[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015190094A1 - 電力貯蔵システムおよびその制御方法 - Google Patents

電力貯蔵システムおよびその制御方法 Download PDF

Info

Publication number
WO2015190094A1
WO2015190094A1 PCT/JP2015/002905 JP2015002905W WO2015190094A1 WO 2015190094 A1 WO2015190094 A1 WO 2015190094A1 JP 2015002905 W JP2015002905 W JP 2015002905W WO 2015190094 A1 WO2015190094 A1 WO 2015190094A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
capacitor
current
power
storage system
Prior art date
Application number
PCT/JP2015/002905
Other languages
English (en)
French (fr)
Inventor
聡一郎 阪東
林 正人
片岡 幹彦
貴之 徳重
大野 達也
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to EP15806373.5A priority Critical patent/EP3157132B1/en
Priority to CA2916461A priority patent/CA2916461C/en
Priority to CN201580030874.4A priority patent/CN106464000B/zh
Priority to US15/318,304 priority patent/US10263448B2/en
Publication of WO2015190094A1 publication Critical patent/WO2015190094A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1423Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/42The network being an on-board power network, i.e. within a vehicle for ships or vessels

Definitions

  • the present invention relates to a power storage system including a secondary battery and a capacitor, and a control method thereof.
  • Non-Patent Document 1 a hybrid system that extends the life.
  • a battery supplies power of a low frequency component
  • an electric double layer capacitor supplies power of a high frequency component.
  • This high frequency component is separated by an HPF (High Pass Filter), and the time constant T EDLC of the HPF is set based on the capacitance of the capacitor and the charge / discharge cycle.
  • the proportional gain kp of the proportional compensator is set using a proportional compensator so that the battery can supply the loss of the capacitor.
  • control parameters HPF time constant T EDLC and proportional gain kp of the proportional compensator
  • the control parameters depend on the characteristics (frequency and magnitude) of the load fluctuation, so the hybrid power supply system lacks versatility. .
  • the HPF time constant T EDLC based on the capacitance of the capacitor and the charge / discharge cycle is set depending on the frequency of the load fluctuation.
  • the set time constant T EDLC does not conform to the changed load fluctuation frequency.
  • T1 ⁇ T2 ⁇ T EDLC the capacitor bears all power.
  • T EDLC ⁇ T1 ⁇ T2 the battery bears all the electric power. Therefore, the time constant T EDLC must be adjusted according to the load fluctuation frequency.
  • the proportional gain kp of the proportional compensator depends on the magnitude of load fluctuation. If the proportional gain kp is too small with respect to the magnitude of the load fluctuation, the loss of the capacitor cannot be compensated, and the voltage of the capacitor reaches the lower limit. On the other hand, if the proportional gain kp is too large with respect to the magnitude of the load fluctuation, the capacitor voltage works to be constant, and the power supply from the battery increases. Therefore, the proportional gain kp must be adjusted according to the magnitude of the load fluctuation.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a power storage system having high versatility and having a long life and a control method thereof.
  • An electric power storage system includes a power converter in which a load side terminal is connected to a load, a secondary battery connected to a power source side terminal of the power converter, and a power source side of the power converter.
  • a capacitor connected in parallel to the secondary battery via a DC / DC converter at a terminal, and a controller for controlling the DC / DC converter so that the capacitor is charged and discharged with priority over the secondary battery; It has.
  • the versatility of the power storage system is high.
  • the capacitor is charged and discharged with priority over the secondary battery, the number of times the secondary battery is charged and discharged is reduced as compared with the case where the capacitor is not prioritized over the secondary battery, and the life of the secondary battery is extended. As a result, the life of the power storage system can be extended.
  • the controller In the power storage system, the controller generates a current target value of the capacitor based on a deviation of the current of the secondary battery with respect to a predetermined secondary battery current target value of zero or near zero; A second control unit that generates a conduction ratio of the DC / DC converter based on a deviation of the current of the capacitor with respect to a target current value of the capacitor and outputs this to the DC / DC converter. Good.
  • the current of the secondary battery is suppressed to a predetermined secondary battery current target value. Therefore, according to a predetermined secondary battery current target value, the number of times of charging / discharging of the secondary battery is suppressed, and the capacitor is charged / discharged with priority over the secondary battery.
  • the predetermined secondary battery current target value may be a current value equal to or less than an hourly current rate of the secondary battery.
  • This one hour current rate is a current value that can charge or discharge the remaining capacity SOC (State Of Charge) of the secondary battery in one hour.
  • the predetermined secondary battery current target value may be zero.
  • the life of the power storage system can be extended most effectively.
  • the first control unit is based on a current for maintaining the SOC of the secondary battery at a predetermined value and a deviation of the current of the secondary battery with respect to the predetermined secondary battery current target value.
  • the current target value of the capacitor may be generated.
  • the SOC of the secondary battery can be maintained at a predetermined value.
  • the control method of the power storage system includes a power converter in which a load side terminal is connected to a load, a secondary battery connected to a power source side terminal of the power converter, and the power converter.
  • a power storage system comprising: a capacitor connected in parallel to the secondary battery via a DC / DC converter to a power supply side terminal; and a controller, wherein the controller includes the secondary battery The DC / DC converter is controlled so that the capacitor is charged and discharged with priority over the battery.
  • the present invention has an effect of having the configuration described above, providing a power storage system having high versatility, and extending its life, and a control method thereof.
  • FIG. 1 It is a functional block diagram which shows the structure of the electric power storage system which concerns on Embodiment 1 of this invention. It is a figure which shows roughly the ship carrying the electric power storage system of FIG. It is a figure which shows the structural example of the controller of the electric power storage system of FIG. It is a graph which shows the 1st charge / discharge pattern of electric power. It is a graph which shows the 2nd charging / discharging pattern of electric power. It is a graph which shows the loss amount of the secondary battery by charging / discharging of a 1st charging / discharging pattern. It is a graph which shows the loss amount of the secondary battery by charging / discharging of a 2nd charging / discharging pattern.
  • FIG. 8A is a graph illustrating each power of the second charge / discharge pattern, the secondary battery, and the capacitor in the power storage system of the example.
  • FIG. 8B is a graph illustrating each current of the secondary battery and the capacitor in the power storage system of the example.
  • FIG. 9A is a graph showing each power of the second charge / discharge pattern, the secondary battery, and the capacitor in the power supply system of the comparative example.
  • FIG. 9B is a graph showing each current of the secondary battery and the capacitor in the power supply system of the comparative example. It is a graph which shows each remaining capacity of the secondary battery of a power storage system of an example at the time of charge and discharge of the 2nd charge and discharge pattern, and a capacitor. It is a graph which shows each remaining capacity of the secondary battery and capacitor of the power supply system of the comparative example at the time of charging / discharging of a 2nd charging / discharging pattern.
  • FIG. 1 is a functional block diagram illustrating a configuration of the power storage system 100 according to the first embodiment.
  • FIG. 2 is a diagram schematically showing a ship 300 on which the power storage system 100 is mounted.
  • the use of the power storage system 100 shown in FIG. 1 is not particularly limited, and is used for a moving body such as a vehicle.
  • This power storage system 100 is used, for example, as an auxiliary power source for an electric propulsion ship (ship) 300 shown in FIG.
  • the ship 300 uses electric propulsion (drive power of the motor generator 330) as the main drive source of the propeller 220.
  • the main driving source (not shown) may be used as the main driving source of the propeller 220
  • the electric propulsion driving force of the motor generator 330
  • the motor generator 330 is connected to the power storage system 100, the main power supply 310, and the inboard power system 210 via the electric converter 320.
