[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015181951A1 - 焦点調節装置、顕微鏡装置、焦点調節方法、及び制御プログラム - Google Patents

焦点調節装置、顕微鏡装置、焦点調節方法、及び制御プログラム Download PDF

Info

Publication number
WO2015181951A1
WO2015181951A1 PCT/JP2014/064424 JP2014064424W WO2015181951A1 WO 2015181951 A1 WO2015181951 A1 WO 2015181951A1 JP 2014064424 W JP2014064424 W JP 2014064424W WO 2015181951 A1 WO2015181951 A1 WO 2015181951A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
imaging
objective lens
control
interface
Prior art date
Application number
PCT/JP2014/064424
Other languages
English (en)
French (fr)
Inventor
中野 義太郎
岡本 高明
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2014/064424 priority Critical patent/WO2015181951A1/ja
Priority to EP23203488.4A priority patent/EP4303639A3/en
Priority to US15/314,762 priority patent/US10473906B2/en
Priority to EP14893365.8A priority patent/EP3151053B1/en
Priority to JP2016523057A priority patent/JP6673198B2/ja
Publication of WO2015181951A1 publication Critical patent/WO2015181951A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • G02B7/38Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals measured at different points on the optical axis, e.g. focussing on two or more planes and comparing image data
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/245Devices for focusing using auxiliary sources, detectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/006Optical details of the image generation focusing arrangements; selection of the plane to be imaged
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/244Devices for focusing using image analysis techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/26Stages; Adjusting means therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals

Definitions

  • the present invention relates to a focus adjustment device, a microscope device, a focus adjustment method, and a control program.
  • the system detects a sample interface (for example, a bottom surface of a container) and focuses on the detected interface.
  • the objective lens is moved by a fixed amount (fixed distance) in the Z direction (the optical axis direction of the objective lens) with reference to the interface, and the focal position is shifted to the inside of the sample.
  • the system acquires a large number of images at predetermined intervals in the Z direction inside the sample, and determines an optimum focal position from the acquired large number of images.
  • the system detects the interface of the sample (for example, a slide glass or a cover glass), and focuses on the detected interface.
  • the interface of the sample for example, a slide glass or a cover glass
  • at least one of the stage and the objective lens is moved by a certain amount in the Z direction. Thereafter, the system moves at least one of the stage and the objective lens in the Z direction (inside the sample) and photographs the sample at predetermined measurement time intervals. In this way, the time lapse observation is performed in the method described in Patent Document 2.
  • the aspect of the present invention aims to adjust the focal position in a shorter time when observing the inside of the observation sample.
  • the interface detection unit that detects the position of the interface in the container that accommodates the object to be observed, and the reference of a constant distance from the interface detected by the interface detection unit in the optical axis direction of the objective lens
  • Focus maintenance control is performed to maintain the focal position of the objective lens at the position, and at the imaging timing by the imaging unit, the focus position is determined by moving at least one of the objective lens and the observation target object in the optical axis direction with reference to the reference position.
  • a controller that changes the reference position from the reference position.
  • a microscope apparatus provided with the above-described focus adjustment apparatus is provided.
  • a focus adjustment method for focusing on an observation object wherein the position of the interface in the container for accommodating the observation object is detected, and the objective lens is detected from the detected interface.
  • Focus maintenance control is performed to maintain the focal position of the objective lens at a reference position at a fixed distance in the optical axis direction, and at the imaging timing by the imaging unit, at least one of the objective lens and the observation object is referenced to the optical axis at the imaging timing Changing the focal position from a reference position by moving in a direction.
  • the computer causes the interface detection unit to detect the position of the interface in the container that accommodates the observation object, and the optical axis direction of the objective lens from the interface detected by the detection process
  • the focus maintenance control is performed to maintain the focal position of the objective lens at the reference position at a fixed distance, and at the imaging timing by the imaging unit, at least one of the objective lens and the observation object is moved in the optical axis direction with reference to the reference position.
  • a control program for executing a control process for changing the focal position from the reference position.
  • the focal position can be adjusted in a short time.
  • FIG. 6 is a diagram illustrating an operation of performing focus adjustment following the undulation of a microplate, where (a) illustrates a case where only focus maintenance control is performed, and (b) illustrates focus maintenance control and image AF control.
  • FIG. 1 is a diagram illustrating a configuration of a microscope apparatus 1 including a focus adjusting apparatus according to an embodiment.
  • XYZ coordinate system a plane parallel to the horizontal plane is defined as an XY plane.
  • the right direction of the paper surface is expressed as the X direction
  • the direction orthogonal to the X direction is expressed as the Y direction.
  • a direction (vertical direction) perpendicular to the XY plane is referred to as a Z direction.
  • a microscope apparatus 1 forms an enlarged image of a sample 2 (also referred to as a specimen or an observation object) that is an observation object, and an optical microscope used for observation of the sample 2.
  • a control device for controlling the operation of the optical microscope.
  • the optical microscope includes an XY stage 10, an imaging optical system 20, an interface detection unit 30, a second light source 40, an illumination optical system 50, an imaging unit 60, a signal processing unit 61, and driving units 11, 34, and 36. Yes.
  • This optical microscope is an inverted microscope in which the objective lens 21 is disposed under the sample 2 and the sample 2 is observed from below.
  • the control device includes a control unit 71, an input unit 72, and a storage unit 73.
  • the imaging optical system 20 is an optical path between the objective lens 21 and the imaging unit 60.
  • the optical path from the second light source 40, which is the illumination optical system 50, to the objective lens 21 the optical path from the dichroic mirror 52 to the objective lens 21. Is an optical path common to the illumination optical system 50.
  • a microplate (sample container) 3 containing the sample 2 is placed on the XY stage 10.
  • the microplate 3 is formed of a transparent plastic.
  • the microplate 3 includes a large number of fine sample holding sections (hereinafter referred to as wells), and the sample 2 is held in each well.
  • Sample 2 is, for example, a fluorescently stained HeLa cell.
  • the user observeer, operator
  • HeLa cell nuclei are stained with Hoechst33452 and actin fibers are stained with Alexa Fluor 488 Phalloidin.
  • the sample 2 is placed on the microplate 3 instead of floating on the microplate 3.
  • the central portion of the sample 2 (for example, the cell nucleus portion) is the portion that the user wants to observe.
  • the surface of this portion in the Z direction is referred to as a sample surface 2a (or a sample surface).
  • an opening 10 a that guides light (that is, light in the Z direction) from the lower side (object lens 21 side) to the sample 2 is formed corresponding to the position of the well of the microplate 3.
  • the XY stage 10 moves in the X direction and the Y direction according to driving by the stage driving unit 11.
  • the stage drive unit (second drive unit) 11 moves the XY stage 10 in the X direction and the Y direction based on a control signal from the control unit 71.
  • the imaging optical system 20 has an objective lens 21 and an imaging lens 22.
  • the objective lens 21 is disposed below the XY stage 10.
  • the focal length of the objective lens 21 is the distance from the body-mounted surface of the objective lens 21 (the attachment reference plane of the objective lens 21 and the flange surface) to the focal position plane (focal plane) of the objective lens 21, that is, the sample surface 2a. Is the distance from the body-mounted surface of the objective lens 21 to the sample surface 2a when is in focus.
  • the focal length of the objective lens 21 is designed to be a constant distance.
  • the objective lens 21 and the imaging lens 22 are arranged on the same optical path.
  • the optical axes of the objective lens 21 and the imaging lens 22 are the first optical axis O1.
  • the direction of the first optical axis O1 is the Z direction.
  • the focal position in the Z direction of the objective lens 21 is referred to as a focal position F.
  • the focal position F coincides with the position of the sample surface 2a.
  • the interface detection unit 30 detects the position of the bottom surface 3a of the bottom (bottom) of the microplate 3 holding the sample 2.
  • the “interface” is not limited to this.
  • the bottom portion which is the surface where the container and the sample accommodated therein are in contact, may be used as the interface.
  • the surface portion of the container that contacts the stage of the microscope on which the container is placed may be used as the interface.
  • the upper surface portion of the container may be used as an interface. As shown in FIG.
  • the interface detection unit 30 includes a first optical source (light source) 31, a focus optical system 30A including an offset lens (lens) 32 and a dichroic mirror 33, a lens driving unit 34, and a photoelectric converter 35.
  • the dotted lines indicate the optical path of light emitted from the first light source 31 and the optical path of light reflected by the bottom surface 3 a at the bottom of the microplate 3.
  • An arrow on the optical path indicates the traveling direction of light.
  • the focus optical system 30 ⁇ / b> A is an optical path between the interface detection unit 30 and the objective lens 21, but the optical path from the dichroic mirror 33 to the objective lens 21 is an optical path common to the imaging optical system 20 and the illumination optical system 50. It becomes.
  • the first light source 31 is, for example, an infrared LED (Light Emitting Diode) that emits infrared light (or near infrared light).
  • the focus optical system 30 ⁇ / b> A guides the infrared light irradiated by the first light source 31 to the objective lens 21.
  • the offset lens 32 configuring the focus optical system 30A is configured to be movable along the second optical axis O2, and is a lens for changing an offset value OS described later by moving in the second optical axis direction O2.
  • the offset lens 32 includes, for example, a convex lens 32a and a concave lens 32b (see FIG. 3).
  • the dichroic mirror 33 constituting the focus optical system 30A reflects light of a specific wavelength (in this embodiment, infrared light) and transmits light of other wavelengths (visible light or fluorescence).
  • the dichroic mirror 33 is disposed on the image side of the objective lens 21 on the optical path of the imaging optical system 20.
  • the dichroic mirror 33 reflects infrared light emitted from the first light source 31 that has passed through the offset lens 32 and guides it to the objective lens 21.
  • the dichroic mirror 33 reflects reflected light (infrared light) reflected by the bottom surface 3 a at the bottom of the microplate 3 and passing through the objective lens 21 to guide it to the offset lens 32.
  • the lens driving unit 34 moves the offset lens 32 in the second optical axis direction O2 based on a control signal from the control unit 71.
  • the photoelectric converter 35 is provided at an imaging position of reflected light by the focus optical system 30A.
  • the photoelectric converter 35 receives, for example, reflected light (infrared light) from the bottom surface 3a of the bottom of the microplate 3, and converts the received light into an electric signal (Charge Coupled Device). It is.
  • Infrared light emitted from the first light source 31 undergoes a change in curvature by the offset lens 32, is then reflected in the Z direction by a dichroic mirror 33 disposed on the image side of the objective lens 21, and is guided to the objective lens 21. .
  • the objective lens 21 condenses infrared light and irradiates the bottom of the microplate 3.
  • An imaging position in the Z direction of an optical image based on infrared light by the objective lens 21 is referred to as an imaging position A.
  • an imaging position A In the example shown in FIG.
  • the imaging position A coincides with the position of the bottom surface 3 a at the bottom of the microplate 3.
  • Infrared light emitted from the objective lens 21 is reflected by the bottom surface 3 a at the bottom of the microplate 3.
  • the bottom surface 3a is referred to as a reflecting surface.
  • the reflective surface 3a is also referred to as an interface or a boundary surface.
  • the reflected light (infrared light) reflected by the reflecting surface 3 a passes through the objective lens 21 again, and the reflected light that has passed through the objective lens 21 is reflected by the dichroic mirror 33 and guided to the offset lens 32. Then, the reflected light that has passed through the offset lens 32 forms an image on the light receiving surface of the photoelectric converter 35.
  • the photoelectric converter 35 converts the received light into an electrical signal and outputs a detection signal corresponding to the converted electrical signal to the control unit 71.
  • the objective lens 21 and the interface detection unit 30 are coupled.
  • the unit drive unit (first drive unit) 36 moves the objective lens 21 and the interface detection unit 30 in the Z direction (that is, moves up and down) based on a control signal from the control unit 71.
  • a revolver for switching a plurality of objective lenses is provided at a coupling portion between the objective lens 21 and the interface detection unit 30.
  • the positional relationship among the objective lens 21, the revolver, and the interface detection unit 30 is not limited to this, and the first light source 31, the photoelectric converter and the offset lens 32, and the lens driving unit 34 are arranged separately from the revolver. It is also possible.
  • the 2nd light source 40 is LED which irradiates excitation illumination light for performing fluorescence observation of sample 2, for example.
  • the illumination optical system 50 includes a collimator lens 51 and a dichroic mirror 52.
  • the collimator lens 51 converts the illumination light emitted from the second light source 40 into a parallel light beam or a substantially parallel light beam.
  • the dichroic mirror 52 reflects illumination light and transmits fluorescence.
  • the dichroic mirror 52 is disposed on the optical path of the imaging optical system 20.
  • the dichroic mirror 52 reflects a part of the illumination light (parallel light beam or substantially parallel light beam) that has passed through the collimator lens 51 and guides it to the objective lens 21.
  • the dichroic mirror 52 transmits the signal light from the sample 2 (for example, fluorescence excited by the illumination light) and guides it to the imaging lens 22.
  • the solid line indicates the optical path of the light emitted from the second light source 40.
  • the illumination light emitted from the second light source 40 is converted into a parallel light beam or a substantially parallel light beam by the collimator lens 51.
  • the illumination light converted into a parallel light beam or a substantially parallel light beam by the collimator lens 51 is reflected by the dichroic mirror 52 in the Z direction.
  • the fluorescence reflected by the dichroic mirror 52 passes through the dichroic mirror 33 and is guided to the objective lens 21.
  • the objective lens 21 collects the illumination light and irradiates the sample 2 in the microplate 3.
  • the focal position F of the objective lens 21 is the position of the sample surface 2a.
  • the signal light from the sample 2 again passes through the objective lens 21, and the signal light that has passed through the objective lens 21 passes through the dichroic mirror 33. Part of the signal light that has passed through the dichroic mirror 33 passes through the dichroic mirror 52 and is guided to the imaging lens 22.
  • the imaging lens 22 images the signal light on the light receiving surface (imaging surface) of the imaging unit 60.
  • the imaging unit 60 acquires an image of the sample 2 on the XY stage 10.
  • the imaging unit 60 is constituted by a CCD sensor that converts received signal light into an electrical signal (image signal for each pixel), for example.
  • the imaging unit 60 outputs the converted electrical signal to the signal processing unit 61.
  • the signal processing unit 61 performs signal processing on the electrical signal output from the imaging unit 60 to generate a contrast signal representing the contrast of the image of the sample 2 (contrast evaluation value). Then, the signal processing unit 61 outputs the generated contrast signal to the control unit 71.
  • the signal processing unit 61 generates image data by performing signal processing on the electrical signal output from the imaging unit 60. Then, the signal processing unit 61 outputs the generated image data to the control unit 71.
  • the control unit 71 is a processing unit that performs overall control of the microscope apparatus 1.
  • the control unit 71 executes various controls and processes based on a control program stored in the storage unit 73.
  • the control unit 71 includes a calculation device such as a CPU (Central Processing Unit).
  • the input unit 72 inputs various types of information including information on the offset value OS in accordance with a user operation.
  • the storage unit 73 stores the image data of the sample 2.
  • the storage unit 73 also stores a control program for causing the control unit 71 to execute various controls and processes.
  • FIG. 2 is a block diagram showing the configuration of the control system of the microscope apparatus 1 according to the first embodiment.
  • the control unit 71 includes a first control unit 71a and a second control unit 71b.
  • the first control unit 71 a outputs a control signal to the stage driving unit 11 to drive the stage driving unit 11, thereby moving the XY stage 10 to the XY stage 10 so that the well to be imaged is at the position facing the objective lens 21. Move in the direction. Further, the first control unit 71a detects the reflected image based on the detection signal from the photoelectric converter 35 while the XY stage 10 is moving, and the first control unit 71a detects the reflected surface 3a based on the detected reflected image. Recognize position. Then, the first controller 71a performs focus maintaining control for maintaining the focal position F at a reference position that is a fixed distance (offset value OS) in the Z direction from the recognized position of the reflecting surface 3a.
  • offset value OS offset value
  • the first control unit 71a outputs a control signal to the lens driving unit 34 and the unit driving unit 36 in order to maintain the focal position F at the reference position, and the lens driving unit 34 is kept at a fixed position.
  • the unit drive unit 36 is driven.
  • the second control unit 71b performs image AF control (AF; Automatic Focusing) for changing the focal position F to the position of the sample surface 2a based on the contrast signal of the sample image acquired from the signal processing unit 61. That is, the second control unit 71b is configured to move the sample surface 2a based on the contrast signal from the signal processing unit 61 when the XY stage 10 is not moved (that is, at the imaging timing by the imaging unit 60). Detect position. Specifically, the second control unit 71b determines the position in the Z direction where the contrast of the image of the sample 2 is maximized on the sample surface 2a based on the contrast signal of the image of the sample imaged at a plurality of Z positions. Detect as position.
  • image AF control Automatic Focusing
  • the second control unit 71b moves the focal position F to the detected position of the sample surface 2a.
  • the second control unit 71b outputs a control signal to the unit driving unit 36 to drive the unit driving unit 36 in order to move the focal position F to the position of the sample surface 2a.
  • the focus adjustment device in the microscope apparatus 1 includes an XY stage 10, an imaging optical system 20 (objective lens 21, imaging lens 22), an interface detection unit 30, an imaging unit 60, a signal processing unit 61, and driving units 11 and 34. , 36, a control unit 71, and the like.
  • FIGS. 3A and 3B are diagrams showing the in-focus state of the reflected image when the offset lens is moved.
  • FIG. 3A is a diagram showing a state where the offset value is 0, and
  • FIG. 3B is a diagram when the offset lens is moved. It is a figure showing a state, (c) is a figure showing the state in which the focus position was adjusted.
  • the offset lens 32 includes a convex lens 32a and a concave lens 32b.
  • the collector lens is not shown in FIG. 1, the focus optical system 30A includes a collector lens, and the collector lens converts infrared light from the first light source 31 into a parallel light beam or a substantially parallel light beam.
  • infrared light is indicated by a dotted line, and illumination light and signal light are indicated by solid lines.
  • the offset lens 32 moves in the direction of the second optical axis O2, thereby moving the imaging position A of the optical image based on the infrared light applied to the reflecting surface 3a via the objective lens 21 in the Z direction. To do. As described above, when the image formation position A of the optical image is moved, the image formation position of the reflected image of the optical image reflected by the reflecting surface 3a is also moved in the direction of the second optical axis O2.
  • the first position of the concave lens 32b is such that the imaging position A of the optical image based on the infrared light is located on the reflecting surface 3a and the focal position F of the objective lens 21 is also located on the reflecting surface 3a.
  • the position in the two optical axis O2 direction and the position in the Z direction (first optical axis O1 direction) of the objective lens 21 (and the interface detection unit 30) are adjusted.
  • the same focal length of the objective lens 21 is a fixed distance, and the focal position of the objective lens 21 is also a fixed distance from the body-mounted surface of the objective lens 21.
  • This state is a state where the offset value OS is zero.
  • the concave lens 32b moves to the first light source 31 side in the second optical axis O2 direction by the distance x so that the imaging position A of the optical image based on the infrared light approaches the objective lens 21.
  • the imaging position A and the focal position F at the position of the reflecting surface 3a are shifted.
  • the objective lens 21 moves to the sample 2 side in the Z direction, so that the imaging position A of the optical image based on the infrared light moves to the position of the reflecting surface 3a.
  • the focal position F of the objective lens 21 is also moved in the Z direction by the same distance.
  • the sample is relatively moved in the Z direction.
  • the imaging position A is located on the reflecting surface 3a, and the imaging position A and the focal position F are deviated.
  • the amount of deviation between the imaging position A and the focal position F is the offset value OS.
  • the first control unit 71a can adjust the offset value OS by moving the offset lens 32 (concave lens 32b) in the direction of the second optical axis O2.
  • the second control unit 71b moves the objective lens 21 (and the interface detection unit 30) in the Z direction so that the imaging position A becomes the position of the reflection surface 3a, so that the second control unit 71b always moves from the reflection surface 3a by a certain distance (
  • the focal position F of the objective lens 21 can be adjusted to a position separated in the Z direction by a certain amount.
