WO2015129176A1 - 非接触温度センサ - Google Patents
非接触温度センサ Download PDFInfo
- Publication number
- WO2015129176A1 WO2015129176A1 PCT/JP2015/000598 JP2015000598W WO2015129176A1 WO 2015129176 A1 WO2015129176 A1 WO 2015129176A1 JP 2015000598 W JP2015000598 W JP 2015000598W WO 2015129176 A1 WO2015129176 A1 WO 2015129176A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thermistor
- pair
- insulating film
- temperature sensor
- formation region
- Prior art date
Links
- 239000010408 film Substances 0.000 claims abstract description 105
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 51
- 239000010409 thin film Substances 0.000 claims abstract description 41
- 230000001681 protective effect Effects 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 9
- 230000004043 responsiveness Effects 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 229920001721 polyimide Polymers 0.000 description 8
- 239000013078 crystal Chemical group 0.000 description 7
- 238000001514 detection method Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 150000004767 nitrides Chemical group 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000000059 patterning Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 239000011888 foil Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 229910052984 zinc sulfide Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- -1 polyethylene terephthalate Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229910004349 Ti-Al Inorganic materials 0.000 description 1
- 229910010037 TiAlN Inorganic materials 0.000 description 1
- 229910004692 Ti—Al Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000011796 hollow space material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/16—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
- G01K7/22—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
- G01K7/223—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor characterised by the shape of the resistive element
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/0225—Shape of the cavity itself or of elements contained in or suspended over the cavity
- G01J5/024—Special manufacturing steps or sacrificial layers or layer structures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/20—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/20—Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
- G03G15/2003—Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat
- G03G15/2014—Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat
- G03G15/2039—Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat with means for controlling the fixing temperature
Definitions
- the present invention relates to a non-contact temperature sensor suitable for measuring the temperature of a heating roller such as a copying machine or a printer.
- a heating roller used in a copying machine or a printer in which a temperature sensor is installed in a non-contact state in order to measure the temperature.
- a non-contact temperature sensor for example, in Patent Document 1, a flexible printed circuit board in which a conductor pattern is formed on the surface of a resin film and a temperature sensitive element is mounted on the conductive pattern, A non-contact temperature sensor including a housing fixed at a peripheral portion has been proposed.
- Patent Document 2 describes a non-contact temperature sensor in which a thermistor element glass-sealed is fixed to the back surface of an infrared transparent film. In this non-contact temperature sensor, the end or peripheral edge of the infrared transmitting film is fixed to a base having a fixing flange. The thermistor elements are electrically connected via lead wires.
- the flexible printed circuit board or film on which the temperature sensitive element is mounted is fixed to the casing or the base at the peripheral edge or end thereof, the heat generated by receiving infrared rays passes through the film.
- the temperature detection accuracy is lowered due to escape to the surrounding casing and base.
- the thermal capacity of the temperature sensing element is large and the thermal conductance due to the wiring is large, resulting in poor responsiveness.
- the flexible printed circuit board and film are fixed to the housing and base at the peripheral edge and edge, paper is jammed between the roller and sensor when measuring the temperature of the heating roller of a copying machine or the like.
- the present invention has been made in view of the above problems, and provides a non-contact temperature sensor that can suppress heat escape, is highly accurate and has excellent responsiveness, and can recover the original state even when a paper jam occurs.
- the purpose is to do.
- the non-contact temperature sensor according to the first invention is provided on at least one of an insulating film, a thin film thermistor portion patterned with a thermistor material on the surface of the insulating film, and an upper surface and a lower surface of the thin film thermistor portion.
- a pair of comb-shaped electrodes having a plurality of comb portions and patterned opposite to each other, a pair of pad electrodes patterned on the surface of the insulating film, and one end connected to the pair of comb-shaped electrodes And a pair of pattern wiring portions having the other end connected to the pair of pad electrodes and patterned on the surface of the insulating film, and a pair bonded to the pair of pad electrodes on the surface side of the insulating film
- the thin film thermistor portion is formed in a thermistor forming region disposed on the leading end side of the insulating film, and the pad
- the electrode is formed in an electrode forming region disposed on the base end side of the insulating film, and the distal ends of the pair of lead frames are disposed so as to surround the thermistor forming region in a non-contact manner.
- the tip side of the pair of lead frames is arranged so as to surround the thermistor formation region in a non-contact manner, so that the thin film thermistor is mechanically protected by the surrounding lead frame and Since it is not in contact with the lead frame, heat hardly escapes to the lead frame, and high response and high detection accuracy can be obtained.
