[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016064087A1 - D-사이코스 결정을 제조하는 방법 - Google Patents

D-사이코스 결정을 제조하는 방법 Download PDF

Info

Publication number
WO2016064087A1
WO2016064087A1 PCT/KR2015/009449 KR2015009449W WO2016064087A1 WO 2016064087 A1 WO2016064087 A1 WO 2016064087A1 KR 2015009449 W KR2015009449 W KR 2015009449W WO 2016064087 A1 WO2016064087 A1 WO 2016064087A1
Authority
WO
WIPO (PCT)
Prior art keywords
psicose
solution
purity
crystallization
crystal
Prior art date
Application number
PCT/KR2015/009449
Other languages
English (en)
French (fr)
Inventor
김성보
박승원
안준갑
이주항
Original Assignee
씨제이제일제당(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US15/520,786 priority Critical patent/US10246476B2/en
Application filed by 씨제이제일제당(주) filed Critical 씨제이제일제당(주)
Priority to EP15852095.7A priority patent/EP3210478B1/en
Priority to JP2017540532A priority patent/JP6413024B2/ja
Priority to CN201580057213.0A priority patent/CN106852145B/zh
Priority to PL15852095T priority patent/PL3210478T3/pl
Priority to ES15852095T priority patent/ES2841357T3/es
Publication of WO2016064087A1 publication Critical patent/WO2016064087A1/ko
Priority to US16/279,860 priority patent/US10808002B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • C07H1/06Separation; Purification
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/30Artificial sweetening agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/18Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
    • B01D15/1814Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns recycling of the fraction to be distributed
    • B01D15/1821Simulated moving beds
    • B01D15/185Simulated moving beds characterized by the components to be separated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • B01D15/363Anion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0004Crystallisation cooling by heat exchange
    • B01D9/0013Crystallisation cooling by heat exchange by indirect heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0036Crystallisation on to a bed of product crystals; Seeding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/02Monosaccharides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/30Artificial sweetening agents
    • A23L27/33Artificial sweetening agents containing sugars or derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention is directed to a method for producing high purity D-psicose crystals using supersaturation from D-psicose solution.
  • D-Phycose is not metabolized in the human body and has almost no calories, and has been reported as a sweetener that has little effect on weight gain by inhibiting body fat formation (Matuo, T. et. Al .. Asia Pac . J. Clin . Untr ., 10, 233-237, 2001; Matsuo, T. and K. Izumori, Asia Pac. J. Clin. Nutr., 13, S127, 2004).
  • reaction solution containing D-psicose produced by the enzymatic reaction is a low-purity product containing about 20 to 30% (w / w) of D-psicose solids, a high purity of 98% (w / w) or more It is required to produce crystallization through high-purity separation using chromatography to prepare D-psicose crystal grains, but to date, more than 98% (w / w) of high-purity crystallization products have been industrialized for D-psicose. There is no.
  • the industrialization technology for mass production has its limitations due to high manufacturing cost.
  • the use of a large amount of ethanol in the manufacturing method of D-psicose crystallization has a low preference in the market due to the remaining ethanol odor in the final product, this also has a limitation of the technology in material aptitude.
  • a concentrated crystallization method is used for crystallization of saccharides such as sucrose with a high growth rate of crystals
  • a cooling crystallization method is generally used for crystallization of saccharides which have a significantly lower growth rate than sucrose.
  • the crystallization method of sugars is usually made in a metastable zone, which means that the concentration of the solution ranges from the equilibrium concentration, that is, from the saturation concentration to the lowest super saturation.
  • the crystallization phenomenon such as crystal nucleation does not occur at the concentration of this region, but when new crystals are introduced from the outside, crystal growth occurs and crystal size increases.
  • the seed when seed is added to a solution having a saturation concentration or more to generate a crystal, the seed grows in a metastable zone and crystal growth occurs.
  • the solution for crystallization is excessively concentrated or rapidly cooled, it becomes a supersaturation state exceeding the metastable zone, and new crystal nucleation is generated instead of crystal growth, which is an inhibitor of crystal growth due to the increase of population. Temperature conditions and initial entry supersaturation concentration are important for crystal growth.
  • D-Phycose shows little change in crystal formation rate and crystal growth rate even in the supersaturation concentration range.
  • the grain size is known as an important factor in the sugar crystallization industry.
  • the separation of the crystals and the mother liquor in the crystal centrifuge system is easy due to the viscosity between the supersaturated agricultural tools. Because it is not made, the purity of the final product decreases due to the influence of the remaining mother liquor, and the remaining mother liquor causes the agglomeration of crystals with each other when drying, resulting in less product packaging or less product quality. Therefore, such particulate crystals are not suitable for mass production.
  • an object of the present invention is to provide a method for obtaining a high-purity D-psicose separation solution that can be reused without removing unreacted fructose by using a continuous chromatographic separation without yeast fermentation.
  • the obtained high-purity D-Phycose separation liquid is grown without the use of organic solvents such as ethanol to increase the crystal grain size to facilitate the separation of crystals and mother liquor, D-Piscose which can minimize the loss of separation, drying and packaging To provide a method of manufacturing.
  • the present invention provides a D-psicose crystallization method that reduces the manufacturing cost by reducing the variable cost and fixed cost, and 98% (w / w) having a grain size of MA200 or more with improved flow of crystallization manufacturing process and productability as a product It is an object of the present invention to provide a method for producing a high-purity D-psicose.
  • removing the impurities from the D- psychose solution to obtain a purified D- psychose solution Concentrating the purified D-psicose solution; Heat exchanging the concentrated D-psicose solution to 30 to 40 ° C .; Seeding the D-psicose solution at 30 to 40 ° C. to obtain a mask; It provides a method for producing a high-purity D-Phycose crystals having a purity of 98% (w / w) or more, particle size MA 200 or more, including the step of main crystallization using the seed crystallized mask.
  • FIG. 1 is a graph showing the change in purity of thermal denaturation with temperature in 80 Brix (%) solution of D-psicose.
  • 2 is a graph showing the grain size of D-psicose prepared by seed crystals.
  • Figure 3 is a graph showing the grain size of the D-psicose prepared by the present crystal.
  • One embodiment of the present invention removing the impurities from the D- psychose solution to obtain a purified D- psychose solution; Concentrating the purified D-psicose solution; Cooling the concentrated D-psicose solution through a heat exchanger to 30 to 40 ° C., preferably 35 to 40 ° C .; Seeding the D-psicose solution at 30 to 40 ° C. to obtain a mask; It relates to a method for producing a high-purity D- psychose crystals having a purity of 98% (w / w) or more, particle size MA 200 or more, comprising the step of using the seed crystallized mask to the main crystallization.
  • the D-psicose solution used in the present invention may be prepared by a strain of the genus Corynebacterium expressing the D-psicose epimerase from fructose or a sicose epimerase isolated therefrom.
  • 'Cycos epimerase' refers to a psychos-3-epimerase that has the activity of converting fructose into a psychose.
  • the D-psicose solution is a cell obtained by culturing Corynebacterium glutamicum KCTC 13032, which produces D-psicose epimerase, as described in Korean Patent Application No. 2009-0118465.
  • the enzyme isolated from the cells can be obtained by immobilization on an immobilization carrier such as sodium alginate, and then fed fructose to the substrate.
  • the method of preparing the D-psicose crystal according to the present invention may include removing impurities from the D-psicose solution to obtain a purified D-psicose solution.
  • the step of obtaining the purified D- psychose solution is to decolorize the D- psychose solution by passing through a column filled with a decolorant; Desalting the decolorized D-psicose solution by ion exchange resin chromatography; And passing the desalted D-psicose solution through a continuous chromatography filled with ion exchange resin attached to a calcium activator to obtain a purified D-psicose solution.
  • the desalting of the D-psicose solution may be performed by chromatography passing through a column filled with a cation exchange resin and a column filled with an anion exchange resin.
  • a strong basic anion resin in the ion exchange resin refining method for the preparation of D-psicose refining liquid the deterioration of purity occurs due to denaturation of D-psicose, and thus 100% weakly alkaline anionic resin is used to prepare high-purity D-psicose crystals. Should be used.
