[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015178313A1 - プリント配線板 - Google Patents

プリント配線板 Download PDF

Info

Publication number
WO2015178313A1
WO2015178313A1 PCT/JP2015/064049 JP2015064049W WO2015178313A1 WO 2015178313 A1 WO2015178313 A1 WO 2015178313A1 JP 2015064049 W JP2015064049 W JP 2015064049W WO 2015178313 A1 WO2015178313 A1 WO 2015178313A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal line
printed wiring
wiring board
signal
measurement result
Prior art date
Application number
PCT/JP2015/064049
Other languages
English (en)
French (fr)
Inventor
尚美 小松
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to KR1020167034279A priority Critical patent/KR101700397B1/ko
Priority to US15/305,232 priority patent/US9807870B2/en
Priority to CN201580020126.8A priority patent/CN106233825B/zh
Publication of WO2015178313A1 publication Critical patent/WO2015178313A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/024Dielectric details, e.g. changing the dielectric material around a transmission line
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0228Compensation of cross-talk by a mutually correlated lay-out of printed circuit traces, e.g. for compensation of cross-talk in mounted connectors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J171/00Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
    • C09J171/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C09J171/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C09J171/12Polyphenylene oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/001Manufacturing waveguides or transmission lines of the waveguide type
    • H01P11/003Manufacturing lines with conductors on a substrate, e.g. strip lines, slot lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/085Triplate lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/088Stacked transmission lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4635Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating flexible circuit boards using additional insulating adhesive materials between the boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • H05K3/4676Single layer compositions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • H05K1/0224Patterned shielding planes, ground planes or power planes
    • H05K1/0225Single or multiple openings in a shielding, ground or power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0141Liquid crystal polymer [LCP]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/06Lamination
    • H05K2203/061Lamination of previously made multilayered subassemblies
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/429Plated through-holes specially for multilayer circuits, e.g. having connections to inner circuit layers

Definitions

  • the present invention relates to a printed wiring board.
  • Patent Document 1 A flexible printed circuit in which an adhesive layer using an epoxy-based thermosetting adhesive is formed between stacked unit substrates is known from the viewpoint of improving transmission characteristics at high frequencies while achieving high density.
  • the problem to be solved by the present invention is to provide a printed wiring board having high transmission characteristics and high wiring density during high-frequency signal transmission.
  • the present invention provides a first insulating substrate made of a liquid crystal polymer, a first signal line formed on one main surface of the first insulating substrate, and a second insulating substrate made of a liquid crystal polymer.
  • the frequency is 0.0 GHz or less
  • the position of one end portion farthest from the second signal line among the end portions along the width direction of the first signal line and the end along the width direction of the second signal line is Longer than the circuit width of the signal line, by providing a printed wiring board, characterized in
  • the above problem is solved by setting the offset amount to 200 [ ⁇ m] or less.
  • the first signal line transmits a signal having a first frequency
  • the second signal line transmits a signal having a second frequency different from the first frequency
  • the distance between the signal lines can be shortened while maintaining the transmission characteristics, the amount of accumulated pitch between the signal lines can be suppressed.
  • FIG. 1 It is sectional drawing of the printed wiring board in one Embodiment of this invention. It is a figure for demonstrating the manufacturing method of the printed wiring board shown in FIG. It is a figure for demonstrating the structure of the printed wiring board which concerns on the Example of this embodiment. It is a figure which shows the measurement result of crosstalk S41 in the frequency of 700 MHz when offset amount S is changed in structure 1.
  • FIG. It is a figure which shows the measurement result of crosstalk S41 in the frequency of 700 MHz when offset amount S is changed in the structure 2.
  • FIG. 1 It is a figure which shows the measurement result of crosstalk S41 in the frequency of 700 MHz when the offset amount S is changed in the structure 4. It is a figure which shows the measurement result of crosstalk S41 in frequency 2.5GHz when the offset amount S is changed in the structure 1.
  • FIG. 2 It is a figure which shows the measurement result of crosstalk S41 in frequency 2.5GHz when the offset amount S is changed in the structure 2.
  • FIG. 2 It is a figure which shows the measurement result of crosstalk S41 in frequency 2.5GHz when the offset amount S is changed in the structure 3.
  • FIG. It is a figure which shows the measurement result of crosstalk S41 in frequency 2.5GHz when the offset amount S is changed in the structure 4.
  • the printed wiring board 1 according to the present invention is applied to a transmission line that connects between circuits in a device, between a circuit and a device, or between devices.
  • the printed wiring board 1 of this embodiment is suitable for high-speed signal transmission, and can perform transmission based on various standards such as LVDS, MIPI, HDMI (registered trademark), USB, and the like.
  • FIG. 1 is a cross-sectional view of a printed wiring board 1 in the present embodiment.
  • the printed wiring board 1 of the present embodiment has a laminated structure in which a first base material 10 and a second base material 20 are laminated.
  • a first base material 10 is stacked on the upper side of the second base material 20 is shown, but the reverse may be possible.
  • the first base material 10 includes a first insulative base material 11 and first signal lines 131, 132, 133 ("" formed on one main surface 11a (lower side in the figure) of the first insulative base material 11. And a first ground layer 12 formed on the other main surface (upper side in the drawing) of the first insulating substrate 11.
  • the first ground layer 12 is covered with a first protective layer 41.
  • the second substrate 20 includes a second insulating substrate 21 and second signal lines 231, 232, 233 (“first”) formed on one main surface 21 a (upper side in the drawing) of the second insulating substrate 21. And a second ground layer 22 formed on the other main surface (lower side in the figure) of the second insulating base material 21. In the printed wiring board 1 shown in FIG. 1, the second ground layer 22 is covered with a second protective layer 42.
  • the second signal line 231 of this embodiment shown in FIG. 1 is formed along the extending direction of the first signal line 131.
  • the extending direction of the first signal line 131 and the extending direction of the second signal line 231 are substantially parallel. That is, the first signal line 131 and the second signal line 231 are in a parallel relationship. Further, the first signal line 131 and the second signal line 231 of this embodiment shown in FIG. 1 are arranged at positions shifted in the width direction of the signal line.
  • the width direction of the second signal line 231 from the position (X1) of one end portion farthest from the position of the second signal line 231 is longer than the circuit width L1 of the first signal line 131. That is, as shown in FIG. 1, the first signal line 131 of the first base material 10 and the second signal line 231 of the second base material 20 that are stacked on each other are arranged in the width direction so as not to face each other in the stacking direction. (The horizontal direction in the figure) is shifted in position.
  • the position of the other end closest to the second signal line 231 along the width direction of the first signal line 131 (Y1) and the width of the second signal line 231 along the width direction of the first signal line 131 are the most.
  • the distance from the position (Y2) of the other end portion near is a value larger than zero.
  • the printed wiring board 1 shown in FIG. 1 is a distance from the position X1 of one end portion along the width direction of the first signal line 131 to the one end portion X2 along the width direction of the second signal line 231.
  • the certain offset amount S is preferably 300 [ ⁇ m] or less.
  • the circuit width L1 of the first signal line 131 is 100 [ ⁇ m]
  • the width of the second signal line 231 from the position (Y1) closest to the first signal line along the width direction of the first signal line 131 is 100 [ ⁇ m]
  • the distance to the position (Y2) closest to the first signal line 131 along the direction, that is, the shortest distance in the circuit width direction of the first signal line 131 and the second signal line 231 is 200 [ ⁇ m].