  • FIGS. 4A and 4B are diagrams showing an operation of performing focus adjustment following the undulation of the bottom surface of the microplate 3, wherein FIG. 4A is a diagram showing a case where only focus maintenance control is performed, and FIG. It is a figure which shows the case where maintenance control and image AF control are performed.
  • the bottom surface of the microplate 3 has a swell of 10 ⁇ m to 200 ⁇ m, for example.
  • the first control unit 71a when the first control unit 71a performs only the focus maintenance control, the first control unit 71a has the reflecting surface 3a (the bottom surface of the microplate 3).
  • the focal position F of the objective lens 21 can always be maintained at a position away from the reflecting surface 3a by a certain distance in the Z direction.
  • the position of the sample 2 in the well is not always constant.
  • FIG. 4 (a-2) when the sample 2 is positioned higher than the position of FIG. 4 (a-1) relative to the bottom surface, or as shown in FIG. 4 (a-3) 2 may be at a position lower than the position shown in FIG. 4A-1 (position close to the bottom surface).
  • the magnification of the objective lens 21 is low and the sample 2 exists at a relatively constant position with respect to the position of the reflecting surface 3a, the displacement of the sample 2 in the Z direction is the objective lens 21. Therefore, good focus adjustment can be performed only by the focus maintenance control.
  • the objective lens 21 of 10 times or more good focus adjustment cannot be performed only by the focus maintenance control.
  • the second control unit 71b temporarily stops the control by the first control unit 71a and then executes the image AF control.
  • the first controller 71a follows the undulation of the reflecting surface 3a and is always at a position away from the reflecting surface 3a in the Z direction by a certain distance.
  • the focal position F of the objective lens 21 is maintained.
  • the second control unit 71b sets a position at a fixed distance from the reflecting surface 3a as a reference position (focal position F). Acquisition of contrast signals is started at predetermined intervals within a predetermined range of directions.
  • the second control unit 71b obtains an optimal focal position F (new focal position) having the largest contrast value based on the acquired contrast signal, and acquires an image at that position.
  • the focal position F can be accurately adjusted to the position of the sample 2 in the well (sample surface 2a).
  • the reflecting surface 3a is set as a reference position, and the image AF is executed from a new focal position F without executing the image AF from this position. Therefore, the range scanned in the Z direction is limited to a predetermined range. Therefore, the focal position can be adjusted in a short time.
  • the image of the sample 2 under various experimental conditions is acquired in the microscope apparatus, and the acquired image is analyzed. Thereby, the analysis of the reaction of the sample 2 is performed.
  • the number of wells in one microplate 3 is about 6 if it is small, but it is 1000 or more if it is large. Therefore, the microscope apparatus needs to acquire a large number of images.
  • the microscope apparatus acquires images of a plurality of different fields of view for one well.
  • images of a plurality of wavelength channels may be acquired even when the microscope apparatus has the same field of view. For this reason, the microscope apparatus may need to acquire tens of thousands of images at a time.
  • FIG. 5 is a flowchart for explaining the focus adjustment method according to the first embodiment.
  • the first control unit 71a first sets the position of the XY stage 10 to the initial position (starting position of the drive control of the stage driving unit 11 by the first control unit 71a) (step S1). Specifically, the first control unit 71a outputs a control signal to the stage driving unit 11 to move the XY stage 10 to an initial position in the XY plane.
  • the first control unit 71a inputs an offset value OS via the input unit 72 (step S2).
  • the offset value OS input in this process is a predetermined value that is predetermined for the sample 2 to be imaged.
  • the user operates the controller or the like to manually move the offset lens 32 and the objective lens 21, and visually searches the observation sample to obtain an optimal offset value that is in focus.
  • the first controller 71a turns on the interface detector 30 (step S3).
  • the interface detection unit 30 detects the position of the reflection surface 3a, and sends a detection signal corresponding to the detected position of the reflection surface 3a to the first control unit 71a.
  • the first control unit 71a outputs a control signal to the lens driving unit 34, so that the difference between the imaging position A and the focal position F becomes the offset lens 32 that is the offset value OS input in step S2.
  • Move see FIG. 3B.
  • the first controller 71a recognizes the position of the reflecting surface 3a based on the detection signal from the photoelectric converter 35.
  • the first control unit 71a outputs a control signal corresponding to the recognized position of the reflecting surface 3a to the unit driving unit 36 so that the imaging position A of the optical image becomes the position of the reflecting surface 3a.
  • the lens is moved to the position of the lens 21 (see FIG. 3C).
  • the first control unit 71a outputs a control signal to the stage driving unit 11 to move the XY stage 10 in the XY plane (step S4). Specifically, when the XY stage 10 is at the initial position, the first controller 71a moves the XY stage 10 so that the position of the well where imaging is performed first moves from the initial position to the position facing the objective lens 21. Is moved in the XY plane. Further, when the XY stage 10 is not in the initial position, the first control unit 71a moves the XY stage 10 in the XY plane so that the position of the well where imaging is performed next moves to the position facing the objective lens 21.
  • the movement of the XY stage 10 in step S4 corresponds to a timing at which imaging by the imaging unit 60 is not performed.
  • the first control unit 71a since the interface detection unit 30 is in an on state, the first control unit 71a always follows the undulation of the reflection surface 3a and is always away from the reflection surface 3a by a certain distance (offset value OS) in the Z direction.
  • the drive control of the unit drive unit 36 is executed so that the focal position F of the objective lens 21 is maintained.
  • the first control unit 71a since the offset value OS is not changed during the movement of the XY stage 10, the first control unit 71a does not execute the drive control of the lens driving unit 34.
  • the 1st control part 71a will turn off the interface detection part 30 once the movement of the XY stage 10 by step S4 is complete
  • the interface detection unit 30 stops detecting the position of the reflecting surface 3a.
  • the timing from when the interface detection unit 30 is turned off until image acquisition is performed corresponds to the imaging timing by the imaging unit 60.
  • the second controller 71b starts image AF control. That is, the second control unit 71b outputs a control signal to the unit driving unit 36 to move the objective lens 21 and the interface detection unit 30 at predetermined intervals within a predetermined range in the Z direction (step S6). Then, the second control unit 71b captures an observation sample and acquires a contrast signal generated by the signal processing unit 61 at each predetermined position in the Z direction (step S7). Then, the second control unit 71b determines whether or not contrast signals at all positions within the predetermined range have been acquired (step S8).
  • the second control unit 71b determines that the contrast signals at all positions within the predetermined range have not been acquired (NO at step S8), the second control unit 71b performs steps until it is determined that all the contrast signals within the predetermined range have been acquired.
  • the processes of S6 and S7 are repeatedly executed.
  • “within a predetermined range” is a predetermined range including the focal position F of the objective lens 21 that is a position away from the reflecting surface 3a in the Z direction by a certain distance (offset value OS), and there is an observation specimen. This is the assumed range. Accordingly, the position of the sample to be observed is set at a position away from the reflecting surface 3a by a certain distance (offset value OS) Z direction, and it is necessary to include the position of the reflecting surface 3a in this predetermined range. Absent.
  • step S9 the second control unit 71b calculates the position in the Z direction that maximizes the contrast of the image of the sample 2 as the position of the sample surface 2a. Then, the second control unit 71b outputs a control signal to the unit driving unit 36 so that the focal position F becomes the optimum position in the Z direction (the position of the sample surface 2a) calculated in step S9. 21 and the interface detection unit 30 are moved (step S10).
  • the second control unit 71b acquires an image in a state where the focal position F is the position of the sample surface 2a (step S11). For example, the second control unit 71 b instructs the imaging unit 60 to perform imaging via the signal processing unit 61. The imaging unit 60 images the sample 2 based on an instruction from the second control unit 71b. Then, the signal processing unit 61 generates image data based on the image signal from the imaging unit 60, and outputs the generated image data to the second control unit 71b. The second control unit 71b stores the acquired image data in the storage unit 73.
  • the second control unit 71b determines whether or not imaging of all imaging target wells (that is, all imaging target samples 2) has been completed (step S12). If the second control unit 71b determines that imaging of all the imaging target wells has not been completed (NO in step S12), the first control unit 71a and the second control unit 71b perform the processing in steps S3 to S11. Repeatedly. On the other hand, when the second control unit 71b determines that the imaging of all the imaging target wells is completed (YES in step S12), the process is terminated.
  • the control unit 71 moves the objective lens 21 (and the interface detection unit 30) in the Z direction.
  • the control unit 71 does not change the objective lens 21 and the XY stage 10 (that is, the XY stage 10).
  • Any structure that moves at least one of the sample 2) in the Z direction may be used. That is, the control unit 71 may move only the objective lens 21 in the Z direction, may move only the XY stage 10 in the Z direction, and moves both the objective lens 21 and the XY stage 10 in the Z direction. It may be moved.
  • the interface detection unit 30 that detects the position of the interface 3a of the observation object 2 and the interface detection unit 30 detects when the imaging unit 60 does not perform imaging.
  • the first control unit 71a that performs the focus maintaining control that maintains the focal position F at the reference position of a constant distance (offset value OS) from the interface 3a in the first optical axis O1 direction
  • a second control unit 71b that changes the focal position F from the reference position to the position 2a of the observation object 2 by moving at least one of the objective lens 21 and the observation object 2 in the direction of the first optical axis O1.
  • the range scanned in the direction of the first optical axis O1 in the control (image AF control) of the second controller 71b is limited to a predetermined range (range in the vicinity of the reference position).
  • the focus position can be adjusted.
  • the focal position F can be accurately adjusted to the position 2a of the observation object 2, a high-quality image can be acquired.
  • the control unit when the control unit performs image AF control, the image must be acquired while moving the objective lens in the range of about 10 ⁇ m in the Z direction at least.
  • the focal position F which is a reference position at a fixed distance (offset value OS) in the first optical axis O1 direction from the interface 3a, an appropriate focal point is obtained by moving ⁇ 2 ⁇ m.
  • the position F could be detected, and the efficiency was significantly improved.
  • the 1st drive part 36 which moves at least one of the objective lens 21 and the observation target object 2 in the 1st optical axis O1 direction is provided, and the 1st control part 71a is the 1st drive part 36.
  • the second control unit 71b executes the drive control of the first drive unit 36, thereby moving the focus position F from the reference position to the position 2a of the observation object 2. change.
  • the focus maintaining control by the first control unit 71a and the focus position F change control (image AF control) by the second control unit 71b can be realized by the drive control of the same drive unit 36. .
  • the second controller 71b detects the position 2a of the observation object 2 and changes the focal position F to the detected position 2a of the observation object 2. According to such a configuration, the focal position F can be reliably changed to the position 2a of the observation object 2, and as a result, a high-quality image can be reliably acquired.
  • the second controller 71b determines the position 2a of the observation object 2 based on the signal acquired by the imaging unit 60 during the movement of at least one of the objective lens 21 and the observation object 2. To detect. According to such a configuration, the accuracy of detection of the position 2a of the observation object 2 is ensured.
  • the 2nd drive part 11 which moves the observation target object 2 in a perpendicular
  • the focus control is executed during the movement of the observation object 2 by the unit 11, and the second control unit 71b sets the focal position F as the reference position when the movement of the observation object 2 by the second drive unit 11 is stopped.
  • the focus maintenance control can be executed following the movement of the observation object 2, and the position 2a of the observation object 2 is reliably detected while the movement of the observation object 2 is stopped. Then, the focal position F can be moved to the detected position 2a.
  • the second control unit 71b moves at least one of the objective lens 21 and the observation object 2 in the direction of the first optical axis O1 while the detection of the interface 3a by the interface detection unit 30 is stopped.
  • the focal position F can be changed to the position 2 a of the observation object 2 by moving at least one of the objective lens 21 and the observation object 2 without moving the lens 32.
  • an input unit 72 for inputting a constant distance value (offset value OS) is provided, and the first control unit 71a performs focus maintenance control based on the value input by the input unit 72.
  • the value of the constant distance can be set by a simple process.
  • the second control unit 71b when the second control unit 71b acquires a contrast signal (see Steps S6 and S7), the second light source 40 irradiates the cell nucleus with UV light (ultraviolet) as illumination light,
  • the imaging unit 60 may receive fluorescence excited by UV light as signal light, and the signal processing unit 61 may generate a contrast signal representing the contrast of the cell nucleus image.
  • the second control unit 71b acquires an image (see step S11)
  • the second light source 40 irradiates the cell nucleus with UV light as illumination light, and the imaging unit 60 uses the fluorescence excited by the UV light as signal light.
  • the signal processing unit 61 may generate image data of cell nuclei.
  • the second light source 40 irradiates blue light as illumination light onto the cytoskeleton stained with FITC (fluoresceinateisothiocyanate), the imaging unit 60 receives the fluorescence excited by the blue light as signal light, and the signal processing unit. 61 may generate cytoskeleton image data.
  • FITC fluoresceinateisothiocyanate
  • the second control unit 71b performs the image AF control (steps S6 to S10) with the interface detection unit 30 turned off (see step S5).
  • the second control unit 71b performs image AF control while the interface detection unit 30 is turned on (that is, the detection of the reflection surface 3a by the interface detection unit 30 is performed).
  • the structure of the microscope apparatus 1 in 2nd Embodiment is the same as the structure shown in FIG.1 and FIG.2.
  • FIG. 6 is a flowchart for explaining a focus adjustment method according to the second embodiment.
  • the processes in steps S1 to S4, step S11, and step S12 are the same as the processes shown in FIG. 5, and thus the same processes are denoted by the same reference numerals and redundant description is omitted.
  • the second control unit 71b starts the image AF control (steps S21 to S26) with the interface detection unit 30 turned on after the execution of the process of step S4.
  • the second control unit 71b outputs a control signal to the lens driving unit 34, moves the offset lens 32, and changes the offset value OS.
  • the second control unit 71b outputs a control signal to the unit driving unit 36, and changes the offset value OS while maintaining the state where the optical image forming position A is aligned with the position of the reflecting surface 3a.
  • the objective lens 21 (and the interface detection unit 30) is moved in the Z direction in conjunction with (Step S22).
  • the imaging position A approaches the objective lens 21.
  • the second control unit 71b moves the objective lens 21 so as to approach the reflecting surface 3a if the imaging position A is to be maintained in a state where it matches the position of the reflecting surface 3a.
  • the second control unit 71b obtains a contrast signal generated by the signal processing unit 61 at every predetermined interval in the Z direction (step S23). Then, the second controller 71b determines whether or not contrast signals at all positions within a predetermined range have been acquired (step S24). If the second control unit 71b determines that the contrast signals at all positions within the predetermined range have not been acquired (NO at step S24), the second control unit 71b performs steps until it is determined that all the contrast signals within the predetermined range have been acquired. The processes of S21 to S23 are repeatedly executed.
  • the second control unit 71b determines that the contrast signals at all positions within the predetermined range have been acquired (YES in step S24), the position of the sample surface 2a is determined based on the contrast signal acquired in step S23. As a result, an optimum offset value OS is calculated (step S25). For example, the second control unit 71b calculates an offset value OS that maximizes the contrast of the image of the sample 2 as the position of the sample surface 2a. Then, the second control unit 71b outputs control signals to the lens driving unit 34 and the unit driving unit 36, so that the focal position F becomes the optimum offset value OS calculated in step S25 and the objective lens 32 and the objective. The lens 21 is moved (step S10). Thereafter, the second control unit 71b executes the processes of steps S11 and S12.
  • the control unit 71 moves the objective lens 21 (and the interface detection unit 30) in the Z direction.
  • the control unit 71 does not change the objective lens 21 and the XY stage 10 (that is, the XY stage 10).
  • Any structure that moves at least one of the sample 2) in the Z direction may be used. That is, the control unit 71 may move only the objective lens 21 in the Z direction, may move only the XY stage 10 in the Z direction, and moves both the objective lens 21 and the XY stage 10 in the Z direction. It may be moved.
  • the second controller 71b moves at least one of the objective lens 21 and the observation object 2 to the first optical axis while the interface detector 30 detects the interface 3a. Move in the O1 direction.
  • the interface detection unit 30 detects the interface 3a during the movement of at least one of the objective lens 21 and the observation object 2
  • the objective lens 21 is detected based on the detection of the interface 3a.
  • the distance between the observation object 2 (XY stage 10) can be limited. Therefore, it can be avoided that the objective lens 21 and the observation object 2 (XY stage 10) collide with each other due to the movement.
  • the interface detection unit 30 forms a light image based on the light from the light source 31 and the light from the light source 31 on the interface 3a via the objective lens 21, and reflects the light image from the interface 3a.
  • a focusing optical system 30A that receives light through the objective lens 21 and forms a reflected image of the optical image, and a photoelectric conversion that is provided at the imaging position of the reflected image by the focusing optical system 30A and detects the reflected image
  • the focusing optical system 30A includes a lens 32 that is movable in the direction of the second optical axis O2 of the optical system 30A, and the second control unit 71b is based on a signal from the photoelectric converter 35.
  • the fixed distance is changed by moving the lens 32 in the second optical axis O2 direction while causing the interface detector 30 to detect the interface 3a, and the objective lens 21 and the observation object 2 are linked to the change in the fixed distance. At least one of the Moves in the optical axis O1 direction. According to such a configuration, the focal position F can be changed by moving the lens 32 while the interface detection unit 30 detects the interface 3a.
  • the first control unit 71a performs focus maintaining control while the XY stage 10 is moving (see Steps S3 and S4).
  • focus maintenance control is executed during standby for imaging in time lapse observation (a technique for observing changes over a long time by imaging at regular intervals). Note that time-lapse observation is also referred to as interval observation.
  • FIG. 7 is a block diagram showing the configuration of the control system of the microscope apparatus 1 according to the third embodiment.
  • the control unit 71A is different from the configuration shown in FIG. 2 in that it includes an imaging control unit 71c.
  • the imaging control unit 71c is a processing unit that causes the imaging unit 60 to perform imaging of the sample 2 at predetermined time intervals.
  • the first control unit 71a performs focus maintaining control when the imaging control unit 71c is not performing imaging on the imaging unit 60
  • the second control unit 71b is configured such that the imaging control unit 71c is the imaging unit.
  • the focal position F is changed from the reference position to the position of the sample surface 2a at the timing at which the imaging is performed by 60.
  • the same components are denoted by the same reference numerals, and redundant description is omitted.
  • FIG. 8 is a flowchart for explaining a focus adjustment method according to the third embodiment.
