[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016059882A1 - Flame-retardant polyurethane resin and flame-retardant synthetic leather - Google Patents

Flame-retardant polyurethane resin and flame-retardant synthetic leather Download PDF

Info

Publication number
WO2016059882A1
WO2016059882A1 PCT/JP2015/074033 JP2015074033W WO2016059882A1 WO 2016059882 A1 WO2016059882 A1 WO 2016059882A1 JP 2015074033 W JP2015074033 W JP 2015074033W WO 2016059882 A1 WO2016059882 A1 WO 2016059882A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame
polyurethane resin
flame retardant
retardant
synthetic leather
Prior art date
Application number
PCT/JP2015/074033
Other languages
French (fr)
Japanese (ja)
Inventor
中村 隆
雄介 河内
Original Assignee
大和化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大和化学工業株式会社 filed Critical 大和化学工業株式会社
Priority to CN201580039843.5A priority Critical patent/CN106574112B/en
Publication of WO2016059882A1 publication Critical patent/WO2016059882A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes

Definitions

  • the present invention relates to a flame retardant polyurethane resin and a flame retardant synthetic leather having a remarkably high flame retardant performance equal to or better than that of a halogen flame retardant and having good physical properties.
  • polyurethane resin has been used for various uses such as clothing, bags, shoes, furniture, interior materials for vehicles, interior materials for aircraft, interior materials for ships, etc. as a synthetic leather, which is one main application.
  • fields requiring high flame retardancy include furniture, vehicle interior materials / aircraft interior materials, marine interior materials, and the like.
  • Synthetic leather is generally formed by impregnating or laminating a polyurethane resin on a fiber base material such as nonwoven fabric, woven fabric, or knitted fabric.
  • a fiber base material such as nonwoven fabric, woven fabric, or knitted fabric.
  • the synthetic leather is very difficult to be flame-retardant because the combustion mechanism of the polyurethane resin constituting the synthetic leather and the fiber base material are different.
  • an additive-type flame retardant added to a polyurethane resin and imparting flame retardant performance is copolymerized as one of the resin components when the polyurethane resin is synthesized. Reactive flame retardants that have become flame retardant when incorporated have been reported.
  • additive-type flame retardants that are cheaper in production cost can freely adjust the type and amount of flame retardants in the post-production process according to the application desired by the producer, and are more suitable for the production of a small variety of products. Due to its ease of use, it dominates the current market.
  • a bromine-based halogen compound in particular, a combination formulation of decabromodiphenyl ether and antimony trioxide has been widely used since it exhibits excellent flame retardancy.
  • halogen compounds generate toxic gases such as hydrogen halides and dioxins during combustion.
  • non-halogen flame retardants particularly phosphorus flame retardants, and various phosphorus flame retardants have been developed.
  • phosphorus flame retardant many flame retardants such as ammonium polyphosphate, melamine polyphosphate, red phosphorus, organic phosphorus metal salt, phosphate ester and phosphate amide are known.
  • Patent Document 1 discloses a leather-like sheet-like product formed by attaching a polycarbonate-based polyurethane solution containing a red phosphorus flame retardant to a fiber base material.
  • Patent Document 2 discloses the production of a flame retardant polyurethane resin composition containing a polyurethane resin, a phosphorus-nitrogen flame retardant (surface-treated ammonium polyphosphate), a polyhydric alcohol or derivative thereof, and a silicon compound (alkoxysiloxane). A method is disclosed.
  • Patent Document 3 discloses a polyurethane synthetic leather composed of a polyurethane resin layer containing a fiber base material and a phosphate ester flame retardant.
  • Patent Document 4 discloses a flame retardant polyurethane resin in which the phosphorus-containing chain extender in the polyurethane resin is a special phosphaphenanthrene derivative.
  • Japanese Patent Laid-Open No. 5-163683 Japanese Patent No. 5246101 JP 2013-189736 A Japanese Patent No. 5405383
  • the red phosphorus flame retardant used in the method of Patent Document 1 has a high phosphorus content and high flame retardancy, but has a unique red color, and therefore imparts an undesirable color to the product. There is a risk that.
  • Patent Document 4 in a method of incorporating a phosphorus-containing chain extender composed of a special phosphaphenanthrene derivative as a reactive flame retardant into a polyurethane resin, the flame retardant is a strong chemical bond in the resin, so-called Since they are integrated by covalent bonding, the flame retardant does not bleed out even under high temperature and high humidity conditions.
  • the flame retardant in order to synthesize the above-mentioned special flame retardant, a very complicated process of 10 hours at 150 ° C., 10 hours at 180 ° C., and further 10 hours at 200 ° C. Therefore, the increase in cost is unavoidable and has the disadvantage of being difficult to use in practice.
  • the conventional technology has the problem to be solved as described above, that is, has extremely high flame retardant performance equivalent to or higher than that of the halogen-based flame retardant, does not impair the colorability of the product, There are no flame retardant polyurethane resins and flame retardant synthetic leathers that have hydrolysis resistance and bleed-out resistance even under wet conditions, and that can suppress the increase in cost. Yes.
  • An object of the present invention is to provide a flame-retardant polyurethane resin and a flame-retardant synthetic leather that have both hydrolysis resistance and bleed-out resistance even under high-humidity conditions and that can suppress an increase in cost.
  • the inventors of the present invention imparted a flame retardant represented by the following formula (1) to synthetic leather, thereby achieving an extremely high level equivalent to or higher than that of a halogen flame retardant.
  • Flame retardant polyurethane resin that has excellent flame retardant performance, does not hinder product coloration, has hydrolysis resistance and bleed out resistance even under high temperature and high humidity conditions, and can suppress cost increase
  • R 1 is hydrogen, a phenyl group, or a linear alkyl group having 1 to 6 carbon atoms
  • M is Mg, Al, Ca, Ti, or Zn
  • m is 2, 3, or 4
  • a flame retardant polyurethane resin obtained by mixing a flame retardant (a) represented by the following formula (1) and a polyurethane resin (b), wherein the mixing ratio is (a) / (b) Flame retardant polyurethane resin characterized by being in the range of 5/95 to 50/50, (Wherein R 1 is hydrogen, a phenyl group, or a linear alkyl group having 1 to 6 carbon atoms, M is Mg, Al, Ca, Ti, or Zn, and m is 2, 3, or 4) is there.) (2) Flame retardant represented by the above formula (1) (a) 100 parts by weight of melamine phosphate, melamine pyrophosphate, melamine polyphosphate, ammonium polyphosphate, phosphate ester amide, melamine phthalate, melamine The total of one or more flame retardant aids (c) selected from the group consisting of melamine cyanurate, benzoguanamine, expandable graphite, aluminum hydroxide
  • the present invention has remarkably high flame retardant performance equal to or better than that of halogen flame retardants, does not impair product colorability, and is resistant to hydrolysis and bleed out even under high temperature and high humidity conditions. Further, it is possible to provide a flame retardant polyurethane resin and a flame retardant synthetic leather capable of suppressing an increase in cost.
  • the present invention uses a non-halogen phosphorus flame retardant, it is more environmentally friendly than conventional flame retardant synthetic leather using a halogen flame retardant.
  • the flame retardant used in the present invention is a compound represented by the following formula (1). (Wherein R 1 is hydrogen, a phenyl group, or a linear alkyl group having 1 to 6 carbon atoms, M is Mg, Al, Ca, Ti, or Zn, and m is 2, 3, or 4) is there.)
  • R 1 in the above formula (1) is preferably hydrogen, a phenyl group, a methyl group or an ethyl group, and M in the above formula (1) is preferably aluminum or zinc.
  • the flame retardant represented by the above formula (1) include zinc phosphinate (phosphorus content 31.7%), zinc phenylphosphinate (phosphorus content 17.8%), and methyl methylphosphinate (phosphorus). Content 27.7%), zinc ethylphosphinate (phosphorus content 24.6%), aluminum phosphinate (phosphorus content 41.9%), phenyl phenylphosphinate (phosphorus content 20.6%), methyl Examples include aluminum phosphinate (phosphorus content 35.2%) and ethyl ethylphosphinate (phosphorus content 30.4%). Since these phosphinic acid metal salts are usually colorless or white powders, they can be used without impairing the colorability of the product. The phosphorus content will be described later.
  • the flame retardant represented by the above formula (1) is any one of phosphinic acid, phenylphosphinic acid, methylphosphinic acid and ethylphosphinic acid, or an alkali metal salt of phosphinic acid, phenylphosphinic acid, methylphosphinic acid and ethylphosphinic acid.
  • One and any one of aluminum, zinc nitrate, sulfate, carbonate and hydroxide are heated and reacted in an aqueous solution state. This is a kind of acid-base reaction or salt reaction in an aqueous solution. Since the reaction proceeds rapidly, the target compound is produced in a relatively short time of 1 to 3 hours, so that an increase in cost can be suppressed. It is similar to the manufacturing method.
  • the average particle size of the flame retardant of the present invention is preferably 1 to 50 ⁇ m, particularly preferably 2 to 20 ⁇ m. If the average particle size exceeds 50 ⁇ m, the dispersion stability of the flame-retardant polyurethane resin composition may be deteriorated. If the average particle size is less than 1 ⁇ m, the generation of aggregates in the resin composition or extremely There is a risk of thickening of the film.
  • the flame retardant of the present invention can exhibit extremely high flame retardant performance without using any other flame retardant or flame retardant aid.
  • the following two points can be considered as the reason.
  • phosphorus can achieve flame retardancy by suppressing the combustion of combustible materials such as synthetic resins and fiber base materials in both the gas phase and the solid phase.
  • gas phase OH radicals that cause expansion of combustion are trapped by phosphorus-derived PO chemical species, and combustion is suppressed.
  • solid phase polyphosphoric acid generated by thermal decomposition of phosphorus promotes carbonization of the resin and is dense. It is considered that the combustion is suppressed by blocking the resin from heat by forming a carbonized film. Therefore, from the above theory, it is considered that the higher the phosphorus content, the higher the flame retardant performance.
  • the phosphorus content of the flame retardant of the present invention is preferably 30 to 50%.
  • sodium phosphinate has a strong reducing ability and is widely used as a reducing agent for metal plating.
  • high reducibility means high ability to bind to oxygen, and high reducibility is considered to contribute to flame retardancy.
  • the P—H bond of the flame retardant of the present invention is combined with oxygen to form a P—OH bond, thereby reducing the surrounding oxygen concentration.
  • This new theory for improving the flame retardant performance in the present invention is unique to the flame retardant of the present invention, and is different from the organophosphorus metal salts that are generally commercially available, ie, dialkylphosphinic acid metal salts. To do.
  • melamine phosphate, melamine pyrophosphate, melamine polyphosphate, ammonium polyphosphate, phosphate ester amide, melamine phthalate, melamine, melamine cyanurate, benzoguanamine for further flame retardant performance improvement
  • expansive graphite, aluminum hydroxide and magnesium hydroxide may optionally be used in combination as flame retardant aids. The amount used is 0 to 200 parts by weight of the total of at least one compound of the above flame retardant aid with respect to 100 parts by weight of the flame retardant of the present invention.
  • the mixing ratio of the flame retardant of the present invention and the polyurethane resin is preferably 5/95 to 50/50, more preferably 10/90 to 35/65, by mass ratio.
  • the mixing ratio of the total of the flame retardant of the present invention and the flame retardant aid and the polyurethane resin is preferably 5/95 to 50/50 by mass ratio. More preferably, it is 10/90 to 35/65. If the mixing ratio exceeds 50/50, the synthetic leather may have a texture hardening or a decrease in tensile strength, and if the mixing ratio is less than 5/95, sufficient flame retardancy may not be obtained.
  • the flame-retardant synthetic leather of the present invention comprises a nonwoven fabric, a woven fabric, a fiber base material including a knitted fabric, and at least one polyurethane resin layer, and any one of the polyurethane resin layers is a flame-retardant material of the present invention. It is formed using a conductive polyurethane resin.
  • Fiber base Nonwoven fabrics, woven fabrics, knitted fabrics and the like are used as the fiber base material used in the present invention.
  • the type of fiber material is not particularly limited, and synthetic fibers such as polyester, nylon, polyacrylonitrile, polypropylene and aramid, semi-synthetic fibers such as diacetate and triacetate, and cellulosic fibers such as rayon, cotton and hemp Further, animal fibers such as wool, silk and feathers, or inorganic fibers such as glass fibers and carbon fibers may be used alone or in combination.
  • polyurethane resin As the polyurethane resin used in the present invention, those synthesized from polyols, isocyanates, and chain extenders can be used.
  • polystyrene resin examples include polycarbonate polyol, polyester polyol, polyether polyol, polycaprolactone polyol, polyolefin polyol, vegetable oil-based polyol, and the like. These polyols may be used alone or in combination of two or more.
  • the number average molecular weight is preferably in the range of 1000 to 3000.
  • polycarbonate polyol examples include one or two alkanediols such as 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methylpentanediol, and 1,12-dodecanediol.
  • alkanediols such as 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methylpentanediol, and 1,12-dodecanediol.
  • the above and the copolymer with 1 type, or 2 or more types of carbonate compounds, such as dialkyl carbonate, alkylene carbonate, and diphenyl carbonate are mentioned.
  • polyester polyol examples include one or two low molecular diols such as ethylene glycol, 1,4-butylene glycol, 1,6-hexanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, and diethylene glycol.
  • low molecular diols such as ethylene glycol, 1,4-butylene glycol, 1,6-hexanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, and diethylene glycol.
  • low-molecular dicarboxylic acids such as succinic acid, adipic acid, sebacic acid, and phthalic acid.
  • polyether polyol examples include polypropylene ether polyol, polytetramethylene ether polyol, hexamethylene ether polyol, and the like.
  • Examples of the vegetable oil-based polyol include castor oil-modified polyol, dimer acid-modified polyol, soybean oil-modified polyol, and the like.
  • isocyanate used examples include aliphatic diisocyanates such as methylene diisocyanate, hexamethylene diisocyanate, lysine diisocyanate, and trimethylhexamethylene diisocyanate, and alicyclic groups such as 4,4′-dicyclohexylmethane diisocyanate, isophorone diisocyanate, and norbornene diisocyanate.
  • Aromatic diisocyanates such as diisocyanate, 4,4′-diphenylmethane diisocyanate, tolylene diisocyanate, 1,5-naphthalene diisocyanate and the like can be mentioned. These isocyanates can be used alone or in combination of two or more.
  • a low molecular weight diol having 2 to 10 carbon atoms used as a chain extender is preferable, such as ethylene glycol, diethylene glycol, 1,4-butylene glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, Examples thereof include aliphatic glycols such as neopentyl glycol and low-molecular alicyclic diols such as cyclohexanediol. These polyols can be used alone or in combination of two or more. These polyols preferably have an average number of functional groups of 2 or more and an average molecular weight in the range of 50 to 400.
  • the polyurethane resin used for the synthetic leather is not particularly limited, and examples thereof include a polyether-based polyurethane resin, a polyester-based polyurethane resin, and a polycarbonate-based polyurethane resin. These may be used alone or in combination of two or more. They can be used in combination. Especially, it is preferable to use a polycarbonate-type polyurethane resin at the point which is excellent in durability, heat resistance, and a weather resistance of the polyurethane resin obtained.
  • the method for producing the flame-retardant synthetic leather of the present invention is not particularly limited, and can be produced by either a wet method or a dry method.
  • the wet method is a method in which a base polyurethane resin mixed with a water-soluble solvent (hereinafter referred to as a base resin) is coated on a fiber base material and immersed in a coagulation bath containing water.
  • a base resin a water-soluble solvent
  • the water-soluble solvent is eluted, the polyurethane resin is precipitated and solidified to form a porous microporous layer having a large number of voids, and the product is then washed and dried to obtain a product.
  • a flame retardant may be blended in the base resin, and a skin layer containing a pigment that has been embossed or the like may be laminated on the base resin.
  • the dry method is a direct coating method in which a polyurethane resin mixed with a solvent is directly coated on a fiber substrate, and the solvent is evaporated by a dryer to cure, or for a skin layer containing a pigment on a release paper.
  • a polyurethane resin is coated and dried to form a skin resin layer, and then a polyurethane resin for an adhesive layer is coated on the skin resin layer, bonded and bonded to a fiber substrate, and dried to obtain a product. is there.
  • an aging treatment may be performed to complete the curing reaction.
  • the release paper is peeled off to complete.
  • a flame retardant may be blended in the polyurethane resin for the adhesive layer.
  • a composition containing the polyurethane resin for the skin layer is coated on the release paper, and if necessary, heat treatment is performed to form the skin layer.
  • a composition containing a flame retardant polyurethane resin in which the flame retardant of the present invention is blended in advance as an adhesive layer is coated on the skin layer, and the fiber base material and the roll are in a state where the composition has adhesiveness.
  • they are bonded together by pressure bonding such as a hot roll, cooled to room temperature, and subjected to aging treatment to form an adhesive layer.
  • the release paper is peeled to obtain the flame-retardant synthetic leather of the present invention.
  • various conventionally known methods can be employed and are not particularly limited. Examples thereof include a method using an apparatus such as a reverse roll coater, spray coater, roll coater, gravure coater, kiss roll coater, knife coater, comma coater, or T-die coater.
  • the thickness of the adhesive layer is preferably 50 to 400 ⁇ m, more preferably 100 to 300 ⁇ m, in a wet state immediately after coating. If it is less than 50 ⁇ m, the adhesive strength may not be sufficient, and if it exceeds 400 ⁇ m, the texture of the synthetic leather may become hard.
  • the thickness of the skin layer is preferably 5 to 200 ⁇ m, more preferably 10 to 100 ⁇ m, in a wet state immediately after coating. If it is less than 5 ⁇ m, the abrasion resistance may not be sufficient, and if it exceeds 200 ⁇ m, the texture of the synthetic leather may become hard.
  • the usage application of the flame-retardant polyurethane resin obtained in the present invention is not particularly limited.
  • a seat sheet material, a floor carpet, and a ceiling material used as interior materials for vehicles, railways, aircrafts, and ships.
  • a ceiling material used as interior materials for vehicles, railways, aircrafts, and ships.
  • flame retardance performance is high in the order of “NB”>“SE”> “slow flame retardance”, and all three points pass. Furthermore, in order to make it easy to compare the difference in flame retardant performance, the combustion distance from the flame contact portion in each sample was represented by an average value of four points. The smaller the value of the combustion distance, the better the tendency.
  • Example 1 A polyurethane resin composition for the skin layer was prepared according to the following formulation. ⁇ Prescription 1> -Polycarbonate polyurethane resin (solid content 25%, solvent DMF) 100 parts-Dimethylformamide (DMF) 40 parts-Carbon black pigment 12 parts
  • a polyurethane resin composition for the adhesive layer was prepared according to the following formulation.
  • ⁇ Prescription 2> ⁇ Polycarbonate polyurethane resin (solid content 70%, solvent MEK) 100 parts ⁇ Methyl ethyl ketone (MEK) 50 parts ⁇ Urethane curing agent (polyisocyanate) 10 parts ⁇ Urethane catalyst 2 parts ⁇ Ethylphosphinic acid aluminum (average particle size 5 ⁇ m) 15 copies
  • the resin composition for skin layer of the above formulation 1 was coated on a release paper so as to have a thickness of 150 ⁇ m, and dried for 2 minutes with a dryer at 100 ° C. to form a skin layer.
  • the resin composition for the adhesive layer of the above formulation 2 is coated to a thickness of 250 ⁇ m, dried for 3 minutes in a dryer at 120 ° C., bonded to a polyester tricot cloth, and pressed with a mangle.
  • the flame-retardant synthetic leather of Example 1 was obtained by aging at 40 ° C. for 72 hours and peeling off the release paper.
  • Example 2 Flame retardant in the same manner as in Example 1 except that the flame retardant of ⁇ Prescription 2> of Example 1 was a mixture of 10 parts of aluminum ethylphosphinate (average particle diameter 5 ⁇ m) and 5 parts of benzoguanamine (average particle diameter 10 ⁇ m). Sexual synthetic leather was obtained.
  • Example 1 A flame retardant synthetic leather was obtained in the same manner as in Example 1 except that no flame retardant was added to the adhesive layer.
  • Example 2 A flame-retardant synthetic leather was obtained in the same manner as in Example 1 except that the flame retardant of ⁇ Prescription 2> in Example 1 was changed to 15 parts of a mixture of decabromodiphenyl ether and antimony trioxide (average particle size: 4 ⁇ m).
  • Example 3 A flame-retardant synthetic leather was obtained in the same manner as in Example 1 except that 15 parts of the flame retardant of ⁇ Prescription 2> in Example 1 was changed to 15 parts of ammonium polyphosphate (average particle size: 15 ⁇ m).
  • Table 1 shows the evaluation results of the synthetic leathers of Examples and Comparative Examples for the flame retardant performance test.
  • Table 2 shows the evaluation results of the synthetic leathers of Examples and Comparative Examples for other evaluation items. Since the hydrolysis resistance test and the bleed resistance test of Comparative Example 1 did not contain a flame retardant, the wet heat aging test was originally rejected because the flame retardant performance was originally unacceptable.
  • the flame retardant synthetic leather made of polyurethane resin using the flame retardant of the present invention has the same or better advanced flame retardant performance than the synthetic leather using halogenated flame retardant, but synthetic leather. As a result, various physical properties were maintained in good condition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided are: a flame-retardant polyurethane resin which exhibits extremely high flame retardancy, while having both hydrolysis resistance and bleed-out resistance even under high temperature and high humidity conditions without inhibiting coloring of a product, and which is able to suppress increase in the cost; and a flame-retardant synthetic leather. A flame-retardant polyurethane resin which is obtained by mixing (a) a metal phosphinate salt and (b) a polyurethane resin, and which is characterized in that the mixing ratio (a)/(b) in terms of a weight ratio is within the range from 5/95 to 50/50; and a flame-retardant synthetic leather which is formed of the flame-retardant polyurethane resin.

