WO2015178335A1 - 吸湿性粒子 - Google Patents
吸湿性粒子 Download PDFInfo
- Publication number
- WO2015178335A1 WO2015178335A1 PCT/JP2015/064155 JP2015064155W WO2015178335A1 WO 2015178335 A1 WO2015178335 A1 WO 2015178335A1 JP 2015064155 W JP2015064155 W JP 2015064155W WO 2015178335 A1 WO2015178335 A1 WO 2015178335A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- salt
- sulfonic acid
- hygroscopic
- group
- carboxyl group
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/265—Synthetic macromolecular compounds modified or post-treated polymers
- B01J20/267—Cross-linked polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/26—Drying gases or vapours
- B01D53/28—Selection of materials for use as drying agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/261—Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28004—Sorbent size or size distribution, e.g. particle size
- B01J20/28007—Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
Definitions
- the present invention relates to hygroscopic particles. More specifically, the present invention has excellent hygroscopicity and hygroscopic rate, and also has excellent hygroscopic performance even under high temperature conditions, and effectively prevents moisture desorption under high temperature conditions. Related to sex particles.
- lithium chloride and calcium chloride have the advantage of high moisture absorption and high moisture absorption speed, but have the disadvantage of becoming liquefied after moisture absorption due to deliquescence, and hygroscopic agents such as silica gel and zeolite absorb and release.
- hygroscopic agent As a hygroscopic agent having high hygroscopicity and hygroscopicity and excellent moisture absorption / release rate, it contains 1.0 to 8.0 meq / g of potassium salt type carboxyl group, and divinylbenzene Hygroscopic polymer (Patent Document 1) comprising a vinyl polymer having a cross-linked structure obtained by copolymerization of salt, a salt-type carboxyl group as a polar group of 1.0 to 10.0 meq / g, and sulfone Hygroscopic ultrafine particles comprising a crosslinked polymer containing acid groups and / or salt-type sulfonic acid groups in an amount of 0.1 to 2.0 meq / g, and the average primary particle diameter is 0.1 ⁇ m or less, 20 Hygroscopic ultrafine particles (Patent Document 2) characterized in that saturated moisture absorption at 20 ° C., 65% RH and 90% RH are 20% by weight or more and 40%
- the hygroscopic polymer or hygroscopic ultrafine particles disclosed in the above patent documents are various electronic devices that have been developed and put into practical use in recent years, such as organic electroluminescence (organic EL), solar cells, touch panels, electronic It has not been fully satisfactory for use in fields such as paper. That is, in organic EL and the like, since it does not like charge leakage, a high moisture barrier property is required for a plastic substrate such as a plastic substrate that forms the circuit board or a film that seals the circuit board. Therefore, a hygroscopic agent is also used together with various barrier materials. Since these products all require durability under high-temperature conditions, the hygroscopic polymer or hygroscopic ultrafine particles that exhibit high moisture-releasing performance under high-temperature conditions are used in the aforementioned fields. It is difficult to use for products.
- an object of the present invention is to provide hygroscopic particles having excellent hygroscopicity and hygroscopic speed, excellent hygroscopic performance even under high temperature conditions, and effectively preventing moisture release under high temperature conditions.
- hygroscopic particles comprising a crosslinked polymer containing 6.0 to 12.0 meq / g of carboxyl groups and 0.1 to 2.0 meq / g of sulfonic acid groups and / or salt-type sulfonic acid groups. And the hygroscopic particle
- the average primary particle size is 100 nm or less, 2.
- the hygroscopic particles of the present invention can exhibit excellent hygroscopic performance even under high temperature conditions of 50 ° C. or higher, particularly 70 ° C. or higher, and the release of moisture once trapped in an airtight container is effectively suppressed. . In addition, it has excellent moisture absorption capability even in a low humidity atmosphere, and has extremely high moisture absorption performance.
- the hygroscopic particles of the present invention are a hygroscopic particle comprising a cross-linked polymer containing 6.0 to 12.0 meq / g of carboxyl groups and 0.1 to 2.0 meq / g of sulfonic acid groups and / or salt-type sulfonic acid groups. It is an important characteristic that 80% or more of the carboxyl groups are neutralized with a potassium salt.
- the carboxyl group which is a functional group for expressing hygroscopicity, is in the range of 6.0 to 12.0 meq / g, particularly 7.0 to 12.0 meq / g.
- this carboxyl group is neutralized with a potassium salt, so that even in high-temperature conditions of 50 ° C. or more, particularly 70 ° C., in a sealed container. Moisture absorption is possible and moisture release can be suppressed. That is, the hygroscopic performance of monovalent alkali metal salt type carboxyl groups such as Li, Na, K, Rb, and Cs is determined by the number of hygroscopic sites and the Coulomb force representing the interaction strength with water.
- the potassium salt type carboxyl group Since it is related to the ionic radius of the metal, the potassium salt type carboxyl group has both the number of hygroscopic sites and the strength of interaction with water in a balanced manner compared to other monovalent alkali metal salt type carboxyl groups. Therefore, it has excellent moisture absorption performance, and the humidity in the sealed container can be reduced to 0% RH even under high temperature conditions.
- such a potassium salt-type carboxyl group is present in an amount of 80% or more, particularly 85% or more of the total carboxyl groups, so that the hygroscopic performance under high temperature conditions is remarkably improved. . From the viewpoint of hygroscopicity, the neutralization amount is preferably as high as possible.
- the copolymer constituting the hygroscopic particles of the present invention contains 0.1 to 2.0 meq / g of a sulfonic acid group and / or a salt type sulfonic acid group together with the potassium salt type carboxyl group. is there.
- a sulfonic acid group and / or a salt-type sulfonic acid group in the above range, it is possible to stably obtain fine particles having excellent hygroscopicity and good dispersibility.
