WO2015115670A1 - カーボンナノチューブ繊維およびその製造方法 - Google Patents
カーボンナノチューブ繊維およびその製造方法 Download PDFInfo
- Publication number
- WO2015115670A1 WO2015115670A1 PCT/JP2015/053158 JP2015053158W WO2015115670A1 WO 2015115670 A1 WO2015115670 A1 WO 2015115670A1 JP 2015053158 W JP2015053158 W JP 2015053158W WO 2015115670 A1 WO2015115670 A1 WO 2015115670A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cnt
- carbon nanotube
- crushed
- dispersion
- cnts
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/159—Carbon nanotubes single-walled
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/168—After-treatment
- C01B32/174—Derivatisation; Solubilisation; Dispersion in solvents
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/09—Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/02—Single-walled nanotubes
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2101/00—Inorganic fibres
- D10B2101/10—Inorganic fibres based on non-oxides other than metals
- D10B2101/12—Carbon; Pitch
- D10B2101/122—Nanocarbons
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/16—Physical properties antistatic; conductive
Definitions
- the present invention relates to a carbon nanotube fiber and a method for producing the same, and more particularly to a carbon nanotube fiber made of an aggregate of a plurality of carbon nanotubes and a method for producing the carbon nanotube fiber.
- CNT carbon nanotubes
- CNT fiber carbon nanotube fiber
- the CNT fiber is required to further improve the performance (conductivity, thermal conductivity, mechanical properties, etc.).
- the CNT fiber having excellent characteristics is high. It is important to gather with density.
- the conventional CNT fibers cannot collect CNTs having excellent characteristics at a high density, and the conventional CNT fibers have room for further improvement in performance.
- an object of the present invention is to provide a carbon nanotube fiber excellent in performance such as conductivity, thermal conductivity, and mechanical characteristics.
- the present inventors have intensively studied to achieve the above object. Then, the present inventors have formed carbon nanotube fibers using at least a part of carbon nanotubes having a predetermined structure, so that carbon nanotube fibers excellent in performance such as conductivity, thermal conductivity, and mechanical properties can be obtained. As a result, the present invention was completed.
- the present invention aims to solve the above-mentioned problem advantageously, and the carbon nanotube fiber of the present invention comprises an aggregate of a plurality of carbon nanotubes, and the plurality of carbon nanotubes are at least It includes carbon nanotubes having a partially collapsed structure.
- the carbon nanotube fiber excellent in performance, such as electroconductivity, thermal conductivity, and a mechanical characteristic, will be obtained.
- the carbon nanotubes having a structure in which at least a part thereof is crushed exist in a ratio of 5 or more in 100 carbon nanotubes. If there are five or more carbon nanotubes having a structure in which at least a portion is crushed in 100 carbon nanotubes, performance such as conductivity, thermal conductivity and mechanical properties can be sufficiently enhanced. It is.
- the carbon nanotube having a structure in which at least a part is crushed has a single-layer structure. This is because if the carbon nanotubes having a structure in which at least a part is crushed have a single-layer structure, the carbon nanotube fibers can be further improved in performance such as conductivity, thermal conductivity and mechanical properties.
- the carbon nanotube having a structure in which at least a part is crushed has a portion where fullerene is not inserted by the fullerene insertion treatment. If the carbon nanotube having a structure in which at least a part is crushed has a portion in which fullerene is not inserted, it is possible to further improve the performance of the carbon nanotube fiber such as conductivity, thermal conductivity and mechanical properties. It is.
- the average width length of the collapsed portion of the carbon nanotube having a structure in which at least a portion is collapsed is 5 nm or more and 9 nm or less. If the average width length of the collapsed portion of the carbon nanotube having a structure in which at least a portion is collapsed is 5 nm or more and 9 nm or less, the performance of the carbon nanotube fiber such as conductivity, thermal conductivity, and mechanical characteristics is further improved. Because you can.
- the BET specific surface area of the plurality of carbon nanotubes is preferably 600 m 2 / g or more. If the BET specific surface area of a plurality of carbon nanotubes including carbon nanotubes having a structure in which at least a part is crushed is 600 m 2 / g or more, the performance such as conductivity, thermal conductivity and mechanical properties is sufficiently enhanced. Because you can.
- the carbon nanotube fiber of the present invention preferably has a density of 1.0 g / cm 3 or more and 1.5 g / cm 3 or less. If the density is 1.0 g / cm 3 or more and 1.5 g / cm 3 or less, the performance such as conductivity, thermal conductivity and mechanical properties can be sufficiently enhanced, and it can be easily manufactured. It is.
- Another object of the present invention is to advantageously solve the above-mentioned problems, and the method for producing a carbon nanotube fiber of the present invention comprises a plurality of carbons including carbon nanotubes having a structure in which at least a part is crushed.
- the method includes a step of extruding and spinning a carbon nanotube dispersion containing nanotubes, a dispersant, and a solvent into a coagulation solution.
- the carbon nanotube fiber produced in this manner includes carbon nanotubes having a structure in which at least a part is crushed, and is excellent in performance such as conductivity, thermal conductivity, and mechanical characteristics.
- a coarse dispersion obtained by adding the plurality of carbon nanotubes and the dispersant to the solvent is subjected to a dispersion treatment in which a cavitation effect or a crushing effect is obtained.
- the method further includes the step of preparing the carbon nanotube dispersion by dispersing the carbon nanotubes. If a carbon nanotube dispersion liquid is prepared using a dispersion treatment that provides a cavitation effect or a crushing effect, the resulting carbon nanotube fiber can have sufficiently improved performance such as conductivity, thermal conductivity, and mechanical properties. It is.
- the carbon nanotube fiber of the present invention described above can be favorably manufactured by using the above-described method for manufacturing the carbon nanotube fiber of the present invention.
- the carbon nanotube fiber of the present invention includes a carbon nanotube having a structure in which at least a part is crushed.
- the carbon nanotube fiber of this invention can be manufactured using the manufacturing method of the carbon nanotube fiber of this invention.
- the carbon nanotube fiber of the present invention can be used as it is or as a carbon nanotube yarn obtained by twisting a plurality of carbon nanotube fibers.
- the carbon nanotube fiber of the present invention is composed of an aggregate of CNTs formed by aggregating a plurality of carbon nanotubes (CNT) in a fibrous form.
- the CNT fiber of the present invention may be referred to as a carbon nanotube having a structure in which all or a part of a plurality of CNTs constituting the aggregate is at least partially crushed (hereinafter referred to as “crushed CNT”). ) Is one of the major features. And since the CNT fiber of this invention contains the crushed CNT, it is excellent in performance, such as electroconductivity, heat conductivity, and a mechanical characteristic.
- the carbon nanotube fiber may be a monofilament composed of one single fiber (CNT single fiber) or a multifilament composed of a plurality of single fibers.
- the reason why the performance of the CNT fiber is improved by using a plurality of CNTs including crushed CNTs is not clear, but when crushed CNTs are used, only CNTs having no crushed structure are used. Compared with the case where the CNTs are gathered together, the density of the CNT fibers can be improved, and because the crushed CNT itself has excellent characteristics, it is assumed that the performance of the CNT fibers is improved.
- the plurality of CNTs constituting the CNT fiber needs to include crushed CNTs. Since crushed CNTs are different from general cylindrical CNTs in terms of external shape and internal space structure, when used for CNT fibers, etc., they exhibit excellent characteristics and can be assembled at a high density It is inferred.
- CNT and fullerene C60
- heat treatment fullerene insertion treatment
- the CNT has a portion where fullerene is not inserted.
- fullerenes are inserted only at both ends of the CNT width direction (direction perpendicular to the CNT extending direction) as shown in an enlarged view in FIG. Fullerenes are not inserted except at both ends.
- CNT having a structure in which at least a part is crushed may include one “collapsed structure” in one CNT or a plurality of “collapsed structures”. Good.
- the structure of the crushed CNT is not clear, but the assumed structure is a cylindrical body formed by rounding graphene, and a cross-sectional shape that is orthogonal to the extending direction (axial direction) of the cylindrical body A structure in which at least a part of is non-circular is mentioned.
- the cross-sectional shape of the crushed CNT has a maximum width in the direction perpendicular to the longitudinal direction of the cross section in the vicinity of both ends in the longitudinal direction of the cross section. A shape larger than the maximum width in the direction is more preferable, and a dumbbell shape (a shape in which the central portion in the cross-sectional longitudinal direction is crushed) is particularly preferable.
- “near the central portion in the longitudinal direction of the cross section” means the longitudinal direction of the cross section from the longitudinal center line of the cross section (a straight line passing through the longitudinal center of the cross section and perpendicular to the longitudinal direction line). A region within 30% of the width is referred to, and “near the end in the longitudinal direction of the cross section” refers to a region on the outer side in the longitudinal direction from “near the central portion in the longitudinal direction of the cross section”.
- crushed CNT has the structure where at least one part was crushed from the time of the synthesis
- carbon nanotubes having a structure that is at least partially collapsed from the time of synthesis are normal carbon nanotubes having a cylindrical structure, or structures that are collapsed at the time of synthesis.
- the carbon nanotubes have properties that are significantly different from those of carbon nanotubes that are formed in a cylindrical structure and then undergo structural deformation.
- a collapsed CNT having a structure that is at least partially collapsed from the time of synthesis forms a six-membered ring network in which carbon atoms are SP 2 bonded so as to have the above-mentioned “collapsed structure”. It is presumed that the substance is a new substance, and is considered to be a new substance different from any known carbon structure.
- the average width length of the crushed portion of the crushed CNT (the portion in which fullerene is not inserted during the fullerene insertion process) is preferably 5 nm or more and 9 nm or less. It is because the performance of the CNT fiber can be further improved if the average width length of the collapsed portion of the CNT is 5 nm or more and 9 nm or less.
- the “average width length of the crushed portion of the CNT” is a transmission electron microscope, and the length in the CNT width direction of the crushed portion of any 10 CNTs having a crushed structure is measured. The arithmetic average value obtained by The length in the width direction of the crushed CNTs is preferably distributed within a range of 1 nm or more and 10 nm or less.
- the plurality of CNTs constituting the CNT fiber including the crushed CNTs described above are not particularly limited, and may have a single-layer structure or a multilayer structure, but preferably have a single-layer structure. . That is, the plurality of CNTs including the crushed CNTs are preferably single-walled carbon nanotubes. In particular, when the crushed CNT has a single-layer structure, the performance of the CNT fiber can be improved satisfactorily.
- the ratio of the G band peak intensity to the D band peak intensity in the Raman spectrum is preferably 1 or more, preferably 50 or less, and preferably 10 or less. Is more preferable.
- a G / D ratio of 10 or less indicates that many amorphous portions exist.
- the G / D ratio is an index generally used for evaluating the quality of CNTs.
- the G band is a vibration mode derived from a hexagonal lattice structure of graphite
- the D band is a vibration mode derived from an amorphous part.
- the plurality of CNTs have a BET specific surface area of preferably 600 m 2 / g or more, more preferably 800 m 2 / g or more, preferably 1400 m 2 / g or less, more preferably 1200 m 2 / g or less. .
- the BET specific surface area of the plurality of CNTs is 600 m 2 / g or more, the performance of the CNT fibers can be sufficiently improved.
- it is because it can suppress that the performance of a CNT fiber falls by aggregation of CNT if the BET specific surface area of several CNT is 1400 m ⁇ 2 > / g or less.
- the “BET specific surface area” can be determined by measuring the nitrogen adsorption isotherm at 77K and using the BET method.
- BELSORP registered trademark
- -max manufactured by Nippon Bell Co., Ltd.
- the plurality of CNTs have a length of 100 ⁇ m or more and 5000 ⁇ m or less when manufactured.
- the plurality of CNTs preferably contain 5 or more crushed CNTs per 100 CNTs, more preferably 10 or more, and even more preferably 20 or more. , Particularly preferably 30 or more. This is because if the crushed CNT is contained in a ratio of 5 or more in 100 CNTs, the performance of the CNT fiber can be sufficiently enhanced.
- the “content ratio of crushed CNT” is obtained by observing 100 arbitrary carbon nanotubes using a transmission electron microscope and counting the number of the crushed CNT present in the 100 CNTs. Can be sought.
- a plurality of CNTs including crushed CNTs can be produced by synthesizing a plurality of CNTs including crushed CNTs, or crushed CNTs and general CNTs (cylindrical CNTs). It can also be produced by mixing after being synthesized separately.