  • the processes in steps S1 to S3 and steps S5 to S11 are the same as the processes shown in FIG. 5, and thus the same processes are denoted by the same reference numerals and redundant description is omitted.
  • the imaging control unit 71c waits for the execution of the image AF control for a specified time (for example, several minutes or several hours) specified in the time-lapse observation (step S31). .
  • the waiting for the specified time in step S31 corresponds to the timing when the imaging unit 60 is not performing imaging.
  • the first control unit 71a since the interface detection unit 30 is in an ON state (see step S3), the first control unit 71a always moves the objective lens 21 at a position away from the reflecting surface 3a by a certain distance (offset value OS) in the Z direction.
  • the drive control of the unit drive unit 36 is executed so as to maintain the focal position F.
  • the first control unit 71a since the offset value OS is not changed during the standby for the specified time, the first control unit 71a does not execute the drive control of the lens driving unit 34.
  • the 1st control part 71a will turn off the interface detection part 30 once, after the regulation time by step S31 passes (step S5). Thereafter, the second controller 71b executes image AF control (steps S6 to S10).
  • the position of the sample 2 (for example, a cell nucleus) may change up and down with time. Therefore, there is a possibility that the position of the sample 2 at the time of the current observation is shifted from the position of the sample 2 at the time of the previous observation. Therefore, the second control unit 71b performs image AF control after the lapse of the specified time. Thereafter, the second control unit 71b acquires an image in a state where the focal position F is the position of the sample surface 2a (step S11).
  • the second control unit 71b determines whether or not imaging for all the specified times has been completed (step S32). When the second control unit 71b determines that imaging for all the specified times has not been completed (NO in step S32), the first control unit 71a and the second control unit 71b perform steps S3, S31, and step. The processes of S5 to S11 are repeatedly executed. On the other hand, when it is determined that the second control unit 71b has finished imaging for all the specified times (YES in step S32), the process ends.
  • the control unit 71 moves the objective lens 21 (and the interface detection unit 30) in the Z direction.
  • the control unit 71 does not change the objective lens 21 and the XY stage 10 (that is, the XY stage 10).
  • Any structure that moves at least one of the sample 2) in the Z direction may be used. That is, the control unit 71 may move only the objective lens 21 in the Z direction, may move only the XY stage 10 in the Z direction, and moves both the objective lens 21 and the XY stage 10 in the Z direction. It may be moved.
  • the imaging control unit 71c that causes the imaging unit 60 to perform imaging of the observation object 2 every predetermined time
  • the first control unit 71a includes the imaging control unit 71c.
  • the focus control is executed when the image capturing unit 60 is not performing image capturing
  • the second control unit 71b is configured to observe the focus position F from the reference position at the image capturing timing when the image capturing control unit 71c performs image capturing. Change to the position 2a of the object 2.
  • the second control unit 71b can change the focal position F from the reference position immediately after the completion of the standby.
  • the first control unit 71 a inputs the offset value OS via the input unit 72.
  • the control unit automatically searches for and sets the offset value OS.
  • FIG. 9 is a block diagram showing the configuration of the control system of the microscope apparatus 1 according to the fourth embodiment.
  • the control unit 71B is different from the configuration shown in FIGS. 2 and 7 in that it includes a first search unit 71d.
  • the first search unit 71d moves at least one of the objective lens 21 and the sample 2 in the first optical axis O1 direction to detect the position of the sample surface 2a, causes the interface detection unit 30 to detect the interface 3a, and the sample surface
  • This is a processing unit that obtains a constant distance value (offset value OS) based on the position 2a and the position of the interface 3a.
  • offset value OS offset value
  • the first control unit 71a performs focus maintenance control based on the value (offset value OS) obtained by the first search unit 71d.
  • offset value OS offset value obtained by the first search unit 71d.
  • FIG. 10 is a flowchart for explaining a focus adjustment method according to the fourth embodiment.
  • the processing in steps S4 to S12 is the same as the processing shown in FIG. 5, and thus the same processing is denoted by the same reference numeral and redundant description is omitted.
  • the first control unit 71a outputs a control signal to the stage driving unit 11 to move the XY stage 10 to an initial position in the XY plane (step S41).
  • the first search unit 71d turns off the interface detection unit 30 (step S42).
  • the interface detection unit 30 stops detecting the position of the reflecting surface 3a.
  • the first search unit 71d outputs a control signal to the unit drive unit 36, and moves the objective lens 21 and the interface detection unit 30 in the Z direction at predetermined intervals (step S43). Then, the first search unit 71d acquires a contrast signal generated by the signal processing unit 61 for each position at a predetermined interval in the Z direction (step S44). Then, the first search unit 71d determines whether or not contrast signals at all positions have been acquired (step S45). If it is determined that the contrast signals at all positions have not been acquired (NO in step S45), the first search unit 71d repeatedly executes the processes of steps S43 and S44 until it is determined that all the contrast signals have been acquired. To do.
  • the first search unit 71d when it is determined that the first search unit 71d has acquired contrast signals at all positions (YES in step S45), the first search unit 71d is optimal as the position of the sample surface 2a based on the contrast signal acquired in step S44 (contrast). The position in the Z direction having the highest value is calculated (step S46). Then, the first search unit 71d outputs a control signal to the unit driving unit 36 so that the focal position F becomes the optimum position in the Z direction (position of the sample surface 2a) calculated in step S46. 21 and the interface detection unit 30 are moved (step S47).
  • the interface detection unit 30 detects the position of the reflection surface 3a, and the first search unit 71d detects from the interface detection unit 30.
  • the offset lens 32 is moved so that the image formation position A becomes the position of the reflecting surface 3a (step S49).
  • the first search unit 71d sets the difference between the imaging position A and the focal position F as the offset value OS, and outputs it to the first control unit 71a.
  • the first control unit 71a and the second control unit 71b execute the processes of steps S4 to S12.
  • the control unit 71 moves the objective lens 21 (and the interface detection unit 30) in the Z direction.
  • the control unit 71 does not change the objective lens 21 and the XY stage 10 (that is, the XY stage 10).
  • Any structure that moves at least one of the sample 2) in the Z direction may be used. That is, the control unit 71 may move only the objective lens 21 in the Z direction, may move only the XY stage 10 in the Z direction, and moves both the objective lens 21 and the XY stage 10 in the Z direction. It may be moved.
  • At least one of the objective lens 21 and the observation object 2 is moved in the direction of the first optical axis O1 to detect the position 2a of the observation object 2, and A first search unit 71d that detects the interface 3a and obtains a constant distance value (offset value OS) based on the position 2a of the observation object 2 and the position of the interface 3a is provided. Focus maintenance control is executed based on the value obtained by the search unit 71d. According to such a configuration, since the first search unit 71d automatically searches for and sets the offset value OS, it is possible to save the user from inputting the offset value OS.
  • the first search unit 71d determines the position 2a of the observation object 2 based on the image captured by the imaging unit 60 during the movement of at least one of the objective lens 21 and the observation object 2. To detect. According to such a configuration, the accurate position 2a of the observation object 2 can be detected based on the image, and as a result, the accuracy of the value of the constant distance is improved.
  • the first search unit 71d needs to search for the first position 2a in a range close to 1000 ⁇ m depending on the situation. In this case, since it takes time to search for the position 2a, it takes time to search for the offset value OS as a result. However, since the time required for searching for the offset value OS is only the first time, the imaging time of all the samples 2 is shortened. In general, the search for the position 2a is performed by two-stage scanning. In the first stage, the first search unit 71d acquires contrast signals at intervals of 20 ⁇ m within a range of 1000 ⁇ m. In this case, 500 images must be acquired by the imaging unit 60.
  • the first search unit 71d acquires contrast signals at intervals of 2 ⁇ m in a range of 40 ⁇ m before and after the position of the maximum contrast.
  • 20 images are acquired by the imaging unit 60.
  • the first search unit 71d employs the position of the image in which the maximum contrast is obtained among the 20 images as the optimum position in the Z direction.
  • the control unit automatically searches for and sets the offset value OS.
  • the first search unit 71d searches for the offset value OS after the interface detection unit 30 is turned off, whereas in the fifth embodiment, the second search unit The offset value OS is searched for while the interface detection unit 30 is kept on.
  • FIG. 11 is a block diagram showing the configuration of the control system of the microscope apparatus 1 according to the fifth embodiment.
  • the control unit 71C is different from the configuration shown in FIGS. 2, 7, and 9 in that it includes a second search unit 71e.
  • the second searching unit 71e moves the at least one of the objective lens 21 and the observation target object 2 in the direction of the first optical axis O1 while causing the interface detection unit 30 to detect the interface 3a, thereby moving the position 2a of the observation target object 2 to the position 2a.
  • a constant distance value (offset value OS) is obtained based on the position 2a of the observation object 2 and the position of the interface 3a.
  • the first control unit 71a performs focus maintenance control based on the value (offset value OS) obtained by the second search unit 71e.
  • other configurations are the same as the configurations shown in FIGS. 2, 7, and 9, and thus the same components are denoted by the same reference numerals and redundant description is omitted.
  • FIG. 12 is a flowchart for explaining a focus adjustment method according to the fifth embodiment.
  • the processing in steps S4 to S12 is the same as the processing shown in FIG. 5, and thus the same processing is denoted by the same reference numeral and redundant description is omitted.
  • the first control unit 71a outputs a control signal to the stage driving unit 11 to move the XY stage 10 to an initial position in the XY plane (step S51).
  • the second search unit 71e turns on the interface detection unit 30 (step S52).
  • the interface detection unit 30 detects the position of the reflecting surface 3a.
  • the second search unit 71e outputs a control signal to the lens driving unit 34 while keeping the interface detection unit 30 in the on state, moves the offset lens 32, changes the offset value OS, and sets the initial value. (Step S53). At this time, 0 is appropriate as the initial value of the offset value OS. In addition, the second search unit 71e outputs a control signal to the unit driving unit 36, and changes the offset value OS while maintaining the state where the optical image forming position A matches the position of the reflecting surface 3a. The objective lens 21 (and the interface detection unit 30) are moved in the Z direction in conjunction with (Step S54).
  • the second search unit 71e acquires a contrast signal generated by the signal processing unit 61 for each position at a predetermined interval in the Z direction (step S55). And the 2nd search part 71e determines whether the contrast signal of all the positions was acquired (step S56). If it is determined that the contrast signals at all positions have not been acquired (NO at step S56), the second search unit 71e repeatedly executes the processes at steps S53 to S55 until it is determined that all the contrast signals have been acquired. To do.
  • the optimum offset as the position of the sample surface 2a is determined based on the contrast signal acquired in step S55.
  • a value OS is calculated (step S57).
  • the second search unit 71e calculates an offset value OS that maximizes the contrast of the image of the sample 2 as the position of the sample surface 2a.
  • the second search unit 71e outputs control signals to the lens driving unit 34 and the unit driving unit 36, so that the focal position F becomes the optimum offset value OS calculated in step S57 and the objective lens 32 and the objective.
  • the lens 21 is moved (step S58). Thereafter, the first control unit 71a and the second control unit 71b execute the processes of steps S4 to S12.
  • the control unit 71 moves the objective lens 21 (and the interface detection unit 30) in the Z direction.
  • the control unit 71 controls the objective lens 21 and the XY stage 10 (that is, Any structure that moves at least one of the sample 2) in the Z direction may be used. That is, the control unit 71 may move only the objective lens 21 in the Z direction, may move only the XY stage 10 in the Z direction, and moves both the objective lens 21 and the XY stage 10 in the Z direction. It may be moved.
  • At least one of the objective lens 21 and the observation object 2 is moved in the direction of the first optical axis O1 while causing the interface detection unit 30 to detect the interface 3a.
  • a second search unit 71 e that detects a position 2 a and obtains a constant distance value based on the position 2 a of the observation object 2 and the position of the interface 3 a
  • the first control unit 71 a includes the second search unit 71 e.
  • the focus maintaining control is executed based on the value obtained by the above. According to such a configuration, since the second search unit 71e automatically searches for and sets the offset value OS, it is possible to save the user from inputting the offset value OS.
  • the interface detection unit 30 detects the interface 3a while at least one of the objective lens 21 and the observation object 2 is moving, the objective lens 21 and the observation object 2 (based on the detection of the interface 3a). Limits can be placed on the distance to the XY stage 10). Therefore, it can be avoided that the objective lens 21 and the observation object 2 (XY stage 10) collide with each other due to the movement.
  • the second search unit 71e determines the position 2a of the observation object 2 based on the image captured by the imaging unit 60 during the movement of at least one of the objective lens 21 and the observation object 2. To detect. According to such a configuration, the accurate position 2a of the observation object 2 can be detected based on the image, and as a result, the accuracy of the value of the constant distance is improved.
  • step S2 (1) input of the offset value OS from the input unit 72 (see step S2), and (2) execution of image AF control when the interface detection unit 30 is in the off state (steps S42 to S49).
  • steps S42 to S49 There are three types of methods: (3) execution of image AF control when the interface detection unit 30 is on (see steps S52 to S58).
  • steps S3 and S4 there are two types of timing for executing focus maintenance control: (4) when the XY stage 10 is moved (see steps S3 and S4) and (5) when waiting for time-lapse observation (see steps S3 and S31).
  • image AF control methods (6) image AF control when the interface detection unit 30 is in an off state and (7) image AF control when the interface detection unit 30 is in an on state.
  • the optical microscope shown in FIG. 1 is an inverted microscope. However, the optical microscope is not limited to such an microscope, and the configurations of the above-described embodiments and modifications can be applied to an upright microscope. It is. Moreover, although reflection type illumination was used as the illumination device of the optical microscope shown in FIG. 1, transmission type illumination may be used.
  • the microplate 3 is used as the container for storing the sample 2, the configuration is not limited to such a configuration.
  • the sample 2 may be sandwiched between a cover glass and a slide glass.
  • the interface 3a is the bottom surface of the bottom of the microplate 3, but may be the top surface of the bottom of the microplate 3 as long as infrared light reflection is strong.
  • a light image irradiated on the reflecting surface 3a may be used as a slit image.
  • the control unit detects the slit image based on the detection signal from the interface detection unit 30, and recognizes the imaging position A from the detected slit image.
  • the first light source 31 is an infrared LED that emits infrared light, but may be a light source that emits light having a wavelength other than infrared light (for example, light having a long wavelength other than infrared light).
  • the photoelectric converter 35 uses a line CCD sensor, but may use a line CMOS sensor (CMOS: Complementary Metal Oxide Semiconductor).
  • the offset lens 32 is configured to change the imaging position A by moving the concave lens 32b along the second optical axis O2, but the convex lens 32a is moved along the second optical axis O2.
  • the imaging position A may be changed, or both the convex lens 32a and the concave lens 32b may be moved along the second optical axis O2 to change the imaging position A.
  • the configuration of the control units 71, 71 ⁇ / b> A, 71 ⁇ / b> B, 71 ⁇ / b> C, the input unit 72, the storage unit 73, and the like may be provided in an apparatus such as a computer different from the microscope apparatus 1.
  • the microscope apparatus 1 may be connected to an image analysis apparatus or a computer having a control program for image analysis.
  • the control program which makes control part 71, 71A, 71B, 71C perform control and a process was memorize
  • the number of samples 2 (samples) imaged at one time by the imaging unit 60 is not limited to one and may be two or more.
  • the imaging unit 60 uses a CCD sensor, a CMOS sensor may be used instead of the CCD sensor.
  • the control unit determines the focal position F based on the contrast signal generated by the signal processing unit 61, but the focal position F based on the image data generated by the signal processing unit 61. May be determined.
  • the fluorescence image is used in the image AF control, a bright field or phase difference image of a transmission image may be used.
  • the image capturing unit 60 acquires an image (see step S11) and also acquires an image for image AF control (see step S7 and the like). However, separately from the image capturing unit 60, the image capturing for image AF control is performed.
  • An apparatus may be provided. In this case, the same focal position is set for the image pickup device for image AF control and the image pickup unit 60. In this case, it is preferable to use a high-sensitivity imaging device with a short image acquisition time.
  • the signal processing unit 61 may generate a contrast signal based on a one-dimensional image signal instead of generating a contrast signal based on a two-dimensional image signal acquired by the imaging unit 60.
  • a one-dimensional image sensor can be used as an imaging unit that acquires an image signal.
  • the control unit determines the position where the contrast is maximum as the focal position, but may determine the position where the signal intensity is maximum as the focal position.
  • the unit driving unit 36 moves the unit in which the objective lens 21 and the interface detection unit 30 are coupled in the Z direction.
  • the objective lens 21 may be moved in the Z direction.
  • a driving method of the stage driving unit 11 the lens driving unit 34, and the unit driving unit 36, a method of rotating an electric motor is assumed.
  • the present invention is not limited to such a driving method.
  • the piezo element may be attached to the XY stage 10, the holding unit for the offset lens 32, and the attachment part for the objective lens 21, and may be moved by the piezo element.
  • control unit may set the offset value with reference to the offset value history. For example, the control unit may search for the same experimental condition as the current experimental condition from the experimental conditions performed previously, and set the offset value under the same experimental condition as the offset value under the current experimental condition. Further, the control unit always performs the focus maintenance control when the XY stage 10 is moved, but the focus is only for the movement of the predetermined XY stage 10 (for example, only for the movement of the XY stage 10 every other time). Maintenance control may be performed. In addition, when the interval of the specified time in the time lapse observation is short, the control unit does not always perform the focus maintenance control during the standby for the specified time, but may perform the focus maintenance control only during the standby for the predetermined specified time. Good.
  • control unit may update the offset value every time the XY stage 10 moves or waits for a specified time. In other words, if the offset value has been changed during the previous imaging of the sample 2, the control unit may use the changed offset value in the focus maintenance control during the imaging of the current sample 2.
  • DESCRIPTION OF SYMBOLS 1 ... Microscope apparatus, 2 ... Sample (observation object), 3 ... Microplate (container), 10 ... XY stage, 11 ... Stage drive part (2nd drive part), 21 ... Objective lens, 30 ... Interface detection part, DESCRIPTION OF SYMBOLS 30A ... Focus optical system, 31 ... 1st light source (light source), 32 ... Offset lens (lens), 34 ... Lens drive part, 35 ... Photoelectric converter, 36 ... Unit drive part (1st drive part), 60 ... Imaging 61, signal processing unit, 71 ... control unit, 71a ... first control unit, 71b ... second control unit, 71c ... imaging control unit, 71d ... first search unit, 71e ... second search unit, 72 ... input Part, OS ... offset value (constant distance), A ... imaging position, F ... focus position, O1 ... first optical axis, O2 ... second optical axis