- the amount of the sulfonic acid group and / or the salt type sulfonic acid group is less than the above range, the fine particles cannot be stably obtained.
- the amount is larger than the above range, high hygroscopicity is obtained.
- Such operational effects of the hygroscopic particles of the present invention are also apparent from the results of Examples described later. That is, even when the amount of the carboxyl group and the amount of the sulfonic acid group and / or the salt-type sulfonic acid group are within the above range, if the neutralization amount by the potassium salt is less than 80%, While the ultimate humidity in the sealed container is 6.0% RH and the ultimate humidity in the sealed container at 70 ° C. is 6.8% RH (Comparative Example 3), the hygroscopic particles of the present invention are sealed at 50 ° C. It can be seen that the moisture absorption performance is remarkably excellent when the ultimate humidity in the container is 0% RH and the ultimate humidity in the sealed container at 70 ° C.
- the salt type of the carboxyl group is not a potassium salt. Shows that the reached humidity in the sealed container at 50 ° C. is 0.2% RH, and the reached humidity in the sealed container at 70 ° C. is 0.6% RH, so that moisture release under a high temperature environment cannot be suppressed. (Comparative Example 1).
- the amount of carboxyl group is less than 6.0 meq / g, regardless of the temperature condition.
- the amount of carboxyl groups is more than 12.0 meq / g, the hygroscopic particles are insufficiently cross-linked, causing aggregation of the particles and slowing the hygroscopic rate. .
- the hygroscopic particles of the present invention are particularly spherical fine particles having an average primary particle size (average primary particle size D 50 in terms of volume measured by a laser diffraction scattering method) of 100 nm or less, particularly 80 nm or less. preferable. That is, when the average primary particle size is 100 nm or less, the surface adsorption amount is increased because the specific surface area is large, and the movement time of water molecules to the center of the particle is short, contributing to moisture absorption to the particle center. Can exhibit high hygroscopicity.
- the dispersibility in the matrix is very good and can be dispersed uniformly. Further, such fine particles do not impair the transparency of the matrix, and can be suitably used for applications such as organic EL.
- the hygroscopic particles of the present invention contain 6.0 to 12.0 meq / g of carboxyl groups and 0.1 to 2.0 meq / g of sulfonic acid groups and / or salt-type sulfonic acid groups. 80% or more of the group is neutralized with a potassium salt, that is, a crosslinked polymer containing a potassium salt type carboxyl group in an amount of 4.8 meq / g or more, particularly 5.6 meq / g or more.
- a potassium salt that is, a crosslinked polymer containing a potassium salt type carboxyl group in an amount of 4.8 meq / g or more, particularly 5.6 meq / g or more.
- the method for introducing a potassium salt type carboxyl group is not limited to this, but (i) a monomer having a potassium salt type carboxyl group is homopolymerized or copolymerized with another copolymerizable monomer. (Ii) A method of obtaining a polymer having a carboxyl group and then converting it to a potassium salt type, (iii) A method of introducing a carboxyl group by chemical modification and changing to a potassium salt type, or (iv) It can be carried out by a method of carrying out the above methods (i) to (iii) by graft polymerization.
- Examples of the method for polymerizing a monomer having a potassium salt carboxyl group (i) to introduce a potassium salt carboxyl group include acrylic acid, methacrylic acid, maleic acid, itaconic acid, vinylpropionic acid and the like. Homopolymerization of a potassium salt-type monomer of a vinyl monomer containing a carboxyl group, copolymerization of two or more of these monomers, or other monomer capable of copolymerization with these monomers The method of obtaining a copolymer by copolymerization with a body is mentioned.
- the method for changing to the potassium salt type is that the vinyl monomer containing the carboxyl group is an acid type or a salt type other than the potassium salt type.
- the vinyl monomer containing the carboxyl group is an acid type or a salt type other than the potassium salt type.
- it can be made into a homopolymer or copolymer by the same method as described above, and then the polymer can be converted into a potassium salt type by ion exchange with potassium ions.
- the method for converting the carboxyl group into a salt form is not particularly limited, and can be performed by a method such as ion exchange by acting a solution containing a large amount of potassium ions such as an aqueous potassium hydroxide solution or an aqueous potassium chloride solution.
- Examples of the method of introducing a carboxyl group by chemical modification (iii) above include, for example, a homopolymer of a monomer having a functional group that can be modified to a carboxyl group by a chemical modification treatment, or a copolymer comprising two or more types.
- the above-described method for converting to a potassium salt type is applied to the modified carboxyl group.
- a method in which a carboxyl group is introduced into a polymer by hydrolysis treatment and then ion-exchanged to change to a potassium salt type can be preferably used.
- Monomers that can take such a method are monomers having a cyano group such as acrylonitrile and methacrylonitrile; derivatives such as acrylic acid, methacrylic acid, maleic acid, itaconic acid, vinylpropionic acid, For example, methyl (meth) acrylate, ethyl (meth) acrylate, normal propyl (meth) acrylate, isopropyl (meth) acrylate, normal butyl (meth) acrylate, normal octyl (meth) acrylate, (meth) Ester compounds such as 2-ethylhexyl acrylate and hydroxylethyl (meth) acrylate, anhydrides such as maleic anhydride and itaconic anhydride, (meth) acryl
- the method for introducing a salt-type carboxyl group by the hydrolysis reaction of the polymer is not particularly limited, and known hydrolysis conditions can be used.
- a salt-type carboxyl group using a basic aqueous solution it is mixed with a solution containing a large amount of potassium hydroxide or potassium chloride, or an ion exchange resin is allowed to act on the potassium salt-type carboxyl group by ion exchange.
- a mineral acid such as nitric acid, sulfuric acid or hydrochloric acid, or an organic acid such as formic acid or acetic acid to form a carboxylic acid group
- ion exchange is carried out in the same manner, and a potassium salt type carboxyl group is obtained.
- the method to introduce is mentioned.
- the condition for neutralizing 80% or more of the total carboxyl group with potassium salt is determined by a combination of conditions such as the type and concentration of the monomer and potassium compound used, the temperature and time of the reaction, etc.
- the reaction temperature is 90 to 96 ° C. and the reaction temperature is 24 to 48. It is preferred to carry out the time reaction.
- the hygroscopic particles of the present invention are made from a crosslinked polymer having a crosslinked structure from the viewpoint of expressing a high moisture absorption rate, suppressing volume change due to swelling during moisture absorption, and maintaining shape stability. It is desirable to consist.
- the method for introducing the crosslinked structure is not particularly limited, but in the method using a crosslinkable monomer in the polymerization step using the monomer or the method using chemical post-crosslinking after obtaining the polymer, a covalent bond is used. This is preferable because a strong cross-linked structure can be introduced, and cross-linkable particles that are less susceptible to physical or chemical modification can be obtained.
- crosslinkable monomers that can be used in the method of using a crosslinkable monomer in the monomer polymerization stage include glycidyl methacrylate, N-methylol acrylamide, triallyl isocyanurate, triallyl cyanurate, divinylbenzene, and hydroxyethyl methacrylate.
- cross-linkable vinyl compounds such as diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and methylenebisacrylamide.
- the cross-linked structure by divinylbenzene, triallyl isocyanurate, triallyl cyanurate, and methylene bisacrylamide is chemically used for hydrolysis to introduce carboxyl groups to be applied to cross-linked polymers containing these. Desirable because it is stable.
- the method by post-crosslinking is not particularly limited, for example, post-crosslinking in which a nitrile group contained in a nitrile polymer having a nitrile group-containing vinyl monomer content of 50% by weight or more and a hydrazine compound or formaldehyde are reacted.
- the law can be mentioned.
- the method using a hydrazine compound is stable against acids and alkalis, and since the formed crosslinked structure itself is hydrophilic, it can contribute to the improvement of hygroscopicity. This is extremely excellent in that a strong crosslink capable of maintaining the form can be introduced.
- the vinyl monomer having a nitrile group is not particularly limited, and examples thereof include acrylonitrile, methacrylonitrile, ethacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -fluoroacrylonitrile, vinylidene cyanide and the like. Most preferred is acrylonitrile, which has a large amount of nitrile groups and is economical.
- the method for introducing the cross-linking by reaction with the hydrazine-based compound is not particularly limited as long as the target cross-linked structure is obtained.
- the concentration of the acrylonitrile-based polymer and the hydrazine-based compound during the reaction, the solvent to be used, the reaction Time, reaction temperature, etc. can be suitably selected as necessary.
- hydrazine compounds examples include hydrazine salts such as hydrazine hydrate, hydrazine sulfate, hydrazine hydrochloride, hydrazine nitrate, hydrazine bromate, hydrazine carbonate, and ethylenediamine, sulfate guanidine, guanidine hydrochloride, guanidine nitrate, and phosphoric acid.
- hydrazine derivatives such as guanidine and melamine.
- the hygroscopic particles of the present invention have a sulfonic acid group and / or a salt sulfonic acid group together with a potassium salt carboxyl group.
- a sulfonic acid group and / or a salt-type sulfonic acid group By containing a sulfonic acid group and / or a salt-type sulfonic acid group, the hygroscopic particles can be stably obtained in an aqueous system, and since it is a hydrophilic group, the hygroscopic property is also excellent.
- the sulfonic acid group and / or salt-type sulfonic acid group described in the present invention includes a monosubstituted sulfate ester and a salt thereof (—O—SO 3 H (or M: salt)).
- the salt type sulfonic acid group is not particularly limited as long as it forms a salt structure with the sulfonic acid group.
- alkali metal such as Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba
- alkaline earth metals such as Cu, Zn, Al, Mn, Ag, Fe, Co, and Ni
- organic cations such as NH 4 + and amine compounds.
- the potassium salt type is more preferred because it can coexist with a potassium salt type carboxyl group that is particularly effective in improving the moisture absorption / release rate. Two or more of the above-mentioned salts can be used simultaneously.
- the method for introducing a sulfonic acid group and / or a salt type sulfonic acid group is not particularly limited, and a method of copolymerizing a monomer having a sulfonic acid group and / or a salt type sulfonic acid group, an initiator or a chain transfer agent.
- a method of introducing a sulfonic acid group and / or a salt-type sulfonic acid group at the end of the polymer, a reactive emulsifier having a sulfonic acid group and / or a salt-type sulfonic acid group, and polymerizing the sulfonic acid in the polymer examples thereof include a method of introducing a group and / or a salt type sulfonic acid group.
- a monomer that can be used in the method of copolymerizing a monomer having a sulfonic acid group and / or a salt-type sulfonic acid group for example, vinyl sulfonic acid (salt), (meth) allyl sulfonic acid (salt), Styrenesulfonic acid (salt), 4-sulfobutyl (meth) acrylate and salts thereof, methallyloxybenzenesulfonic acid (salt), allyloxybenzenesulfonic acid (salt), 2-acrylamido-2-methylpropanesulfonic acid (salt) And 2-sulfoethyl (meth) acrylate.
- a method of introducing an initiator terminal using an initiator capable of generating a sulfonic acid group and / or a salt-type sulfonic acid group radical can be exemplified.
- the initiator include thermal decomposition types of persulfates such as ammonium persulfate and potassium persulfate; and redox initiators such as persulfates, perchlorates, silver salts, Sulfonic acid (salt) among combinations of copper salt, iron (III) salt, etc.
- sulfite bisulfite, hyposulfite, pyrosulfite, triethanolamine, iron (II) salt
- reducing agent Mention may be made of any combination of initiators capable of generating radicals.
- initiators capable of generating radicals.
- chain transfer agent thioglycol sulfonic acid (salt) can be illustrated.
- the reactive emulsifier that can be used is not particularly limited.
- 4-nonyl-2- (1-propenyl) phenoxypolyethoxyethyl is used.
- Sulfonic acid and its salts Sulfo (salt) alkyl alkenyl ester of succinic acid, Sulfo (salt) Alkyl-allyloxy- (hydroxy) propyl ester of succinic acid, Alkyl-sulfo (salt) Phenoxy- (hydroxy) propyl (meth) acrylic An acid ester etc. can be mentioned.
- a polar group such as a group, a phosphate group, a salt-type phosphate group, a hydroxyl group, a nitro group, an aldehyde group, an amide group, a nitrile group or a mercapto group can also be contained.
- the polymerization method used for obtaining the hygroscopic particles of the present invention is not limited to this.
- a conventionally known polymerization method capable of forming fine particles such as emulsion polymerization, precipitation polymerization, and microemulsion polymerization should be adopted. Can do.
- the polymerization mode may be normal phase polymerization or reverse phase polymerization. Among them, it is preferable to use emulsion polymerization that has a range of choices such as the type and amount of the emulsifier and the initiator, and can obtain more various particulate polymers.
- the method using the reverse phase polymerization method has an advantage that the process can be simplified because the monomer having a carboxyl group as described above can be directly polymerized to obtain hygroscopic particles.
- a monomer having a functional group capable of introducing a carboxyl group by hydrolysis is used to carry out polymerization by normal phase polymerization to form particles and then a salt-type carboxyl group is introduced by hydrolysis, water is used as a solvent. Since it is used, it is easy to handle and environmentally friendly.
- the hygroscopic particles of the present invention include a monomer capable of obtaining a carboxyl group by hydrolysis such as methyl (meth) acrylate and a crosslinkable monomer copolymerizable with this monomer such as divinylbenzene.
- a cross-linked polymer is formed using a monomer and a monomer capable of introducing a sulfonic acid group and / or a salt-type sulfonic acid group, and the cross-linked polymer is hydrolyzed with potassium hydroxide to thereby form potassium.
- Method for preparing salt-type carboxyl group-containing crosslinked polymer particles, or after forming the above-mentioned crosslinked polymer, using other base such as sodium hydroxide to form salt-type carboxyl group, and then potassium ions such as potassium chloride A method of introducing a potassium salt type carboxyl group by mixing with a solution containing a large amount of ions or by ion exchange by acting an ion exchange resin, or reacting with a mineral acid such as hydrochloric acid. After the carboxylic acid groups, ion exchange in the same manner, it is particularly preferably produced by a method of preparing crosslinked polymer particles having a carboxyl group of a potassium type.
- crosslinked polymer particles having a potassium salt type carboxyl group can also be prepared.
- the ultimate humidity of the hygroscopic particles is measured by the following method. After drying at 140 ° C. for 1 hour, in a 30 ° C. 80% RH atmosphere, a moisture impervious steel foil laminated cup having an internal volume of 85 cm 3 , 0.5 g of a measurement object and a wireless thermohygrometer (High Glocron: KN Laboratories) was put in, the container mouth was heat-sealed with an aluminum foil laminated film lid, and left for 1 day. Then, it was left to stand at each temperature of 30, 50, and 70 ° C. for 3 hours, and the relative humidity in the container at that time was defined as the ultimate humidity at each temperature.
- Example 1 The polyacrylic acid H crosslinked product is neutralized with a 1N aqueous solution of potassium hydroxide by 80% to obtain hygroscopic particles of polyacrylic acid K having a potassium salt-type carboxyl group (water dispersion, solid content 10). % By weight, average particle diameter D 50 : 70 nm, neutralization rate 80%).
- Example 2 hygroscopic particles of polyacrylic acid K were obtained in the same manner as in Example 1 except that the neutralization rate of the cross-linked product of polyacrylic acid K having a potassium salt type carboxyl group was 100%. .
- Example 3 400 parts by weight of acrylonitrile, 40 parts by weight of methyl acrylate, 100 parts by weight of divinylbenzene, 26 parts by weight of sodium p-styrene sulfonate and 1181 parts by weight of water are charged into an autoclave in a 2000 ml container, and tert- Butyl peroxide was added in an amount of 0.5% by weight based on the total amount of monomers, sealed, and then polymerized at a temperature of 160 ° C. for 10 minutes under stirring. After completion of the reaction, the mixture was cooled to room temperature while continuing stirring, and then the polymer was removed from the autoclave to obtain an emulsion-like polyacrylonitrile-based polymer having a fine particle size.
- Example 1 Polyacrylic acid Na hygroscopic particles were obtained in the same manner as in Example 1 except that 1N aqueous solution of sodium hydroxide was used instead of 1N aqueous solution of potassium hydroxide.
- Example 2 In Example 1, instead of the 1N aqueous solution of potassium hydroxide, hygroscopic particles of polyacrylic acid Li were obtained in the same manner as in Example 1 except that a 1N aqueous solution of lithium hydroxide was used.
- Example 3 Polyacrylic acid K hygroscopic particles were obtained in the same manner as in Example 1 except that the neutralization rate of the cross-linked product of polyacrylic acid K was 23%.
- the hygroscopic particles of the present invention can exhibit excellent hygroscopic performance even under high temperature conditions of 50 ° C. or higher, and are excellent in dispersibility and transparency when blended in a matrix. It can be effectively used for barrier films and the like used in electronic devices such as required organic EL panels.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Drying Of Gases (AREA)
Abstract
Description
例えば、塩化リチウムや塩化カルシウムなどは吸湿量が多く吸湿速度が速いという利点があるが、潮解性があるため吸湿後液状化してしまうという欠点があり、またシリカゲルやゼオライト等の吸湿剤は吸放湿性を有することから繰り返し使用できるという利点があるが、吸湿量が少なく、再生に高温を要すると共に、吸放湿の繰り返しにより破砕しやすく、更に樹脂との混合が困難であるという欠点がある。更に、ポリアクリル酸塩に代表される吸水性樹脂においては、吸水性能には優れているが吸湿性という観点からは充分満足するものではない。
すなわち、有機ELなどでは、電荷のリークを嫌うため、その回路基板などを形成するプラスチック基材或いは回路基板を封止するフィルムなどのプラスチック基材に対して高い水分バリア性が要求されていることから、各種バリア性材料と共に吸湿剤も使用されている。これらの製品は、いずれも高温条件下での耐久性が要求されることから、高温条件下で高い放湿性能を発現する上記吸放湿性重合体或いは吸放湿性超微粒子では、前述した分野の製品に使用することは困難である。
本発明の吸湿性粒子においては、
1.平均一次粒子径が100nm以下であること、
2.加水分解によりカルボキシル基が得られる単量体とジビニルベンゼンを単量体組成として含む共重合体に、加水分解反応を経てカリウム塩型カルボキシル基を導入したものであること、
が好適である。
本発明の吸湿性粒子は、カルボキシル基を6.0~12.0meq/g及びスルホン酸基及び/又は塩型スルホン酸基を0.1~2.0meq/g含有する架橋重合体から成る吸湿性粒子であって、該カルボキシル基の80%以上がカリウム塩で中和されていることが重要な特徴である。
本発明においては、吸湿性を発現させるための官能基であるカルボキシル基が6.0~12.0meq/g、特に7.0~12.0meq/gの範囲にあることにより、優れた吸湿性及び吸湿速度を実現できると共に、このカルボキシル基の80%以上、特に85%以上が、カリウム塩で中和されていることにより、密閉容器内において、50℃以上、特に70℃の高温条件下でも吸湿可能であり、放湿を抑制することが可能になる。
すなわち、Li,Na,K,Rb,Cs等の一価のアルカリ金属塩型のカルボキシル基の吸湿性能は、吸湿サイト数と、水との相互作用強さを表わすクーロン力によって決定され、これらは金属のイオン半径に関係することから、カリウム塩型カルボキシル基は他の一価アルカリ金属塩型カルボキシル基に比して、吸湿サイト数及び水との相互作用の強さの両方をバランスよく兼ね備えており、優れた吸湿性能を有し、高温条件下でも密閉容器内の湿度を0%RHにすることが可能になる。
しかも本発明においては、このようなカリウム塩型カルボキシル基が、全カルボキシル基の80%以上、特に85%以上の量で存在することから、高温条件下での吸湿性能が顕著に向上されている。尚、吸湿性の観点からは中和量は可及的に高いことが好適である。
すなわち、カルボキシル基量、及びスルホン酸基及び/又は塩型スルホン酸基の量が上記範囲内にある場合であっても、カリウム塩による中和量が80%未満の場合には、50℃における密閉容器内の到達湿度が6.0%RH、70℃における密閉容器内の到達湿度が6.8%RHであるのに対し(比較例3)、本発明の吸湿性粒子は50℃における密閉容器内の到達湿度が0%RH、70℃における密閉容器内の到達湿度が0%RHと顕著に吸湿性能が優れていることが分かる(実施例1~3)。また、カルボキシル基量、カルボキシル基の中和率、及びスルホン酸基及び/又は塩型スルホン酸基の量が上記範囲内にある場合であっても、カルボキシル基の塩型がカリウム塩でない場合には、50℃における密閉容器内の到達湿度が0.2%RH、70℃における密閉容器内の到達湿度が0.6%RHと、高温環境下での放湿が抑制できていないことが分かる(比較例1)。
またスルホン酸基及び/又は塩型スルホン酸基の量や中和率が上記範囲にある場合であっても、カルボキシル基量が6.0meq/g未満である場合には、温度条件にかかわらず充分な吸湿能力を確保できず、カルボキシル基量が12.0meq/gよりも多い場合には、吸湿性粒子の架橋が不充分になり、粒子の凝集が生じると共に、吸湿速度も遅くなってしまう。更にカルボキシル基量及び中和率が上記範囲内にある場合であっても、スルホン酸基及び/又は塩型スルホン酸基の量が0.1meq/g未満である場合には、吸湿性粒子を安定して形成することができず、スルホン酸基及び/又は塩型スルホン酸基の量が2.0meq/gより多い場合には、高い吸湿性を示すカリウム塩型カルボキシル基の量が相対的に少なくなり、吸湿性能が低下してしまう。
本発明の吸湿性粒子は、前述した通り、カルボキシル基を6.0~12.0meq/g及びスルホン酸基及び/又は塩型スルホン酸基を0.1~2.0meq/g含有し、カルボキシル基の80%以上がカリウム塩で中和されていること、すなわちカリウム塩型カルボキシル基を4.8meq/g以上、特に5.6meq/g以上の量で含有する架橋重合体からなる。
カリウム塩型カルボキシル基の導入方法としては、これに限定されないが、(i)カリウム塩型カルボキシル基を有する単量体を単独重合するか又は共重合可能な他の単量体と共重合することによって重合体を得る方法、(ii)カルボキシル基を有する重合体を得た後にカリウム塩型に変える方法、(iii)化学変性によりカルボキシル基を導入し、カリウム塩型に変える方法、或いは(iv)グラフト重合により上記(i)~(iii)の方法を行う方法、により行うことができる。
また上記(ii)のカルボキシル基を有する重合体を得た後にカリウム塩型に変える方法としては、カルボキシル基を含有するビニル系単量体が、酸型あるいはカリウム塩型以外の他の塩型単量体である場合、上記と同様な方法により単独重合体、あるいは共重合体とした後、該重合体をカリウムイオンとイオン交換によりカリウム塩型とすることもできる。カルボキシル基を塩型にする方法としても特に限定はなく、水酸化カリウム水溶液、塩化カリウム水溶液等のカリウムイオンを大量に含む溶液を作用させてイオン交換を行う等の方法により行うことができる。
このような方法をとることのできる単量体としてはアクリロニトリル、メタクリロニトリル等のシアノ基を有する単量体;アクリル酸、メタクリル酸、マレイン酸、イタコン酸、ビニルプロピオン酸等の誘導体であり、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ノルマルプロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ノルマルブチル、(メタ)アクリル酸ノルマルオクチル、(メタ)アクリル酸-2-エチルヘキシル、ヒドロキシルエチル(メタ)アクリレート等のエステル化合物、無水マレイン酸、無水イタコン酸等の無水物、(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、モノエチル(メタ)アクリルアミド、ノルマル-t-ブチル(メタ)アクリルアミド等のアミド化合物等が例示できる。
尚、全カルボキシル基量の80%以上をカリウム塩で中和する条件としては、用いる単量体やカリウム化合物の種類や濃度、反応の温度及び時間等の条件の組合わせによって決定され、一概に規定できないが、例えば、カルボキシル基含有架橋共重合体としてアクリロニトリル及びジビニルベンゼンから成る共重合体を用いると共に、加水分解に水酸化カリウムを用いる場合には、90~96℃の反応温度で24~48時間反応を行うことが好適である。
単量体の重合段階で架橋性単量体を用いる方法では、前述したカルボキシル基を有する、或いはカルボキシル基に変性できる単量体を、下記の架橋性ビニル化合物を用い、これと共重合することにより共有結合に基づく架橋構造を有する架橋重合体を得ることができる。
単量体の重合段階で架橋性単量体を用いる方法に使用できる架橋性単量体としては、グリシジルメタクリレート、N-メチロールアクリルアミド、トリアリルイソシアヌレート、トリアリルシアヌレート、ジビニルベンゼン、ヒドロキシエチルメタクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、メチレンビスアクリルアミド等の架橋性ビニル化合物を挙げることができる。中でもジビニルベンゼン、トリアリルイソシアヌレート、トリアリルシアヌレート、メチレンビスアクリルアミドによる架橋構造は、これらを含有してなる架橋重合体に施すカルボキシル基を導入するための加水分解等の際にも化学的に安定であるので望ましい。
ニトリル基を有するビニルモノマーとしては、特に限定はなく、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、α-クロロアクリロニトリル、α-フルオロアクリロニトリル、シアン化ビニリデン等を挙げることができ、中でも、単位重量当たりのニトリル基量が多く、経済性に優れるアクリロニトリルが最も好ましい。
塩型スルホン酸基としては、スルホン酸基と塩構造を形成するものであれば特に限定はなく、例えばLi、Na、K、Rb、Cs等のアルカリ金属、Be、Mg、Ca、Sr、Ba等のアルカリ土類金属、Cu、Zn、Al、Mn、Ag、Fe、Co、Ni等のその他の金属、NH4 +、アミン化合物等の有機の陽イオン等を挙げることができる。なかでも、吸放湿速度の向上に特に効果のあるカリウム塩型カルボキシル基との共存が可能である、カリウム塩型がより好ましい。また、上記の塩を2種以上同時に用いることもできる。
中でも、乳化剤、開始剤の種類、量などの選択の幅があり、よりさまざまな粒子状重合体を得ることのできる乳化重合によることが好適である。
また、逆相重合法による方法では、上記のようなカルボキシル基を有する単量体を直接重合し、吸湿性粒子を得ることができるので、プロセスを簡略化できるメリットがある。一方、加水分解によりカルボキシル基を導入できる官能基を有する単量体を用い、順相重合法で重合を行い粒子とした後、加水分解により塩型カルボキシル基を導入する方法では、溶媒として水を用いるため取り扱いが容易で、環境にやさしいという利点がある。
イオン交換樹脂(オルガノ製、アンバーライト200CT)を用いて、ポリアクリル酸Naの架橋物(東洋紡製、タフチックHU-820E、水分散品、固形分13重量%、平均粒径D50:70nm)のナトリウム塩型カルボキシル基をカルボン酸基に変換し、カルボン酸基を有するポリアクリル酸Hの架橋物(水分散品、固形分13重量%、平均粒径D50:62nm)を得た。
十分乾燥した上記カルボン酸基を有するポリアクリル酸Hの架橋物1.0gを精秤し(X(g))、これに200mlの水を加えた。次いで水酸化ナトリウムの0.1N水溶液で常法に従って滴定曲線を求めた。該滴定曲線からカルボン酸基に消費された水酸化ナトリウム水溶液消費量(Y(ml))を求め、次式によって試料中に含まれるカルボキシル基量を算出した。
(カルボキシル基量meq/g)=0.1Y/X
上記ポリアクリル酸Hの架橋物を、燃焼イオンクロマトグラフィーにより硫黄濃度を定量し、その結果からスルホン酸基量を算出した。
吸湿性粒子の到達湿度を、以下のような方法で測定している。
140℃で1時間乾燥させた後、30℃80%RH雰囲気下で、内容積85cm3の水分不透過性のスチール箔積層カップに、測定物0.5gとワイヤレス式温湿度計(ハイグロクロン:KNラボラトリーズ製)を入れ、アルミ箔積層フィルム蓋で容器口部をヒートシールし、1日放置した。その後、30、50、70℃の各温度で、3時間ずつ放置し、その際の容器内の相対湿度を、各温度での到達湿度とした。
上記ポリアクリル酸Hの架橋物を、水酸化カリウムの1N水溶液を用いて80%中和することで、カリウム塩型カルボキシル基を有するポリアクリル酸Kの吸湿性粒子(水分散品、固形分10重量%、平均粒径D50:70nm、中和率80%)を得た。
実施例1において、カリウム塩型カルボキシル基を有するポリアクリル酸Kの架橋物の中和率を100%にする以外は、実施例1と同様の方法でポリアクリル酸Kの吸湿性粒子を得た。
アクリロニトリル400重量部、アクリル酸メチル40重量部、ジビニルベンゼン100重量部、p―スチレンスルホン酸ソーダ26重量部及び水1181重量部を、2000mlの容器のオートクレーブに仕込み、さらに重合開始剤としてジーtert―ブチルパーオキサイドを単量体総量に対して0.5重量%添加した後、密閉し、ついで攪拌下に於いて160℃の温度にて10分間重合せしめた。反応終了後、攪拌を継続しながら室温まで冷却した後、重合物をオートクレーブから取り出し、微細な粒子径のエマルジョン状ポリアクリロニトリル系重合体を得た。
実施例1において、水酸化カリウムの1N水溶液のかわりに、水酸化ナトリウムの1N水溶液を用いる以外は、実施例1と同様の方法でポリアクリル酸Naの吸湿性粒子を得た。
実施例1において、水酸化カリウムの1N水溶液のかわりに、水酸化リチウムの1N水溶液を用いる以外は、実施例1と同様の方法でポリアクリル酸Liの吸湿性粒子を得た。
実施例1において、ポリアクリル酸Kの架橋物の中和率を23%にする以外は、実施例1と同様の方法でポリアクリル酸Kの吸湿性粒子を得た。
Claims (3)
- カルボキシル基を6.0~12.0meq/g及びスルホン酸基及び/又は塩型スルホン酸基を0.1~2.0meq/g含有する架橋重合体から成る吸湿性粒子であって、該カルボキシル基の80%以上がカリウム塩で中和されていることを特徴とする吸湿性粒子。
- 平均一次粒子径が100nm以下である請求項1記載の吸湿性粒子。
- 加水分解によりカルボキシル基が得られる単量体とジビニルベンゼンを単量体組成として含む共重合体に、加水分解反応を経てカリウム塩型カルボキシル基を導入したものである請求項1又は2記載の吸湿性粒子。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016521086A JPWO2015178335A1 (ja) | 2014-05-19 | 2015-05-18 | 吸湿性粒子 |
US15/311,961 US9889426B2 (en) | 2014-05-19 | 2015-05-18 | Hygroscopic particles |
EP15796466.9A EP3147021A4 (en) | 2014-05-19 | 2015-05-18 | Hygroscopic particles |
KR1020167034746A KR20170005089A (ko) | 2014-05-19 | 2015-05-18 | 흡습성 입자 |
CN201580026030.2A CN106457134B (zh) | 2014-05-19 | 2015-05-18 | 吸湿性颗粒 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014103529 | 2014-05-19 | ||
JP2014-103529 | 2014-05-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015178335A1 true WO2015178335A1 (ja) | 2015-11-26 |
Family
ID=54554005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/064155 WO2015178335A1 (ja) | 2014-05-19 | 2015-05-18 | 吸湿性粒子 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9889426B2 (ja) |
EP (1) | EP3147021A4 (ja) |
JP (1) | JPWO2015178335A1 (ja) |
KR (1) | KR20170005089A (ja) |
CN (1) | CN106457134B (ja) |
WO (1) | WO2015178335A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018188588A (ja) * | 2017-05-10 | 2018-11-29 | 横浜ゴム株式会社 | タイヤ用ゴム組成物 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109847541A (zh) * | 2019-01-24 | 2019-06-07 | 中国人民解放军92228部队 | 一种高效复合吸湿剂及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05178919A (ja) * | 1991-12-27 | 1993-07-20 | Sugai Kagaku Kogyo Kk | 高吸水性樹脂及びその製法 |
JPH11240959A (ja) * | 1998-02-24 | 1999-09-07 | Nippon Shokubai Co Ltd | 吸水性ポリマー組成物およびその製法 |
JP2007132614A (ja) * | 2005-11-11 | 2007-05-31 | Japan Exlan Co Ltd | 収着式熱交換モジュールおよびその製法 |
JP2008511726A (ja) * | 2004-08-27 | 2008-04-17 | アブゾーバント テクノロジーズ インコーポレイテッド | 農学的適用における超吸収性重合体 |
JP2009506158A (ja) * | 2005-08-23 | 2009-02-12 | ザ プロクター アンド ギャンブル カンパニー | ブレンステッド酸を用いた高度中和の超吸収ポリマー粒子の表面架橋方法 |
JP2010513576A (ja) * | 2006-12-18 | 2010-04-30 | エフォニック ストックハウゼン ゲーエムベーハー | ポリマー分散液を使用して製造された吸水性ポリマー構造体 |
JP5190801B2 (ja) * | 2009-01-09 | 2013-04-24 | 日本エクスラン工業株式会社 | 吸放湿性重合体および該重合体を含有する成形体 |
JP5203604B2 (ja) * | 2004-03-19 | 2013-06-05 | 日本エクスラン工業株式会社 | 吸放湿性超微粒子及び該超微粒子を用いた製品 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05190801A (ja) | 1992-01-11 | 1993-07-30 | Toshiba Corp | 半導体記憶装置 |
JPH05203604A (ja) | 1992-01-27 | 1993-08-10 | Kanagawa Pref Gov | 酸素濃度測定方法と装置 |
JP4273512B2 (ja) * | 1999-06-28 | 2009-06-03 | 日本エクスラン工業株式会社 | 吸放湿性重合体およびその成形体 |
-
2015
- 2015-05-18 WO PCT/JP2015/064155 patent/WO2015178335A1/ja active Application Filing
- 2015-05-18 JP JP2016521086A patent/JPWO2015178335A1/ja active Pending
- 2015-05-18 KR KR1020167034746A patent/KR20170005089A/ko not_active Application Discontinuation
- 2015-05-18 EP EP15796466.9A patent/EP3147021A4/en not_active Withdrawn
- 2015-05-18 CN CN201580026030.2A patent/CN106457134B/zh active Active
- 2015-05-18 US US15/311,961 patent/US9889426B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05178919A (ja) * | 1991-12-27 | 1993-07-20 | Sugai Kagaku Kogyo Kk | 高吸水性樹脂及びその製法 |
JPH11240959A (ja) * | 1998-02-24 | 1999-09-07 | Nippon Shokubai Co Ltd | 吸水性ポリマー組成物およびその製法 |
JP5203604B2 (ja) * | 2004-03-19 | 2013-06-05 | 日本エクスラン工業株式会社 | 吸放湿性超微粒子及び該超微粒子を用いた製品 |
JP2008511726A (ja) * | 2004-08-27 | 2008-04-17 | アブゾーバント テクノロジーズ インコーポレイテッド | 農学的適用における超吸収性重合体 |
JP2009506158A (ja) * | 2005-08-23 | 2009-02-12 | ザ プロクター アンド ギャンブル カンパニー | ブレンステッド酸を用いた高度中和の超吸収ポリマー粒子の表面架橋方法 |
JP2007132614A (ja) * | 2005-11-11 | 2007-05-31 | Japan Exlan Co Ltd | 収着式熱交換モジュールおよびその製法 |
JP2010513576A (ja) * | 2006-12-18 | 2010-04-30 | エフォニック ストックハウゼン ゲーエムベーハー | ポリマー分散液を使用して製造された吸水性ポリマー構造体 |
JP5190801B2 (ja) * | 2009-01-09 | 2013-04-24 | 日本エクスラン工業株式会社 | 吸放湿性重合体および該重合体を含有する成形体 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3147021A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018188588A (ja) * | 2017-05-10 | 2018-11-29 | 横浜ゴム株式会社 | タイヤ用ゴム組成物 |
Also Published As
Publication number | Publication date |
---|---|
US9889426B2 (en) | 2018-02-13 |
JPWO2015178335A1 (ja) | 2017-04-20 |
US20170120217A1 (en) | 2017-05-04 |
CN106457134B (zh) | 2019-05-10 |
EP3147021A1 (en) | 2017-03-29 |
CN106457134A (zh) | 2017-02-22 |
EP3147021A4 (en) | 2018-01-03 |
KR20170005089A (ko) | 2017-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mohammad et al. | Synthesis and swelling behavior of metal-chelating superabsorbent hydrogels based on sodium alginate-g-poly (AMPS-co-AA-co-AM) obtained under microwave irradiation | |
CN107814957B (zh) | 聚丙烯酰胺-丙烯酸-vdt物理交联高强度水凝胶的制备方法 | |
Soliman et al. | Preparation of carboxymethyl cellulose-g-poly (acrylic acid-2-acrylamido-2-methylpropane sulfonic acid)/attapulgite superabsorbent composite | |
WO2015178335A1 (ja) | 吸湿性粒子 | |
JP7032941B2 (ja) | 自己修復性ゲル | |
Mahdavinia et al. | Semi‐IPN carrageenan‐based nanocomposite hydrogels: synthesis and swelling behavior | |
Li et al. | Synthesis and swelling behaviors of semi‐IPNs superabsorbent resin based on chicken feather protein | |
Atia et al. | Swelling and metal ion uptake characteristics of kaolinite containing poly [(acrylic acid)-co-acrylamide] hydrogels | |
Kusunoki et al. | Polyvinylphosphonic acid copolymer hydrogels prepared with amide and ester type crosslinkers | |
JP7405958B2 (ja) | 二次電池セパレータ用コート材原料、二次電池セパレータ用コート材、二次電池セパレータ、二次電池セパレータの製造方法、および、二次電池 | |
CN102358766B (zh) | 一种粘土改性室温自交联核壳聚丙烯酸酯乳液的合成方法 | |
WO2020085123A1 (ja) | N-ビニルカルボン酸アミドの重合体を含む水性塗工液用組成物 | |
JP5202903B2 (ja) | カルボン酸基又はスルホン酸基を有する有機無機複合ヒドロゲルの製造方法 | |
KR102190238B1 (ko) | 수착제 도공액, 이 수착제 도공액을 도포하여 이루어지는 수착제 담지 금속판 및 이 수착제 담지 금속판을 가지는 열교환기 | |
JPS59223706A (ja) | ホウ酸基含有ポリマ−の製造方法 | |
Natkański et al. | Influence of crosslinking degree on Cu (II) and Fe (III) adsorption capa city of hydrogel/montmorillonite composites | |
JPWO2019069630A1 (ja) | 重合体粒子及びその製造方法、並びに該粒子を有する塗工液組成物、シート、樹脂成形体、繊維及び粘度調整剤 | |
Chen et al. | Effect of AMPS and Clay on the Acrylic Acid Based Superabsorbent Hydrogels | |
JP7520646B2 (ja) | 刺激応答吸水性樹脂組成物及びその製造方法 | |
JP2004331761A (ja) | 感温性樹脂及びこれを用いた金属イオン吸着剤 | |
JP2021091865A (ja) | 刺激応答吸水性樹脂組成物及びその製造方法 | |
TWI308578B (en) | Fabricating method of preparing super absorbent polymers by adding scavenging polyvalent metal ion absorbent polymer | |
WO2021095721A1 (ja) | 高分子複合体及びその製造方法 | |
JP2024095604A (ja) | 収着剤粒子が担持された伝熱フィンおよびその製造方法並びに該伝熱フィンを有する熱交換器 | |
TW200418886A (en) | Production of polymer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15796466 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016521086 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015796466 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15311961 Country of ref document: US Ref document number: 2015796466 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20167034746 Country of ref document: KR Kind code of ref document: A |