[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7400156B2 - Flame retardant polyurethane resin composition - Google Patents

Flame retardant polyurethane resin composition Download PDF

Info

Publication number
JP7400156B2
JP7400156B2 JP2019039171A JP2019039171A JP7400156B2 JP 7400156 B2 JP7400156 B2 JP 7400156B2 JP 2019039171 A JP2019039171 A JP 2019039171A JP 2019039171 A JP2019039171 A JP 2019039171A JP 7400156 B2 JP7400156 B2 JP 7400156B2
Authority
JP
Japan
Prior art keywords
flame
polyurethane resin
flame retardant
retardant
melamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019039171A
Other languages
Japanese (ja)
Other versions
JP2020143194A (en
Inventor
雄介 河内
尚規 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Chemical Industries Ltd
Original Assignee
Daiwa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Chemical Industries Ltd filed Critical Daiwa Chemical Industries Ltd
Priority to JP2019039171A priority Critical patent/JP7400156B2/en
Publication of JP2020143194A publication Critical patent/JP2020143194A/en
Application granted granted Critical
Publication of JP7400156B2 publication Critical patent/JP7400156B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fireproofing Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、ハロゲン化合物を用いないノンハロゲンタイプの難燃剤を含む難燃性ポリウレタン樹脂組成物であり、燃焼時にも溶融滴下がなく炭化層を容易に形成する難燃性ポリウレタン樹脂組成物及びその成形体並びに難燃性ポリウレタン樹脂組成物で使用するポリウレタン用難燃剤組成物に関する。 The present invention is a flame-retardant polyurethane resin composition containing a non-halogen type flame retardant that does not use a halogen compound, and a flame-retardant polyurethane resin composition that does not melt and drip even when burned and easily forms a carbonized layer, and its molding. The present invention relates to flame retardant compositions for polyurethane used in bodies and flame-retardant polyurethane resin compositions.

熱可塑性ポリウレタン樹脂は耐摩耗性弾性に優れるだけでなく、射出成形、押出成形などの成形性にも優れているので、自動車用部材、電線被覆、チューブなどの種々の分野で使用されている。しかし、熱可塑性ポリウレタン樹脂は難燃性に劣るため、難燃性が要求される分野での使用は避けられており、その点でまだ改善されるべき課題を有している。この課題を解決するため、熱可塑性ポリウレタン樹脂組成物の難燃性を改良する様々な方法がこれまで提案されている。 Thermoplastic polyurethane resins not only have excellent abrasion resistance and elasticity, but also have excellent moldability in injection molding, extrusion molding, etc., and are therefore used in various fields such as automobile parts, electric wire coatings, and tubes. However, thermoplastic polyurethane resins have poor flame retardancy, so their use in fields where flame retardancy is required is avoided, and there are still issues to be improved in this respect. To solve this problem, various methods have been proposed to improve the flame retardancy of thermoplastic polyurethane resin compositions.

具体例の一つとして、熱可塑性ポリウレタン樹脂組成物への難燃剤の添加が挙げられるが、この場合、熱可塑性ポリウレタン樹脂の優れた特性に悪影響を与えない程度の配合量で、かつ、難燃性能の向上が求められている。さらに、燃焼時の溶融物滴下を抑えることも要求されている。これらの要請にこたえるものとして、臭素などのハロゲン系元素を含有する難燃剤や赤燐などが有効な難燃剤として提案されている。しかし、ハロゲン系難燃剤は、優れた難燃効果が得られるものの、加工時に発生する腐食性ガスや環境に対する負荷の懸念があり、近年、ハロゲン系元素を用いずに高い難燃性を付与することが求められている。また、赤燐も優れた難燃効果を有するものの、配合された成形品が着色する問題、安全性の問題等もあり、必ずしも十分な解決策とはなっていない。 One specific example is the addition of flame retardants to thermoplastic polyurethane resin compositions. There is a need for improved performance. Furthermore, it is also required to suppress dripping of melt during combustion. To meet these demands, flame retardants containing halogen elements such as bromine, red phosphorus, and the like have been proposed as effective flame retardants. However, although halogen-based flame retardants can provide excellent flame-retardant effects, there are concerns about corrosive gases generated during processing and environmental impact, and in recent years, efforts have been made to provide high flame retardancy without using halogen-based elements. That is what is required. Further, although red phosphorus also has an excellent flame retardant effect, there are problems such as coloring of molded products containing it and safety problems, so it is not necessarily a sufficient solution.

そこで、特許文献1では、熱可塑性ポリウレタン、有機リン酸塩、特定のメラミン誘導体を含む混合物を溶融混錬した非ハロゲン系難燃性樹脂組成物が提案されている。この文献では、熱可塑性ポリウレタンとそれ以外の成分の配合比、有機リン酸塩配合量及び有機リン酸塩と特定のメラミン誘導体との配合割合を特定の範囲とすることで、タルクを使用せずに燃焼時の溶融物滴下を抑え、UL-94V燃焼試験で「V-0」 レベルを達成できたことが報告されている。しかし、この例では有機リン酸塩と特定のメラミン誘導体の配合量が比較的多く、また難燃性能も必ずしも十分なものとは言えない。 Therefore, Patent Document 1 proposes a non-halogen flame-retardant resin composition obtained by melt-kneading a mixture containing a thermoplastic polyurethane, an organic phosphate, and a specific melamine derivative. In this document, talc is not used by setting the blending ratio of thermoplastic polyurethane and other components, the blending amount of organic phosphate, and the blending ratio of organic phosphate and a specific melamine derivative to specific ranges. It has been reported that the molten material dripping during combustion was suppressed and the "V-0" level was achieved in the UL-94V combustion test. However, in this example, the amounts of the organic phosphate and the specific melamine derivative are relatively large, and the flame retardant performance is not necessarily sufficient.