  • the offset amount is preferably 200 [ ⁇ m] or less.
  • the circuit width L1 of the first signal line 131 is 100 [ ⁇ m]
  • the second signal from the position (Y1) closest to the first signal line along the width direction of the first signal line 131 is obtained.
  • the distance to the position (Y2) closest to the first signal line 131 along the width direction of the line 231, that is, the shortest distance in the direction along the circuit width of the first signal line 131 and the second signal line 231 is 100 ⁇ m. ].
  • the circuit width L1 of the first signal line 131 and the circuit width L2 of the second signal line 231 may be the same value or different values.
  • the thicknesses of the first signal line 131 and the second signal line 231 may be the same value or different values.
  • the relationship between the first signal line 131 as an example of the first signal line 130 and the second signal line 132 as the second signal line 230 has been described, but one main surface of the first insulating substrate 11 is described.
  • the relationship between the other first signal line 130 (not shown) formed on 11a and the other second signal line 230 (not shown) formed on the one main surface 21a of the second insulating substrate 21 is also applicable.
  • the printed wiring board 1 of this embodiment can be configured to include a plurality of signal lines corresponding to the first signal lines 131 and the second signal lines 230 shown in FIG.
  • the first signal line 131 of the present embodiment transmits a signal of a first frequency
  • the second signal line 231 transmits a signal of a second frequency different from the first frequency.
  • the printed wiring board 1 as a component is also required to have improved transmission characteristics at high frequencies.
  • the frequency band of a mobile phone differs depending on each carrier, it is required to be able to transmit signals of a plurality of frequencies.
  • a printed wiring board 1 capable of transmitting signals having a plurality of frequencies with high characteristics in a wide frequency band including high frequencies is provided.
  • the first insulating substrate 11 and the second insulating substrate 21 are made of a material containing a liquid crystal polymer (hereinafter also referred to as “LCP”).
  • the 1st insulating base material 11 and the 2nd insulating base material 21 of this embodiment are comprised from a liquid crystal polymer.
  • the liquid crystal polymer of the present embodiment is not particularly limited as long as it is a resin that exhibits liquid crystal properties in a molten state. It may be a polyester-based liquid crystal polymer or an aramid-based liquid crystal polymer.
  • the first signal line 130 and the second signal line 230 are made of a conductive material such as copper, silver, or gold.
  • the first ground layer 12 and the second ground layer 22 are made of a conductive material such as copper, silver, or gold.
  • the first ground layer 12 and the second ground layer 22 may be made of different conductive materials.
  • the first protective layer 41 and the second protective layer 42 are cover materials such as a cover lay and a photosensitive liquid resist.
  • an insulating material such as polyimide (PI), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), or polyester (PE) can be used.
  • the adhesive layer 30 is interposed between the first base material 10 and the second base material 20 of the present embodiment.
  • the adhesive layer 30 adheres the one principal surface 11a of the first insulating substrate 11 and the one principal surface 21a of the second insulating substrate 21 constituting the first substrate 10 of the present embodiment.
  • the first signal line 130 is formed on the one principal surface 11 a of the first insulating substrate 11, and the second signal line 230 is formed on the one principal surface 21 a of the second insulating substrate 21.
  • the adhesive layer 30 of the present embodiment is made of a material containing modified polyphenylene ether (hereinafter also referred to as “m-PPE”).
  • the adhesive layer 30 of this embodiment is composed of a modified polyphenylene ether.
  • the modified polyphenylene ether can be appropriately selected from those available at the time of filing this application.
  • the m-PPE used in the adhesive layer 30 in the present embodiment is, for example, a polyether imide heated and melt blended with a styrene-vinyl compound copolymer obtained by copolymerizing a styrene compound and a vinyl compound. By doing so, the material is provided with melt fluidity and high heat resistance.
  • the m-PPE of the adhesive has, for example, a relative dielectric constant of 2.2 to 2.6 and a dielectric loss tangent of 0.002 to 0.01, a tensile strength of 30 to 50 MPa, and a tensile elastic modulus of 300 to 400 MPa at a frequency of 2 GHz.
  • m-PPE has physical properties of a glass transition temperature of 230 to 250 ° C. and a thermal expansion coefficient of 100 to 300 ppm / ° C.
  • m-PPE used in the present embodiment has the following physical properties.
  • E) Tensile strength: 42 (MPa) [IS C2318]
  • TMA Dynamic Mechanical Analysis
  • the printed wiring board 1 of the present embodiment has a so-called stripline structure.
  • the first insulating substrate 11 is interposed between the first ground layer 12 and the first signal line 131 (130), and the second insulating layer 11 is interposed between the second ground layer 22 and the second signal line 231 (230).
  • Two insulating base materials 21 are interposed.
  • the first signal line 131 (130) is sandwiched between the first ground layer 12 through the first insulating substrate 11 and the second ground layer 22 through the second insulating substrate 21.
  • the second signal line 231 (230) is sandwiched between the second ground layer 22 via the second insulating substrate 21 and the first ground layer 12 via the first insulating substrate 11. .
  • a ground line is formed on one main surface 11a of the first insulating substrate 11 on which the first signal line 131 (130) is formed, and a second signal line 231 (230) is formed. It is good also as what is called a coplanar line structure which formed the ground line in the one main surface 21a of the 2nd insulating base material 21.
  • the first base material 10 on which the first signal line 130 is formed, the second base material 20 on which the second signal line 230 is formed, and the adhesive layer 30 are configured.
  • a modified polyphenylene ether resin sheet 30 ' is prepared.
  • the first base material 10 uses a copper clad substrate (CCL: Copper Clad Laminated) in which copper foils are formed on both main surfaces of the first insulating base material 11 made of, for example, a liquid crystal polymer having a thickness of 25 [ ⁇ m].
  • the first substrate 10 of the present embodiment has an electrolytic copper foil having a thickness of 12.5 [ ⁇ m].
  • a predetermined region of the copper foil on the one main surface 11a side of the first insulating substrate 11 is etched to form a desired first signal line 130.
  • a predetermined region of the copper foil on the other main surface side of the first insulating base material 11 is etched as necessary to form the ground layer 12.
  • the second base material 20 is a copper clad substrate (CCL: Copper Clad Laminated) in which copper foils are formed on both main surfaces of a second insulating base material 21 made of, for example, a liquid crystal polymer having a thickness of 25 [ ⁇ m]. It is produced using.
  • the second substrate 20 of the present embodiment has an electrolytic copper foil having a thickness of 12.5 [ ⁇ m].
  • a predetermined region of the copper foil on the one main surface 21 a side of the second insulating base material 21 is etched using the subtractive method, and a desired second signal line 230 is formed.
  • a predetermined region of the copper foil is etched as necessary to form the ground layer 22.
  • a modified polyphenylene ether resin sheet 30 ' is interposed between the first base material 10 and the second base material 20.
  • the modified polyphenylene ether resin sheet 30 ′ is disposed between the one main surface 11 a of the first insulating substrate 11 and the one main surface 21 a of the second insulating substrate 21.
  • the first base material 10 and the second base material 20 are stacked and laminated, and the lamination press is performed collectively.
  • the first base material 10 is moved in the direction of arrow Z1 in FIG.
  • the thermocompression bonding step is performed in a vacuum atmosphere at a heating temperature of 170 to 190 ° C. and a pressure of 5 to 20 kg / cm 2 for 30 to 60 minutes.
  • the pressure curing temperature of m-PPE which is an adhesive constituting the adhesive layer 30 of this embodiment, is about 180 ° C. ⁇ 10 ° C., for example.
