[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015114703A1 - リンおよびカルシウムの回収方法および前記回収方法によって得られる混合物 - Google Patents

リンおよびカルシウムの回収方法および前記回収方法によって得られる混合物 Download PDF

Info

Publication number
WO2015114703A1
WO2015114703A1 PCT/JP2014/005662 JP2014005662W WO2015114703A1 WO 2015114703 A1 WO2015114703 A1 WO 2015114703A1 JP 2014005662 W JP2014005662 W JP 2014005662W WO 2015114703 A1 WO2015114703 A1 WO 2015114703A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphorus
calcium
aqueous solution
carbon dioxide
mixture
Prior art date
Application number
PCT/JP2014/005662
Other languages
English (en)
French (fr)
Inventor
正一 松尾
昭広 浅場
康 福居
山本 雅也
Original Assignee
日新製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新製鋼株式会社 filed Critical 日新製鋼株式会社
Priority to US15/114,719 priority Critical patent/US9783418B2/en
Priority to ES14880452T priority patent/ES2718606T3/es
Priority to EP14880452.9A priority patent/EP3090991B1/en
Priority to RU2016130849A priority patent/RU2618004C1/ru
Priority to JP2014555030A priority patent/JP5748925B1/ja
Priority to CN201480074416.6A priority patent/CN105980326B/zh
Priority to CA2937214A priority patent/CA2937214C/en
Priority to KR1020167020286A priority patent/KR101815160B1/ko
Priority to MX2016009573A priority patent/MX366657B/es
Publication of WO2015114703A1 publication Critical patent/WO2015114703A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/01Treating phosphate ores or other raw phosphate materials to obtain phosphorus or phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • C04B5/06Ingredients, other than water, added to the molten slag or to the granulating medium or before remelting; Treatment with gases or gas generating compounds, e.g. to obtain porous slag
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/02Preparation of phosphorus
    • C01B25/027Preparation of phosphorus of yellow phosphorus
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2200/00Recycling of non-gaseous waste material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2200/00Recycling of waste material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2