  • the denaturation of D-psicose is also observed in mixed resins of strong acid cationic resins and strong alkaline anionic resins used in conventional saccharide tablets. Therefore, in the step of desalting the D-psicose solution, only 100% weakly alkaline anionic resin can be used for effective desalting purification without denaturation of D-psicose.
  • separation by continuous chromatography may be performed to purify high purity D-psicose.
  • the content of D-psicose in the D-psicose solution for obtaining D-psicose crystals should be 90 to 95% or more, more preferably 95% or more.
  • Direct crystallization cannot be performed because the purity of D-psicose in the D-psicose solution prepared by D-psicose epimerase is as low as 24% (w / w).
  • impurities are removed by decolorization and desalting prior to the crystallization step, followed by continuous chromatography, i.e., chromatography on a column packed with ion exchange resins with calcium activators. Psycho can be separated and purified.
  • the method for preparing D-psicose crystals according to the present invention unlike the method of gradually cooling from a high temperature to a constant temperature section per unit time within the supersaturation concentration range, which is a conventional saccharide crystallization method, of 80 to 85 Brix (%)
  • the D-psicose solution concentrated in the supersaturated concentration range (D-psicose solution ⁇ 100 / total solution) was rapidly cooled to a temperature of 30-40 ° C. at a temperature of 5-20 ° C. per hour through a heat exchanger, followed by a crystallization device input solution. use.
  • the crystallization time of the D- psychos should be made of 80 to 120 hours or more, the concentration of the concentrated D- psychos solution is rapidly increased by 30 to 40 °C by 5 to 20 °C per hour through a heat exchanger within the supersaturated concentration range After cooling, the crystallization of D-Phycose is carried out by adding to a crystallization apparatus and repeating the temperature increase and cooling of 5 to 10 times within the crystallization temperature section within the range of 30 to 40 ° C. That is, a 30 to 40 ° C.
  • the D-psicose solution concentrated in a supersaturation concentration range of 80 to 85 Brix (%) at 5 to 20% (v / v) of the crystallizer operation amount is added thereto, and then the cooling water of the crystallizer is added.
  • the temperature is circulated in the range of 30 to 35 ° C., and the prepared D-psicose seed (Seed) is added at 10 to 100 ppm (v / v) based on the initial dose to start the D-psicose crystallization reaction.
  • the mask means a slurry state in which a crystal and a solution are mixed when the D-psicose seed starts a crystallization reaction.
  • the D-psicose solution of 30 to 40 ° C. concentrated was added thereto, and this operation was repeated 5 to 10 times, and the internal temperature of the crystal mask was repeatedly heated and cooled 5 to 10 times within the range of 30 to 40 ° C. To induce D-psicose crystal growth for 80 to 120 hours.
  • the D-psicose crystals obtained by the production method of the present invention may be specifically grain size MA 200 or more, more specifically grain size MA 300 or more.
  • Grain size is a measure of the average size of a crystal.
  • JIS or ASTM the number of crystals included in a 25 mm square area of a 100-micron magnified photomicrograph is measured, and the number is referred to as a grain size number and represents a particle size. Recently, it is also used to mean the average size of crystals. In the present invention, it is used in the sense of the average size of the crystal.
  • the method for measuring the grain size of D-psicose is not limited and may be a method commonly used in the art.
  • Non-limiting examples of measuring grain size include comparative method (FGC), cleavage method (FGI), flat method (FGP).
  • D-psicose crystals having a grain size of MA 200 or more seed crystallization and main crystallization must be carried out in two stages under the above conditions, and seed crystallization is performed at 5 to 20% (v / v) of the main crystallization operation amount. It is preferable.
  • the particle size of the seed crystallization prepared in the present invention is obtained in the range of MA 100 to MA 150, and the entire amount of seed crystallization is transferred to the main crystallization apparatus to carry out the main crystallization in the same manner as the above operation.
  • more than 98% (w / w) high purity D-psicose having a grain size of MA 300 or more can be prepared.
  • a conventionally used sugar crystallization apparatus may be used as it is or as appropriately modified, and the separation device of the high purity D-psicose crystal and the mother liquor from the final crystal mask may also be used as is. Or it can transform suitably and can utilize.
  • D-psicose As disclosed in Korean Patent Application No. 10-2009-0118465, fermentation culture of Corynebacterium glutamicum KCTC 13032 and the D-fructose of a fructose by a carrier immobilized with the microorganism or the D-cycos epimerase isolated therefrom D-psicose was prepared by a process for continuous production of D-psicose, including the conversion to psychos. The purity of the D-psicose prepared by this method was low at about 24% (w / w) to crystallize directly. The resulting D-psicose solution was concentrated to 50 Brix (%), and then passed through a decolorization column filled with granulated active carbon to remove colored material in the concentrate.
  • the purity of the reaction resultant obtained in the preparation example is 24% (w / w), and for crystallization, the purity of the crystallized D-psicose should be increased to 90 to 95% (w / w) or more.
  • the ions in the D-psicose solution must be removed.
  • the ionic component is present in the separation target solution, the ionic component and the active group of the separation resin are replaced to degrade the separation ability, so that it is impossible to continuously separate D-psicose with a purity of 90 to 95% (w / w).
  • a strong acid cation exchange resin (Bayer S1668) substituted with a hydrogen group and a weakly basic anion exchange resin (Bayer Bayer S4528) substituted with a hydroxyl group were obtained.
  • the packed column was passed through to remove ionic components in the solution. Confirmation of the ion component removal was measured by an electroconductor and adjusted to be 10 microsiemens per cm or less, and the purity of the D-psicose was maintained at 24% (w / w).
  • weakly basic anion exchange resins since some of them have strong basic characteristics, 100% weakly basic anionic resins having no strong basic characteristics should be used to proceed with desalting without loss due to the purity decrease of D-psicose. .
  • the purity of the final D-psychose crystal obtained after separation, drying, and sieving of the D-psychose seed crystallization mask using a high-purity D-psychose crystal and a crystal centrifugal separator through mother liquor separation was 99.4% (w / w), the particle size was MA 135.5, the yield was 35.2%.
  • D-psicose main crystallization is carried out with the D-psicose seed crystallization mask prepared in Example 3 above. After 20% (v / v) of the crystallizer operation amount, the D-psicose seed crystallization mask was introduced, and the cooling water temperature of the crystallization unit was circulated to 35 ° C. w / w) Concentrate the D-psicose solution to 80.0 Brix (%), rapidly cool it to 40 ° C by 10 ° C per hour through a heat exchanger, and simultaneously add 20% (v / v) of the crystallizer operation. The total amount of crystallization starts at 40% (v / v) of the crystallizer operation.
  • a 24% (w / w) solution of the decolorized D-psicose purity obtained in the above preparation was filled with a strongly acidic cation exchange resin (Bayer S1668) substituted with a hydrogen group and a weakly basic anion exchange resin (Bayer S4268) substituted with a hydroxyl group.
  • a strongly acidic cation exchange resin (Bayer S1668) substituted with a hydrogen group
  • a weakly basic anion exchange resin (Bayer S4268) substituted with a hydroxyl group.
  • an ion exchange column (Bayer NM60) mixed with a strong acidic cation exchange resin and a strong base anion exchange resin was passed in a final step to remove ionic components in the solution. Confirmation of ionic component removal was measured by an electroconductor, and adjusted to be less than 10 microsiemens per cm, and the purity of D-psicose was reduced to 21.2% (w / w).
  • a strong acid cation exchange resin (Bayer S1668) substituted with a hydrogen group and a weakly basic anion exchange resin (Bayer S4268) substituted with a hydroxyl group in a 24% (w / w) solution of the reaction resultant obtained in the above Preparation Example The packed column was passed through to remove ionic components in the solution. Confirmation of the ion component removal was measured by an electroconductor, and adjusted to be less than 10 microsiemens per unit cm, and the purity of the D-psicose was reduced to 22.8% (w / w).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Saccharide Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 D-사이코스 용액으로부터 불순물을 제거하여 정제된 D-사이코스 용액을 수득하는 단계; 상기 정제된 D-사이코스 용액을 농축시키는 단계; 상기 농축된 D-사이코스 용액을 30 내지 40℃로 열 교환기를 통하여 냉각하는 단계; 상기 30 내지 40℃의 D-사이코스 용액을 종결정화하여 마스켓을 수득하는 단계; 상기 종결정화된 마스켓을 이용하여 본결정화하는 단계를 포함하는, 순도 98%(w/w) 이상, 입도 MA 200 이상의 고순도 D-사이코스 결정을 제조하는 방법에 관한 것이다. 본 발명의 제조방법을 이용하여, D-사이코스 용액으로부터 유기 용매를 사용하지 않는 경제적인 결정화 공정을 통해 순수하고 산업적 적용에 적합한 형태의 D-사이코스 결정을 제조할 수 있다.