特許文献2では、熱可塑性ポリウレタンに、有機リン酸塩、タルク、ジペンタエリスリトール、メラミン誘導体を特定割合で配合することにより、難燃性、かつ燃焼時の溶融物滴下を抑制したポリウレタン樹脂組成物が提案されている。しかし、当該方法で得られる組成物は、高い難燃性を発揮するための必須成分が多く、種々の用途に適した材料設計がしにくいことから、より少ない成分で優れた難燃性を発揮することが求められている。また、タルクを使用する問題点もあり、タルクを必須成分とせずとも高い難燃性を付与することが求められている。
特許文献3では、ポリウレタン樹脂に無機酸メラミン塩、タルク及びゼオライトを所定量配合した切削加工用難燃性ポリウレタン樹脂形成性組成物が提案されている。しかし、この例でも、無機酸メラミン塩とタルク及びゼオライトの配合量が比較的多く、ポリウレタンの特性に対する影響は無視できるものではなく、また、前述のタルク配合の問題点も解決できていない。
Patent Document 2 discloses a polyurethane resin composition that is flame retardant and suppresses melt dripping during combustion by blending organic phosphate, talc, dipentaerythritol, and a melamine derivative in specific proportions with thermoplastic polyurethane. is proposed. However, the composition obtained by this method has many essential components to exhibit high flame retardancy, making it difficult to design materials suitable for various uses. is required to do so. Furthermore, there are also problems with the use of talc, and there is a need to provide high flame retardance without using talc as an essential component.
Patent Document 3 proposes a flame-retardant polyurethane resin-forming composition for cutting, which includes a polyurethane resin mixed with predetermined amounts of an inorganic acid melamine salt, talc, and zeolite. However, even in this example, the amount of inorganic acid melamine salt, talc, and zeolite blended is relatively large, and the influence on the properties of polyurethane cannot be ignored, and the above-mentioned problem of talc blending has not been solved.

特許第6423140号公報Patent No. 6423140 特表2011-508024号公報Special Publication No. 2011-508024 特開2005-133027号公報Japanese Patent Application Publication No. 2005-133027

そこで本発明が解決しようとする課題は、熱可塑性ポリウレタンを含む樹脂組成物において、ハロゲン系元素を必須成分として含まず、かつより少ない配合量でありながら、燃焼時の溶融滴下が無く、難燃性能にも優れた難燃性ポリウレタン樹脂組成物及びその成形体並びにそこで使用する難燃剤を提供することにある。 Therefore, the problem to be solved by the present invention is to create a resin composition containing thermoplastic polyurethane that does not contain halogen-based elements as an essential component and has a lower blending amount, yet does not cause melting and dripping during combustion, and is flame retardant. An object of the present invention is to provide a flame-retardant polyurethane resin composition with excellent performance, a molded article thereof, and a flame retardant used therein.

本発明者等は、上記の課題を解決するため、鋭意研究を重ねた結果、難燃性ポリウレタンに式(1)で表される難燃剤を特定量で配合することで上記課題を解決できることを見出し、また、式(1)で表される難燃剤に難燃助剤を組合わせることで望ましい難燃性能が得られることを見出し、本発明を解決するに至った。
すなわち、本発明は、
(1)ポリウレタン樹脂100重量部に対し、下記式(1)で表される難燃剤(a)を10~40重量部含み、難燃性規格UL-94V法で、溶融滴下がなく、V-0基準に適合する難燃性能を有し、炭化性能に優れることを特徴とする難燃性ポリウレタン樹脂組成物、
In order to solve the above problems, the present inventors have conducted extensive research and found that the above problems can be solved by blending a specific amount of a flame retardant represented by formula (1) into flame-retardant polyurethane. Furthermore, the present inventors have discovered that desirable flame retardant performance can be obtained by combining the flame retardant represented by formula (1) with a flame retardant auxiliary agent, and the present invention has been solved.
That is, the present invention
(1) Contains 10 to 40 parts by weight of a flame retardant (a) represented by the following formula (1) per 100 parts by weight of polyurethane resin, and according to the flame retardant standard UL-94V method, there is no melting and dripping, and V- A flame-retardant polyurethane resin composition characterized by having flame-retardant performance that meets the 0 standard and excellent carbonization performance,

Figure 0007400156000001
(式中、MはMg、Ca、Al、Ti、Zn又はZrであり、mは2、3又は4である。)
Figure 0007400156000001
(In the formula, M is Mg, Ca, Al, Ti, Zn or Zr, and m is 2, 3 or 4.)

(2)前記難燃性ポリウレタン樹脂組成物が、難燃助剤(b)をポリウレタン樹脂100重量部に対し0~30重量部含むことを特徴とする(1)に記載の炭化性能に優れる難燃性ポリウレタン樹脂組成物、
(3)前記難燃助剤(b)がリン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミン、メラミン、シアヌル酸メラミン及びポリリン酸アンモニウムからなる群より選ばれる1種以上を含む炭化性能に優れることを特徴とする(1)又は(2)に記載の難燃性ポリウレタン樹脂組成物、
(2) The flame retardant polyurethane resin composition has excellent carbonization performance according to (1), characterized in that the flame retardant polyurethane resin composition contains 0 to 30 parts by weight of the flame retardant aid (b) based on 100 parts by weight of the polyurethane resin. flammable polyurethane resin composition,
(3) The flame retardant aid (b) contains one or more selected from the group consisting of melamine phosphate, melamine pyrophosphate, melamine polyphosphate, melamine, melamine cyanurate, and ammonium polyphosphate, and has excellent carbonization performance. The flame-retardant polyurethane resin composition according to (1) or (2), characterized in that

(4)前記難燃剤(a)と前記難燃助剤(b)の重量比が、(a)/(b)=100/0~50/50であることを特徴とする(1)~(3)のいずれかに記載の難燃性ポリウレタン樹脂組成物、
(5)前記難燃剤(a)の金属MがAlであり、前記難燃助剤(b)がポリリン酸メラミン、メラミン、シアヌル酸メラミン又はポリリン酸アンモニウムであることを特徴とする(1)~(4)のいずれかに記載の難燃性ポリウレタン樹脂組成物、
(6)難燃性ポリウレタン樹脂組成物において使用される難燃剤組成物であって、該難燃剤組成物が下記式(1)で表される難燃剤(a)を含むことを特徴とするポリウレタン用難燃剤組成物、
(4) The weight ratio of the flame retardant (a) and the flame retardant aid (b) is (a)/(b) = 100/0 to 50/50 (1) to ( The flame-retardant polyurethane resin composition according to any one of 3),
(5) The metal M of the flame retardant (a) is Al, and the flame retardant aid (b) is melamine polyphosphate, melamine, melamine cyanurate, or ammonium polyphosphate (1) The flame-retardant polyurethane resin composition according to any one of (4),
(6) A flame retardant composition used in a flame retardant polyurethane resin composition, the flame retardant composition containing a flame retardant (a) represented by the following formula (1): flame retardant composition for

Figure 0007400156000002
(式中、MはMg、Ca、Al、Ti、Zn又はZrであり、mは2、3又は4である。)
Figure 0007400156000002
(In the formula, M is Mg, Ca, Al, Ti, Zn or Zr, and m is 2, 3 or 4.)