- a method for synthesizing and manufacturing a plurality of CNTs including crushed CNTs will be described.
- a method of synthesizing and producing a plurality of CNTs including crushed CNTs employs a CVD method.
- the two steps (1) and (2) are collectively referred to as a “catalyst carrying layer forming step”, and the two steps (3) and (4) are collectively referred to as a “catalyst layer forming step”. ". And according to this manufacturing method, since the drying temperature at the time of producing a catalyst base material by a wet process and obtaining a catalyst layer (iron thin film) by drying is 50 ° C. or lower, Containing CNTs can be produced.
- the coating liquid A containing an aluminum compound is applied on a base material, and the coating liquid A is dried to form an aluminum thin film on the base material.
- the aluminum thin film thus formed on the substrate functions as a catalyst supporting layer for supporting an iron thin film (catalyst layer) described later on the aluminum thin film.
- the base material used for the catalyst base material is, for example, a flat plate-like member, and is preferably one that can maintain the shape even at a high temperature of 500 ° C. or higher.
- metals such as iron, nickel, chromium, molybdenum, tungsten, titanium, aluminum, manganese, cobalt, copper, silver, gold, platinum, niobium, tantalum, lead, zinc, gallium, indium, germanium and antimony,
- alloys and oxides containing these metals, or nonmetals such as silicon, quartz, glass, mica, graphite, and diamond, ceramics, and the like can be given.
- the metal material is preferable because it is low in cost and easy to process as compared with silicon and ceramic, and in particular, Fe-Cr (iron-chromium) alloy, Fe-Ni (iron-nickel) alloy, Fe-Cr-Ni ( An iron-chromium-nickel alloy or the like is preferred.
- the thickness of the substrate is not particularly limited, and for example, a thin film having a thickness of about several ⁇ m to a thickness of about several cm can be used.
- the thickness of the substrate is 0.05 mm or more and 3 mm or less.
- a base material Preferably it is 20 cm ⁇ 2 > or more, More preferably, it is 30 cm ⁇ 2 > or more.
- the shape of the substrate is not particularly limited, but can be rectangular or square.
- the coating liquid A is obtained by dissolving or dispersing an aluminum compound in an organic solvent.
- the aluminum compound contained in the coating liquid A will not be specifically limited if it is a compound containing an aluminum atom,
- the metal organic compound and metal salt which can form an alumina thin film as an aluminum thin film are preferable.
- metal organic compounds that can form an alumina thin film include aluminum trimethoxide, aluminum triethoxide, aluminum tri-n-propoxide, aluminum tri-i-propoxide, aluminum tri-n-butoxide, aluminum tri- Examples thereof include aluminum alkoxides such as sec-butoxide and aluminum tri-tert-butoxide.
- Other examples of the metal organic compound containing aluminum include a complex such as tris (acetylacetonato) aluminum (III).
- metal salts that can form an alumina thin film include aluminum sulfate, aluminum chloride, aluminum nitrate, aluminum bromide, aluminum iodide, aluminum lactate, basic aluminum chloride, basic aluminum nitrate, and the like. These can be used alone or as a mixture.
- organic solvent contained in the coating liquid A various organic solvents such as alcohols, glycols, ketones, ethers, esters, hydrocarbons and the like can be used, but the solubility of metal organic compounds and metal salts is good.
- Alcohol or glycol is preferably used. These organic solvents may be used alone or in combination of two or more.
- As the alcohol, methanol, ethanol, isopropyl alcohol, and the like are preferable in terms of handling properties and storage stability.
- a stabilizer for suppressing the condensation polymerization reaction of the metal organic compound and the metal salt may be added.
- the stabilizer is preferably at least one selected from the group consisting of ⁇ -diketones and alkanolamines.
- ⁇ -diketones include acetylacetone, methyl acetoacetate, ethyl acetoacetate, benzoylacetone, dibenzoylmethane, benzoyltrifluoroacetone, furoylacetone, and trifluoroacetylacetone, and acetylacetone and ethyl acetoacetate are particularly preferable. .
- alkanolamines include monoethanolamine, diethanolamine, triethanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, N, N-dimethylaminoethanol, diisopropanolamine, and triisopropanolamine.
- a secondary alkanolamine is preferred.
- the amount of the aluminum compound in the coating liquid A is not particularly limited, but is preferably 0.1 g or more, more preferably 0.5 g or more, preferably 30 g or less, more preferably 5 g or less per 100 mL of the organic solvent. . Further, the amount of the stabilizer in the coating liquid A is not particularly limited, but is preferably 0.01 g or more, more preferably 0.1 g or more, preferably 20 g or less, more preferably 3 g or less per 100 mL of the organic solvent. It is.
- the above-mentioned coating liquid A is apply
- the method for applying the coating liquid A on the substrate is not particularly limited, and any method such as spray coating, brush coating, spin coating, dip coating, etc. may be used. From the viewpoint of thickness control, dip coating is preferred. Dip coating is a method in which a substrate is dipped in a coating object (here, coating liquid A) for a certain period of time and then pulled up to apply the coating object to the surface of the substrate.
- a coating object here, coating liquid A
- the coating liquid A on a base material is dried, and an aluminum thin film (catalyst carrying layer) is formed on a base material.
- the method of drying the coating liquid A on a base material is not specifically limited, Air drying at room temperature, a heating (baking process), etc. are mentioned, A heating is preferable.
- the heating temperature is preferably about 50 ° C. or higher and 400 ° C. or lower, and more preferably 350 ° C. or lower.
- the heating time is preferably 5 minutes or more and 60 minutes or less, and more preferably 40 minutes or less.
- a coating liquid B containing an iron compound is applied on the aluminum thin film formed in the catalyst support layer forming step, the coating liquid B is dried at a temperature of 50 ° C. or less, and the iron thin film is formed on the aluminum thin film.
- a catalyst base material provided with an aluminum thin film (catalyst support layer) and an iron thin film (catalyst layer) on the base material can be obtained.
- the coating liquid B is obtained by dissolving or dispersing an iron compound in an organic solvent.
- the iron compound contained in the coating liquid B will not be specifically limited if it is a compound containing an iron atom,
- the metal organic compound and metal salt which can form an iron thin film are preferable.
- metal organic compounds that can form an iron thin film include iron pentacarbonyl, ferrocene, acetylacetone iron (II), acetylacetone iron (III), trifluoroacetylacetone iron (II), trifluoroacetylacetone iron (III), and the like. It is done.
- metal salt that can form an iron thin film include iron sulfate, iron nitrate, iron phosphate, iron chloride, iron bromide and other inorganic acid iron, iron acetate, iron oxalate, iron citrate, iron lactate, etc.
- Organic acid iron etc. are mentioned. Among these, it is preferable to use organic acid iron. These can be used alone or as a mixture.
- the organic solvent contained in the coating liquid B is not specifically limited, The thing similar to the organic solvent described in the term of the above-mentioned coating liquid A can be used. Further, the coating liquid B may contain the stabilizer described in the above-mentioned section of the coating liquid A.
- the amount of the iron compound in the coating liquid B is not particularly limited, but is preferably 0.05 g or more, more preferably 0.1 g or more, preferably 5 g or less, more preferably 1 g or less per 100 mL of the organic solvent. . Further, the amount of the stabilizer in the coating liquid B is not particularly limited, but is preferably 0.05 g or more, more preferably 0.1 g or more, preferably 5 g or less, more preferably 1 g or less per 100 mL of the organic solvent. It is.
- the method for applying the coating liquid B onto the aluminum thin film is not particularly limited, and the same method as that described in the above-mentioned catalyst supporting layer forming step can be used. Similar to the application of the coating liquid A in the above-described catalyst support layer forming step, it is preferable to use dip coating as the coating method of the coating liquid B. And when employ
- the speed at which the substrate is pulled up from the coating liquid B after immersion is preferably 1 mm / second or more and 5 mm / second or less. This is because if the pulling speed is more than 5 mm / second, the coating liquid B is not sufficiently adhered to the substrate, and the ratio of the crushed CNTs in the obtained plurality of CNTs may be reduced.
- the coating liquid B on an aluminum thin film is dried, and an iron thin film is formed on a base material.
- the coating liquid B needs to be dried at 50 ° C. or lower, preferably 40 ° C. or lower, more preferably 30 ° C. or lower. If the drying temperature is higher than 50 ° C., it is not possible to synthesize CNTs including crushed CNTs in the subsequent growth process. In addition, although the minimum of drying temperature is not specifically limited, Usually, it is 10 degreeC or more. And as a method of drying the coating liquid B on a base material, air drying is preferable normally. If the drying temperature is 50 ° C. or lower, drying may be performed by heating, but air drying is preferred from the viewpoint of efficiently producing crushed CNTs.
- the formation process is a process in which at least one of the catalyst and the reducing gas is heated while the surrounding environment of the catalyst is set as a reducing gas (reducing gas) environment.
- reducing gas reducing gas
- the catalyst base when the catalyst base is provided with an alumina-iron thin film composed of an alumina thin film and an iron thin film, the iron catalyst is reduced into fine particles, and many nanometer-sized iron fine particles are formed on the alumina thin film (catalyst support layer).
- an iron thin film (catalyst layer) will be in a suitable state for manufacture of CNT. Even if this step is omitted, it is possible to produce CNTs, but by carrying out this step, the production amount and quality of CNTs can be dramatically improved.
- the reducing gas used in the formation step for example, hydrogen gas, ammonia, water vapor and a mixed gas thereof can be used.
- the reducing gas may be a mixed gas obtained by mixing hydrogen gas with an inert gas such as helium gas, argon gas, or nitrogen gas. You may use reducing gas for a growth process suitably.
- the temperature of the catalyst and / or reducing gas in the formation step is preferably 400 ° C. or higher and 1100 ° C. or lower.
- the time for the formation step is preferably 3 minutes to 20 minutes, and more preferably 3 minutes to 10 minutes. Thereby, it can suppress that baking of an iron thin film (catalyst layer) advances during a formation process, and a film thickness reduces.
- a raw material gas is supplied to the catalyst base obtained through the catalyst support layer forming step and the catalyst layer forming step, and carbon nanotubes (CNT aligned aggregates) are grown on the catalyst base.
- the growth step at least one of the catalyst layer and the raw material gas is usually heated, but it is preferable to heat at least the raw material gas from the viewpoint of growing CNTs with a uniform density.
- the heating temperature is preferably 400 ° C. or higher and 1100 ° C. or lower.
- the growth step is performed by introducing a raw material gas, an inert gas, and optionally a reducing gas and / or a catalyst activation material into a CNT growth furnace containing a catalyst base material.
- a gaseous substance containing a carbon source at a temperature at which CNT grows is used.
- hydrocarbons such as methane, ethane, ethylene, propane, butane, pentane, hexane, heptane, propylene and acetylene are preferable.
- a lower alcohol such as methanol and ethanol
- an oxygen-containing compound having a low carbon number such as acetone and carbon monoxide may be used. Mixtures of these can also be used.
- the source gas may be diluted with an inert gas.
- the inert gas may be any gas that is inert at the temperature at which the CNT grows and does not react with the growing CNT, and preferably does not reduce the activity of the catalyst.
- Examples of the inert gas include rare gases such as helium, argon, neon, and krypton; nitrogen; hydrogen; and a mixed gas thereof.
- a catalyst activator may be added.
- the catalyst activator used here is generally a substance containing oxygen, and is preferably a substance that does not significantly damage the CNT at the temperature at which the CNT grows.
- low carbon number oxygen-containing compounds such as water, oxygen, ozone, acid gas, nitric oxide, carbon monoxide and carbon dioxide; alcohols such as ethanol and methanol; ethers such as tetrahydrofuran; ketones such as acetone; Aldehydes; esters; as well as mixtures thereof are useful.
- water, oxygen, carbon dioxide, carbon monoxide, and ethers are preferable, and water is particularly preferable.
- the volume concentration of the catalyst activator is not particularly limited, but a small amount is preferable.
- the volume of gas introduced into the furnace is usually 10 to 10,000 ppm, preferably 50 to 1000 ppm.
- the pressure in the reactor and the processing time in the growth process may be appropriately set in consideration of other conditions.
- the pressure is 1 ⁇ 10 2 to 1 ⁇ 10 7 Pa
- the processing time is about 1 to 60 minutes. It can be.