  • the power storage system 100 is connected as an auxiliary power source together with the main power source 310 to the load 200 of the ship 300 (for example, the motor generator 330 for driving the inboard power system 210 and the propeller 220). Thereby, the power storage system 100 appropriately assists the main power supply 310 to supply power to the load 200 or receives power from the load 200 and stores it.
  • the use of the power storage system 100 is not limited to the auxiliary power source of the ship 300, and may be used as, for example, a power storage system that supplies power to a car or a home.
  • the power storage system 100 includes a secondary battery 10, a capacitor 11, and a controller 12.
  • the power storage system 100 supplies power to the load 200 via the DC / AC inverter 13, or receives power from the load 200 and stores it in one or both of the secondary battery 10 and the capacitor 11.
  • the load side terminal of the DC / AC inverter (power converter) 13 is connected to the load 200.
  • the DC / AC inverter 13 converts the DC power input to the power supply side terminal into AC power, and outputs the AC power from the load side terminal.
  • the DC / AC inverter 13 converts AC power input to the load side terminal into DC power, and outputs the DC power from the power source side terminal.
  • the secondary battery 10 and the capacitor 11 are connected in parallel to the power supply side terminal of the DC / AC inverter 13.
  • the capacitor 11 is connected to the power supply side terminal of the DC / AC inverter 13 via the DC / DC converter 17.
  • the secondary battery 10 is connected to the power supply side terminal of the DC / AC inverter 13 via the DC link 20 constituted by a pair of wires, and the capacitor 11 is connected to the DC / DC converter 17 to the DC link 20. Connected through.
  • a DC link capacitor 14 is connected between a pair of wires constituting the DC link 20.
  • the DC link capacitor 14 smoothes fluctuations in the voltage of the DC link 20.
  • a voltage sensor 15 is connected in parallel to the DC link capacitor 14. The voltage sensor 15 detects a DC link voltage Vdc (a voltage across the DC link capacitor 14), which is a voltage of the DC link 20.
  • the secondary battery 10 is a large-capacity electricity storage device that accumulates electric charges through chemical reactions or physical reactions and releases the accumulated electric charges through reverse reactions.
  • a first current sensor 16 is connected in series with the secondary battery 10. The first current sensor 16 is provided between the connection point between the secondary battery 10 and the capacitor 11, and detects a current Ib that is discharged from the secondary battery 10 or charges the secondary battery 10.
  • Capacitor 11 is a high-power storage device that directly accumulates charges (without going through a reaction) and directly discharges the accumulated charges.
  • the capacitor 11 for example, a lithium ion capacitor or an electric double layer capacitor is used.
  • the capacitor 11 is connected to the DC link 20 via the DC / DC converter 17, and this connection point is provided between the first current sensor 16 and the DC link capacitor 14.
  • the DC / DC converter 17 changes the current of the capacitor 11 by changing the conduction rate.
  • the DC / DC converter 17 may have a step-up function or a step-down function that can change the voltage.
  • a DC reactor 18 (DCL) is connected in series with the DC / DC converter 17 between the DC / DC converter 17 and the connection point of the capacitor 11. The DC reactor 18 smoothes the current output from the DC / DC converter 17 or input to the DC / DC converter 17.
  • a second current sensor 19 is connected in series with the DC / DC converter 17 between the DC / DC converter 17 and the DC link 20, and the second current sensor 19 is discharged from the capacitor 11 or charges the capacitor 11. The current Ic is detected.
  • the controller 12 controls the DC / DC converter 17 so as to charge and discharge the capacitor 11 with priority over the secondary battery 10. That is, the controller 12 includes a first control unit 12a and a second control unit 12b.
  • the first controller 12 a determines the current command value Ic * ( Capacitor current target value) is generated.
  • the second control unit 12 b generates a conduction ratio D of the DC / DC converter 17 based on the deviation of the current Ic of the capacitor 11 from the current command value Ic *, and outputs this to the DC / DC converter 17.
  • the controller 12 directly controls the current of the capacitor 11 and indirectly controls the current of the secondary battery 10. For this reason, the current flow in the entire power storage system 100 is controlled.
  • the predetermined current command value Ib * is set to 0 (zero) or a value close to 0 (zero). Thereby, the current Ib of the secondary battery 10 is suppressed to a predetermined current command value Ib * during a load change. Therefore, according to the predetermined current command value Ib * , the number of times of charging / discharging of the secondary battery 10 is suppressed, and the capacitor 11 is charged / discharged with priority over the secondary battery 10 accordingly.
  • the first control unit 12a includes a current Ibsoc * for maintaining the remaining capacity SOC (State Of Charge) (%) of the secondary battery 10 at a predetermined value, and the current Ib of the secondary battery 10 with respect to the current command value Ib * . Based on the deviation, a current command value Ic * for the capacitor 11 is generated. Thereby, the flow of current in the entire power storage system 100 is controlled while suppressing fluctuations in the remaining capacity SOC of the secondary battery 10.
  • SOC State Of Charge
  • FIG. 3 is a block diagram illustrating a configuration example of the controller 12 of the power storage system 100.
  • the secondary battery 10 was used in a plateau region where the internal electromotive force Eb (V) was flat.
  • the secondary battery 10 is used in the vicinity of SOC 50%.
  • the DC link voltage Vdc (V) applied to the DC link capacitor 14 is the internal electromotive force of the secondary battery 10.
  • Eb (V) This internal electromotive force Eb depends on the remaining capacity SOC (State Of Charge) (%) of the secondary battery 10 and is obtained by its function f (SOC (t)) as shown in the following (Formula 1).
  • the remaining capacity SOC in (Formula 1) is expressed by the following (Formula 2).
  • Ib is the current (A) of the secondary battery 10
  • Qb0 is the rated capacity (Ah) of the capacitor 11.
  • Idc Pac / Vdc (Formula 3) Due to the flow of the current Idc, a current Icdc (A) flows from the DC link capacitor 14. This current Icdc is expressed by the following (formula 4). In (Expression 4), Ic is the current (primary side current) (A) of the capacitor 11 on the primary side (DC link capacitor 14 side) of the DC / DC converter 17.
  • Icdc Idc-Ib-Ic (Formula 4)
  • Vdc the voltage (DC link voltage) of the DC link capacitor 14 drops.
  • the DC link voltage Vdc is expressed by the following (formula 5).
  • Cdc is the capacitance (F) of the DC link capacitor 14.
  • Vdc ( ⁇ 1 / Cdc) ⁇ Icdc ⁇ dt (Formula 5) Due to the drop in the DC link voltage Vdc, a potential difference between the DC link voltage Vdc and the internal electromotive force Eb occurs, and the discharge current Ib (A) flows from the secondary battery 10 to the DC link capacitor 14. The discharge current Ib at this time is expressed by the following (formula 6). In (Expression 6), Rb is the internal resistance ( ⁇ ) of the secondary battery 10.
  • the first current sensor 16 detects the current Ib and outputs it to the controller 12. As shown in FIG. 3, the controller 12 obtains the current Ib from the first current sensor 16 and controls the capacitor 11 to charge and discharge the secondary battery 10 in preference to supply the active power Pac. .
  • the active power Pac (t) (W) is supplied from the secondary battery 10 and the capacitor 11 to the load 200 via the DC / AC inverter 13.
  • the effective power Pac (t) is expressed by the power Pb (t) (W) of the secondary battery 10 and the power Pc (t) (W) of the capacitor 11 as represented by the following (formula 7).
  • the total value is greater than 0 (W).
  • the first control unit 12a determines the output power command value Pc * (W) of the capacitor 11 from the deviation (Ib * -Ib) of the current Ib from the first current sensor 16 with respect to the current command value Ib * of the secondary battery 10. Is calculated based on the following (formula 9). In (Equation 9), C1 (s) is a transfer function.
  • the first control unit 12a obtains the DC link voltage Vdc from the voltage sensor 15. Then, the first control unit 12a obtains the current command value Ic * (capacitor current target value) of the capacitor 11 from the DC link voltage Vdc and the output power command value Pc * obtained by (Expression 9) below (Expression 10). )
  • the primary current command value Ic * is the current command value (A) of the capacitor 11 on the primary side (DC link capacitor 14 side) of the DC / DC converter 17.
  • the second control unit 12 b obtains the current Ic of the capacitor 11 from the second current sensor 19. Then, the second control unit 12b obtains the conduction ratio D of the DC / DC converter 17 from the deviation (Ic * ⁇ Ic) of the current Ic with respect to the primary current command value Ic * based on the following (formula 11). . In (Expression 11), C2 (s) is a transfer function.