(7)前記ポリウレタン用難燃剤組成物が、難燃助剤(b)としてリン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミン、メラミン、シアヌル酸メラミン及びポリリン酸アンモニウムからなる群より選ばれる1種または2種以上の難燃助剤を含み、前記難燃剤(a)と前記難燃助剤(b)の重量比が(a)/(b)=100/0~50/50であることを特徴とする(6)に記載のポリウレタン用難燃剤組成物、
(8)(1)~(5)のいずれかに記載の難燃性ポリウレタン樹脂組成物から成形されてなることを特徴とする難燃性ポリウレタン樹脂成形体。
(7) In the flame retardant composition for polyurethane, the flame retardant aid (b) is one selected from the group consisting of melamine phosphate, melamine pyrophosphate, melamine polyphosphate, melamine, melamine cyanurate, and ammonium polyphosphate; It is characterized in that it contains two or more types of flame retardant aids, and the weight ratio of the flame retardant (a) and the flame retardant aid (b) is (a)/(b) = 100/0 to 50/50. The flame retardant composition for polyurethane according to (6),
(8) A flame-retardant polyurethane resin molded article, characterized in that it is molded from the flame-retardant polyurethane resin composition according to any one of (1) to (5).

本発明によれば、熱可塑性ポリウレタンを含む樹脂組成物において、ハロゲン系元素を含まず、かつより少ない難燃剤配合量で、燃焼時の溶融滴下が無い、優れた難燃性を有する難燃性ポリウレタン樹脂組成物およびその成形体並びにそこで使用する難燃剤を提供することができる。 According to the present invention, in a resin composition containing thermoplastic polyurethane, a flame retardant that does not contain halogen elements, has a lower amount of flame retardant, and has excellent flame retardancy without melting and dripping during combustion. A polyurethane resin composition, a molded article thereof, and a flame retardant used therein can be provided.

本発明の非ハロゲン系の難燃性ポリウレタン樹脂組成物は、熱可塑性のポリウレタン樹脂と式(1)で表される難燃剤(a)を含むものであり、難燃剤(a)はポリウレタン樹脂100重量部に対し10~40重量部含み、難燃性規格UL-94V法で、溶融滴下がなく、V-0基準に適合する難燃性能を有し、炭化性能に優れる難燃性ポリウレタン樹脂組成物である。さらに、前記難燃性ポリウレタン樹脂組成物は、必要に応じて、ポリリン酸メラミン、メラミン、シアヌル酸メラミン、ポリリン酸アンモニウム等の難燃助剤(b)を含んでもよい。 The non-halogen flame-retardant polyurethane resin composition of the present invention contains a thermoplastic polyurethane resin and a flame retardant (a) represented by formula (1), and the flame retardant (a) contains polyurethane resin 100%. A flame-retardant polyurethane resin composition that contains 10 to 40 parts by weight and has flame-retardant properties that meet V-0 standards without melting and dripping according to the flame-retardant standard UL-94V method, and has excellent carbonization performance. It is a thing. Furthermore, the flame retardant polyurethane resin composition may contain a flame retardant aid (b) such as melamine polyphosphate, melamine, melamine cyanurate, ammonium polyphosphate, etc., if necessary.

Figure 0007400156000003
(式中、MはMg、Ca、Al、Ti、Zn又はZrであり、mは2、3又は4である。)
Figure 0007400156000003
(In the formula, M is Mg, Ca, Al, Ti, Zn or Zr, and m is 2, 3 or 4.)

本発明に用いる熱可塑性のポリウレタン樹脂としては、公知のものを使用できるが、有機ジイソシアネート、鎖伸長剤および高分子ポリオールから合成して得られたものを用いることが好ましい。具体的には、有機ジイソシアネートとしては、芳香族ジイソシアネート、脂肪族ジイソシアネートおよび脂環族ジイソシアネートからなる群より選ばれる有機ジイソシアネートを用いることができ、鎖伸長剤としては炭素原子数が2~10の低分子量ジオールを用いることができ、高分子ポリオールとしてはポリカーボネートポリオール、ポリエステルポリオール、ポリエーテルポリオールなどを用いることができる。いずれの成分も、単独で用いることも、2種類以上を併用して用いることもでき、また、触媒を使用することも可能である。 As the thermoplastic polyurethane resin used in the present invention, any known thermoplastic polyurethane resin can be used, but it is preferable to use one synthesized from an organic diisocyanate, a chain extender, and a polymer polyol. Specifically, as the organic diisocyanate, an organic diisocyanate selected from the group consisting of aromatic diisocyanate, aliphatic diisocyanate, and alicyclic diisocyanate can be used, and as the chain extender, a low carbon diisocyanate having 2 to 10 carbon atoms can be used. Molecular weight diols can be used, and as the polymer polyols, polycarbonate polyols, polyester polyols, polyether polyols, etc. can be used. Any of the components can be used alone or in combination of two or more, and it is also possible to use a catalyst.

本発明に用いる熱可塑性ポリウレタン樹脂の各構成成分について説明する。
(有機ジイソシアネート)
熱可塑性ポリウレタン樹脂の構成成分である有機ジイソシアネートとしては、前述のとおり、芳香族ジイソシアネート、脂肪族ジイソシアネートおよび脂環族ジイソシアネートを使用することができる。
芳香族ジイソシアネートとしては、4,4’-ジフェニルメタンジイソシアネート、1,4-フェニレンジイソシアネート、トリレンジイソシアネート、1,5-ナフチレンジイソシアネートなどを挙げることができる。
Each component of the thermoplastic polyurethane resin used in the present invention will be explained.
(Organic diisocyanate)
As the organic diisocyanate that is a component of the thermoplastic polyurethane resin, aromatic diisocyanates, aliphatic diisocyanates, and alicyclic diisocyanates can be used, as described above.
Examples of the aromatic diisocyanate include 4,4'-diphenylmethane diisocyanate, 1,4-phenylene diisocyanate, tolylene diisocyanate, and 1,5-naphthylene diisocyanate.

脂肪族ジイソシアネートとしては、メチレンジイソシアネート、エチレンジイソシアネート、1-メチルエチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、2-メチルブタン-1,4-ジイソシアネート、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、2,5-ジメチルヘキサン-1,6-ジイソシアネートなどを挙げることができる。 Examples of aliphatic diisocyanates include methylene diisocyanate, ethylene diisocyanate, 1-methylethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, 2-methylbutane-1,4-diisocyanate, hexamethylene diisocyanate, octamethylene diisocyanate, and 2,5-dimethylhexane. -1,6-diisocyanate and the like can be mentioned.

また、脂環式ジイソシアネートとしては、シクロヘキサンジイソシアネート、P,P’-シクロヘキシルメタンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネートなどを挙げることができる。
これらのイソシアネートは、単独で用いることも、2種類以上を併用して用いることもできる。
Examples of the alicyclic diisocyanate include cyclohexane diisocyanate, P,P'-cyclohexylmethane diisocyanate, and 4,4'-dicyclohexylmethane diisocyanate.
These isocyanates can be used alone or in combination of two or more.