Description

難燃性ポリウレタン樹脂および難燃性合成皮革Flame retardant polyurethane resin and flame retardant synthetic leather
 本発明は、ハロゲン系難燃剤と同等以上の、著しく高度な難燃性能を有し、かつ良好な物性を有する難燃性ポリウレタン樹脂および難燃性合成皮革に関する。 The present invention relates to a flame retardant polyurethane resin and a flame retardant synthetic leather having a remarkably high flame retardant performance equal to or better than that of a halogen flame retardant and having good physical properties.
 従来、ポリウレタン樹脂は、1つの主用途である合成皮革として、衣料、鞄、靴、家具、車両用内装材、航空機用内装材、船舶用内装材等の様々な用途に使用されている。これらのうち、高い難燃性能が要求される分野として家具、車両用内装材・航空機用内装材、船舶用内装材等が挙げられる。 Conventionally, polyurethane resin has been used for various uses such as clothing, bags, shoes, furniture, interior materials for vehicles, interior materials for aircraft, interior materials for ships, etc. as a synthetic leather, which is one main application. Among these, fields requiring high flame retardancy include furniture, vehicle interior materials / aircraft interior materials, marine interior materials, and the like.
 合成皮革は、一般に、不織布、織物、編物などの繊維基材にポリウレタン樹脂を含浸あるいは積層して形成される。しかしながら、合成皮革はこれを構成するポリウレタン樹脂と繊維基材との燃焼機構が異なるため、難燃化が非常に困難であることが知られている。 Synthetic leather is generally formed by impregnating or laminating a polyurethane resin on a fiber base material such as nonwoven fabric, woven fabric, or knitted fabric. However, it is known that the synthetic leather is very difficult to be flame-retardant because the combustion mechanism of the polyurethane resin constituting the synthetic leather and the fiber base material are different.
 上記のような合成皮革に対する難燃剤としては、ポリウレタン樹脂に配合し難燃性能を付与する添加型の難燃剤と、ポリウレタン樹脂を合成する際に樹脂構成成分の一つとして共重合させ樹脂中に組み込むことで難燃化する反応型の難燃剤が報告されている。しかしながら、生産コストが安く、生産者が希望する用途に応じて難燃剤の種類や配合量を生産の後工程で自由に調整でき、少量多品種の生産に適している添加型の難燃剤のほうが、使い勝手が良いため、現在の市場で主流を占めている。 As a flame retardant for synthetic leather as described above, an additive-type flame retardant added to a polyurethane resin and imparting flame retardant performance is copolymerized as one of the resin components when the polyurethane resin is synthesized. Reactive flame retardants that have become flame retardant when incorporated have been reported. However, additive-type flame retardants that are cheaper in production cost, can freely adjust the type and amount of flame retardants in the post-production process according to the application desired by the producer, and are more suitable for the production of a small variety of products. Due to its ease of use, it dominates the current market.
 難燃剤としては、従来、臭素系ハロゲン化合物、特にデカブロモジフェニルエーテルと三酸化アンチモンの併用処方が優れた難燃性能を発揮するため、広く用いられてきた。しかしながら、ハロゲン系化合物は燃焼時に、ハロゲン化水素やダイオキシン類の有毒ガスが発生することが指摘されている。このことから環境保護のため、ハロゲン系化合物を使用しない非ハロゲン系難燃剤、特にリン系難燃剤の要望が多く、様々なリン系難燃剤が開発されている。リン系難燃剤としては、ポリリン酸アンモニウム、ポリリン酸メラミン、赤リン、有機リン系金属塩、リン酸エステルおよびリン酸アミドなど数多くの難燃剤が公知である。 As a flame retardant, a bromine-based halogen compound, in particular, a combination formulation of decabromodiphenyl ether and antimony trioxide has been widely used since it exhibits excellent flame retardancy. However, it has been pointed out that halogen compounds generate toxic gases such as hydrogen halides and dioxins during combustion. For this reason, in order to protect the environment, there is a great demand for non-halogen flame retardants that do not use halogen compounds, particularly phosphorus flame retardants, and various phosphorus flame retardants have been developed. As the phosphorus flame retardant, many flame retardants such as ammonium polyphosphate, melamine polyphosphate, red phosphorus, organic phosphorus metal salt, phosphate ester and phosphate amide are known.
 これらのリン系難燃剤を用いた様々な難燃化方法が提案されている。例えば、下記特許文献1には、赤リン系難燃剤を含有するポリカーボネート系ポリウレタン溶液を繊維基材に付着してなる皮革様シート状物が開示されている。 Various flame retardant methods using these phosphorus flame retardants have been proposed. For example, Patent Document 1 below discloses a leather-like sheet-like product formed by attaching a polycarbonate-based polyurethane solution containing a red phosphorus flame retardant to a fiber base material.
 また、下記特許文献2には、ポリウレタン樹脂とリン-窒素系難燃剤(表面処理ポリリン酸アンモニウム)と多価アルコール又はその誘導体とケイ素化合物(アルコキシシロキサン)を含有する難燃ポリウレタン樹脂組成物の製造方法が開示されている。 Patent Document 2 below discloses the production of a flame retardant polyurethane resin composition containing a polyurethane resin, a phosphorus-nitrogen flame retardant (surface-treated ammonium polyphosphate), a polyhydric alcohol or derivative thereof, and a silicon compound (alkoxysiloxane). A method is disclosed.
 また別の例として、下記特許文献3には、繊維基材とリン酸エステル系難燃剤を配合したポリウレタン樹脂層で構成されるポリウレタン製合成皮革が開示されている。 As another example, Patent Document 3 below discloses a polyurethane synthetic leather composed of a polyurethane resin layer containing a fiber base material and a phosphate ester flame retardant.
 さらに、下記特許文献4には、ポリウレタン樹脂中のリン含有鎖伸長剤が特殊なホスファフェナントレン誘導体である難燃性ポリウレタン樹脂が開示されている。 Furthermore, Patent Document 4 below discloses a flame retardant polyurethane resin in which the phosphorus-containing chain extender in the polyurethane resin is a special phosphaphenanthrene derivative.
特開平5-163683号公報Japanese Patent Laid-Open No. 5-163683 特許第5246101号公報Japanese Patent No. 5246101 特開2013-189736号公報JP 2013-189736 A 特許第5405383号公報Japanese Patent No. 5405383
 しかしながら、特許文献1の方法で用いられている赤リン系難燃剤はリン含有率が高く、難燃性能は高いが、独特の赤味を有している為、製品に望まない着色を付与してしまうおそれがある。また、着色抑制と難燃性能のバランスを取るためには、色消し剤を相当量配合する必要があり、これによる難燃性能の低下と色消し剤の耐光性不良等の問題が生じるおそれがある。 However, the red phosphorus flame retardant used in the method of Patent Document 1 has a high phosphorus content and high flame retardancy, but has a unique red color, and therefore imparts an undesirable color to the product. There is a risk that. In addition, in order to balance coloring suppression and flame retardancy, it is necessary to blend a considerable amount of achromatic agent, which may cause problems such as degradation of flame retardancy and poor light resistance of the achromatic agent. is there.
 特許文献2のような耐加水分解性に難のあるポリリン酸アンモニウムを用いる方法では、リン含有率は約30%前後と比較的高く、難燃性能は出やすいが、仮に被覆されたポリリン酸アンモニウムであっても、高温・高湿条件下では十分加水分解を防ぐことは困難であり、その結果生成するポリリン酸により製品物性の劣化だけでなく、製品表面に、いわゆるブリードアウトと呼ばれる白化現象やベタツキを生じて、製品の品質を低下してしまうおそれがある。実際、当該特許文献には、樹脂組成物の難燃性能と機械物性については評価しているが、ブリードアウトについては、検証されていない。 In the method using ammonium polyphosphate that is difficult to hydrolyze as in Patent Document 2, the phosphorus content is relatively high, about 30%, and the flame retardancy is easy to be obtained. However, temporarily coated ammonium polyphosphate However, it is difficult to sufficiently prevent hydrolysis under high temperature and high humidity conditions. As a result, polyphosphoric acid generated not only deteriorates the physical properties of the product, but also causes a whitening phenomenon called so-called bleedout on the product surface. There is a risk of causing stickiness and degrading the quality of the product. In fact, the patent literature evaluates the flame retardancy and mechanical properties of the resin composition, but does not verify the bleed out.
 また、特許文献3ではリン酸エステルを使用しているが、上記と同様にリン酸エステルの問題点でもある加水分解性とブリードアウトに対応する為、リン酸エステルの酸価と分子量を制限している。しかしながら、高温・高湿条件下において、ブリードアウトを十分に防ぐことは困難であり、さらには、リン酸エステルは耐加水分解性を向上させるため、縮合型等に分子量を大きくする必要があり、それにより、リン酸エステル中のリン含有率が低下してしまう。その結果、一般的に難燃性能が低下するという問題を有している。 Moreover, although the phosphoric acid ester is used in patent document 3, in order to respond to the hydrolyzability and bleed-out which are the problems of a phosphoric acid ester similarly to the above, the acid value and molecular weight of a phosphoric acid ester are restrict | limited. ing. However, under high temperature and high humidity conditions, it is difficult to sufficiently prevent bleed out.Furthermore, in order to improve the hydrolysis resistance of phosphate ester, it is necessary to increase the molecular weight to a condensation type, Thereby, the phosphorus content rate in phosphate ester will fall. As a result, there is a problem that the flame retardancy performance is generally lowered.
 一方、特許文献4のように、反応型の難燃剤として特殊なホスファフェナントレン誘導体からなるリン含有鎖伸長剤をポリウレタン樹脂中に組み込む方法では、上記難燃剤が樹脂中に強固な化学結合、いわゆる共有結合によって一体化されるため、高温・高湿条件下でも難燃剤がブリードアウトしないという長所を有している。しかしながら、当該特許文献の実施例によると、上記の特殊な難燃剤を合成するためには、150℃で10時間、さらに180℃で10時間、さらに200℃で10時間という非常に煩雑な工程を有していることから、コスト増は免れず、現実的に使用しづらいという短所を有する。さらに、ポリウレタン樹脂中に含有可能なリン濃度に制限があり、その上限値を超えると風合いが低下するだけでなく、難燃性能の評価が限界酸素指数(LOI値)のみであり、難燃性合成皮革として含有しているリン濃度で十分に高度な難燃性を発揮できるかどうか、適正に判断できない。 On the other hand, as in Patent Document 4, in a method of incorporating a phosphorus-containing chain extender composed of a special phosphaphenanthrene derivative as a reactive flame retardant into a polyurethane resin, the flame retardant is a strong chemical bond in the resin, so-called Since they are integrated by covalent bonding, the flame retardant does not bleed out even under high temperature and high humidity conditions. However, according to the examples of the patent document, in order to synthesize the above-mentioned special flame retardant, a very complicated process of 10 hours at 150 ° C., 10 hours at 180 ° C., and further 10 hours at 200 ° C. Therefore, the increase in cost is unavoidable and has the disadvantage of being difficult to use in practice. Furthermore, there is a limit to the phosphorus concentration that can be contained in the polyurethane resin, and when the upper limit is exceeded, not only the texture is lowered, but the flame resistance performance is evaluated only by the limiting oxygen index (LOI value), and flame retardancy It cannot be properly judged whether or not a sufficiently high level of flame retardancy can be exhibited at the phosphorus concentration contained as a synthetic leather.
 上記ように、従来の技術では、上記の解決しようとする課題、すなわち、ハロゲン系難燃剤と同等以上の、著しく高度な難燃性能を有し、製品の着色性を阻害せず、高温・高湿条件下でも耐加水分解性と耐ブリードアウト性を兼ね備え、さらには、コスト増を抑制可能な難燃性ポリウレタン樹脂および難燃性合成皮革は提供されておらず、その実現化が切望されている。 As described above, the conventional technology has the problem to be solved as described above, that is, has extremely high flame retardant performance equivalent to or higher than that of the halogen-based flame retardant, does not impair the colorability of the product, There are no flame retardant polyurethane resins and flame retardant synthetic leathers that have hydrolysis resistance and bleed-out resistance even under wet conditions, and that can suppress the increase in cost. Yes.
 したがって、本発明は、上記課題を考慮してなされたものであり、すなわち、ハロゲン系難燃剤と同等以上の、著しく高度な難燃性能を有し、製品の着色性を阻害せず、高温・高湿条件下でも耐加水分解性と耐ブリードアウト性を兼ね備え、さらには、コスト増を抑制可能な難燃性ポリウレタン樹脂および難燃性合成皮革を提供することを目的とする。 Therefore, the present invention has been made in consideration of the above-mentioned problems, that is, it has a remarkably high flame retardancy equivalent to or higher than that of a halogen-based flame retardant, does not hinder the colorability of the product, An object of the present invention is to provide a flame-retardant polyurethane resin and a flame-retardant synthetic leather that have both hydrolysis resistance and bleed-out resistance even under high-humidity conditions and that can suppress an increase in cost.
 本発明者らは、上記目的を達成すべく鋭意研究を行った結果、下記式(1)で表される難燃剤を合成皮革に付与することによって、ハロゲン系難燃剤と同等以上の、著しく高度な難燃性能を有し、製品の着色性を阻害せず、高温・高湿条件下でも耐加水分解性と耐ブリードアウト性を兼ね備え、さらには、コスト増を抑制可能な難燃性ポリウレタン樹脂および難燃性合成皮革が得られることを見出し、本発明を完成するに至った。
Figure JPOXMLDOC01-appb-C000002