  • it is performed in a vacuum atmosphere under pressing conditions of temperature: 180 ° C. ⁇ 10 ° C. and time: about 60 minutes.
  • the m-PPE polymer constituting the adhesive layer 30 is alloyed to exhibit a soft characteristic with high heat resistance. Since the adhesive layer 30 of the present embodiment has flexibility, the flexible printed wiring board 1 can be obtained.
  • the glass transition temperature of the 1st insulating base material 11 of this embodiment and the 2nd insulating base material 21 is 300 degreeC or more, for example.
  • the pressure curing temperature of the adhesive layer 30 is lower than the glass transition temperature (300 ° C. or higher) of the first insulating base material 11 / the second insulating base material 21.
  • thermocompression bonding process of the present embodiment a hot press process at a high temperature is not required. Therefore, the printing according to the embodiment of the present invention is performed using an existing FPC manufacturing facility that uses a polyimide resin as an insulating substrate.
  • the wiring board 1 can be produced.
  • an inexpensive press device such as a steam heating type or a thermal solvent superheated oil type can be used, so that the manufacturing cost of the printed wiring board 1 can be reduced.
  • a through hole TH having a predetermined diameter that penetrates the first base material 10 and the second base material 20 is formed.
  • the formation method of the through hole TH is not particularly limited, and drilling may be performed using an NC drill or laser processing.
  • the first base material 10 and the second base material 20 are subjected to a direct plating process, and then the through holes TH are plated.
  • Interlayer conductive layer 50 is formed by plating.
  • the first signal line 130, the second signal line 230, the first ground layer 12, and the second ground layer 22 are electrically connected by the interlayer conductive layer 50 to achieve interlayer conduction.
  • predetermined circuits are formed on the first ground layer 12 and the second ground layer 22.
  • a protective layer 41 covering the first ground layer 12 and a protective layer 42 covering the second ground layer 22 are formed to obtain the printed wiring board 1 shown in FIG. Note that since the first ground layer 12 and the second ground layer 22 are provided with a reference potential (power supply potential, ground potential), the first signal line 132 and the second signal line 232 also have the reference potential.
  • a coaxial connector is mounted on the surface of the printed wiring board 1.
  • signal input / output is performed via a coaxial connector surface-mounted on the printed wiring board 1. Since the coaxial connector can be mounted using a conventional mounting line, the printed wiring board 1 according to the present embodiment can be manufactured without introducing new equipment. Further, by using a surface mount connector for signal input / output, it is easy to attach and detach components. Even when the installation space is reduced in accordance with the miniaturization of the product, the product can be efficiently assembled. As a result, reduction of work man-hours and reduction of process costs can be realized.
  • the dielectric constant and dielectric loss tangent are kept low. be able to. It is possible to realize a structure that is superior in high-frequency characteristics than those using conventional polyimide resins and can transmit signals at high speed without losing flexibility.
  • the printed wiring board 1 of the present embodiment has a low dielectric constant by combining the first and second insulating substrates 11 and 21 made of a liquid crystal polymer and the adhesive layer 30 of the modified polyphenylene ether. High-speed transmission can be realized. Further, since the printed wiring board 1 of the present embodiment can wire a plurality of independent signal lines inside the adhesive layer 30 constituting the multilayer substrate, signals of two or more different frequencies in one printed wiring board 1 are used. Can be transmitted.
  • the first signal line 131 (130) and the second signal line 231 (230) are arranged so as to be shifted along the circuit width direction. Since the distance between (130) and the second ground layer 22 and the distance between the second signal line 231 (230) and the first ground layer 12 are secured, the signal lines can transmit signals without interfering with each other. For this reason, highly reliable signal transmission can be performed in both the first signal line 131 (130) and the second signal line 231 (230). Even if the characteristic impedance of each signal line is matched, the circuit width of each signal line can be designed to be large, so that the transmission characteristics can be kept high. Moreover, since the thickness of the printed wiring board 1 can be prevented from being increased, the flexibility and bending characteristics are not impaired.
  • the printed wiring board 1 has one first signal line 131 and one second signal line 231.
  • the line width of the first signal line 131 is defined as the circuit width L1
  • the line width of the second signal line 231 is defined as the circuit width L2.
  • the circuit width L1 of the first signal line 131 and the circuit width L2 of the second signal line 231 are common.
  • the thickness of the first signal line 131 along the stacking direction of the first base material 10 and the second base material 20 is defined as the thickness t1
  • the thickness of the second signal line 231 along the stacking direction is defined as the thickness t2.
  • the thickness t1 of the first signal line 131 and the thickness t2 of the second signal line 231 are the same.
  • the position P1 of the one end portion farthest from the second signal line 231 among the end portions on both sides of the first signal line 131 extends in the width direction of the second signal line 231.
  • the distance to the position P2 at one end closest to the first signal line 131 among the ends on both sides of the second signal line 231 is defined as an offset amount S.
  • the distance between the second signal line 231 along the plane and the position of the plane is defined as the inter-conductor distance D.
  • the design value of the circuit width L is changed to 25 [ ⁇ m], 50 [ ⁇ m], and 100 [ ⁇ m] while having the basic structure shown in FIG. Structure 1, Structure 2, Structure 4, and Structure 4 in which the design value of the distance D was changed to 30 [ ⁇ m] and 60 [ ⁇ m] were defined as shown in Table 1 below.
  • the first insulating substrate 11 ′ (corresponding configuration, the same applies hereinafter) and the second insulating substrate 21 ′ (corresponding configuration, the same applies hereinafter) are made of polyimide, and the adhesive layer 30 ′ (corresponding to the equivalent).
  • the following are the same: acrylic epoxy adhesive (dielectric constant 3.6 to 3.8 (2 GHz), dielectric loss tangent 0.03 to 0.04, copper peel strength 9 N / cm, water absorption 2.0 % Of the printed wiring board 1 ′.
  • a printed wiring board 1 ′ according to this comparative example includes the structure 1, the structure 2, the structure 3, and the structure 4 shown in Table 1 as in the present embodiment.
  • Table 2 shows the physical property values.
  • the m-PPE resin film used in the adhesive layer 30 of this example has a dielectric constant of 2.2 to 2.6 (2 GHz), a dielectric loss tangent of 0.002 to 0.01, a copper peeling strength of 7 N / cm, and a water absorption rate. 0.2%. Since the adhesive layer 30 is composed of the m-PPE resin film, it can be pressed at about 180 ⁇ (plus or minus) 10 ° C. in the laminating process when producing the multilayer substrate. Thus, since it can process at comparatively low temperature, it can manufacture using the manufacturing apparatus of the existing flexible printed circuit board. Moreover, since processing can be performed at a relatively low temperature, variation in dimensions of the printed wiring board 1 to be manufactured can be suppressed.
  • the lamination laminating process can be performed in a lump.
  • the m-PPE resin film of such a material as the adhesive layer 30 it is possible to reduce the number of steps required for manufacturing and to reduce the auxiliary materials used when performing the lamination press.
  • the m-PPE resin film has moisture absorption resistance. Further, since the m-PPE resin film has a low dielectric constant, the transmission characteristics are improved by interposing it.
  • the crosstalk S41 [dB] measured in the present embodiment is a measured value indicating the degree to which a transmission signal on one signal line (transmission path) leaks to another signal line (transmission path) among a plurality of signal lines. is there.