Definitions

  • the present invention relates to a method for recovering phosphorus and calcium from steelmaking slag and a mixture obtained by the recovery method.
  • Steelmaking slag (converter slag, pretreatment slag, secondary refining slag, electric furnace slag, etc.) generated in the steelmaking process contains oxides such as phosphorus, calcium, iron, silicon, manganese, aluminum, and magnesium. It is known. Specifically, phosphorus is present together with calcium silicates such as Ca 2 SiO 4 and Ca 3 SiO 5 and calcium iron oxides such as Ca 2 Fe 2 O 5 in the steelmaking slag.
  • calcium is Ca (OH) 2 produced by reacting quick lime (CaO) introduced in the steelmaking process as it is (free lime) or free lime reacts with water vapor or carbon dioxide in the air. It exists as Ca 2 CO 3 .
  • phosphorus is an important element as a raw material for fertilizers and chemical products.
  • phosphorus ore phosphorus
  • phosphorus is imported in the form of phosphorus ore, fertilizer, chemical products and so on.
  • the price of phosphorus is rising (for example, refer nonpatent literature 1 and 2).
  • phosphorus can be recovered from the steelmaking slag described above, the problem of phosphorus resources is alleviated. For this reason, attempts have been made to recover phosphorus from steelmaking slag (see, for example, Patent Documents 1 and 2).
  • Patent Document 1 describes a method for recovering phosphorus from steelmaking slag from which calcium has been removed.
  • calcium is removed from the steelmaking slag by washing the steelmaking slag with water containing carbon dioxide. Thereafter, the steelmaking slag is immersed in the mineral acid to elute phosphorus in the steelmaking slag into the mineral acid. Finally, the phosphoric acid (phosphoric acid) is recovered by neutralizing the mineral acid (extract) from which the phosphorus has eluted.
  • Patent Document 2 describes a method for recovering phosphorus dissolved in a specific calcium compound by eluting the calcium compound from steelmaking slag in a plurality of times.
  • steelmaking slag pretreatment slag
  • the solution containing phosphorus is collect
  • Calcium is an important element that is used as a calcium carbonate in a steelmaking sintering process or calcined and used as a calcium oxide in a steelmaking process.
  • calcium hydroxide obtained by digesting calcium oxide is used as a neutralizing agent such as acid in the drainage process. Therefore, if calcium can be recovered from the steelmaking slag generated in the ironmaking process, the calcium can be reused, and the cost of ironmaking can be reduced. For this reason, attempts have been made to recover calcium from steelmaking slag (see Patent Document 3).
  • Patent Document 3 describes a method of recovering calcium from converter slag using carbon dioxide.
  • water is injected into the converter slag to elute calcium in the converter slag.
  • calcium (calcium carbonate) is recovered from the converter slag by maintaining the lower limit of pH at about 10.
  • the phosphorus recovery method described in Patent Document 1 uses a mineral acid and a neutralizing agent, so that the recovery cost increases. Moreover, in order to filter the undissolved substance at the time of immersing steelmaking slag in a mineral acid, a filter (filtration filter) is needed and a collection cost will become high. Furthermore, since other components such as iron, manganese, magnesium, silicon, aluminum, and calcium are dissolved in the mineral acid, these components are deposited even if this extract is neutralized.
  • the calcium recovery method described in Patent Document 3 has a problem that it is substantially difficult to maintain the pH at 10 or more, and the precipitated calcium carbonate is re-dissolved when the pH is lowered. On the other hand, if the lower limit of pH is maintained at about 10, the amount of precipitation decreases. In addition, with this recovery method, it is difficult to dissolve calcium silicate containing phosphorus, so that almost no phosphorus can be recovered, resulting in an increase in recovery cost.
  • the conventional method of recovering phosphorus or calcium from slag has a problem that the recovery cost is high.
  • the present inventors have found that the above problem can be solved by bringing the steelmaking slag into contact with an aqueous solution containing carbon dioxide, and then removing the carbon dioxide from the aqueous solution to precipitate the eluate.
  • the present invention has been completed.
  • a method for recovering phosphorus and calcium from steelmaking slag wherein an aqueous solution containing 30 ppm or more of carbon dioxide is brought into contact with the steelmaking slag to elute phosphorus and calcium in the steelmaking slag into the aqueous solution.
  • a method for recovering phosphorus and calcium comprising: one step; and a second step of removing the carbon dioxide from the aqueous solution and precipitating a mixture containing a phosphorus compound and a calcium compound after the first step.
  • the carbon dioxide is removed by blowing one or more gases selected from the group consisting of air, nitrogen, oxygen, hydrogen, argon and helium into the aqueous solution.
  • gases selected from the group consisting of air, nitrogen, oxygen, hydrogen, argon and helium.
  • the present invention also relates to a mixture obtained by the recovery method described above.
  • [8] A mixture obtained by the method for recovering phosphorus and calcium according to any one of [1] to [7], comprising a phosphorus compound and a calcium compound, and containing 1% by mass or more of phosphorus in terms of atoms. blend.
  • phosphorus and calcium can be recovered from steelmaking slag at low cost.
  • FIG. 1 is a flowchart of a method for recovering phosphorus and calcium according to an embodiment of the present invention.
  • the phosphorus and calcium recovery method according to the present embodiment includes a first step of eluting phosphorus and calcium in steelmaking slag into an aqueous solution containing carbon dioxide, and after the first step.
  • steel slag as a raw material is prepared and crushed or pulverized (step S100).
  • the type of steelmaking slag is not particularly limited as long as it contains phosphorus and calcium.
  • steelmaking slag include converter slag, pretreatment slag, secondary refining slag, electric furnace slag, and the like.
  • steelmaking slag is composed of phosphorus (P), calcium (Ca), iron (Fe), silicon (Si), manganese (Mn), magnesium (Mg), aluminum (Al) compounds (oxides), etc. contains.
  • phosphorus exists together with calcium silicate (Ca 2 SiO 4 , Ca 3 SiO 5 ), which is a complex oxide of calcium and silicon.
  • calcium exists as free lime calcium oxide (CaO), calcium hydroxide (Ca (OH) 2 ), calcium carbonate (CaCO 3 ), and the like.
  • Steelmaking slag may be used as it is discharged in the steelmaking process, but it is preferable to use steelmaking slag from which metal iron has been further removed after crushing or grinding. If the steelmaking slag discharged in the steelmaking process is used as it is, the recovery operation may become complicated.
  • the maximum particle size of the steelmaking slag is not particularly limited, but is preferably 1000 ⁇ m or less. When the maximum particle size of the steelmaking slag is more than 1000 ⁇ m, the contact area with the aqueous solution of the steelmaking slag is small, so that the time for phosphorus and calcium to elute becomes long and the time for collecting phosphorus and calcium becomes long.
  • the method for pulverizing the steelmaking slag is not particularly limited. For example, steel slag may be pulverized with a roller mill, a ball mill, or the like.
  • step S110 by bringing the steelmaking slag prepared in step S100 into contact with an aqueous solution containing carbon dioxide, phosphorus and calcium in the steelmaking slag are eluted into an aqueous solution containing carbon dioxide (step S110).
  • the type of the aqueous solution containing carbon dioxide is not particularly limited as long as it contains 30 ppm or more of carbon dioxide, and may contain other components.
  • the method for dissolving carbon dioxide in water is not particularly limited.
  • carbon dioxide can be dissolved in water by bubbling (blowing) a gas containing carbon dioxide.
  • the gas to be blown may contain components other than carbon dioxide.
  • the blown gas may contain oxygen, nitrogen, or the like.
  • the exhaust gas after combustion may be blown to dissolve carbon dioxide, or a mixed gas of carbon dioxide, air and water vapor may be blown to dissolve carbon dioxide.
  • the gas to be blown in preferably contains carbon dioxide at a high concentration (for example, 90%).
  • concentration of carbon dioxide in the aqueous solution is 30 ppm or more. If the density
  • the method for bringing the steel slag into contact with an aqueous solution containing carbon dioxide is not particularly limited.
  • steelmaking slag may be immersed in water in which carbon dioxide has been dissolved in advance, or carbon dioxide may be dissolved in water after the steelmaking slag is immersed in water.
  • carbon dioxide may be dissolved in water after the steelmaking slag is immersed in water.
  • the steelmaking slag after the elution of phosphorus and calcium has a high iron component content, and therefore can be used as an ironmaking raw material as it is or by further magnetic selection.
  • step S120 the aqueous solution (supernatant) in which phosphorus and calcium are dissolved is separated from the steelmaking slag from which phosphorus and calcium are eluted by filtration or the like.
  • carbon dioxide is removed from an aqueous solution in which phosphorus and calcium are dissolved to precipitate a mixture containing a phosphorus compound and a calcium compound (step S130).
  • the method for removing carbon dioxide from the aqueous solution is not particularly limited. Examples of methods for removing carbon dioxide include (1) blowing gas into an aqueous solution, (2) reducing the pressure of the aqueous solution, and (3) heating the aqueous solution. Hereinafter, it demonstrates individually.
  • Blowing gas into aqueous solution In a method of removing carbon dioxide by blowing gas into an aqueous solution, gas other than carbon dioxide is blown into the aqueous solution. Thereby, carbon dioxide can be easily removed from the aqueous solution by replacing the dissolved carbon dioxide with the blown gas.
  • the type of gas blown into the water is preferably an inorganic gas having a low reactivity with water or an organic gas having a low reactivity with water.
  • the inorganic gas include air, nitrogen, oxygen, hydrogen, argon, helium and the like.
  • the organic gas include methane, ethane, ethylene, acetylene, propane and the like.