(鎖伸長剤)
熱可塑性ポリウレタン樹脂の構成成分である鎖伸長剤としては、前述のとおり、炭素原子数が2~10の低分子量ジオールを使用することができ、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、2-メチルペンタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、オクタンジオール、ノナンジオール、デカンジオール、トリメチールプロパン、などの脂肪族グリコール類、それ以外に1,6-ヘキサンジオールなどの低分子の脂環族ジオール類などが挙げられる。これらのポリオールは、単独で用いることも、2種類以上を併用して用いることもできる。得られる成形品にゴム弾性が要求される場合には、上記ポリオールとして脂肪族ジオールを用いることが好ましい。
(chain extender)
As the chain extender which is a component of the thermoplastic polyurethane resin, as mentioned above, low molecular weight diols having 2 to 10 carbon atoms can be used, such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol. , 1,3-butanediol, 1,4-butanediol, 2-methylpentanediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, octanediol, nonanediol, decanediol, trimethyl Other examples include aliphatic glycols such as propane, and low-molecular alicyclic diols such as 1,6-hexanediol. These polyols can be used alone or in combination of two or more. When rubber elasticity is required for the resulting molded product, it is preferable to use an aliphatic diol as the polyol.

(高分子ポリオール)
熱可塑性ポリウレタン樹脂の構成成分である高分子ポリオールとしては、例えば、ポリカーボネートポリオール、ポリエステルポリオール、ポリエーテルポリオールなどが挙げられる。これらのポリオールは、単独で用いることも、2種類以上を併用して用いることもできる。これらの高分子ポリオールの単独または混合物の平均官能基数は2が好ましく、平均分子量は500~30000の範囲が好ましく、平均分子量は500~5000の範囲が特に好ましい。
(High molecular polyol)
Examples of the polymer polyol that is a component of the thermoplastic polyurethane resin include polycarbonate polyol, polyester polyol, and polyether polyol. These polyols can be used alone or in combination of two or more. The average number of functional groups of these polymeric polyols alone or as a mixture is preferably 2, the average molecular weight is preferably in the range of 500 to 30,000, and the average molecular weight is particularly preferably in the range of 500 to 5,000.

(ポリエステルポリオール)
ポリエステルポリオールは、少なくとも1種のジカルボン酸と、少なくとも1種のジオールとを反応させることによって製造することができる。例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、あるいはその他の低分子ジオール成分の1種または2種以上と、例えば、アジピン酸、ピメリン酸、スベリン酸、セバシン酸、テレフタル酸、イソフタル酸等の低分子ジカルボン酸の1種または2種以上との縮重合物やラクトンの開環重合で得たラクトンポリオール、例えば、ポリプロピオラクトンポリオール、ポリカプロラクトンポリオール、ポリパレロラクトンポリオールなどが挙げられるが、これらに限定されるものではない。
(Polyester polyol)
Polyester polyols can be produced by reacting at least one dicarboxylic acid and at least one diol. For example, one or more of ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, or other low molecular weight diol components, for example, adipic acid, Lactone polyols obtained by ring-opening polymerization of lactones or condensation products with one or more low-molecular-weight dicarboxylic acids such as pimelic acid, suberic acid, sebacic acid, terephthalic acid, and isophthalic acid, such as polypropiolactone polyol , polycaprolactone polyol, polyparerolactone polyol, etc., but are not limited to these.

(ポリエーテルポリオール)
ポリエーテルポリオールは、アルキレンオキシドの付加重合によって製造することができ、例えば、ポリプロピレンエーテルポリオール、ポリテトラメチレンエーテルポリオール、ヘキサメチレンエーテルポリオールなどが挙げられる。
(Polyether polyol)
Polyether polyols can be produced by addition polymerization of alkylene oxides, and include, for example, polypropylene ether polyols, polytetramethylene ether polyols, hexamethylene ether polyols, and the like.

(ポリカーボネートポリオール)
熱可塑性ポリウレタン樹脂に耐候性や耐熱性が要求される場合は、高分子ポリオールとして、ポリカーボネートポリオールを用いることが好ましい。ポリカーボネートポリオールは、例えば、低分子ポリオールとジアルキルカーボネートもしくはジアリールカーボネートとを縮合反応させることにより製造することができ、例えば、1,6-ヘキサンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、シクロヘキサンジメタノール、などが挙げられる。また、ジアルキルカーボネートもしくはジアリールカーボネートとしては、例えば、ジフェニルカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチレンカーボネートなどが挙げられる。
(Polycarbonate polyol)
When weather resistance and heat resistance are required for the thermoplastic polyurethane resin, it is preferable to use polycarbonate polyol as the polymer polyol. Polycarbonate polyols can be produced, for example, by condensation reaction of low-molecular polyols and dialkyl carbonates or diaryl carbonates, such as 1,6-hexanediol, 1,5-pentanediol, 3-methyl-1, Examples include 5-pentanediol, cyclohexanedimethanol, and the like. Examples of the dialkyl carbonate or diaryl carbonate include diphenyl carbonate, dimethyl carbonate, diethyl carbonate, and ethylene carbonate.

(触媒)
触媒を使用する場合、通常用いられているウレタン化触媒がいずれも使用できる。例えばトリエチルアミン、ジメチルシクロヘキシルアミン、N-メチルモルホリン、N,N’-ジメチルピペラジン、2-(ジメチルアミノエトキシ)エタノールおよびジアザビシクロ(2,2,2)-オクタンなどの三級アミン系触媒、オクタン酸第一錫、オレイン酸第一錫、ジブチル錫ジアセテート、ジブチル錫ジラウレート、ジブチル錫マレート、ジブチル錫メルカプトプロピオネート、ジブチル錫ドデシルメルカプトなどの有機錫触媒などが挙げられる。使用する触媒の量は使用原料、反応条件、所望の反応時間などによって決定されるが、おおむね触媒は反応混合物全重量の0.0001~5質量%、好ましくは0.0001~2質量%の範囲で活性水素化合物側に混合して使用される。
熱可塑性ポリウレタン樹脂を調製するにあたって、イソシアネート基と活性水素との反応当量比は、好ましくは、0.95~1.10の範囲、より好ましくは、0.96~1.05、最も好ましくは、0.97~1.03の範囲である。
(catalyst)
When using a catalyst, any commonly used urethanization catalyst can be used. For example, tertiary amine catalysts such as triethylamine, dimethylcyclohexylamine, N-methylmorpholine, N,N'-dimethylpiperazine, 2-(dimethylaminoethoxy)ethanol and diazabicyclo(2,2,2)-octane, octanoic acid Examples include organotin catalysts such as tin, stannous oleate, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin maleate, dibutyltin mercaptopropionate, and dibutyltin dodecylmercapto. The amount of the catalyst to be used is determined depending on the raw materials used, reaction conditions, desired reaction time, etc., but the amount of the catalyst is generally in the range of 0.0001 to 5% by mass, preferably 0.0001 to 2% by mass of the total weight of the reaction mixture. It is used by mixing it with the active hydrogen compound side.
In preparing a thermoplastic polyurethane resin, the reaction equivalent ratio of isocyanate groups to active hydrogen is preferably in the range of 0.95 to 1.10, more preferably 0.96 to 1.05, and most preferably, It ranges from 0.97 to 1.03.