- the manufacturing method of CNT containing the crushed CNT is equipped with a cooling process after a growth process.
- the cooling step is a step of cooling the aligned CNT aggregate and the catalyst base material under a cooling gas after the growth step. Since the aligned CNT aggregate and the catalyst base material after the growth step are in a high temperature state, there is a risk of oxidation when placed in an oxygen-existing environment.
- the aligned CNT aggregate and the catalyst substrate are cooled to, for example, 400 ° C. or lower, more preferably 200 ° C. or lower, in a cooling gas environment.
- the cooling gas an inert gas is preferable, and nitrogen is particularly preferable from the viewpoint of safety and cost.
- the manufacturing method of CNT containing the crushed CNT is equipped with the process (peeling process) which peels the aligned CNT aggregate formed on the catalyst base material from a catalyst base material.
- peeling process there is a method of physically, chemically or mechanically peeling from the catalyst substrate, for example, peeling using an electric field, a magnetic field, centrifugal force, or surface tension.
- Methods A method of mechanically peeling directly from a substrate; a method of peeling from a substrate using pressure and heat, and the like can be used.
- a simple peeling method there is a method of peeling directly from a catalyst substrate by pinching with tweezers. More preferably, a thin blade such as a cutter blade can be used to cut off the catalyst substrate. Furthermore, it is also possible to use a vacuum pump and a vacuum cleaner to suck and peel off from the catalyst substrate. In addition, since the catalyst remains on the base material after the CNT is peeled off, it is possible to newly grow vertically aligned CNTs using the catalyst.
- the manufacturing apparatus used in the above-described CNT manufacturing method is not particularly limited as long as it includes a growth furnace (reaction chamber) having a catalyst base and can grow CNTs by a CVD method.
- An apparatus such as a MOCVD reactor can be used.
- the carbon purity of the CNTs obtained by the above-described production method is preferably 98% by mass or more, more preferably 99% by mass or more, and further preferably 99.9% by mass or more, without performing purification treatment. If desired, a purification treatment may be performed. Carbon purity can be determined by elemental analysis using fluorescent X-rays.
- assembly of the several CNT mentioned above has the following properties.
- the CNT fiber of the present invention is preferably composed of 75% by mass or more of CNT, and is substantially composed of only CNT (that is, it contains components other than impurities inevitably mixed during production). More preferred). This is because if the content of CNT is 75% by mass or more, the characteristics of CNT can be exhibited well and the performance such as conductivity, thermal conductivity and mechanical characteristics can be sufficiently enhanced.
- the density of the CNT fiber of the present invention is preferably 1.0 g / cm 3 or more, more preferably 1.2 g / cm 3 or more, and 1.5 g / cm 3 or less. It is preferable. This is because if the density of the CNT fibers is 1.0 g / cm 3 or more, the performance such as conductivity, thermal conductivity and mechanical properties can be sufficiently enhanced. Further, if the density of the CNT fiber is 1.5 g / cm 3 or less, the CNT fiber can be easily produced.
- the density of the carbon nanotube fiber is determined by measuring the mass, diameter and length of the CNT single fiber constituting the CNT fiber, and assuming the CNT single fiber as a cylinder, and determining the volume of the CNT single fiber. It can be obtained by dividing the mass of the CNT single fiber by the volume. That is, in the present invention, the “density of CNT fibers” refers to the density of CNT single fibers constituting the multifilament when the CNT fibers are multifilaments composed of a plurality of single fibers (CNT single fibers). .
- the method for producing a carbon nanotube fiber of the present invention can be used when the above-described carbon nanotube fiber of the present invention is produced.
- the method for producing a CNT fiber of the present invention includes a carbon nanotube dispersion liquid (hereinafter referred to as “CNT dispersion liquid”) containing a plurality of CNTs including a CNT having a structure in which at least a portion is crushed, a dispersant, and a solvent.
- CNT dispersion liquid carbon nanotube dispersion liquid
- One of the major characteristics is that it includes a step of spinning by spinning into a coagulating liquid (spinning step).
- the step of preparing a CNT dispersion by dispersing a coarse dispersion containing a plurality of CNTs, a dispersant and a solvent is performed before the spinning step. May be included. And since the CNT fiber obtained using the manufacturing method of the CNT fiber of this invention contains the crushed CNT, it is excellent in performance, such as electroconductivity, thermal conductivity, and a mechanical characteristic.
- a coarse dispersion liquid obtained by adding a plurality of carbon nanotubes and a dispersing agent to a solvent is subjected to a dispersion treatment in which a cavitation effect or a crushing effect is obtained, and the carbon nanotubes are dispersed to produce CNTs. It is preferable to prepare a dispersion. This is because a CNT dispersion liquid in which CNTs are well dispersed can be obtained by using a dispersion treatment that provides a cavitation effect or a crushing effect.
- CNT fibers are prepared using a CNT dispersion in which CNTs are well dispersed, CNTs having excellent characteristics are uniformly gathered at a high density, and performance such as conductivity, thermal conductivity, and mechanical characteristics is obtained. Excellent CNT fiber is obtained.
- the dispersant used for preparing the CNT dispersion is not particularly limited as long as it can disperse CNTs and can be dissolved in a solvent described later.
- a surfactant, a synthetic polymer, or a natural polymer may be used. it can.
- examples of the surfactant include sodium dodecylsulfonate, sodium deoxycholate, sodium cholate, sodium dodecylbenzenesulfonate, and the like.
- examples of the synthetic polymer include polyether diol, polyester diol, polycarbonate diol, polyvinyl alcohol, partially saponified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, acetal group-modified polyvinyl alcohol, butyral group-modified polyvinyl alcohol, and silanol group-modified.
- Polyvinyl alcohol ethylene-vinyl alcohol copolymer, ethylene-vinyl alcohol-vinyl acetate copolymer resin, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, acrylic resin, epoxy resin, modified epoxy resin, phenoxy resin, modified phenoxy system Resin, phenoxy ether resin, phenoxy ester resin, fluorine resin, melamine resin, alkyd resin, phenol resin, Polyacrylamide, polyacrylic acid, polystyrene sulfonic acid, polyethylene glycol, and polyvinylpyrrolidone.
- examples of natural polymers include polysaccharides such as starch, pullulan, dextran, dextrin, guar gum, xanthan gum, amylose, amylopectin, alginic acid, gum arabic, carrageenan, chondroitin sulfate, hyaluronic acid, curdlan, chitin, chitosan, Examples thereof include cellulose and salts or derivatives thereof.
- the derivative means a conventionally known compound such as ester or ether.
- dispersants can be used alone or in combination of two or more.
- a surfactant is preferable as the dispersant because of excellent CNT dispersibility, and sodium deoxycholate is particularly preferable.
- the solvent for the CNT dispersion is not particularly limited, and examples thereof include water, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, pentanol, hexanol, heptanol, octanol, and nonanol.
- Alcohols such as decanol and amyl alcohol, ketones such as acetone, methyl ethyl ketone and cyclohexanone, esters such as ethyl acetate and butyl acetate, ethers such as diethyl ether, dioxane and tetrahydrofuran, N, N-dimethylformamide, N- Amide polar organic solvents such as methylpyrrolidone, and aromatic hydrocarbons such as toluene, xylene, chlorobenzene, orthodichlorobenzene and paradichlorobenzene. These may be used alone or in combination of two or more.
- a carbon nanotube dispersion is prepared by dispersing the carbon nanotubes.
- the dispersion treatment that provides a cavitation effect is a dispersion method that uses a shock wave that is generated when a vacuum bubble generated in water bursts when high energy is applied to a liquid. By using this dispersion method, CNTs can be dispersed well.
- dispersion treatment that provides a cavitation effect
- dispersion treatment using ultrasonic waves dispersion treatment using a jet mill
- dispersion treatment using high shear stirring Only one of these distributed processes may be performed, or a plurality of distributed processes may be combined. More specifically, for example, an ultrasonic homogenizer, a jet mill, and a high shear stirring device are preferably used. These devices may be conventionally known devices.
- the coarse dispersion may be irradiated with ultrasonic waves using an ultrasonic homogenizer.
- What is necessary is just to set suitably for the time to irradiate according to the quantity of CNT, etc. For example, 3 minutes or more are preferable, 30 minutes or more are more preferable, 5 hours or less are preferable, and 2 hours or less are more preferable.
- the output is preferably 20 W or more and 500 W or less, more preferably 100 W or more and 500 W or less, and the temperature is preferably 15 ° C. or more and 50 ° C. or less.
- the number of treatments may be appropriately set depending on the amount of CNT, etc., for example, preferably 2 times or more, more preferably 5 times or more, preferably 100 times or less, more preferably 50 times or less.
- the pressure is preferably 20 MPa or more and 250 MPa or less
- the temperature is preferably 15 ° C. or more and 50 ° C. or less.
- stirring and shearing may be applied to the coarse dispersion with a high shear stirring device.
- the operation time time during which the machine is rotating
- the peripheral speed is preferably 5 m / second or more and 50 m / second or less
- the temperature is preferably 15 ° C. or more and 50 ° C. or less.
- the dispersion treatment for obtaining the above-described cavitation effect it is more preferable to perform the dispersion treatment for obtaining the above-described cavitation effect at a temperature of 50 ° C. or lower. This is because a change in concentration due to the volatilization of the solvent is suppressed.
- Dispersion treatment with a crushing effect can not only uniformly disperse CNTs in a solvent, but also suppress damage to CNTs due to shock waves when bubbles disappear, compared to the dispersion treatment with the above-mentioned cavitation effect. It is more advantageous in that it can be done.
- a shearing force is applied to the coarse dispersion to crush and disperse the CNT aggregates, and further, a back pressure is applied to the coarse dispersion.
- the CNTs can be uniformly dispersed in the solvent while suppressing the generation of bubbles.
- the back pressure applied to the coarse dispersion may be reduced to atmospheric pressure all at once, but is preferably reduced in multiple stages.
- a dispersion system having a disperser having the following structure may be used.
- the disperser has a disperser orifice having an inner diameter d1, a dispersion space having an inner diameter d2, and a terminal portion having an inner diameter d3 from the inflow side to the outflow side of the coarse dispersion liquid (where d2>d3> d1)).
- the inflowing high-pressure for example, 10 to 400 MPa, preferably 50 to 250 MPa
- coarse dispersion passes through the disperser orifice and becomes a high flow rate fluid with a decrease in pressure.
- the high-velocity coarse dispersion liquid flowing into the dispersion space flows at high speed in the dispersion space and receives a shearing force at that time.
- the flow rate of the coarse dispersion decreases and CNTs are well dispersed.
- a fluid having a pressure (back pressure) lower than the pressure of the inflowing coarse dispersion liquid flows out from the terminal portion as the CNT dispersion liquid.
- the back pressure of the coarse dispersion can be applied to the coarse dispersion by applying a load to the flow of the coarse dispersion.
- a rough pressure can be obtained by disposing a multistage step-down device downstream of the disperser.
- a desired back pressure can be applied to the dispersion. Then, by reducing the back pressure of the coarse dispersion in multiple stages using a multistage pressure reducer, it is possible to suppress the generation of bubbles in the CNT dispersion when the CNT dispersion is finally released to atmospheric pressure.
- the disperser may include a heat exchanger for cooling the coarse dispersion and a cooling liquid supply mechanism. This is because the generation of bubbles in the coarse dispersion can be further suppressed by cooling the coarse dispersion that has been heated to a high temperature by applying a shearing force with the disperser. In addition, it can suppress that a bubble generate
- distribution process from which a crushing effect is acquired can be implemented by controlling a dispersion
- the viscosity of the CNT dispersion is preferably 0.1 Pa ⁇ s or more, more preferably 0.3 Pa ⁇ s or more, and preferably 0.8 Pa ⁇ s or less. More preferably, it is 6 Pa ⁇ s or less. If the viscosity of the CNT dispersion is 0.1 Pa ⁇ s or more and 0.8 Pa ⁇ s or less, the CNT fiber is spun well in the spinning step described later, and the conductivity, thermal conductivity and mechanical properties of the obtained CNT fiber are obtained. This is because it is possible to sufficiently improve the performance and the like, and to easily produce CNT fibers.
- the viscosity of the CNT dispersion can be adjusted, for example, by changing the amount and type of CNT and dispersant.
- the viscosity of the CNT dispersion is measured using a B-type viscometer under the conditions of temperature: 23 ° C., rotor: M4, and rotation speed: 60 rpm in accordance with JIS K7117-1. be able to.