Description

D-사이코스 결정을 제조하는 방법
본 발명은 D-사이코스 용액으로부터 과포화를 이용하여 고순도의 D-사이코스 결정을 제조하는 방법에 관한 것이다.
D-사이코스는 과당이나 설탕과는 달리 인체 내에서 대사되지 않아 칼로리가 거의 없으며, 체지방 형성 억제 작용으로 체중 증가에 영향이 적은 감미료로 보고되고 있다(Matuo, T. et. Al.. Asia Pac . J. Clin . Untr ., 10, 233-237, 2001; Matsuo, T. and K. Izumori, Asia Pac. J. Clin. Nutr., 13, S127, 2004).
최근에 본 발명자들은 포도당을 과당으로 이성화한 후, 이를 D-사이코스 에피머화 효소를 생산하는 고정화 균체와 반응시켜 D-사이코스를 경제적으로 생산하는 방법을 보고하였다(대한민국 특허출원 제10-2009-0118465호). 효소 반응에 의해 생산된 D-사이코스를 포함하는 반응액은 약 20 내지 30%(w/w)의 D-사이코스 고형분을 포함하는 저순도 제품이기 때문에, 98%(w/w) 이상의 고순도 D-사이코스 결정입자를 제조하기 위해서는 크로마토그래피를 사용하여 고순도 분리를 통한 결정화 제조하는 것이 요구되어지나 현재까지 D-사이코스의 경우, 98%(w/w) 이상의 고순도 결정화 제품이 산업화된 사례가 없다.
D-사이코스를 결정 제형으로 제조하기 위하여 D-사이코스의 반응액 중 미반응 과당을 효모로 발효시켜 제거한 후, 대량의 에탄올을 사용하는 방법이 보고되었다(Kei T, et, al., J. Biosci. Bioeng., 90(4), 453-455, 2000). 그러나, 이러한 제조법은 미반응 과당을 효모 발효로써 공정흐름에서 완전히 제거시키므로 미반응 과당을 활용한 부산물 공제 등의 제조원가 절감을 기대 할 수 없으며, 결정화 제조에 사용되는 대량의 에탄올 첨가는 부재료비를 상승시킬뿐만 아니라, 첨가된 에탄올 회수를 위한 증류방식의 에탄올 회수 설비와 방폭 설계가 요구되므로 D-사이코스 제조원가가 상승한다. 따라서 대량 생산을 위한 산업화 기술로는 높은 제조원가로 인해 그 한계가 있다. 또한, D-사이코스 결정화 제조방법에서 대량의 에탄올 사용은 최종 제품에 에탄올 취가 잔존하여 시장에서 선호도가 낮은 풍미를 가지게 되므로 이 또한 소재 적성에서 그 기술의 한계가 있다.
통상적으로 당류(糖類)의 결정화 산업에서의 조업방법은 크게 두 가지로 분류되는데 첫 번째는 농축결정화 방법이며, 두 번째는 냉각결정화 방법이다. 두 방법 모두 당류의 결정화 방법으로 과포화 상태에서 준안정영역(metastable zone)구간 내, 결정의 성장을 유도하는 원리를 이용한다. 수크로오스(sucrose)와 같이 결정의 성장속도가 높은 당류의 결정화에는 농축결정화 방법을 사용하며, 수크로오스(sucrose) 대비 성장속도가 현저히 떨어지는 당류의 결정화에는 냉각결정화 방법을 사용하는 것이 일반적이다.
또한, 통상적으로 당류의 결정화 방법은 준안정영역(metastable zone)에서 이루어지는데, 이러한 상태는 용액의 농도가 평형 농도, 즉, 포화 농도로부터 자발적으로 결정을 석출하는 최저 과포화까지의 범위를 의미한다. 이 영역의 농도에서 결정핵형성(crystal nucleation)과 같은 결정화 현상은 일어나지 않으나, 외부로부터 신규 결정을 넣어주면 결정성장(crystal growth)이 일어나서 결정 크기가 증가된다. 즉, 결정을 생성하기 위해 포화농도 이상인 용액에 종정(seed)이 투입되면, 준안정영역(metastable zone)에서 종정이 성장하여 결정의 성장이 이루어진다. 결정화용 용액이 과도하게 농축되거나 급격하게 냉각되면 준안정영역(metastable zone)을 초과하는 과포화 상태가 되어, 결정의 성장이 아닌 신규 결정핵 생성이 발생되어 개체수 증가로 인한 결정성장의 저해요인이 되므로 결정성장을 위해서는 온도조건과 초기 진입 과포화 농도가 중요하다.
D-사이코스는 과포화농도범위에서도 결정생성속도와 결정성장속도에서 거의 변화를 보이지 않는 특성을 나타내므로 입도성장 결정화 조건이 어려운 당류로 분류 할 수 있다. 통상적으로 당류 결정화 산업에서 결정입도의 크기는 중요한 인자로 알려져 있으며, 대량 생산시스템에서 생성된 결정이 미립화 결정일 경우, 결정원심분리장치설비에서 결정과 모액의 분리가 과포화농도구간의 점도로 인해 용이하게 이루어지지 않으므로 잔존하는 모액의 영향으로 최종 제품의 순도가 떨어지게 하며 또한 잔존된 모액은 건조시 결정 상호간의 뭉쳐지는 현상을 발생시켜 최종 제품 포장량이 적어지거나 상품성이 떨어진다. 따라서 이러한 미립자 결정은 대량생산방법으로 적합하지 않다.
따라서, 본 발명에서는 연속식 크로마토분리를 통해, 효모 발효를 사용하지 않음으로써 미반응 과당을 공정흐름에서 제거시키지 않고 재사용이 가능한 고순도 D-사이코스 분리액을 얻는 방법을 제공하는 것을 목적으로 한다. 또한, 얻어진 고순도 D-사이코스 분리액을 에탄올 등의 유기용매를 사용하지 않고 결정입도를 성장시킴으로써 결정과 모액 분리를 용이하게 하여 분리, 건조 및 포장까지의 소실을 최소화 할 수 있는 D-사이코스의 제조방법을 제공하고자 한다.
그 외에도, 본 발명에서는 변동비 및 고정비의 절감을 이루어 제조원가를 낮춘 D-사이코스 결정화 방법을 제공하고, 결정화 제조공정 흐름성 및 제품으로서의 상품성이 개선된 MA200 이상의 결정입도를 가진 98%(w/w) 이상의 고순도 D-사이코스를 제조하는 방법을 제시하는 것을 발명의 목적으로 한다.
본 발명의 일 예에서, D-사이코스 용액으로부터 불순물을 제거하여 정제된 D-사이코스 용액을 수득하는 단계; 상기 정제된 D-사이코스 용액을 농축시키는 단계; 상기 농축된 D-사이코스 용액을 30 내지 40℃로 열 교환 냉각하는 단계; 상기 30 내지 40℃의 D-사이코스 용액을 종결정화하여 마스켓을 수득하는 단계; 상기 종결정화된 마스켓을 이용하여 본결정화하는 단계를 포함하는, 순도 98%(w/w) 이상, 입도 MA 200 이상의 고순도 D-사이코스 결정을 제조하는 방법을 제공한다.
본 발명의 제조방법을 이용하여, D-사이코스 용액으로부터 유기 용매를 사용하지 않는 경제적인 결정화 공정을 통해 순수하고 산업적 적용에 적합한 형태의 D-사이코스 결정을 제조할 수 있다.
도 1은 D-사이코스의 80 Brix(%) 용액에서 온도에 따른 열변성 순도변화를 보여주는 그래프이다.
도 2는 종결정으로 제조된 D-사이코스의 결정입도를 보여주는 그래프이다.
도 3는 본결정으로 제조된 D-사이코스의 결정입도를 보여주는 그래프이다.
이하, 본 발명에 대하여 보다 상세히 설명한다. 본 명세서에 기재되지 않은 내용은 본 발명의 기술 분야 또는 유사 분야에서 숙련된 자이면 충분히 인식하고 유추할 수 있는 것이므로 그 설명을 생략한다.
본 발명의 일 예는, D-사이코스 용액으로부터 불순물을 제거하여 정제된 D-사이코스 용액을 수득하는 단계; 상기 정제된 D-사이코스 용액을 농축시키는 단계; 상기 농축된 D-사이코스 용액을 30 내지 40℃, 바람직하게는 35 내지 40℃로 열 교환기를 통하여 냉각하는 단계; 상기 30 내지 40℃의 D-사이코스 용액을 종결정화하여 마스켓을 수득하는 단계; 상기 종결정화된 마스켓을 이용하여 D-사이코스 본결정화하는 단계를 포함하는, 순도 98%(w/w) 이상, 입도 MA 200 이상의 고순도 D-사이코스 결정을 제조하는 방법에 관한 것이다.
본 발명에서 사용되는 D-사이코스 용액은, 과당으로부터 D-사이코스 에피머화 효소를 발현하는 코리네박테리움 속 균주 또는 그로부터 분리된 사이코스 에피머화 효소에 의해 제조된 것일 수 있다. '사이코스 에피머화 효소'는 과당을 사이코스로 전환시키는 활성을 갖는 사이코스-3-에피머화 효소를 의미한다.
비제한적인 예로, D-사이코스 용액은 대한민국 특허출원 제2009-0118465호에 기재된 바와 같이, D-사이코스 에피머화 효소를 생산하는 코리네박테리움 글루타미쿰 KCTC 13032를 배양하여 수득된 균체 또는 균체로부터 분리된 효소를 소디움 알기네이트와 같은 고정화 담체에 고정화시킨 후, 과당을 기질로 공급하여 수득될 수 있다.
D-사이코스 용액으로부터 D-사이코스 결정을 수득하기 위해서 D-사이코스의 정제 및 결정화에 영향을 미칠 수 있는 다른 물질들을 제거하여 효율적인 결정화를 위해 필요한 상태로 형성해야 한다. 따라서, 본 발명에 따른 D-사이코스 결정을 제조하는 방법은 D-사이코스 용액으로부터 불순물을 제거하여 정제된 D-사이코스 용액을 수득하는 단계를 포함할 수 있다.