- the sensor position will return to its original state due to the spring nature (elasticity) of the lead frame when the paper is removed. Can be recovered.
- a non-contact temperature sensor is the non-contact temperature sensor according to the first invention, wherein the base end side is bonded to the back side of the electrode forming region of the insulating film, and the tip end side surrounds the thermistor forming region in a non-contact manner.
- a pair of back side frames arranged in a That is, this non-contact temperature sensor includes a pair of back side frames whose base end side is bonded to the back side of the electrode formation region of the insulating film and whose front end side is disposed so as to surround the thermistor formation region in a non-contact manner.
- the thermistor forming region is mechanically protected not only by the front-side lead frame but also by the back-side frame, and is reinforced with higher rigidity.
- the electrode forming region can be supported by being sandwiched between the lead frame and the back frame, and the bonding strength between the lead frame and the pad electrode can be maintained to improve the reliability.
- a non-contact temperature sensor is characterized in that, in the first or second invention, the non-contact temperature sensor includes an insulating protective film provided so as to cover the back side of the thermistor formation region in a non-contact manner.
- this non-contact temperature sensor has an insulating protective film provided so as to cover the back side of the thermistor formation region in a non-contact manner, so that the protective film shields radiant heat on the back side, The influence and the interference of heat from other than the measurement object can be suppressed.
- a non-contact temperature sensor is characterized in that, in any one of the first to third inventions, the pattern wiring portion is formed of a thin film having a thickness of 100 to 300 nm. That is, in this non-contact temperature sensor, the pattern wiring portion is formed of a thin film having a film thickness of 100 to 300 nm, and therefore compared with a metal foil having a thickness of about 100 ⁇ m that is used as a wiring on a normal printed circuit board or the like. By making the nano-level thin film, the thermal conductance is greatly reduced, and higher response can be obtained.
- the film thickness is less than 100 nm, the insulating film may be broken when bent, and when the film thickness exceeds 300 nm, the thermal conductance becomes large as in the case of conventional metal foil wiring. Therefore, it is preferable to set the film thickness within the above range.
- a non-contact temperature sensor is the non-contact temperature sensor according to any one of the first to fourth inventions, wherein the insulating film is disposed between the thermistor formation region and the electrode formation region.
- the wiring formation region is formed narrower than the thermistor formation region and the electrode formation region. That is, in this non-contact temperature sensor, since the wiring formation region is formed to be narrower than the thermistor formation region and the electrode formation region, it is difficult for heat to escape through the wiring formation region, and higher responsiveness is obtained. be able to.
- the present invention has the following effects. That is, according to the non-contact temperature sensor according to the present invention, the tip end sides of the pair of lead frames are disposed so as to surround the periphery of the thermistor formation region in a non-contact manner. In addition to being protected by heat, it is difficult for heat to escape to the lead frame, so that high responsiveness and high detection accuracy can be obtained, and furthermore, since the heat capacity is small, high responsiveness can be obtained. Further, when a copying machine roller or the like is a measurement target, the original shape can be recovered by the spring property of the lead frame even if the distance from the roller changes due to a paper jam. Therefore, it can be installed closer to the roller than in the past, and high detection accuracy can be obtained. Therefore, according to the non-contact temperature sensor of the present invention, the thin film thermistor portion is protected, and the temperature can be measured accurately in a non-contact manner with high responsiveness. Suitable for measurement.
- FIG. 2 is a plan view (a) and a cross-sectional view (b) taken along the line AA showing an inside showing an embodiment of the non-contact temperature sensor according to the present invention.
- it is a top view which shows a sensor part.
- it is a perspective view of the principal part which shows the manufacturing process of a sensor part in order of a process.
- it is a top view which shows a lead frame attachment process.
- it is the top view and front view which show a back surface side frame attachment process.
- it is the top view and front view which show a protective film attachment process.
- the non-contact temperature sensor 1 includes an insulating film 2, a thin film thermistor section 3 that is patterned on the surface of the insulating film 2 with a thermistor material, and a thin film thermistor section.
- a pair of comb electrodes 4 having a plurality of comb portions 4a on 3 and patterned to face each other, a pair of pad electrodes 5 patterned on the surface of the insulating film 2, and a pair of one ends
- a pair of pattern wiring portions 6 connected to the comb-shaped electrode 4 and having the other end connected to a pair of pad electrodes 5 and patterned on the surface of the insulating film 2, and a pair on the surface side of the insulating film 2
- a pair of lead frames 7 bonded to the pad electrode 5 is provided.