本発明の熱可塑性ポリウレタン樹脂の製造は、通常の熱可塑性ポリウレタンの製造方法を採用することができ、バッチ反応器または連続反応押出し成形機を使用することができる。上記バッチ反応器を使用する方法では、反応成分は反応器に導入後、ある程度まで反応に供され、次いで、外部のバット上に出され、続いて、80~200℃の範囲、好ましくは120~180℃の温度範囲での熱処理を経た後、粉砕して製造される。
一方、上記連続反応押出し成形機を使用する方法では、反応成分は、原材料貯蔵タンクから測定ユニットを介して押出し成形機に供給され、上記反応は押出し成形機内において完了し、押出ダイから押し出される。上記連続反応押し出し成形機を使用する方法は、上記バッチ反応器を使用する方法と比較して、熱移動が均一に行われるので、生成物の品質均一性が得られる点で好ましい。上記連続反応押出し成形機を用いる熱可塑性ポリウレタン樹脂の製造では、押出し成形機の温度は、好ましくは、120~250℃の範囲、より好ましくは、170~210℃の範囲である。
The thermoplastic polyurethane resin of the present invention can be manufactured by a conventional thermoplastic polyurethane manufacturing method, and a batch reactor or a continuous reaction extrusion molding machine can be used. In the above method using a batch reactor, the reaction components are introduced into the reactor and subjected to reaction to a certain extent, and then discharged onto an external vat and subsequently heated to a temperature in the range of 80-200°C, preferably 120-200°C. It is manufactured by undergoing heat treatment in a temperature range of 180°C and then pulverizing it.
On the other hand, in the method using the continuous reaction extruder, the reaction components are supplied from the raw material storage tank to the extruder through the measuring unit, the reaction is completed in the extruder, and then extruded from the extrusion die. Compared to the method using the batch reactor, the method using the continuous reaction extruder is preferable in that heat transfer is performed uniformly, so that uniform quality of the product can be obtained. In the production of thermoplastic polyurethane resin using the continuous reaction extrusion molding machine described above, the temperature of the extrusion molding machine is preferably in the range of 120 to 250°C, more preferably in the range of 170 to 210°C.

次に、本発明に用いる難燃剤成分について説明する。
(難燃剤)
本発明の炭化性能に優れた難燃性ポリウレタン樹脂組成物に用いる難燃剤(a)としては、式(1)で表されるものを使用することができる。
Next, the flame retardant component used in the present invention will be explained.
(Flame retardants)
As the flame retardant (a) used in the flame retardant polyurethane resin composition with excellent carbonization performance of the present invention, those represented by formula (1) can be used.

Figure 0007400156000004
(式中、MはMg、Ca、Al、Ti、Zn又はZrであり、mは2、3又は4である。)
Figure 0007400156000004
(In the formula, M is Mg, Ca, Al, Ti, Zn or Zr, and m is 2, 3 or 4.)

本発明の式(1)で表される難燃剤(a)は、通常は無色または白色の粉体であるため、製品の着色性を阻害することなく使用可能である。これらの中では特にAl塩又はTi塩、中でもAl塩が難燃性、炭化性能において優れた効果を有している。
上記式(1)で表される難燃剤(a)は、ホスフィン酸、またはホスフィン酸のアルカリ金属塩のいずれか一つと、マグネシウム、カルシウム、アルミニウム、チタン、亜鉛又はジルコニウムの硝酸塩、硫酸塩、塩酸塩、炭酸塩および水酸化物のいずれか一つとを、水溶液状態で、加熱、反応させることによって得られる無機系の難燃剤である。
本発明の難燃剤組成物に用いる難燃剤(a)の平均粒子径は1~50μmが好ましく、特に3~20μmが好ましい。平均粒子径が50μmを超えると、難燃性ポリウレタン樹脂組成物の機械物性が悪化するおそれがあり、平均粒子径が1μm未満だと、上記ポリウレタン樹脂組成物中での凝集物の発生または、極度の樹脂の溶融粘度の増加が起こるおそれがある。
Since the flame retardant (a) represented by formula (1) of the present invention is usually a colorless or white powder, it can be used without impairing the coloring properties of products. Among these, Al salts or Ti salts, especially Al salts, have excellent effects on flame retardancy and carbonization performance.
The flame retardant (a) represented by the above formula (1) is composed of phosphinic acid or an alkali metal salt of phosphinic acid, and a nitrate, sulfate, or hydrochloric acid of magnesium, calcium, aluminum, titanium, zinc, or zirconium. It is an inorganic flame retardant obtained by heating and reacting one of salt, carbonate, and hydroxide in an aqueous solution state.
The average particle diameter of the flame retardant (a) used in the flame retardant composition of the present invention is preferably 1 to 50 μm, particularly preferably 3 to 20 μm. If the average particle size exceeds 50 μm, the mechanical properties of the flame-retardant polyurethane resin composition may be deteriorated, and if the average particle size is less than 1 μm, the formation of aggregates in the polyurethane resin composition or extreme The melt viscosity of the resin may increase.

また、難燃剤(a)の配合量は、ポリウレタン樹脂100重量部に対し、10~40重量部配合することが好ましく、より好ましくは、15~30重量部配合することが好ましい。難燃剤(a)の配合量がポリウレタン樹脂100重量部に対し10重量部未満の場合は目的とする難燃性能、燃焼時の溶融物滴下防止性能や炭化性能を得ることが難しく、また、40重量部を超える場合は熱可塑性ポリウレタンの成形性や機械的性能に問題が生じる可能性がある。 The flame retardant (a) is preferably blended in an amount of 10 to 40 parts by weight, more preferably 15 to 30 parts by weight, per 100 parts by weight of the polyurethane resin. If the blending amount of the flame retardant (a) is less than 10 parts by weight per 100 parts by weight of the polyurethane resin, it is difficult to obtain the desired flame retardant performance, performance to prevent melt dripping during combustion, and carbonization performance. If the amount exceeds parts by weight, problems may arise in the moldability and mechanical performance of the thermoplastic polyurethane.