  • the power Pc of the capacitor 11 is supplied to the load 200 as the active power Pac. . If the power Pc of the capacitor 11 is equal to the active power Pac, the power Pc of the capacitor 11 is sufficient with respect to the active power Pac, so that the power is supplied to the load 200 using only the capacitor 11.
  • the power Pc of the capacitor 11 is smaller than the effective power Pac due to a decrease in the remaining capacity SOC of the capacitor 11 or a limitation on the output current, the power Pc of the capacitor 11 is insufficient with respect to the effective power Pac. For this reason, the DC link voltage Vdc decreases, and a potential difference between the DC link voltage Vdc and the internal electromotive force Eb occurs. As a result, the discharge current Ib (A) flows from the secondary battery 10 to the DC link capacitor 14, and the power Pb of the secondary battery 10 of the following (formula 13) is supplied to the DC link capacitor 14. The power obtained by adding the power Pb of the secondary battery 10 to the power Pc of the capacitor 11 is supplied to the load 200 as the active power Pac.
  • the controller 12 acquires the current Ib of the secondary battery 10 from the first current sensor 16, and obtains the remaining capacity SOC (t) of the secondary battery 10 from the above (Formula 2).
  • the controller 12 calculates a current command value Ibsoc * for maintaining the SOC from the remaining capacity SOC (t) of the secondary battery 10 according to the following (formula 14).
  • C3 is a correction term for SOC (t).
  • Controller 12 controls remaining capacity SOC of secondary battery 10 by correcting current command value Ib * of secondary battery 10 with current command value Ibsoc * .
  • Ibsoc * C3 ⁇ (SOC (t)) (Formula 14)
  • the current command value Ibsoc * is added to the current command value Ib * .
  • the current command value Ibsoc * may be added to the deviation of the current Ib from the current command value Ib * .
  • the current of the secondary battery 10 is indirectly controlled by controlling the current of the capacitor 11 according to the conduction rate of the DC / DC converter 17, and the current flow in the entire power storage system 100 is controlled. Can be controlled. Therefore, the control parameter does not depend on the characteristics of load fluctuation, and the power storage system 100 is excellent in versatility.
  • the capacitor 11 is charged and discharged with priority over the secondary battery 10. Therefore, since the frequency
  • the current command value Ib * of the secondary battery 10 is set to 0 or a value close to 0. Thereby, the capacitor 11 can be easily charged / discharged preferentially over the secondary battery 10.
  • the current command value Ib * of the secondary battery 10 may be set to a value close to 0 (zero), for example, a current value equal to or lower than the hourly current rate of the secondary battery 10.
  • This one-hour current rate is the current value that can charge the remaining capacity SOC (State Of Charge) of the secondary battery from 0% to 100% in one hour, or the secondary battery SOC in 100 hours. Current value that can be discharged from 0 to 0%.
  • the charging / discharging current Ib of the secondary battery 10 is limited to a current rate (1C) or less for one hour. As a result, it is possible to suppress the deterioration of the secondary battery 10 due to a larger current flowing through the secondary battery 10 from the capacitor 11, thereby extending the life of the secondary battery 10.
  • the current Ib of the secondary battery 10 can be increased or decreased in proportion to the output of the entire power storage system 100.
  • the load sharing ratio between the secondary battery 10 and the capacitor 11 is k: (1 ⁇ k)
  • the load sharing ratio of the secondary battery 10 can be adjusted by the proportional coefficient k.
  • the current command value Ic * of the capacitor 11 is reduced, The charging / discharging current Ib of the secondary battery 10 can be increased.
  • the lifetime of the secondary battery 10 depends on the amount of heat generated by the secondary battery 10. As the calorific value of the secondary battery 10 increases, the secondary battery 10 deteriorates and the life of the secondary battery 10 is shortened. Therefore, the lifetime of the secondary battery 10 was evaluated based on the calorific value of the secondary battery 10 when the power storage system 100 was controlled according to the charge / discharge pattern.
  • the current of the capacitor 11 was controlled by the conduction ratio D of the DC / DC converter 17 obtained in this way.
  • the proportional compensator is used, the high frequency component is separated by HPF (High Pass Filter), and the power of the low frequency component is secondary.
  • HPF High Pass Filter
  • the time constant T EDLC of the HPF is larger than the period of the charge / discharge pattern, and the proportional gain kp of the proportional compensator is small in a range not reaching the upper limit voltage and the lower limit voltage of the capacitor 11. Set to value. For this reason, the time constant T EDLC and the proportional gain kp differ depending on the period and voltage of the charge / discharge pattern.
  • the configuration of the power storage system 100 of the embodiment and the power supply system of the comparative example (each quantity of the secondary battery 10 and the capacitor 11, each internal resistance, capacitance, etc.), the control method of the DC / DC converter 17, and The parameters were the same.
  • the secondary battery 10 capacity of the secondary battery 10 is set to 155.52 kWh so that the loss of the capacitor 11 can be sufficiently compensated.
  • the initial power amount of the capacitor 11 was set to 2.15 kWh.
  • the power storage system 100 of the example and the power supply system of the comparative example were controlled according to two types of charge / discharge patterns having different power magnitudes and charge / discharge frequencies. Then, since all or almost all of the loss amount (internal loss) of the secondary battery 10 becomes thermal energy, the loss amount Loss (kWh) was obtained as the heat generation amount according to the following (Formula 15).
  • i is the current (A) of the secondary battery 10
  • R is the internal resistance ( ⁇ ) of the secondary battery 10.
  • the first charge / discharge pattern is lightly charged / discharged with respect to the capacitor 11. I can say that. Since the electric energy (2.083 kWh) of the second charge / discharge pattern is equivalent to the initial electric energy (2.15 kWh) of the capacitor 11, it can be said that the second charge / discharge pattern is heavy charge / discharge with respect to the capacitor 11.
  • the loss amount of the example at the time of 1200 (sec) in FIG. 6 was 72.2% of the loss amount of the comparative example.
  • the loss amount of the example at 1200 (sec) in FIG. 7 was 51.3% of the loss amount of the comparative example.
  • the loss amount of the example is smaller than that of the comparative example, the calorific value of the example is smaller than that of the comparative example. For this reason, it is thought that the thermal deterioration of the secondary battery 10 in an Example was suppressed and the lifetime of the secondary battery 10 was extended.
  • the difference between the loss amount of the embodiment and the loss amount of the comparative example is derived from the power (kWh) of the secondary battery 10 and the current (A) of the secondary battery 10. That is, as shown in FIG. 8A, when the embodiment is charged / discharged with the second charge / discharge pattern, power is supplied only from the capacitor 11 at the start of discharging to the load 200, thereby reducing the remaining capacity of the capacitor 11. Accordingly, power is also supplied from the secondary battery 10. Next, power supply from the secondary battery 10 is terminated during the suspension, and power is supplied only to the capacitor 11 during charging. The same can be said for the electric current shown in FIG.
  • the proportional compensator works so as to compensate the power command value of the capacitor 11 against the sudden increase / decrease in the remaining capacity SOC of the capacitor 11 due to the HPF function.
  • the current of the secondary battery 10 always flows not only during discharging but also during charging.
  • the loss amount (heat generation amount) in the embodiment is smaller than that in the comparative example.
  • the remaining capacity SOC (%) of the secondary battery 10 of the example when charged and discharged for 1200 seconds with the second charge / discharge pattern shown in FIG. 10 was 38.9%.
  • the remaining capacity SOC (%) of the secondary battery 10 of the comparative example when charged and discharged for 1200 seconds with the second charge / discharge pattern shown in FIG. 11 was 37.5%.
  • the remaining capacity SOC of the secondary battery 10 of the example was equivalent to that of the comparative example.
  • the remaining capacity SOC of each secondary battery 10 of the example and the comparative example at the start of charging / discharging was 50%.
  • a DC / DC converter may be used as the power converter instead of the DC / AC inverter 13.
  • the power storage system and the control method thereof according to the present invention are useful as a power storage system and a control method thereof that are highly versatile and have a long service life.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