- the CNT dispersion liquid is extruded into a coagulation liquid and spun.
- a CNT dispersion liquid is continuously extruded and injected from a spinneret or a syringe into a stirring coagulation liquid, and a plurality of CNTs are spun to form a monofilament or a multifilament.
- the extrusion conditions of the CNT dispersion liquid can be appropriately adjusted according to the fiber diameter of the desired CNT fiber.
- the coagulation liquid a solution that can dissolve or disperse the solvent and the dispersant contained in the CNT dispersion liquid and aggregate the CNTs in a fibrous form can be used.
- a solution containing any one of N-methylpyrrolidone, N, N-dimethylacetamide, propylene carbonate, formamide, N-methylformamide, water, methanol, ethanol, and propanol is used. Can do.
- the coagulation liquid is different from the solvent of the CNT dispersion liquid.
- a step of immersing and washing the obtained CNT fiber in water or the like, a step of drying the washed CNT fiber, A step of drawing the CNT fibers may be included.
- Example 1 ⁇ Synthesis of CNT> 1.9 g of aluminum tri-sec-butoxide as an aluminum compound was dissolved in 100 mL of 2-propanol as an organic solvent. Further, 0.9 g of triisopropanolamine as a stabilizer was added and dissolved to prepare a coating liquid A for forming a catalyst support layer. Moreover, 174 mg of iron acetate as an iron compound was dissolved in 100 mL of 2-propanol as an organic solvent. Furthermore, 190 mg of triisopropanolamine as a stabilizer was added and dissolved to prepare a coating liquid B for forming a catalyst layer.
- Fe-Cr alloy SUS430 substrate (40 mm ⁇ 100 mm, thickness 0.3 mm, Cr 18%, arithmetic average roughness Ra ⁇ 0.59 ⁇ m) as a base material, room temperature 25 ° C., relative humidity
- the coating liquid A described above was applied by dip coating in a 50% environment. Specifically, the substrate was dipped in the coating liquid A and then held for 20 seconds, and the substrate was pulled up at a pulling rate of 10 mm / second. Thereafter, the film was air-dried for 5 minutes, heated for 30 minutes in an air environment at a temperature of 300 ° C., and then cooled to room temperature, thereby forming an alumina thin film (catalyst support layer) having a film thickness of 40 nm on the substrate.
- the above-mentioned coating liquid B was apply
- the substrate provided with the alumina thin film was dipped in the coating solution B, then held for 20 seconds, and the substrate provided with the alumina thin film was pulled up at a lifting speed of 3 mm / second.
- an iron thin film (catalyst layer) having a film thickness of 3 nm was formed by air drying for 5 minutes (drying temperature 45 ° C.).
- the catalyst base material 1 which has an alumina thin film and an iron thin film in this order on the base material was obtained.
- the prepared catalyst substrate 1 was placed in a reactor of a CVD apparatus maintained at a furnace temperature: 750 ° C. and a furnace pressure: 1.02 ⁇ 10 5 Pa.
- He: 100 sccm and H 2 A mixed gas of 800 sccm was introduced for 10 minutes (formation step).
- He: 850 sccm, ethylene: 100 sccm and H 2 O-containing He (relative humidity 23%) A mixed gas of 50 sccm was supplied for 8 minutes (growth step).
- the aligned CNT aggregate 1 has a yield of 1.8 mg / cm 2 , a G / D ratio of 3.7, a density of 0.03 g / cm 3 , a BET specific surface area of 1,060 m 2 / g, and a carbon purity. It was 99.9%.
- the produced aligned CNT aggregate 1 was peeled from the catalyst substrate 1 to obtain CNT1.
- ⁇ Preparation of carbon nanotube fiber> 5.0 g of the above-described CNT1 was added to 500 mL of a 5% by mass aqueous solution of sodium deoxycholate (DOC) as a solvent containing a dispersant to obtain a crude dispersion containing DOC as a dispersant.
- the crude dispersion containing CNT1 is charged into a high-pressure homogenizer (product name “BERYU SYSTEM PRO” manufactured by Miki Co., Ltd.) having a multi-stage pressure control device (multi-stage pressure reducer) that applies back pressure during dispersion.
- the dispersion of the crude dispersion was performed with pressure.
- the CNT 1 was dispersed by applying a shear force to the coarse dispersion while applying a back pressure to obtain the CNT dispersion 1.
- the dispersion treatment was carried out for 10 minutes while returning the dispersion liquid flowing out from the high-pressure homogenizer to the high-pressure homogenizer again.
- the viscosity was 0.58 Pa ⁇ s. It was.
- the obtained CNT dispersion liquid 1 was discharged from a base having a diameter of 120 mm having 800 discharge ports having an inner diameter of 150 ⁇ m and solidified in isopropyl alcohol as a coagulation liquid to obtain a fiber bundle (coagulated product). Next, the obtained fiber bundle was sufficiently washed with water and dried, and then wound up at a winding speed of 20 m / second to produce CNT fibers. Single fiber was taken out from the produced CNT fiber, and CNT single fiber 1 was obtained. As a result of measuring the density of the obtained CNT single fiber 1, the density was 1.45 g / cm 3 .
- the produced CNT single fiber 1 was subjected to a tensile test (measurement conditions: temperature 20 ° C., relative humidity 65%, tensile speed 100% / min) using a tensile tester (Tensilon). On average, the tensile strength was 940 MPa.
- Example 2 When preparing carbon nanotube fibers, 500 mL of a sodium deoxycholate (DOC) 5 mass% aqueous solution is used as a solvent containing a dispersant instead of 500 mL of a sodium deoxycholate (DOC) 5 mass% aqueous solution.
- a CNT dispersion 2 was prepared in the same manner as in Example 1 except that the amount was 2.5 g.
- CNT fiber was produced by the same operation as Example 1 except having used CNT dispersion liquid 2.
- the viscosity of the produced CNT dispersion 2 was measured in the same manner as in Example 1. As a result, the viscosity was 0.15 Pa ⁇ s.
- the density and tensile strength of the CNT single fiber 2 taken out from the produced CNT fiber were measured in the same manner as in Example 1, the density was 1.30 g / cm 3 and the tensile strength was 830 MPa.
- Example 3 The catalyst base material 2 was prepared by the same operation as in Example 1 except that the pulling speed when applying the coating liquid B to the base material provided with the alumina thin film was changed from 3 mm / second to 6 mm / second during the synthesis of CNT. Produced. Then, an aligned CNT aggregate 2 and CNT2 were produced by the same operation as in Example 1 except that the catalyst substrate 2 was used instead of the catalyst substrate 1.
- the obtained aligned CNT aggregate 2 has a yield of 1.4 mg / cm 2 , a G / D ratio of 2.1, a density of 0.03 g / cm 3 , a BET specific surface area of 680 m 2 / g, and a carbon purity of 99. It was 9%.
- the presence of the crushed CNT was confirmed in the same manner as in Example 1 for the obtained CNT2, the presence of the single-walled CNT having a crushed structure was confirmed. Further, when the number of crushed CNTs was confirmed, it was confirmed that 8 crushed CNTs were present in 100 CNTs. In addition, the average width length of the crushed part of crushed CNT was 8 nm.
- the CNT dispersion liquid 3 and the CNT fiber were produced by the same operation as Example 1 except having used CNT2 instead of CNT1 at the time of preparation of carbon nanotube fiber.
- the viscosity of the produced CNT dispersion 3 was measured in the same manner as in Example 1, the viscosity was 0.44 Pa ⁇ s.
- the density and tensile strength of the CNT single fiber 3 taken out from the produced CNT fiber were measured in the same manner as in Example 1, the density was 1.06 g / cm 3 and the tensile strength was 720 MPa.
- Comparative Example 1 The same operation as in Example 1 except that multi-walled carbon nanotubes (MWCNT; manufactured by Nanostructured & Amorphous Materials Inc., Lot. 1232, BET specific surface area of 57 m 2 / g) were used instead of CNT 1 when preparing the carbon nanotube fibers.
- MWCNT multi-walled carbon nanotubes
- BET specific surface area of 57 m 2 / g BET specific surface area of 57 m 2 / g
- Example 2 An aligned comparative CNT aggregate and comparative CNT were produced under the same conditions as in Example 1.
- the obtained comparative CNT aligned assembly has a yield of 1.9 mg / cm 2 , a G / D ratio of 6.5, a density of 0.03 g / cm 3 , a BET specific surface area of 1,100 m 2 / g, carbon. The purity was 99.9%.
- ⁇ Confirmation of presence of crushed CNT> When the presence of crushed CNT was confirmed in the same manner as in Example 1 for the obtained comparative example CNT, single-walled CNTs having a crushed structure were not confirmed.
- Example 2 when the viscosity of the produced comparative example CNT dispersion liquid 2 was measured in the same manner as in Example 1, the viscosity was 0.09 Pa ⁇ s. And CNT fiber was manufactured like Example 1 except having used comparative example CNT dispersion liquid 2. Moreover, the single fiber was taken out from the produced CNT fiber, and the comparative example CNT single fiber was obtained. When the density and tensile strength of the obtained comparative CNT single fiber were measured in the same manner as in Example 1, the density was 0.095 g / cm 3 and the tensile strength was 240 MPa.