(難燃助剤)
本発明の炭化性能に優れた難燃性ポリウレタン樹脂組成物には、必要に応じ難燃助剤(b)を配合することもでき、該難燃助剤(b)としては、リン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミン、メラミン、シアヌル酸メラミン及びポリリン酸アンモニウムからなる群より選ばれる1種以上を使用することができる。上記難燃助剤(b)の中では、ポリリン酸メラミン、メラミン、シアヌル酸メラミン、ポリリン酸アンモニウムが好ましい。
(Flame retardant aid)
The flame retardant polyurethane resin composition of the present invention having excellent carbonization performance may contain a flame retardant auxiliary agent (b) as required. Examples of the flame retardant auxiliary agent (b) include melamine phosphate, One or more selected from the group consisting of melamine pyrophosphate, melamine polyphosphate, melamine, melamine cyanurate, and ammonium polyphosphate can be used. Among the flame retardant aids (b), melamine polyphosphate, melamine, melamine cyanurate, and ammonium polyphosphate are preferred.

本発明の難燃助剤(b)は、成形性、難燃性、燃焼時の溶融物滴下防止性能や炭化性能の点から,ポリウレタン樹脂100重量部に対し0~30重量部配合することが好ましく、より好ましくは0~20重量部配合することが好ましい。
本発明の炭化性能に優れた難燃性ポリウレタン樹脂組成物において、難燃剤(a)と難燃助剤(b)の重量比が(a)/(b)=100/0~50/50であることが難燃性能、燃焼時の溶融物滴下防止性能や炭化性能の点から好ましく、より好ましくは(a)/(b)=90/10~60/40である。
The flame retardant aid (b) of the present invention is preferably blended in an amount of 0 to 30 parts by weight per 100 parts by weight of the polyurethane resin in terms of moldability, flame retardancy, performance in preventing melt dripping during combustion, and carbonization performance. Preferably, it is more preferably blended in an amount of 0 to 20 parts by weight.
In the flame retardant polyurethane resin composition with excellent carbonization performance of the present invention, the weight ratio of the flame retardant (a) and the flame retardant aid (b) is (a)/(b) = 100/0 to 50/50. It is preferable from the viewpoint of flame retardant performance, ability to prevent melt dripping during combustion, and carbonization performance, and more preferably (a)/(b) = 90/10 to 60/40.

本発明の難燃剤組成物に用いる式(1)の難燃剤(a)と難燃助剤(b)の組合せの中では、難燃剤(a)がAl塩であり、難燃助剤がポリリン酸メラミン、メラミン、シアヌル酸メラミン、ポリリン酸アンモニウムである場合が、最も好ましい結果が得られる。 Among the combinations of the flame retardant (a) of formula (1) and the flame retardant aid (b) used in the flame retardant composition of the present invention, the flame retardant (a) is an Al salt, and the flame retardant aid is polyphosphorus. The most favorable results are obtained when acid melamine, melamine, cyanuric acid melamine, and ammonium polyphosphate are used.

本発明の難燃性ポリウレタン樹脂組成物は、上記成分に加え、さらに必要に応じて、水酸化マグネシウム等の金属水和物、炭酸カルシウム、シリカ等の無機化合物、およびフェノール系、チオエーテル系等の酸化防止剤、ベンゾトリアゾール系、ベンゾフェノン系、ベンゾエート系、トリアジン系、ヒンダードアミン系等の紫外線吸収剤や安定剤類、シリコーン系、脂肪酸アマイド等の離型剤および滑剤、金属石鹸、脂肪酸アマイド等の分散剤、染料や有機系および無機系顔料等の着色剤および発泡剤、p-トルエンスルホンアミド、安息香酸エステル系可塑剤、ポリエステル系可塑剤、また溶融滴下防止剤としてPTFEを添加することも可能であり、これら添加剤の種類と添加量を調整することにより、目的とする機能を調整することができる。 In addition to the above-mentioned components, the flame-retardant polyurethane resin composition of the present invention further contains metal hydrates such as magnesium hydroxide, inorganic compounds such as calcium carbonate and silica, and phenol-based, thioether-based, etc. Antioxidants, ultraviolet absorbers and stabilizers such as benzotriazole type, benzophenone type, benzoate type, triazine type and hindered amine type, mold release agents and lubricants such as silicone type and fatty acid amide, dispersion of metal soap, fatty acid amide, etc. It is also possible to add colorants such as dyes, organic and inorganic pigments, blowing agents, p-toluenesulfonamide, benzoic acid ester plasticizers, polyester plasticizers, and PTFE as a melt dripping prevention agent. By adjusting the type and amount of these additives, the desired function can be adjusted.

本発明の難燃性ポリウレタン樹脂組成物は、上記した各成分を所定量ずつ混合し、単軸押出型混錬機、オープンロールミキサー、加圧型ニーダー、バンバリーミキサー、二軸押出型混錬機等、既知の混合機を用い、樹脂設定温度を融点以上にして溶融混練する。このなかでも二軸押出型混練機は混練性、生産性の点で好ましい。溶融混練後、所望により粉砕して得た難燃性ポリウレタン樹脂組成物のペレットを、さらに成形機に供して押出成形法、射出成形法、圧縮成形法、吹込成形法、射出圧縮成形法などの公知の各種成形法に適用して、難燃性ポリウレタン樹脂成形体を製造する。 The flame-retardant polyurethane resin composition of the present invention can be prepared by mixing the above-mentioned components in predetermined amounts using a single-screw extrusion kneader, open roll mixer, pressure kneader, Banbury mixer, twin-screw extrusion kneader, etc. Using a known mixer, the resin is melted and kneaded at a temperature set at a temperature higher than the melting point. Among these, a twin-screw extruder kneader is preferred in terms of kneading performance and productivity. After melt-kneading, the pellets of the flame-retardant polyurethane resin composition obtained by crushing as desired are further subjected to a molding machine for extrusion molding, injection molding, compression molding, blow molding, injection compression molding, etc. A flame-retardant polyurethane resin molded article is manufactured by applying various known molding methods.