電力貯蔵システム100は、負荷200に電力を供給する電力貯蔵システム100であって、二次電池10と、前記二次電池10に並列に接続されたキャパシタ11と、前記二次電池10より優先的に前記キャパシタ11を充放電させるように制御する制御器12と、を備えている。

Description

電力貯蔵システムおよびその制御方法
 本発明は、二次電池およびキャパシタを備えている電力貯蔵システムおよびその制御方法に関する。
 従来、高エネルギ密度および高出力密度を両立する電力貯蔵システムとして、二次電池およびキャパシタを組み合わせたハイブリッドシステムが知られている。ただし、二次電池の寿命の短さがハイブリッドシステムを船舶などの輸送機器に搭載する上で問題となっている。このため、長寿命化を図ったハイブリッドシステムとして、たとえば、非特許文献1のハイブリッド電源システムが知られている。
 このハイブリッド電源システムでは、低周波成分の電力を電池が供給し、高い周波数成分の電力を電気二重層キャパシタが供給している。この高周波成分をHPF(High Pass Filter)で分離して、HPFの時定数TEDLCをキャパシタの容量および充放電周期に基づいて設定している。また、キャパシタの過充電および過放電を防止するために、比例補償器を用いて、電池がキャパシタの損失分を供給できるように比例補償器の比例ゲインkpを設定している。
能美雄貴、近藤圭一郎著「電池・キャパシタハイブリッド電源システムにおける電池の長寿命化、損失低減に適した蓄電装置搭載質量の決定法」平成25年電気学会産業応用部門大会 IV-125~IV-128
 上記ハイブリッド電源システムでは、制御パラメータ(HPFの時定数TEDLC、比例補償器の比例ゲインkp)が負荷変動の特性(周波数、大きさ)に依存するため、ハイブリッド電源システムが汎用性に欠けている。
 すなわち、キャパシタの容量および充放電周期に基づいたHPFの時定数TEDLCは、負荷変動の周波数に依存して設定される。たとえば、時定数TEDLCは、キャパシタが負担する負荷変動の周波数F1に対応した時定数T1(=1/F1)より大きく、電池が負担する負荷変動の周波数F2に対応した時定数T2(=1/F2)より小さな値に設定される。この場合、充放電パターンの変化や別システムへの適用などによって負荷変動の周波数が変化すると、設定された時定数TEDLCが変化した負荷変動の周波数に適合しなくなる。T1<T2<TEDLCになると、全ての電力をキャパシタが負担することになる。一方、TEDLC<T1<T2になると、全ての電力を電池が負担することになる。よって、負荷変動の周波数に応じて時定数TEDLCを調整しなければならない。
 また、比例補償器の比例ゲインkpは負荷変動の大きさに依存する。負荷変動の大きさに対して比例ゲインkpが小さすぎると、キャパシタの損失を補償できず、キャパシタの電圧が下限に達してしまう。一方、負荷変動の大きさに対して比例ゲインkpが大きすぎると、キャパシタの電圧を一定にしようと働き、電池からの電力供給が増加してしまう。よって、負荷変動の大きさに応じて比例ゲインkpを調整しなければならない。
 本発明はこのような課題を解決するためになされたものであり、汎用性が高く、長寿命化が図られた電力貯蔵システムおよびその制御方法を提供することを目的としている。
 本発明のある態様に係る電力貯蔵システムは、負荷側端子が負荷に接続される電力変換器と、前記電力変換器の電源側端子に接続された二次電池と、前記電力変換器の電源側端子にDC/DCコンバータを介して前記二次電池に並列に接続されたキャパシタと、前記二次電池より前記キャパシタを優先して充放電させるように前記DC/DCコンバータを制御する制御器と、を備えている。
 この構成によれば、二次電池およびキャパシタの充放電が負荷変動の周波数および大きさに依存しないので、電力貯蔵システムの汎用性が高い。また、二次電池よりキャパシタを優先して充放電させるので、二次電池よりキャパシタを優先しない場合に比べて二次電池の充放電回数が減少し、二次電池の寿命が長くなる。その結果、電力貯蔵システムの長寿命化を図ることができる。
 電力貯蔵システムでは、前記制御器は、零または零に近い所定の二次電池電流目標値に対する前記二次電池の電流の偏差に基づいて前記キャパシタの電流目標値を生成する第1制御部と、前記キャパシタの電流目標値に対する前記キャパシタの電流の偏差に基づいて前記DC/DCコンバータの通流率を生成し、これを前記DC/DCコンバータに出力する第2制御部と、を含んでいてもよい。
 この構成によれば、負荷変動の際に、二次電池の電流が所定の二次電池電流目標値に抑制される。従って、所定の二次電池電流目標値に応じて、二次電池の充放電回数が抑制され、その分、二次電池よりキャパシタが優先して充放電される。
 電力貯蔵システムでは、前記所定の二次電池電流目標値は、前記二次電池の一時間電流率以下の電流値であってもよい。この一時間電流率は、一時間で二次電池の残存容量SOC(State Of Charge)を充電または放電することができる電流値である。
 この構成によれば、効果的に二次電池の充放電回数が抑制され、効果的に二次電池の寿命が長くなる。その結果、効果的に電力貯蔵システムの長寿命化を図ることができる。
 電力貯蔵システムでは、前記所定の二次電池電流目標値は、零であってもよい。
 この構成によれば、最も効果的に二次電池の充放電回数が抑制され、最も効果的に二次電池の寿命が長くなる。その結果、最も効果的に電力貯蔵システムの長寿命化を図ることができる。
 電力貯蔵システムでは、前記第1制御部は、前記二次電池のSOCを所定値に維持するための電流と、前記所定の二次電池電流目標値に対する前記二次電池の電流の偏差とに基づいて前記キャパシタの電流目標値を生成するように構成されていてもよい。
 この構成によれば、二次電池のSOCを所定値に維持することができる。
 本発明のある態様に係る電力貯蔵システムの制御方法は、負荷側端子が負荷に接続される電力変換器と、前記電力変換器の電源側端子に接続された二次電池と、前記電力変換器の電源側端子にDC/DCコンバータを介して前記二次電池に並列に接続されたキャパシタと、制御器と、を備えた電力貯蔵システムの制御方法であって、前記制御器は、前記二次電池より前記キャパシタを優先して充放電させるように前記DC/DCコンバータを制御する。
 本発明は、以上に説明した構成を有し、汎用性が高く、長寿命化が図られた電力貯蔵システムおよびその制御方法を提供することができるという効果を奏する。
 本発明の上記目的、他の目的、特徴、および利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
本発明の実施形態1に係る電力貯蔵システムの構成を示す機能ブロック図である。 図1の電力貯蔵システムを搭載した船舶を概略的に示す図である。 図1の電力貯蔵システムの制御器の構成例を示す図である。 電力の第1充放電パターンを示すグラフである。 電力の第2充放電パターンを示すグラフである。 第1充放電パターンの充放電による二次電池の損失量を示すグラフである。 第2充放電パターンの充放電による二次電池の損失量を示すグラフである。 図8Aは、実施例の電力貯蔵システムにおける第2充放電パターン、二次電池およびキャパシタの各電力を示すグラフである。図8Bは、実施例の電力貯蔵システムにおける二次電池およびキャパシタの各電流を示すグラフである。 図9Aは、比較例の電源システムにおける第2充放電パターン、二次電池およびキャパシタの各電力を示すグラフである。図9Bは、比較例の電源システムにおける二次電池およびキャパシタの各電流を示すグラフである。 第2充放電パターンの充放電時における実施例の電力貯蔵システムの二次電池およびキャパシタの各残存容量を示すグラフである。 第2充放電パターンの充放電時における比較例の電源システムの二次電池およびキャパシタの各残存容量を示すグラフである。
 以下、本発明の実施の形態を、図面を参照しながら具体的に説明する。なお、以下では全ての図面を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。
 (実施の形態1)
 図1は、実施形態1に係る電力貯蔵システム100の構成を示す機能ブロック図である。図2は、電力貯蔵システム100を搭載した船舶300を概略的に示す図である。図1に示す電力貯蔵システム100の用途は、特に限定されず、たとえば、車両などの移動体に用いられる。この電力貯蔵システム100は、たとえば、図2に示す電気推進船舶(船舶)300の補助電源として用いられる。図2では、船舶300は、電気推進力(電動発電機330の駆動力)をプロペラ220の主駆動源として用いている。ただし、プロペラ220の主駆動源に主機(図示せず)と用いて、電気推進力(電動発電機330の駆動力)をプロペラ220の補助駆動源として用いてもよい。なお、電動発電機330は電動変換器320を介して電力貯蔵システム100、主電源310および船内電力系統210に接続している。
 通常、航海中には船舶300を推進する電力および船舶300内で使用する電力を船舶300に備えられた主電源310で賄っている。この電力の変動が非常大きいと、過電流によって主電源310からの電力供給が遮断されてしまう。このような事態を回避するため、主電源310と共に補助電源として電力貯蔵システム100が船舶300の負荷200(たとえば、船内電力系統210およびプロペラ220駆動用電動発電機330)に接続されている。これにより、電力貯蔵システム100は、適宜、主電源310をアシストして電力を負荷200に供給し、または、負荷200から電力を受給して貯蔵する。ただし、電力貯蔵システム100の用途は船舶300の補助電源に限定されず、たとえば、自動車や家庭などに電力を供給する電力貯蔵システムとしても用いられる。
 電力貯蔵システム100は、二次電池10、キャパシタ11および制御器12を備えている。電力貯蔵システム100は、DC/ACインバータ13を介して負荷200に電力を供給し、または、負荷200から電力を受給して二次電池10およびキャパシタ11の一方または双方に貯蔵する。
 DC/ACインバータ(電力変換器)13は、負荷側端子が負荷200に接続されている。DC/ACインバータ13は、電源側端子に入力される直流電力を交流電力に変換して、交流電力を負荷側端子から出力する。また、DC/ACインバータ13は、負荷側端子に入力される交流電力を直流電力に変換して、直流電力を電源側端子から出力する。
 DC/ACインバータ13の電源側端子には、二次電池10とキャパシタ11とが互いに並列に接続されている。キャパシタ11は、DC/DCコンバータ17を介してDC/ACインバータ13の電源側端子に接続されている。
 具体的には、DC/ACインバータ13の電源側端子に一対の配線で構成されるDCリンク20を介して二次電池10が接続され、このDCリンク20にキャパシタ11がDC/DCコンバータ17を介して接続されている。DCリンク20を構成する一対の配線間にはDCリンクキャパシタ14が接続されている。