(式中、Rは水素、フェニル基、または炭素数1~6の直鎖状のアルキル基であり、MはMg、Al、Ca、TiまたはZnであり、mは2、3または4である。)
As a result of intensive studies to achieve the above object, the inventors of the present invention imparted a flame retardant represented by the following formula (1) to synthetic leather, thereby achieving an extremely high level equivalent to or higher than that of a halogen flame retardant. Flame retardant polyurethane resin that has excellent flame retardant performance, does not hinder product coloration, has hydrolysis resistance and bleed out resistance even under high temperature and high humidity conditions, and can suppress cost increase And it discovered that a flame-retardant synthetic leather was obtained and came to complete this invention.
Figure JPOXMLDOC01-appb-C000002

(Wherein R 1 is hydrogen, a phenyl group, or a linear alkyl group having 1 to 6 carbon atoms, M is Mg, Al, Ca, Ti, or Zn, and m is 2, 3, or 4) is there.)
 すなわち本発明は、
(1)下記式(1)で表される難燃剤(a)とポリウレタン樹脂(b)が混合されてなる難燃性ポリウレタン樹脂であって、混合比率が重量比で(a)/(b)=5/95~50/50の範囲であることを特徴とする難燃性ポリウレタン樹脂、

Figure JPOXMLDOC01-appb-C000003

(式中、Rは水素、フェニル基、または炭素数1~6の直鎖状のアルキル基であり、MはMg、Al、Ca、TiまたはZnであり、mは2、3または4である。)
(2)上記式(1)で表される難燃剤(a)100重量部に対して、リン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミン、ポリリン酸アンモニウム、リン酸エステルアミド、フタル酸メラミン、メラミン、シアヌル酸メラミン、ベンゾグアナミン、膨張性黒鉛、水酸化アルミニウムおよび水酸化マグネシウムからなる群より選ばれる1種または2種以上の難燃助剤(c)の合計が0~200重量部であり、上記式(1)で表される難燃剤(a)とポリウレタン樹脂(b)と上記難燃助剤(c)の混合比率が重量比で{(a)+(c)}/(b)=5/95~50/50の範囲であることを特徴とする請求項1に記載の難燃性ポリウレタン樹脂、
(3)合成皮革は不織布、織物、編物を含む繊維基材および少なくとも一層以上のポリウレタン樹脂層を含む構成からなり、上記ポリウレタン樹脂層が上記(1)および/または(2)に記載の難燃性ポリウレタン樹脂を用いて形成されていることを特徴とする難燃性合成皮革、
を要旨とするものである。
That is, the present invention
(1) A flame retardant polyurethane resin obtained by mixing a flame retardant (a) represented by the following formula (1) and a polyurethane resin (b), wherein the mixing ratio is (a) / (b) = Flame retardant polyurethane resin characterized by being in the range of 5/95 to 50/50,

Figure JPOXMLDOC01-appb-C000003

(Wherein R 1 is hydrogen, a phenyl group, or a linear alkyl group having 1 to 6 carbon atoms, M is Mg, Al, Ca, Ti, or Zn, and m is 2, 3, or 4) is there.)
(2) Flame retardant represented by the above formula (1) (a) 100 parts by weight of melamine phosphate, melamine pyrophosphate, melamine polyphosphate, ammonium polyphosphate, phosphate ester amide, melamine phthalate, melamine The total of one or more flame retardant aids (c) selected from the group consisting of melamine cyanurate, benzoguanamine, expandable graphite, aluminum hydroxide and magnesium hydroxide is 0 to 200 parts by weight, The mixing ratio of the flame retardant (a) represented by the formula (1), the polyurethane resin (b) and the flame retardant aid (c) is {(a) + (c)} / (b) = 5 The flame retardant polyurethane resin according to claim 1, wherein the flame retardant polyurethane resin is in the range of / 95 to 50/50,
(3) The synthetic leather is composed of a non-woven fabric, a woven fabric, a fiber substrate including knitted fabric, and at least one polyurethane resin layer, and the polyurethane resin layer is flame retardant as described in (1) and / or (2) above. Flame retardant synthetic leather, characterized in that it is formed using a heat-resistant polyurethane resin,
Is a summary.
 本発明によれば、ハロゲン系難燃剤と同等以上の、著しく高度な難燃性能を有し、製品の着色性を阻害せず、高温・高湿条件下でも耐加水分解性と耐ブリードアウト性を兼ね備え、さらには、コスト増を抑制可能な難燃性ポリウレタン樹脂および難燃性合成皮革を提供することができる。 According to the present invention, it has remarkably high flame retardant performance equal to or better than that of halogen flame retardants, does not impair product colorability, and is resistant to hydrolysis and bleed out even under high temperature and high humidity conditions. Further, it is possible to provide a flame retardant polyurethane resin and a flame retardant synthetic leather capable of suppressing an increase in cost.
 さらに本発明は、非ハロゲン系のリン系難燃剤を使用する為、従来のハロゲン系難燃剤を用いた難燃性合成皮革と比較し、環境への配慮がなされたものである。 Furthermore, since the present invention uses a non-halogen phosphorus flame retardant, it is more environmentally friendly than conventional flame retardant synthetic leather using a halogen flame retardant.
 以下、本発明の難燃性ポリウレタン樹脂および難燃性合成皮革について、実施形態を説明する。
[難燃剤{下記式(1)}]
 本発明に用いられる難燃剤は下記式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000004

(式中、Rは水素、フェニル基、または炭素数1~6の直鎖状のアルキル基であり、MはMg、Al、Ca、TiまたはZnであり、mは2、3または4である。)
Hereinafter, embodiments of the flame-retardant polyurethane resin and the flame-retardant synthetic leather of the present invention will be described.
[Flame Retardant {Formula (1)} below]
The flame retardant used in the present invention is a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000004