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Microscoopes, Condenser (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

【課題】観察試料の内部を観察する際、より短時間に焦点位置の調節を行うことを目的とする。 【解決手段】観察対象物2を収容する容器3にある界面3aの位置を検出する界面検出部30と、界面検出部30で検出された界面3aから対物レンズ21の光軸方向O1に一定距離(オフセット値OS)の基準位置に対物レンズ21の焦点位置Fを維持する焦点維持制御を実行し、撮像部60による撮像タイミングにおいて、基準位置を参照し対物レンズ21と観察対象物2との少なくとも一方を光軸方向O1に移動させることで焦点位置Fを基準位置から変更する制御部71とを備える。

Description

焦点調節装置、顕微鏡装置、焦点調節方法、及び制御プログラム
 本発明は、焦点調節装置、顕微鏡装置、焦点調節方法、及び制御プログラムに関する。
 観察する試料の内部を観察する場合において、光学顕微鏡における焦点を調節する方法として次のような方法が知られている。特許文献1に記載されている方法においては、システムが試料の界面(例えば容器の底面)を検出し、検出した界面に焦点を合わせる。そして、このシステムは、界面を基準として対物レンズをZ方向(対物レンズの光軸方向)に一定量(固定距離)だけ移動させて焦点位置を試料の内部にずらす。その後、このシステムは、試料の内部においてZ方向の所定間隔ごとに多数の画像を取得し、取得した多数の画像の中から最適な焦点位置を決定する。
 また、特許文献2に記載されている方法においては、システムが試料の界面(例えばスライドガラス又はカバーガラス)を検出し、検出した界面に焦点を合わせる。そして、このシステムは、ステージと対物レンズの少なくとも一方をZ方向に一定量だけ移動させる。その後、このシステムは、ステージと対物レンズの少なくとも一方をZ方向(試料の内部)に移動させるとともに所定の測定時間間隔ごとに試料の撮影を行う。このようにして特許文献2に記載されている方法ではタイムラプス観察が行われる。
米国特許第5450204号明細書 特許第4847690号公報
 しかし、上記特許文献1,2に記載されている方法においては、システムが試料の界面(例えば容器の底面)の位置に焦点を合わせ、その後に焦点位置を界面の位置から試料の内部に一定量移動させるという2段階の動作が必要となる。従って、上記特許文献1,2に記載されている方法においては、短時間に焦点位置の調節を行うことが困難であった。
 本発明の態様では、観察試料の内部を観察する際、より短時間に焦点位置の調節を行うことを目的とする。
 本発明の第1態様によれば、観察対象物を収容する容器にある界面の位置を検出する界面検出部と、界面検出部で検出された界面から対物レンズの光軸方向に一定距離の基準位置に対物レンズの焦点位置を維持する焦点維持制御を実行し、撮像部による撮像タイミングにおいて、基準位置を参照し対物レンズと観察対象物との少なくとも一方を光軸方向に移動させることで焦点位置を基準位置から変更する制御部と、を備える焦点調節装置が提供される。
 本発明の第2態様によれば、上記の焦点調節装置を備えた顕微鏡装置が提供される。
 本発明の第3態様によれば、観察対象物に合焦させる焦点調節方法であって、観察対象物を収容する容器にある界面の位置を検出することと、検出された界面から対物レンズの光軸方向に一定距離の基準位置に対物レンズの焦点位置を維持する焦点維持制御を実行し、撮像部による撮像タイミングにおいて、基準位置を参照し対物レンズと観察対象物との少なくとも一方を光軸方向に移動させることで焦点位置を基準位置から変更することと、を備える焦点調節方法が提供される。
 本発明の第4態様によれば、コンピュータに、観察対象物を収容する容器にある界面の位置を界面検出部に検出させる検出処理と、検出処理で検出された界面から対物レンズの光軸方向に一定距離の基準位置に対物レンズの焦点位置を維持する焦点維持制御を実行し、撮像部による撮像タイミングにおいて、基準位置を参照し対物レンズと観察対象物との少なくとも一方を光軸方向に移動させることで焦点位置を基準位置から変更する制御処理と、を実行させる制御プログラムが提供される。
 本発明の態様によれば、短時間に焦点位置の調節を行うことができる。
実施形態に係る焦点調節装置を備えた顕微鏡装置の構成を示す図である。 第1実施形態に係る顕微鏡装置の制御系の構成を示すブロック図である。 オフセットレンズを移動したときの反射像の合焦状態を表す図であって、(a)はオフセット値0の状態を表す図であり、(b)はオフセットレンズを移動したときの状態を表す図であり、(c)は焦点位置が調節された状態を表す図である。 マイクロプレートのうねりに追従して焦点調節を行う動作を示す図であって、(a)は焦点維持制御だけを行った場合を示す図であり、(b)は焦点維持制御と画像AF制御とを行った場合を示す図である。 第1実施形態に係る焦点調節方法を説明するためのフローチャートである。 第2実施形態に係る焦点調節方法を説明するためのフローチャートである。 第3実施形態に係る顕微鏡装置の制御系の構成を示すブロック図である。 第3実施形態に係る焦点調節方法を説明するためのフローチャートである。 第4実施形態に係る顕微鏡装置の制御系の構成を示すブロック図である。 第4実施形態に係る焦点調節方法を説明するためのフローチャートである。 第5実施形態に係る顕微鏡装置の制御系の構成を示すブロック図である。 第5実施形態に係る焦点調節方法を説明するためのフローチャートである。
 以下、本発明の実施形態について図面を参照して説明する。ただし、本発明はこれに限定されるものではない。また、図面においては、実施形態を説明するため、一部分を大きくまたは強調して記載するなど適宜縮尺を変更して表現する場合がある。
 <第1実施形態>
 図1は、実施形態に係る焦点調節装置を備えた顕微鏡装置1の構成を示す図である。図1において、XYZ座標系を用いて図中の方向を説明する。このXYZ座標系においては、水平面に平行な平面をXY平面とする。このXY平面において紙面の右方向をX方向と表記し、XY平面においてX方向に直交する方向(紙面の表から裏に向かう方向)をY方向と表記する。また、XY平面に垂直な方向(上下方向)をZ方向と表記する。
 図1に示す実施形態に係る顕微鏡装置1は、観察の対象物である試料2(標本又は観察対象物ともいう。)の拡大像を形成して試料2の観察に用いられる光学顕微鏡と、この光学顕微鏡の動作を制御する制御装置とを備えている。光学顕微鏡は、XYステージ10、結像光学系20、界面検出部30、第2光源40、照明光学系50、撮像部60、信号処理部61、及び駆動部11,34,36を有している。この光学顕微鏡は、試料2の下に対物レンズ21が配置され、下側から試料2を観察する倒立型顕微鏡である。制御装置は、制御部71、入力部72、及び記憶部73を有している。結像光学系20は対物レンズ21と撮像部60間の光路であるが、照明光学系50である第2光源40から対物レンズ21までの光路の内、ダイクロイックミラー52から対物レンズ21までの光路は照明光学系50と共通の光路となる。
 XYステージ10上には試料2を収容したマイクロプレート(試料容器)3が載置される。マイクロプレート3は透明なプラスチックで成形されている。また、マイクロプレート3は多数の微細な試料保持区画(以下、ウェルと呼ぶ。)を備え、各ウェルに試料2が保持される。試料2は例えば蛍光染色されたHeLa細胞とされる。使用者(観察者、作業者)は、各ウェル内における様々な濃度の溶液(媒質)中にHeLa細胞を保持させる。HeLa細胞の核はHoechst33452で染色され、アクチン繊維はAlexa Fluor 488 Phalloidinで染色される。なお、図1において、試料2はマイクロプレート3上に浮いているのではくマイクロプレート3に載置されている。本実施形態において、試料2の中心部分(例えば細胞の核の部分)が、使用者が観察したい部分である。この部分のZ方向の位置の面を試料面2a(又は標本面)という。
 XYステージ10には下側(対物レンズ21側)からの光(つまり、Z方向の光)を試料2に導く開口部10aがマイクロプレート3のウェルの位置に対応して形成されている。XYステージ10は、ステージ駆動部11による駆動に応じてX方向及びY方向に移動する。これにより、撮像対象のウェルが対物レンズ21の対向位置に移動される。ステージ駆動部(第2駆動部)11は、制御部71からの制御信号に基づいて、XYステージ10をX方向及びY方向に移動させる。
 結像光学系20は、対物レンズ21及び結像レンズ22を有している。対物レンズ21は、XYステージ10の下側に配置されている。対物レンズ21の同焦点距離は、対物レンズ21の胴付き面(対物レンズ21の取り付け基準面、フランジ面)から対物レンズ21の焦点位置の面(焦点面)までの距離、すなわち、試料面2aに焦点が合っているときの対物レンズ21の胴付き面から試料面2aまでの距離である。一般に、対物レンズ21の同焦点距離は一定距離に設計されている。また、対物レンズ21及び結像レンズ22は、同一の光路上に配置されている。対物レンズ21及び結像レンズ22の光軸が第1光軸O1である。本実施形態では、第1光軸O1の方向はZ方向となっている。なお、以下の説明において、対物レンズ21のZ方向の焦点位置を焦点位置Fという。図1に示す例では、焦点位置Fは試料面2aの位置に一致している。
 本実施例では、界面検出部30は、試料2を保持するマイクロプレート3の底部(ボトム)の底面3aの位置を検出する。しかし、「界面」はこれに限定されるものではない。例えば液浸対物レンズを用いた観察の場合、容器とこれに収容される標本が接触している面である底部を界面としてもよい。また乾式対物レンズを用いた観察の場合、容器を載置する顕微鏡のステージと接触する容器の面部を界面としてもよい。更に観察試料を密閉した空間内に収容可能な培養容器を用い、容器の上面部に観察試料が張り付く(ぶら下がった状態)で存在する場合は、容器の上面部を界面とすることでもよい。界面検出部30は、図1に示すように、第1光源(光源)31、オフセットレンズ(レンズ)32とダイクロイックミラー33とを含むフォーカス光学系30A、レンズ駆動部34、及び光電変換器35を有している。図1示す界面検出部30及び対物レンズ21において、点線は、第1光源31から放出された光の光路、及びマイクロプレート3の底部の底面3aで反射される光の光路を示している。また、光路上の矢印は光の進行方向を示している。フォーカス光学系30Aは、界面検出部30と対物レンズ21の間の光路であるが、ダイクロイックミラー33から対物レンズ21までの間の光路は、結像光学系20と照明光学系50と共通の光路となる。
 第1光源31は、例えば赤外光(又は近赤外光)を照射する赤外線LED(Light Emitting Diode;発光ダイオード)である。フォーカス光学系30Aは、第1光源31が照射した赤外光を対物レンズ21に導く。フォーカス光学系30Aを構成するオフセットレンズ32は、第2光軸O2に移動可能に構成され、第2光軸方向O2に移動することで後述するオフセット値OSを変更するためのレンズである。なお、後述するように、オフセットレンズ32は例えば凸レンズ32aと凹レンズ32bとを備えている(図3参照)。
 フォーカス光学系30Aを構成するダイクロイックミラー33は、特定の波長の光(本実施形態では赤外光)を反射し、その他の波長の光(可視光や蛍光)を透過する。このダイクロイックミラー33は、結像光学系20の光路上であって対物レンズ21の像側に配置されている。このダイクロイックミラー33は、オフセットレンズ32を通過した第1光源31から発せられた赤外光を反射して対物レンズ21に導く。また、このダイクロイックミラー33は、マイクロプレート3の底部の底面3aで反射され対物レンズ21を通過した反射光(赤外光)を反射してオフセットレンズ32に導く。レンズ駆動部34は、制御部71からの制御信号に基づいてオフセットレンズ32を第2光軸方向O2に移動させる。光電変換器35は、フォーカス光学系30Aによる反射光の結像位置に設けられている。この光電変換器35は、例えばマイクロプレート3の底部の底面3aからの反射光(赤外光)を受光し、受光した光を電気信号に変換するラインCCDセンサ(Charge Coupled Device;電荷結合素子)である。
 ここで、第1光源31から照射された赤外光が光電変換器35で受光されるまでの過程を説明する。第1光源31から照射された赤外光は、オフセットレンズ32により曲率変化を受けた後、対物レンズ21の像側に配置されたダイクロイックミラー33でZ方向に反射されて対物レンズ21に導かれる。対物レンズ21は、赤外光を集光させてマイクロプレート3の底部に照射する。対物レンズ21による赤外光に基づく光像のZ方向の結像位置を結像位置Aという。図1に示す例では、結像位置Aはマイクロプレート3の底部の底面3aの位置に一致している。対物レンズ21から照射された赤外光は、マイクロプレート3の底部の底面3aで反射される。以下の説明において、底面3aのことを反射面という。なお、反射面3aのことを界面又は境界面ともいう。
 反射面3aで反射された反射光(赤外光)は、再び対物レンズ21を通過し、対物レンズ21を通過した反射光は、ダイクロイックミラー33で反射されてオフセットレンズ32に導かれる。そして、オフセットレンズ32を通過した反射光は、光電変換器35の受光面で結像される。そして、光電変換器35は、受光した光を電気信号に変換し、変換した電気信号に応じた検出信号を制御部71に出力する。
 図1の例では図に示すように、対物レンズ21と界面検出部30とは結合されている。ユニット駆動部(第1駆動部)36は、制御部71からの制御信号に基づいて、対物レンズ21及び界面検出部30をZ方向に移動させる(つまり、上下移動させる)。なお、図1においては図示していないが、複数個の対物レンズを切り替えるレボルバは、対物レンズ21と界面検出部30との結合部分に設けられる。ただし、対物レンズ21とレボルバと界面検出部30の位置関係はこれ限定されるものではなく、第1光源31と光電変換器及びオフセットレンズ32、レンズ駆動部34をレボルバとは隔離して配置することも可能である。この場合、ダイクロイックミラー33へ第1光源31からの光を導く光学系を設ける必要がある。また、このような配置にすることにより、例えば焦点調節のために対物レンズ21を保持したレボルバをZ方向に移動させる場合、第1光源31と光電変換器及びオフセットレンズ32、レンズ駆動部34は、レボルバとは別体として配置されるので、レボルバの上下動速度に悪影響を及ぼすことが避けられる。
 第2光源40は、試料2の例えば蛍光観察を行うための励起照明光を照射するLEDである。照明光学系50は、コリメータレンズ51及びダイクロイックミラー52を含んでいる。コリメータレンズ51は、第2光源40から照射された照明光を平行光束又は略平行光束に変換する。ダイクロイックミラー52は、照明光を反射し、蛍光を透過する。このダイクロイックミラー52は、結像光学系20の光路上に配置されている。このダイクロイックミラー52は、コリメータレンズ51を通過した照明光(平行光束又は略平行光束)の一部を反射して対物レンズ21に導く。また、このダイクロイックミラー52は、試料2からの信号光(例えば、照明光により励起された蛍光)を透過して結像レンズ22に導く。図1示す結像光学系20及び照明光学系50において、実線は、第2光源40から放出された光の光路を示している。
 ここで、第2光源40から照射された照明光が撮像部60で受光されるまでの過程を説明する。第2光源40から照射された照明光は、コリメータレンズ51で平行光束又は略平行光束に変換される。コリメータレンズ51で平行光束又は略平行光束に変換された照明光は、ダイクロイックミラー52でZ方向に反射される。そして、ダイクロイックミラー52で反射された蛍光は、ダイクロイックミラー33を透過して対物レンズ21に導かれる。対物レンズ21は、照明光を集光させてマイクロプレート3内の試料2に照射する。上述したように、図1においては、対物レンズ21の焦点位置Fは試料面2aの位置となっている。
 試料2からの信号光は再び対物レンズ21を通過し、対物レンズ21を通過した信号光はダイクロイックミラー33を透過する。ダイクロイックミラー33を透過した信号光の一部はダイクロイックミラー52を透過して結像レンズ22に導かれる。結像レンズ22は、信号光を撮像部60の受光面(撮像面)に結像させる。
 撮像部60は、XYステージ10上の試料2の画像を取得する。この撮像部60は、例えば受光した信号光を電気信号(画素ごとの画像信号)に変換するCCDセンサで構成される。この撮像部60は、変換した電気信号を信号処理部61に出力する。信号処理部61は、撮像部60から出力された電気信号に対して信号処理を施すことで試料2の像のコントラスト(コントラストの評価値)を表すコントラスト信号を生成する。そして、信号処理部61は、生成したコントラスト信号を制御部71に出力する。また、信号処理部61は、撮像部60から出力された電気信号に対して信号処理を施すことで画像データを生成する。そして、信号処理部61は、生成した画像データを制御部71に出力する。
 制御部71は、顕微鏡装置1の制御全般を司る処理部である。この制御部71は、記憶部73に記憶されている制御プログラムに基づいて各種の制御及び処理を実行する。この制御部71は、CPU(Central Processing Unit)などの演算装置を備えている。入力部72は、使用者の操作に応じてオフセット値OSの情報を含む各種情報を入力する。記憶部73は、試料2の画像データを記憶する。また、記憶部73は、制御部71に各種の制御及び処理を実行させるための制御プログラムも記憶する。
 図2は、第1実施形態に係る顕微鏡装置1の制御系の構成を示すブロック図である。なお、図2に示す構成において、図1に示した構成と同一構成については同一符号を付して重複する説明を省略する。図2に示すように、制御部71は、第1制御部71a及び第2制御部71bを有している。
 第1制御部71aは、ステージ駆動部11に対して制御信号を出力してステージ駆動部11を駆動させることにより、撮像対象のウェルが対物レンズ21の対向位置となるようにXYステージ10をXY方向に移動させる。また、第1制御部71aは、XYステージ10の移動が行われているときに、光電変換器35からの検出信号に基づいて反射像を検出し、検出した反射像に基づいて反射面3aの位置を認識する。そして、第1制御部71aは、認識した反射面3aの位置からZ方向に一定距離(オフセット値OS)離れた基準位置に焦点位置Fを維持する焦点維持制御を実行する。このとき、第1制御部71aは、基準位置に焦点位置Fを維持するために、レンズ駆動部34及びユニット駆動部36に対して制御信号を出力してレンズ駆動部34は一定位置に保ち、ユニット駆動部36を駆動させる。
 第2制御部71bは、信号処理部61からの取得した試料の画像のコントラスト信号に基づいて、焦点位置Fを試料面2aの位置に変更する画像AF制御(AF;Automatic Focusing)を実行する。すなわち、第2制御部71bは、XYステージ10の移動が行われていないときに(つまり、撮像部60による撮像タイミングのときに)、信号処理部61からのコントラスト信号に基づいて試料面2aの位置を検出する。具体的には、第2制御部71bは、複数のZ位置で撮像した試料の画像のコントラスト信号に基づいて、試料2の像のコントラストが最大となるようなZ方向の位置を試料面2aの位置として検出する。そして、第2制御部71bは、検出した試料面2aの位置に焦点位置Fを移動させる。このとき、第2制御部71bは、焦点位置Fを試料面2aの位置に移動させるために、ユニット駆動部36に対して制御信号を出力してユニット駆動部36を駆動させる。
 なお、顕微鏡装置1における焦点調節装置は、XYステージ10、結像光学系20(対物レンズ21、結像レンズ22)、界面検出部30、撮像部60、信号処理部61、駆動部11,34,36、制御部71などで構成される。
 次に、オフセットレンズ32の作用について説明する。図3は、オフセットレンズを移動したときの反射像の合焦状態を表す図であって、(a)はオフセット値0の状態を表す図であり、(b)はオフセットレンズを移動したときの状態を表す図であり、(c)は焦点位置が調節された状態を表す図である。
 なお、図3においては、オフセットレンズ32の作用の説明に必要な構成についてだけ示している。すなわち、図3においてはダイクロイックミラー33を省略している。また、図3においては、オフセットレンズ32は凸レンズ32aと凹レンズ32bとで構成されている。また、図1においてはコレクタレンズを示していなかったが、フォーカス光学系30Aはコレクタレンズを備え、そのコレクタレンズによって第1光源31からの赤外光が平行光束又は略平行光束に変換されるものとする。また、図3において、赤外光を点線で示し、照明光及び信号光を実線で示している。
 オフセットレンズ32は、第2光軸O2方向に移動することにより、対物レンズ21を介して反射面3aに照射される赤外光に基づく光像の結像位置AをZ方向に移動させる働きをする。このように、光像の結像位置Aが移動することにより、反射面3aで反射される光像の反射像の結像位置も第2光軸O2方向に移動される。
 図3(a)では、赤外光に基づく光像の結像位置Aが反射面3aに位置し、かつ、対物レンズ21の焦点位置Fも反射面3aに位置するように、凹レンズ32bの第2光軸O2方向の位置と、対物レンズ21(及び界面検出部30)のZ方向(第1光軸O1方向)の位置とが調節されている。なお、対物レンズ21の同焦点距離は一定距離であり、対物レンズ21の焦点位置も対物レンズ21の胴付き面から一定距離の位置となっている。この状態がオフセット値OSが0の状態である。
 図3(b)では、凹レンズ32bが第2光軸O2方向の第1光源31側へ距離xだけ移動することにより、赤外光に基づく光像の結像位置Aが対物レンズ21に近づくように反射面3aの位置からZ方向に移動する。この状態では、結像位置Aと、反射面3aの位置にある焦点位置Fとがずれている。
 図3(c)では、対物レンズ21(及び界面検出部30)がZ方向の試料2側へ移動することにより、赤外光に基づく光像の結像位置Aが反射面3aの位置に移動し、対物レンズ21の焦点位置Fも同じ距離だけZ方向に移動する。図3(c)では相対的に試料がZ方向に移動しているように示してある。この状態では、結像位置Aが反射面3aに位置し、かつ、結像位置Aと焦点位置Fとがずれている。結像位置Aと焦点位置Fとのずれ量(結像位置Aから焦点位置Fまでの距離)がオフセット値OSである。