- the above-described insulating film 2, thin film thermistor portion 3, comb electrode 4, pad electrode 5 and pattern wiring portion 6 constitute a sensor portion S.
- the sensor unit S includes a protective film 8 formed on the surface of the insulating film 2 except for the region where the pad electrode 5 is disposed.
- the thin film thermistor portion 3 is formed in a thermistor forming region 2 a disposed on the leading end side of the insulating film 2.
- the pad electrode 5 is formed in an electrode formation region 2 b disposed on the base end side of the insulating film 2.
- the insulating film 2 has a wiring formation region 2c in which the pattern wiring portion 6 is disposed between the thermistor formation region 2a and the electrode formation region 2b.
- the wiring formation region 2c is formed narrower than the thermistor formation region 2a and the electrode formation region 2b.
- the distal end sides of the pair of lead frames 7 are arranged so as to surround the thermistor forming region 2a in a non-contact manner. That is, the front end sides of the pair of lead frames 7 extend to both sides of the thermistor formation region 2a, and further bend in the opposite direction to extend from the side of the thermistor formation region 2a so as to surround the front portion 7a. have. These tip portions 7a are opposed to each other in the proximity state.
- the base end sides of the pair of lead frames 7 are formed wider than the side portions of the thermistor forming region 2a, and are welded and bonded to the pair of pad electrodes 5 in the electrode forming region 2b.
- the pair of lead frames 7 extend in parallel to each other, and only the side portions of the thermistor formation region 2a are formed narrow so as to surround the thermistor formation region 2a.
- the thermistor formation region 2a protrudes into a region surrounded by the distal ends of the pair of lead frames 7 without contacting them, and is in a state of floating in the air.
- the lead frame 7 may be bonded to the pad electrode 5 by soldering.
- the base end side is adhered to the back side of the electrode forming region 2b of the insulating film 2, and the tip end side is disposed so as to surround the thermistor forming region 2a in a non-contact manner.
- a pair of backside frames 9 and an insulating protective film 10 provided so as to cover the backside of the thermistor forming region 2a in a non-contact manner are provided. Therefore, in this non-contact temperature sensor 1, as shown in FIG. 1B, only the surface side of the insulating film 2 is opened, and the radiant heat from the measurement object (one-dot broken line arrow in FIG. 1). Can receive.
- the back frame 9 is preferably formed of the same metal material as the lead frame 7 in order to prevent deformation due to a difference in thermal expansion coefficient.
- the lead frame 7 and the back frame 9 are preferably made of a material having a certain degree of elasticity in order to maintain a position parallel to the measurement object and to restore the position when the sensor is bent.
- the pattern wiring portion 6 is formed of a thin film having a thickness of 100 to 300 nm.
- the insulating film 2 is formed of, for example, a polyimide resin sheet.
- the insulating film 2 can also be made of PET: polyethylene terephthalate, PEN: polyethylene naphthalate, etc., but for measuring the temperature of the heating roller, a polyimide film is desirable because the maximum use temperature is as high as 230 ° C.
- the thin film thermistor portion 3 is disposed on the leading end side of the insulating film 2 and is formed of a TiAlN thermistor material.
- the pattern wiring 6 and the comb-shaped electrode 4 have a thickness of 50 to 295 nm made of a noble metal such as Au on the bonding layer and a Cr or NiCr bonding layer having a thickness of 5 to 100 nm formed on the thin film thermistor portion 3. And an electrode layer formed.
- the pair of comb-shaped electrodes 4 has a comb-shaped pattern in which comb portions 4a are arranged alternately and arranged in opposition to each other.
- the protective film 8 is an insulating resin film or the like, for example, a polyimide film having a thickness of 20 ⁇ m is employed.
- the said protective film 10 is an insulating resin film etc., for example, a polyimide film is employ
- the thin film thermistor portion 3 is a columnar crystal that is formed in a film shape of, for example, a thickness of 100 to 1000 nm and extends in a direction perpendicular to the surface of the film. Further, it is preferable that the c-axis is oriented more strongly than the a-axis in the direction perpendicular to the film surface. Whether the a-axis orientation (100) is strong or the c-axis orientation (002) is strong in the direction perpendicular to the film surface (film thickness direction) is determined using X-ray diffraction (XRD).
- XRD X-ray diffraction
- the manufacturing method of the non-contact temperature sensor 1 includes a thin film thermistor portion forming step for patterning the thin film thermistor portion 3 on the insulating film 2 and a pair of comb-shaped electrodes 4 facing each other on the thin film thermistor portion 3.