- the CNT fibers of Examples 1 to 3, particularly the CNT fiber of Example 1, were high in density and excellent in mechanical properties.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Carbon And Carbon Compounds (AREA)
- Inorganic Fibers (AREA)
Abstract
Description
ここで、本発明のカーボンナノチューブ繊維は、少なくとも一部が潰れた構造を有するカーボンナノチューブを含む。そして、本発明のカーボンナノチューブ繊維は、本発明のカーボンナノチューブ繊維の製造方法を用いて製造することができる。
なお、本発明のカーボンナノチューブ繊維は、そのままで、或いは、複数本を撚り合わせたカーボンナノチューブ糸としてから使用することができる。
本発明のカーボンナノチューブ繊維は、複数本のカーボンナノチューブ(CNT)を繊維状に集合させてなるCNTの集合体よりなる。そして、本発明のCNT繊維は、集合体を構成する複数本のCNTの全部または一部が、少なくとも一部が潰れた構造を有するカーボンナノチューブ(以下、「潰れたCNT」と称することがある。)よりなることを大きな特徴の一つとする。そして、本発明のCNT繊維は、潰れたCNTを含んでいるので、導電性、熱伝導性および機械的特性などの性能に優れている。
なお、本発明において、カーボンナノチューブ繊維は、1本の単繊維(CNT単繊維)からなるモノフィラメントであってもよいし、複数本の単繊維よりなるマルチフィラメントであってもよい。
CNT繊維を構成する複数本のCNTは、潰れたCNTを含むことを必要とする。潰れたCNTは、一般的な円筒形のCNTとは外形および内部空間の構造が異なるので、CNT繊維などに使用した際に、優れた特性を発揮すると共に、高い密度で集合させることができると推察されている。
ここで、CNTが「少なくとも一部が潰れた構造を有する」とは、CNTとフラーレン(C60)とを石英管に密封し、減圧下で加熱処理(フラーレン挿入処理)して得られるフラーレン挿入CNTを透過型電子顕微鏡(TEM)で観察した際に、CNT中に、フラーレンが挿入されない部分を有することを指す。
例えば、図1のTEM画像において矢印で示す箇所付近は、図2に拡大して示すように、CNTの幅方向(CNTの延在方向に直行する方向)両端部のみにフラーレンが挿入されており、両端部以外にはフラーレンが挿入されていない。従って、該CNTは、フラーレンが挿入されていない部分が潰れており、潰れた構造を有することがわかる。
なお、「少なくとも一部が潰れた構造を有するCNT」は、1本のCNT内に一つの「潰れた構造」が存在してもよいし、複数の「潰れた構造」が存在していてもよい。
なお、潰れたCNTの断面形状において、「断面長手方向の中央部近傍」とは、断面の長手中心線(断面の長手方向中心を通り、長手方向線に直交する直線)から、断面の長手方向幅の30%以内の領域をいい、「断面長手方向の端部近傍」とは、「断面長手方向の中央部近傍」よりも長手方向外側の領域を指す。
なお、本発明において、「CNTの潰れた部分の平均幅長」とは、透過型電子顕微鏡を使用し、潰れた構造を有する任意のCNT10本について潰れた部分のCNT幅方向の長さを測定して求めた算術平均値である。なお、潰れたCNTの幅方向の長さは1nm以上10nm以下の範囲内に分布することが好ましい。
上述した潰れたCNTを含んでCNT繊維を構成する複数本のCNTは、特に限定されることなく、単層構造であっても多層構造であってもよいが、単層構造であることが好ましい。すなわち、潰れたCNTを含む複数本のCNTは、単層カーボンナノチューブであることが好ましい。特に、潰れたCNTが単層構造を有する場合には、CNT繊維の性能を良好に向上させることができる。
なお、「BET比表面積」は、77Kにおける窒素吸着等温線を測定し、BET法により求めることができる。ここで、BET比表面積の測定には、例えば、「BELSORP(登録商標)−max」(日本ベル(株)製)を用いることができる。
なお、本発明において、「潰れたCNTの含有割合」は、透過型電子顕微鏡を用いて任意のカーボンナノチューブ100本を観察し、その100本中に存在する上記潰れたCNTの数を数えることで求めることができる。
なお、潰れたCNTを含む複数本のCNTは、潰れたCNTを含む複数本のCNTを合成して製造することもできるし、潰れたCNTと、一般的なCNT(円筒形のCNT)とを別々に合成した後に混合して製造することもできる。
以下では、一例として、潰れたCNTを含む複数本のCNTを合成して製造する方法について説明する。
(1)アルミニウム化合物を含む塗工液Aを基材上に塗布する工程、
(2)塗工液Aを乾燥し、基材上にアルミニウム薄膜を形成する工程、
(3)アルミニウム薄膜の上に、鉄化合物を含む塗工液Bを塗布する工程、
(4)塗工液Bを温度50℃以下で乾燥し、アルミニウム薄膜上に鉄薄膜を形成することで触媒基材を得る工程、および、
(5)触媒基材に原料ガスを供給し、触媒基材上にカーボンナノチューブを成長させる工程(成長工程)、
を少なくとも含む。なお、以下では、上記(1)と(2)の2つの工程を併せて「触媒担持層形成工程」と称し、上記(3)と(4)の2つの工程を併せて「触媒層形成工程」と称する。
そして、この製造方法によれば、ウェットプロセスにより触媒基材を作製し、かつ、乾燥により触媒層(鉄薄膜)を得る際の乾燥温度が50℃以下であるため、製造当初より潰れたCNTを含むCNTを製造することができる。
まず、アルミニウム化合物を含む塗工液Aを基材上に塗布し、該塗工液Aを乾燥することで、基材上にアルミニウム薄膜を形成する。このようにして基材上に形成されたアルミニウム薄膜は、その上に後述の鉄薄膜(触媒層)を担持する、触媒担持層として機能する。
触媒基材に用いる基材は、例えば平板状の部材であり、500℃以上の高温でも形状を維持できるものが好ましい。具体的には、鉄、ニッケル、クロム、モリブデン、タングステン、チタン、アルミニウム、マンガン、コバルト、銅、銀、金、白金、ニオブ、タンタル、鉛、亜鉛、ガリウム、インジウム、ゲルマニウムおよびアンチモンなどの金属、並びに、これらの金属を含む合金および酸化物、或いは、シリコン、石英、ガラス、マイカ、グラファイトおよびダイヤモンドなどの非金属、並びに、セラミックなどが挙げられる。金属材料はシリコンおよびセラミックと比較して、低コスト且つ加工が容易であるから好ましく、特に、Fe−Cr(鉄−クロム)合金、Fe−Ni(鉄−ニッケル)合金、Fe−Cr−Ni(鉄−クロム−ニッケル)合金などは好適である。
塗工液Aは、アルミニウム化合物を有機溶剤に溶解または分散させたものである。塗工液Aに含まれるアルミニウム化合物は、アルミニウム原子を含む化合物であれば特に限定されないが、アルミニウム薄膜としてアルミナ薄膜を形成しうる金属有機化合物、金属塩が好ましい。
また、塗工液A中の安定剤の量は特に限定されないが、有機溶剤100mL当たり、好ましくは0.01g以上、より好ましくは0.1g以上であり、好ましくは20g以下、より好ましくは3g以下である。
上述の塗工液Aを、基材上に塗布する。塗工液Aを基材上に塗布する方法は、特に限定されず、スプレー、ハケ塗り等により塗布する方法、スピンコーティング、ディップコーティング等、いずれの方法を用いてもよいが、生産性および膜厚制御の観点からディップコーティングが好ましい。
ディップコーティングは、基材を、塗布対象(ここでは、塗工液A)に一定時間浸漬し、その後引き上げることで、基材表面に塗布対象を塗布する方法である。
そして、基材上の塗工液Aを乾燥し、基材上にアルミニウム薄膜(触媒担持層)を形成する。基材上の塗工液Aを乾燥する方法は特に限定されないが、室温での風乾、加熱(焼成処理)などが挙げられ、加熱が好ましい。加熱温度はおよそ50℃以上400℃以下が好ましく、350℃以下がより好ましい。加熱時間は5分以上60分以下が好ましく、40分以下がより好ましい。
次に、触媒担持層形成工程で形成されたアルミニウム薄膜上に、鉄化合物を含む塗工液Bを塗布し、該塗工液Bを温度50℃以下で乾燥させ、アルミニウム薄膜上に鉄薄膜を形成する。この工程により、アルミニウム薄膜(触媒担持層)と鉄薄膜(触媒層)とを基材上に備えた触媒基材を得ることができる。
塗工液Bは、鉄化合物を有機溶剤に溶解または分散させたものである。塗工液Bに含まれる鉄化合物は、鉄原子を含む化合物であれば特に限定されないが、鉄薄膜を形成しうる金属有機化合物、金属塩が好ましい。
なお、塗工液Bに含まれる有機溶剤は、特に限定されず、上述の塗工液Aの項に記載した有機溶剤と同様のものを用いることができる。また、塗工液Bには、上述の塗工液Aの項に記載した安定剤が含まれていてもよい。
また、塗工液B中の安定剤の量は特に限定されないが、有機溶剤100mL当たり、好ましくは0.05g以上、より好ましくは0.1g以上であり、好ましくは5g以下、より好ましくは1g以下である。
塗工液Bをアルミニウム薄膜上に塗布する方法は特に限定されず、上述の触媒担持層形成工程の項に記載した方法と同様のものを用いることができる。
上述の触媒担持層形成工程における塗工液Aの塗布同様、塗工液Bの塗布方法としてはディップコーティングを用いることが好ましい。
そして、ディップコーティングを採用する場合、塗工液Bへのアルミニウム薄膜付き基材の浸漬時間は、1秒間以上30秒間以下が好ましい。加えて、浸漬後、該基材を塗工液Bから引き上げる速度は、1mm/秒以上5mm/秒以下が好ましい。引き上げ速度が5mm/秒超であると、基材への塗工液Bの付着が十分でなく、得られる複数本のCNT中の潰れたCNTの割合が低下する虞があるからである。
そして、アルミニウム薄膜上の塗工液Bを乾燥し、基材上に鉄薄膜を形成する。ここで、塗工液Bは、50℃以下で乾燥する必要があり、好ましくは40℃以下、より好ましくは30℃以下で乾燥する。乾燥温度が50℃超であると、続く成長工程において、潰れたCNTを含むCNTを合成することができない。なお、乾燥温度の下限は特に限定されないが、通常10℃以上である。そして、基材上の塗工液Bを乾燥する方法としては、通常、風乾が好ましい。乾燥温度が50℃以下であれば加熱により乾燥しても良いが、潰れたCNTを効率よく製造する観点からは、風乾が好適である。
潰れたCNTを含むCNTの製造方法においては、成長工程の前にフォーメーション工程を行なうことが好ましい。フォーメーション工程とは、触媒の周囲環境を還元ガス(還元性を有するガス)環境とすると共に、触媒および還元ガスの少なくとも一方を加熱する工程である。この工程により、触媒の還元、CNTの成長に適合した状態としての触媒の微粒子化促進、触媒の活性向上の少なくとも一つの効果が現れる。例えば、触媒基材が、アルミナ薄膜と鉄薄膜からなるアルミナ−鉄薄膜を備える場合、鉄触媒は還元されて微粒子化し、アルミナ薄膜(触媒担持層)上にナノメートルサイズの鉄微粒子が多数形成される。これにより鉄薄膜(触媒層)はCNTの製造に好適な状態となる。この工程を省略してもCNTを製造することは可能であるが、この工程を行なうことでCNTの製造量および品質を飛躍的に向上させることができる。
フォーメーション工程に用いる還元ガスとしては、例えば水素ガス、アンモニア、水蒸気およびそれらの混合ガスを用いることができる。また、還元ガスは、水素ガスをヘリウムガス、アルゴンガス、窒素ガスなどの不活性ガスと混合した混合ガスでもよい。還元ガスは、適宜成長工程に用いてもよい。
次に、触媒担持層形成工程および触媒層形成工程を経て得られた触媒基材に原料ガスを供給し、触媒基材上にカーボンナノチューブ(CNT配向集合体)を成長させる。
そして、成長工程においては、通常、触媒層および原料ガスの少なくとも一方を加熱するが、均一な密度でCNTを成長させる観点からは、少なくとも原料ガスを加熱することが好ましい。加熱の温度は、400℃以上1100℃以下が好ましい。成長工程は、触媒基材を収容するCNT成長炉内に、原料ガスと、不活性ガスと、任意に還元ガスおよび/または触媒賦活物質とを導入して行う。
原料ガスとしては、CNTが成長する温度において炭素源を含むガス状物質が用いられる。なかでもメタン、エタン、エチレン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、プロピレンおよびアセチレンなどの炭化水素が好適である。この他にも、メタノール、エタノールなどの低級アルコール、アセトン、一酸化炭素などの低炭素数の含酸素化合物でもよい。これらの混合物も使用可能である。
原料ガスは不活性ガスで希釈されてもよい。不活性ガスとしては、CNTが成長する温度で不活性であり、且つ、成長するCNTと反応しないガスであればよく、触媒の活性を低下させないものが好ましい。不活性ガスとしては、例えば、ヘリウム、アルゴン、ネオンおよびクリプトンなどの希ガス;窒素;水素;並びにこれらの混合ガスを例示できる。
CNTの成長工程において、触媒賦活物質を添加してもよい。触媒賦活物質の添加によって、CNTの生産効率や純度をより一層改善することができる。ここで用いる触媒賦活物質は、一般には酸素を含む物質であり、CNTが成長する温度でCNTに多大なダメージを与えない物質であることが好ましい。例えば、水、酸素、オゾン、酸性ガス、酸化窒素、一酸化炭素および二酸化炭素などの低炭素数の含酸素化合物;エタノール、メタノールなどのアルコール類;テトラヒドロフランなどのエーテル類;アセトンなどのケトン類;アルデヒド類;エステル類;並びにこれらの混合物が有効である。この中でも、水、酸素、二酸化炭素、一酸化炭素、およびエーテル類が好ましく、特に水が好適である。
成長工程における反応炉内の圧力、処理時間は、他の条件を考慮して適宜設定すればよいが、例えば、圧力は1×102~1×107Pa、処理時間は1~60分程度とすることができる。
潰れたCNTを含むCNTの製造方法は、成長工程後に冷却工程を備えることが好ましい。冷却工程とは、成長工程後にCNT配向集合体、触媒基材を冷却ガス下で冷却する工程である。成長工程後のCNT配向集合体、触媒基材は高温状態にあるため、酸素存在環境下に置かれると酸化してしまうおそれがある。それを防ぐために冷却ガス環境下でCNT配向集合体、触媒基材を例えば400℃以下、さらに好ましくは200℃以下に冷却する。冷却ガスとしては不活性ガスが好ましく、特に安全性、コストなどの点から窒素であることが好ましい。