 DCリンクキャパシタ14は、DCリンク20の電圧の変動を平滑化する。DCリンクキャパシタ14に並列に電圧センサ15が接続されている。電圧センサ15は、DCリンク20の電圧であるDCリンク電圧Vdc(DCリンクキャパシタ14の両端電圧))を検知する。
 二次電池10は、電荷を化学反応または物理反応を介して蓄積し、蓄積した電荷を逆反応を介して放出する大容量型蓄電デバイスである。二次電池10としては、たとえば、リチウムイオン電池、ニッケル水素電池および鉛蓄電池が用いられる。二次電池10に直列に第1電流センサ16が接続されている。第1電流センサ16は、二次電池10とキャパシタ11との接続点との間に設けられており、二次電池10から放電されるまたは二次電池10を充電する電流Ibを検知する。
 キャパシタ11は、電荷を直接(反応を介さずに)蓄積し、蓄積した電荷を直接放出する高出力型蓄電デバイスである。キャパシタ11として、たとえば、リチウムイオンキャパシタ、電気二重層キャパシタが用いられる。キャパシタ11は、DCリンク20にDC/DCコンバータ17を介して接続されており、この接続点は第1電流センサ16とDCリンクキャパシタ14との間に設けられている。
 DC/DCコンバータ17は、通流率を変化させてキャパシタ11の電流を変化させる。DC/DCコンバータ17は、電圧を変えることが可能な昇圧機能または降圧機能を有していてもよい。DC/DCコンバータ17とキャパシタ11の接続点との間においてDC/DCコンバータ17に直列に直流リアクトル18(DCL)が接続されている。直流リアクトル18は、DC/DCコンバータ17から出力されるまたはDC/DCコンバータ17に入力される電流を平滑化する。DC/DCコンバータ17とDCリンク20との間においてDC/DCコンバータ17に直列に第2電流センサ19が接続されており、第2電流センサ19はキャパシタ11から放電されるまたはキャパシタ11を充電する電流Icを検知する。
 制御器12は、二次電池10よりキャパシタ11を優先して充放電させるようにDC/DCコンバータ17を制御する。すなわち、制御器12は、第1制御部12aおよび第2制御部12bを含む。
 第1制御部12aは、二次電池10の所定の電流指令値Ib(二次電池電流目標値)に対する二次電池10の電流Ibの偏差に基づいて、キャパシタ11の電流指令値Ic(キャパシタの電流目標値)を生成する。第2制御部12bは、この電流指令値Icに対するキャパシタ11の電流Icの偏差に基づいて、DC/DCコンバータ17の通流率Dを生成し、これをDC/DCコンバータ17に出力する。これにより、制御器12は、キャパシタ11の電流を直接的に制御し、二次電池10の電流を間接的に制御する。このため、電力貯蔵システム100の全体における電流の流れが制御される。ここで、所定の電流指令値Ibを、0(零)または0(零)に近い値に設定する。これにより、負荷変動の際に、二次電池10の電流Ibが所定の電流指令値Ibに抑制される。従って、所定の電流指令値Ibに応じて、二次電池10の充放電回数が抑制され、その分、キャパシタ11が二次電池10より優先して充放電される。
 第1制御部12aは、二次電池10の残存容量SOC(State Of Charge)(%)を所定値に維持するための電流Ibsocと、電流指令値Ibに対する二次電池10の電流Ibの偏差とに基づいて、キャパシタ11の電流指令値Icを生成する。これにより、二次電池10の残存容量SOCの変動を抑制しながら、電力貯蔵システム100の全体における電流の流れを制御する。
 次に、図1および図3を参照しながら、電力貯蔵システム100の充放電の制御方法を具体的に説明する。図3は、電力貯蔵システム100の制御器12の構成例を示すブロック図である。なお、以下の充放電では、内部起電力Eb(V)がフラットなプラトー領域で二次電池10を用いた。たとえば、残存容量SOC40%以下および60%以上で内部起電力Ebが傾く二次電池10に対しては、SOC50%付近で二次電池10を使用した。
 図1に示すように、DC/ACインバータ13から負荷200へ有効電力が供給されていないとき、DCリンクキャパシタ14に印加されるDCリンク電圧Vdc(V)は、二次電池10の内部起電力Eb(V)に等しくなる。この内部起電力Ebは、下記(式1)に示すように、二次電池10に残存容量SOC(State Of Charge)(%)に依存し、その関数f(SOC(t))により求められる。(式1)内の残存容量SOCは下記(式2)で表される。この(式2)におけるIbは二次電池10の電流(A)であり、Qb0はキャパシタ11の定格容量(Ah)である。
  Eb=f(SOC(t))   (式1)
Figure JPOXMLDOC01-appb-M000001
  一方、負荷変動が発生し、DC/ACインバータ13から負荷200へ有効電力Pac(W)が供給されると、DCリンクキャパシタ14からDC/ACインバータ13へ電流Idc(A)が流れる。この電流Idcは下記(式3)により表される。この(式3)におけるVdcはDCリンク電圧(V)である。
  Idc=Pac/Vdc   (式3)
 この電流Idcの流れによって、電流Icdc(A)がDCリンクキャパシタ14から流れる。この電流Icdcは下記(式4)により表される。(式4)で、Icは、DC/DCコンバータ17の1次側(DCリンクキャパシタ14側)のキャパシタ11の電流(1次側電流)(A)である。
  Icdc=Idc-Ib-Ic   (式4)
 DCリンクキャパシタ14において電流Icdcが流れることにより、DCリンクキャパシタ14の電圧(DCリンク電圧)Vdcが降下する。DCリンク電圧Vdcは下記(式5)により表される。(式5)で、CdcはDCリンクキャパシタ14の静電容量(F)である。
  Vdc=(-1/Cdc)∫Icdc・dt   (式5)
 DCリンク電圧Vdcの降下により、DCリンク電圧Vdcと内部起電力Ebとの電位差が生じ、二次電池10からDCリンクキャパシタ14へ放電電流Ib(A)が流れる。この時の放電電流Ibは下記(式6)により表される。(式6)で、Rbは二次電池10の内部抵抗(Ω)である。
  Ib=(Eb-Vdc)/Rb   (式6)
 そして、放電電流Ibが流れると、電流Ibを第1電流センサ16が検知して制御器12へ出力する。図3に示すように、制御器12は、第1電流センサ16からの電流Ibを得て、キャパシタ11を二次電池10に優先して充放電させて有効電力Pacを供給するように制御する。
 すなわち、有効電力Pac(t)(W)は、DC/ACインバータ13を介して二次電池10およびキャパシタ11から負荷200へ供給される。このため、有効電力Pac(t)は、下記(式7)で表されるように、二次電池10の電力Pb(t)(W)とキャパシタ11の電力Pc(t)(W)との合計値であって、0(W)より大きくなる。
  Pac(t)=Pb(t)+Pc(t),t>0   (式7)
 そして、二次電池10の電流指令値Ib(二次電池電流目標値)を0(零)(A)に設定すると、二次電池10の電力Pb(t)が0(W)に近づく。このため、下記(式8)の関係となり、キャパシタ11が二次電池10より優先的に使用されて、有効電力Pac(t)の全部をキャパシタ11が担うことになる。なお、キャパシタ11が二次電池10より優先的に使用されれば、二次電池10の電流指令値Ibを0(A)でなく、0(零)に近い値(A)に設定してもよい。
  Pac(t)=Pc(t),t>0   (式8)
 そこで、第1制御部12aは、二次電池10の電流指令値Ibに対する第1電流センサ16からの電流Ibの偏差(Ib-Ib)からキャパシタ11の出力電力指令値Pc(W)を下記(式9)に基づいて求める。(式9)で、C1(s)は伝達関数である。
  Pc=C1(s)・(Ib-Ib)   (式9)
 第1制御部12aは、電圧センサ15からDCリンク電圧Vdcを得る。そして、第1制御部12aは、このDCリンク電圧Vdcと(式9)で求めた出力電力指令値Pcとからキャパシタ11の電流指令値Ic(キャパシタの電流目標値)を下記(式10)に従って演算して得る。1次側電流指令値Icは、DC/DCコンバータ17の1次側(DCリンクキャパシタ14側)のキャパシタ11の電流指令値(A)である。
  Ic=Pc/Vdc   (式10)
 次に、第2制御部12bは、第2電流センサ19からキャパシタ11の電流Icを得る。そして、第2制御部12bは、この電流Icの1次側電流指令値Icに対する偏差(Ic-Ic)からDC/DCコンバータ17の通流率Dを下記(式11)に基づいて求める。(式11)で、C2(s)は伝達関数である。
  D=C2(s)・(Ic-Ic)   (式11)
 第2制御部12bは、通流率DをDC/DCコンバータ17に出力すると、1次側電流Icの電流がキャパシタ11から流れる。この電流は、DC/DCコンバータ17および直流リアクトル18を介してDCリンクキャパシタ14に流れる。このDCリンクキャパシタ14に供給される電力Pc(W)は下記(式12)で表される。
   Pc=Vdc・Ic   (式12)
 上記のとおり、二次電池10の電流指令値Ibが0(零)または0(零)に近い値に設定されているため、キャパシタ11の電力Pcが有効電力Pacとして負荷200に供給される。このキャパシタ11の電力Pcが有効電力Pacに等しければ、有効電力Pacに対してキャパシタ11の電力Pcで足りているため、キャパシタ11のみで負荷200に電力を供給する。
 一方、キャパシタ11の残存容量SOCの低下や出力電流の制限などによってキャパシタ11の電力Pcが有効電力Pacより小さければ、有効電力Pacに対してキャパシタ11の電力Pcで足りない。このため、DCリンク電圧Vdcが低下し、DCリンク電圧Vdcと内部起電力Ebとの電位差が生じる。これにより、二次電池10からDCリンクキャパシタ14へ放電電流Ib(A)が流れて、下記(式13)の二次電池10の電力PbがDCリンクキャパシタ14に供給される。この二次電池10の電力Pbをキャパシタ11の電力Pcに加えた電力が有効電力Pacとして負荷200に供給される。
  Pb=Vdc・Ib   (式13)
 また、二次電池10の内部起電力Ebは二次電池10の残存容量SOCに依存するため、上記のとおりにキャパシタ11の電流を制御するのに加えて、二次電池10の残存容量SOCも制御する必要がある。このため、制御器12は、第1電流センサ16から二次電池10の電流Ibを取得し、二次電池10の残存容量SOC(t)を上記(式2)から求める。制御器12は、二次電池10の残存容量SOC(t)からSOC維持用の電流指令値Ibsocを下記(式14)に従って算出する。(式14)においてC3はSOC(t)の補正項である。そして、制御器12は、電流指令値Ibsocによって二次電池10の電流指令値Ibを補正することによって、二次電池10の残存容量SOCを制御する。