本発明の難燃性ポリウレタン樹脂組成物は、難燃性に極めて優れていることから少ない配合量で難燃効果が得られ、燃焼時および焼却時においてハロゲンガスの発生が無く、かつ熱可塑性ポリウレタンに見られる溶融滴下の発生をなくすことができ、高難燃性が求められる用途で使用することが可能である。このため、本発明の難燃性ポリウレタン樹脂組成物は、フィルム、電子部品成形材料等への適用が可能であるが、その中でも近年、特に高難燃性が求められている電線被覆材料、シート、チューブといった用途に好適に用いる
ことができる。
The flame-retardant polyurethane resin composition of the present invention has extremely excellent flame retardancy, so a flame-retardant effect can be obtained with a small amount of blending, no halogen gas is generated during combustion or incineration, and the composition is a thermoplastic polyurethane resin composition. It is possible to eliminate the occurrence of melt dripping that is seen in conventional methods, and it can be used in applications that require high flame retardancy. Therefore, the flame-retardant polyurethane resin composition of the present invention can be applied to films, electronic component molding materials, etc. Among these, in recent years, particularly high flame retardance has been required, such as wire coating materials and sheets. It can be suitably used for applications such as , tubes, etc.

以下、実施例により本発明を具体的に説明するが、本発明はこれら具体例に限定されるものではない。なお、実施例、比較例において、特に断りが無い場合は%表示、部表示は重量基準である。また、実施例1及び2は、その内容からみて参考例として扱う。 EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these specific examples. In Examples and Comparative Examples, unless otherwise specified, percentages and parts are based on weight. In addition, Examples 1 and 2 are treated as reference examples in view of their contents.

(実施例1~6、比較例1~7)
表1~3に記載した成分および配合割合で混合した後、二軸ベント式押出機(設定温度150~200℃)で溶融混練後、ペレット化した。ペレットを射出成形機を用いて、長さ127mm×幅12.7mm×厚3.0mmの試験片を作成した。各特性の評価は以下の方法で実施し、評価結果は表1~3に併せて記載した。
(Examples 1 to 6, Comparative Examples 1 to 7)
After mixing the components and blending ratios listed in Tables 1 to 3, the mixture was melt-kneaded in a twin-screw vent extruder (temperature set at 150 to 200°C) and then pelletized. A test piece measuring 127 mm in length x 12.7 mm in width x 3.0 mm in thickness was prepared from the pellet using an injection molding machine. Evaluation of each characteristic was carried out by the following method, and the evaluation results are also listed in Tables 1 to 3.

(難燃性試験および滴りの有無の判定)
実施例1~6、比較例1~7で作製した試験片を用いて、UL-94V燃焼試験に準拠して測定した。また、測定時の溶融滴下の有無を以下の基準に沿って評価した。
溶融滴下有り:有
溶融滴下無し:無
(Flame retardancy test and determination of presence or absence of dripping)
Using the test pieces prepared in Examples 1 to 6 and Comparative Examples 1 to 7, measurements were made in accordance with the UL-94V combustion test. In addition, the presence or absence of melt dripping during measurement was evaluated according to the following criteria.
With melt dripping: Yes Without melt dripping: No

Figure 0007400156000005
Figure 0007400156000005

Figure 0007400156000006
Figure 0007400156000006

Figure 0007400156000007
Figure 0007400156000007

Claims (3)

ポリウレタン樹脂100重量部に対し、
下記式(1)で表される難燃剤(a)を10~30重量部含み、
難燃助剤(b)として、リン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミン、メラミン、シアヌル酸メラミン及びポリリン酸アンモニウムからなる群より選ばれる1種以上を、ポリウレタン樹脂100重量部に対し1.1~20重量部含み、
前記難燃剤(a)と前記難燃助剤(b)の重量比が、(a)/(b)=90/10~60/40であり、
難燃性規格UL-94V法で、溶融滴下がなく、V-0基準に適合する難燃性能を有し、炭化性能に優れることを特徴とする電線被覆用難燃性ポリウレタン樹脂組成物。
Figure 0007400156000008
(式中、MはMg、Ca、Al、Ti、Zn又はZrであり、mは2、3又は4である。)
但し、上記難燃助剤(b)以外のリン酸の誘導体又はホスホン酸の誘導体を含有する場合を除き、シリコーンポリエーテルグリコールとジイソシアネートから得られたウレタン樹脂を含有する場合を除き、シロキサンポリエーテルオールとジイソシアネートから得られたウレタン樹脂を含有する場合を除き、ポリテトラフルオロエチレンを含有する場合を除き、ペンタエリスリトール籠状ホスフェートを含有する場合を除き、ペンタエリスリトールを含有する場合を除き、更にピロリン酸ピペラジンを含有する場合を除く
For 100 parts by weight of polyurethane resin,
Containing 10 to 30 parts by weight of a flame retardant (a) represented by the following formula (1),
As the flame retardant aid (b), one or more selected from the group consisting of melamine phosphate, melamine pyrophosphate, melamine polyphosphate, melamine, melamine cyanurate, and ammonium polyphosphate is added in an amount of 1.0% per 100 parts by weight of the polyurethane resin. Contains 1 to 20 parts by weight,
The weight ratio of the flame retardant (a) and the flame retardant aid (b) is (a)/(b) = 90/10 to 60/40,
A flame-retardant polyurethane resin composition for covering electric wires, which is characterized by no melting and dripping according to the flame-retardant standard UL-94V method, flame-retardant performance that meets the V-0 standard, and excellent carbonization performance.
Figure 0007400156000008
(In the formula, M is Mg, Ca, Al, Ti, Zn or Zr, and m is 2, 3 or 4.)
However, except when it contains a derivative of phosphoric acid or a derivative of phosphonic acid other than the above flame retardant aid (b), and except when it contains a urethane resin obtained from silicone polyether glycol and diisocyanate, siloxane polyether Except when containing urethane resin obtained from ol and diisocyanate, except when containing polytetrafluoroethylene, except when containing pentaerythritol cage phosphate, except when containing pentaerythritol, and further containing pyrroline. Except when containing acid piperazine.
前記難燃剤(a)の金属MがAlであり、前記難燃助剤(b)がポリリン酸メラミン、メラミン、シアヌル酸メラミン又はポリリン酸アンモニウムであることを特徴とする請求項1に記載の電線被覆用難燃性ポリウレタン樹脂組成物。 The electric wire according to claim 1, wherein the metal M of the flame retardant (a) is Al, and the flame retardant aid (b) is melamine polyphosphate, melamine, melamine cyanurate, or ammonium polyphosphate. Flame-retardant polyurethane resin composition for coating. 請求項1又は2に記載の難燃性ポリウレタン樹脂組成物から成形されてなることを特徴とする電線被覆用難燃性ポリウレタン樹脂成形体。 A flame-retardant polyurethane resin molded article for covering electric wires, characterized in that it is molded from the flame-retardant polyurethane resin composition according to claim 1 or 2.
JP2019039171A 2019-03-05 2019-03-05 Flame retardant polyurethane resin composition Active JP7400156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019039171A JP7400156B2 (en) 2019-03-05 2019-03-05 Flame retardant polyurethane resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019039171A JP7400156B2 (en) 2019-03-05 2019-03-05 Flame retardant polyurethane resin composition