- the sputtering conditions at that time were an ultimate vacuum of 5 ⁇ 10 ⁇ 6 Pa, a sputtering gas pressure of 0.4 Pa, a target input power (output) of 200 W, and a nitrogen gas fraction of 20 in a mixed gas atmosphere of Ar gas + nitrogen gas. %.
- a resist solution is applied onto the deposited thermistor film with a bar coater, pre-baked at 110 ° C. for 1 minute 30 seconds, exposed to light with an exposure apparatus, and unnecessary portions are removed with a developer, and further at 150 ° C. Patterning is performed by post-baking for minutes. Thereafter, the thermistor film unnecessary Ti x Al y N z by wet etching in a commercial Ti etchant, as shown in (b) of FIG. 3, with a resist peeling the thin-film thermistor portion 3 of a desired shape.
- a 20 nm-thick Cr film bonding layer is formed on the thin film thermistor portion 3 and the insulating film 2 by sputtering. Further, an Au film electrode layer is formed to a thickness of 100 nm on the bonding layer by sputtering.
- pre-baking was performed at 110 ° C. for 1 minute 30 seconds, and after exposure with an exposure apparatus, unnecessary portions were removed with a developer, and 150 ° C.
- patterning is performed by post-baking for 5 minutes. Thereafter, unnecessary electrode portions are wet-etched in the order of commercially available Au etchant and Cr etchant, and as shown in FIGS. 2 and 3C, desired pattern wiring 6 and comb-shaped electrode 4 are removed by resist stripping.
- a polyimide varnish is applied thereon by a printing method, and cured at 250 ° C. for 30 minutes to form a polyimide protective film 8 having a thickness of 20 ⁇ m as shown in FIG. Part S is produced.
- a pair of lead frames 7 are welded to the pair of pad electrodes 5 of the sensor unit S on the base end side. At this time, the pair of lead frames 7 are arranged so as to surround the thermistor formation region 2a on the tip side.
- a pair of back surface side frames 9 are bonded to the back surface side of the insulating film 2 so as to face the pair of lead frames 7 with an adhesive or the like.
- the pair of rear surface side frames 9 are also arranged so as to surround the thermistor forming region 2a on the front end side.
- a non-contact temperature is obtained by sticking a polyimide film protective film 10 on the pair of backside frames 9 with an adhesive or the like and closing the upper opening between the pair of backside frames 9.
- the sensor 1 is manufactured.
- the several thin film thermistor part 3, the comb-shaped electrode 4, the pattern wiring 6, the pad electrode 5, and the protective film 10 are formed as mentioned above on the large format sheet of the insulating film 2. After that, the sensor sheet S is cut from the large sheet.
- the distal end sides of the pair of lead frames 7 are arranged so as to surround the thermistor forming region 2a in a non-contact manner, so that the thin film thermistor portion 3 is the surrounding lead frame. 7 is mechanically protected, and since it is not in contact with the surrounding lead frame 7, heat hardly escapes to the lead frame 7, and high detection accuracy can be obtained. Further, high response can be obtained by receiving radiant heat at the thin film thermistor portion 3 having a smaller heat capacity than a chip-type thermistor element or the like, and the thermistor formation region 2a protrudes in a non-contact manner in a hollow space.
- the base end side is attached to the back side of the electrode forming region 2b of the insulating film 2, and the front end side is provided with a pair of back side frames 9 arranged so as to surround the thermistor forming region 2a in a non-contact manner.
- the thermistor formation region 2a is mechanically protected by the back surface side frame 9 in addition to the front surface side lead frame 7, and is reinforced with higher rigidity.
- the electrode forming region 2b can be supported by being sandwiched between the lead frame 7 and the back frame 9, and the bonding strength between the lead frame 7 and the pad electrode 5 can be maintained to improve the reliability.
- the protective film 10 shields radiant heat on the back side, and influences of outside air, etc. Interference with heat from other than the object can be suppressed.
- the pattern wiring portion 6 is formed of a thin film having a film thickness of 100 to 300 nm, it is reduced by a nano-level thin film as compared with a metal foil having a thickness of about 100 ⁇ m that is used as a wiring on a normal printed circuit board or the like. The thermal conductance is greatly reduced, and higher responsiveness can be obtained.
- the wiring formation region 2c is formed narrower than the thermistor formation region 2a and the electrode formation region 2b, it is difficult for heat to escape through the wiring formation region 2c, and higher responsiveness can be obtained. .
- the thin film thermistor portion 3 is formed of the thermistor material layer on the insulating film 2, the thin film thermistor is formed without firing and has a high B constant and high heat resistance.