  • Caution should be exercised because organic gases can burn or explode if leaked to the outside. If a gas that reacts with water, such as chlorine gas or sulfurous acid gas, is used, chlorine ions, sulfate ions, etc. are generated in the water. And these ions will form a salt with calcium which eluted in water. As a result, even if carbon dioxide is removed from the aqueous solution, a mixture containing a phosphorus compound and a calcium compound does not precipitate, such being undesirable.
  • a gas that reacts with water such as chlorine gas or sulfurous acid gas
  • the temperature of the aqueous solution is increased.
  • the atmospheric pressure is atmospheric pressure (1 atm)
  • the heating temperature is less than 100 ° C.
  • the method for removing carbon dioxide may be performed by combining the methods (1) to (3) above. Thereby, carbon dioxide can be efficiently removed from the aqueous solution. Note that these combinations may be selected in consideration of the supply system of gas and heat, the location, the use of by-product gas in the factory, and the like.
  • calcium in the aqueous solution is precipitated as a calcium compound.
  • the precipitated calcium compound include calcium carbonate, calcium bicarbonate, calcium hydroxide and the like.
  • phosphorus in the aqueous solution is precipitated as a phosphorus compound.
  • the phosphorus compound to be precipitated include calcium phosphate, calcium hydrogen phosphate, hydroxyapatite (HAp) and the like.
  • step S140 the mixture containing the phosphorus compound and calcium compound precipitated in step S130 is recovered (step S140).
  • the phosphorus compound recovered from the steelmaking slag is important as a phosphorus resource. Therefore, it is preferable that the content of the phosphorus compound in the mixture is large. Moreover, the calcium compound recovered from the steelmaking slag can be reused as an ironmaking raw material. At this time, it is not preferable that a phosphorus compound is contained as an iron-making raw material. Therefore, it is preferable to separately obtain a mixture having a high phosphorus compound content and a mixture having a low phosphorus compound content from an aqueous solution containing phosphorus and calcium. Thus, in order to separately obtain two types of mixtures having different contents of each compound, it is preferable to perform the second step as follows.
  • FIG. 2 is a flowchart of a method for recovering phosphorus and calcium according to another embodiment of the present invention.
  • the third step of removing a part of carbon dioxide from the aqueous solution to precipitate the mixture, and the carbon dioxide from the aqueous solution after the third step.
  • a fourth step of precipitating the mixture in this case, the proportion of the phosphorus compound in the mixture obtained in the fourth step is less than the proportion of the phosphorus compound in the mixture obtained in the third step.
  • Step S100 Crushing or pulverization of steelmaking slag (step S100), elution of phosphorus and calcium in the steelmaking slag (step S110), and separation of the aqueous solution (supernatant liquid) in which phosphorus and calcium are dissolved from the steelmaking slag from which phosphorus and calcium are eluted ( Step S120) is as described above.
  • step S230 a part of carbon dioxide is removed from the aqueous solution in which phosphorus and calcium are dissolved to precipitate a mixture having a high phosphorus compound content.
  • the third step is performed by utilizing the property that the calcium compound and phosphorus are likely to precipitate together.
  • the precipitation rate of the mixture in the third step is preferably 0.1 g / min ⁇ L or less. This is because when the deposition rate is 0.1 g / min ⁇ L or less, the phosphorus compound is adsorbed on the surface of the calcium compound, so that a large amount of the phosphorus compound is precipitated together with the calcium compound.
  • by stirring the aqueous solution the phosphorus compound and the calcium compound easily precipitate together. And a mixture with much content of a phosphorus compound is collect
  • step S250 carbon dioxide is further removed from the aqueous solution in which phosphorus and calcium are dissolved to precipitate the mixture. Specifically, after the third step is performed, carbon dioxide is further removed from the aqueous solution to precipitate the remaining calcium compound. At this time, since the phosphorus compound is almost precipitated in the third step, a mixture having a low content of the phosphorus compound can be obtained.
  • the method of removing carbon dioxide may be any of the above-described gas blowing method into an aqueous solution, decompression of the aqueous solution, and heating of the aqueous solution. By any method, a calcium compound containing almost no phosphorus compound can be obtained. And a mixture with little content of a phosphorus compound is collect
  • a mixture having a high phosphorus content can also be obtained by intermittently removing carbon dioxide.
  • carbon dioxide removal and carbon dioxide removal stop are repeated in a short time.
  • the removal of carbon dioxide is preferably performed by blowing a gas into an aqueous solution or reducing the pressure of the aqueous solution.
  • the injection of the gas into the aqueous solution is repeated for 0.5 minutes, and then the stop of the injection of the gas into the aqueous solution is repeated three times.
  • the third step it is preferable to stir for a while after the gas blowing into the aqueous solution or the pressure reduction of the aqueous solution is stopped. As a result, the unadsorbed phosphorus compound is adsorbed on the precipitated calcium compound.
  • the timing for stopping the blowing of the gas into the aqueous solution or the decompression of the aqueous solution may be any timing in the third step.
  • the third step is preferably 1/50 to 1/3 of the time for removing the carbon dioxide.
  • the mixture thus obtained contains a phosphorus compound and a calcium compound, and contains phosphorus in an amount of 1% by mass or more in terms of atoms.
  • examples of phosphorus compounds include calcium phosphate, calcium hydrogen phosphate, hydroxyapatite (HAp), and examples of calcium compounds include calcium carbonate, calcium hydrogen carbonate, calcium hydroxide, and the like.
  • the phosphorus content in the mixture can be determined by the ICP-AES method.
  • the method for recovering phosphorus and calcium comprises bringing an aqueous solution containing 30 ppm or more of carbon dioxide into contact with steelmaking slag, and eluting phosphorus and calcium in the steelmaking slag into the aqueous solution.
  • phosphorus and calcium in the steelmaking slag can be recovered at low cost as a mixture of phosphorus compound and calcium compound.
  • Experiment 1 shows an example in which carbon dioxide removal and mixture recovery were each performed once.
  • Slag A and slag B Two types of steelmaking slag (slag A and slag B) having different component ratios were prepared (see Table 1). Slag A and slag B were pulverized using a roller mill so that the maximum particle size was 100 ⁇ m. The maximum particle size of the pulverized slag was confirmed using a laser diffraction / scattering particle size distribution measuring apparatus.
  • a slag suspension was prepared by adding pulverized slag (1 kg, 3 kg or 5 kg) to 100 L of water filled in a container. Next, the slag suspension was stirred for 30 minutes using an impeller while carbon dioxide was blown into the prepared slag suspension at 20 L / min. The carbon dioxide concentration at this time was 30 ppm or more. For comparison, the slag suspension was stirred for 30 minutes using an impeller without blowing carbon dioxide into the slag suspension. The slag suspension after stirring was allowed to stand to precipitate slag. Thereafter, the supernatant was recovered, and the suspended matter was removed by vacuum filtration using a filter.
  • Blowing gas into an aqueous solution reducing the pressure of the aqueous solution, and heating the aqueous solution While blowing air at 5 L / min into the supernatant liquid put into the sealed container, the pressure inside the sealed container was set to 3/10 atm.
  • the carbon dioxide was removed by maintaining the temperature of the supernatant at 60 ° C. for 30 minutes.
  • Experiment 2 shows an example in which the removal of carbon dioxide and the collection of the mixture were performed in two steps.
  • a slag suspension was prepared by adding pulverized slag (1 kg or 3 kg) to 100 L of water filled in a container. Next, the slag suspension was stirred for 30 minutes using an impeller while carbon dioxide was blown into the prepared slag suspension at 20 L / min. Then, the suspension was allowed to stand to precipitate slag, and then the supernatant liquid was collected, and the suspended matter was removed by vacuum filtration using a filter.
  • Experiment 3 shows an example in which carbon dioxide was removed once by two methods and the mixture was recovered.
  • Experiment 4 shows an example in which carbon dioxide was removed by one method, and the mixture was collected in two steps.
  • Carbon dioxide is removed by blowing off a predetermined amount of carbon dioxide for 5 minutes using an impeller while blowing a predetermined amount of air into the supernatant liquid put into the sealed container, Stir for 5 minutes. Thereafter, the supernatant containing the precipitate was filtered under reduced pressure using a filter, and the precipitate was collected. Next, while removing a certain amount of carbon dioxide for 25 minutes using an impeller while blowing a predetermined amount of air into the supernatant liquid put into the container again, the supernatant liquid containing the precipitate is filtered under reduced pressure using a filter. The material was collected. In addition, the blowing amount of air was shown by the air volume of the atmospheric pressure for 1 minute per 1L of slag suspensions.
  • the phosphorus compound content in the mixture could be increased by setting the deposition rate of the phosphorus compound and calcium compound to 0.1 g / min ⁇ L or less.
  • Experiment 5 shows an example in which carbon dioxide is removed a plurality of times (three times).
  • FIG. 3 is a flowchart of the phosphorus and calcium recovery method in Experiment 5.
  • the recovery method according to the present invention after eluting phosphorus and calcium in the steelmaking slag into an aqueous solution containing carbon dioxide, the mixture containing the phosphorus compound and the calcium compound is precipitated, thereby making the steelmaking slag inexpensive. Can recover phosphorus and calcium.
  • the phosphorus and calcium recovery method of the present invention can recover phosphorus and calcium in steelmaking slag at low cost, it is useful, for example, as a phosphorus resource and calcium resource recovery method in iron making.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Removal Of Specific Substances (AREA)
  • Furnace Details (AREA)

Abstract

 二酸化炭素を30ppm以上含む水溶液と、製鋼スラグとを接触させて、製鋼スラグ中のリンおよびカルシウムを水溶液に溶出させる。次いで、水溶液から二酸化炭素を除去して、リン化合物およびカルシウム化合物を含む混合物を析出させる。これにより、リン化合物およびカルシウム化合物を含み、リンを原子換算で1質量%以上含有する混合物が得られる。

Description

リンおよびカルシウムの回収方法および前記回収方法によって得られる混合物
 本発明は、製鋼スラグからリンおよびカルシウムを回収する方法および前記回収方法によって得られる混合物に関する。
 製鋼工程で生じる製鋼スラグ(転炉スラグ、予備処理スラグ、二次精錬スラグ、電気炉スラグなど)には、リン、カルシウム、鉄、シリコン、マンガン、アルミニウム、マグネシウムなどの酸化物が含まれていることが知られている。具体的には、リンは、製鋼スラグ中において、CaSiO、CaSiOなどのケイ酸カルシウムおよびCaFeなどのカルシウム鉄酸化物と一緒に存在している。一方、カルシウムは、製鋼スラグ中において、製鋼工程で投入される生石灰(CaO)がそのまま(遊離石灰)、または遊離石灰が空気中の水蒸気もしくは二酸化炭素と反応して生成したCa(OH)もしくはCaCOとして存在している。
 一方、リンは、肥料や化学製品の原料として重要な元素である。しかし、日本ではリン鉱石(リン)の産出はないため、リンは、リン鉱石、肥料、化学製品などの形態で輸入されている。また、良質なリン鉱石が少なく、資源的に逼迫するおそれがあるため、リンの価格は、上昇傾向にある(例えば、非特許文献1、2参照)。このような状況において、上述した製鋼スラグからリンを回収できれば、リン資源の問題が緩和される。このため、以前から、製鋼スラグからリンを回収する試みが行われている(例えば、特許文献1、2参照)。
 特許文献1には、カルシウムを除去した製鋼スラグからリンを回収する方法が記載されている。この回収方法では、二酸化炭素を含む水で製鋼スラグを洗浄することにより、製鋼スラグからカルシウムを除去する。その後、鉱酸に製鋼スラグを浸漬することにより、製鋼スラグ中のリンを鉱酸内に溶出させる。最後に、リンが溶出した鉱酸(抽出液)を中和することにより、リン(リン酸)を回収する。
 また、特許文献2には、製鋼スラグからカルシウム化合物を複数回に分けて溶出させることにより、特定のカルシウム化合物に固溶したリンを回収する方法が記載されている。この回収方法では、製鋼スラグ(予備処理スラグ)を二酸化炭素が溶解した水に浸漬する。そして、最初にリンを固溶しないカルシウム化合物を溶出させた後に、リンを固溶したカルシウム化合物を溶出させることにより、リンを含む溶液を脱リンスラグから回収する。
 また、カルシウムは、炭酸カルシウムとして製鉄の焼結工程で使用されたり、焼成して酸化カルシウムとして製鋼工程で使用されたりする重要な元素である。また、酸化カルシウムを消化して得られる水酸化カルシウムは、排水工程で酸などの中和剤として使用される。したがって、製鉄工程で生じる製鋼スラグからカルシウムを回収することができれば、カルシウムを再利用することが可能となり、製鉄のコストを削減できる。このため、以前から、製鋼スラグからカルシウムを回収する試みが行われている(特許文献3参照)。
 特許文献3には、二酸化炭素を使用して、転炉スラグからカルシウムを回収する方法が記載されている。この回収方法では、転炉スラグに水を注入して、転炉スラグ中のカルシウムを溶出させる。その後、pHの下限値を10程度に維持することで、カルシウム(炭酸カルシウム)を転炉スラグから回収する。
特開2010-270378号公報 特開2013-142046号公報 特開昭55-100220号公報
「鉱物資源マテリアルフロー2011」、独立行政法人 石油天然ガス・金属鉱物資源機構、2012年5月、p.405-410 松八重一代、外2名、「廃棄物からの人口リン資源回収」、社会技術研究論文集、社会技術研究会、2008年3月、p.106-113
 しかしながら、特許文献1に記載のリンの回収方法では、鉱酸および中和剤を使用するため、回収コストが高くなってしまう。また、製鋼スラグを鉱酸に浸漬した際の未溶解物を濾過するために、濾過機(濾過フィルター)が必要となり、回収コストが高くなってしまう。さらに、鉱酸には、鉄やマンガン、マグシウム、シリコン、アルミニウム、カルシウムなどの他の成分も溶解してしまうため、この抽出液を中和しても、これらの成分が析出してしまう。
 また、特許文献2に記載のリンの回収方法では、複数回に分けてカルシウム化合物を溶解させる必要があるため、回収工程が煩雑であるとともに、回収コストが高くなってしまう。
 さらに、特許文献3に記載のカルシウムの回収方法では、pHを10以上に維持することが実質上困難であり、pHが低くなると析出した炭酸カルシウムが再溶解してしまうという問題がある。一方、pHの下限値を10程度に維持すると析出量が少なくなってしまう。また、この回収方法では、リンを含むケイ酸カルシウムを溶解させることが困難であり、リンをほとんど回収することができず、回収コストが高くなってしまう。
 このように、従来のスラグからリンまたはカルシウムを回収する方法では、回収コストが高いという問題があった。
 本発明の目的は、安価に製鋼スラグからリンおよびカルシウムを回収することができる、リンおよびカルシウムの回収方法を提供することである。また、本発明の別の目的は、この回収方法により得られるリンおよびカルシウムを含む混合物を提供することである。
 本発明者らは、二酸化炭素を含む水溶液に製鋼スラグを接触させた後、水溶液から二酸化炭素を除去して溶出物を析出させることにより、上記課題を解決させうることを見出し、さらに検討を加えて本発明を完成させた。
 すなわち、本発明は、以下の回収方法に関する。
 [1]製鋼スラグからリンおよびカルシウムを回収する方法であって、二酸化炭素を30ppm以上含む水溶液と、前記製鋼スラグとを接触させて、前記製鋼スラグ中のリンおよびカルシウムを前記水溶液に溶出させる第1工程と、前記第1工程の後、前記水溶液から前記二酸化炭素を除去して、リン化合物およびカルシウム化合物を含む混合物を析出させる第2工程と、を有する、リンおよびカルシウムの回収方法。
 [2]前記第2工程は、前記水溶液から前記二酸化炭素の一部を除去して、前記混合物を析出させる第3工程と、前記第3工程の後に、前記水溶液から前記二酸化炭素をさらに除去して、前記混合物を析出させる第4工程と、を有し、前記第4工程で得られる前記混合物における前記リン化合物の割合は、前記第3工程で得られる前記混合物における前記リン化合物の割合より少ない、[1]に記載のリンおよびカルシウムの回収方法。
 [3]前記第3工程における前記混合物の析出速度は、0.1g/min・L以下である、[2]に記載のリンおよびカルシウムの回収方法。
 [4]前記第2工程では、空気、窒素、酸素、水素、アルゴンおよびヘリウムからなる群から選択される1または2以上のガスを前記水溶液内に吹込むことにより、前記二酸化炭素の除去を行う、[1]~[3]のいずれかに記載のリンおよびカルシウムの回収方法。
 [5]前記第3工程では、前記ガスの前記水溶液内への吹込みを断続的に行う、[4]に記載のリンおよびカルシウムの回収方法。
 [6]前記第2工程では、前記水溶液を減圧することにより、前記二酸化炭素の除去を行う、[1]~[3]のいずれかに記載のリンおよびカルシウムの回収方法。
 [7]前記第2工程では、前記水溶液を加熱することにより、前記二酸化炭素の除去を行う、[1]~[3]のいずれかに記載のリンおよびカルシウムの回収方法。
 また、本発明は、前述した回収方法により得られた混合物に関する。
 [8][1]~[7]のいずれかに記載のリンおよびカルシウムの回収方法によって得られる混合物であって、リン化合物およびカルシウム化合物を含み、リンを原子換算で1質量%以上含有する、混合物。
 本発明によれば、安価に製鋼スラグからリンおよびカルシウムを回収することができる。
本発明の一実施の形態に係るリンおよびカルシウムの回収方法のフローチャートである。 本発明の他の実施の形態に係るリンおよびカルシウムの回収方法のフローチャートである。 実験5におけるリンおよびカルシウムの回収方法のフローチャートである。
 [回収方法]
 図1は、本発明の一実施の形態に係るリンおよびカルシウムの回収方法のフローチャートである。図1に示されるように、本実施の形態に係るリンおよびカルシウムの回収方法は、製鋼スラグ中のリンおよびカルシウムを、二酸化炭素を含む水溶液に溶出させる第1工程と、第1工程の後、リン化合物およびカルシウム化合物を含む混合物を析出させる第2工程と、を有する。
 (第1工程)
 第1工程では、製鋼スラグと、二酸化炭素を含む水溶液とを接触させて、製鋼スラグ中のリンおよびカルシウムを水溶液に溶出させる。
 まず、原料となる製鋼スラグを準備し、破砕または粉砕する(工程S100)。製鋼スラグの種類は、リンおよびカルシウムを含んでいれば、特に限定されない。製鋼スラグの例には、転炉スラグ、予備処理スラグ、二次精錬スラグ、電気炉スラグなどが含まれる。一般的に、製鋼スラグは、リン(P)、カルシウム(Ca)、鉄(Fe)、シリコン(Si)、マンガン(Mn)、マグネシウム(Mg)、アルミニウム(Al)の化合物(酸化物)などを含有する。また、リンは、カルシウムおよびシリコンの複合酸化物であるケイ酸カルシウム(CaSiO、CaSiO)と一緒に存在する。さらに、カルシウムは、遊離石灰である酸化カルシウム(CaO)、水酸化カルシウム(Ca(OH))、炭酸カルシウム(CaCO)などとして存在する。
 製鋼スラグは、製鋼工程で排出されたまま使用してもよいが、破砕または粉砕をした後、さらに金属鉄を除去した製鋼スラグを使用する方が好ましい。製鋼工程で排出された製鋼スラグをそのまま使用すると、回収作業が煩雑になってしまうおそれがある。製鋼スラグの最大粒径は、特に限定されないが、1000μm以下であることが好ましい。製鋼スラグの最大粒径が1000μm超の場合、製鋼スラグの水溶液との接触面積が少ないため、リンおよびカルシウムが溶出する時間が長くなり、リンおよびカルシウムを回収する時間が長くなってしまう。製鋼スラグの粉砕方法は、特に限定されない。例えば、製鋼スラグをローラミル、ボールミルなどで粉砕すればよい。
 次いで、工程S100で準備した製鋼スラグと、二酸化炭素を含む水溶液とを接触させることにより、製鋼スラグ中のリンおよびカルシウムを、二酸化炭素を含む水溶液に溶出させる(工程S110)。
 二酸化炭素を含む水溶液の種類は、二酸化炭素を30ppm以上含んでいれば特に限定されず、他の成分を含んでいてもよい。また、二酸化炭素を水に溶解させる方法は、特に限定されない。例えば、二酸化炭素を含むガスをバブリングする(吹込む)ことによって、水に二酸化炭素を溶解させることができる。このとき、吹き込むガスには、二酸化炭素以外の成分が含まれていてもよい。例えば、吹き込むガスは、酸素や窒素などを含んでいてもよい。また、燃焼後の排ガスを吹き込んで二酸化炭素を溶解させてもよいし、二酸化炭素、空気および水蒸気の混合ガスを吹き込んで二酸化炭素を溶解させてもよい。反応性を高め、カルシウム化合物(ケイ酸カルシウム)の溶出性を高める観点からは、吹き込むガスは、二酸化炭素を高濃度(例えば、90%)に含むことが好ましい。前述したように、水溶液中の二酸化炭素の濃度は、30ppm以上である。水溶液中の二酸化炭素の濃度が30ppm以上であれば、製鋼スラグ中のリンおよびカルシウムを、二酸化炭素を含む水溶液に溶出させることができる。水溶液中の二酸化炭素は、リンおよびカルシウムの溶解に伴い減少するので、水溶液中にリンおよびカルシウムを溶出させるのに必要な二酸化炭素の濃度(30ppm以上)を維持するためには、水溶液と製鋼スラグとを接触させた後も水溶液に二酸化炭素を供給することが必要である。
 製鋼スラグと、二酸化炭素を含む水溶液とを接触させる方法は、特に限定されない。例えば、あらかじめ二酸化炭素を溶解させた水に製鋼スラグを浸漬させてもよいし、製鋼スラグを水に浸漬した後に二酸化炭素を水に溶解させてもよい。なお、製鋼スラグと水溶液とを接触させている間は、反応性を高める観点から、これらを攪拌することが好ましい。なお、リンおよびカルシウムを溶出させた後の製鋼スラグは、鉄成分の含有量が高くなっているため、そのまま、もしくは、さらに磁選するなどによって製鉄原料に使用できる。
 製鋼スラグと、二酸化炭素を含む水溶液とを接触させると、製鋼スラグ中の酸化カルシウム(CaO)、水酸化カルシウム(Ca(OH))、炭酸カルシウム(CaCO)、ケイ酸カルシウム(CaSiO、CaSiO)およびカルシウム鉄酸化物(CaFe)と、二酸化炭素を含む水とが反応して、カルシウム成分が水溶液に溶出する。また、ケイ酸カルシウムが溶解することにより、製鋼スラグ中の五酸化二リン(P)と、二酸化炭素を含む水溶液とが反応して、リン成分が水に溶出する。このように、製鋼スラグと、二酸化炭素を含む水溶液を接触させることにより、製鋼スラグ中に含まれるリンおよびカルシウムが水溶液中に溶出する。
 次いで、リンおよびカルシウムが溶解した水溶液(上澄み液)と、リンおよびカルシウムが溶出した製鋼スラグとを濾過などにより分離する(工程S120)。
 (第2工程)
 第2工程では、第1工程の後、リンおよびカルシウムが溶解した水溶液からリン化合物およびカルシウム化合物を含む混合物を析出させた後、混合物を回収する。
 まず、リンおよびカルシウムが溶解した水溶液から二酸化炭素を除去することにより、リン化合物およびカルシウム化合物を含む混合物を析出させる(工程S130)。水溶液から二酸化炭素を除去する方法は、特に限定されない。二酸化炭素を除去する方法の例には、(1)ガスの水溶液への吹込み、(2)水溶液の減圧、(3)水溶液の加熱、などが含まれる。以下、個別に説明する。
 (1)ガスの水溶液への吹込み
 ガスの水溶液への吹込みにより、二酸化炭素を除去する方法では、水溶液に二酸化炭素以外のガスを吹込むことにより行う。これにより、溶解している二酸化炭素と吹き込んだガスとを置換することで、簡単に二酸化炭素を水溶液から除去することができる。水に吹込むガスの種類は、水との反応性が低い無機系ガス、または水との反応性が低い有機系ガスであることが好ましい。無機系ガスの例には、空気、窒素、酸素、水素、アルゴン、ヘリウムなどが含まれる。また、有機系ガスの例には、メタン、エタン、エチレン、アセチレン、プロパンなどが含まれる。有機系ガスは、外部に漏れた場合に燃焼や爆発の危険があるため、注意が必要である。なお、塩素ガス、亜硫酸ガスなどの水と反応するガスを使用すると、塩素イオン、硫酸イオンなどが水中で生成する。そして、これらのイオンは、水中に溶出したカルシウムと塩を形成してしまう。その結果、水溶液から二酸化炭素を除去してもリン化合物およびカルシウム化合物を含む混合物が析出しないため好ましくない。
 (2)水溶液の減圧
 水溶液を減圧することにより、二酸化炭素を除去する方法では、水溶液を密閉容器に入れて、ポンプなどにより容器内の空気を排出して、容器内を減圧雰囲気にすること(脱気)により行う。なお、水溶液の減圧に加えて、水溶液に超音波を印加してもよく、または水溶液を攪拌してもよい。また、水溶液の減圧に加えて、水溶液への超音波の印加および水溶液の攪拌を行ってもよい。これにより、水溶液から二酸化炭素を効率的に除去できる。
 (3)水溶液の加熱
 水溶液の加熱により、二酸化炭素を除去する方法では、水溶液の温度を高める。この場合、加熱コストを低くする観点から、水の蒸気圧が雰囲気圧力を超えない範囲内の温度に加熱することが好ましい。例えば、雰囲気圧力が大気圧(1気圧)の場合、加熱温度は、100℃未満である。水溶液を加熱すると、二酸化炭素が除去されるだけでなく、カルシウム化合物(炭酸カルシウム)の溶解度が低下するため、カルシウム化合物が析出しやすくなる。
 二酸化炭素を除去する方法は、上記(1)~(3)の方法を組み合わせて行ってもよい。これにより、二酸化炭素を水溶液から効率的に除去できる。なお、これらの組合せは、ガスや熱の供給体制、立地、工場内副生ガスの利用などを考慮して、最適な組合せを選べばよい。
 例えば、ガスを水溶液に吹込みながら、ガスの吹込み量以上に排気して、減圧雰囲気することにより、ガスの吹込みによる二酸化炭素の除去の効果と撹拌効果、および水溶液の減圧による二酸化炭素の除去の効果が得られ、二酸化炭素を効率的に除去できる。また、さらに加熱することにより、さらに二酸化炭素の除去の効果が促進される。また、ガスの水溶液への吹込みの効果と水溶液の減圧との効果により、容易に二酸化炭素を除去することができるため、加熱温度を高くする必要がなく、加熱コストを削減できる。
 水溶液から二酸化炭素を除去すると、水溶液中のカルシウムがカルシウム化合物として析出する。析出されるカルシウム化合物の例には、炭酸カルシウム、炭酸水素カルシウム、水酸化カルシウムなどが含まれる。また、水溶液から二酸化炭素を除去することにより、水溶液中のリンがリン化合物として析出する。析出されるリン化合物の例にはリン酸カルシウム、リン酸水素カルシウム、ヒドロキシアパタイト(HAp)などが含まれる。
 次いで、工程S130で析出したリン化合物およびカルシウム化合物を含む混合物を回収する(工程S140)。
 以上の手順により、製鋼スラグからリンおよびカルシウムを安価に回収することができる。
 前述したように、製鋼スラグから回収したリン化合物は、リン資源として重要である。よって、混合物中のリン化合物の含有量は、多いことが好ましい。また、製鋼スラグから回収したカルシウム化合物は、製鉄原料として再利用できる。このとき、製鉄原料としてリン化合物を含んでいることは好ましくない。したがって、リンおよびカルシウムを含む水溶液から、リン化合物の含有量が多い混合物と、リン化合物の含有量が少ない混合物とを別個に得ることが好ましい。このように、各化合物の含有量が異なる2種類の混合物を別個に得るためには、以下のように第2工程を行うことが好ましい。
 図2は、本発明の別の実施の形態に係るリンおよびカルシウムの回収方法のフローチャートである。図2に示されるように、本実施の形態では、第2工程は、水溶液から二酸化炭素の一部を除去して、混合物を析出させる第3工程と、第3工程の後に、水溶液から二酸化炭素をさらに除去して、混合物を析出させる第4工程と、を有している。この場合、第4工程で得られる混合物におけるリン化合物の割合は、第3工程で得られる混合物におけるリン化合物の割合より少ない。
 製鋼スラグの破砕または粉砕(工程S100)、製鋼スラグ中のリンおよびカルシウムの溶出(工程S110)およびリンおよびカルシウムが溶解した水溶液(上澄み液)と、リンおよびカルシウムが溶出した製鋼スラグとの分離(工程S120)は、前述した通りである。
 (第3工程)
 第3工程では、リンおよびカルシウムが溶解した水溶液から二酸化炭素の一部を除去して、リン化合物の含有量が多い混合物を析出させる(工程S230)。第3工程では、カルシウム化合物とリンとが一緒に析出しやすい性質を利用して行う。第3工程における混合物の析出速度は、0.1g/min・L以下であることが好ましい。析出速度が0.1g/min・L以下の場合、カルシウム化合物の表面にリン化合物が吸着するため、カルシウム化合物に対して多くのリン化合物が一緒に析出するためである。このとき、水溶液を攪拌することにより、リン化合物およびカルシウム化合物が一緒に析出しやすくなる。そして、リン化合物の含有量が多い混合物を回収する(工程S240)。
 (第4工程)
 第4工程では、第3工程の後に、リンおよびカルシウムが溶解した水溶液から二酸化炭素をさらに除去して、混合物を析出させる(工程S250)。具体的には、第3工程を行った後、その水溶液から二酸化炭素をさらに除去して、残りのカルシウム化合物を析出させる。このとき、リン化合物は、第3工程においてほとんど析出しているため、リン化合物の含有量の少ない混合物を得ることができる。この場合、二酸化炭素を除去する方法は、前述したガスの水溶液への吹込み法、水溶液の減圧、水溶液の加熱のいずれでもよい。いずれの方法によっても、リン化合物をほとんど含まないカルシウム化合物が得られる。そして、リン化合物の含有量が少ない混合物を回収する(工程S260)。
 以上の工程により、リン化合物の含有量が多い混合物と、リン化合物の含有量が少ない混合物とを別個に得ることができる。
 また、第3工程では、二酸化炭素の除去を断続的に行うことによっても、リンの含有量の高い混合物を得ることができる。具体的には、二酸化炭素の除去と、二酸化炭素の除去の停止を短時間で繰り返す。ここでは、操作性の観点から、二酸化炭素の除去は、ガスの水溶液への吹込みまたは水溶液の減圧であることが好ましい。例えば、ガスの水溶液への吹込みを0.5分間と、その後にガスの水溶液への吹込みの停止を1分間とを3回繰り返すことにより行う。これは、析出したカルシウム化合物の表面にリンを吸着させた後、新たにカルシウム化合物をその表面もしくは溶液中に析出させ、新たにリン化合物を吸着させることで、単位体積当りのリン化合物が多く吸着するためである。なお、第3工程では、水溶液へのガス吹込みまたは水溶液の減圧を止めた後、しばらく撹拌することが好ましい。これにより、未吸着のリン化合物が析出したカルシウム化合物に吸着するようになる。ガスの水溶液への吹込みまたは水溶液の減圧を止める時期は、第3工程内のいずれの時期であってもよい。また、二酸化炭素の除去が一定条件で行われた場合、第3工程は、二酸化炭素の除去を行う時間の1/50~1/3の時間であることが好ましい。
 [析出物]
 このようにして得られる混合物(本発明に係る混合物)は、リン化合物およびカルシウム化合物を含み、リンを原子換算で1質量%以上含有する。前述のとおり、リン化合物の例にはリン酸カルシウム、リン酸水素カルシウム、ヒドロキシアパタイト(HAp)などが含まれ、カルシウム化合物の例には炭酸カルシウム、炭酸水素カルシウム、水酸化カルシウムなどが含まれる。混合物中のリンの含有量は、ICP-AES法によって求めることができる。
 以上のように、本発明に係るリンおよびカルシウムの回収方法は、二酸化炭素を30ppm以上含む水溶液と、製鋼スラグとを接触させて、製鋼スラグ中のリンおよびカルシウムを水溶液に溶出させた後、水溶液から二酸化炭素を除去することにより、製鋼スラグ中のリンおよびカルシウムをリン化合物およびカルシウム化合物の混合物として安価に回収することができる。
 以下、本発明について実施例を参照して詳細に説明するが、本発明はこれらの実施例により限定されない。
 [実験1]
 実験1では、二酸化炭素の除去および混合物の回収をそれぞれ1回行った例を示す。
 1.スラグの準備
 成分比率の異なる2種類の製鋼スラグ(スラグAおよびスラグB)を準備した(表1参照)。最大粒径が100μmとなるように、ローラミルを用いてスラグAおよびスラグBを粉砕した。また、粉砕したスラグの最大粒径は、レーザー回折・散乱式粒子径分布測定装置を用いて確認した。
Figure JPOXMLDOC01-appb-T000001
 2.リンおよびカルシウムの溶出
 容器に充填された100Lの水に、粉砕したスラグ(1kg、3kgまたは5kg)を投入してスラグ懸濁液を調製した。次いで、調製したスラグ懸濁液内に、二酸化炭素を20L/minで吹込みながら、インペラを用いてスラグ懸濁液を30分間攪拌した。このときの二酸化炭素濃度は、30ppm以上であった。また、比較のため、スラグ懸濁液内に、二酸化炭素を吹込まずに、インペラを用いてスラグ懸濁液を30分間攪拌した。攪拌後のスラグ懸濁液を静置して、スラグを沈殿させた。その後、上澄み液を回収し、フィルターを用いた減圧濾過によって浮遊物を除去した。
 3.二酸化炭素の除去
 (1)ガスの水溶液への吹込み、(2)水溶液の減圧、(3)水溶液の加熱、(4)ガスの水溶液への吹込みおよび水溶液の加熱、または(5)ガスの水溶液への吹込み、水溶液の減圧および水溶液の加熱により、上澄み液に含まれる二酸化炭素を除去した。これにより、上澄み液中に析出物が生じた。以下、二酸化炭素の除去方法(上記(1)~(5))について説明する。
 (1)ガスの水溶液への吹込み
 容器に投入された上澄み液にガス(空気、N、O、H、Ar、Heまたはこれらの組み合わせ)を20L/minで吹込みながら、インペラを用いて30分間攪拌することによって、二酸化炭素を除去した。なお、ガスとしてNおよびArを使用した実施例11では、N:10L/min、Ar:10L/minとした。
 (2)水溶液の減圧
 上澄み液を投入した密閉容器の内部の圧力を1/10気圧に30分間維持するとともに、上澄み液に超音波を印加することによって、二酸化炭素を除去した。
 (3)水溶液の加熱
 容器に投入された上澄み液の液温を90℃に加熱するとともに、インペラを用いて30分間攪拌することによって、二酸化炭素を除去した。
 (4)ガスの水溶液への吹込みおよび水溶液の加熱
 容器に投入された上澄み液に空気を20L/minで吹込みつつ、上澄み液の液温を90℃に加熱しながら、インペラを用いて30分間攪拌することによって、二酸化炭素を除去した。
 (5)ガスの水溶液への吹込み、水溶液の減圧および水溶液の加熱
 密閉容器に投入された上澄み液に空気を5L/minで吹込みつつ、密閉容器の内部の圧力を3/10気圧とし、かつ上澄み液の液温を60℃に加熱した状態を30分間維持することよって、二酸化炭素を除去した。
 4.混合物の回収および混合物に含まれるリン濃度の測定
 フィルターを用いて、析出物(混合物)を含む上澄み液を減圧濾過して、混合物を回収した。なお、二酸化炭素を除去する時に加熱した上澄み液については、液温が低下しないように加温しながら減圧濾過して、混合物を回収した。回収した混合物中のリン濃度を、ICP-AES法により測定した。また、ICP-AES法により混合物中にカルシウムが含まれていることも確認した。これにより、リン化合物およびカルシウム化合物を含む混合物を得たことを確認した。
 5.結果
 実験1の回収条件および回収結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、二酸化炭素を含む水に製鋼スラグを浸漬させ、二酸化炭素を除去した実施例1~22の回収方法では、リン化合物およびカルシウム化合物を含む混合物を回収することができた。一方、二酸化炭素を含まない水に製鋼スラグを浸漬させ、二酸化炭素を除去した比較例1の回収方法では、リン化合物およびカルシウム化合物を含む混合物をほとんど回収することができなかった。
 [実験2]
 実験2では、二酸化炭素の除去および混合物の回収をそれぞれ2回に分けて行った例を示す。
 1.スラグの準備
 実験1と同様の2種類の製鋼スラグ(スラグAおよびスラグB)を準備した。
 2.リンおよびカルシウムの溶出
 容器に充填された100Lの水に、粉砕したスラグ(1kgまたは3kg)を投入してスラグ懸濁液を調製した。次いで、調製したスラグ懸濁液内に、二酸化炭素を20L/minで吹込みながら、インペラを用いてスラグ懸濁液を30分間攪拌した。そして、懸濁液を静置して、スラグを沈殿させた後、上澄み液を回収し、フィルターを用いた減圧濾過によって浮遊物を除去した。
 3.二酸化炭素の除去および混合物の回収
 (1)ガスの水溶液への吹込み
 容器に投入された上澄み液にガス(空気またはN)を20L/minで吹込みながら、インペラを用いて5分間攪拌した後、ガスの吹込みを停止して、さらに5分間攪拌した。そして、フィルターを用いて、析出物(混合物)を含む上澄み液を減圧濾過して、混合物を回収した。混合物を回収した上澄み液を容器に再度投入して、ガス(空気またはN)を20L/minで吹込みながら、インペラを用いて25分間攪拌した。そして、フィルターを用いて、析出物(混合物)を含む上澄み液を減圧濾過して、混合物を回収した。
 (2)水溶液の減圧
 上澄み液を投入した密閉容器の内部の圧力を1/10気圧に5分間維持して二酸化炭素を除去した後、フィルターを用いて、析出物(混合物)を含む上澄み液を減圧濾過して、混合物を回収した。混合物を回収した上澄み液を密閉容器に再度投入して、密閉容器の内部の圧力を1/10気圧に25分間維持して二酸化炭素を除去した後、フィルターを用いて、析出物(混合物)を含む上澄み液を減圧濾過して、混合物を回収した。
 4.混合物中に含まれるリン濃度の測定
 混合物中に含まれるリンおよびカルシウムの測定を実験1と同様に行った。
 5.結果
 実験2の回収条件および回収結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、初めに、短時間(5分間)の二酸化炭素の除去を行うことにより、リンの含有量が高い混合物を得ることができた。また、大部分のリン化合物を除いた上澄み液からさらに二酸化炭素を除去することにより、リンの含有量が少ない混合物を得ることができた。
 [実験3]
 実験3では、2種類の方法で二酸化炭素の除去を1回ずつ行い、混合物を回収した例を示す。
 1.スラグの準備と、リンおよびカルシウムの溶出
 実験1、2と同様の2種類の製鋼スラグ(スラグAおよびスラグB)を準備した。リンおよびカルシウムの溶出は、実験2と同じ手順により行った。
 2.二酸化炭素の除去
 (1)ガスの水溶液へのガスの吹込みおよび水溶液の加熱
 容器に投入された上澄み液にガス(空気またはN)を20L/minで吹込みながら、インペラを用いて5分間二酸化炭素を除去した後、フィルターを用いて、混合物を含む上澄み液を減圧濾過して、混合物を回収した。混合物を回収した上澄み液を容器に再度投入して、上澄み液の液温を90℃に加熱しながら、インペラを用いて25分間攪拌することによって、二酸化炭素を除去した後、液温が低下しないように加温しながら減圧濾過して、混合物を回収した。
 (2)ガスの水溶液へのガスの吹込みおよび水溶液の減圧
 容器に投入された上澄み液にガス(空気またはN)を20L/minで吹込みながら、インペラを用いて5分間二酸化炭素を除去した後、フィルターを用いて、混合物を含む上澄み液を減圧濾過して、混合物を回収した。混合物を回収した上澄み液を容器に再度投入して、密閉容器の内部の圧力を1/10気圧に25分間維持して二酸化炭素を除去した後、フィルターを用いて、混合物を含む上澄み液を減圧濾過して、混合物を回収した。
 3.混合物に含まれるリン濃度の測定
 混合物に含まれるリン濃度の測定を実験1と同様に行った。
 4.結果
 実験3の回収条件および回収結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示されるように、実験2と同様に、初めに、短時間(5分間)の二酸化炭素の除去を行うことにより、リンの含有量が高い混合物を得ることができた。また、大部分のリン化合物を除いた上澄み液からさらに二酸化炭素を除去することにより、リンの含有量が少ない混合物を得ることができた。
 [実験4]
 実験4では、1種類の方法で二酸化炭素の除去を行い、混合物の回収を2回に分けて行った例を示す。
 1.スラグの準備と、リンおよびカルシウムの溶出
 実験1、2で使用したスラグAを準備した。リンおよびカルシウムの溶出は、実験2と同じ手順により行った。なお、投入したスラグは、1kgとした。
 2.二酸化炭素の除去
 二酸化炭素の除去は、密閉容器に投入された上澄み液に空気を所定量吹込みながら、インペラを用いて5分間二酸化炭素を除去した後、ガスの吹込みを停止して、さらに5分間攪拌した。その後、フィルターを用いて、析出物を含む上澄み液を減圧濾過して、析出物を回収した。次いで、再度容器に投入された上澄み液に空気を所定量吹込みながら、インペラを用いて25分間二酸化炭素を除去した後、フィルターを用いて、析出物を含む上澄み液を減圧濾過して、析出物を回収した。なお、空気の吹込み量は、スラグ懸濁液1L当たりの1分間の大気圧の空気容量で示した。
 3.混合物中に含まれるリン濃度の測定
 混合物中に含まれるリン濃度の測定を実験1と同様に行った。
 4.結果
 実験4の回収条件および回収結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示されるように、リン化合物およびカルシウム化合物の析出速度を0.1g/min・L以下とすることにより、混合物中におけるリン化合物の含有量を高めることができた。
 [実験5]
 実験5では、二酸化炭素の除去を複数回(3回)行った例を示す。図3は、実験5におけるリンおよびカルシウムの回収方法のフローチャートである。
 1.スラグの準備と、リンおよびカルシウムの溶出
 実験1、2で使用したスラグAを準備した(工程S100、S110)。リンおよびカルシウムの溶出は、実験2と同じ手順により行った(工程S120)。なお、投入したスラグは、1kgとした。
 2.二酸化炭素の除去
 二酸化炭素の除去は、容器に投入された上澄み液に空気を所定量吹込みながら、インペラを用いて0.5分間二酸化炭素を除去した後、空気の吹込みを停止して、さらに1分間攪拌した。空気の吹込みおよび空気の吹込みの停止を3回繰り返した(工程S300およびS310)。フィルターを用いて、混合物を含む上澄み液を減圧濾過して、混合物を回収した(工程S320)。次いで、混合物を回収した上澄み液を容器に再度投入して、上澄み液に空気を20L/minで吹込みながら、インペラを用いて25分間二酸化炭素を除去した(工程S330)後、フィルターを用いて、混合物を含む上澄み液を減圧濾過して、混合物を回収した(工程S340)。
 3.混合物中に含まれるリン濃度の測定
 混合物中に含まれるリンおよびカルシウムの測定を実験1と同様に行った。
 4.結果
 実験5の回収条件および回収結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示されるように、二酸化炭素を除去する工程において、ガス(空気)の吹込みを断続的に行うことにより、リンの含有量が高い混合物およびリンの含有量の少ない混合物を別個に得ることができた。
 以上のように、本発明に係る回収方法では、二酸化炭素を含む水溶液に製鋼スラグ内のリンおよびカルシウムを溶出させた後、リン化合物およびカルシウム化合物を含む混合物を析出させることにより、安価に製鋼スラグからリンおよびカルシウムを回収することができる。
 本出願は、2014年1月28日出願の特願2014-013536に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
 本発明のリンおよびカルシウムの回収方法は、製鋼スラグ中のリンおよびカルシウムを安価に回収することができるため、例えば、製鉄におけるリン資源およびカルシウム資源の回収方法として有用である。

Claims (8)

  1.  製鋼スラグからリンおよびカルシウムを回収する方法であって、
     二酸化炭素を30ppm以上含む水溶液と、前記製鋼スラグとを接触させて、前記製鋼スラグ中のリンおよびカルシウムを前記水溶液に溶出させる第1工程と、
     前記第1工程の後、前記水溶液から前記二酸化炭素を除去して、リン化合物およびカルシウム化合物を含む混合物を析出させる第2工程と、
     を有する、リンおよびカルシウムの回収方法。
  2.  前記第2工程は、
     前記水溶液から前記二酸化炭素の一部を除去して、前記混合物を析出させる第3工程と、
     前記第3工程の後に、前記水溶液から前記二酸化炭素をさらに除去して、前記混合物を析出させる第4工程と、
     を有し、
     前記第4工程で得られる前記混合物における前記リン化合物の割合は、前記第3工程で得られる前記混合物における前記リン化合物の割合より少ない、
     請求項1に記載のリンおよびカルシウムの回収方法。
  3.  前記第3工程における前記混合物の析出速度は、0.1g/min・L以下である、請求項2に記載のリンおよびカルシウムの回収方法。
  4.  前記第2工程では、空気、窒素、酸素、水素、アルゴンおよびヘリウムからなる群から選択される1または2以上のガスを前記水溶液内に吹込むことにより、前記二酸化炭素の除去を行う、請求項1~3のいずれか一項に記載のリンおよびカルシウムの回収方法。
  5.  前記第3工程では、前記ガスの前記水溶液内への吹込みを断続的に行う、請求項4に記載のリンおよびカルシウムの回収方法。
  6.  前記第2工程では、前記水溶液を減圧することにより、前記二酸化炭素の除去を行う、請求項1~3のいずれか一項に記載のリンおよびカルシウムの回収方法。
  7.  前記第2工程では、前記水溶液を加熱することにより、前記二酸化炭素の除去を行う、請求項1~3のいずれか一項に記載のリンおよびカルシウムの回収方法。
  8.  請求項1~7のいずれか一項に記載のリンおよびカルシウムの回収方法によって得られる混合物であって、
     リン化合物およびカルシウム化合物を含み、
     リンを原子換算で1質量%以上含有する、
     混合物。
PCT/JP2014/005662 2014-01-28 2014-11-11 リンおよびカルシウムの回収方法および前記回収方法によって得られる混合物 WO2015114703A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US15/114,719 US9783418B2 (en) 2014-01-28 2014-11-11 Phosphorus and calcium collection method, and mixture produced by said collection method
ES14880452T ES2718606T3 (es) 2014-01-28 2014-11-11 Procedimiento de recolección de fósforo y calcio
EP14880452.9A EP3090991B1 (en) 2014-01-28 2014-11-11 Phosphorus and calcium collection method
RU2016130849A RU2618004C1 (ru) 2014-01-28 2014-11-11 Способ извлечения фосфора и кальция и смесь, полученная этим способом
JP2014555030A JP5748925B1 (ja) 2014-01-28 2014-11-11 リンおよびカルシウムの回収方法および前記回収方法によって得られる混合物
CN201480074416.6A CN105980326B (zh) 2014-01-28 2014-11-11 磷和钙的回收方法
CA2937214A CA2937214C (en) 2014-01-28 2014-11-11 Phosphorus and calcium collection method, and mixture produced by said collection method
KR1020167020286A KR101815160B1 (ko) 2014-01-28 2014-11-11 인 및 칼슘의 회수 방법 및 상기 회수 방법에 의해 얻어지는 혼합물
MX2016009573A MX366657B (es) 2014-01-28 2014-11-11 Método de recolección de fosforo y calcio, y mezcla producida por el método de recolección.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-013536 2014-01-28
JP2014013536 2014-01-28

Publications (1)

Publication Number Publication Date
WO2015114703A1 true WO2015114703A1 (ja) 2015-08-06

Family

ID=53756328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005662 WO2015114703A1 (ja) 2014-01-28 2014-11-11 リンおよびカルシウムの回収方法および前記回収方法によって得られる混合物

Country Status (9)

Country Link
US (1) US9783418B2 (ja)
EP (1) EP3090991B1 (ja)
KR (1) KR101815160B1 (ja)
CN (1) CN105980326B (ja)
CA (1) CA2937214C (ja)
ES (1) ES2718606T3 (ja)
MX (1) MX366657B (ja)
RU (1) RU2618004C1 (ja)
WO (1) WO2015114703A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017075065A (ja) * 2015-10-13 2017-04-20 新日鐵住金株式会社 鉄鋼スラグからのリン酸塩の回収方法
JP2018001152A (ja) * 2016-07-06 2018-01-11 崑喨 洪 転炉石廃棄物の処理方法
WO2018135439A1 (ja) * 2017-01-18 2018-07-26 日新製鋼株式会社 製鋼スラグからカルシウムを溶出させる方法、および製鋼スラグからカルシウムを回収する方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6263144B2 (ja) * 2015-03-23 2018-01-17 日新製鋼株式会社 製鋼スラグからカルシウムを含有する固体成分を回収する方法、および回収された固体成分
KR102041299B1 (ko) * 2017-12-14 2019-11-27 재단법인 포항산업과학연구원 탄산칼슘 및 중조의 제조방법 및 그 제조설비
CN110872105A (zh) * 2018-08-31 2020-03-10 贵州芭田生态工程有限公司 一种高效浸取磷矿中钙和镁离子的方法
GB2596529A (en) * 2020-06-29 2022-01-05 Montanuniversitat Leoben A method for separating a non-hydraulic phase from a hydraulic phase in a recyclable industry product
CN115925291B (zh) * 2022-11-19 2024-03-12 济南大学 一种高效利用磷石膏的低钙多元水泥熟料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100220A (en) 1979-01-19 1980-07-31 Sumitomo Metal Ind Ltd Recovering method for calcium carbonate in converter slag
JP2008000664A (ja) * 2006-06-21 2008-01-10 Teijin Engineering Ltd リン含有排水の処理方法
JP2010120782A (ja) * 2008-11-17 2010-06-03 Jfe Steel Corp 低アルカリ溶出性スラグの製造方法
JP2010270378A (ja) 2009-05-22 2010-12-02 Kobelco Eco-Solutions Co Ltd 製鋼スラグからのリン回収方法
JP2013142046A (ja) 2012-01-10 2013-07-22 Nippon Steel & Sumitomo Metal Corp 鉱さい燐酸肥料用原料回収方法
JP2013147370A (ja) * 2012-01-18 2013-08-01 Nippon Steel & Sumitomo Metal Corp 炭酸化スラグの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69123312T2 (de) * 1990-08-21 1997-03-20 Asahi Glass Co Ltd Kalziumphosphat Glaskeramik
BRPI0708702A2 (pt) * 2006-03-10 2011-06-07 Douglas C Comrie materiais e processos para sequestração de dióxido de carbono
DE102009020745A1 (de) * 2009-05-11 2010-11-25 Chemische Fabrik Budenheim Kg Phosphatgewinnung auf Klärschlamm
US9108860B2 (en) * 2012-02-10 2015-08-18 Ahmet Cuneyt Tas Synthesis of amorphous calcium phosphate or poorly crystalline calcium phosphate powders by using Ca metal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100220A (en) 1979-01-19 1980-07-31 Sumitomo Metal Ind Ltd Recovering method for calcium carbonate in converter slag
JP2008000664A (ja) * 2006-06-21 2008-01-10 Teijin Engineering Ltd リン含有排水の処理方法
JP2010120782A (ja) * 2008-11-17 2010-06-03 Jfe Steel Corp 低アルカリ溶出性スラグの製造方法
JP2010270378A (ja) 2009-05-22 2010-12-02 Kobelco Eco-Solutions Co Ltd 製鋼スラグからのリン回収方法
JP2013142046A (ja) 2012-01-10 2013-07-22 Nippon Steel & Sumitomo Metal Corp 鉱さい燐酸肥料用原料回収方法
JP2013147370A (ja) * 2012-01-18 2013-08-01 Nippon Steel & Sumitomo Metal Corp 炭酸化スラグの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Mineral Resources Material Flow 2011", May 2012, JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, pages: 405 - 410
KAZUYO MATSUBAE ET AL.: "Recovery of Artificial Phosphorus Resource from Wastes", COLLECTION OF SOCIOTECHNOLOGY RESEARCH PAPERS, SOCIOTECHNOLOGY RESEARCH NETWORK, March 2008 (2008-03-01), pages 106 - 113

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017075065A (ja) * 2015-10-13 2017-04-20 新日鐵住金株式会社 鉄鋼スラグからのリン酸塩の回収方法
JP2018001152A (ja) * 2016-07-06 2018-01-11 崑喨 洪 転炉石廃棄物の処理方法
WO2018135439A1 (ja) * 2017-01-18 2018-07-26 日新製鋼株式会社 製鋼スラグからカルシウムを溶出させる方法、および製鋼スラグからカルシウムを回収する方法

Also Published As

Publication number Publication date
US9783418B2 (en) 2017-10-10
RU2618004C1 (ru) 2017-05-02
MX366657B (es) 2019-07-18
CA2937214A1 (en) 2015-08-06
CA2937214C (en) 2017-11-28
CN105980326A (zh) 2016-09-28
KR101815160B1 (ko) 2018-01-04
EP3090991A4 (en) 2017-09-13
CN105980326B (zh) 2018-05-11
ES2718606T3 (es) 2019-07-03
MX2016009573A (es) 2016-10-21
KR20160093088A (ko) 2016-08-05
EP3090991B1 (en) 2019-01-09
US20160347615A1 (en) 2016-12-01
EP3090991A1 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2015114703A1 (ja) リンおよびカルシウムの回収方法および前記回収方法によって得られる混合物
JP6927033B2 (ja) 製鋼スラグからカルシウムを回収する方法
JP6794842B2 (ja) 製鋼スラグからカルシウムを溶出させる方法、および製鋼スラグからカルシウムを回収する方法
TWI679282B (zh) 從煉鋼爐渣回收含有鈣的固體成分的方法
KR101386245B1 (ko) 페로니켈슬래그로부터 이산화규소 및 마그네시아의 분리방법 그리고 이를 이용한 규산 및 고토비료의 제조방법
CN110629015B (zh) 一种铁橄榄石型炉渣脱硅方法
TW202012643A (zh) 從煉鋼爐渣回收鈣的方法
JP5793842B2 (ja) 燐の分離方法
JP5748925B1 (ja) リンおよびカルシウムの回収方法および前記回収方法によって得られる混合物
JP5884166B2 (ja) 燐の分離方法
KR101974562B1 (ko) 부산물 처리 방법
JP2019162610A (ja) スラグからセレンを除去する方法および装置並びにスラグの再利用方法および再生スラグの製造方法
WO2019107115A1 (ja) 製鋼スラグからカルシウムを溶出させる方法、製鋼スラグからカルシウムを回収する方法、および製鋼スラグからカルシウムを溶出させる装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014555030

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880452

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/009573

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20167020286

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016016148

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2937214

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2014880452

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15114719

Country of ref document: US

Ref document number: 2014880452

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016130849

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016016148

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160712