また、潰れたCNTを含むCNTの製造方法は、触媒基材上に形成されたCNT配向集合体を、触媒基材から剥離する工程(剥離工程)を備えることが好ましい。CNT配向集合体を触媒基材から剥離する方法としては、物理的、化学的あるいは機械的に触媒基材上から剥離する方法があり、たとえば電場、磁場、遠心力、表面張力を用いて剥離する方法;機械的に直接、基材より剥ぎ取る方法;圧力、熱を用いて基材より剥離する方法などが使用可能である。簡単な剥離法としては、ピンセットで直接つまんで触媒基材から剥離させる方法がある。より好適には、カッターブレードなどの薄い刃物を使用して触媒基材より切り離すこともできる。またさらには、真空ポンプ、掃除機を用い、触媒基材上より吸引し、剥ぎ取ることも可能である。なお、CNTの剥離後、触媒は基材上に残余するので、それを利用して垂直配向したCNTを新たに成長させることが可能となる。
上述したCNTの製造方法に用いる製造装置としては、触媒基材を有する成長炉(反応チャンバ)を備え、CVD法によりCNTを成長させることができるものであれば、特に限定されず、熱CVD炉、MOCVD反応炉等の装置を使用できる。
ここで、上述した複数本のCNTの集合体よりなるカーボンナノチューブ繊維は、以下の性状を有していることが好ましい。
即ち、本発明のCNT繊維は、75質量%以上がCNTで構成されていることが好ましく、実質的にCNTのみで構成されている(即ち、製造時に不可避的に混入する不純物以外の成分を含まない)ことがより好ましい。CNTの含有量が75質量%以上であれば、CNTの特性を良好に発揮させ、導電性、熱伝導性および機械的特性などの性能を十分に高めることができるからである。
また、本発明のCNT繊維は、密度が、1.0g/cm3以上であることが好ましく、1.2g/cm3以上であることがより好ましく、また、1.5g/cm3以下であることが好ましい。CNT繊維の密度が1.0g/cm3以上であれば、導電性、熱伝導性および機械的特性などの性能を十分に高めることができるからである。また、CNT繊維の密度が1.5g/cm3以下であれば、CNT繊維を容易に製造することができるからである。
なお、本発明において、カーボンナノチューブ繊維の密度は、CNT繊維を構成するCNT単繊維の質量、直径および長さを測定し、CNT単繊維を円柱形と仮定してCNT単繊維の体積を求め、CNT単繊維の質量を体積で割って求めることができる。即ち、本発明において、「CNT繊維の密度」とは、CNT繊維が複数本の単繊維(CNT単繊維)よりなるマルチフィラメントである場合には、マルチフィラメントを構成するCNT単繊維の密度を指す。
本発明のカーボンナノチューブ繊維の製造方法は、上述した本発明のカーボンナノチューブ繊維を製造する際に用いることができる。そして、本発明のCNT繊維の製造方法は、少なくとも一部が潰れた構造を有するCNTを含む複数本のCNTと、分散剤と、溶媒とを含有するカーボンナノチューブ分散液(以下、「CNT分散液」と称することがある。)を凝固液中に押出して紡糸する工程(紡糸工程)を含むことを大きな特徴の一つとする。なお、本発明のCNT繊維の製造方法は、複数本のCNT、分散剤および溶媒を含む粗分散液を分散処理してCNT分散液を調製する工程(分散液調製工程)を紡糸工程の前に含んでいてもよい。
そして、本発明のCNT繊維の製造方法を用いて得られるCNT繊維は、潰れたCNTを含んでいるので、導電性、熱伝導性および機械的特性などの性能に優れている。
ここで、分散液調製工程では、溶媒中に複数本のカーボンナノチューブおよび分散剤を添加してなる粗分散液をキャビテーション効果または解砕効果が得られる分散処理に供し、カーボンナノチューブを分散させてCNT分散液を調製することが好ましい。このように、キャビテーション効果または解砕効果が得られる分散処理を用いれば、CNTが良好に分散したCNT分散液が得られるからである。そして、CNTが良好に分散したCNT分散液を用いてCNT繊維を調製すれば、優れた特性を有するCNTを高い密度で均一に集合させて、導電性、熱伝導性および機械的特性などの性能に優れるCNT繊維が得られる。
なお、本発明のCNT繊維の製造方法で用いるCNT分散液は、上記以外の分散処理方法を用いてCNTを溶媒中に分散させることにより調製してもよい。
CNT分散液の調製に用いるCNTとしては、上述した、潰れたCNTを含む複数本のCNTを用いることができる。
また、CNT分散液の調製に用いる分散剤は、CNTを分散可能であり、後述する溶媒に溶解可能であれば、特に限定されないが、界面活性剤、合成高分子または天然高分子を用いることができる。
また、合成高分子としては、例えば、ポリエーテルジオール、ポリエステルジオール、ポリカーボネートジオール、ポリビニルアルコール、部分けん化ポリビニルアルコール、アセトアセチル基変性ポリビニルアルコール、アセタール基変性ポリビニルアルコール、ブチラール基変性ポリビニルアルコール、シラノール基変性ポリビニルアルコール、エチレン−ビニルアルコール共重合体、エチレン−ビニルアルコール−酢酸ビニル共重合樹脂、ジメチルアミノエチルアクリレート、ジメチルアミノエチルメタクリレート、アクリル系樹脂、エポキシ樹脂、変性エポキシ系樹脂、フェノキシ樹脂、変性フェノキシ系樹脂、フェノキシエーテル樹脂、フェノキシエステル樹脂、フッ素系樹脂、メラミン樹脂、アルキッド樹脂、フェノール樹脂、ポリアクリルアミド、ポリアクリル酸、ポリスチレンスルホン酸、ポリエチレングリコール、ポリビニルピロリドンなどが挙げられる。
更に、天然高分子としては、例えば、多糖類であるデンプン、プルラン、デキストラン、デキストリン、グアーガム、キサンタンガム、アミロース、アミロペクチン、アルギン酸、アラビアガム、カラギーナン、コンドロイチン硫酸、ヒアルロン酸、カードラン、キチン、キトサン、セルロース、並びに、その塩または誘導体が挙げられる。誘導体とはエステルやエーテルなどの従来公知の化合物を意味する。
CNT分散液の溶媒としては、特に限定されることなく、例えば、水、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、t−ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、アミルアルコールなどのアルコール類、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン類、酢酸エチル、酢酸ブチルなどのエステル類、ジエチルエーテル、ジオキサン、テトラヒドロフランなどのエーテル類、N,N−ジメチルホルムアミド、N−メチルピロリドンなどのアミド系極性有機溶媒、トルエン、キシレン、クロロベンゼン、オルトジクロロベンゼン、パラジクロロベンゼンなどの芳香族炭化水素類などが挙げられる。これらは1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。
そして、分散液調製工程では、上述した溶媒に対して上述したCNTおよび分散剤を添加してなる粗分散液を、以下に詳細に説明するキャビテーション効果が得られる分散処理または解砕効果が得られる分散処理に供し、カーボンナノチューブを分散させてカーボンナノチューブ分散液を調製する。
キャビテーション効果が得られる分散処理は、液体に高エネルギーを付与した際、水に生じた真空の気泡が破裂することにより生じる衝撃波を利用した分散方法である。この分散方法を用いることにより、CNTを良好に分散させることができる。
解砕効果が得られる分散処理は、CNTを溶媒中に均一に分散できることは勿論、上記したキャビテーション効果が得られる分散処理に比べ、気泡が消滅する際の衝撃波によるCNTの損傷を抑制することができる点で一層有利である。
なお、粗分散液に背圧を負荷する場合、粗分散液に負荷した背圧は、大気圧まで一気に降圧させてもよいが、多段階で降圧することが好ましい。
すなわち、分散器は、粗分散液の流入側から流出側に向かって、内径がd1の分散器オリフィスと、内径がd2の分散空間と、内径がd3の終端部と(但し、d2>d3>d1である。)、を順次備える。
そして、この分散器では、流入する高圧(例えば10~400MPa、好ましくは50~250MPa)の粗分散液が、分散器オリフィスを通過することで、圧力の低下を伴いつつ、高流速の流体となって分散空間に流入する。その後、分散空間に流入した高流速の粗分散液は、分散空間内を高速で流動し、その際にせん断力を受ける。その結果、粗分散液の流速が低下すると共に、CNTが良好に分散する。そして、終端部から、流入した粗分散液の圧力よりも低い圧力(背圧)の流体が、CNT分散液として流出することになる。
そして、粗分散液の背圧を多段降圧器により多段階で降圧することで、最終的にCNT分散液を大気圧に開放した際に、CNT分散液中に気泡が発生するのを抑制できる。
なお、熱交換器等の配設に替えて、粗分散液を予め冷却しておくことでも、CNTを含む溶媒中で気泡が発生することを抑制できる。
なお、CNT分散液の粘度は、0.1Pa・s以上であることが好ましく、0.3Pa・s以上であることが更に好ましく、また、0.8Pa・s以下であることが好ましく、0.6Pa・s以下であることが更に好ましい。CNT分散液の粘度が0.1Pa・s以上0.8Pa・s以下であれば、後述する紡糸工程においてCNTを良好に紡糸して、得られるCNT繊維の導電性、熱伝導性および機械的特性などの性能を十分に高めることができると共に、CNT繊維を容易に製造することができるからである。なお、CNT分散液の粘度は、例えば、CNTおよび分散剤の配合量や種類を変更することにより調整することができる。
ここで、本発明において、CNT分散液の粘度は、B型粘度計を使用し、JIS K7117−1に準拠して、温度:23℃、ローター:M4、回転数:60rpmの条件下で測定することができる。
紡糸工程では、CNT分散液を凝固液中に押出して紡糸する。具体的には、紡糸工程では、攪拌中の凝固液に対し、紡糸口金やシリンジなどからCNT分散液を連続的に押出して注入し、複数本のCNTを紡糸して、モノフィラメントまたはマルチフィラメントよりなるCNT繊維を得る。なお、CNT分散液の押出し条件は、所望のCNT繊維の繊維径などに応じて適宜調整することができる。
ここで、凝固液としては、CNT分散液中に含まれている溶媒および分散剤を溶解または分散させてCNTを繊維状に集合させることが可能な溶液を用いることができる。具体的には、凝固液としては、N−メチルピロリドン、N,N−ジメチルアセトアミド、プロピレンカーボネート、ホルムアミド、N−メチルホルムアミド、水、メタノール、エタノール、プロパノールのいずれか一つを含む溶液を用いることができる。なお、通常、凝固液は、CNT分散液の溶媒とは異なるものである。
<CNTの合成>
アルミニウム化合物としてのアルミニウムトリ−sec−ブトキシド1.9gを、有機溶剤としての2−プロパノール100mLに溶解させた。さらに、安定剤としてのトリイソプロパノールアミン0.9gを加えて溶解させて、触媒担持層形成用の塗工液Aを調製した。
また、鉄化合物としての酢酸鉄174mgを有機溶剤としての2−プロパノール100mLに溶解させた。さらに、安定剤としてのトリイソプロパノールアミン190mgを加えて溶解させて、触媒層形成用の塗工液Bを調製した。
基材としてのFe−Cr合金SUS430基板(JFEスチール株式会社製、40mm×100mm、厚さ0.3mm、Cr18%、算術平均粗さRa≒0.59μm)の表面に、室温25℃、相対湿度50%の環境下で、ディップコーティングにより上述の塗工液Aを塗布した。具体的には、基材を塗工液Aに浸漬後、20秒間保持して、10mm/秒の引き上げ速度で基材を引き上げた。その後、5分間風乾し、温度300℃の空気環境下で30分間加熱後、室温まで冷却することにより、基材上に膜厚40nmのアルミナ薄膜(触媒担持層)を形成した。
次いで、室温25℃、相対湿度50%の環境下で、基材に設けられたアルミナ薄膜の上に、ディップコーティングにより上述の塗工液Bを塗布した。具体的には、アルミナ薄膜を備える基材を塗工液Bに浸漬後、20秒間保持して、3mm/秒の引き上げ速度でアルミナ薄膜を備える基材を引き上げた。その後、5分間風乾(乾燥温度45℃)することにより、膜厚3nmの鉄薄膜(触媒層)を形成した。このようにして、基材の上に、アルミナ薄膜、鉄薄膜をこの順に有してなる触媒基材1が得られた。
作製した触媒基板1を、炉内温度:750℃、炉内圧力:1.02×105Paに保持されたCVD装置の反応炉内に設置し、この反応炉内に、He:100sccmおよびH2:800sccmの混合ガスを10分間導入した(フォーメーション工程)。次いで、炉内温度:750℃、炉内圧力:1.02×105Paに保持された状態の反応炉内に、He:850sccm、エチレン:100sccmおよびH2O含有He(相対湿度23%):50sccmの混合ガスを8分間供給した(成長工程)。
その後、反応炉内にHe:1000sccmを供給し、残余の原料ガスおよび触媒賦活剤を排除した。これにより、CNT配向集合体1が得られた。得られたCNT配向集合体1は、収量:1.8mg/cm2、G/D比:3.7、密度:0.03g/cm3、BET比表面積:1,060m2/g、炭素純度99.9%であった。作製したCNT配向集合体1を触媒基材1から剥離し、CNT1を得た。
得られたCNT1を、単離精製されたフラーレン(C60)と共に石英管内に密封し、圧力1.07×10−3Paに保持したまま、温度500℃で24時間加熱処理を行うことにより、フラーレン挿入処理を行った。フラーレン挿入処理後のCNT1を透過型電子顕微鏡(TEM)にて観察した結果、図1~2に示すように、潰れた構造を有する単層CNTの存在が確認された。また、TEM観察により、潰れたCNTの数を確認したところ、CNT100本中に32本の潰れたCNTが存在していることが確認された。なお、潰れたCNTの潰れた部分の平均幅長は6nmであった。
分散剤を含む溶媒としてのデオキシコール酸ナトリウム(DOC)5質量%水溶液500mLに、上述したCNT1を5.0g加え、分散剤としてDOCを含有する粗分散液を得た。このCNT1を含む粗分散液を、分散時に背圧を負荷する多段圧力制御装置(多段降圧器)を有する高圧ホモジナイザー(株式会社美粒製、製品名「BERYU SYSTEM PRO」)に充填し、100MPaの圧力で粗分散液の分散処理を行った。具体的には、背圧を負荷しつつ、粗分散液にせん断力を与えてCNT1を分散させ、CNT分散液1を得た。なお、分散処理は、高圧ホモジナイザーから流出した分散液を再び高圧ホモジナイザーに返送しつつ、10分間実施した。作製したCNT分散液1の粘度を、粘度計(東機産業株式会社製、TVE−22H)を用いて、温度23℃、回転数60rpmにて測定した結果、粘度は0.58Pa・sであった。
得られたCNT分散液1を、内径150μmの吐出口が800個ある直径120mmの口金から吐出させ、凝固液としてのイソプロピルアルコール中で凝固させ、繊維束(凝固物)を得た。次に、得られた繊維束を十分水洗して乾燥させた後、巻き取り速度20m/秒で巻き取り、CNT繊維を製造した。作製したCNT繊維から単繊維を取り出し、CNT単繊維1を得た。得られたCNT単繊維1の密度を測定した結果、密度は1.45g/cm3であった。次いで、作製したCNT単繊維1について、引張試験機(テンシロン)を用いて引張試験(測定条件:温度20℃、相対湿度65%、引張速度100%/分)を行った結果、5回測定の平均値で、引張強度が940MPaであった。