  • an example in which the value of the crosstalk S41 is low is evaluated as indicating that there is little signal leakage and shows good transmission characteristics.
  • Example 1-1 and Comparative Example 1-1 have a structure 1
  • Example 1-2 and Comparative Example 1-2 have a structure 2
  • Example 1-3 and Comparative Example 1-3 have a structure 3.
  • Example 1-4 and Comparative Example 1-4 have the structure 4.
  • FIG. 4A shows the measurement result of the crosstalk S41 with respect to the offset amount for the example 1-1 and the comparative example 1-1 having the structure 1.
  • FIG. 4B shows the measurement result of the crosstalk S41 with respect to the offset amount for the example 1-2 and the comparative example 1-2 having the structure 2.
  • FIG. 4C shows the measurement result of the crosstalk S41 with respect to the offset amount for the example 1-3 and the comparative example 1-3 having the structure 3.
  • FIG. 4D shows the measurement result of the crosstalk S41 with respect to the offset amount for the example 1-4 and the comparative example 1-4 including the structure 4. Examples are indicated by solid lines, and comparative examples are indicated by broken lines.
  • Example 2-1 and comparative example 2-1 have structure 1
  • example 2-2 and comparative example 2-2 have structure 2
  • example 2-3 and comparative example 2-3 have structure 3.
  • Example 2-4 and Comparative Example 2-4 include structure 4. Since this measurement result showed the same tendency as 700 MHz, illustration is omitted.
  • Example 3-1 and Comparative Example 3-1 have Structure 1
  • Example 3-2 and Comparative Example 3-2 have Structure 2
  • Example 3-3 and Comparative Example 3-3 have Structure 3.
  • Example 3-4 and Comparative Example 3-4 include structure 4. Since this measurement result showed the same tendency as 700 MHz, illustration is omitted.
  • Example 4-1 to 4-4 and Comparative Examples 4-1 to 4-4 in the case where the offset amount S is changed when the frequency of the signal to be transmitted is 1.5 GHz. dB] is shown.
  • Example 4-1 and Comparative Example 4-1 have Structure 1
  • Example 4-2 and Comparative Example 4-2 have Structure 2
  • Example 4-3 and Comparative Example 4-3 have Structure 3.
  • Example 4-4 and Comparative Example 4-4 have the structure 4. Since this measurement result showed the same tendency as 700 MHz, illustration is omitted.
  • Example 5-1 and Comparative Example 5-1 have Structure 1
  • Example 5-2 and Comparative Example 5-2 have Structure 2
  • Example 5-3 and Comparative Example 5-3 have Structure 3.
  • Example 5-4 and Comparative Example 5-4 include the structure 4. Since this measurement result showed the same tendency as 700 MHz, illustration is omitted.
  • Example 6-1 and Comparative Example 6-1 have Structure 1
  • Example 6-2 and Comparative Example 6-2 have Structure 2
  • Example 6-3 and Comparative Example 6-3 have Structure 3.
  • Example 6-4 and Comparative Example 6-4 include structure 4. Since this measurement result showed the same tendency as 700 MHz, illustration is omitted.
  • Example 7-1 and Comparative Example 7-1 have Structure 1
  • Example 7-2 and Comparative Example 7-2 have Structure 2
  • Example 7-3 and Comparative Example 7-3 have Structure 3.
  • Example 7-4 and Comparative Example 7-4 include structure 4.
  • FIG. 5A shows the measurement result of the crosstalk S41 with respect to the offset amount for the example 7-1 and the comparative example 7-1 having the structure 1.
  • FIG. 5B shows the measurement result of the crosstalk S41 with respect to the offset amount for Example 7-2 and Comparative Example 7-2 having the structure 2.
  • FIG. 5C shows the measurement result of the crosstalk S41 with respect to the offset amount for Example 7-3 and Comparative Example 7-3 including the structure 3.
  • FIG. 5D shows the measurement result of the crosstalk S41 with respect to the offset amount for Example 7-4 having the structure 4 and Comparative Example 7-4. Examples are indicated by solid lines, and comparative examples are indicated by broken lines.
  • the pattern of the crosstalk S41 having a frequency of a signal to be transmitted of 2.5 GHz is almost the same as the pattern of the crosstalk S41 having a frequency of 700 MHz to 2.0 GHz.
  • Example 8-1 and Comparative Example 8-1 include Structure 1
  • Example 8-2 and Comparative Example 8-2 include Structure 2
  • Example 8-3 and Comparative Example 8-3 include Structure 3.
  • Example 8-4 and Comparative Example 8-4 include structure 4.
  • FIG. 6A shows the measurement result of the crosstalk S41 with respect to the offset amount for Example 8-1 and Comparative Example 8-1 including the structure 1.
  • FIG. 6B shows the measurement result of the crosstalk S41 with respect to the offset amount for the example 8-2 having the structure 2 and the comparative example 8-2.
  • FIG. 6C shows the measurement result of the crosstalk S41 with respect to the offset amount for Example 8-3 and Comparative Example 8-3 having the structure 3.
  • FIG. 6D shows the measurement result of the crosstalk S41 with respect to the offset amount for the example 8-4 having the structure 4 and the comparative example 8-4. Examples are indicated by solid lines, and comparative examples are indicated by broken lines.
  • the measurement result of the crosstalk S41 of the printed wiring board 1 of Examples 3-1 to 3-4 is lower and better than the measurement result of the crosstalk S41 of the printed wiring board 1 ′ of Comparative Examples 3-1 to 3-4 Showed a good value.
  • the measurement result of the crosstalk S41 of the printed wiring board 1 of Examples 4-1 to 4-4 is lower and better than the measurement result of the crosstalk S41 of the printed wiring board 1 'of Comparative Examples 4-1 to 4-4 Showed a good value.
  • the measurement result of the crosstalk S41 of the printed wiring board 1 of Examples 5-1 to 5-4 is lower and better than the measurement result of the crosstalk S41 of the printed wiring board 1 ′ of Comparative Examples 5-1 to 5-4. Showed a good value.
  • the measurement results of the crosstalk S41 of the printed wiring boards 1 of Examples 6-1 to 6-4 are lower and better than the measurement results of the crosstalk S41 of the printed wiring boards 1 'of Comparative Examples 6-1 to 6-4 Showed a good value.
  • the measurement result of the crosstalk S41 of the printed wiring board 1 of Examples 7-1 to 7-4 is lower and better than the measurement result of the crosstalk S41 of the printed wiring board 1 ′ of Comparative Examples 7-1 to 7-4. Showed a good value.
  • the measurement result of the crosstalk S41 of the printed wiring board 1 of Examples 8-1 to 8-4 is lower and better than the measurement result of the crosstalk S41 of the printed wiring board 1 ′ of Comparative Examples 8-1 to 8-4. Showed a good value.
  • the measurement result of the crosstalk S41 of the printed wiring board 1 of each example is the measurement result of the crosstalk S41 of the printed wiring board 1 ′ of each comparative example. An advantageous difference was shown. Furthermore, when the offset amount S is 200 [ ⁇ m] or less, the measurement result of the crosstalk S41 of the printed wiring board 1 of each example is the measurement of the crosstalk S41 of the printed wiring board 1 ′ of each comparative example. A more favorable difference was shown for the results.
  • the measurement result of the crosstalk S41 of the printed wiring board 1 of each example is the printed wiring of each comparative example.
  • the tendency which shows a value lower than the measurement result of crosstalk S41 of board 1 ' was seen, and the favorable result was shown.