  Ibsoc=C3・(SOC(t))   (式14)
 なお、図3では、電流指令値Ibsocが電流指令値Ibに加算されているが、電流指令値Ibsocは、電流指令値Ibに対する電流Ibの偏差に加算されてもよい。
 上記構成によれば、DC/DCコンバータ17の通流率によってキャパシタ11の電流を制御することにより、二次電池10の電流も間接的に制御し、電力貯蔵システム100の全体における電流の流れを制御することができる。よって、制御パラメータが負荷変動の特性に依存することがなく、電力貯蔵システム100は汎用性に優れている。
 また、二次電池10よりキャパシタ11を優先して充放電させている。これにより、二次電池10の充放電回数および充放電深度を減らすことができるため、二次電池10の長寿命化を図ることができる。
 たとえば、二次電池10の電流指令値Ibを0または0に近い値に設定している。これにより、キャパシタ11を二次電池10より優先的に簡単に充放電させることができる。
 なお、二次電池10の充放電時の電流Ibが低いほど、二次電池10の長寿命化が図られる。このため、二次電池10の電流指令値Ibの0(零)に近い値に、たとえば、二次電池10の一時間電流率以下の電流値に設定してもよい。この一時間電流率は、一時間で二次電池の残存容量SOC(State Of Charge)を0%から100%まで充電することができる電流値、または、一時間で二次電池のSOCを100%から0%まで放電することができる電流値である。このように、二次電池10の充放電電流Ibが一時間電流率(1C)以下に制限される。これにより、キャパシタ11より大きな電流が二次電池10に流れることによって二次電池10の劣化が促進されることを抑制することができ、二次電池10の長寿命化が図られる。
 また、二次電池10の電流指令値Ibの0(零)に近い値を、有効電力Pacおよび比例係数kを用いて、Ib=k・Pacと第1制御部12aにおいて設定してもよい。これにより、電力貯蔵システム100全体の出力に比例して、二次電池10の電流Ibを増減させることができる。このとき、二次電池10とキャパシタ11との負荷分担率はk:(1-k)となるため、比例係数kによって二次電池10の負荷分担率を調整することが可能である。よって、放電中にキャパシタ11のSOCが規定値以下になった場合、または、充電中にキャパシタ11のSOCが規定値以上になった場合、キャパシタ11の電流指令値Icを低減して、二次電池10の充放電電流Ibが増加させることができる。
(実施例)
 次に、上記構成の電力貯蔵システム100における二次電池10の長寿命化について実施例による検証結果を説明する。具体的には、二次電池10の寿命は二次電池10の発熱量に依存する。二次電池10の発熱量が大きいほど、二次電池10が劣化し、二次電池10の寿命が短くなる。よって、充放電パターンに応じて電力貯蔵システム100を制御した際の二次電池10の発熱量に基づいて二次電池10の寿命を評価した。
 実施例の電力貯蔵システム100では、図3に示す制御例の通りに二次電池10の電流指令値ib=0とし、各センサ16、19、15からの検出値Ib、Ic、Vdcに基づいて求めたDC/DCコンバータ17の通流率Dにより、キャパシタ11の電流を制御した。一方、比較例の電源システムでは、上記非特許文献1のハイブリッド電源システムと同様に、比例補償器を用い、高周波成分をHPF(High Pass Filter)で分離して、低周波成分の電力を二次電池10が供給し、高い周波数成分の電力を電気二重層キャパシタ11が供給した。ここで、キャパシタ11をできる限り使用するように、HPFの時定数TEDLCを充放電パターンの周期より大きく、比例補償器の比例ゲインkpをキャパシタ11の上限電圧および下限電圧に達しない範囲における小さい値に設定した。このため、充放電パターンの周期および電圧に応じて時定数TEDLCおよび比例ゲインkpは異なる。
 なお、実施例の電力貯蔵システム100および比較例の電源システムの構成(二次電池10およびキャパシタ11の各数量、各内部抵抗、静電容量など)、ならびに、DC/DCコンバータ17の制御方法およびパラメータをそれぞれ同一にした。実施例の電力貯蔵システム100および比較例の電源システムでは、キャパシタ11の損失を十分補償できるように、二次電池10の二次電池10容量を155.52kWhとした。また、キャパシタ11の初期電力量を2.15kWhとした。
 検証では、電力の大きさおよび充放電の周波数が異なる2種類の充放電パターンに従って、実施例の電力貯蔵システム100および比較例の電源システムを制御した。そして、二次電池10の損失量(内部損失)の全てまたはほぼ全てが熱エネルギになるため、損失量Loss(kWh)を発熱量として下記(式15)により求めた。この(式15)において、iは二次電池10の電流(A)であり、Rは二次電池10の内部抵抗(Ω)である。
  Loss=(3600/1000)・∫i・Rdt   (式15)
 第1充放電パターンでは、図4に示すように、5秒間250kWの電力量(0.347kWh)を放電し、1秒間休止した後、5秒間250kWを充電し、1秒間休止するという周期12秒の充放電を繰り返す。第2充放電パターンでは、図5に示すように、15秒間500kWの電力量(2.083kWh)を放電し、2秒間休止した後、15秒間500kWを充電し、2秒間休止するという周期34秒の充放電を繰り返す。このように、第1充放電パターンの電力量(0.347kWh)がキャパシタ11の初期電力量(2.15kWh)より非常に小さいため、第1充放電パターンはキャパシタ11に対して軽充放電と言える。第2充放電パターンの電力量(2.083kWh)がキャパシタ11の初期電力量(2.15kWh)と同等であるため、第2充放電パターンはキャパシタ11に対して重充放電と言える。
 検証の結果、図6に示すように、第1充放電パターンで充放電した際、実施例および比較例の損失量Lossは時間の経過と伴に増加している。また、図7に示すように、第2充放電パターンで充放電した際、実施例および比較例の損失量Lossは時間の経過と伴に増加している。図6および図7の全時間範囲において実施例の損失量は比較例の損失量より小さく、この差は時間の経過と伴に大きくなっている。
 また、図6の1200(sec)時点における実施例の損失量は比較例の損失量の72.2%であった。図7の1200(sec)時点における実施例の損失量は比較例の損失量の51.3%であった。
 このように、実施例の損失量は比較例より小さいことから、実施例の発熱量が比較例より少ない。このため、実施例における二次電池10の熱劣化が抑制され、二次電池10の長寿命化が図れたと考えられる。
 このような実施例の損失量と比較例の損失量との差は、二次電池10の電力(kWh)および二次電池10の電流(A)に由来する。すなわち、図8Aに示すように、第2充放電パターンで実施例が充放電した際、負荷200への放電開始時にはキャパシタ11のみから電力を供給し、これによりキャパシタ11の残量容量が減少するに従って二次電池10からも電力を供給する。次に、休止中には二次電池10からの給電が終了し、充電時にはキャパシタ11のみに電力が供給される。また、図8Bに示す電流についても、図8Aの電力と同様のことが言える。つまり、第2充放電パターンによる実施例の充放電では、放電の初期にはキャパシタ11のみから電流が流れ、キャパシタ11の残量容量が減少するに伴って二次電池10からも電流が流れる。そして、休止中に二次電池10からの電流の流れが終わり、充電時にはキャパシタ11のみに電流が流れる。
 一方、図9Aに示すように、第2充放電パターンで比較例が充放電した際、放電が始まると、HPFによって高周波成分の電力をキャパシタ11のみから供給し、その後の低周波成分の電力を二次電池10およびキャパシタ11から供給している。充電が終了すると(20秒付近、50秒付近)、キャパシタ11の残存容量SOCを回復するために比例補償器が働き、二次電池10からキャパシタ11に電力が供給される。そして、充電の終了時から放電開示時(35秒付近、70秒付近)に、キャパシタ11の残存容量SOCが上限に近くなるため、負荷200からの電力が二次電池10に供給される。また、図9Bに示す電流についても、図9Aの電力と同様のことが言える。つまり、第2充放電パターンによる比較例の充放電では、放電の初期にキャパシタ11のみから電流が流れ、その後に二次電池10からも電流が流れる。そして、休止中および充電と途中まで二次電池10から電流が流れ、充電時にはキャパシタ11へ電流が流れ、充電の途中からは二次電池10へも電流が流れる。
 このように、比較例の電源システムでは、HPFの機能によってキャパシタ11の残存容量SOCが急激に増減するのに対してキャパシタ11の電力指令値を補償するように比例補償器が働く。これにより、放電中のみならず充電中も二次電池10の電流が常時流れている。これに対して、実施例では、二次電池10の電流指令値ib=0(A)にすることにより、電流指令値ibと二次電池10の電流Ibとの偏差に相当するキャパシタ11の出力電力指令値Pcが決定されるため、二次電池10からキャパシタ11に電力が供給されない。このように、実施例では効率的に電力がキャパシタ11のみに充電される。よって、比較例のような二次電池10とキャパシタ11との間の電力のやり取りが実施例では行われないことにより、実施例の損失量(発熱量)は比較例に比べて小さくなる。
 なお、図10に示す第2充放電パターンで1200秒間、充放電した際の実施例の二次電池10の残存容量SOC(%)は、38.9%であった。また、図11に示す第2充放電パターンで1200秒間、充放電した際の比較例の二次電池10の残存容量SOC(%)は、37.5%であった。このため、実施例の二次電池10の残存容量SOCは比較例と同等であった。なお、充放電開始時における実施例および比較例の各二次電池10の残存容量SOCは、50%であった。
 (その他の実施の形態)
 なお、上記実施の形態において、負荷200に直流電力を供給する場合には、電力変換器として、DC/ACインバータ13に代えて、DC/DCコンバータを用いてもよい。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造および/又は機能の詳細を実質的に変更できる。
 本発明の電力貯蔵システムおよびその制御方法は、汎用性が高く、長寿命化が図られた電力貯蔵システムおよびその制御方法等として有用である。
 10  二次電池
 11  キャパシタ
 12  制御器
 12a 第1制御部
 12b 第2制御部
 13  DC/ACインバータ
 14  DCリンクキャパシタ
 17  DC/DCコンバータ
 20  DCリンク
 100 電力貯蔵システム
 200 負荷

Claims (6)

  1.  負荷側端子が負荷に接続される電力変換器と、
     前記電力変換器の電源側端子に接続された二次電池と、
     前記電力変換器の電源側端子にDC/DCコンバータを介して前記二次電池に並列に接続されたキャパシタと、
     前記二次電池より前記キャパシタを優先して充放電させるように前記DC/DCコンバータを制御する制御器と、を備えた、電力貯蔵システム。
  2.  前記制御器は、
     零または零に近い所定の二次電池電流目標値に対する前記二次電池の電流の偏差に基づいて前記キャパシタの電流目標値を生成する第1制御部と、
     前記キャパシタの電流目標値に対する前記キャパシタの電流の偏差に基づいて前記DC/DCコンバータの通流率を生成し、これを前記DC/DCコンバータに出力する第2制御部と、を含む、請求項1に記載の電力貯蔵システム。
  3.  前記所定の二次電池電流目標値は、前記二次電池の一時間電流率以下の電流値である、請求項2に記載の電力貯蔵システム。
  4.  前記所定の二次電池電流目標値は、零である、請求項2または3に記載の電力貯蔵システム。
  5.  前記第1制御部は、前記二次電池のSOCを所定値に維持するための電流と、前記所定の二次電池電流目標値に対する前記二次電池の電流の偏差とに基づいて前記キャパシタの電流目標値を生成するように構成されている、請求項2乃至4のいずれかに記載の電力貯蔵システム。
  6.  負荷側端子が負荷に接続される電力変換器と、前記電力変換器の電源側端子に接続された二次電池と、前記電力変換器の電源側端子にDC/DCコンバータを介して前記二次電池に並列に接続されたキャパシタと、制御器と、を備えた電力貯蔵システムの制御方法であって、
     前記制御器は、前記二次電池より前記キャパシタを優先して充放電させるように前記DC/DCコンバータを制御する、電力貯蔵システムの制御方法。
PCT/JP2015/002905 2014-06-11 2015-06-10 電力貯蔵システムおよびその制御方法 WO2015190094A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15806373.5A EP3157132B1 (en) 2014-06-11 2015-06-10 Hybrid electrical energy storage system and method for controlling same
CA2916461A CA2916461C (en) 2014-06-11 2015-06-10 Power storage system and method of controlling the same
CN201580030874.4A CN106464000B (zh) 2014-06-11 2015-06-10 电力储藏系统及其控制方法
US15/318,304 US10263448B2 (en) 2014-06-11 2015-06-10 Power storage system and method of controlling the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-120288 2014-06-11
JP2014120288A JP6496496B2 (ja) 2014-06-11 2014-06-11 電力貯蔵システムおよびその制御方法

Publications (1)

Publication Number Publication Date
WO2015190094A1 true WO2015190094A1 (ja) 2015-12-17

Family

ID=54833205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002905 WO2015190094A1 (ja) 2014-06-11 2015-06-10 電力貯蔵システムおよびその制御方法

Country Status (6)

Country Link
US (1) US10263448B2 (ja)
EP (1) EP3157132B1 (ja)
JP (1) JP6496496B2 (ja)
CN (1) CN106464000B (ja)
CA (1) CA2916461C (ja)
WO (1) WO2015190094A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7579078B2 (ja) 2020-07-31 2024-11-07 川崎重工業株式会社 舶用電源システム

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017139844A (ja) 2016-02-01 2017-08-10 川崎重工業株式会社 電力貯蔵装置
JP6781550B2 (ja) * 2016-02-01 2020-11-04 川崎重工業株式会社 電力貯蔵システムおよびその制御方法
TWM538649U (zh) * 2016-02-04 2017-03-21 Kai Si Rong Co Ltd 具高儲電效能電容之電源裝置
CN105703435B (zh) * 2016-03-22 2019-06-11 深圳市德利和能源技术有限公司 储能系统
US11148819B2 (en) 2019-01-23 2021-10-19 H55 Sa Battery module for electrically-driven aircraft
US11065979B1 (en) 2017-04-05 2021-07-20 H55 Sa Aircraft monitoring system and method for electric or hybrid aircrafts
US10322824B1 (en) 2018-01-25 2019-06-18 H55 Sa Construction and operation of electric or hybrid aircraft
US11063323B2 (en) 2019-01-23 2021-07-13 H55 Sa Battery module for electrically-driven aircraft
EP3743974A1 (en) * 2018-01-25 2020-12-02 H55 Sa Electrical powering or drive system for a motor in an electrically driven aircraft
CN112533822B (zh) * 2018-08-31 2023-10-10 川崎重工业株式会社 电池电气推进船供电系统、海上供电设备以及电池电气推进船
WO2020208527A1 (en) 2019-04-08 2020-10-15 H55 Sa Power supply storage and fire management in electrically-driven aircraft

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008228422A (ja) * 2007-03-12 2008-09-25 Shimizu Corp 分散型電源の制御方法
JP2011182540A (ja) * 2010-03-01 2011-09-15 Mitsubishi Electric Corp 車両用電源システム
WO2012017602A1 (ja) * 2010-08-02 2012-02-09 パナソニック株式会社 車両用電源装置
JP2014060890A (ja) * 2012-09-19 2014-04-03 Kuzumi Denshi Kogyo Kk 電源装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3430709B2 (ja) * 1995-04-28 2003-07-28 いすゞ自動車株式会社 電気自動車電源制御装置
JP2900309B2 (ja) * 1996-08-30 1999-06-02 日晴金属株式会社 電動車の回生システム
JP2002095174A (ja) * 2000-09-13 2002-03-29 Casio Comput Co Ltd 電源装置及びその充放電方法
US7791216B2 (en) * 2004-11-01 2010-09-07 Ford Global Technologies, Llc Method and system for use with a vehicle electric storage system
JPWO2009013891A1 (ja) 2007-07-25 2010-09-30 パナソニック株式会社 車両用電源装置
JP2010288414A (ja) * 2009-06-15 2010-12-24 Toyota Motor Corp 車両の電源装置
JP5189607B2 (ja) * 2010-02-04 2013-04-24 トヨタ自動車株式会社 車両用電源装置
WO2014073058A1 (ja) 2012-11-07 2014-05-15 ボルボ ラストバグナー アクチエボラグ 電源装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008228422A (ja) * 2007-03-12 2008-09-25 Shimizu Corp 分散型電源の制御方法
JP2011182540A (ja) * 2010-03-01 2011-09-15 Mitsubishi Electric Corp 車両用電源システム
WO2012017602A1 (ja) * 2010-08-02 2012-02-09 パナソニック株式会社 車両用電源装置
JP2014060890A (ja) * 2012-09-19 2014-04-03 Kuzumi Denshi Kogyo Kk 電源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3157132A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7579078B2 (ja) 2020-07-31 2024-11-07 川崎重工業株式会社 舶用電源システム

Also Published As

Publication number Publication date
EP3157132B1 (en) 2019-11-20
EP3157132A1 (en) 2017-04-19
JP6496496B2 (ja) 2019-04-03
US20170126025A1 (en) 2017-05-04
CA2916461A1 (en) 2015-12-17
JP2016001936A (ja) 2016-01-07
CN106464000A (zh) 2017-02-22
EP3157132A4 (en) 2018-02-21
US10263448B2 (en) 2019-04-16
CN106464000B (zh) 2019-04-16
CA2916461C (en) 2016-11-01

Similar Documents

Publication Publication Date Title
JP6496496B2 (ja) 電力貯蔵システムおよびその制御方法
JP6236391B2 (ja) 電力用電池に対する充電量を平衡させるための装置
WO2015129117A1 (ja) 二次電池のsoc推定装置
JP5546649B2 (ja) 車両用電源システム
US9956888B2 (en) Power supply system
JP5000025B1 (ja) 充放電装置
US10576835B2 (en) Energy storage device, transport apparatus, and control method
CN107592953B (zh) 充放电控制装置、移动体及电力分担量确定方法
JP6313522B2 (ja) 電力制御装置、および電力制御システム
JP2011130534A (ja) 車両用電源装置
JP5386457B2 (ja) 電力回生装置
JP2017070077A (ja) 蓄電装置、輸送機器及び制御方法
JP6358376B2 (ja) 蓄電池用変換装置、電力供給システムおよび電力供給制御方法
JP5543018B2 (ja) 車両用電源システム
WO2017135170A1 (ja) 電力貯蔵システムおよびその制御方法
JP2012249348A (ja) 電源制御システム
JP7337482B2 (ja) 電源装置
JP6698169B2 (ja) 蓄電池システム
JP6034734B2 (ja) 電力システム
JP6485871B2 (ja) 燃料電池システム
JP6611118B2 (ja) 電力変換装置およびそれを用いた産業機械
JP2016063724A (ja) 車両
JP2022173746A (ja) 電源装置
JP2020061811A (ja) 電源システムの制御装置
JP2009124888A (ja) 移動車両用電源装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2916461

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15806373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15318304

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015806373

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015806373

Country of ref document: EP