구체적으로, 상기 정제된 D-사이코스 용액을 수득하는 단계는 상기 D-사이코스 용액을 탈색제가 충진된 컬럼을 통과시켜 탈색시키는 단계; 상기에서 탈색된 D-사이코스 용액을 이온교환수지 크로마토그래피에 의해 탈염시키는 단계; 및 상기에서 탈염된 D-사이코스 용액을 칼슘 활성기가 부착된 이온교환수지가 충진된 연속식 크로마토그래피를 통해 통과시켜 정제된 D-사이코스 용액을 수득하는 단계를 포함할 수 있다.
보다 구체적으로, 상기 D-사이코스 용액을 탈염시키는 단계는 양이온 교환수지가 충진된 컬럼, 음이온 교환수지가 충진된 컬럼을 통과시키는 크로마토그래피에 의해 수행될 수 있다. D-사이코스 정제액 제조를 위한 이온교환수지 정제법에서 강염기성 음이온수지를 사용할 경우 D-사이코스의 변성시켜 순도저하가 발생하므로, 고순도 D-사이코스 결정 제조를 위해서는 100% 약알칼리성 음이온수지를 활용하여야 한다. 통상적인 당류(糖類)정제에서 사용되는 강산성양이온수지와 강알칼리성음이온수지의 혼합수지에서도 D-사이코스의 변성이 확인된다. 따라서, D-사이코스 용액을 탈염시키는 단계에서 100% 약알칼리성 음이온수지를 활용해야만 D-사이코스의 변성 없이 효과적인 탈염 정제를 할 수 있다.
또한, 고순도의 D-사이코스를 정제하기 위해서 연속식 크로마토그래피에 의한 분리가 수행될 수 있다. D-사이코스 결정을 수득하기 위한 D-사이코스 용액 중 D-사이코스의 함량은 90 내지 95% 이상이어야 하며, 보다 바람직하게는 95% 이상이여야 한다. D-사이코스 에피머화 효소에 의해 제조된 D-사이코스 용액 중 D-사이코스의 순도는 24%(w/w) 정도로 낮기 때문에 직접 결정화를 수행할 수 없다. 고순도의 D-사이코스 결정을 수득하기 위해서 결정화 단계 전에 탈색 및 탈염에 의해 불순물을 제거하고 연속식 크로마토그래피, 즉 칼슘 활성기가 부착된 이온교환수지가 충진된 컬럼에서의 크로마토그래피에 의해 고순도 D-사이코스를 분리정제 할 수 있다.
본 발명에 따른 D-사이코스 결정을 제조하는 방법은, 통상적인 당류 결정화 방식인 과포화 농도 범위 내에서 고온에서부터 단위시간당 일정 온도 구간으로 서서히 냉각시키는 방법과는 달리, 80 내지 85 Brix(%)의 과포화 농도 범위로 농축(D-사이코스 용액×100/전체 용액)된 D-사이코스 용액을 열 교환기를 통하여 시간당 5 내지 20℃씩 30 내지 40℃의 온도로 급속히 냉각시킨 후 결정화 장치 투입 용액으로 사용한다. 30 내지 40℃의 온도로 냉각하는 경우, 80 내지 85 Brix(%)의 과포화 농도 범위로 농축(D-사이코스 용액×100/전체 용액)된 D-사이코스 용액의 열변성을 방지하여 고순도 분리된 D-사이코스의 순도가 보존되므로 결정화 작업시 결정수율 및 입도크기를 향상시킬 수 있다. 농축설비에서 80 내지 85 Brix(%)의 과포화 농도 범위로 농축(D-사이코스 용액×100/전체 용액)된 D-사이코스 용액을 결정화 장치로 이송하기 위해서는 결정화 장치 20 내지 100%(v/v)용량으로 농축된 D-사이코스 용액을 중간 저장탱크에서 수집, 저장해야 하며 이때의 온도가 60 내지 75℃이므로 D-사이코스의 열변성 온도에 해당되는 구간이다.
구체적으로, D-사이코스의 결정화 시간은 80 내지 120시간 이상으로 이루어져야 하며, 농축된 D-사이코스 용액을 과포화 농도 범위 내에서 열 교환기를 통해 시간당 5 내지 20℃씩 급속히 30 내지 40℃의 온도로 냉각한 후, 결정화 장치에 투입하여 결정화 온도 구간이 30 내지 40℃ 범위 내에서 5 내지 10 회의 승온과 냉각을 반복함으로써 D-사이코스의 결정화가 이루어진다. 즉, 결정화 장치 조업량의 5 내지 20%(v/v)로 80 내지 85 Brix(%)의 과포화 농도 범위로 농축된 30 내지 40℃의 D-사이코스 용액을 투입한 뒤, 결정화 장치의 냉각수 온도를 30 내지 35℃ 범위 내에서 순환시켜주며, 제조된 D-사이코스 종정(Seed)을 최초 투입량 기준, 10 내지 100 ppm(v/v)으로 투입하여 D-사이코스 결정화 반응을 시작하여 마스켓을 수득한다. 본 발명에서 마스켓이란, D-사이코스 종정이 결정화 반응을 시작했을 때의 결정과 용액이 혼합된 슬러리 상태를 의미한다.
또한, D-사이코스 결정의 성장을 유도하기 위해, 결정화 시작 시점부터 10 내지 20 시간 단위로 결정화장치 조업량의 5 내지 20%(v/v)로 80 내지 85 Brix(%) 이상의 과포화 농도 범위로 농축된 30 내지 40℃의 D-사이코스 용액을 투입하는데, 이러한 조작을 5 내지 10 회 반복하여 결정 마스켓 내부 품온이 30 내지 40℃ 범위 내에서 승온과 냉각이 5 내지 10회 반복적으로 이루어지게 하여 80 내지 120 시간 동안 D-사이코스 결정성장을 유도시킨다.
본 발명의 제조방법으로 수득된 D-사이코스 결정은 구체적으로 결정입도 MA 200이상, 보다 구체적으로 결정입도 MA 300 이상일 수 있다.
결정입도란 결정의 평균 크기를 나타내는 척도이다. JIS나 ASTM에서는 100배 확대한 현미경 사진으로 한 변이 25mm의 정방형 면적에 포함되는 결정의 수를 측정하고, 그 수를 입도 번호(grain size number)라고 부르며 입도를 나타낸다. 최근에는 결정의 평균 크기라는 의미로도 이용된다. 본 발명에서는 결정의 평균 크기의 의미로 사용되었다.
D-사이코스의 결정입도를 측정하는 방법은 제한되지 아니하며 당해 기술 분야에서 통상적으로 사용하는 방법을 사용할 수 있다. 결정입도를 측정하는 비제한적인 예로, 비교법(FGC), 절단법(FGI), 평적법(FGP) 등이 있다.
결정입도 MA 200 이상인 D-사이코스 결정을 얻기 위해서는 상기와 같은 조건으로 종결정화와 본결정화 2단계로 진행되어야 하며, 종결정화는 본결정화 조업량의 5 내지 20%(v/v)로 실행하는 것이 바람직하다. 본 발명에서 제조된 종결정화의 입도는 MA 100 내지 MA 150 범위로 얻어지며, 제조된 종결정 전량을 본결정화 장치로 이송하여 상기와 같은 조업방식으로 본결정화를 진행하여 최종적으로 MA 200, 더욱 바람직하게는 MA 300 이상의 결정입도를 가진 98%(w/w) 이상의 고순도 D-사이코스를 제조할 수 있다.
본 발명의 결정화 장치에는 통상적으로 사용되는 당류 결정화 장치를 그대로 또는 적절히 변형하여 활용할 수 있으며, 최종 결정 마스켓으로부터 고순도 D-사이코스 결정과 모액의 분리장치 또한, 통상적으로 사용되는 당류 분리 장치를 그대로 또는 적절히 변형하여 활용할 수 있다.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
실시예
제조예
대한민국 특허출원 제10-2009-0118465호에 개시된 바와 같이, 코리네박테리움 글루타미쿰 KCTC 13032의 발효 배양 및 상기 미생물 또는 그로부터 분리된 D-사이코스 에피머화 효소가 고정화된 담체에 의한 과당의 D-사이코스로의 전환을 포함하는, D-사이코스를 연속 생산하는 방법에 의해 D-사이코스를 제조하였다. 상기 방법에 의해 제조된 D-사이코스의 순도는 약 24%(w/w)로 직접 결정화하기에는 낮은 농도였다. 생산된 D-사이코스 용액을 50 Brix(%)로 농축한 후, 입자상 활성탄소(granulated active carbon)가 충진된 탈색 컬럼을 통과시켜 농축액 내의 유색물질을 제거하였다.
실시예 1
상기 제조예에서 얻어진 반응 결과액의 순도는 24%(w/w)이며 결정화를 위해서는 결정화 D-사이코스의 순도를 90 내지 95%(w/w) 이상으로 높여야 한다. 연속식 크로마토그래피에 의한 D-사이코스의 효율적인 분리를 위해서는 D-사이코스 용액 중의 이온이 제거되어야 한다. 분리 대상 용액 내에 이온 성분이 존재하면 이온 성분과 분리 수지의 활성기가 치환되어 분리능이 저하되므로, 분리 수지를 이용한 순도 90 내지 95%(w/w) 이상의 D-사이코스 연속 분리가 불가능하다.