  • the measurement result of the crosstalk S41 of the printed wiring board 1 of each example is The tendency which shows a value lower than the measurement result of crosstalk S41 of printed wiring board 1 'of each comparative example was seen.
  • the measurement result of the crosstalk S41 of the printed wiring board 1 of each embodiment is The tendency which shows a still lower value with respect to the measurement result of crosstalk S41 of printed wiring board 1 'of each comparative example was seen, and the advantageous difference was shown.
  • the measurement result of the crosstalk S41 of the printed wiring board 1 of each example is the printed wiring of each comparative example It was lower than the measurement result of the crosstalk S41 of the plate 1 'and showed a good value.
  • the frequency of the signal to be transmitted is less than 2
  • 5 GHz and the offset amount S is 300 [ ⁇ m] or less
  • the measurement result of the crosstalk S41 of the printed wiring board 1 of each embodiment is An advantageous difference was shown with respect to the measurement result of the crosstalk S41 of the printed wiring board 1 ′ of each comparative example.
  • the measurement result of the crosstalk S41 of the printed wiring board 1 of each example is A more advantageous difference was shown with respect to the measurement result of the crosstalk S41 of the printed wiring board 1 ′ of each comparative example.
  • the measurement result of the crosstalk S41 [dB] of the printed wiring board 1 of Example 7-1 having the structure 1 shows that the offset amount S is 22 [ ⁇ m] or more. And when it was 400 [ ⁇ m] or less, a value better than the crosstalk S41 of the printed wiring board 1 according to Comparative Example 7-1 was shown.
  • the measurement result of the crosstalk S41 [dB] of the printed wiring board 1 of Example 7-2 having the structure 2 shows that the offset amount S is 400 [ ⁇ m] or less. In this case, the value was better than the crosstalk S41 of the printed wiring board 1 according to Comparative Example 7-2.
  • the measurement result of the crosstalk S41 [dB] of the printed wiring board 1 of Example 7-3 having the structure 3 shows that the offset amount S is 400 [ ⁇ m] or less. In this case, the value was better than the crosstalk S41 of the printed wiring board 1 according to Comparative Example 7-3.
  • the measurement result of the crosstalk S41 [dB] of the printed wiring board 1 of Example 7-4 having the structure 4 shows that the printed wiring according to Comparative Example 7-4 is obtained when the offset amount S is 400 [ ⁇ m] or less. A value better than the crosstalk S41 of the plate 1 was shown.
  • the measurement result of the crosstalk S41 [dB] of the printed wiring board 1 of Example 8-1 having the structure 1 shows that the offset amount S is 130 [ ⁇ m] or more. And when it was 400 [ ⁇ m] or less, a value better than the crosstalk S41 of the printed wiring board 1 according to Comparative Example 8-1 was exhibited.
  • the measurement result of the crosstalk S41 [dB] of the printed wiring board 1 of Example 8-2 having the structure 2 shows that the offset amount S is 42 [ ⁇ m] or more. In this case, a better value than the crosstalk S41 of the printed wiring board 1 according to Comparative Example 8-2 was exhibited.
  • the measurement result of the crosstalk S41 [dB] of the printed wiring board 1 of Example 8-3 having the structure 3 shows that the offset amount S is 20 [ ⁇ m] or more. In this case, a better value than the crosstalk S41 of the printed wiring board 1 according to Comparative Example 8-3 was exhibited.
  • the measurement result of the crosstalk S41 [dB] of the printed wiring board 1 of Example 8-4 having the structure 4 shows that the printed wiring according to the comparative example 8-4 is obtained when the offset amount S is 76 [ ⁇ m] or more. A value better than the crosstalk S41 of the plate 1 was shown.
  • the transmission characteristic S31 [dB] measured in the present embodiment is a measured value indicating how much of the input signal is output. That is, the transmission characteristic S31 [dB] in the present embodiment is an index value indicating how much the signal has flowed with respect to the input signal.
  • the transmission characteristic S31 in this embodiment takes a value from 0 to 1. In the present embodiment, the transmission characteristic S31 having a value close to 1.0 (small difference) is evaluated as indicating good transmission characteristics.
  • Example 10-1 to Example 10-8 include structure 1.
  • the comparative examples 10-1 to 10-8 similarly have the structure 1.
  • FIG. 7A shows the measurement result of the transmission characteristic S31 with respect to the offset amount for Example 10-1 and Comparative Example 10-1 in which the frequency of the signal to be transmitted is 700 MHz.
  • FIG. 7B shows the measurement result of the transmission characteristic S31 with respect to the offset amount for Example 10-2 and Comparative Example 10-2 in which the frequency of the signal to be transmitted is 800 MHz.
  • FIG. 7C shows the measurement result of the transmission characteristic S31 with respect to the offset amount for Example 10-3 and Comparative Example 10-3 in which the frequency of the signal to be transmitted is 900 MHz.
  • FIG. 7D shows the measurement result of the transmission characteristic S31 with respect to the offset amount for Example 10-4 and Comparative Example 10-4 in which the frequency of the signal to be transmitted is 1.5 GHz.
  • FIG. 7E shows the measurement result of the transmission characteristic S31 with respect to the offset amount for Example 10-5 and Comparative Example 10-5 in which the frequency of the signal to be transmitted is 1.7 GHz.
  • FIG. 7F shows the measurement result of the transmission characteristic S31 with respect to the offset amount for Example 10-6 and Comparative Example 10-6 in which the frequency of the signal to be transmitted is 2.0 GHz.
  • FIG. 7G shows the measurement result of the transmission characteristic S31 with respect to the offset amount for Example 10-7 and Comparative Example 10-7 in which the frequency of the signal to be transmitted is 2.5 GHz.
  • FIG. 7H shows the measurement result of the transmission characteristic S31 with respect to the offset amount for Example 10-8 and Comparative Example 10-8 in which the frequency of the signal to be transmitted is 5.0 GHz.
  • the examples are indicated by solid lines, and the comparative examples are indicated by broken lines.
  • the measurement result of the transmission characteristic S31 of the printed wiring board 1 according to each example is 1.0 than the measurement result of the transmission characteristic S31 of the printed wiring board 1 ′ of each comparative example. It was close and showed a good value. Note that the pattern of the transmission characteristic S31 in the embodiment in which the frequency of the signal to be transmitted is 700 MHz to 2.5 GHz is almost the same.
  • the measurement results of the transmission characteristics S31 of the printed wiring boards 1 of Examples 10-1 to 10-8 are as follows. Further, a value closer to 1 or equivalent to the measurement result of the transmission characteristic S31 of the printed wiring board 1 ′ of Comparative Examples 10-1 to 10-8 was shown. Further, when the offset amount S is 300 [ ⁇ m] or less, the measurement results of the transmission characteristics S31 of the printed wiring boards 1 of Examples 10-1 to 10-8 are the print results of Comparative Examples 10-1 to 1-8. A value closer to or equivalent to 1.0 than the measurement result of the transmission characteristic S31 of the wiring board 1 ′ was shown.
  • the measurement results of the transmission characteristics S31 of the printed wiring boards 1 of Examples 10-1 to 10-8 are the prints of Comparative Examples 10-1 to 10-8. A value closer to 1.0 was shown than the measurement result of the transmission characteristic S31 of the wiring board 1.
  • the measurement results of the transmission characteristics S31 of the printed wiring boards 1 of Examples 10-1 to 10-7 were compared when the offset amount S was 200 [ ⁇ m] or less. Values closer to 1.0 were shown than the measurement results of the transmission characteristics S31 of the printed wiring boards 1 'of Examples 10-1 to 10-7.