 このように、第1制御部71aは、オフセットレンズ32(凹レンズ32b)を第2光軸O2方向に移動させることによりオフセット値OSを調節することができる。また、第2制御部71bは、結像位置Aが反射面3aの位置となるように対物レンズ21(及び界面検出部30)をZ方向に移動させることにより、常に反射面3aから一定距離(一定量)だけZ方向に離れた位置に対物レンズ21の焦点位置Fを合わせることができる。
 次に、本発明の概要について説明する。図4は、マイクロプレート3の底面のうねりに追従して焦点調節を行う動作を示す図であって、(a)は焦点維持制御だけを行った場合を示す図であり、(b)は焦点維持制御と画像AF制御とを行った場合を示す図である。
 上述したようにマイクロプレート3はプラスチックで成形されているので、図4(a)及び図4(b)に示すように、マイクロプレート3の底面は、例えば10μm~200μmのうねりが生じる。図4(a-1)~(a-3)に示すように、第1制御部71aが焦点維持制御だけを行った場合は、第1制御部71aは反射面3a(マイクロプレート3の底面)のうねりに追従して、常に反射面3aから一定距離だけZ方向に離れた位置に対物レンズ21の焦点位置Fを維持することができる。
 しかし、ウェル内の試料2の位置は常に一定ではない。図4(a-2)に示すように、試料2が図4(a-1)の位置よりも底面に対して高い位置にある場合や、図4(a-3)に示すように、試料2が図4(a-1)の位置よりも低い位置(底面に対して近い位置)にある場合もある。この場合は、対物レンズ21の倍率が低倍で、試料2が反射面3aの位置に対して比較的一定の位置に存在している場合は、試料2のZ方向の位置ずれが対物レンズ21の焦点深度の範囲内におさまっているので、焦点維持制御だけで良好な焦点調節を行うことができる。一方、10倍以上の対物レンズ21の場合は、焦点維持制御だけで良好な焦点調節を行うことができない。
 そこで、第2制御部71bは、焦点維持制御を行った後に、第1制御部71aによる制御を一旦停止してから、画像AF制御を実行する。図4(b-1)~(b-3)に示すように、第1制御部71aは、反射面3aのうねりに追従して、常に反射面3aから一定距離だけZ方向に離れた位置に対物レンズ21の焦点位置Fを維持する。そして、図4(b-2)及び(b-3)に示すように、第2制御部71bは、反射面3aから一定距離の位置を基準位置(焦点位置F)とし、この基準位置からZ方向の所定範囲において所定間隔ごとにコントラスト信号の取得を開始する。次に、第2制御部71bは、取得したコントラスト信号に基づいて最もコントラスト値が大きい最適な焦点位置F(新たな焦点位置)を求め、その位置の画像を取得する。このような構成によれば、焦点位置Fをウェル内の試料2の位置(試料面2a)に正確に合わせることができる。また、画像AF制御において例えば反射面3aを基準位置とし、この位置から画像AFを実行することなく、新たな焦点位置Fから画像AFを実行するので、Z方向にスキャンする範囲は所定範囲に限定されるので、短時間に焦点位置の調節を行うことができる。
 なお、顕微鏡装置において様々な実験条件における試料2の画像を取得し、取得した画像を解析する。これにより、試料2の反応の分析が行われる。この場合、一つのマイクロプレート3内のウェルの数は少ないものでは6個程であるが、多いものでは1000個以上になる。従って、顕微鏡装置は多数の画像を取得する必要がある。また、顕微鏡装置が一つのウェルに対して複数の異なる視野の画像を取得する場合がある。また、顕微鏡装置が同じ視野であっても複数の波長チャネルの画像を取得する場合もある。このため、顕微鏡装置は1回に数万枚の画像を取得しなければならない事態も生じ得る。
 このような場合、短時間に画像を取得することが重要となる。特に、細胞等を生きたまま観察する必要がある場合には、撮影中に試料2の状態が変化してしまう。従って、同一の実験条件で画像を取得するためには、すべての画像の取得時間を短縮する必要がある。また、高画質の画像を取得することも重要となる。高画質の画像を取得するためには、適正な焦点位置で試料2の撮像を行う必要がある。
 上記特許文献1,2に記載された方法では、システムが反射面3aの位置を検出し、検出した位置に一旦焦点位置を合わせ、その後、その焦点位置を一定距離だけZ方向に移動させた後に、画像AF制御を行う。このような構成の場合、動作の段階数が多くなるとともに、Z方向への移動距離も長くなる。このような操作を例えば1000個のウェルがあり場合、少なくとも1000回実施することになる。従って、個々のウェルにおいて短時間に焦点位置の調節を行うことは困難であり、マイクロプレート全体の観察を短時間で行うことも困難である。なお、一般に、焦点位置Fを試料面2aに合わせる動作において時間がかかる要因としては、Z方向への移動時間があげられる。精密なAF動作を行うためには、Z方向の位置制御を精密に行わなければならず、位置制御の精度と移動速度とを両立させることは容易ではないからである。
 次に、上記した顕微鏡装置1の動作について説明する。
 図5は、第1実施形態に係る焦点調節方法を説明するためのフローチャートである。図5に示す処理において、第1制御部71aは、まず、XYステージ10の位置を初期位置(第1制御部71aによるステージ駆動部11の駆動制御の開始位置)に設定する(ステップS1)。具体的には、第1制御部71aは、ステージ駆動部11に制御信号を出力して、XYステージ10をXY平面内の初期位置に移動させる。
 次に、第1制御部71aは、入力部72を介してオフセット値OSを入力する(ステップS2)。この処理で入力されるオフセット値OSは、撮像対象の試料2に対して予め定められた規定値とされる。又は、使用者がコントローラなどを操作して手動でオフセットレンズ32及び対物レンズ21を移動させながら観察試料を目視で探索し、焦点が合った最適なオフセット値とされる。
 次に、第1制御部71aは、界面検出部30をオンにする(ステップS3)。第1制御部71aが界面検出部30をオンにしたことにより、界面検出部30が反射面3aの位置を検出し、検出した反射面3aの位置に応じた検出信号を第1制御部71aに出力する。第1制御部71aは、レンズ駆動部34に制御信号を出力することで、結像位置Aと焦点位置Fとの差がステップS2で入力したオフセット値OSとなるようなオフセットレンズ32の位置に移動させる(図3(b)参照)。また、第1制御部71aは、光電変換器35からの検出信号に基づいて反射面3aの位置を認識する。そして、第1制御部71aは、認識した反射面3aの位置に応じた制御信号をユニット駆動部36に出力することで、光像の結像位置Aが反射面3aの位置となるような対物レンズ21の位置に移動させる(図3(c)参照)。
 また、第1制御部71aは、ステージ駆動部11に制御信号を出力して、XYステージ10をXY平面内で移動させる(ステップS4)。具体的には、第1制御部71aは、XYステージ10が初期位置にある場合は、最初に撮像が行われるウェルの位置が初期位置から対物レンズ21の対向位置に移動するようにXYステージ10をXY平面内で移動させる。また、第1制御部71aは、XYステージ10が初期位置にない場合は、次に撮像が行われるウェルの位置が対物レンズ21の対向位置に移動するようにXYステージ10をXY平面内で移動させる。
 ステップS4におけるXYステージ10の移動中(観察位置の移動)は、撮像部60による撮像が行われていないタイミングに相当する。このとき、界面検出部30がオンの状態であるので、第1制御部71aは、反射面3aのうねりに追従して、常に反射面3aから一定距離(オフセット値OS)Z方向に離れた位置に対物レンズ21の焦点位置Fを維持するように、ユニット駆動部36の駆動制御を実行する。なお、本実施形態においては、XYステージ10の移動中はオフセット値OSが変更されないので、第1制御部71aはレンズ駆動部34の駆動制御を実行しない。
 そして、第1制御部71aは、ステップS4によるXYステージ10の移動が終了すると、一旦、界面検出部30をオフにする(ステップS5)。界面検出部30がオフの状態になると、界面検出部30は反射面3aの位置の検出を停止する。界面検出部30がオフになってから画像の取得が行われるまでのタイミング(すなわちステップS6~S11の処理が行われているタイミング)が撮像部60による撮像タイミングに相当する。
 次に、第2制御部71bは、画像AF制御を開始する。すなわち、第2制御部71bは、ユニット駆動部36に制御信号を出力して、対物レンズ21及び界面検出部30をZ方向の所定範囲内において所定間隔ごとに移動させる(ステップS6)。そして、第2制御部71bは、Z方向の所定間隔の位置ごとに、観察試料を撮像し信号処理部61によって生成されるコントラスト信号を取得する(ステップS7)。そして、第2制御部71bは、所定範囲内のすべての位置のコントラスト信号を取得したか否かを判定する(ステップS8)。第2制御部71bは、所定範囲内のすべての位置のコントラスト信号を取得していないと判定した場合は(ステップS8のNO)、所定範囲内のすべてのコントラスト信号を取得したと判定するまでステップS6及びS7の処理を繰り返し実行する。ここで所定範囲内とは、反射面3aから一定距離(オフセット値OS)Z方向に離れた位置である対物レンズ21の焦点位置Fを含む、予め定めた範囲であって、観察標品が存在すると仮定した範囲である。したがって、観察したい試料の位置が反射面3aから一定距離(オフセット値OS)Z方向に離れた位置に設定されている状態であり、この所定範囲には、反射面3aの位置を含ませる必要はない。
 一方、第2制御部71bは、所定範囲内のすべての位置のコントラスト信号を取得したと判定した場合は(ステップS8のYES)、ステップS7で取得したコントラスト信号に基づいて、試料面2aの位置として最適なZ方向の位置を算出する(ステップS9)。例えば、第2制御部71bは、試料2の像のコントラストが最大となるようなZ方向の位置を試料面2aの位置として算出する。そして、第2制御部71bは、ユニット駆動部36に制御信号を出力することで、焦点位置FがステップS9で算出した最適なZ方向の位置(試料面2aの位置)となるように対物レンズ21及び界面検出部30を移動させる(ステップS10)。
 第2制御部71bは、焦点位置Fが試料面2aの位置となっている状態で画像を取得する(ステップS11)。例えば、第2制御部71bは、信号処理部61を介して撮像部60に撮像を指示する。撮像部60は、第2制御部71bからの指示に基づいて試料2の撮像を行う。そして、信号処理部61は、撮像部60からの画像信号に基づいて画像データを生成し、生成した画像データを第2制御部71bに出力する。なお、第2制御部71bは、取得した画像データを記憶部73に記憶する。
 その後、第2制御部71bは、すべての撮像対象のウェル(すなわち、すべての撮像対象の試料2)の撮像が終了したか否かを判定する(ステップS12)。第2制御部71bがすべての撮像対象のウェルの撮像が終了していないと判定した場合は(ステップS12のNO)、第1制御部71a及び第2制御部71bは、ステップS3~S11の処理を繰り返し実行する。一方、第2制御部71bがすべての撮像対象のウェルの撮像を終了したと判定した場合は(ステップS12のYES)、処理を終了する。
 なお、上記した第1実施形態においては、制御部71は、対物レンズ21(及び界面検出部30)をZ方向に移動させていたが、制御部71は、対物レンズ21とXYステージ10(つまり試料2)との少なくとも一方をZ方向に移動させる構成であればよい。すなわち、制御部71は、対物レンズ21だけをZ方向に移動させてもよく、またXYステージ10だけをZ方向に移動させてもよく、また対物レンズ21及びXYステージ10の両方をZ方向に移動させてもよい。
 以上に説明したように、第1実施形態では、観察対象物2の界面3aの位置を検出する界面検出部30と、撮像部60による撮像が行われていないときに、界面検出部30で検出された界面3aから第1光軸O1方向に一定距離(オフセット値OS)の基準位置に焦点位置Fを維持する焦点維持制御を実行する第1制御部71aと、撮像部60による撮像タイミングにおいて、対物レンズ21と観察対象物2との少なくとも一方を第1光軸O1方向に移動させることで焦点位置Fを基準位置から観察対象物2の位置2aに変更する第2制御部71bとを備える。このような構成によれば、第2制御部71bの制御(画像AF制御)において第1光軸O1方向にスキャンする範囲は所定範囲(基準位置の近傍の範囲)に限定されるので、短時間に焦点位置の調節を行うことができる。また、焦点位置Fを観察対象物2の位置2aに正確に合わせることができるので、高画質の画像を取得することが可能となる。
 一般的には、制御部が画像AF制御を実行する場合は、最低でもZ方向に10μm程度の範囲で対物レンズを移動させながら画像を取得しなければならないが、本実施形態における制御部71は、上記の様に界面3aから第1光軸O1方向に一定距離(オフセット値OS)の基準位置である焦点位置Fを中心に所定範囲のスキャンを行うことからプラスマイナス2μmの移動で適正な焦点位置Fを検出することができ、著しく効率が向上した。
 また、第1実施形態では、対物レンズ21と観察対象物2との少なくとも一方を第1光軸O1方向に移動させる第1駆動部36を備え、第1制御部71aは、第1駆動部36の駆動制御を実行することにより焦点維持制御を実行し、第2制御部71bは、第1駆動部36の駆動制御を実行することにより焦点位置Fを基準位置から観察対象物2の位置2aに変更する。このような構成によれば、第1制御部71aによる焦点維持制御と第2制御部71bによる焦点位置Fの変更制御(画像AF制御)とを同じ駆動部36の駆動制御で実現することができる。
 また、第1実施形態では、第2制御部71bは、観察対象物2の位置2aを検出し、検出した観察対象物2の位置2aに焦点位置Fを変更する。このような構成によれば、確実に焦点位置Fを観察対象物2の位置2aに変更することができ、その結果、高画質の画像を確実に取得することができる。
 また、第1実施形態では、第2制御部71bは、対物レンズ21と観察対象物2との少なくとも一方の移動中に撮像部60で取得された信号に基づいて観察対象物2の位置2aを検出する。このような構成によれば、観察対象物2の位置2aの検出の精度が担保される。
 また、第1実施形態では、観察対象物2を第1光軸O1方向に対して垂直平面(XY平面)内に移動させる第2駆動部11を備え、第1制御部71aは、第2駆動部11による観察対象物2の移動中に焦点維持制御を実行し、第2制御部71bは、第2駆動部11による観察対象物2の移動が停止しているときに焦点位置Fを基準位置から観察対象物2の位置2aに変更する。このような構成によれば、観察対象物2の移動に追従させて焦点維持制御を実行することができるとともに、観察対象物2の移動の停止中において確実に観察対象物2の位置2aを検出し、検出した位置2aに焦点位置Fを移動させることができる。
 また、第1実施形態では、第2制御部71bは、界面検出部30による界面3aの検出の停止中に対物レンズ21と観察対象物2との少なくとも一方を第1光軸O1方向に移動させる。このような構成によれば、レンズ32を移動させることなく、対物レンズ21と観察対象物2との少なくとも一方を移動させるだけで焦点位置Fを観察対象物2の位置2aに変更することができる。
 また、第1実施形態では、一定距離の値(オフセット値OS)を入力する入力部72を備え、第1制御部71aは、入力部72により入力された値に基づいて焦点維持制御を実行する。このような構成によれば、簡易な処理により一定距離の値を設定することができる。
 なお、上記した第1実施形態において、第2制御部71bがコントラスト信号を取得する際に(ステップS6、S7参照)、第2光源40は照明光としてUV光(ultraviolet)を細胞核に照射し、撮像部60はUV光により励起された蛍光を信号光として受光し、信号処理部61は細胞核の像のコントラストを表すコントラスト信号を生成してもよい。また、第2制御部71bが画像を取得する際に(ステップS11参照)、第2光源40は照明光としてUV光を細胞核に照射し、撮像部60はUV光により励起された蛍光を信号光として受光し、信号処理部61は細胞核の画像データを生成してもよい。次に、第2光源40は照明光として青色光をFITC(fluorescein isothiocyanate)で染色された細胞骨格に照射し、撮像部60は青色光により励起された蛍光を信号光として受光し、信号処理部61は細胞骨格の画像データを生成してもよい。
 <第2実施形態>
 上記した第1実施形態では、第2制御部71bは、界面検出部30をオフにした状態で(ステップS5参照)画像AF制御(ステップS6~S10)を行っていた。これに対して、第2実施形態では、第2制御部71bは、界面検出部30をオンにしたまま(つまり、界面検出部30による反射面3aの検出を実行したまま)画像AF制御を行う。なお、第2実施形態における顕微鏡装置1の構成は、図1及び図2に示した構成と同様である。
 図6は、第2実施形態に係る焦点調節方法を説明するためのフローチャートである。なお、図6において、ステップS1~S4、ステップS11、及びステップS12の処理は図5に示した処理と同様であるため、同一処理には同一符号を付して重複する説明を省略する。
 図6に示す処理において、第2制御部71bは、ステップS4の処理の実行後、界面検出部30をオン状態のまま画像AF制御(ステップS21~S26)を開始する。この場合、第2制御部71bは、ステップS4におけるXYステージ10の移動が停止した後、レンズ駆動部34に対して制御信号を出力して、オフセットレンズ32を移動させてオフセット値OSを変更する(ステップS21)。また、第2制御部71bは、ユニット駆動部36に対して制御信号を出力して、光像の結像位置Aが反射面3aの位置に合った状態を維持しつつ、オフセット値OSの変更に連動させて対物レンズ21(及び界面検出部30)をZ方向に移動させる(ステップS22)。例えば、図3(b)に示したように、第2制御部71bは、凹レンズ32bを第2光軸O2方向に移動させると、結像位置Aが対物レンズ21に近づく。このとき、第2制御部71bは、結像位置Aが反射面3aの位置に合った状態を維持しようとすれば、対物レンズ21を反射面3aに近づくように移動させることになる。
 次に、第2制御部71bは、Z方向の所定間隔の位置ごとに、信号処理部61によって生成されるコントラスト信号を取得する(ステップS23)。そして、第2制御部71bは、所定範囲内のすべての位置のコントラスト信号を取得したか否かを判定する(ステップS24)。第2制御部71bは、所定範囲内のすべての位置のコントラスト信号を取得していないと判定した場合は(ステップS24のNO)、所定範囲内のすべてのコントラスト信号を取得したと判定するまでステップS21~S23の処理を繰り返し実行する。
 一方、第2制御部71bは、所定範囲内のすべての位置のコントラスト信号を取得したと判定した場合は(ステップS24のYES)、ステップS23で取得したコントラスト信号に基づいて、試料面2aの位置として最適なオフセット値OSを算出する(ステップS25)。例えば、第2制御部71bは、試料2の像のコントラストが最大となるようなオフセット値OSを試料面2aの位置として算出する。そして、第2制御部71bは、レンズ駆動部34及びユニット駆動部36に制御信号を出力することで、焦点位置FがステップS25で算出した最適なオフセット値OSとなるようにオフセットレンズ32及び対物レンズ21を移動させる(ステップS10)。その後、第2制御部71bは、ステップS11及びS12の処理を実行する。
 なお、上記した第2実施形態においても、制御部71は、対物レンズ21(及び界面検出部30)をZ方向に移動させていたが、制御部71は、対物レンズ21とXYステージ10(つまり試料2)との少なくとも一方をZ方向に移動させる構成であればよい。すなわち、制御部71は、対物レンズ21だけをZ方向に移動させてもよく、またXYステージ10だけをZ方向に移動させてもよく、また対物レンズ21及びXYステージ10の両方をZ方向に移動させてもよい。
 以上に説明したように、第2実施形態では、第2制御部71bは、界面検出部30による界面3aの検出の実行中に対物レンズ21と観察対象物2との少なくとも一方を第1光軸O1方向に移動させる。このような構成によれば、対物レンズ21と観察対象物2との少なくとも一方の移動中に、界面検出部30が界面3aの検出を行っているので、界面3aの検出に基づいて対物レンズ21と観察対象物2(XYステージ10)との間の距離に制限を設けることができる。従って、対物レンズ21と観察対象物2(XYステージ10)とが移動によってぶつかってしまうことを回避させることができる。
 また、第2実施形態では、界面検出部30は、光源31と、光源31からの光に基づく光像を対物レンズ21を介して界面3a上に結像させ、界面3aからの光像の反射光を対物レンズ21を介して受光して光像の反射像を結像させるフォーカス用光学系30Aと、フォーカス用光学系30Aによる反射像の結像位置に設けられ、反射像を検出する光電変換器35と、を含み、フォーカス用光学系30Aは、該光学系30Aの第2光軸O2方向に移動可能なレンズ32を含み、第2制御部71bは、光電変換器35からの信号に基づき界面検出部30に界面3aの検出を実行させつつレンズ32を第2光軸O2方向に移動させることで一定距離を変更し、一定距離の変更に連動させて対物レンズ21と観察対象物2との少なくとも一方を第1光軸O1方向に移動させる。このような構成によれば、界面検出部30が界面3aの検出を行いつつ、レンズ32を移動させることで焦点位置Fの変更を行うことができる。
 <第3実施形態>
 上記した第1実施形態では、第1制御部71aはXYステージ10の移動中に焦点維持制御を実行していた(ステップS3,S4参照)。これに対して、第3実施形態では、タイムラプス観察(一定時間ごとに撮影することで長時間の変化を観察する手法)における撮影の待機中に焦点維持制御を実行する。なお、タイムラプス観察のことをインターバル観察ともいう。
 図7は、第3実施形態に係る顕微鏡装置1の制御系の構成を示すブロック図である。図7に示すように、制御部71Aは撮像制御部71cを備えている点で図2に示す構成と異なる。撮像制御部71cは、撮像部60に対して所定の規定時間ごとに試料2の撮像を実行させる処理部である。本実施形態では、第1制御部71aは、撮像制御部71cが撮像部60に撮像を実行されていないときに焦点維持制御を実行し、第2制御部71bは、撮像制御部71cが撮像部60に撮像を実行させるタイミングにおいて焦点位置Fを基準位置から試料面2aの位置に変更する。図7において、その他の構成については図2に示した構成と同様であるので、同一構成については同一符号を付して重複する説明を省略する。
 図8は、第3実施形態に係る焦点調節方法を説明するためのフローチャートである。なお、図8において、ステップS1~S3、及びステップS5~S11の処理は図5に示した処理と同様であるため、同一処理には同一符号を付して重複する説明を省略する。
 図8に示す処理において、ステップS3の処理の実行後、撮像制御部71cは、タイムラプス観察において規定された規定時間(例えば数分や数時間)だけ画像AF制御の実行を待機する(ステップS31)。ステップS31における規定時間の待機中は、撮像部60による撮像が行われていないタイミングに相当する。このとき、界面検出部30がオンの状態であるので(ステップS3参照)、第1制御部71aは、常に反射面3aから一定距離(オフセット値OS)Z方向に離れた位置に対物レンズ21の焦点位置Fを維持するように、ユニット駆動部36の駆動制御を実行する。これにより、長時間観察によるXYステージ10の膨張などが原因で試料2の位置が変化しても、リアルタイムに対物レンズ21のZ方向の位置を変更してXYステージ10の膨張などによる位置変化に追従させることができる。なお、本実施形態においては、規定時間の待機中はオフセット値OSが変更されないので、第1制御部71aはレンズ駆動部34の駆動制御を実行しない。
 そして、第1制御部71aは、ステップS31による規定時間が経過すると、一旦、界面検出部30をオフにする(ステップS5)。その後、第2制御部71bは、画像AF制御(ステップS6~S10)を実行する。タイムラプス観察においては、時間経過に伴って試料2(例えば細胞核)の位置が上下に変化することが起こり得る。従って、今回の観察時の試料2の位置が前回の観察時の試料2の位置からずれている可能性がある。このため、第2制御部71bは、規定時間の経過後に画像AF制御を行う。その後、第2制御部71bは、焦点位置Fが試料面2aの位置となっている状態で画像を取得する(ステップS11)。
 第2制御部71bは、すべての規定時間の撮像が終了したか否かを判定する(ステップS32)。第2制御部71bがすべての規定時間の撮像が終了していないと判定した場合は(ステップS32のNO)、第1制御部71a及び第2制御部71bは、ステップS3、ステップS31、及びステップS5~S11の処理を繰り返し実行する。一方、第2制御部71bがすべての規定時間の撮像を終了したと判定した場合は(ステップS32のYES)、処理を終了する。
 なお、上記した第3実施形態においても、制御部71は、対物レンズ21(及び界面検出部30)をZ方向に移動させていたが、制御部71は、対物レンズ21とXYステージ10(つまり試料2)との少なくとも一方をZ方向に移動させる構成であればよい。すなわち、制御部71は、対物レンズ21だけをZ方向に移動させてもよく、またXYステージ10だけをZ方向に移動させてもよく、また対物レンズ21及びXYステージ10の両方をZ方向に移動させてもよい。
 以上のように、第3実施形態では、撮像部60に対して所定時間ごとに観察対象物2の撮像を実行させる撮像制御部71cを備え、第1制御部71aは、撮像制御部71cが撮像部60に撮像を実行させていないときに焦点維持制御を実行し、第2制御部71bは、撮像制御部71cが撮像部60に撮像を実行させる撮像タイミングにおいて焦点位置Fを基準位置から観察対象物2の位置2aに変更する。このような構成によれば、タイムラプス観察の待機中に焦点位置Fが維持されているので、第2制御部71bが待機の終了後に直ちに基準位置から焦点位置Fの変更を行うことができる。
 <第4実施形態>
 上記した第1実施形態、第2実施形態、及び第3実施形態では、第1制御部71aが入力部72を介してオフセット値OSを入力していた。これに対して、第4実施形態では、制御部が自動的にオフセット値OSを探索して設定する。
 図9は、第4実施形態に係る顕微鏡装置1の制御系の構成を示すブロック図である。図9に示すように、制御部71Bは第1探索部71dを備えている点で図2及び図7に示す構成と異なる。第1探索部71dは、対物レンズ21と試料2との少なくとも一方を第1光軸O1方向に移動させて試料面2aの位置を検出し、界面検出部30に界面3aを検出させ、試料面2aの位置と界面3aの位置とに基づいて一定距離の値(オフセット値OS)を求める処理部である。本実施形態では、第1制御部71aは、第1探索部71dにより求められた値(オフセット値OS)に基づいて焦点維持制御を実行する。図9において、その他の構成については図2及び図7に示した構成と同様であるので、同一構成については同一符号を付して重複する説明を省略する。
 図10は、第4実施形態に係る焦点調節方法を説明するためのフローチャートである。なお、図10において、ステップS4~S12の処理は図5に示した処理と同様であるため、同一処理には同一符号を付して重複する説明を省略する。
 図10に示す処理において、第1制御部71aは、ステージ駆動部11に制御信号を出力して、XYステージ10をXY平面内の初期位置に移動させる(ステップS41)。次に、第1探索部71dは、界面検出部30をオフにする(ステップS42)。界面検出部30がオフの状態になると、界面検出部30は反射面3aの位置の検出を停止する。
 次に、第1探索部71dは、ユニット駆動部36に制御信号を出力して、対物レンズ21及び界面検出部30を所定間隔ごとにZ方向に移動させる(ステップS43)。そして、第1探索部71dは、Z方向の所定間隔の位置ごとに、信号処理部61によって生成されるコントラスト信号を取得する(ステップS44)。そして、第1探索部71dは、すべての位置のコントラスト信号を取得したか否かを判定する(ステップS45)。第1探索部71dは、すべての位置のコントラスト信号を取得していないと判定した場合は(ステップS45のNO)、すべてのコントラスト信号を取得したと判定するまでステップS43及びS44の処理を繰り返し実行する。
 一方、第1探索部71dは、すべての位置のコントラスト信号を取得したと判定した場合は(ステップS45のYES)、ステップS44で取得したコントラスト信号に基づいて、試料面2aの位置として最適(コントラスト値が最も高い)なZ方向の位置を算出する(ステップS46)。そして、第1探索部71dは、ユニット駆動部36に制御信号を出力することで、焦点位置FがステップS46で算出した最適なZ方向の位置(試料面2aの位置)となるように対物レンズ21及び界面検出部30を移動させる(ステップS47)。
 その後、第1探索部71dは、界面検出部30をオンにすると(ステップS48)、界面検出部30が反射面3aの位置を検出し、第1探索部71dは、界面検出部30からの検出信号に基づいてレンズ駆動部34に制御信号を出力することで、結像位置Aが反射面3aの位置となるようにオフセットレンズ32を移動させる(ステップS49)。そして、第1探索部71dは、結像位置Aと焦点位置Fとの差をオフセット値OSとして設定し、第1制御部71aへ出力する。その後、第1制御部71a及び第2制御部71bは、ステップS4~S12の処理を実行する。
 なお、上記した第4実施形態においても、制御部71は、対物レンズ21(及び界面検出部30)をZ方向に移動させていたが、制御部71は、対物レンズ21とXYステージ10(つまり試料2)との少なくとも一方をZ方向に移動させる構成であればよい。すなわち、制御部71は、対物レンズ21だけをZ方向に移動させてもよく、またXYステージ10だけをZ方向に移動させてもよく、また対物レンズ21及びXYステージ10の両方をZ方向に移動させてもよい。
 以上のように、第4実施形態では、対物レンズ21と観察対象物2との少なくとも一方を第1光軸O1方向に移動させて観察対象物2の位置2aを検出し、界面検出部30に界面3aを検出させ、観察対象物2の位置2aと界面3aの位置とに基づいて一定距離の値(オフセット値OS)を求める第1探索部71dを備え、第1制御部71aは、第1探索部71dにより求められた値に基づいて焦点維持制御を実行する。このような構成によれば、第1探索部71dが自動的にオフセット値OSを探索して設定するので、使用者によるオフセット値OSの入力の手間を省くことができる。
 また、第4実施形態では、第1探索部71dは、対物レンズ21と観察対象物2との少なくとも一方の移動中に撮像部60で撮像された画像に基づいて観察対象物2の位置2aを検出する。このような構成によれば、画像に基づいて正確な観察対象物2の位置2aを検出することができ、その結果、一定距離の値の精度も向上する。
 なお、上記した第4実施形態の構成によれば、第1探索部71dは、状況によっては1000μm近くの範囲において最初の位置2aの探索を行う必要がある。この場合、位置2aの探索に時間がかかってしまうため、結果的にオフセット値OSの探索に時間がかかってしまう。しかし、オフセット値OSの探索に必要な時間は最初の1回だけであるので、すべての試料2の撮像時間は短縮される。また、通常、このような位置2aの探索は2段階のスキャン(走査)で行われる。第1段階は、第1探索部71dは、1000μmの範囲において20μmの間隔でコントラスト信号を取得する。この場合、撮像部60による500枚の画像取得が必要となる。次に、第1探索部71dは、最大コントラストの位置の前後40μmの範囲において2μmの間隔でコントラスト信号を取得する。この場合、撮像部60による20枚の画像取得が行われる。第1探索部71dは、20枚の画像の中で最大コントラストが得られた画像の位置を最適なZ方向の位置に採用する。
 <第5実施形態>
 第5実施形態においても、上記した第4実施形態と同様に、制御部が自動的にオフセット値OSを探索して設定する。しかし、上記した第4実施形態では、第1探索部71dは界面検出部30をオフ状態にした後にオフセット値OSの探索を行っていたのに対し、第5実施形態では、第2探索部は界面検出部30をオン状態にしたままオフセット値OSの探索を行う。
 図11は、第5実施形態に係る顕微鏡装置1の制御系の構成を示すブロック図である。図11に示すように、制御部71Cは第2探索部71eを備えている点で図2、図7及び図9に示す構成と異なる。第2探索部71eは、界面検出部30に界面3aの検出を実行させつつ対物レンズ21と観察対象物2との少なくとも一方を第1光軸O1方向に移動させて観察対象物2の位置2aを検出し、観察対象物2の位置2aと界面3aの位置とに基づいて一定距離の値(オフセット値OS)を求める。本実施形態では、第1制御部71aは、第2探索部71eにより求められた値(オフセット値OS)に基づいて焦点維持制御を実行する。図11において、その他の構成については図2、図7及び図9に示した構成と同様であるので、同一構成については同一符号を付して重複する説明を省略する。
 図12は、第5実施形態に係る焦点調節方法を説明するためのフローチャートである。なお、図12において、ステップS4~S12の処理は図5に示した処理と同様であるため、同一処理には同一符号を付して重複する説明を省略する。
 図12に示す処理において、第1制御部71aは、ステージ駆動部11に制御信号を出力して、XYステージ10をXY平面内の初期位置に移動させる(ステップS51)。次に、第2探索部71eは、界面検出部30をオンにする(ステップS52)。界面検出部30がオンの状態になると、界面検出部30は反射面3aの位置を検出する。
 次に、第2探索部71eは、界面検出部30をオン状態のまま、レンズ駆動部34に対して制御信号を出力して、オフセットレンズ32を移動させてオフセット値OSを変更して初期値にする(ステップS53)。この際、オフセット値OSの初期値は0が適当である。また、第2探索部71eは、ユニット駆動部36に対して制御信号を出力して、光像の結像位置Aが反射面3aの位置に合った状態を維持しつつ、オフセット値OSの変更に連動させて対物レンズ21(及び界面検出部30)をZ方向に移動させる(ステップS54)。
 次に、第2探索部71eは、Z方向の所定間隔の位置ごとに、信号処理部61によって生成されるコントラスト信号を取得する(ステップS55)。そして、第2探索部71eは、すべての位置のコントラスト信号を取得したか否かを判定する(ステップS56)。第2探索部71eは、すべての位置のコントラスト信号を取得していないと判定した場合は(ステップS56のNO)、すべてのコントラスト信号を取得したと判定するまでステップS53~S55の処理を繰り返し実行する。
 一方、第2探索部71eは、すべての位置のコントラスト信号を取得したと判定した場合は(ステップS56のYES)、ステップS55で取得したコントラスト信号に基づいて、試料面2aの位置として最適なオフセット値OSを算出する(ステップS57)。例えば、第2探索部71eは、試料2の像のコントラストが最大となるようなオフセット値OSを試料面2aの位置として算出する。そして、第2探索部71eは、レンズ駆動部34及びユニット駆動部36に制御信号を出力することで、焦点位置FがステップS57で算出した最適なオフセット値OSとなるようにオフセットレンズ32及び対物レンズ21を移動させる(ステップS58)。その後、第1制御部71a及び第2制御部71bは、ステップS4~S12の処理を実行する。
 なお、上記した第5実施形態においても、制御部71は、対物レンズ21(及び界面検出部30)をZ方向に移動させていたが、制御部71は、対物レンズ21とXYステージ10(つまり試料2)との少なくとも一方をZ方向に移動させる構成であればよい。すなわち、制御部71は、対物レンズ21だけをZ方向に移動させてもよく、またXYステージ10だけをZ方向に移動させてもよく、また対物レンズ21及びXYステージ10の両方をZ方向に移動させてもよい。
 以上のように、第5実施形態では、界面検出部30に界面3aの検出を実行させつつ対物レンズ21と観察対象物2との少なくとも一方を第1光軸O1方向に移動させて観察対象物2の位置2aを検出し、観察対象物2の位置2aと界面3aの位置とに基づいて一定距離の値を求める第2探索部71eを備え、第1制御部71aは、第2探索部71eにより求められた値に基づいて焦点維持制御を実行する。このような構成によれば、第2探索部71eが自動的にオフセット値OSを探索して設定するので、使用者によるオフセット値OSの入力の手間を省くことができる。また、対物レンズ21と観察対象物2との少なくとも一方の移動中に、界面検出部30が界面3aの検出を行っているので、界面3aの検出に基づいて対物レンズ21と観察対象物2(XYステージ10)との間の距離に制限を設けることができる。従って、対物レンズ21と観察対象物2(XYステージ10)とが移動によってぶつかってしまうことを回避させることができる。
 また、第5実施形態では、第2探索部71eは、対物レンズ21と観察対象物2との少なくとも一方の移動中に撮像部60で撮像された画像に基づいて観察対象物2の位置2aを検出する。このような構成によれば、画像に基づいて正確な観察対象物2の位置2aを検出することができ、その結果、一定距離の値の精度も向上する。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は、上記実施の形態に記載の範囲には限定されない。本発明の趣旨を逸脱しない範囲で、上記実施の形態に、多様な変更または改良を加えることが可能である。また、上記の実施の形態で説明した要件の1つ以上は、省略されることがある。そのような変更または改良、省略した形態も本発明の技術的範囲に含まれる。また、上記した実施の形態や変形例の構成を適宜組み合わせて適用することも可能である。
 上記した第1実施形態から第5実施形態までの各々の構成の組み合わせ方としては、次のようなものがある。まず、オフセット値OSを求める方式として、(1)入力部72からのオフセット値OSの入力(ステップS2参照)、(2)界面検出部30がオフ状態における画像AF制御の実行(ステップS42~S49参照)、(3)界面検出部30がオン状態における画像AF制御の実行(ステップS52~S58参照)、の3種類の方式がある。また、焦点維持制御を実行するタイミングとして、(4)XYステージ10の移動時(ステップS3,S4参照)、(5)タイムラプス観察の待機時(ステップS3,S31参照)、の2種類がある。また、画像AF制御の方式として、(6)界面検出部30のオフ状態での画像AF制御、(7)界面検出部30のオン状態での画像AF制御、の2種類がある。これらの構成を適宜組み合わせて適用することが可能である。
 また、図1に示した光学顕微鏡は倒立型顕微鏡であったが、このような顕微鏡に限定されず、上記した実施の形態や変形例の構成は正立型顕微鏡などにも適用することが可能である。また、図1に示した光学顕微鏡の照明装置として反射式照明を利用していたが、透過式照明を利用してもよい。
 また、試料2を収容する容器はマイクロプレート3を用いていたが、このような構成に限らず、例えば試料2をカバーガラスとスライドガラスとで挟み込む構成でもよい。また、界面3aはマイクロプレート3の底部の底面としていたが、赤外光の反射が強ければマイクロプレート3の底部の上面であってもよい。
 また、フォーカス光学系30Aにおいて光路上にスリット板を設けることにより、反射面3aに照射する光像をスリット像としてもよい。この場合、制御部は界面検出部30からの検出信号に基づいてスリット像を検出し、検出したスリット像により結像位置Aを認識する。また、第1光源31は赤外光を照射する赤外線LEDとしていたが、赤外光以外の波長の光(例えば赤外光以外の長波長の光)を照射する光源であってもよい。また、光電変換器35はラインCCDセンサを用いていたが、ラインCMOSセンサ(CMOS:Complementary Metal Oxide Semiconductor:相補性金属酸化膜半導体)を用いてもよい。
 また、オフセットレンズ32は、凹レンズ32bを第2光軸O2に沿って移動させて結像位置Aを変更するように構成していたが、凸レンズ32aを第2光軸O2に沿って移動させて結像位置Aを変更してもよく、また凸レンズ32a及び凹レンズ32bの両方を第2光軸O2に沿って移動させて結像位置Aを変更してもよい。
 また、焦点調節装置のすべての構成が顕微鏡装置1に設けられていない構成でもよい。例えば、制御部71,71A,71B,71C、入力部72、記憶部73などの構成が顕微鏡装置1とは別のコンピュータなどの装置に設けられてもよい。また、顕微鏡装置1は画像解析装置や画像解析用の制御プログラムを備えたコンピュータなどと接続されてもよい。また、制御部71,71A,71B,71Cに制御・処理を実行させる制御プログラムは記憶部73に記憶されていたが、制御プログラムは記憶媒体に記憶させてもよい。
 また、撮像部60によって1回に撮像される試料2(サンプル)の数は1つに限らず、2つ以上であってもよい。また、撮像部60はCCDセンサを用いていたが、CCDセンサに代えてCMOSセンサを用いてもよい。
 また、画像AF制御において、制御部は、信号処理部61によって生成されるコントラスト信号に基づいて焦点位置Fを決定していたが、信号処理部61によって生成される画像データに基づいて焦点位置Fを決定してもよい。また、画像AF制御において蛍光画像を使用していたが、透過像の明視野又は位相差像を使用してもよい。また、撮像部60は、画像の取得(ステップS11参照)を行うとともに画像AF制御用の画像も取得していたが(ステップS7等参照)、撮像部60とは別に、画像AF制御用の撮像装置を設けてもよい。この場合、画像AF制御用の撮像装置と撮像部60とは同じ焦点位置が設定される。この場合、画像取得の時間が短い高感度の撮像装置を用いることが好ましい。
 また、信号処理部61は、撮像部60が取得する2次元の画像信号に基づいてコントラスト信号を生成するのではなく、1次元の画像信号に基づいてコントラスト信号を生成してもよい。この場合、画像信号を取得する撮像部は1次元画像センサを用いることができる。また、制御部は、コントラストが最大となる位置を焦点位置として決定していたが、信号強度が最大となる位置を焦点位置として決定してもよい。
 また、ユニット駆動部36は、対物レンズ21と界面検出部30とが結合されたユニットをZ方向に移動させていたが、対物レンズ21だけをZ方向に移動させてもよい。また、ステージ駆動部11、レンズ駆動部34、及びユニット駆動部36の駆動方法は、電動モータの回転させる方法が想定される。しかし、このような駆動方法に限定されず、例えばピエゾ素子をXYステージ10、オフセットレンズ32の保持部、及び対物レンズ21の取り付け部に取り付けて、ピエゾ素子により移動させてもよい。
 また、制御部は、オフセット値の履歴を参照してオフセット値を設定してもよい。例えば、制御部は、以前に行った実験条件の中から今回の実験条件と同じ実験条件を検索し、同じ実験条件におけるオフセット値を今回の実験条件におけるオフセット値としてもよい。また、制御部は、XYステージ10の移動があるときは常に焦点維持制御を行っていたが、所定番目のXYステージ10の移動についてだけ(例えば1回おきのXYステージ10の移動についてだけ)焦点維持制御を行ってもよい。また、制御部は、タイムラプス観察における規定時間の間隔が短い場合は、規定時間の待機中に常に焦点維持制御を行うのではなく、所定番目の規定時間の待機においてだけ焦点維持制御を行ってもよい。
 また、制御部は、XYステージ10の移動や規定時間の待機があるごとにオフセット値を更新してもよい。すなわち、制御部は、前回の試料2の撮像時にオフセット値の変更があった場合は、変更されたオフセット値を今回の試料2の撮像時における焦点維持制御において用いるようにしてもよい。
 1…顕微鏡装置、2…試料(観察対象物)、3…マイクロプレート(容器)、10…XYステージ、11…ステージ駆動部(第2駆動部)、21…対物レンズ、30…界面検出部、30A…フォーカス光学系、31…第1光源(光源)、32…オフセットレンズ(レンズ)、34…レンズ駆動部、35…光電変換器、36…ユニット駆動部(第1駆動部)、60…撮像部、61…信号処理部、71…制御部、71a…第1制御部、71b…第2制御部、71c…撮像制御部、71d…第1探索部、71e…第2探索部、72…入力部、OS…オフセット値(一定距離)、A…結像位置、F…焦点位置、O1…第1光軸、O2…第2光軸