Publications (2)

Publication Number Publication Date
JP2020143194A JP2020143194A (en) 2020-09-10
JP7400156B2 true JP7400156B2 (en) 2023-12-19

Family

ID=72353247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019039171A Active JP7400156B2 (en) 2019-03-05 2019-03-05 Flame retardant polyurethane resin composition

Country Status (1)

Country Link
JP (1) JP7400156B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7327879B1 (en) 2023-01-31 2023-08-16 大和化学工業株式会社 Flame retardant composition for thermosetting resin and fiber-reinforced thermosetting resin

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010523750A (en) 2007-04-03 2010-07-15 ビーエーエスエフ ソシエタス・ヨーロピア DOPO flame retardant composition
JP2014065892A (en) 2012-09-04 2014-04-17 Dic Corp Non-halogen-based flame-retardant resin composition and molded article
CN105254838A (en) 2015-11-16 2016-01-20 济南泰星精细化工有限公司 Body halogen-free flame retardant TPU modified material and preparing method thereof
CN105330818A (en) 2015-12-01 2016-02-17 中国科学技术大学苏州研究院 Flame retardant rigid polyurethane foam material and preparation method thereof
JP2016079375A (en) 2014-10-15 2016-05-16 大和化学工業株式会社 Flame-retardant polyurethane resin and flame-retardant synthetic leather
WO2017171509A1 (en) 2016-04-01 2017-10-05 주식회사 엘지화학 Battery module
CN107916056A (en) 2017-12-20 2018-04-17 长沙盾甲新材料科技有限公司 A kind of halogen-free flame retardants and flame-retardant type polyurea elastomer coatings
CN107987298A (en) 2017-12-20 2018-05-04 长沙盾甲新材料科技有限公司 A kind of flame retardant type electric car plastic casing
CN108003605A (en) 2017-12-28 2018-05-08 山东诺威聚氨酯股份有限公司 Halogen-free flameproof TPU cover materials and preparation method thereof
CN108102530A (en) 2017-12-20 2018-06-01 长沙盾甲新材料科技有限公司 A kind of preparation method of flame-retardant type polyurea elastomer coatings
JP2018525515A (en) 2015-08-21 2018-09-06 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Flame retardant thermoplastic polyurethane
JP2018525514A (en) 2015-08-21 2018-09-06 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Flame retardant thermoplastic polyurethane
CN108530685A (en) 2018-03-19 2018-09-14 浙江理工大学 A kind of preparation method and product of moisture retardant smoke suppressant

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3127914A1 (en) * 1981-07-15 1983-02-03 Basf Ag, 6700 Ludwigshafen METHOD FOR PRODUCING FLAME-RESISTANT POLYUTHERANE AND / OR POLYISOCYANURATE GROUPS CONTAINING

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010523750A (en) 2007-04-03 2010-07-15 ビーエーエスエフ ソシエタス・ヨーロピア DOPO flame retardant composition
JP2014065892A (en) 2012-09-04 2014-04-17 Dic Corp Non-halogen-based flame-retardant resin composition and molded article
JP2016079375A (en) 2014-10-15 2016-05-16 大和化学工業株式会社 Flame-retardant polyurethane resin and flame-retardant synthetic leather
JP2018525515A (en) 2015-08-21 2018-09-06 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Flame retardant thermoplastic polyurethane
JP2018525514A (en) 2015-08-21 2018-09-06 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Flame retardant thermoplastic polyurethane
CN105254838A (en) 2015-11-16 2016-01-20 济南泰星精细化工有限公司 Body halogen-free flame retardant TPU modified material and preparing method thereof
CN105330818A (en) 2015-12-01 2016-02-17 中国科学技术大学苏州研究院 Flame retardant rigid polyurethane foam material and preparation method thereof
WO2017171509A1 (en) 2016-04-01 2017-10-05 주식회사 엘지화학 Battery module
CN107916056A (en) 2017-12-20 2018-04-17 长沙盾甲新材料科技有限公司 A kind of halogen-free flame retardants and flame-retardant type polyurea elastomer coatings
CN108102530A (en) 2017-12-20 2018-06-01 长沙盾甲新材料科技有限公司 A kind of preparation method of flame-retardant type polyurea elastomer coatings
CN107987298A (en) 2017-12-20 2018-05-04 长沙盾甲新材料科技有限公司 A kind of flame retardant type electric car plastic casing
CN108003605A (en) 2017-12-28 2018-05-08 山东诺威聚氨酯股份有限公司 Halogen-free flameproof TPU cover materials and preparation method thereof
CN108530685A (en) 2018-03-19 2018-09-14 浙江理工大学 A kind of preparation method and product of moisture retardant smoke suppressant

Also Published As

Publication number Publication date
JP2020143194A (en) 2020-09-10

Similar Documents

Publication Publication Date Title
EP2408831B2 (en) Thermoplastic polyurethane with reduced tendency to bloom
EP2129700B1 (en) Low haze thermoplastic polyurethane using mixture of chain extenders including 1,3-and 1,4-cyclohexanedimethanol
EP2222767B1 (en) Halogen-free flame retardant thermoplastic polyurethanes
WO2012173911A1 (en) Thermoplastic polyurethane with reduced tendency to bloom from a bio-based glycol
EP0508072B1 (en) Halogen-free, flame-retardant thermoplastic polyurethane
CN110337465A (en) Thermoplastic polyurethane resin composition and molded body using the same
JP6423140B2 (en) Non-halogen flame retardant resin composition and molded article
JP7400156B2 (en) Flame retardant polyurethane resin composition
US11851523B2 (en) Aging-resistant TPU
TW201802183A (en) Melt processable thermoplastic polyurethane-urea elastomers
KR101407251B1 (en) Halogen-free flame retardant thermoplastic polyurethanes
KR20070055886A (en) Non-halogen flame-retardant thermoplastic polyurethane composite resin composition
JP2010138318A (en) Flame retardant matted resin composition
JP2001049053A (en) Resin composition and molded product thereof
JP6291193B2 (en) Non-halogen flame retardant resin composition, non-halogen flame retardant resin molded article, and production method thereof
JP7583514B2 (en) Thermoplastic polyurethane resin composition and molded article using said resin composition
JP4421067B2 (en) Thermoplastic polyurethane resin composition
JP2007077310A (en) Method for producing softened thermoplastic resin composition
JP2008167571A (en) Curing sheet for electric work

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20191213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231109

R150 Certificate of patent or registration of utility model

Ref document number: 7400156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150