(Wherein R 1 is hydrogen, a phenyl group, or a linear alkyl group having 1 to 6 carbon atoms, M is Mg, Al, Ca, Ti, or Zn, and m is 2, 3, or 4) is there.)
 上記式(1)のRとしては、水素、フェニル基、メチル基またはエチル基が好ましく、上記式(1)のMとしては、アルミニウムまたは亜鉛が好ましい。 R 1 in the above formula (1) is preferably hydrogen, a phenyl group, a methyl group or an ethyl group, and M in the above formula (1) is preferably aluminum or zinc.
 上記式(1)で表される難燃剤の具体例としては、ホスフィン酸亜鉛(リン含有率31.7%)、フェニルホスフィン酸亜鉛(リン含有率17.8%)、メチルホスフィン酸亜鉛(リン含有率27.7%)、エチルホスフィン酸亜鉛(リン含有率24.6%)、ホスフィン酸アルミニウム(リン含有率41.9%)、フェニルホスフィン酸アルミニウム(リン含有率20.6%)、メチルホスフィン酸アルミニウム(リン含有率35.2%)およびエチルホスフィン酸アルミニウム(リン含有率30.4%)が挙げられる。これらホスフィン酸金属塩は、通常は無色または白色の粉体であるため、製品の着色性を阻害することなく使用可能である。リン含有率については、後述する。 Specific examples of the flame retardant represented by the above formula (1) include zinc phosphinate (phosphorus content 31.7%), zinc phenylphosphinate (phosphorus content 17.8%), and methyl methylphosphinate (phosphorus). Content 27.7%), zinc ethylphosphinate (phosphorus content 24.6%), aluminum phosphinate (phosphorus content 41.9%), phenyl phenylphosphinate (phosphorus content 20.6%), methyl Examples include aluminum phosphinate (phosphorus content 35.2%) and ethyl ethylphosphinate (phosphorus content 30.4%). Since these phosphinic acid metal salts are usually colorless or white powders, they can be used without impairing the colorability of the product. The phosphorus content will be described later.
 上記式(1)で表される難燃剤は、ホスフィン酸、フェニルホスフィン酸、メチルホスフィン酸およびエチルホスフィン酸、またはホスフィン酸、フェニルホスフィン酸、メチルホスフィン酸およびエチルホスフィン酸のアルカリ金属塩のいずれか一つと、アルミニウムまたは亜鉛の硝酸塩、硫酸塩、炭酸塩および水酸化物のいずれか一つとが、水溶液状態で、加熱され、反応させることによって得られる。これは水溶液中の酸塩基反応または塩反応の一種であり、反応が速やかに進行することで、目的とする化合物が1~3時間という比較的短時間で生成するため、コスト増を抑制可能な製造方法に類するものである。 The flame retardant represented by the above formula (1) is any one of phosphinic acid, phenylphosphinic acid, methylphosphinic acid and ethylphosphinic acid, or an alkali metal salt of phosphinic acid, phenylphosphinic acid, methylphosphinic acid and ethylphosphinic acid. One and any one of aluminum, zinc nitrate, sulfate, carbonate and hydroxide are heated and reacted in an aqueous solution state. This is a kind of acid-base reaction or salt reaction in an aqueous solution. Since the reaction proceeds rapidly, the target compound is produced in a relatively short time of 1 to 3 hours, so that an increase in cost can be suppressed. It is similar to the manufacturing method.
 本発明の難燃剤の平均粒子径は1~50μmが好ましく、特に2~20μmが好ましい。平均粒子径が50μmを超えると、難燃性ポリウレタン樹脂組成物の分散安定性が悪化するおそれがあり、平均粒子径が1μm未満だと、上記樹脂組成物中での凝集物の発生または、極度の増粘が起こるおそれがある。 The average particle size of the flame retardant of the present invention is preferably 1 to 50 μm, particularly preferably 2 to 20 μm. If the average particle size exceeds 50 μm, the dispersion stability of the flame-retardant polyurethane resin composition may be deteriorated. If the average particle size is less than 1 μm, the generation of aggregates in the resin composition or extremely There is a risk of thickening of the film.
 本発明の難燃剤は他の難燃剤または難燃助剤を併用せずとも、著しく高度な難燃性能を発揮することができる。その理由として、下記の2点が考えられる。
(A)リン含有率が高いこと
(B)P-H結合による還元作用を有すること
The flame retardant of the present invention can exhibit extremely high flame retardant performance without using any other flame retardant or flame retardant aid. The following two points can be considered as the reason.
(A) High phosphorus content (B) Reducing action by P—H bond
(A)リン含有率が高いことについては、難燃性能を向上させる要素の一つとして、公知である。すなわち、リンは合成樹脂および繊維基材等の可燃物に対しての燃焼を気相および固相の両方で抑制することで難燃化を達成できる。気相では燃焼の拡大の原因となるOHラジカルをリン由来のPO化学種がトラップすることで燃焼を抑制し、固相ではリンの熱分解により生成したポリリン酸が樹脂の炭化を促進し、緻密な炭化被膜の形成によって樹脂を熱から遮断することで燃焼を抑制すると考えられている。したがって、上記理論から、リン含有率が高いほど、高度な難燃性能を発揮することができると考えられる。本発明の難燃剤のリン含有率としては、30~50%のものが好ましい。 (A) About high phosphorus content, it is well-known as one of the elements which improves a flame retardance performance. That is, phosphorus can achieve flame retardancy by suppressing the combustion of combustible materials such as synthetic resins and fiber base materials in both the gas phase and the solid phase. In the gas phase, OH radicals that cause expansion of combustion are trapped by phosphorus-derived PO chemical species, and combustion is suppressed. In the solid phase, polyphosphoric acid generated by thermal decomposition of phosphorus promotes carbonization of the resin and is dense. It is considered that the combustion is suppressed by blocking the resin from heat by forming a carbonized film. Therefore, from the above theory, it is considered that the higher the phosphorus content, the higher the flame retardant performance. The phosphorus content of the flame retardant of the present invention is preferably 30 to 50%.
(B)P-H結合による還元作用を有することについては、筆者の推測の域を出ないが、本発明における難燃性能向上のための新たな理論として考えることができる。すなわち、P-H結合を有することで、積極的に合成樹脂等の可燃物のごく狭い範囲の表面に存在する酸素と結び付き、周辺の酸素濃度を低下させ、燃焼を抑制するというものである。ではなぜ、P-H結合が積極的に酸素と結び付くのか。それは、P-H結合の還元性の高さに起因するものと考えられる。還元性とは自らは酸素と結び付き酸化され、対象物を還元する度合いを表す尺度で、一般的には酸化還元電位として知られている。実際に、ホスフィン酸ナトリウムは、強力な還元性を有しており、金属メッキの還元剤として広く利用されている。つまり、還元性が高いということは酸素と結びつく能力が高いことを意味し、還元性の高さが難燃性能に寄与すると考えられる。この場合では、本発明の難燃剤のP-H結合が酸素と結び付きP-OH結合となることで、周辺の酸素濃度を低下させていると考えられる。この本発明における難燃性能向上のための新たな理論は本発明の難燃剤特有のものであり、一般的に市販されている有機リン系金属塩、すなわちジアルキルホスフィン酸金属塩とは一線を画する。
 補足として、一般的に酸化されやすい(強力な還元剤)ほど燃えやすいという理論があるが、これはその物質が単独で存在する場合であって、本発明では当該難燃剤と、ポリウレタン樹脂または合成皮革の構成成分とが共存しているため、この理論は適用できないと考えるのが妥当である。実際、実施例1にあるように、合成皮革としての難燃性能試験を実施した場合、著しく高度な性能を発揮していることからも明らかである。
(B) About having the reducing action by the P—H bond, it is not within the scope of the author's guess, but can be considered as a new theory for improving the flame retardancy in the present invention. That is, by having a P—H bond, it is positively combined with oxygen present on the surface of a very narrow range of a combustible material such as a synthetic resin, thereby reducing the surrounding oxygen concentration and suppressing combustion. So why does the P—H bond actively associate with oxygen? It is considered that this is due to the high reducibility of the P—H bond. The reducibility is a scale that expresses the degree to which an object is oxidized by being bound to oxygen and is generally reduced, and is generally known as a redox potential. In fact, sodium phosphinate has a strong reducing ability and is widely used as a reducing agent for metal plating. In other words, high reducibility means high ability to bind to oxygen, and high reducibility is considered to contribute to flame retardancy. In this case, it is considered that the P—H bond of the flame retardant of the present invention is combined with oxygen to form a P—OH bond, thereby reducing the surrounding oxygen concentration. This new theory for improving the flame retardant performance in the present invention is unique to the flame retardant of the present invention, and is different from the organophosphorus metal salts that are generally commercially available, ie, dialkylphosphinic acid metal salts. To do.
As a supplement, there is a theory that generally the more easily oxidized (strong reducing agent) is more flammable, this is the case where the substance exists alone, and in the present invention, the flame retardant is combined with a polyurethane resin or a synthetic resin. It is reasonable to think that this theory is not applicable because of the coexistence of leather components. In fact, as shown in Example 1, when the flame retardant performance test as a synthetic leather is performed, it is clear from the fact that it exhibits extremely high performance.
 本発明の難燃剤の他に、さらなる難燃性能向上のために、リン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミン、ポリリン酸アンモニウム、リン酸エステルアミド、フタル酸メラミン、メラミン、シアヌル酸メラミン、ベンゾグアナミン、膨張性黒鉛、水酸化アルミニウムおよび水酸化マグネシウムを難燃助剤として、任意で併用してもよい。使用量としては、本発明の難燃剤100重量部に対して、上記難燃助剤の少なくとも1種以上の化合物の合計が0~200重量部である。 In addition to the flame retardant of the present invention, melamine phosphate, melamine pyrophosphate, melamine polyphosphate, ammonium polyphosphate, phosphate ester amide, melamine phthalate, melamine, melamine cyanurate, benzoguanamine for further flame retardant performance improvement In addition, expansive graphite, aluminum hydroxide and magnesium hydroxide may optionally be used in combination as flame retardant aids. The amount used is 0 to 200 parts by weight of the total of at least one compound of the above flame retardant aid with respect to 100 parts by weight of the flame retardant of the present invention.
 本発明の難燃剤と、ポリウレタン樹脂との混合比率が、質量比で、5/95~50/50であるのが好ましく、より好ましくは10/90~35/65である。また、難燃助剤が含まれる場合、本発明の難燃剤と上記難燃助剤の合計と、ポリウレタン樹脂との混合比率が、質量比で、5/95~50/50であるのが好ましく、より好ましくは10/90~35/65である。混合比率が、50/50を超えると合成皮革の風合い硬化や引張強度の低下のおそれがあり、混合比率が、5/95未満であると、十分な難燃性能が得られないおそれがある。 The mixing ratio of the flame retardant of the present invention and the polyurethane resin is preferably 5/95 to 50/50, more preferably 10/90 to 35/65, by mass ratio. In addition, when a flame retardant aid is included, the mixing ratio of the total of the flame retardant of the present invention and the flame retardant aid and the polyurethane resin is preferably 5/95 to 50/50 by mass ratio. More preferably, it is 10/90 to 35/65. If the mixing ratio exceeds 50/50, the synthetic leather may have a texture hardening or a decrease in tensile strength, and if the mixing ratio is less than 5/95, sufficient flame retardancy may not be obtained.
[難燃性合成皮革]
 本発明の難燃性合成皮革は、不織布、織物、編物を含む繊維基材、および少なくとも一層以上のポリウレタン樹脂層を含む構成からなり、上記ポリウレタン樹脂層のいずれか一層が、本発明の難燃性ポリウレタン樹脂を用いて形成されている。
[Flame-retardant synthetic leather]
The flame-retardant synthetic leather of the present invention comprises a nonwoven fabric, a woven fabric, a fiber base material including a knitted fabric, and at least one polyurethane resin layer, and any one of the polyurethane resin layers is a flame-retardant material of the present invention. It is formed using a conductive polyurethane resin.
[繊維基材]