따라서, 상기 제조예에서 얻어진 순도 24%(w/w)의 D-사이코스 용액을 수소기로 치환된 강산성 양이온 교환 수지(Bayer S1668)와 수산화기로 치환된 약염기성 음이온 교환 수지(Bayer Bayer S4528)가 충진된 컬럼을 통과시켜, 상기 용액 중의 이온 성분을 제거하였다. 이온 성분 제거의 확인은 전기전도계로 측정하였으며, 단위 cm 당 10 마이크로 지맨스 이하가 되도록 조절하였고, 이때의 D-사이코스의 순도는 24%(w/w)로 유지되었다. 시중에 유통되는 약염기성 음이온 교환 수지의 경우, 강염기성 특성을 일부 지니고 있으므로 D-사이코스의 순도저하로 인한 소실없이 탈염을 진행하기 위해서는 강염기성 특성을 지니지 않은 100% 약염기성 음이온 수지를 사용해야 한다.
실시예 2
상기 실시예 1에서 탈색 및 탈염으로 유색 물질 및 이온 성분 등의 불순물을 제거한 순도 24%(w/w) D-사이코스 용액을 60 Brix(%)까지 농축하여 organo사의 ASMB 6Tower 장치를 활용하여 칼슘기로 치환시킨 이온 교환 수지(Amberlite CR1310Ca)에 통과시켜 정제된 D-사이코스 용액을 수득하였다. 상기 이온 교환 수지 컬럼 내에 충진된 이온교환 수지의 양은 10 L 였고, 통과시킨 시료, 즉 실시예 1에서 제조된 정제된 D-사이코스 용액의 양은 2 L/cycle 였으며, 운전 온도는 60℃ 였다. 시료를 주입하고 5 L/cycle의 탈이온수로 용출시킨 후, 얻어진 D-사이코스의 순도는 95%(w/w)였다.
실시예 3
상기 실시예 2에 의해 정제 분리된 순도 95%(w/w) D-사이코스 용액을 수득한 후, 이를 80.0 Brix(%)으로 농축한 뒤, 순도 95%(w/w) D-사이코스 용액을 열 교환기를 통해 시간당 10℃씩 급속히 냉각하여 40℃로 냉각한 후, 결정화장치 조업량의 20%(v/v)로 D-사이코스 용액을 투입한 뒤, 결정화 장치의 냉각수 온도를 35℃로 순환시켜주며, 제조된 D-사이코스 종정(Seed)을 최초 투입량 기준 100 ppm(v/v)으로 투입하여 D-사이코스 종결정화 반응을 시작한다. D-사이코스 결정의 성장을 유도하기 위해, 결정화 시작 시점부터 12 시간 단위로 결정화장치 조업량의 20%(v/v)로 80.0 Brix(%) 농축된 40℃의 D-사이코스 용액을 추가로 투입하는 조작 과정을 4회 반복하여 결정 마스켓 내부 품온이 35 내지 40℃ 범위 내에서 승온과 냉각이 4회 반복적으로 이루어지게 한다. 최종적으로 결정화 시작 시점부터 60시간 동안 D-사이코스 종결정 반응이 이루어진다. D-사이코스 종결정화 마스켓을 고순도 D-사이코스 결정과 모액 분리를 통한 결정원심분리장치를 사용하여 분리, 건조, 체별 한 후 최종 수득된 D-사이코스 결정의 순도는 99.4%(w/w), 입도는 MA 135.5 이였고, 수율은 35.2 % 였다.
실시예 4
상기 실시예 3에 의해 제조된 D-사이코스 종결정화 마스켓으로 D-사이코스 본결정화를 실행한다. 결정화장치 조업량의 20%(v/v)로 D-사이코스 종결정화 마스켓을 투입한 뒤, 결정화 장치의 냉각수 온도를 35℃로 순환시켜주며, 실시예 2에서 정제 분리된 순도 95%(w/w) D-사이코스 용액을 80.0 Brix(%)으로 농축하고, 열 교환기를 통해 시간당 10℃씩 급속히 40℃로 냉각하여 결정화장치 조업량의 20%(v/v)로 동시에 투입하여 초기 본결정화 총량을 결정화장치 조업량의 40%(v/v)로 개시한다. D-사이코스 결정의 성장을 유도하기 위해 결정화 시작 시점부터 20 시간 단위로 결정화장치 조업량의 20%(v/v)로 80.0 Brix(%) 농축된 40℃ D-사이코스 용액을 추가로 투입하는 조작을 3회 반복하여 결정 마스켓 내부 품온이 35 내지 40℃ 범위 내에서 승온과 냉각이 3회 반복적으로 이루어지게 한다. 최종적으로 결정화 시작 시점부터 80 시간 동안 D-사이코스 본결정화 반응이 이루어진다. D-사이코스 본결정화 마스켓을 고순도 D-사이코스 결정과 모액 분리를 통한 결정원심분리장치를 사용하여 분리, 건조, 체별 한 후 최종 수득된 D-사이코스 결정의 순도는 99.8%(w/w), 입도는 MA 373.9 이였고, 수율은 52.8 % 였다.
비교예 1
상기 제조예에서 얻어진 탈색된 D-사이코스 순도 24%(w/w) 용액을 수소기로 치환된 강산성 양이온 교환 수지(Bayer S1668)와 수산화기로 치환된 약염기성 음이온 교환 수지(Bayer S4268)가 충진된 컬럼을 통과시킨 후, 최종 단계에서 강산성 양이온 교환수지 및 강염기성 음이온 교환 수지가 혼합 충진된 이온 교환 컬럼(Bayer NM60)을 통과시켜, 상기 용액 중의 이온 성분을 제거하였다. 이온 성분 제거의 확인은 전기전도계로 측정하였으며, 단위 cm 당 10 마이크로 지맨스 이하가 되도록 조절하였고, 이때의 D-사이코스의 순도는 21.2%(w/w)로 감소되었다.
비교예 2
상기 제조예에서 얻어진 반응 결과액의 D-사이코스 순도 24%(w/w) 용액을 수소기로 치환된 강산성 양이온 교환 수지(Bayer S1668)와 수산화기로 치환된 약염기성 음이온 교환 수지(Bayer S4268)가 충진된 컬럼을 통과시켜, 상기 용액 중의 이온 성분을 제거하였다. 이온 성분 제거의 확인은 전기전도계로 측정하였으며, 단위 cm 당 10 마이크로 지맨스 이하가 되도록 조절하였고, 이때의 D-사이코스의 순도는 22.8%(w/w)로 감소되었다.
비교예 3
상기 실시예 2에 의해 정제 분리된 순도 95%(w/w) D-사이코스 용액을 수득한 후, 이를 85 Brix(%)로 농축한 뒤, 결정화장치 내에서 순도 95%(w/w) D-사이코스 용액 온도를 50℃에서 35℃까지 시간당 0.31℃, 48시간 동안 냉각하여 결정화를 진행하였고, 최종 결정 마스켓으로부터 고순도 D-사이코스 결정과 모액의 분리를 통한 결정원심분리장치를 사용하여 분리한 결과, 최종 결정 마스켓 내의 고순도 D-사이코스 결정과 모액의 분리가 이루어지지 않았다.
비교예 4
상기 실시예 2에 의해 정제 분리된 순도 95%(w/w) D-사이코스 용액을 수득한 후, 이를 82.5 Brix(%)로 농축한 뒤, 결정화장치 내에서 순도 95%(w/w) D-사이코스 용액 온도를 50℃에서 35℃까지 시간당 0.30℃, 50시간 동안 냉각하여 결정화를 진행하였고, 최종 결정 마스켓으로부터 고순도 D-사이코스 결정과 모액의 분리를 통한 결정원심분리장치를 사용하여 분리, 건조, 체별 한 후 최종 수득된 D-사이코스 결정의 순도는 98.5%(w/w), 입도는 MA 82 이였고, 수율은 20.9 % 였다.
비교예 5
상기 실시예 2에 의해 정제 분리된 순도 95%(w/w) D-사이코스 용액을 수득한 후, 이를 82.5 Brix(%)로 농축한 뒤, 결정화장치 내에서 순도 95%(w/w) D-사이코스 용액 온도를 50℃에서 35℃까지 시간당 0.15℃, 100시간 동안 냉각하여 결정화를 진행하였고, 최종 결정 마스켓으로부터 고순도 D-사이코스 결정과 모액의 분리를 통한 결정원심분리장치를 사용하여 분리, 건조, 체별 한 후 최종 수득된 D-사이코스 결정의 순도는 98.9%(w/w), 입도는 MA 95 이였고, 수율은 24.5 % 였다.
비교예 6
상기 실시예 2에 의해 정제 분리된 순도 95%(w/w) D-사이코스 용액을 수득한 후, 이를 82.5 Brix(%)로 농축한 뒤, 결정화장치 내에서 순도 95%(w/w) D-사이코스 용액 온도를 50℃에서 35℃까지 시간당 0.08℃, 200시간 동안 냉각하여 결정화를 진행하였고, 최종 결정 마스켓으로부터 고순도 D-사이코스 결정과 모액의 분리를 통한 결정원심분리장치를 사용하여 분리, 건조, 체별 한 후 최종 수득된 D-사이코스 결정의 순도는 97.9%(w/w), 입도는 MA 75 이였고, 수율은 17.2 % 였다.
상기 실시예 및 비교예에서, 강염기성 이온 교환 수지를 사용한 비교예 1 및 100% 약염기성이 아닌 시중의 약염기성 이온 교환 수지를 사용한 비교예 2는 실시예 1에 비해 D-사이코스의 순도가 낮았다. 또한 통상적인 당류 결정화 방식인 과포화 농도 범위 내에서 고온에서부터 단위시간당 일정 온도 구간으로 서서히 냉각시키는 방법을 사용한 비교예 3 내지 5는, D-사이코스 결정과 모액의 분리가 이루어지지 않거나 실시예에 비해 순도, 입도 및 수율이 모두 낮았다. 이로부터, 본 발명의 D-사이코스 결정 제조 방법이 기존의 냉각결정화 방법에 비해 상품성이 뛰어난 D-사이코스를 제조할 수 있다는 것을 확인하였다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시예일뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (12)