Claims (14)

  1.  観察対象物を収容する容器にある界面の位置を検出する界面検出部と、
     前記界面検出部で検出された前記界面から対物レンズの光軸方向に一定距離の基準位置に前記対物レンズの焦点位置を維持する焦点維持制御を実行し、撮像部による撮像タイミングにおいて、前記基準位置を参照し前記対物レンズと前記観察対象物との少なくとも一方を前記光軸方向に移動させることで前記焦点位置を前記基準位置から変更する制御部と、を備える焦点調節装置。
  2.  前記制御部は、撮像部による撮像が行われていないときに、前記界面検出部で検出された前記界面から第1光軸方向に一定距離の基準位置に焦点位置を維持する焦点維持制御を実行する第1制御部と、前記撮像部による撮像タイミングにおいて、対物レンズと前記観察対象物との少なくとも一方を前記光軸方向に移動させることで前記焦点位置を前記基準位置から前記観察対象物の位置に変更する第2制御部と、を備える請求項1に記載の焦点調節装置。
  3.  前記対物レンズと前記観察対象物との少なくとも一方を前記光軸方向に移動させる第1駆動部を備え、
     前記第1制御部は、前記第1駆動部の駆動制御を実行することにより前記焦点維持制御を実行し、
     前記第2制御部は、前記第1駆動部の駆動制御を実行することにより前記焦点位置を前記基準位置から前記観察対象物の位置に変更する請求項2に記載の焦点調節装置。
  4.  前記第2制御部は、前記観察対象物の位置を検出し、検出した前記観察対象物の位置に前記焦点位置を変更する請求項2または請求項3に記載の焦点調節装置。
  5.  前記第2制御部は、前記対物レンズと前記観察対象物との少なくとも一方の移動中に前記撮像部で取得された信号に基づいて前記観察対象物の位置を検出する請求項2から4のいずれか一項に記載の焦点調節装置。
  6.  前記観察対象物を前記光軸方向に対して垂直平面内に移動させる第2駆動部を備え、
     前記第1制御部は、前記第2駆動部による前記観察対象物の移動中に前記焦点維持制御を実行し、
     前記第2制御部は、前記第2駆動部による前記観察対象物の移動が停止しているときに前記焦点位置を前記基準位置から前記観察対象物の位置に変更する請求項1から5のいずれか一項に記載の焦点調節装置。
  7.  前記撮像部に対して所定時間ごとに前記観察対象物の撮像を実行させる撮像制御部を備え、
     前記第1制御部は、前記撮像制御部が前記撮像部に撮像を実行させていないときに前記焦点維持制御を実行し、
     前記第2制御部は、前記撮像制御部が前記撮像部に撮像を実行させる撮像タイミングにおいて前記焦点位置を前記基準位置から前記観察対象物の位置に変更する請求項1から6のいずれか一項に記載の焦点調節装置。
  8.  前記界面検出部は、
     光源と、
     前記光源からの光に基づく光像を前記対物レンズを介して前記界面上に結像させ、前記界面からの前記光像の反射光を前記対物レンズを介して受光して前記光像の反射像を結像させるフォーカス用光学系と、
     前記フォーカス用光学系による前記反射像の結像位置に設けられ、前記反射像を検出する光電変換器と、を含み、
     前記フォーカス用光学系は、該光学系の第2光軸方向に移動可能なレンズを含み、
     前記第2制御部は、前記光電変換器からの信号に基づき前記界面検出部に前記界面の検出を実行させつつ前記レンズを前記第2光軸方向に移動させることで前記一定距離を変更し、前記一定距離の変更に連動させて前記対物レンズと前記観察対象物との少なくとも一方を前記光軸方向に移動させる請求項7に記載の焦点調節装置。
  9.  前記対物レンズと前記観察対象物との少なくとも一方を前記光軸方向に移動させて前記観察対象物の位置を検出し、前記界面検出部に前記界面を検出させ、前記観察対象物の位置と前記界面の位置とに基づいて前記一定距離の値を求める第1探索部を備え、
     前記第1制御部は、前記第1探索部により求められた値に基づいて前記焦点維持制御を実行する請求項1から8のいずれか一項に記載の焦点調節装置。
  10.  前記界面検出部に前記界面の検出を実行させつつ前記対物レンズと前記観察対象物との少なくとも一方を前記光軸方向に移動させて前記観察対象物の位置を検出し、前記観察対象物の位置と前記界面の位置とに基づいて前記一定距離の値を求める第2探索部を備え、
     前記第1制御部は、前記第2探索部により求められた値に基づいて前記焦点維持制御を実行する請求項1から9のいずれか一項に記載の焦点調節装置。
  11.  前記第1探索部又は前記第2探索部は、前記対物レンズと前記観察対象物との少なくとも一方の移動中に前記撮像部で撮像された画像に基づいて前記観察対象物の位置を検出する請求項11または請求項12に記載の焦点調節装置。
  12.  請求項1から13のいずれか一項に記載の焦点調節装置を備えた顕微鏡装置。
  13.  観察対象物に合焦させる焦点調節方法であって、
     前記観察対象物を収容する容器にある界面の位置を検出することと、
     検出された前記界面から対物レンズの光軸方向に一定距離の基準位置に前記対物レンズの焦点位置を維持する焦点維持制御を実行し、撮像部による撮像タイミングにおいて、前記基準位置を参照し前記対物レンズと前記観察対象物との少なくとも一方を前記光軸方向に移動させることで前記焦点位置を前記基準位置から変更することと、を備える焦点調節方法。
  14.  コンピュータに、
     観察対象物を収容する容器にある界面の位置を界面検出部に検出させる検出処理と、
     前記検出処理で検出された前記界面から対物レンズの光軸方向に一定距離の基準位置に前記対物レンズの焦点位置を維持する焦点維持制御を実行し、撮像部による撮像タイミングにおいて、前記基準位置を参照し前記対物レンズと前記観察対象物との少なくとも一方を前記光軸方向に移動させることで前記焦点位置を前記基準位置から変更する制御処理と、を実行させる制御プログラム。
PCT/JP2014/064424 2014-05-30 2014-05-30 焦点調節装置、顕微鏡装置、焦点調節方法、及び制御プログラム WO2015181951A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2014/064424 WO2015181951A1 (ja) 2014-05-30 2014-05-30 焦点調節装置、顕微鏡装置、焦点調節方法、及び制御プログラム
EP23203488.4A EP4303639A3 (en) 2014-05-30 2014-05-30 Focusing device, microscope device, focusing method, and control program
US15/314,762 US10473906B2 (en) 2014-05-30 2014-05-30 Microscope
EP14893365.8A EP3151053B1 (en) 2014-05-30 2014-05-30 Focusing device, microscope device, focusing method, and control program
JP2016523057A JP6673198B2 (ja) 2014-05-30 2014-05-30 顕微鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/064424 WO2015181951A1 (ja) 2014-05-30 2014-05-30 焦点調節装置、顕微鏡装置、焦点調節方法、及び制御プログラム

Publications (1)

Publication Number Publication Date
WO2015181951A1 true WO2015181951A1 (ja) 2015-12-03

Family

ID=54698327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064424 WO2015181951A1 (ja) 2014-05-30 2014-05-30 焦点調節装置、顕微鏡装置、焦点調節方法、及び制御プログラム

Country Status (4)

Country Link
US (1) US10473906B2 (ja)
EP (2) EP4303639A3 (ja)
JP (1) JP6673198B2 (ja)
WO (1) WO2015181951A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244275A1 (ja) * 2018-06-20 2019-12-26 株式会社日立ハイテクノロジーズ 観察装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11079584B2 (en) * 2016-10-24 2021-08-03 City University Of Hong Kong Method for use in optical imaging, a system for using in optical imaging and an optical system
CN107656364B (zh) * 2017-11-16 2020-10-23 宁波舜宇仪器有限公司 一种显微成像系统及其实时对焦方法
DE102018128281B3 (de) 2018-11-12 2019-11-14 Leica Microsystems Cms Gmbh Mikroskopsystem und Verfahren zur Untersuchung einer Probe
DE112021001887T5 (de) * 2020-03-27 2023-01-05 Sony Group Corporation Mikroskopsystem, bildgebungsverfahren und bildgebungsvorrichtung
JP2023066985A (ja) * 2021-10-29 2023-05-16 株式会社ニューフレアテクノロジー 検査装置及び焦点位置調整方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091821A (ja) * 1999-09-21 2001-04-06 Olympus Optical Co Ltd 顕微鏡用オートフォーカスシステム
JP2004070276A (ja) * 2002-06-14 2004-03-04 Nikon Corp オートフォーカス装置
JP2005128493A (ja) * 2003-09-29 2005-05-19 Olympus Corp 顕微鏡システム
JP2007148221A (ja) * 2005-11-30 2007-06-14 Nikon Corp 間欠撮影装置
JP2008122857A (ja) * 2006-11-15 2008-05-29 Olympus Corp 自動焦点検出装置、その制御方法、及び顕微鏡システム
JP2013020172A (ja) * 2011-07-13 2013-01-31 Nikon Corp オートフォーカス装置、顕微鏡装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3828381C2 (de) 1988-08-20 1997-09-11 Zeiss Carl Fa Verfahren und Einrichtung zur automatischen Fokussierung eines optischen Systems
JP3240677B2 (ja) * 1992-02-25 2001-12-17 ソニー株式会社 フォーカス調整装置
JP2711042B2 (ja) 1992-03-30 1998-02-10 シャープ株式会社 クリーム半田の印刷状態検査装置
IL118030A0 (en) * 1996-04-25 1996-08-04 Scitex Corp Ltd A confocal measuring device and method
US6071748A (en) * 1997-07-16 2000-06-06 Ljl Biosystems, Inc. Light detection device
US6130745A (en) * 1999-01-07 2000-10-10 Biometric Imaging, Inc. Optical autofocus for use with microtiter plates
WO2003095986A1 (en) * 2002-05-14 2003-11-20 Amersham Biosciences Niagara, Inc. System and methods for rapid and automated screening of cells
US7345814B2 (en) 2003-09-29 2008-03-18 Olympus Corporation Microscope system and microscope focus maintaining device for the same
JP4914715B2 (ja) 2004-06-21 2012-04-11 オリンパス株式会社 倒立顕微鏡システム
US20060001954A1 (en) * 2004-06-30 2006-01-05 Michael Wahl Crystal detection with scattered-light illumination and autofocus
JP5070696B2 (ja) 2005-11-29 2012-11-14 株式会社ニコン オートフォーカス装置とこれを有する顕微鏡
JP2008250238A (ja) * 2007-03-30 2008-10-16 Olympus Corp 自動合焦装置
US8629382B2 (en) 2007-09-03 2014-01-14 Nikon Corporation Auto focus apparatus for detecting a focal point with a setting section for shifting an irradiation position outside an observation field of an imaging section
DE102008018951A1 (de) * 2008-04-15 2009-10-22 Carl Zeiss Microimaging Gmbh Mikroskop mit Haltefokuseinheit
JP5131071B2 (ja) 2008-07-18 2013-01-30 株式会社ニコン 蛍光顕微鏡装置及び焦点検出装置
JP5272823B2 (ja) * 2009-03-17 2013-08-28 ソニー株式会社 焦点情報生成装置及び焦点情報生成方法
CA2766102C (en) 2009-06-26 2016-10-11 Bio-Rad Laboratories, Inc. Modular microscope construction
DE102011003807A1 (de) * 2011-02-08 2012-08-09 Leica Microsystems Cms Gmbh Mikroskop mit Autofokuseinrichtung und Verfahren zur Autofokussierung bei Mikroskopen
JP5655617B2 (ja) 2011-02-18 2015-01-21 株式会社ニコン 顕微鏡
US10001622B2 (en) * 2011-10-25 2018-06-19 Sanford Burnham Medical Research Institute Multifunction autofocus system and method for automated microscopy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091821A (ja) * 1999-09-21 2001-04-06 Olympus Optical Co Ltd 顕微鏡用オートフォーカスシステム
JP2004070276A (ja) * 2002-06-14 2004-03-04 Nikon Corp オートフォーカス装置
JP2005128493A (ja) * 2003-09-29 2005-05-19 Olympus Corp 顕微鏡システム
JP2007148221A (ja) * 2005-11-30 2007-06-14 Nikon Corp 間欠撮影装置
JP2008122857A (ja) * 2006-11-15 2008-05-29 Olympus Corp 自動焦点検出装置、その制御方法、及び顕微鏡システム
JP2013020172A (ja) * 2011-07-13 2013-01-31 Nikon Corp オートフォーカス装置、顕微鏡装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244275A1 (ja) * 2018-06-20 2019-12-26 株式会社日立ハイテクノロジーズ 観察装置
JPWO2019244275A1 (ja) * 2018-06-20 2021-06-24 株式会社日立ハイテク 観察装置
JP7034280B2 (ja) 2018-06-20 2022-03-11 株式会社日立ハイテク 観察装置
US11892706B2 (en) 2018-06-20 2024-02-06 Hitachi High-Tech Corporation Observation device

Also Published As

Publication number Publication date
EP3151053A4 (en) 2018-03-21
EP3151053A1 (en) 2017-04-05
US20170205614A1 (en) 2017-07-20
EP4303639A2 (en) 2024-01-10
JPWO2015181951A1 (ja) 2017-04-20
US10473906B2 (en) 2019-11-12
EP3151053B1 (en) 2023-11-29
JP6673198B2 (ja) 2020-03-25
EP4303639A3 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
WO2015181951A1 (ja) 焦点調節装置、顕微鏡装置、焦点調節方法、及び制御プログラム
JP5819389B2 (ja) 撮像システムおよび技法
JP5621259B2 (ja) 顕微鏡装置
US11300770B2 (en) Inclination measurement and correction of the cover glass in the optical path of a microscope
US9632303B2 (en) Optical microscope, and autofocus device for optical microscope
JP2008276070A (ja) 拡大撮像装置
TWI456254B (zh) 螢光顯微影像系統
WO2017175783A1 (ja) 底面位置検出装置、画像取得装置、底面位置検出方法および画像取得方法
JP6173154B2 (ja) 顕微鏡システム
JP2006058642A (ja) 自動焦点検出装置およびこれを備える顕微鏡システム
JP6685148B2 (ja) 撮像装置および撮像方法
JP6822535B2 (ja) 焦点調節装置、顕微鏡装置、焦点調節方法、及び制御プログラム
JP4974060B2 (ja) 創薬スクリーニング方法
JP5959247B2 (ja) 顕微鏡
JP2017097301A (ja) 制御装置、顕微鏡装置、制御方法、及び制御プログラム
JP2004144839A (ja) 光走査装置
JP5108627B2 (ja) 観察装置及び観察方法
JP2017003827A (ja) 顕微鏡装置、制御方法および制御プログラム
JP2010091468A (ja) 収差測定装置
JP2013088570A (ja) 顕微鏡装置
US10782515B2 (en) Microscope system, observation method, and computer-readable recording medium
JP5400499B2 (ja) 焦点検出装置
WO2019244275A1 (ja) 観察装置
JP2019159341A (ja) 顕微鏡、観察方法、及び制御プログラム
JP4381687B2 (ja) 全反射蛍光顕微測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893365

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016523057

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014893365

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014893365

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15314762

Country of ref document: US