- the part 3 can use the insulating film 2 having a low heat resistance such as a resin film, and a thin and flexible thermistor sensor having good thermistor characteristics.
- SYMBOLS 1 Non-contact temperature sensor, 2 ... Insulating film, 2a ... Thermistor formation area, 2b ... Electrode formation area, 2c ... Wiring formation area, 3 ... Thin film thermistor part, 4 ... Comb-shaped electrode, 4a ... Comb part, 5 ... Pad Electrode, 6 ... Pattern wiring, 7 ... Lead frame, 8 ... Protective film, 9 ... Back side frame, 10 ... Protective film, S ... Sensor part
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
- Thermistors And Varistors (AREA)
- Radiation Pyrometers (AREA)
Abstract
Description
また、特許文献2には、赤外線透過性フィルムの裏面にガラス溶封されたサーミスタ素子が固定された非接触温度センサが記載されている。この非接触温度センサでは、赤外線透過性フィルムの端部又は周縁部が固定用フランジを有するベースに固定されている。また、サーミスタ素子はリード線を介して電気的に接続されている。
すなわち、従来の技術では、感温素子が実装されたフレキシブルプリント基板やフィルムがその周縁部分や端部で筐体やベースに固定されているため、赤外線を受けて生じた熱がフィルムを介して周囲の筐体やベースに逃げてしまい、温度の検出精度が低くなってしまうという問題があった。また、感温素子の熱容量が大きいと共に配線による熱コンダクタンスが大きく、応答性も悪くなってしまうという問題があった。
さらに、フレキシブルプリント基板やフィルムがその周縁部分や端部で筐体やベースに固定されているため、複写機等の加熱ローラの温度を測定する際に、ローラとセンサとの間に紙が詰まった場合に筐体やベースが曲がる又は折れる等の問題があった。このため、紙を取り除いた後にローラとセンサとの距離が変わってしまい、原状を回復できない不都合があった。また、このような破損の問題があるため、従来はセンサを支障のない距離までローラから離して配置しており、検出精度が落ちてしまう問題があった。
すなわち、この非接触温度センサでは、基端側が絶縁性フィルムの電極形成領域の裏面側に接着され、先端側がサーミスタ形成領域の周囲を非接触で囲んで配されている一対の裏面側フレームを備えているので、表面側のリードフレームに加えて裏面側フレームによってもサーミスタ形成領域が機械的に保護され、より高い剛性を有して補強される。また、電極形成領域をリードフレームと裏面側フレームとで挟んで支持することができ、リードフレームとパッド電極との接合強度を維持して信頼性の向上を図ることができる。
すなわち、この非接触温度センサでは、サーミスタ形成領域の裏面側を非接触で覆って設けられた絶縁性の保護フィルムを備えているので、保護フィルムが裏面側で輻射熱を遮蔽して、外気等の影響や測定対象物以外からの熱の干渉を抑制することができる。
すなわち、この非接触温度センサでは、パターン配線部が、膜厚100~300nmの薄膜で形成されているので、通常のプリント基板等で配線として用いられている厚さ100μm程度の金属箔に比べてナノレベルの薄膜化によって大幅に熱コンダクタンスが小さくなって、さらに高い応答性を得ることができる。なお、膜厚が100nm未満の場合は、絶縁性フィルムが曲がった際に断線することがあり、膜厚が300nmを超える場合は、従来の金属箔の配線と同様に熱コンダクタンスが大きくなってしまうため、上記膜厚範囲とすることが好ましい。
すなわち、この非接触温度センサでは、配線形成領域が、サーミスタ形成領域及び電極形成領域よりも幅狭に形成されているので、配線形成領域を介して熱が逃げ難くなり、より高い応答性を得ることができる。
すなわち、本発明に係る非接触温度センサによれば、一対のリードフレームの先端側が、サーミスタ形成領域の周囲を非接触で囲んで配されているので、薄膜サーミスタ部が周囲のリードフレームで機械的に保護されると共に、熱がリードフレームに逃げ難く、高い応答性かつ高い検出精度を得ることができ、さらに熱容量が小さいことで、高い応答性を得ることができる。また、複写機のローラ等を測定対象とした場合、紙詰まりでローラとの距離が変わっても、リードフレームのバネ性により原状を回復することができる。したがって、従来よりもローラに近づけて設置することも可能になり、高い検出精度を得ることが可能になる。
したがって、本発明の非接触温度センサによれば、薄膜サーミスタ部が保護されていると共に、高い応答性で正確に温度を非接触で測定することができ、複写機やプリンタ等の加熱ローラの温度測定用として好適である。
また、上記センサ部Sは、パッド電極5が配された領域を除いて絶縁性フィルム2の表面に形成された保護膜8を備えている。
なお、リードフレーム7は、はんだ付けでパッド電極5に接合して接着しても構わない。
上記絶縁性フィルム2は、例えばポリイミド樹脂シートで形成されている。なお、絶縁性フィルム2としては、他にPET:ポリエチレンテレフタレート,PEN:ポリエチレンナフタレート等でも作製できるが、加熱ローラの温度測定用としては、最高使用温度が230℃と高いためポリイミドフィルムが望ましい。