 本発明に用いられる繊維基材としては、不織布、織物、編物等が用いられる。繊維素材の種類としては、特に限定されるものではなく、ポリエステル、ナイロン、ポリアクリロニトリル、ポリプロピレン、アラミド等の合成繊維、ジアセテート、トリアセテート等の半合成繊維、レーヨン、綿、麻等のセルロース系繊維、羊毛、絹、羽毛等の動物性繊維、あるいはガラス繊維、炭素繊維等の無機繊維が単独、または複合された繊維であってもよい。
[Fiber base]
Nonwoven fabrics, woven fabrics, knitted fabrics and the like are used as the fiber base material used in the present invention. The type of fiber material is not particularly limited, and synthetic fibers such as polyester, nylon, polyacrylonitrile, polypropylene and aramid, semi-synthetic fibers such as diacetate and triacetate, and cellulosic fibers such as rayon, cotton and hemp Further, animal fibers such as wool, silk and feathers, or inorganic fibers such as glass fibers and carbon fibers may be used alone or in combination.
[ポリウレタン樹脂]
 本発明に使用するポリウレタン樹脂としては、ポリオール、イソシアネート、及び鎖伸長剤から合成されたものを用いることができる。
[Polyurethane resin]
As the polyurethane resin used in the present invention, those synthesized from polyols, isocyanates, and chain extenders can be used.
 ポリオールとしては、例えば、ポリカーボネートポリオール、ポリエステルポリオール、ポリエーテルポリオール、ポリカプロラクトンポリオール、ポリオレフィンポリオール、植物油系ポリオールなどが挙げられる。これらのポリオールは、単独で用いることも、2種類以上を併用してもよい。数平均分子量としては、1000~3000の範囲が好ましい。 Examples of the polyol include polycarbonate polyol, polyester polyol, polyether polyol, polycaprolactone polyol, polyolefin polyol, vegetable oil-based polyol, and the like. These polyols may be used alone or in combination of two or more. The number average molecular weight is preferably in the range of 1000 to 3000.
 ポリカーボネートポリオールとしては、例えば、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチルペンタンジオール、1,12-ドデカンジオール等のアルカンジオールの1種または2種以上と、ジアルキルカーボネート、アルキレンカーボネート、ジフェニルカーボネート等のカーボネート化合物の1種または2種以上との共重合物が挙げられる。 Examples of the polycarbonate polyol include one or two alkanediols such as 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methylpentanediol, and 1,12-dodecanediol. The above and the copolymer with 1 type, or 2 or more types of carbonate compounds, such as dialkyl carbonate, alkylene carbonate, and diphenyl carbonate, are mentioned.
 ポリエステルポリオールとしては、例えば、エチレングリコール、1,4-ブチレングリコール、1,6-ヘキサンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、ジエチレングリコール等の低分子ジオールの1種または2種以上と、コハク酸、アジピン酸、セバシン酸、フタル酸等の低分子ジカルボン酸の1種または2種以上との縮重合物が挙げられる。 Examples of the polyester polyol include one or two low molecular diols such as ethylene glycol, 1,4-butylene glycol, 1,6-hexanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, and diethylene glycol. Examples thereof include polycondensation products of at least one species with one or more low-molecular dicarboxylic acids such as succinic acid, adipic acid, sebacic acid, and phthalic acid.
 ポリエーテルポリオールとしては、例えば、ポリプロピレンエーテルポリオール、ポリテトラメチレンエーテルポリオール、ヘキサメチレンエーテルポリオール、などが挙げられる。 Examples of the polyether polyol include polypropylene ether polyol, polytetramethylene ether polyol, hexamethylene ether polyol, and the like.
 植物油系ポリオールとしては、例えば、ヒマシ油変性ポリオール、ダイマー酸変性ポリオール、大豆油変性ポリオール、などが挙げられる。 Examples of the vegetable oil-based polyol include castor oil-modified polyol, dimer acid-modified polyol, soybean oil-modified polyol, and the like.
 使用されるイソシアネートとしては、例えば、メチレンジイソシアネート、ヘキサメチレンジイソシアネート、リジンジイソシアネート、トリメチルヘキサメチレンジイソシアネートなどの脂肪族ジイソシアネートや、4,4’-ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート、などの脂環族ジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネート、1,5-ナフタレンジイソシアネート、などの芳香族ジイソシアネートが挙げられる。これらのイソシアネートは、単独で用いることも、2種類以上を併用して用いることもできる。 Examples of the isocyanate used include aliphatic diisocyanates such as methylene diisocyanate, hexamethylene diisocyanate, lysine diisocyanate, and trimethylhexamethylene diisocyanate, and alicyclic groups such as 4,4′-dicyclohexylmethane diisocyanate, isophorone diisocyanate, and norbornene diisocyanate. Aromatic diisocyanates such as diisocyanate, 4,4′-diphenylmethane diisocyanate, tolylene diisocyanate, 1,5-naphthalene diisocyanate and the like can be mentioned. These isocyanates can be used alone or in combination of two or more.
 鎖伸長剤として用いる炭素原子数が2~10の低分子量ジオールが好ましく、例えばエチレングリコール、ジエチレングリコール、1,4-ブチレングリコール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコールなどの脂肪族グリコール類、シクロヘキサンジオールなどの低分子の脂環族ジオール類などが挙げられる。これらのポリオールは、単独で用いることも、2種類以上を併用して用いることもできる。これらのポリオールの平均官能基数は2以上が好ましく、平均分子量は50~400の範囲が好ましい。 A low molecular weight diol having 2 to 10 carbon atoms used as a chain extender is preferable, such as ethylene glycol, diethylene glycol, 1,4-butylene glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, Examples thereof include aliphatic glycols such as neopentyl glycol and low-molecular alicyclic diols such as cyclohexanediol. These polyols can be used alone or in combination of two or more. These polyols preferably have an average number of functional groups of 2 or more and an average molecular weight in the range of 50 to 400.
 合成皮革に用いられるポリウレタン樹脂は特に限定されるものではなく、例えば、ポリエーテル系ポリウレタン樹脂、ポリエステル系ポリウレタン樹脂、ポリカーボネート系ポリウレタン樹脂などを挙げることができ、これらを1種単独でまたは2種以上組み合わせて用いることができる。なかでも、得られるポリウレタン樹脂の耐久性、耐熱性や耐候性が優れる点で、特にポリカーボネート系ポリウレタン樹脂を用いることが好ましい。 The polyurethane resin used for the synthetic leather is not particularly limited, and examples thereof include a polyether-based polyurethane resin, a polyester-based polyurethane resin, and a polycarbonate-based polyurethane resin. These may be used alone or in combination of two or more. They can be used in combination. Especially, it is preferable to use a polycarbonate-type polyurethane resin at the point which is excellent in durability, heat resistance, and a weather resistance of the polyurethane resin obtained.
[難燃性合成皮革の製造方法]
 本発明の難燃性合成皮革の製造方法は特に限定されず、湿式法または、乾式法のいずれかの方法で製造することができる。
[Method for producing flame-retardant synthetic leather]
The method for producing the flame-retardant synthetic leather of the present invention is not particularly limited, and can be produced by either a wet method or a dry method.
 湿式法とは、繊維基材上に、水溶性溶剤を混合したベース用のポリウレタン樹脂(以下、ベース樹脂とする)をコーティングし、これを水を含む凝固浴中に浸漬させることで、ベース樹脂から水溶性溶剤が溶出し、ポリウレタン樹脂が析出、凝固して、空隙を多数有する多孔質のミクロポーラス層が形成され、その後水洗および乾燥工程を経て製品とする方法である。上記ベース樹脂中には難燃剤が配合されていてもよく、上記ベース樹脂の上に、例えばエンボス加工等が施された顔料を含む表皮層が積層されていてもよい。 The wet method is a method in which a base polyurethane resin mixed with a water-soluble solvent (hereinafter referred to as a base resin) is coated on a fiber base material and immersed in a coagulation bath containing water. In this method, the water-soluble solvent is eluted, the polyurethane resin is precipitated and solidified to form a porous microporous layer having a large number of voids, and the product is then washed and dried to obtain a product. A flame retardant may be blended in the base resin, and a skin layer containing a pigment that has been embossed or the like may be laminated on the base resin.
 乾式法とは、繊維基材の上に、溶剤を適宜混合したポリウレタン樹脂を直接コーティングし、乾燥機にて溶剤を揮散させて硬化させるダイレクトコーティング法、または離型紙上に顔料を含む表皮層用ポリウレタン樹脂をコーティングし、乾燥して表皮樹脂層を形成させ、次いで上記表皮樹脂層上に接着層用ポリウレタン樹脂をコーティングし、繊維基材と圧着し貼り合わせ、乾燥して製品とするラミネート法がある。また、硬化反応を完結させるため、エージング処理をおこなってもよい。最後に離型紙を剥離し、完成となる。上記接着層用ポリウレタン樹脂に難燃剤が配合されていてもよい。 The dry method is a direct coating method in which a polyurethane resin mixed with a solvent is directly coated on a fiber substrate, and the solvent is evaporated by a dryer to cure, or for a skin layer containing a pigment on a release paper. A polyurethane resin is coated and dried to form a skin resin layer, and then a polyurethane resin for an adhesive layer is coated on the skin resin layer, bonded and bonded to a fiber substrate, and dried to obtain a product. is there. In addition, an aging treatment may be performed to complete the curing reaction. Finally, the release paper is peeled off to complete. A flame retardant may be blended in the polyurethane resin for the adhesive layer.
 具体的には、以下の方法により製造することができるが、これに限定されるものではない。
 離型紙上に表皮層用ポリウレタン樹脂を含む組成物をコーティングし、必要により、熱処理をして表皮層を形成する。次いで、表皮層上に接着層として本発明の難燃剤をあらかじめ配合させた難燃性ポリウレタン樹脂を含む組成物をコーティングし、上記組成物が粘着性を有する状態のうちに、繊維基材とロールまたは熱ロール等の圧着により貼り合わせ、室温まで冷却し、エージング処理をして接着層を形成する。最後に離型紙を剥離することで、本発明の難燃性合成皮革が得られる。
Specifically, it can be produced by the following method, but is not limited thereto.
A composition containing the polyurethane resin for the skin layer is coated on the release paper, and if necessary, heat treatment is performed to form the skin layer. Next, a composition containing a flame retardant polyurethane resin in which the flame retardant of the present invention is blended in advance as an adhesive layer is coated on the skin layer, and the fiber base material and the roll are in a state where the composition has adhesiveness. Alternatively, they are bonded together by pressure bonding such as a hot roll, cooled to room temperature, and subjected to aging treatment to form an adhesive layer. Finally, the release paper is peeled to obtain the flame-retardant synthetic leather of the present invention.
 上記難燃性ポリウレタン樹脂組成物をコーティングする方法としては、従来公知の種々の方法を採用することができ、特に限定されるものではない。例えば、リバースロールコーター、スプレーコーター、ロールコーター、グラビアコーター、キスロールコーター、ナイフコーター、コンマコーター、またはT-ダイコーターなどの装置を用いた方法を挙げることができる。 As a method for coating the flame retardant polyurethane resin composition, various conventionally known methods can be employed and are not particularly limited. Examples thereof include a method using an apparatus such as a reverse roll coater, spray coater, roll coater, gravure coater, kiss roll coater, knife coater, comma coater, or T-die coater.
 接着層の厚さは、コーティング直後のウェットな状態で、50~400μmであることが好ましく、100~300μmであることがさらに好ましい。50μm未満であると、接着強度が十分でないおそれがあり、400μmを超えると合成皮革の風合いが硬くなるおそれがある。 The thickness of the adhesive layer is preferably 50 to 400 μm, more preferably 100 to 300 μm, in a wet state immediately after coating. If it is less than 50 μm, the adhesive strength may not be sufficient, and if it exceeds 400 μm, the texture of the synthetic leather may become hard.