カーボンナノチューブ繊維の調製時に、分散剤を含む溶媒としてデオキシコール酸ナトリウム(DOC)5質量%水溶液500mLに替えてデオキシコール酸ナトリウム(DOC)2.5質量%水溶液500mLを使用し、CNT1の添加量を2.5gとした以外は、実施例1と同様の操作によりCNT分散液2を作製した。そして、CNT分散液2を用いた以外は実施例1と同様の操作によりCNT繊維を作製した。なお、作製したCNT分散液2の粘度を実施例1と同様にして測定したところ、粘度は0.15Pa・sであった。また、作製したCNT繊維から取り出したCNT単繊維2の密度および引張強度を実施例1と同様にして測定したところ、密度は1.30g/cm3であり、引張強度は830MPaであった。
CNTの合成時に、アルミナ薄膜を備える基材へ塗工液Bを塗布する際の引上げ速度を3mm/秒から6mm/秒に替えた以外は、実施例1と同様の操作により触媒基材2を作製した。そして、触媒基材1に替えて触媒基材2を使用した以外は実施例1と同様の操作によりCNT配向集合体2およびCNT2を作製した。得られたCNT配向集合体2は、収量:1.4mg/cm2、G/D比:2.1、密度:0.03g/cm3、BET比表面積:680m2/g、炭素純度99.9%であった。また、得られたCNT2について実施例1と同様にして潰れたCNTの存在を確認したところ、潰れた構造を有する単層CNTの存在が確認された。また、潰れたCNTの数を確認したところ、CNT100本中に8本の潰れたCNTが存在していることが確認された。なお、潰れたCNTの潰れた部分の平均幅長は8nmであった。
そして、カーボンナノチューブ繊維の調製時に、CNT1に替えてCNT2を使用した以外は実施例1と同様の操作によりCNT分散液3およびCNT繊維を作製した。なお、作製したCNT分散液3の粘度を実施例1と同様にして測定したところ、粘度は0.44Pa・sであった。また、作製したCNT繊維から取り出したCNT単繊維3の密度および引張強度を実施例1と同様にして測定したところ、密度は1.06g/cm3であり、引張強度は720MPaであった。
カーボンナノチューブ繊維の調製時に、CNT1に替えて多層カーボンナノチューブ(MWCNT;Nanostructured & Amorphous Materials Inc.社製、Lot.1232、BET比表面積57m2/g)を使用した以外は実施例1と同様の操作により比較例CNT分散液1を作製した。なお、MWCNT中には、潰れたCNTは存在しなかった。また、作製した比較例CNT分散液1の粘度を実施例1と同様にして測定したところ、粘度は0.042Pa・sであった。そして、比較例CNT分散液1を用いた以外は実施例1と同様の操作により比較例CNT繊維を調製しようとしたところ、繊維が切れてしまい、CNT繊維を得ることができなかった。
<CNTの合成>
基材としてのFe−Cr合金SUS430基板(JFEスチール株式会社製、40mm×100mm、厚さ0.3mm、Cr18%、算術平均粗さRa≒0.59μm)の表裏両面に、スパッタリング装置を用いて厚さ100nmの二酸化ケイ素膜(浸炭防止層)を製膜した。次いで、二酸化ケイ素膜を形成した基材の表面のみに、スパッタリング装置を用いて、厚さ10nmの酸化アルミニウム膜および厚さ1.0nmの鉄膜を製膜し、比較例触媒基材を作製した。次いで、実施例1と同様の条件にて、比較例CNT配向集合体および比較例CNTを作製した。得られた比較例CNT配向集合体は、収量:1.9mg/cm2、G/D比:6.5、密度:0.03g/cm3、BET比表面積:1,100m2/g、炭素純度99.9%であった。
<潰れたCNTの存在の確認>
得られた比較例CNTについて実施例1と同様にして潰れたCNTの存在を確認したところ、潰れた構造を有する単層CNTは確認されなかった。
<カーボンナノチューブ繊維の調製>
分散剤を含む溶媒としてのデオキシコール酸ナトリウム(DOC)2.5質量%水溶液500mLに、上述した比較例CNTを2.5g加え、分散剤としてDOCを含有する粗分散液を得た。この比較例CNTを含む粗分散液に対し、プローブ型超音波装置(三井電気精機社製、製品名「UX300」)を用いて、出力300W、周波数20000kHzで1時間超音波照射を行なうことにより、比較例CNT分散液2を作製した。なお、作製した比較例CNT分散液2の粘度を実施例1と同様にして測定したところ、粘度は0.09Pa・sであった。
そして、比較例CNT分散液2を用いた以外は実施例1と同様にして、CNT繊維を製造した。また、作製したCNT繊維から単繊維を取り出し、比較例CNT単繊維を得た。得られた比較例CNT単繊維の密度および引張強度を実施例1と同様にして測定したところ、密度は0.095g/cm3であり、引張強度は240MPaであった。
Claims (10)
- 複数本のカーボンナノチューブの集合体よりなり、
前記複数本のカーボンナノチューブは、少なくとも一部が潰れた構造を有するカーボンナノチューブを含む、カーボンナノチューブ繊維。 - 前記少なくとも一部が潰れた構造を有するカーボンナノチューブが、カーボンナノチューブ100本中に5本以上の割合で存在する、請求項1に記載のカーボンナノチューブ繊維。
- 前記少なくとも一部が潰れた構造を有するカーボンナノチューブが、単層構造を有する、請求項1または2に記載のカーボンナノチューブ繊維。
- 前記少なくとも一部が潰れた構造を有するカーボンナノチューブが、フラーレン挿入処理によりフラーレンが挿入されない部分を有する、請求項1~3の何れかに記載のカーボンナノチューブ繊維。
- 前記少なくとも一部が潰れた構造を有するカーボンナノチューブの潰れた部分の平均幅長が5nm以上9nm以下である、請求項1~4の何れかに記載のカーボンナノチューブ繊維。
- 前記複数本のカーボンナノチューブのBET比表面積が600m2/g以上である、請求項1~5の何れかに記載のカーボンナノチューブ繊維。
- 密度が1.0g/cm3以上1.5g/cm3以下である、請求項1~6の何れかに記載のカーボンナノチューブ繊維。
- 少なくとも一部が潰れた構造を有するカーボンナノチューブを含む複数本のカーボンナノチューブと、分散剤と、溶媒とを含有するカーボンナノチューブ分散液を凝固液中に押出して紡糸する工程を含む、カーボンナノチューブ繊維の製造方法。
- 前記溶媒中に前記複数本のカーボンナノチューブおよび前記分散剤を添加してなる粗分散液をキャビテーション効果または解砕効果が得られる分散処理に供し、カーボンナノチューブを分散させて前記カーボンナノチューブ分散液を調製する工程を更に含む、請求項8に記載のカーボンナノチューブ繊維の製造方法。
- 請求項8または9に記載のカーボンナノチューブ繊維の製造方法を用いて製造した、請求項1~7の何れかに記載のカーボンナノチューブ繊維。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015560081A JP6520724B2 (ja) | 2014-02-03 | 2015-01-29 | カーボンナノチューブ繊維およびその製造方法 |
EP15743996.9A EP3103901B1 (en) | 2014-02-03 | 2015-01-29 | Carbon nanotube fiber and method for producing same |
US15/114,581 US9802823B2 (en) | 2014-02-03 | 2015-01-29 | Carbon nanotube fiber and method for producing same |
CN201580005875.3A CN105934543B (zh) | 2014-02-03 | 2015-01-29 | 碳纳米管纤维及其制造方法 |
KR1020167020302A KR20160110401A (ko) | 2014-02-03 | 2015-01-29 | 카본 나노튜브 섬유 및 그의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-018578 | 2014-02-03 | ||
JP2014018578 | 2014-02-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015115670A1 true WO2015115670A1 (ja) | 2015-08-06 |
Family
ID=53757235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/053158 WO2015115670A1 (ja) | 2014-02-03 | 2015-01-29 | カーボンナノチューブ繊維およびその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9802823B2 (ja) |
EP (1) | EP3103901B1 (ja) |
JP (1) | JP6520724B2 (ja) |
KR (1) | KR20160110401A (ja) |
CN (1) | CN105934543B (ja) |
WO (1) | WO2015115670A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015203168A (ja) * | 2014-04-15 | 2015-11-16 | 国立研究開発法人産業技術総合研究所 | 凝集紡糸構造体の製造方法 |
WO2017122805A1 (ja) * | 2016-01-15 | 2017-07-20 | 日本ゼオン株式会社 | 熱電変換素子用組成物、金属ナノ粒子が担持されたカーボンナノチューブの製造方法、熱電変換素子用成形体およびその製造方法、並びに熱電変換素子 |
WO2017122808A1 (ja) * | 2016-01-15 | 2017-07-20 | 日本ゼオン株式会社 | 熱電変換素子用フィルムの製造方法 |
JP2018024968A (ja) * | 2016-08-05 | 2018-02-15 | 国立研究開発法人産業技術総合研究所 | カーボンナノチューブを含む糸及びその製造方法 |
EP3239099A4 (en) * | 2014-12-25 | 2018-09-12 | Zeon Corporation | Carbon nanotube film and method for producing same |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11307163B2 (en) * | 2016-06-16 | 2022-04-19 | University Of Cincinnati | Carbon nanotube based reference electrodes and all-carbon electrode assemblies for sensing and electrochemical characterization |
CN106629669B (zh) * | 2016-12-08 | 2019-01-25 | 华侨大学 | 一种超细金刚石-碳纳米管纤维复合材料的制备方法 |
KR102170675B1 (ko) * | 2017-06-23 | 2020-10-27 | 주식회사 엘지화학 | 탄소 나노튜브 섬유 집합체의 인장강도 향상 방법 |
KR102377623B1 (ko) | 2018-01-29 | 2022-03-24 | 주식회사 엘지화학 | 탄소나노튜브 분산액의 제조방법 |
CN110436443B (zh) * | 2018-05-03 | 2023-09-19 | 史增谦 | 碳纳米管分散剂及其制备方法和应用 |
US11554957B2 (en) * | 2018-05-22 | 2023-01-17 | Molecular Rebar Design, Llc | Lithium ion battery using high surface area nanotubes |
US11111146B2 (en) * | 2018-10-04 | 2021-09-07 | Wootz, LLC | Carbon nanotube product manufacturing system and method of manufacture thereof |
CN113165877B (zh) * | 2018-10-04 | 2024-04-19 | 伍兹有限责任公司 | 碳纳米管产品制造系统及其制造方法 |
CN109576822B (zh) * | 2018-11-29 | 2021-03-26 | 中国科学院金属研究所 | 一种制备单壁碳纳米管纤维及其复合纤维的方法 |
KR102367562B1 (ko) * | 2020-04-17 | 2022-03-02 | 주식회사 윤성에프앤씨 | 탄소나노튜브 분산 장치 |
JP6870771B1 (ja) * | 2020-08-31 | 2021-05-12 | 日本ゼオン株式会社 | 電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子 |
CN113248868B (zh) * | 2021-04-30 | 2023-10-17 | 中国科学院苏州纳米技术与纳米仿生研究所 | 一种纳米改性复合材料、其制备方法及应用 |
CN114657670A (zh) * | 2022-04-22 | 2022-06-24 | 江西省纳米技术研究院 | 碳纳米管纤维的连续牵伸增强方法及设备 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005502792A (ja) * | 2001-07-06 | 2005-01-27 | ウィリアム・マーシュ・ライス・ユニバーシティ | 整列した単層カーボンナノチューブの繊維及びその製造方法 |
JP2009023881A (ja) * | 2007-07-20 | 2009-02-05 | Panasonic Corp | カーボンナノチューブおよびカーボンナノチューブ構造体 |
JP2010530929A (ja) * | 2007-01-30 | 2010-09-16 | ジョージア テック リサーチ コーポレイション | 炭素繊維および炭素膜、ならびにそれらの作製方法 |
JP2011038203A (ja) | 2009-08-10 | 2011-02-24 | Denso Corp | カーボンナノチューブ繊維複合体、およびカーボンナノチューブ繊維複合体の製造方法 |
WO2011108492A1 (ja) * | 2010-03-01 | 2011-09-09 | 日本ゼオン株式会社 | カーボンナノチューブ配向集合体の製造方法 |