  1. D-사이코스 용액으로부터 불순물을 제거하여 정제된 D-사이코스 용액을 수득하는 단계; 상기 정제된 D-사이코스 용액을 농축시키는 단계; 상기 농축된 D-사이코스 용액을 30 내지 40℃로 열 교환기를 통하여 냉각하는 단계; 상기 30 내지 40℃의 D-사이코스 용액을 종결정화하여 마스켓을 수득하는 단계; 상기 종결정화된 마스켓을 이용하여 본결정화 시키는 단계를 포함하는,
    순도 98%(w/w) 이상, 입도 MA 200 이상의 고순도 D-사이코스 결정을 제조하는 방법.
  2. 제1항에 있어서, 상기 D-사이코스 용액으로부터 불순물을 제거하여 정제된 D-사이코스 용액을 수득하는 단계가,
    상기 D-사이코스 용액을 탈색제가 충진된 컬럼을 통과시켜 탈색시키는 단계;
    상기에서 탈색된 D-사이코스 용액을 이온교환수지 크로마토그래피에 의해 탈염시키는 단계; 및
    상기에서 탈염된 D-사이코스 용액을 칼슘 활성기가 부착된 이온교환수지가 충진된 연속식 크로마토그래피를 통과시켜 정제된 D-사이코스 용액을 수득하는 단계를 포함하는, 고순도 D-사이코스 결정을 제조하는 방법.
  3. 제2항에 있어서, 상기 이온교환수지 크로마토그래피에 사용되는 음이온수지가 100% 약염기성음이온수지인, 고순도 D-사이코스 결정을 제조하는 방법.
  4. 제2항에 있어서, 상기 연속식 크로마토그래피를 통과시키는 단계가 모사 이동 베드(SMB) 공정인, 고순도 D-사이코스 결정을 제조하는 방법.
  5. 제2항에 있어서, 상기 연속식 크로마토그래피를 통해 정제된 D-사이코스 용액의 D-사이코스의 순도가 95%(w/w) 이상인, 고순도 D-사이코스 결정을 제조하는 방법.
  6. 제5항에 있어서, 상기 D-사이코스의 순도가 95%(w/w) 이상인 D-사이코스 용액을 80 내지 85 Brix(%)의 농도로 농축하는 단계를 포함하는, 고순도 D-사이코스 결정을 제조하는 방법.
  7. 제6항에 있어서, 상기 80 내지 85 Brix(%)의 농도로 농축된 D-사이코스 용액을 30 내지 40℃로 열 교환기를 통하여 냉각하는 단계를 포함하는, 고순도 D-사이코스 결정을 제조하는 방법.
  8. 제7항에 있어서, 상기 30 내지 40℃로 열 교환기를 통하여 냉각된 D-사이코스 용액을 종결정화 하는 단계를 포함하는, 고순도 D-사이코스 결정을 제조하는 방법.
  9. 제8항에 있어서, 상기 종결정화 하는 단계의 온도가 30 내지 40℃이고, 상기 30 내지 40℃로 냉각된 D-사이코스 용액을 2회 이상 단위시간당 일정량 추가 혼합하는 단계를 포함하는, 고순도 D-사이코스 결정을 제조하는 방법.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서, 상기 종결정화된 마스켓을 이용하여 본결정화 시키는 단계가,
    상기 D-사이코스의 순도가 95%(w/w) 이상이고, 30 내지 40℃로 열교환 냉각 및 80 내지 85 Brix(%)의 농도로 농축된 D-사이코스 용액으로 본결정화 하는 것인, 고순도 D-사이코스 결정을 제조하는 방법.
  11. 제10항에 있어서, 상기 본결정화 하는 단계의 온도가 30 내지 40℃이고, 상기 30 내지 40℃로 냉각된 D-사이코스 용액을 2회 이상 단위시간당 일정량 추가 혼합하는 단계를 추가로 포함하는, 고순도 D-사이코스 결정을 제조하는 방법.
  12. 제1항 내지 제9항 중 어느 한 항의 방법에 따라 제조된, 고순도 D-사이코스 결정.
PCT/KR2015/009449 2014-10-20 2015-09-08 D-사이코스 결정을 제조하는 방법 WO2016064087A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/520,786 US10246476B2 (en) 2014-10-20 2015-08-09 Method for preparing D-psicose crystal
EP15852095.7A EP3210478B1 (en) 2014-10-20 2015-09-08 Method for preparing d-psicose crystal
JP2017540532A JP6413024B2 (ja) 2014-10-20 2015-09-08 D−プシコース結晶の製造方法
CN201580057213.0A CN106852145B (zh) 2014-10-20 2015-09-08 用于制备d-阿洛酮糖晶体的方法
PL15852095T PL3210478T3 (pl) 2014-10-20 2015-09-08 Zastosowanie partnera wiążącego cd6 i oparty na tym sposób
ES15852095T ES2841357T3 (es) 2014-10-20 2015-09-08 Método para la preparación de cristal de d-psicosa
US16/279,860 US10808002B2 (en) 2014-10-20 2019-02-19 Method for preparing D-psicose crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140141678A KR101749527B1 (ko) 2014-10-20 2014-10-20 D-사이코스 결정을 제조하는 방법
KR10-2014-0141678 2014-10-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/520,786 A-371-Of-International US10246476B2 (en) 2014-10-20 2015-08-09 Method for preparing D-psicose crystal
US16/279,860 Continuation US10808002B2 (en) 2014-10-20 2019-02-19 Method for preparing D-psicose crystal

Publications (1)

Publication Number Publication Date
WO2016064087A1 true WO2016064087A1 (ko) 2016-04-28

Family

ID=55761091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009449 WO2016064087A1 (ko) 2014-10-20 2015-09-08 D-사이코스 결정을 제조하는 방법

Country Status (10)

Country Link
US (1) US10246476B2 (ko)
EP (1) EP3210478B1 (ko)
JP (1) JP6413024B2 (ko)
KR (1) KR101749527B1 (ko)
CN (1) CN106852145B (ko)
AR (1) AR102354A1 (ko)
ES (1) ES2841357T3 (ko)
PL (1) PL3210478T3 (ko)
TW (1) TWI626245B (ko)
WO (1) WO2016064087A1 (ko)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018081557A2 (en) 2016-10-28 2018-05-03 Tate & Lyle Ingredients Americas Llc Method for producing allulose crystals
FR3061413A1 (fr) * 2017-01-05 2018-07-06 Roquette Freres Procede de fabrication de cristaux de d-allulose
FR3061414A1 (fr) * 2017-01-05 2018-07-06 Roquette Freres Sirops cristallisables de d-allulose
FR3061415A1 (fr) * 2017-01-05 2018-07-06 Roquette Freres Sirops non cristallisables de d-allulose
JP2020500556A (ja) * 2016-12-08 2020-01-16 サムヤン コーポレイション プシコースの製造方法
JP2020524140A (ja) * 2017-06-30 2020-08-13 サムヤン コーポレイション 甘味料アルロースを製造する方法
CN112574263A (zh) * 2020-12-04 2021-03-30 山东百龙创园生物科技股份有限公司 一种阿洛酮糖结晶的制备方法
EP3647317A4 (en) * 2017-06-30 2021-03-31 Samyang Corporation FUNCTIONAL CRYSTALLINE SWEETENER
WO2024047121A1 (en) 2022-09-01 2024-03-07 Savanna Ingredients Gmbh Process for the preparation of a particulate allulose composition
US11981968B2 (en) 2018-12-06 2024-05-14 Bma Braunschweigische Maschinenbauanstalt Ag Continuous method for obtaining a crystalline monosaccharide and device for continuous crystallization

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101723007B1 (ko) * 2016-02-29 2017-04-04 씨제이제일제당(주) 고순도 d-사이코스를 제조하는 방법
KR102004941B1 (ko) * 2016-12-08 2019-07-29 주식회사 삼양사 효율적인 사이코스의 제조 방법
KR102072695B1 (ko) * 2016-12-08 2020-03-02 주식회사 삼양사 재순환을 이용한 사이코스의 제조방법 및 장치
KR101988441B1 (ko) * 2016-12-27 2019-06-12 주식회사 삼양사 알룰로스의 정제 방법
WO2019004554A1 (ko) 2017-06-30 2019-01-03 주식회사 삼양사 결정형 기능성 감미료의 제조방법
KR102016701B1 (ko) * 2017-06-30 2019-09-06 주식회사 삼양사 결정형 기능성 감미료의 제조방법
EP3753945A4 (en) * 2018-02-12 2021-12-01 Samyang Corporation PROCESS FOR PRODUCING A CRYSTALLINE FUNCTIONAL SWEETENER
KR102055695B1 (ko) * 2018-05-25 2020-01-03 대상 주식회사 D-알로오스 결정을 제조하는 방법
CN108866247A (zh) * 2018-09-18 2018-11-23 上海立足生物科技有限公司 连续大规模分离制备d-阿洛酮糖的方法和设备
KR102439295B1 (ko) * 2018-11-30 2022-09-02 씨제이제일제당 주식회사 D-사이코스 결정 및 이의 제조 방법
CN109748940A (zh) * 2018-12-04 2019-05-14 吉林中粮生化有限公司 一种从乙醇溶液中结晶阿洛酮糖的方法
KR102091774B1 (ko) * 2018-12-13 2020-03-20 씨제이제일제당 (주) 알룰로스를 유효성분으로 포함하는 피부 미백용 조성물
CN110627847B (zh) * 2019-09-17 2023-06-13 山东百龙创园生物科技股份有限公司 一种阿洛酮糖晶体的制备方法
CN110872332B (zh) * 2019-10-24 2023-03-24 翁源广业清怡食品科技有限公司 一种阿洛酮糖的结晶工艺
CN110951806B (zh) * 2019-12-24 2023-01-10 山东百龙创园生物科技股份有限公司 一种含有d-阿洛酮糖的结晶组合物的制备工艺
EP3865496A1 (de) * 2020-02-12 2021-08-18 Savanna Ingredients GmbH Verfahren zur herstellung farbloser kohlenhydrate
WO2021239813A1 (en) 2020-05-27 2021-12-02 Pfeifer & Langen GmbH & Co. KG Crystallization of allulose under reduced pressure
CA3192084A1 (en) 2020-09-07 2022-03-10 Savanna Ingredients Gmbh Extrusion process for the preparation of a solid allulose composition
EP4000419A1 (de) 2020-11-23 2022-05-25 Savanna Ingredients GmbH Trocknung von allulosekristallen
CN114085768B (zh) * 2021-11-11 2023-07-25 河南飞天生物科技股份有限公司 一种用于生产阿洛酮糖的提纯装置及提纯方法
CN114868898A (zh) * 2022-03-01 2022-08-09 新拓洋生物工程有限公司 一种含阿洛酮糖的甜味剂组合物及制备方法
CN114456215A (zh) * 2022-03-04 2022-05-10 河南中大恒源生物科技股份有限公司 一种d-阿洛酮糖晶体及其制备方法
KR20240008136A (ko) * 2022-07-11 2024-01-18 대상 주식회사 D-알룰로스 결정 제조방법
CN116284166A (zh) * 2022-09-08 2023-06-23 陕西省生物农业研究所 一种从糖浆中回收d-阿洛酮糖结晶的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093292A1 (ja) * 2005-03-04 2006-09-08 National University Corporation Kagawa University D-プシコースとd-アロースの複合体結晶性糖質およびその製造方法
US20100204346A1 (en) * 2007-05-18 2010-08-12 Matsutani Chemical Industry Co., Ltd. Novel sweetener having sucrose-like taste, method for producing the same, and use of the same
KR20110035805A (ko) * 2009-09-30 2011-04-06 씨제이제일제당 (주) 사이코스-에피머화 효소의 고정화 및 이를 이용한 사이코스의 제조방법
KR20110108185A (ko) * 2010-03-26 2011-10-05 씨제이제일제당 (주) D-사이코스 결정을 제조하는 방법
JP2012232908A (ja) * 2011-04-28 2012-11-29 Matsutani Chem Ind Ltd 結晶糖質、その製造方法ならびに用途

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3883365A (en) 1972-01-04 1975-05-13 Suomen Sokeri Oy PH adjustment in fructose crystallization for increased yield
JPS491741A (ko) 1972-04-04 1974-01-09
GB1456260A (en) 1974-01-28 1976-11-24 Suomen Sokeri Oy Method for crystallization of fructose from water solution
US4133375A (en) 1977-01-28 1979-01-09 Unice Machine Company Vertical heat exchanger
JP4627841B2 (ja) 2000-06-08 2011-02-09 国立大学法人 香川大学 プシコースの分離方法
FI20010977A (fi) * 2001-05-09 2002-11-10 Danisco Sweeteners Oy Kromatografinen erotusmenetelmä
JP4761424B2 (ja) 2004-03-17 2011-08-31 株式会社希少糖生産技術研究所 L−プシコース結晶、その製造方法および、糖試薬キット
CN100577793C (zh) * 2007-12-12 2010-01-06 江南大学 微生物转化d-果糖制备d-阿洛酮糖的菌种和方法
KR20090118465A (ko) 2008-05-14 2009-11-18 김주봉 장뇌삼 추출물을 유효성분으로 포함하는 뇌질환의 예방 및치료용 조성물
US9109266B2 (en) * 2009-03-30 2015-08-18 Matsutani Chemical Industry Co., Ltd. Process of producing sugar composition comprising D-psicose and D-allose via strong alkaline isomerization of D-glucose/D-fructose or alkaline pre-treatment of D-glucose/D-fructose followed by isomerization in the presence of a basic ion exchange resin
CN103333935A (zh) * 2013-05-24 2013-10-02 桐乡晟泰生物科技有限公司 D-阿洛酮糖的生产工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093292A1 (ja) * 2005-03-04 2006-09-08 National University Corporation Kagawa University D-プシコースとd-アロースの複合体結晶性糖質およびその製造方法
US20100204346A1 (en) * 2007-05-18 2010-08-12 Matsutani Chemical Industry Co., Ltd. Novel sweetener having sucrose-like taste, method for producing the same, and use of the same
KR20110035805A (ko) * 2009-09-30 2011-04-06 씨제이제일제당 (주) 사이코스-에피머화 효소의 고정화 및 이를 이용한 사이코스의 제조방법
KR20110108185A (ko) * 2010-03-26 2011-10-05 씨제이제일제당 (주) D-사이코스 결정을 제조하는 방법
JP2012232908A (ja) * 2011-04-28 2012-11-29 Matsutani Chem Ind Ltd 結晶糖質、その製造方法ならびに用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NGUYEN, VAN DUC LONG ET AL.: "Separation of D-psicose and D-fructose using simulated moving bed chromatography", J. SEP. SCI., vol. 32, 2009, pages 1987 - 1995, XP055275472 *
TAKESHITA, KEI ET AL.: "Mass Production of D-Psicose from D-Fructose by a Continuous Bioreactor System Using Immobilized D-Tagatose 3-Epimerase", J. BIOSCI. BIOENG., vol. 90, no. 4, 2000, pages 453 - 455, XP003003993 *

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11548907B2 (en) 2016-10-28 2023-01-10 Tate & Lyle Solutions Usa Llc Method for producing allulose crystals
WO2018081557A2 (en) 2016-10-28 2018-05-03 Tate & Lyle Ingredients Americas Llc Method for producing allulose crystals
AU2021221889B2 (en) * 2016-10-28 2023-10-05 Tate & Lyle Solutions Usa Llc Method for producing allulose crystals
IL289910B2 (en) * 2016-10-28 2023-09-01 Tate And Lyle Ingredients Americas Llc A method for preparing allulose crystals
EP4233562A2 (en) 2016-10-28 2023-08-30 Tate & Lyle Solutions USA LLC Method for producing allulose crystals
EP3532481B1 (en) 2016-10-28 2023-06-14 Tate & Lyle Solutions USA LLC Method for producing allulose crystals
IL289910B1 (en) * 2016-10-28 2023-05-01 Tate And Lyle Ingredients Americas Llc A method for preparing allulose crystals
IL266067A (en) * 2016-10-28 2019-06-30 Tate And Lyle Ingredients Americas Llc Method for making allulose crystals
JP2019532085A (ja) * 2016-10-28 2019-11-07 テイト アンド ライル イングレディエンツ アメリカス リミテッド ライアビリティ カンパニーTate & Lyle Ingredients Americas Llc アルロース結晶の製造方法
WO2018081557A3 (en) * 2016-10-28 2018-06-21 Tate & Lyle Ingredients Americas Llc Method for producing allulose crystals
US12024751B2 (en) 2016-12-08 2024-07-02 Samyang Corporation Method for producing psicose
JP2020500556A (ja) * 2016-12-08 2020-01-16 サムヤン コーポレイション プシコースの製造方法
FR3061414A1 (fr) * 2017-01-05 2018-07-06 Roquette Freres Sirops cristallisables de d-allulose
FR3061415A1 (fr) * 2017-01-05 2018-07-06 Roquette Freres Sirops non cristallisables de d-allulose
EP4378325A3 (fr) * 2017-01-05 2024-08-07 Roquette Freres Sirops cristallisables de d-allulose
EP4378325A2 (fr) 2017-01-05 2024-06-05 Roquette Freres Sirops cristallisables de d-allulose
FR3061413A1 (fr) * 2017-01-05 2018-07-06 Roquette Freres Procede de fabrication de cristaux de d-allulose
US11945835B2 (en) 2017-01-05 2024-04-02 Roquette Freres Method for producing D-allulose crystals
JP2020514294A (ja) * 2017-01-05 2020-05-21 ロケット フレールRoquette Freres D−アルロース結晶の製造方法
JP2023011728A (ja) * 2017-01-05 2023-01-24 ロケット フレール D-アルロース結晶の製造方法
WO2018127669A1 (fr) 2017-01-05 2018-07-12 Roquette Freres Sirops cristallisables de d-allulose
WO2018127668A1 (fr) 2017-01-05 2018-07-12 Roquette Freres Procédé de fabrication de cristaux de d-allulose
WO2018127670A1 (fr) 2017-01-05 2018-07-12 Roquette Freres Sirops non cristallisables de d-allulose
US11439168B2 (en) 2017-01-05 2022-09-13 Roquette Freres Non-crystallisable D-allulose syrups
US11766062B2 (en) 2017-01-05 2023-09-26 Roquette Freres Crystallisable d-allulose syrups
US11771120B2 (en) 2017-06-30 2023-10-03 Samyang Corporation Functional crystalline sweetener
US11820788B2 (en) 2017-06-30 2023-11-21 Samyang Corporation Method for producing sweetener allulose
JP2020524140A (ja) * 2017-06-30 2020-08-13 サムヤン コーポレイション 甘味料アルロースを製造する方法
JP2022033889A (ja) * 2017-06-30 2022-03-02 サムヤン コーポレイション 結晶形機能性甘味料
EP3647317A4 (en) * 2017-06-30 2021-03-31 Samyang Corporation FUNCTIONAL CRYSTALLINE SWEETENER
US11981968B2 (en) 2018-12-06 2024-05-14 Bma Braunschweigische Maschinenbauanstalt Ag Continuous method for obtaining a crystalline monosaccharide and device for continuous crystallization
CN112574263A (zh) * 2020-12-04 2021-03-30 山东百龙创园生物科技股份有限公司 一种阿洛酮糖结晶的制备方法
US11780870B2 (en) 2020-12-04 2023-10-10 Shandong Bailong Chuangyuan Bio-tech Co., Ltd. Method for preparing crystalline D-psicose
CN112574263B (zh) * 2020-12-04 2021-12-07 山东百龙创园生物科技股份有限公司 一种阿洛酮糖结晶的制备方法
WO2024047121A1 (en) 2022-09-01 2024-03-07 Savanna Ingredients Gmbh Process for the preparation of a particulate allulose composition
WO2024047122A1 (en) 2022-09-01 2024-03-07 Savanna Ingredients Gmbh Process for the preparation of a particulate allulose composition

Also Published As

Publication number Publication date
ES2841357T3 (es) 2021-07-08
CN106852145A (zh) 2017-06-13
US20170313734A1 (en) 2017-11-02
PL3210478T3 (pl) 2021-06-14
EP3210478B1 (en) 2020-10-28
CN106852145B (zh) 2020-03-20
TW201619177A (zh) 2016-06-01
EP3210478A1 (en) 2017-08-30
KR101749527B1 (ko) 2017-06-21
JP2017532382A (ja) 2017-11-02
EP3210478A4 (en) 2018-07-18
KR20160046143A (ko) 2016-04-28
TWI626245B (zh) 2018-06-11
AR102354A1 (es) 2017-02-22
US10246476B2 (en) 2019-04-02
JP6413024B2 (ja) 2018-10-24

Similar Documents

Publication Publication Date Title
WO2016064087A1 (ko) D-사이코스 결정을 제조하는 방법
JP7148656B2 (ja) 再循環を用いたプシコースの製造方法
KR101189640B1 (ko) D-사이코스 결정을 제조하는 방법
KR101981388B1 (ko) D-사이코스 결정을 제조하는 방법
JP6852182B2 (ja) プシコースの効率的な製造方法
EP3423460A1 (en) Method of producing high purity d-psicose
US10808002B2 (en) Method for preparing D-psicose crystal
JP6936320B2 (ja) アルロース転換反応物の精製方法
KR20170005502A (ko) D-사이코스 결정을 제조하는 방법
WO2024014657A1 (ko) D-알룰로스 결정 제조방법
EP4053288A1 (en) Improved method for manufacturing allulose
KR20210052192A (ko) 개선된 알룰로스의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15852095

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017540532

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015852095

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015852095

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15520786

Country of ref document: US