一対の櫛型電極4は、互いに対向状態に配されて交互に櫛部4aが並んだ櫛型パターンとされている。
上記保護フィルム10は、絶縁性樹脂フィルム等であり、例えばポリイミドフィルムが採用される。
なお、膜の表面に対して垂直方向(膜厚方向)にa軸配向(100)が強いかc軸配向(002)が強いかの判断は、X線回折(XRD)を用いて結晶軸の配向性を調べることで、(100)(a軸配向を示すミラー指数)と(002)(c軸配向を示すミラー指数)とのピーク強度比から、「(100)のピーク強度」/「(002)のピーク強度」が1未満であることで決定する。
本実施形態の非接触温度センサ1の製造方法は、絶縁性フィルム2上に薄膜サーミスタ部3をパターン形成する薄膜サーミスタ部形成工程と、互いに対向した一対の櫛型電極4を薄膜サーミスタ部3上に配して絶縁性フィルム2上に一対のパターン配線6をパターン形成する電極形成工程と、絶縁性フィルム2の表面に保護膜8を形成する保護膜形成工程と、パッド電極5にリードフレーム7を溶接するリードフレーム接着工程と、絶縁性フィルム2に裏面側フレーム9を接着する裏面側フレーム接着工程と、保護フィルム10を裏面側フレーム9に接着する保護フィルム接着工程とを有している。
次に、成膜した電極層の上にレジスト液をバーコーターで塗布した後、110℃で1分30秒のプリベークを行い、露光装置で感光後、現像液で不要部分を除去し、150℃で5分のポストベークにてパターニングを行う。その後、不要な電極部分を市販のAuエッチャント及びCrエッチャントの順番でウェットエッチングを行い、図2及び図3の(c)に示すように、レジスト剥離にて所望のパターン配線6及び櫛型電極4を形成する。
次に、センサ部Sの一対のパッド電極5に、図4に示すように、一対のリードフレーム7をその基端側で溶接する。このとき、一対のリードフレーム7を、その先端側でサーミスタ形成領域2aを囲むように配置する。
そして、図6に示すように、一対の裏面側フレーム9上にポリイミドフィルムの保護フィルム10を接着剤等で貼り付け、一対の裏面側フレーム9間の上部開口部分を塞ぐことで、非接触温度センサ1が作製される。
また、パターン配線部6が、膜厚100~300nmの薄膜で形成されているので、通常のプリント基板等で配線として用いられている厚さ100μm程度の金属箔に比べてナノレベルの薄膜化によって大幅に熱コンダクタンスが小さくなって、さらに高い応答性を得ることができる。
また、配線形成領域2cが、サーミスタ形成領域2a及び電極形成領域2bよりも幅狭に形成されているので、配線形成領域2cを介して熱が逃げ難くなり、より高い応答性を得ることができる。
また、この金属窒化物材料では、膜の表面に対して垂直方向に延在している柱状結晶であるので、膜の結晶性が高く、高い耐熱性が得られる。
さらに、この金属窒化物材料では、膜の表面に対して垂直方向にa軸よりc軸を強く配向させることで、a軸配向が強い場合に比べて高いB定数が得られる。
また、上記実施形態では、裏面フレームと保護フィルムとを別体として接着しているが、これらを樹脂等でケース状に一体化して絶縁性フィルムの裏面に接着しても構わない。
Claims (5)
- 絶縁性フィルムと、
前記絶縁性フィルムの表面にサーミスタ材料でパターン形成された薄膜サーミスタ部と、
前記薄膜サーミスタ部の上面及び下面の少なくとも一方に複数の櫛部を有して互いに対向してパターン形成された一対の櫛型電極と、
前記絶縁性フィルムの表面にパターン形成された一対のパッド電極と、
一端が前記一対の櫛型電極に接続されていると共に他端が前記一対のパッド電極に接続され前記絶縁性フィルムの表面にパターン形成された一対のパターン配線部と、
前記絶縁性フィルムの表面側で前記一対のパッド電極に接着された一対のリードフレームとを備え、
前記薄膜サーミスタ部が前記絶縁性フィルムの先端側に配されたサーミスタ形成領域に形成され、
前記パッド電極が前記絶縁性フィルムの基端側に配された電極形成領域に形成され、
前記一対のリードフレームの先端側が、前記サーミスタ形成領域の周囲を非接触で囲んで配されていることを特徴とする非接触温度センサ。 - 請求項1に記載の非接触温度センサにおいて、
基端側が前記絶縁性フィルムの前記電極形成領域の裏面側に接着され、先端側が前記サーミスタ形成領域の周囲を非接触で囲んで配されている一対の裏面側フレームを備えていることを特徴とする非接触温度センサ。 - 請求項2に記載の非接触温度センサにおいて、
前記サーミスタ形成領域の裏面側を非接触で覆って設けられた絶縁性の保護フィルムを備えていることを特徴とする非接触温度センサ。 - 請求項1に記載の非接触温度センサにおいて、
前記パターン配線部が、膜厚100~300nmの薄膜で形成されていることを特徴とする非接触温度センサ。 - 請求項1に記載の非接触温度センサにおいて、
前記絶縁性フィルムが、前記サーミスタ形成領域と前記電極形成領域との間に、前記パターン配線部が配された配線形成領域を有し、
前記配線形成領域が、前記サーミスタ形成領域及び前記電極形成領域よりも幅狭に形成されていることを特徴とする非接触温度センサ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167021914A KR20160125369A (ko) | 2014-02-26 | 2015-02-10 | 비접촉 온도 센서 |
EP15754934.6A EP3112829A4 (en) | 2014-02-26 | 2015-02-10 | Non-contact temperature sensor |
US15/120,835 US10168232B2 (en) | 2014-02-26 | 2015-02-10 | Non-contact temperature sensor |