 表皮層の厚さは、コーティング直後のウェットな状態で、5~200μmであることが好ましく、10~100μmであることがさらに好ましい。5μm未満であると、耐摩耗性が十分でないおそれがあり、200μmを超えると合成皮革の風合いが硬くなるおそれがある。 The thickness of the skin layer is preferably 5 to 200 μm, more preferably 10 to 100 μm, in a wet state immediately after coating. If it is less than 5 μm, the abrasion resistance may not be sufficient, and if it exceeds 200 μm, the texture of the synthetic leather may become hard.
[他の添加剤]
 本発明の難燃性合成皮革には、合成皮革の物性および難燃性能を損なわない範囲で、他の添加剤を配合してもよい。例えば、抗菌・防カビ剤、帯電防止剤、滑剤、紫外線吸収剤やヒンダードアミン系などの光安定剤、酸化防止剤、撥水剤、可塑剤、着色剤、発泡剤、消泡剤、ウレタン化触媒、表面処理剤等が挙げられる。
[Other additives]
You may mix | blend another additive with the flame-retardant synthetic leather of this invention in the range which does not impair the physical property and flame-retardant performance of synthetic leather. For example, antibacterial and antifungal agents, antistatic agents, lubricants, light stabilizers such as UV absorbers and hindered amines, antioxidants, water repellents, plasticizers, colorants, foaming agents, antifoaming agents, urethanization catalysts And surface treatment agents.
 本発明で得られる難燃性ポリウレタン樹脂の使用用途は特に限定されるものではなく、例えば、車両用、鉄道用、航空機用、船舶用の内装材として用いられる座席シート材、フロアーカーペット、天井材等、家具用のカーペット、椅子の座部、カーテン、ブラインド、緞帳等、屋外用テント、カーカバー等が挙げられる。 The usage application of the flame-retardant polyurethane resin obtained in the present invention is not particularly limited. For example, a seat sheet material, a floor carpet, and a ceiling material used as interior materials for vehicles, railways, aircrafts, and ships. Etc., furniture carpets, chair seats, curtains, blinds, notebooks, outdoor tents, car covers and the like.
 以下、実施例および比較例を挙げて本発明をさらに具体的に説明するが、本発明の技術的範囲は以下の実施例に限定されるものではない。なお、以下の実施例において、特に断りのない限り、「%」は重量%を指し、「部」は重量部を指す。各合成皮革の評価は以下の方法で行った。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the technical scope of the present invention is not limited to the following examples. In the following examples, “%” refers to wt% and “parts” refers to parts by weight unless otherwise specified. Each synthetic leather was evaluated by the following method.
[難燃性能試験]
 FMVSS(米国自動車安全基準)No.302の自動車用内装材料燃焼試験規格に準拠し、次の判定基準により、難燃性能を評価した。
 ・A標線に達する前に自消した場合、判定区分を「NB(Non Burning)」とした。
 ・A標線を超えて自消した場合であって、燃焼距離が50mm以内であり、かつ燃焼時間が60秒以内の場合、判定区分を「SE(Self-Extinction)」とした。
 ・標線間の燃焼速度が102mm/分以下である場合、判定区分を「遅燃性」とした。
 ・標線間の燃焼速度が102mm/分を超える場合、判定区分を「不合格」とした。
 なお、「NB」>「SE」>「遅燃性」の順で難燃性能が高く、3点とも合格となる。
 さらに、難燃性能の差を比較しやすくする為、各試料での接炎部分からの燃焼距離を4点の平均値で表した。燃焼距離の数値が小さい程、良好な傾向となる。
[Flame retardant performance test]
FMVSS (US Automotive Safety Standards) No. In accordance with 302 automotive interior material combustion test standards, flame retardancy was evaluated according to the following criteria.
・ When it disappeared before reaching the A marked line, the judgment category was “NB (Non Burning)”.
-When self-extinguishing exceeds the mark A, and the combustion distance is within 50 mm and the combustion time is within 60 seconds, the judgment category is "SE (Self-Extinction)".
-When the burning speed between the marked lines is 102 mm / min or less, the judgment category is “slow flammability”.
-When the burning speed between marked lines exceeded 102 mm / min, the judgment category was set to “Fail”.
In addition, flame retardance performance is high in the order of “NB”>“SE”> “slow flame retardance”, and all three points pass.
Furthermore, in order to make it easy to compare the difference in flame retardant performance, the combustion distance from the flame contact portion in each sample was represented by an average value of four points. The smaller the value of the combustion distance, the better the tendency.
[耐加水分解性試験]
 難燃剤の粉体(以下、粉体とする)に対する評価を行った。試験方法としては、ビーカー内に粉体を約5g入れ、ふたをせず、70℃、相対湿度90%に調整した恒温恒湿槽に500時間放置し、試験前後での粉体の状態が変化しているかどうかを、外観(変色の有無)とFT-IR(フーリエ変換赤外分光法)およびTGA(熱重量分析)にて評価し、下記の基準に従って判定した。
 ○:上記3つの評価方法の全てにおいて、試験前後の粉体で明確な変化が見られない
 ×:上記3つの評価方法のいずれか一つにおいて、試験前後の粉体で明確な変化が見られる(変色、あるいはFT-IRでの異なるピーク、あるいはTGAでの熱分解曲線の違いが見られた場合は難燃剤が加水分解し、化学構造が変化していることが示唆される。)
[Hydrolysis resistance test]
Evaluation of the flame retardant powder (hereinafter referred to as powder) was performed. As a test method, about 5 g of powder was put in a beaker, left uncovered in a constant temperature and humidity chamber adjusted to 70 ° C. and 90% relative humidity for 500 hours, and the state of the powder before and after the test changed. It was evaluated by appearance (presence / absence of discoloration), FT-IR (Fourier transform infrared spectroscopy) and TGA (thermogravimetric analysis), and judged according to the following criteria.
○: No clear change is observed in the powder before and after the test in all the above three evaluation methods. X: Clear change is observed in the powder before and after the test in any one of the above three evaluation methods. (If discoloration, different peaks in FT-IR, or differences in thermal decomposition curves in TGA are seen, it is suggested that the flame retardant has hydrolyzed and the chemical structure has changed.)
[耐ブリード性試験]
  合成皮革に対する評価を行った。試験方法としては、18×25cmに裁断した合成皮革を70℃、相対湿度90%に調整した恒温恒湿槽に入れ、500時間経過後の合成皮革表面の状態を目視で観察し、下記の基準に従って判定した。
○:合成皮革表面が全く白化していない
△:合成皮革表面がわずかに白化している
×:合成皮革表面がはっきりと白化している
[Bleed resistance test]
The synthetic leather was evaluated. As a test method, synthetic leather cut to 18 × 25 cm is placed in a thermo-hygrostat adjusted to 70 ° C. and relative humidity 90%, and the surface condition of the synthetic leather after 500 hours is visually observed, and the following criteria are used. Judged according to.
○: The surface of the synthetic leather is not whitened Δ: The surface of the synthetic leather is slightly whitened ×: The surface of the synthetic leather is clearly whitened
[湿熱老化試験]
 合成皮革に対する評価を行った。試験方法としては、18×25cmに裁断した合成皮革を70℃、相対湿度90%に調整した恒温恒湿槽に入れ、500時間経過後の合成皮革に対し、上記難燃性能試験を行い、下記の基準に従って判定した。
○:湿熱老化試験後で、試験前と比較し、難燃性能の低下が見られない。
×:湿熱老化試験後で、試験前と比較し、難燃性能の明らかな低下が見られる。
[Moist heat aging test]
The synthetic leather was evaluated. As a test method, synthetic leather cut to 18 × 25 cm is placed in a constant temperature and humidity chamber adjusted to 70 ° C. and relative humidity 90%, and the above flame retardant performance test is performed on the synthetic leather after 500 hours. Judgment was made according to the criteria.
○: After the wet heat aging test, no decrease in flame retardancy is observed compared to before the test.
X: After the wet heat aging test, compared with before the test, the flame-resistant performance is clearly reduced.
[実施例1]
 表皮層用のポリウレタン樹脂組成物を以下の処方にて調製した。
<処方1>
・ポリカーボネート系ポリウレタン樹脂(固形分25%、溶媒DMF)100部
・ジメチルホルムアミド(DMF)40部
・カーボンブラック顔料 12部
[Example 1]
A polyurethane resin composition for the skin layer was prepared according to the following formulation.
<Prescription 1>
-Polycarbonate polyurethane resin (solid content 25%, solvent DMF) 100 parts-Dimethylformamide (DMF) 40 parts-Carbon black pigment 12 parts
 接着層用のポリウレタン樹脂組成物を以下の処方にて調製した。
<処方2>
・ポリカーボネート系ポリウレタン樹脂(固形分70%、溶媒MEK)100部
・メチルエチルケトン(MEK)50部
・ウレタン硬化剤(ポリイソシアネート)10部
・ウレタン化触媒 2部
・エチルホスフィン酸アルミニウム(平均粒子径5μm) 15部
A polyurethane resin composition for the adhesive layer was prepared according to the following formulation.
<Prescription 2>
・ Polycarbonate polyurethane resin (solid content 70%, solvent MEK) 100 parts ・ Methyl ethyl ketone (MEK) 50 parts ・ Urethane curing agent (polyisocyanate) 10 parts ・ Urethane catalyst 2 parts ・ Ethylphosphinic acid aluminum (average particle size 5 μm) 15 copies
 上記処方1の表皮層用樹脂組成物を離型紙上に、厚みが150μmとなるようコーティングし、100℃の乾燥機で2分間乾燥し、表皮層を形成した。次いで、この表皮層の上に、上記処方2の接着層用樹脂組成物を厚みが250μmとなるようコーティングし、120℃の乾燥機で3分間乾燥後、ポリエステルトリコット布に貼り合わせ、マングルでプレスし、40℃で72時間エージングし、離型紙を剥離することで、実施例1の難燃性合成皮革を得た。 The resin composition for skin layer of the above formulation 1 was coated on a release paper so as to have a thickness of 150 μm, and dried for 2 minutes with a dryer at 100 ° C. to form a skin layer. Next, on this skin layer, the resin composition for the adhesive layer of the above formulation 2 is coated to a thickness of 250 μm, dried for 3 minutes in a dryer at 120 ° C., bonded to a polyester tricot cloth, and pressed with a mangle. Then, the flame-retardant synthetic leather of Example 1 was obtained by aging at 40 ° C. for 72 hours and peeling off the release paper.
[実施例2]
 実施例1の<処方2>の難燃剤をエチルホスフィン酸アルミニウム(平均粒子径5μm)10部とベンゾグアナミン(平均粒子径10μm)5部の混合物とした以外は、実施例1と同様にして難燃性合成皮革を得た。
[Example 2]
Flame retardant in the same manner as in Example 1 except that the flame retardant of <Prescription 2> of Example 1 was a mixture of 10 parts of aluminum ethylphosphinate (average particle diameter 5 μm) and 5 parts of benzoguanamine (average particle diameter 10 μm). Sexual synthetic leather was obtained.
[比較例1]
 接着層に難燃剤を配合せず、それ以外は、実施例1と同様にして難燃性合成皮革を得た。
[Comparative Example 1]
A flame retardant synthetic leather was obtained in the same manner as in Example 1 except that no flame retardant was added to the adhesive layer.
[比較例2]
 実施例1の<処方2>の難燃剤をデカブロモジフェニルエーテルと三酸化アンチモンの混合物(平均粒子径4μm)15部とした以外は、実施例1と同様にして難燃性合成皮革を得た。
[Comparative Example 2]
A flame-retardant synthetic leather was obtained in the same manner as in Example 1 except that the flame retardant of <Prescription 2> in Example 1 was changed to 15 parts of a mixture of decabromodiphenyl ether and antimony trioxide (average particle size: 4 μm).
[比較例3]
 実施例1の<処方2>の難燃剤をポリリン酸アンモニウム(平均粒子径15μm)15部とした以外は、実施例1と同様にして難燃性合成皮革を得た。
[Comparative Example 3]
A flame-retardant synthetic leather was obtained in the same manner as in Example 1 except that 15 parts of the flame retardant of <Prescription 2> in Example 1 was changed to 15 parts of ammonium polyphosphate (average particle size: 15 μm).
 難燃性能試験について、実施例および比較例の合成皮革の評価結果を表1に示す。 Table 1 shows the evaluation results of the synthetic leathers of Examples and Comparative Examples for the flame retardant performance test.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 その他の評価項目について、実施例および比較例の合成皮革の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000006