WO2012070527A1 (ja) * | 2010-11-25 | 2012-05-31 | 株式会社インキュベーション・アライアンス | 新規カーボンナノチューブ及びその製造方法 |
JP2012127043A (ja) | 2010-11-22 | 2012-07-05 | Furukawa Electric Co Ltd:The | 凝集紡糸構造体および電線 |
JP2012213716A (ja) * | 2011-03-31 | 2012-11-08 | Nippon Zeon Co Ltd | カーボンナノチューブ配向集合体製造用基材、カーボンナノチューブ配向集合体の製造方法、及びカーボンナノチューブ配向集合体製造用基材の製造方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2482701A (en) * | 1999-07-26 | 2001-02-13 | Trustees Of The University Of Pennsylvania, The | Single-walled nanotubes having filled lumens and methods for producing the same |
JP2003160320A (ja) * | 2001-09-11 | 2003-06-03 | Sony Corp | 物質吸蔵材料及びそれを用いた電気化学デバイス、並びに物質吸蔵材料の製造方法 |
JP3829789B2 (ja) * | 2002-10-22 | 2006-10-04 | トヨタ自動車株式会社 | 多重管カーボンナノチューブ製造方法 |
JP2005141865A (ja) * | 2003-11-07 | 2005-06-02 | Toyota Motor Corp | 高密度記録媒体 |
US7998449B2 (en) * | 2009-05-16 | 2011-08-16 | Heiko Ackermann | Carbon nanotubes production process |
WO2012070537A1 (ja) * | 2010-11-22 | 2012-05-31 | 古河電気工業株式会社 | 凝集紡糸構造体およびその製造方法ならびにそれを用いた電線 |
JP5131571B2 (ja) * | 2010-11-22 | 2013-01-30 | 古河電気工業株式会社 | 凝集紡糸構造体の製造方法および凝集紡糸構造体 |
KR20140035933A (ko) * | 2011-06-17 | 2014-03-24 | 도다 고교 가부시끼가이샤 | 전자파 간섭 억제체 |
JP5946675B2 (ja) * | 2012-03-29 | 2016-07-06 | 東洋ゴム工業株式会社 | タイヤ用ゴム組成物及びその製造方法 |
EP2851398B1 (en) * | 2012-05-15 | 2021-06-23 | Zeon Corporation | Conductive composition |
WO2014002885A1 (ja) * | 2012-06-26 | 2014-01-03 | 東レ株式会社 | カーボンナノチューブ含有組成物の分散液および導電性成形体 |
-
2015
- 2015-01-29 US US15/114,581 patent/US9802823B2/en not_active Expired - Fee Related
- 2015-01-29 JP JP2015560081A patent/JP6520724B2/ja active Active
- 2015-01-29 CN CN201580005875.3A patent/CN105934543B/zh not_active Expired - Fee Related
- 2015-01-29 KR KR1020167020302A patent/KR20160110401A/ko not_active Application Discontinuation
- 2015-01-29 WO PCT/JP2015/053158 patent/WO2015115670A1/ja active Application Filing
- 2015-01-29 EP EP15743996.9A patent/EP3103901B1/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005502792A (ja) * | 2001-07-06 | 2005-01-27 | ウィリアム・マーシュ・ライス・ユニバーシティ | 整列した単層カーボンナノチューブの繊維及びその製造方法 |
JP2010530929A (ja) * | 2007-01-30 | 2010-09-16 | ジョージア テック リサーチ コーポレイション | 炭素繊維および炭素膜、ならびにそれらの作製方法 |
JP2009023881A (ja) * | 2007-07-20 | 2009-02-05 | Panasonic Corp | カーボンナノチューブおよびカーボンナノチューブ構造体 |
JP2011038203A (ja) | 2009-08-10 | 2011-02-24 | Denso Corp | カーボンナノチューブ繊維複合体、およびカーボンナノチューブ繊維複合体の製造方法 |
WO2011108492A1 (ja) * | 2010-03-01 | 2011-09-09 | 日本ゼオン株式会社 | カーボンナノチューブ配向集合体の製造方法 |
JP2012127043A (ja) | 2010-11-22 | 2012-07-05 | Furukawa Electric Co Ltd:The | 凝集紡糸構造体および電線 |
WO2012070527A1 (ja) * | 2010-11-25 | 2012-05-31 | 株式会社インキュベーション・アライアンス | 新規カーボンナノチューブ及びその製造方法 |
JP2012213716A (ja) * | 2011-03-31 | 2012-11-08 | Nippon Zeon Co Ltd | カーボンナノチューブ配向集合体製造用基材、カーボンナノチューブ配向集合体の製造方法、及びカーボンナノチューブ配向集合体製造用基材の製造方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015203168A (ja) * | 2014-04-15 | 2015-11-16 | 国立研究開発法人産業技術総合研究所 | 凝集紡糸構造体の製造方法 |
EP3239099A4 (en) * | 2014-12-25 | 2018-09-12 | Zeon Corporation | Carbon nanotube film and method for producing same |
WO2017122805A1 (ja) * | 2016-01-15 | 2017-07-20 | 日本ゼオン株式会社 | 熱電変換素子用組成物、金属ナノ粒子が担持されたカーボンナノチューブの製造方法、熱電変換素子用成形体およびその製造方法、並びに熱電変換素子 |
WO2017122808A1 (ja) * | 2016-01-15 | 2017-07-20 | 日本ゼオン株式会社 | 熱電変換素子用フィルムの製造方法 |
JPWO2017122805A1 (ja) * | 2016-01-15 | 2018-11-22 | 日本ゼオン株式会社 | 熱電変換素子用組成物、金属ナノ粒子が担持されたカーボンナノチューブの製造方法、熱電変換素子用成形体およびその製造方法、並びに熱電変換素子 |
CN109075243A (zh) * | 2016-01-15 | 2018-12-21 | 日本瑞翁株式会社 | 热电转换元件用组合物、担载有金属纳米粒子的碳纳米管的制造方法、热电转换元件用成型体及其制造方法、以及热电转换元件 |
EP3404728A4 (en) * | 2016-01-15 | 2019-10-09 | Zeon Corporation | COMPOSITION FOR THERMOELECTRIC CONVERSION ELEMENT, PROCESS FOR PRODUCING CARBON NANOTUBES WHICH CARRY METAL NANOPARTICLES, MOLDED BODY FOR THERMOELECTRIC CONVERSION ELEMENT AND METHOD FOR PRODUCING THE SAME, AND THERMOELECTRIC CONVERSION ELEMENT |
CN109075243B (zh) * | 2016-01-15 | 2023-05-09 | 日本瑞翁株式会社 | 热电转换元件用组合物及其制造方法、热电转换元件用成型体及其制造方法及热电转换元件 |
JP2018024968A (ja) * | 2016-08-05 | 2018-02-15 | 国立研究開発法人産業技術総合研究所 | カーボンナノチューブを含む糸及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105934543A (zh) | 2016-09-07 |
EP3103901B1 (en) | 2019-08-21 |
CN105934543B (zh) | 2018-03-20 |
US9802823B2 (en) | 2017-10-31 |
JPWO2015115670A1 (ja) | 2017-03-23 |
EP3103901A4 (en) | 2018-03-21 |
US20160340193A1 (en) | 2016-11-24 |
EP3103901A1 (en) | 2016-12-14 |
JP6520724B2 (ja) | 2019-05-29 |
KR20160110401A (ko) | 2016-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015115670A1 (ja) | カーボンナノチューブ繊維およびその製造方法 | |
JP6673222B2 (ja) | カーボンナノチューブ膜およびその製造方法 | |
JP4379247B2 (ja) | カーボンナノ構造体の製造方法 | |
WO2015064772A1 (ja) | カーボンナノチューブ | |
Wang et al. | Nucleation and growth of well-aligned, uniform-sized carbon nanotubes by microwave plasma chemical vapor depositon | |
Jeong et al. | Narrow diameter distribution of singlewalled carbon nanotubes grown on Ni–MgO by thermal chemical vapor deposition | |
JPWO2017115708A1 (ja) | 繊維状炭素ナノ構造体分散液 | |
Suriani et al. | Effect of iron and cobalt catalysts on the growth of carbon nanotubes from palm oil precursor | |
WO2016013219A1 (ja) | めっき液およびその製造方法、並びに、複合材料、銅複合材料およびその製造方法 | |
JP2016183395A (ja) | 金属複合材料およびその製造方法 | |
JP6664200B2 (ja) | 複合材料の製造方法 | |
JPWO2017104772A1 (ja) | 繊維状炭素ナノ構造体分散液 | |
JP6623512B2 (ja) | 炭素ナノ構造体集合物およびその製造方法 | |
JP6519485B2 (ja) | カーボンナノチューブ、カーボンナノチューブ集合体およびカーボンナノチューブ集合体の製造方法 | |
JP7023112B2 (ja) | 複合材料の製造方法 | |
Yu et al. | Growth and photoluminescence of Si-SiOx nanowires by catalyst-free chemical vapor deposition technique | |
Shuai et al. | Effects of growth parameters on the morphology of CNTs/Cu composite powder prepared using Cr/Cu catalyst by chemical vapor deposition | |
Chernomordik et al. | Nanodiamond tipped and coated conical carbon tubular structures | |
JPWO2017104769A1 (ja) | 繊維状炭素ナノ構造体分散液 | |
WO2016072096A1 (ja) | 炭素ナノ構造体集合物およびその製造方法 | |
JP2016088814A (ja) | グラフェンナノテープ、炭素ナノ構造体集合物およびその製造方法 | |
Muti et al. | Growth of Aligned Multiwalled Carbon Nanotubes (MWNTs) for Application as Field Emitters | |
Lee et al. | Study of influenced pressure condition at deposited carbon nanotubes in low temperature | |
JP2016185892A (ja) | カーボンナノチューブを含む炭素ナノ構造体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15743996 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015560081 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20167020302 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15114581 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015743996 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015743996 Country of ref document: EP |