CN201580004195.XA CN105899921B (zh) | 2014-02-26 | 2015-02-10 | 非接触式温度传感器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014035330A JP6256690B2 (ja) | 2014-02-26 | 2014-02-26 | 非接触温度センサ |
JP2014-035330 | 2014-02-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015129176A1 true WO2015129176A1 (ja) | 2015-09-03 |
Family
ID=54008514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/000598 WO2015129176A1 (ja) | 2014-02-26 | 2015-02-10 | 非接触温度センサ |
Country Status (7)
Country | Link |
---|---|
US (1) | US10168232B2 (ja) |
EP (1) | EP3112829A4 (ja) |
JP (1) | JP6256690B2 (ja) |
KR (1) | KR20160125369A (ja) |
CN (1) | CN105899921B (ja) |
TW (1) | TWI645168B (ja) |
WO (1) | WO2015129176A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106683381A (zh) * | 2017-01-18 | 2017-05-17 | 国网山东省电力公司荣成市供电公司 | 一种用电信息采集计量系统 |
CN106775495A (zh) * | 2017-01-18 | 2017-05-31 | 国网山东省电力公司荣成市供电公司 | 一种有序用电管理系统 |
WO2020032021A1 (ja) * | 2018-08-10 | 2020-02-13 | Semitec株式会社 | 温度センサ及び温度センサを備えた装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0569643U (ja) * | 1992-02-24 | 1993-09-21 | 株式会社芝浦電子製作所 | 輻射センサ |
JPH07286911A (ja) * | 1994-04-19 | 1995-10-31 | Ishizuka Denshi Kk | 温度センサ |
JPH08110268A (ja) * | 1994-10-12 | 1996-04-30 | Ishizuka Denshi Kk | 温度センサ |
JPH08148727A (ja) * | 1994-11-22 | 1996-06-07 | Matsushita Electric Works Ltd | 半導体装置及び赤外線検出素子 |
JP2005214641A (ja) * | 2004-01-27 | 2005-08-11 | Ishizuka Electronics Corp | 温度センサ |
JP2008058370A (ja) * | 2006-08-29 | 2008-03-13 | Konica Minolta Business Technologies Inc | 温度検出装置、定着装置および画像形成装置 |
JP2013210303A (ja) * | 2012-03-30 | 2013-10-10 | Mitsubishi Materials Corp | 温度センサ及びその製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4928513A (en) * | 1986-07-29 | 1990-05-29 | Sharp Kabushiki Kaisha | Sensor |
JPH0810645B2 (ja) * | 1988-04-21 | 1996-01-31 | 松下電器産業株式会社 | 薄膜サーミスタ |
CA2047639C (en) * | 1990-07-25 | 1997-09-30 | Takeshi Nagai | Sic thin-film thermistor |
US5914488A (en) * | 1996-03-05 | 1999-06-22 | Mitsubishi Denki Kabushiki Kaisha | Infrared detector |
US5962854A (en) | 1996-06-12 | 1999-10-05 | Ishizuka Electronics Corporation | Infrared sensor and infrared detector |
US6172592B1 (en) * | 1997-10-24 | 2001-01-09 | Murata Manufacturing Co., Ltd. | Thermistor with comb-shaped electrodes |
JP3921320B2 (ja) * | 2000-01-31 | 2007-05-30 | 日本電気株式会社 | 熱型赤外線検出器およびその製造方法 |
JP2001349787A (ja) * | 2000-06-06 | 2001-12-21 | Seiko Epson Corp | 赤外線検出素子および測温計 |
JP3778139B2 (ja) * | 2002-06-14 | 2006-05-24 | ブラザー工業株式会社 | 温度検出器、熱定着器および画像形成装置 |
-
2014
- 2014-02-26 JP JP2014035330A patent/JP6256690B2/ja not_active Expired - Fee Related
-
2015