 比較例1の耐加水分解性試験および耐ブリード性試験は難燃剤を含有していないため、また湿熱老化試験は難燃性能が元々不合格のため、表記を割愛した。
Table 2 shows the evaluation results of the synthetic leathers of Examples and Comparative Examples for other evaluation items.
Figure JPOXMLDOC01-appb-T000006

Since the hydrolysis resistance test and the bleed resistance test of Comparative Example 1 did not contain a flame retardant, the wet heat aging test was originally rejected because the flame retardant performance was originally unacceptable.
 表1と表2より本発明の難燃剤を用いたポリウレタン樹脂製難燃性合成皮革はハロゲン系難燃剤を用いた合成皮革と比べ、同等以上の高度な難燃性能を有しながら、合成皮革としての諸物性も良好な状態を維持できていた。 From Tables 1 and 2, the flame retardant synthetic leather made of polyurethane resin using the flame retardant of the present invention has the same or better advanced flame retardant performance than the synthetic leather using halogenated flame retardant, but synthetic leather. As a result, various physical properties were maintained in good condition.

Claims (3)

  1.  下記式(1)で表される難燃剤(a)とポリウレタン樹脂(b)が混合されてなる難燃性ポリウレタン樹脂であって、混合比率が重量比で(a)/(b)=5/95~50/50の範囲であることを特徴とする難燃性ポリウレタン樹脂。
    Figure JPOXMLDOC01-appb-C000001

    (式中、Rは水素、フェニル基、または炭素数1~6の直鎖状のアルキル基であり、MはMg、Al、Ca、TiまたはZnであり、mは2、3または4である。)
    A flame retardant polyurethane resin obtained by mixing a flame retardant (a) represented by the following formula (1) and a polyurethane resin (b), wherein the mixing ratio is (a) / (b) = 5 / A flame-retardant polyurethane resin characterized by being in the range of 95 to 50/50.
    Figure JPOXMLDOC01-appb-C000001

    (Wherein R 1 is hydrogen, a phenyl group, or a linear alkyl group having 1 to 6 carbon atoms, M is Mg, Al, Ca, Ti, or Zn, and m is 2, 3, or 4) is there.)
  2.  上記式(1)で表される難燃剤(a)100重量部に対して、リン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミン、ポリリン酸アンモニウム、リン酸エステルアミド、フタル酸メラミン、メラミン、シアヌル酸メラミン、ベンゾグアナミン、膨張性黒鉛、水酸化アルミニウムおよび水酸化マグネシウムからなる群より選ばれる1種または2種以上の難燃助剤(c)の合計が0~200重量部であり、上記式(1)で表される難燃剤(a)とポリウレタン樹脂(b)と上記難燃助剤(c)の混合比率が重量比で{(a)+(c)}/(b)=5/95~50/50の範囲であることを特徴とする請求項1に記載の難燃性ポリウレタン樹脂。 For 100 parts by weight of the flame retardant (a) represented by the above formula (1), melamine phosphate, melamine pyrophosphate, melamine polyphosphate, ammonium polyphosphate, phosphate ester amide, melamine phthalate, melamine, cyanuric acid The total of one or more flame retardant aids (c) selected from the group consisting of melamine, benzoguanamine, expandable graphite, aluminum hydroxide and magnesium hydroxide is 0 to 200 parts by weight, and the above formula (1 The mixing ratio of the flame retardant (a), the polyurethane resin (b) and the flame retardant aid (c) represented by {) is expressed as {(a) + (c)} / (b) = 5 / 95- The flame-retardant polyurethane resin according to claim 1, which is in a range of 50/50.
  3.  合成皮革は不織布、織物、編物を含む繊維基材および少なくとも一層以上のポリウレタン樹脂層を含む構成からなり、上記ポリウレタン樹脂層のいずれか一層が請求項1および/または2に記載の難燃性ポリウレタン樹脂を用いて形成されていることを特徴とする難燃性合成皮革。 The synthetic leather is composed of a nonwoven fabric, a woven fabric, a fiber substrate including a knitted fabric, and at least one polyurethane resin layer, and any one of the polyurethane resin layers is a flame retardant polyurethane according to claim 1 and / or 2. A flame-retardant synthetic leather characterized by being formed using a resin.
PCT/JP2015/074033 2014-10-15 2015-08-26 Flame-retardant polyurethane resin and flame-retardant synthetic leather WO2016059882A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580039843.5A CN106574112B (en) 2014-10-15 2015-08-26 Flame-retardant polyurethane resin and flame-retardant synthetic leather

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014223625A JP6151678B2 (en) 2014-10-15 2014-10-15 Flame retardant polyurethane resin and flame retardant synthetic leather
JP2014-223625 2014-10-15

Publications (1)

Publication Number Publication Date
WO2016059882A1 true WO2016059882A1 (en) 2016-04-21

Family

ID=55746430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074033 WO2016059882A1 (en) 2014-10-15 2015-08-26 Flame-retardant polyurethane resin and flame-retardant synthetic leather

Country Status (3)

Country Link
JP (1) JP6151678B2 (en)
CN (1) CN106574112B (en)
WO (1) WO2016059882A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107776147A (en) * 2016-07-30 2018-03-09 段宝荣 A kind of fire retarding polyurethane synthetic leather
CN111455685A (en) * 2020-04-07 2020-07-28 浙江泰鑫合成革有限公司 Production process and preparation equipment of modified flame-retardant antibacterial PU synthetic leather
WO2020204113A1 (en) * 2019-04-01 2020-10-08 大和化学工業株式会社 Flame retardant composition for polyurethane foam, and fire-resistant polyurethane foam having same blended therein
JP2021130801A (en) * 2019-04-01 2021-09-09 大和化学工業株式会社 Flame retardant composition for polyurethane foam, and flame-retardant polyurethane foam having the same mixed therein
CN113736355A (en) * 2021-09-03 2021-12-03 齐鲁工业大学 Preparation method of hydrolysis-resistant flame-retardant breathable moisture-permeable polyurethane porous coating

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102286926B1 (en) * 2017-02-17 2021-08-06 현대자동차주식회사 Flame retardant polyurethane artificial leather and manufacturing method thereof
US11434602B2 (en) 2017-10-27 2022-09-06 Kyowa Leather Cloth Co., Ltd. Synthetic leather
JP7238889B2 (en) * 2018-03-29 2023-03-14 日本ゼオン株式会社 Laminated sheets and laminates for automobile interior materials
JP7238888B2 (en) * 2018-03-30 2023-03-14 日本ゼオン株式会社 LAMINATED SHEET FOR AUTOMOTIVE INTERIOR MATERIAL, METHOD FOR MANUFACTURING LAMINATED SHEET FOR AUTOMOTIVE INTERIOR MATERIAL, AND LAMINATED PRODUCT
JP2020037681A (en) * 2018-08-31 2020-03-12 株式会社エフコンサルタント Curable composition
CN111501371A (en) * 2019-01-30 2020-08-07 阿基里斯株式会社 Synthetic leather
JP2020122252A (en) * 2019-01-30 2020-08-13 アキレス株式会社 Synthetic leather
JP7400156B2 (en) * 2019-03-05 2023-12-19 大和化学工業株式会社 Flame retardant polyurethane resin composition
CN114381948B (en) * 2022-01-18 2024-06-21 太仓维龙化工有限公司 Halogen-free flame-retardant anti-dripping waterborne polyurethane resin as well as preparation method and application thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163683A (en) * 1991-12-12 1993-06-29 Achilles Corp Production of leathery sheet-like product
JPH09272759A (en) * 1996-03-04 1997-10-21 Hoechst Ag Salt of phosphonous acid and its use as flame retardant for plastic
JP2009019304A (en) * 2007-07-12 2009-01-29 Honda Motor Co Ltd Flame-retardant synthetic leather
JP2009209489A (en) * 2008-03-05 2009-09-17 Seiren Co Ltd Flame-retardant synthetic leather
CN102254607A (en) * 2011-04-21 2011-11-23 苏州市安特菲尔新材料有限公司 Environment-friendly flexible flat cable and manufacturing method thereof
CN103087504A (en) * 2013-01-22 2013-05-08 滨海锦翔化学助剂有限公司 Flame-retardant thermoplastic polyurethane and preparation method thereof
JP2013528676A (en) * 2010-04-29 2013-07-11 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Flame retardant-stabilizer combinations for thermoplastic and thermosetting polymers
JP2013529191A (en) * 2010-04-29 2013-07-18 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Process for the preparation of mixtures of alkylphosphonites and dialkylphosphinates
JP2013531615A (en) * 2010-04-29 2013-08-08 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Method for producing alkyl phosphonite
JP2013189736A (en) * 2012-02-14 2013-09-26 Toyo Cloth Co Ltd Synthetic leather
CN103642178A (en) * 2013-12-02 2014-03-19 合肥安聚达新材料科技有限公司 Halogen-free flame-retardant thermoplastic polyester elastomer nano composite material and preparation method thereof
CN103709432A (en) * 2013-12-18 2014-04-09 南京师范大学 High-flame retardant rigid polyurethane foaming plastic and preparation method thereof
CN103804626A (en) * 2014-01-27 2014-05-21 中国科学技术大学 Halogen-free flame-retardant hard polyurethane foam and preparation method thereof
WO2014179092A1 (en) * 2013-04-29 2014-11-06 Lubrizol Advanced Materials, Inc. Halogen-free flame retardant tpu

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5309355B2 (en) * 2006-05-02 2013-10-09 大和化学工業株式会社 Textile processing method
CN103980695A (en) * 2014-06-06 2014-08-13 中煤科工集团重庆研究院有限公司 halogen-free flame-retardant antistatic TPU material and preparation method thereof

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163683A (en) * 1991-12-12 1993-06-29 Achilles Corp Production of leathery sheet-like product
JPH09272759A (en) * 1996-03-04 1997-10-21 Hoechst Ag Salt of phosphonous acid and its use as flame retardant for plastic
JP2009019304A (en) * 2007-07-12 2009-01-29 Honda Motor Co Ltd Flame-retardant synthetic leather
JP2009209489A (en) * 2008-03-05 2009-09-17 Seiren Co Ltd Flame-retardant synthetic leather
JP2013528676A (en) * 2010-04-29 2013-07-11 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Flame retardant-stabilizer combinations for thermoplastic and thermosetting polymers
JP2013529191A (en) * 2010-04-29 2013-07-18 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Process for the preparation of mixtures of alkylphosphonites and dialkylphosphinates
JP2013531615A (en) * 2010-04-29 2013-08-08 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Method for producing alkyl phosphonite
CN102254607A (en) * 2011-04-21 2011-11-23 苏州市安特菲尔新材料有限公司 Environment-friendly flexible flat cable and manufacturing method thereof
JP2013189736A (en) * 2012-02-14 2013-09-26 Toyo Cloth Co Ltd Synthetic leather
CN103087504A (en) * 2013-01-22 2013-05-08 滨海锦翔化学助剂有限公司 Flame-retardant thermoplastic polyurethane and preparation method thereof
WO2014179092A1 (en) * 2013-04-29 2014-11-06 Lubrizol Advanced Materials, Inc. Halogen-free flame retardant tpu
CN103642178A (en) * 2013-12-02 2014-03-19 合肥安聚达新材料科技有限公司 Halogen-free flame-retardant thermoplastic polyester elastomer nano composite material and preparation method thereof
CN103709432A (en) * 2013-12-18 2014-04-09 南京师范大学 High-flame retardant rigid polyurethane foaming plastic and preparation method thereof
CN103804626A (en) * 2014-01-27 2014-05-21 中国科学技术大学 Halogen-free flame-retardant hard polyurethane foam and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107776147A (en) * 2016-07-30 2018-03-09 段宝荣 A kind of fire retarding polyurethane synthetic leather
WO2020204113A1 (en) * 2019-04-01 2020-10-08 大和化学工業株式会社 Flame retardant composition for polyurethane foam, and fire-resistant polyurethane foam having same blended therein
JP2021130801A (en) * 2019-04-01 2021-09-09 大和化学工業株式会社 Flame retardant composition for polyurethane foam, and flame-retardant polyurethane foam having the same mixed therein
CN111455685A (en) * 2020-04-07 2020-07-28 浙江泰鑫合成革有限公司 Production process and preparation equipment of modified flame-retardant antibacterial PU synthetic leather
CN113736355A (en) * 2021-09-03 2021-12-03 齐鲁工业大学 Preparation method of hydrolysis-resistant flame-retardant breathable moisture-permeable polyurethane porous coating
CN113736355B (en) * 2021-09-03 2022-09-23 齐鲁工业大学 Preparation method of hydrolysis-resistant flame-retardant breathable moisture-permeable polyurethane porous coating

Also Published As

Publication number Publication date
CN106574112A (en) 2017-04-19
CN106574112B (en) 2020-06-19
JP6151678B2 (en) 2017-06-21
JP2016079375A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
JP6151678B2 (en) Flame retardant polyurethane resin and flame retardant synthetic leather
EP2860309B1 (en) Flame-retardant synthetic leather
Horrocks et al. Advances in fire retardant materials
JP4989522B2 (en) Flame retardant synthetic leather
CN1832951B (en) Organophosphorus compound having phosphate-phosphonate bond, and flame-retardant polyester fiber and flame-retardant polyurethane resin composition each containing the same
JP6284476B2 (en) Flame retardant, flame retardant aqueous resin composition and flame retardant urethane resin composition containing the flame retardant, and uses thereof
AU2006267605A1 (en) Artificial sueded leather being excellent in flame retardance and method of producing the same
Levchik Phosphorus‐Based FRs
US11434602B2 (en) Synthetic leather
JP5731086B1 (en) Synthetic leather
JP4891167B2 (en) Flame retardant synthetic leather
JP4870412B2 (en) Fiber / urethane resin laminate and method for producing the same
CN108773119A (en) A kind of fire-retardant single-side pile composite material and the preparation method and application thereof
Levchik Phosphorus‐Based Flame Retardants
EP1836342B1 (en) Fire retardant compositions
JP5722522B2 (en) Non-aqueous flame retardant imparting agent composition and non-aqueous flame retardant resin composition
JP3894846B2 (en) Flame retardant mesh sheet
JPS60215878A (en) Flame-retardant artificial leather structure
WO2023233860A1 (en) Flame-retardant composition, and flame-retardant synthetic leather using same
Horrocks University of Bolton, Bolton, United Kingdom
JPH04222267A (en) Polyester-based flame retardant spunbonded nonwoven fabric
CN104364439B (en) Anti-flammability synthetic leather
CN108797136A (en) A kind of no molten drop water stain-free is based on the fire-retardant polyurethane leather composition of the thio hypophosphites of dialkyl group list
JP2005307004A (en) Sheet for tonneau cover

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15850480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15850480

Country of ref document: EP

Kind code of ref document: A1