  • the transmission characteristic S31 of the printed wiring board 1 of Examples 10-1 to 10-7 The measurement results showed values closer to or equivalent to 1.0 than the measurement results of the transmission characteristics S31 of the printed wiring boards 1 ′ of Comparative Examples 10-1 to 10-7. Similarly, when the frequency of the signal to be transmitted is 2.5 GHz or less, the above effect was confirmed when the offset amount S was 300 [ ⁇ m] or less.
  • the measurement result of the transmission characteristic S31 of the printed wiring board 1 of Examples 10-1 to 10-7 Shows a value 1.0 lower than the measurement result of the transmission characteristic S31 of the printed wiring board 1 'of Comparative Examples 10-1 to 10-7.
  • the measurement result of the transmission characteristic S31 of the printed wiring board 1 of Example 10-8 when the offset amount S is 400 [ ⁇ m] or less is that of Comparative Example 10-8.
  • a value closer to 1.0 was shown than the measurement result of the transmission characteristic S31 of the printed wiring board 1 ′.
  • the measurement result of the transmission characteristic S31 of the printed wiring board 1 of Example 10-8 is less than that of Comparative Example 10-8 when the offset amount S is 300 [ ⁇ m] or less.
  • a value closer to 1.0 was shown than the measurement result of the transmission characteristic S31 of the printed wiring board 1 ′.
  • the measurement result of the transmission characteristic S31 of the printed wiring board 1 of Example 10-8 when the offset amount S is 200 [ ⁇ m] or less is that of Comparative Example 10-8.
  • a value closer to 1.0 was shown than the measurement result of the transmission characteristic S31 of the printed wiring board 1 ′.
  • the measurement result of the transmission characteristic S31 of the printed wiring board 1 of Example 10-8 when the offset amount S is 61 [ ⁇ m] or more is that of Comparative Example 10-8.
  • a value closer to 1.0 was shown than the measurement result of the transmission characteristic S31 of the printed wiring board 1 ′.
  • the measurement result of the transmission characteristic S31 [dB] of the printed wiring board 1 of Example 10-8 is 0.6.
  • the above values were better than those of Comparative Example 10-8 at high frequencies.
  • the measurement result of the transmission characteristic S31 [dB] of the printed wiring board 1 of Example 10-8 is 0.8 or more, which is better than Comparative Example 10-8 at high frequency. The value is shown.
  • the printed wiring board 1 of this embodiment includes a first insulating substrate 11 made of a liquid crystal polymer, a first signal line 131 formed on one main surface of the first insulating substrate 11, and a first electrode made of a liquid crystal polymer.
  • 2 insulating base material 21, second signal line 232 formed on one main surface 21 a of second insulating base material 21 along the extending direction of first signal line 131, and first insulating base material 11 is provided with an adhesive layer 30 made of modified polyphenylene ether for adhering one main surface 11a of the second insulating base material 21 to one main surface 21a of the second insulating substrate 21.
  • the offset amount S which is the distance to the position P2, of the first signal line 131 is longer than the circuit width L1 of the first signal line 131 and 300 [ ⁇ m] or less, so that the transmission characteristics are maintained and the thickness and size are reduced. It is possible to provide a printed wiring board 1 that can cope with the manufacturing process. In particular, when a plurality of signal lines are provided, the cumulative amount of pitch width can be reduced, so that the printed wiring board 1 suitable for reduction in thickness and size can be provided.
  • the transmission characteristics can be maintained even when the offset amount is 200 [ ⁇ m] or less, it can contribute to further thinning and miniaturization.
  • the offset amount S can be reduced.
  • each signal line Since the transmission characteristics of each signal line can be maintained, signals of different frequencies can be transmitted to each signal line. That is, a first frequency signal can be transmitted to the first signal line, and a second frequency signal can be transmitted to the second signal line. Thereby, the request