- 2015-02-10 KR KR1020167021914A patent/KR20160125369A/ko not_active Application Discontinuation
- 2015-02-10 WO PCT/JP2015/000598 patent/WO2015129176A1/ja active Application Filing
- 2015-02-10 CN CN201580004195.XA patent/CN105899921B/zh not_active Expired - Fee Related
- 2015-02-10 US US15/120,835 patent/US10168232B2/en active Active
- 2015-02-10 EP EP15754934.6A patent/EP3112829A4/en not_active Withdrawn
- 2015-02-16 TW TW104105333A patent/TWI645168B/zh not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0569643U (ja) * | 1992-02-24 | 1993-09-21 | 株式会社芝浦電子製作所 | 輻射センサ |
JPH07286911A (ja) * | 1994-04-19 | 1995-10-31 | Ishizuka Denshi Kk | 温度センサ |
JPH08110268A (ja) * | 1994-10-12 | 1996-04-30 | Ishizuka Denshi Kk | 温度センサ |
JPH08148727A (ja) * | 1994-11-22 | 1996-06-07 | Matsushita Electric Works Ltd | 半導体装置及び赤外線検出素子 |
JP2005214641A (ja) * | 2004-01-27 | 2005-08-11 | Ishizuka Electronics Corp | 温度センサ |
JP2008058370A (ja) * | 2006-08-29 | 2008-03-13 | Konica Minolta Business Technologies Inc | 温度検出装置、定着装置および画像形成装置 |
JP2013210303A (ja) * | 2012-03-30 | 2013-10-10 | Mitsubishi Materials Corp | 温度センサ及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3112829A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN105899921B (zh) | 2019-10-29 |
EP3112829A4 (en) | 2017-11-08 |
JP6256690B2 (ja) | 2018-01-10 |
JP2015161520A (ja) | 2015-09-07 |
EP3112829A1 (en) | 2017-01-04 |
TW201538937A (zh) | 2015-10-16 |
CN105899921A (zh) | 2016-08-24 |
US20160363485A1 (en) | 2016-12-15 |
TWI645168B (zh) | 2018-12-21 |
KR20160125369A (ko) | 2016-10-31 |
US10168232B2 (en) | 2019-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2811271B1 (en) | Infrared sensor | |
JP5928829B2 (ja) | 温度センサ | |
WO2014038719A1 (ja) | 温度センサ | |
JP6256690B2 (ja) | 非接触温度センサ | |
JP6052614B2 (ja) | 温度センサ | |
JP6422007B2 (ja) | 非接触温度センサ | |
JP5928831B2 (ja) | 温度センサ | |
JP2014145655A (ja) | 温度センサ | |
JP6603991B2 (ja) | 温度センサ | |
JP2017072401A (ja) | 温度センサ | |
WO2017017916A1 (ja) | 温度センサ | |
JP6128379B2 (ja) | 非接触温度センサ | |
JP6052609B2 (ja) | 温度センサ | |
JP6583073B2 (ja) | 温度センサ | |
JP2017053782A (ja) | 温度センサ | |
JP6641770B2 (ja) | 温度センサ | |
JP6011286B2 (ja) | 温度センサ | |
JP6015517B2 (ja) | 温度センサ | |
JP2016051816A (ja) | 温度センサ及びその製造方法 | |
JPH05209786A (ja) | 焦電素子及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15754934 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20167021914 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15120835 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2015754934 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015754934 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |