的编码方式和不同的发送时延差,则确定接收的信号中包含的非正交特征图样为编码域非正交特征图样。
  27. 如权利要求25或26所述的接收设备,其中:
    若采用功率域和空域联合信号域非正交特征图样,所述特征图样检测模块确定接收到多个用户设备的信号对应相同的发送时间和频率资源不同的发射功率,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个接收天线端口对应至少两个用户设备的发送信号,则确定接收的信号中包含的非正交特征图样为功率域和空域联合信号域非正交特征图样;或者
    若采用功率域和编码域联合信号域非正交特征图样,所述特征图样检测模块确定接收到多个用户设备的信号对应相同的发送时间和频率资源、不同的发射功率、不同的编码方式和不同的发送时延差,则确定接收的信号中包含的非正交特征图样为功率域和编码域联合信号域非正交特征图样;或者
    采用空域和编码域联合信号域非正交特征图样,所述特征图样检测模块确定接收到多个用户设备的信号对应相同的发送时间和频率资源、不同的编码方式和不同的发送时延差,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个接收天线端口对应至少两个用户设备的发送信号,则确定接收的信号中包含的非正交特征图样为空域和编码域联合信号域非正交特征图样;或者
    若采用功率域、空域和编码域联合信号域非正交特征图样,所述特征图 样检测模块确定接收到多个用户设备的信号对应相同的发送时间和频率资源、不同的发射功率、不同的编码方式和不同的发送时延差,且至少一个用户设备的信号对应至少两个发射天线端口、至少一个接收天线端口对应至少两个用户设备的发送信号,则确定接收的信号中包含的非正交特征图样为功率域、空域和编码域联合信号域非正交特征图样。
  28. 一种数据传输的接收设备,包括:
    处理器;
    存储器,通过总线接口与所述处理器相连接,并且用于存储所述处理器在执行操作时所使用的程序和数据;以及
    收发机,通过总线接口与所述处理器和所述存储器相连接,并且用于在所述处理器的控制下接收和发送数据,
    当处理器调用并执行所述存储器中所存储的程序和数据时,实现如下的功能模块:
    特征图样检测模块,用于对收到的对应于多个用户设备的信号进行非正交特征图样检测,确定接收的信号对应的非正交特征图样;以及
    第二处理模块,用于利用检测到的非正交特征图样,对收到的接收的信号进行串行干扰抵消方式的多用户设备检测,并使得所述收发机进行数据接收处理,确定不同用户设备的数据。
  29. 一种数据传输系统,包括:
    发送设备,用于对一个或多个用户设备的信号进行发送处理;对处理后的一个或多个用户设备的信号进行非正交特征图样映射,以使不同用户设备的信号在对应的无线资源叠加;根据非正交特征图样映射的结果,发送处理后的一个或多个用户设备的信号;以及
    接收设备,用于对收到的对应于多个用户设备的信号进行非正交特征图样检测,确定接收的信号对应的非正交特征图样;利用检测到的非正交特征图样,对收到的接收的信号进行串行干扰抵消方式的多用户设备检测,并进行接收处理,确定不同用户设备的数据。
PCT/CN2015/081552 2014-07-02 2015-06-16 一种数据传输的方法、系统和设备 WO2016000523A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177001658A KR101919717B1 (ko) 2014-07-02 2015-06-16 데이터 전송 방법, 시스템 및 기기
US15/322,079 US10454636B2 (en) 2014-07-02 2015-06-16 Method, system and device for data transmission
EP15815217.3A EP3166247A4 (en) 2014-07-02 2015-06-16 Data transmission method, system and device
JP2016575399A JP6513108B2 (ja) 2014-07-02 2015-06-16 データ伝送方法、システム及び機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410312309.4A CN105227273B (zh) 2014-07-02 2014-07-02 一种数据传输的方法、系统和设备
CN201410312309.4 2014-07-02

Publications (1)

Publication Number Publication Date
WO2016000523A1 true WO2016000523A1 (zh) 2016-01-07

Family

ID=54996002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081552 WO2016000523A1 (zh) 2014-07-02 2015-06-16 一种数据传输的方法、系统和设备

Country Status (7)

Country Link
US (1) US10454636B2 (zh)
EP (1) EP3166247A4 (zh)
JP (1) JP6513108B2 (zh)
KR (1) KR101919717B1 (zh)
CN (1) CN105227273B (zh)
TW (1) TWI571154B (zh)
WO (1) WO2016000523A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105656596B (zh) * 2014-11-14 2019-07-19 电信科学技术研究院 一种进行数据传输的方法和设备
CN106161291B (zh) * 2015-04-07 2019-09-17 电信科学技术研究院 一种数据的发送方法、接收方法及装置
AU2016390356A1 (en) * 2016-01-26 2018-07-19 Sony Corporation Device and method
CN106027128B (zh) * 2016-04-27 2019-05-21 清华大学 一种基于非正交多址接入的上行多用户干扰的抑制方法
CN105763300B (zh) * 2016-05-04 2018-10-12 东南大学 一种空域图样分割多址接入技术的接收机设计方法
CN107645784A (zh) * 2016-07-22 2018-01-30 电信科学技术研究院 选择用户签名矢量的方法及装置
WO2018027909A1 (zh) * 2016-08-12 2018-02-15 富士通株式会社 解调参考信号的映射和复用方法、装置以及通信系统
CN116800394A (zh) * 2016-08-12 2023-09-22 中兴通讯股份有限公司 一种业务处理方法及装置
CN107770854A (zh) 2016-08-19 2018-03-06 株式会社Ntt都科摩 用于控制发射功率的方法、移动台和基站
CN107786482B (zh) * 2016-08-19 2021-06-04 北京三星通信技术研究有限公司 基于栅格映射的多终端信息接收、发送方法及相应设备
CN108418654B (zh) * 2017-02-09 2020-08-14 电信科学技术研究院 一种信号检测方法及装置
US10476678B2 (en) * 2017-03-27 2019-11-12 Intelligent Fusion Technology, Inc. Methods and systems for high throughput and cyber-secure data communications
CN107171770B (zh) * 2017-05-25 2020-01-07 深圳清华大学研究院 上行多用户非正交多址接入方法
CN109526057A (zh) * 2017-09-18 2019-03-26 株式会社Ntt都科摩 一种用于生成扩展符号的方法及装置
TWI665927B (zh) * 2017-11-24 2019-07-11 財團法人資訊工業策進會 基地台及使用者裝置
US11418248B2 (en) 2018-03-19 2022-08-16 Idac Holdings, Inc. Method of non-orthogonal uplink multiplexing of heterogeneous information types
CN108882389B (zh) * 2018-05-07 2020-09-01 清华大学 一种多用户信号确定方法及装置
CN109005551B (zh) * 2018-07-10 2021-05-04 南京邮电大学 一种非理想信道状态信息的多用户noma下行功率分配方法
CN109600858B (zh) * 2019-01-16 2021-11-12 常熟理工学院 一种非正交多址接入机制下的低复杂度用户调度方法
KR20220018358A (ko) 2020-08-06 2022-02-15 삼성전자주식회사 주파수 오프셋을 사용하는 비직교 다중 접속 시스템에서 채널 추정 방법 및 장치
EP4178301A4 (en) 2020-10-30 2023-12-13 Samsung Electronics Co., Ltd. ELECTRONIC DEVICE FOR REPLANING A WIRELESS CHANNEL BASED ON A WIRELESS CHANNEL ENVIRONMENT AND METHOD FOR CONTROLLING SAME
CN118176789A (zh) * 2021-10-29 2024-06-11 株式会社Ntt都科摩 无线通信网络中的网络侧设备及用户设备
IL297394B2 (en) * 2022-10-18 2024-09-01 Elbit Systems C4I And Cyber Ltd A system and method for transmitting data in a wireless communication network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101145891A (zh) * 2006-09-11 2008-03-19 华为技术有限公司 数据传输系统和方法以及数据接收装置
CN102118216A (zh) * 2009-12-31 2011-07-06 华为技术有限公司 数据传输的方法、设备及系统
CN103607261A (zh) * 2013-11-22 2014-02-26 大唐移动通信设备有限公司 一种数据传输方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1665616A2 (en) 2003-09-15 2006-06-07 Intel Corporation Multiple antenna systems and methods using high-throughput space-frequency block codes
US8179876B2 (en) * 2004-12-22 2012-05-15 Qualcomm Incorporated Multiple modulation technique for use in a communication system
EP1775840B1 (en) * 2005-10-17 2017-08-30 NTT DoCoMo, Inc. Transmitter, receiver and method with user-specific interleavers
KR100891818B1 (ko) 2006-01-27 2009-04-07 삼성전자주식회사 이동통신 시스템에서 복합 다중 접속 장치 및 방법
CN101106800B (zh) * 2006-07-11 2012-08-29 工业和信息化部电信传输研究所 一种用于上行交织多址系统的资源调度方法
EP1962463A1 (en) 2007-02-26 2008-08-27 Nokia Siemens Networks Gmbh & Co. Kg Method and apparatus for coding transmit data in a MIMO-OFDM system
US7916081B2 (en) 2007-12-19 2011-03-29 Qualcomm Incorporated Beamforming in MIMO systems
US20090185475A1 (en) 2008-01-23 2009-07-23 Myung Hyung G Non-orthogonal subcarrier mapping method and system
US8340605B2 (en) 2008-08-06 2012-12-25 Qualcomm Incorporated Coordinated transmissions between cells of a base station in a wireless communications system
JP5830478B2 (ja) * 2013-02-06 2015-12-09 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
KR102189315B1 (ko) * 2013-12-04 2020-12-11 삼성전자주식회사 다중 입출력 시스템에서 상향링크 스케쥴링 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101145891A (zh) * 2006-09-11 2008-03-19 华为技术有限公司 数据传输系统和方法以及数据接收装置
CN102118216A (zh) * 2009-12-31 2011-07-06 华为技术有限公司 数据传输的方法、设备及系统
CN103607261A (zh) * 2013-11-22 2014-02-26 大唐移动通信设备有限公司 一种数据传输方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3166247A4 *

Also Published As

Publication number Publication date
JP2017526232A (ja) 2017-09-07
JP6513108B2 (ja) 2019-05-15
EP3166247A4 (en) 2017-07-19
CN105227273A (zh) 2016-01-06
TW201603616A (zh) 2016-01-16
KR20170021306A (ko) 2017-02-27
US20170155484A1 (en) 2017-06-01
TWI571154B (zh) 2017-02-11
EP3166247A1 (en) 2017-05-10
KR101919717B1 (ko) 2018-11-16
CN105227273B (zh) 2019-09-17
US10454636B2 (en) 2019-10-22

Similar Documents

Publication Publication Date Title
WO2016000523A1 (zh) 一种数据传输的方法、系统和设备
US20230208606A1 (en) Methods and apparatuses for demodulation reference signal configuratio
CN109088658B (zh) 用于无线接入虚拟化的系统和方法
TWI638542B (zh) Method and device for determining multi-user transmission mode
CN110476471B (zh) 用于窄带机器类型通信的上行链路非正交多址
US9780843B2 (en) Interference suppression and alignment for cellular networks
US10193668B2 (en) ENodeB-based communication method and communication system
WO2013075284A1 (zh) 一种lte基带资源池的实现方法及装置
CN112584508B (zh) 解调参考信号端口的分配指示方法、装置、基站及终端
CN108880773B (zh) 一种大规模天线系统中的导频分配方法
US20220123914A1 (en) Methods and apparatuses for reference signal allocation
JP2022185006A (ja) 端末、ネットワーク装置及び方法
CN104935396A (zh) 干扰消除或抑制的信令通知方法及系统、接收方法及装置
CN104519504A (zh) 干扰协调的参数传输方法及装置、干扰协调方法及装置
CN104380614B (zh) 用于在无线通信系统中发送/接收信号的方法和装置
KR102286877B1 (ko) 필터뱅크 기반의 멀티 캐리어 신호 송수신을 위한 필터 재사용 방법
US20210195619A1 (en) Over-the-edge user-specific reference symbols
TWI641274B (zh) Communication method, network device and terminal device
CN107864495B (zh) 一种大规模分布式天线系统全双工传输干扰抑制方法
KR100762280B1 (ko) 기지국의 통신 자원 할당 방법
KR20150015386A (ko) 이동 통신 시스템의 간섭 정보 제공 방법
Sohail et al. Cognitive radio systems: multicarrier modulation and power allocation challenges
Bansal Dynamic resource allocation for OFDM-based cognitive radio systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815217

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015815217

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015815217

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15322079

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016575399

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177001658

Country of ref document: KR

Kind code of ref document: A