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Structure Of Printed Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Waveguides (AREA)

Abstract

 液晶ポリマーからなる第1絶縁性基材11と、第1絶縁性基材11の一方主面11aに形成された第1信号線131と、液晶ポリマーからなる第2絶縁性基材21と、第2絶縁性基材21の一方主面21aに、第1信号線131の延在方向に沿って形成された第2信号線231と、第1絶縁性基材11の一方主面11aと第2絶縁性基材21の一方主面21aとを接着させる、変性ポリフェニレンエーテルからなる接着層30と、を備え、第1信号線及び前記第2信号線が伝達する信号の周波数が2.5GHz以上かつ5.0GHz以下である場合には、第1信号線131の幅方向に沿う端部のうちの一方端部の位置から第2信号線231の幅方向に沿う端部のうちの一方端部の位置までの距離であるオフセット量Sが、第1信号線131の回路幅L1よりも長く、130μm以上かつ300μm以下とする。

Description

プリント配線板
 本発明は、プリント配線板に関する。
 高密度化を図りつつ高周波における伝送特性を向上させる観点から、積層される単位基板の間にエポキシ系の熱硬化型接着剤を用いた接着剤層が形成されたフレキシブルプリント回路が知られている(特許文献1)。
特開2012-243923号公報
 しかしながら、エポキシ系熱硬化性接着材の誘電率は高いため、高周波の信号伝送時における伝送特性が不十分であるという問題がある。
 本発明が解決しようとする課題は、高周波の信号伝送時における伝送特性が高く、配線密度の高いプリント配線板を提供することである。
 [1]本発明は、液晶ポリマーからなる第1絶縁性基材と、前記第1絶縁性基材の一方主面に形成された第1信号線と、液晶ポリマーからなる第2絶縁性基材と、前記第2絶縁性基材の一方主面に、前記第1信号線の延在方向に沿って形成された第2信号線と、前記第1絶縁性基材の一方主面と前記第2絶縁性基材の一方主面とを接着させる、変性ポリフェニレンエーテルからなる接着層と、を備え、前記第1信号線及び前記第2信号線が伝達する信号の周波数が2.5GHz以上かつ5.0GHz以下である場合には、前記第1信号線の幅方向に沿う端部のうちの前記第2信号線から最も遠い一方端部の位置と、前記第2信号線の幅方向に沿う端部のうちの前記第1信号線に最も近い一方端部の位置との距離であるオフセット量が、前記第1信号線の回路幅よりも長く、130[μm]以上かつ300[μm]以下であることを特徴とするプリント配線板を提供することにより、上記課題を解決する。
 [2]上記発明において、前記オフセット量を、200[μm]以下とすることにより上記課題を解決する。
 [3] 上記発明において、前記第1信号線は、第1周波数の信号を伝達し、前記第2信号線は、第1周波数とは異なる第2周波数の信号を伝達することを特徴とするプリント配線板を提供することにより、上記課題を解決する。
 本発明によれば、伝送特性を維持しつつ信号線間の距離を短くできるので、信号線間の累積ピッチの量を抑制できる。この結果、高周波の信号伝送時における伝送特性が高く、配線密度の高いプリント配線板を提供できる。
本発明の一実施形態におけるプリント配線板の断面図である。 図1に示すプリント配線板の製造方法を説明するための図である。 本実施形態の実施例に係るプリント配線板の構成を説明するための図である。 構造1においてオフセット量Sを変化させた場合の、周波数700MHzにおけるクロストークS41の測定結果を示す図である。 構造2においてオフセット量Sを変化させた場合の、周波数700MHzにおけるクロストークS41の測定結果を示す図である。 構造3においてオフセット量Sを変化させた場合の、周波数700MHzにおけるクロストークS41の測定結果を示す図である。 構造4においてオフセット量Sを変化させた場合の、周波数700MHzにおけるクロストークS41の測定結果を示す図である。 構造1においてオフセット量Sを変化させた場合の、周波数2.5GHzにおけるクロストークS41の測定結果を示す図である。 構造2においてオフセット量Sを変化させた場合の、周波数2.5GHzにおけるクロストークS41の測定結果を示す図である。 構造3においてオフセット量Sを変化させた場合の、周波数2.5GHzにおけるクロストークS41の測定結果を示す図である。 構造4においてオフセット量Sを変化させた場合の、周波数2.5GHzにおけるクロストークS41の測定結果を示す図である。 構造1においてオフセット量Sを変化させた場合の、周波数5GHzにおけるクロストークS41の測定結果を示す図である。 構造2においてオフセット量Sを変化させた場合の、周波数5GHzにおけるクロストークS41の測定結果を示す図である。 構造3においてオフセット量Sを変化させた場合の、周波数5GHzにおけるクロストークS41の測定結果を示す図である。 構造4においてオフセット量Sを変化させた場合の、周波数5GHzにおけるクロストークS41の測定結果を示す図である。 構造1におけるオフセット量Sを変化させた場合の、周波数700MHzの伝送特性S31の測定結果を示す図である。 構造1におけるオフセット量Sを変化させた場合の、周波数800MHzの伝送特性S31の測定結果を示す図である。 構造1におけるオフセット量Sを変化させた場合の、周波数900MHzの伝送特性S31の測定結果を示す図である。 構造1におけるオフセット量Sを変化させた場合の、周波数1.5GHzの伝送特性S31の測定結果を示す図である。 構造1におけるオフセット量Sを変化させた場合の、周波数1.7GHzの伝送特性S31の測定結果を示す図である。 構造1におけるオフセット量Sを変化させた場合の、周波数2GHzの伝送特性S31の測定結果を示す図である。 構造1におけるオフセット量Sを変化させた場合の、周波数2.5GHzの伝送特性S31の測定結果を示す図である。 構造1におけるオフセット量Sを変化させた場合の、周波数5GHzの伝送特性S31の測定結果を示す図である。
 以下、本発明の実施形態を図面に基づいて説明する。本実施形態では、装置内部の回路間、回路と装置間、又は装置間を接続する伝送線路に、本発明に係るプリント配線板1を適用した例を説明する。本実施形態のプリント配線板1は、高速信号の伝送に適しており、LVDS、MIPI,HDMI(登録商標),USBなどの各種規格に基づく伝送を行うことができる。
 図1は、本実施形態におけるプリント配線板1の断面図である。図1に示すように、本実施形態のプリント配線板1は、第1基材10と第2基材20が積層された積層構造を有する。図1に示す例では、第2基材20の上側に第1基材10が積層される例を示すが、逆であってもよい。
 第1基材10は、第1絶縁性基材11と、この第1絶縁性基材11の一方主面11a(図中下側)に形成された第1信号線131、132、133(「第1信号線130」と総称することもある)と、第1絶縁性基材11の他方主面(図中上側)に形成された第1グランド層12とを備える。図1に示すプリント配線板1において、第1グランド層12は、第1保護層41により覆われている。
 第2基材20は、第2絶縁性基材21と、この第2絶縁性基材21の一方主面21a(図中上側)に形成された第2信号線231、232、233(「第2信号線230」と総称することもある)と、第2絶縁性基材21の他方主面(図中下側)に形成された第2グランド層22とを備える。図1に示すプリント配線板1において、第2グランド層22は、第2保護層42により覆われている。
 図1に示す本実施形態の第2信号線231は、第1信号線131の延在方向に沿って形成されている。本実施形態の第1信号線131の延在方向と第2信号線231の延在方向とは略平行である。つまり、第1信号線131と第2信号線231とは並列の関係にある。また、図1に示す本実施形態の第1信号線131と第2信号線231とは、信号線の幅方向にずれた位置に配置される。本実施形態において、第1信号線131の幅方向(図中横方向)に沿い、第2信号線231の位置から最も遠い一方端部の位置(X1)から第2信号線231の幅方向(図中横方向)に沿い、第1信号線131に最も近い一方端部の位置(X2)までの距離であるオフセット量Sは、第1信号線131の回路幅L1よりも長い。つまり、図1に示すように、互いに積層される第1基材10の第1信号線131と第2基材20の第2信号線231とは、その積層方向において対向しないように、幅方向(図中横方向)の位置をずらして配置される。言い換えると、第1信号線131の幅方向に沿い、第2信号線231に最も近い他方端部の位置(Y1)と、第2信号線231の幅方向に沿い、第1信号線131に最も近い他方端部の位置(Y2)との距離は、0より大きい値である。
 図1に示すプリント配線板1において、特に限定されないが、第1信号線131の幅方向に沿う一方端部の位置X1から第2信号線231の幅方向に沿う一方端部X2までの距離であるオフセット量Sは、300[μm]以下であることが好ましい。第1信号線131の回路幅L1が100[μm]である場合には、第1信号線131の幅方向に沿い、第1信号線に最も近い位置(Y1)から第2信号線231の幅方向に沿い、第1信号線131に最も近い位置(Y2)までの距離、つまり、第1信号線131と第2信号線231の回路幅方向の最短距離は200[μm]である。また、本実施形態において、オフセット量は、200[μm]以下であることが好ましい。この場合において、第1信号線131の回路幅L1が100[μm]である場合には、第1信号線131の幅方向に沿い、第1信号線に最も近い位置(Y1)から第2信号線231の幅方向に沿い、第1信号線131に最も近い位置(Y2)までの距離、つまり、第1信号線131と第2信号線231の回路幅に沿う方向の最短距離は100[μm]である。
 第1信号線131の回路幅L1と第2信号線231の回路幅L2は同じ値であってもよいし、異なる値であってもよい。また、第1信号線131と第2信号線231の厚さは同じ値であってもよいし、異なる値であってもよい。ここでは、第1信号線130の一例としての第1信号線131と、第2信号線230としての第2信号線132との関係について説明したが、第1絶縁性基材11の一方主面11aに形成された、図示しない他の第1信号線130と、第2絶縁性基材21の一方主面21aに形成された、図示しない他の第2信号線230との関係についても適用できる。本実施形態のプリント配線板1は、図1に示す第1信号線131及び第2信号線230に相当する信号線を複数備えるように構成することができる。
 特に限定されないが、本実施形態の第1信号線131は、第1周波数の信号を伝達し、第2信号線231は、第1周波数とは異なる第2周波数の信号を伝達する。近時、スマートフォンやタブレット端末において信号の処理速度の高速化の要請が高まっており、構成部品としてのプリント配線板1も高周波における伝送特性の向上が求められている。また、携帯電話の周波数帯は各キャリアによって異なるため、複数の周波数の信号を伝送ができることが求められている。本実施形態では、各信号線において安定した伝送特性を確保することにより、異なる周波数の信号を伝送する別個独立の複数の信号線を備えることができる。本実施形態では、高周波数を含む広い周波数帯において、複数の周波数の信号を高い特性で伝送できるプリント配線板1を提供する。
 第1絶縁性基材11及び第2絶縁性基材21は、液晶ポリマー(以下、「LCP」とも称する)を含む材料により構成される。本実施形態の第1絶縁性基材11及び第2絶縁性基材21は、液晶ポリマーから構成される。本実施形態の液晶ポリマーは、溶融状態において液晶性質を示す樹脂であれば特に限定されない。ポリエステル系の液晶ポリマーであってもよいし、アラミド系の液晶ポリマーであってもよい。
 第1信号線130及び第2信号線230は、銅、銀、金などの導電性材料で構成される。同じく第1グランド層12及び第2グランド層22は、銅、銀、金などの導電性材料で構成される。第1グランド層12と第2グランド層22とは、異なる導電性材料で構成してもよい。
 第1保護層41及び第2保護層42は、カバーレイや、感光性液状レジストなどのカバー材料である。材料としては、ポリイミド(PI)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエステル(PE)などの絶縁性材料を用いることができる。
 本実施形態の第1基材10と第2基材20との間には、接着層30が介在する。接着層30は、本実施形態の第1基材10を構成する第1絶縁性基材11の一方主面11aと、第2絶縁性基材21の一方主面21aとを接着させる。第1絶縁性基材11の一方主面11aには、第1信号線130が形成され、第2絶縁性基材21の一方主面21aには第2信号線230が形成される。
 本実施形態の接着層30は、変性ポリフェニレンエーテル(以下「m-PPE」とも称する)を含む材料により構成される。本実施形態の接着層30は、変性ポリフェニレンエーテルにより構成される。変性ポリフェニレンエーテルは、本願出願時において入手可能なものを適宜に選択して利用することができる。
 本実施形態において接着層30に用いられるm-PPEは、例えば、スチレン系化合物とビニル系化合物とを共重合させて得られたスチレン-ビニル系化合物共重合体に、ポリエーテルイミドを加熱溶融ブレンドすることにより、溶融流動性と高耐熱性とが付与された材料である。接着剤のm-PPEは、例えば周波数2GHzにおける比誘電率が2.2~2.6及び誘電正接が0.002~0.01、引っ張り強度が30~50MPa、引っ張り弾性率が300~400MPaの物性を備える。また、m-PPEは、ガラス転移温度が230~250℃で、熱膨張係数が100~300ppm/℃の物性を備える。
 特に限定されないが、本実施形態において用いられるm-PPEは、以下の物性を備える。
(a)キュア条件:200℃/1hr(60分)
(b)誘電率:2.4(2GHz)[空洞共振器測定]
(c)誘電正接:0.0029(2GHz)[空洞共振器測定]
(d)銅引き剥がし強さ:7(N/cm)[JIS C6471]
(e)引っ張り強さ:42(MPa)[IS C2318]
(f)延び:250(%)[JIS 2318]
(g)引っ張り係数:325(MPa)[JIS K7113]
(h)ガラス転移温度:235(℃)[DMA(Dynamic Mechanical Analysis):弾性率を検出する動的粘弾性測定] JIS 6481]
(i)熱膨張係数α1:110(ppm/℃) [TMA(Thermal Mechanical Analysis):熱膨張率を測定する熱機械分析 JIS 6481]
(j)体積抵抗:1(E15Ωcm)[JIS 2170]
(k)熱抵抗:370(℃)[TG-DTA(示差熱-熱重量同時測定)]
(l)吸水率:0.1より小(%)[JIS 2318]
(m)塩素イオン:10(ppm)より小[121℃/100%RH/20hr経過後に水分を抽出して測定]
(n)ナトリウムイオン:5(ppm)より小[121℃/100%RH/20hr経過後に水分を抽出して測定]
(o)カリウムイオン:5(ppm)より小[121℃/100%RH/20hr経過後に水分を抽出して測定]
 本実施形態のプリント配線板1は、いわゆるストリップライン構造を有する。第1グランド層12と第1信号線131(130)との間には第1絶縁性基材11が介在し、第2グランド層22と第2信号線231(230)との間には第2絶縁性基材21が介在する。第1信号線131(130)は、第1絶縁性基材11を介した第1グランド層12と、第2絶縁性基材21を介した第2グランド層22とに挟まれている。また、第2信号線231(230)は、第2絶縁性基材21を介した第2グランド層22と、第1絶縁性基材11を介した第1グランド層12とに挟まれている。
 図示はしないが、第1信号線131(130)が形成されている第1絶縁性基材11の一方主面11aにグランド線を形成し、第2信号線231(230)が形成されている第2絶縁性基材21の一方主面21aにグランド線を形成した、いわゆるコプレーナライン構造としてもよい。
 続いて、図2に基づいて、本実施形態のプリント配線板1の製造方法を説明する。
 まず、図2(a)に示すように、第1信号線130が形成された第1基材10と、第2信号線230が形成された第2基材20と、接着層30を構成する変性ポリフェニレンエーテル樹脂シート30´とを準備する。第1基材10は、例えば厚さ25[μm]の液晶ポリマーからなる第1絶縁性基材11の両主面に銅箔が形成された銅張基板(CCL:Copper Clad Laminated)を用いて作製される。特に限定されないが、本実施形態の第1基材10は、厚さ12.5[μm]の電解銅箔を有する。そして、サブトラクティブ法などの一般的なフォトリソグラフィー手法を用いて、第1絶縁性基材11の一方主面11a側の銅箔の所定領域をエッチングして、所望の第1信号線130を形成する。第1絶縁性基材11の他方主面側の銅箔についても、必要に応じて銅箔の所定領域をエッチングして、グランド層12を形成する。
 同様に、第2基材20は、例えば厚さ25[μm]の液晶ポリマーからなる第2絶縁性基材21の両主面に銅箔が形成された銅張基板(CCL:Copper Clad Laminated)を用いて作製される。特に限定されないが、本実施形態の第2基材20は、厚さ12.5[μm]の電解銅箔を有する。そして、第1基材10と同様に、サブトラクティブ法を用いて、第2絶縁性基材21の一方主面21a側の銅箔の所定領域をエッチングして、所望の第2信号線230を形成する。第2絶縁性基材21の他方主面側の銅箔についても、必要に応じて銅箔の所定領域をエッチングして、グランド層22を形成する。
 図2(a)に示すように、変性ポリフェニレンエーテル樹脂シート30´を、第1基材10と第2基材20との間に介在させる。具体的には、具体的に第1絶縁性基材11の一方主面11aと第2絶縁性基材21の一方主面21aとの間に、変性ポリフェニレンエーテル樹脂シート30´を配置する。そして、変性ポリフェニレンエーテル樹脂シート30´を介在させた状態で、第1基材10と第2基材20とを重ねて積層ラミネートを行い、一括して積層プレスを行う。具体的に、第1基材10を図2(a)の矢印Z1方向に移動させて第2基材20に接近させ、第2基材20を矢印Z2方向に移動させて第1基材10に接近させる。そして、加熱状況下で第1基材10、変性ポリフェニレンエーテル樹脂シート30´及び第2基材20を積層方向に沿って熱圧着する。これにより、第1信号線130が形成される第1絶縁性基材11の一方主面11aと、第2信号線230が形成される第2絶縁性基材21の一方主面21aとを接着させる、変性ポリフェニレンエーテルからなる接着層30が形成される。
 上記熱圧着の工程は、加熱温度170~190℃、加圧圧力5~20kg/cmにて、30~60分間、真空雰囲気下において行われる。ちなみに、本実施形態の接着層30を構成する接着剤のm-PPEの加圧硬化温度は、例えば180℃±10℃程度である。本実施形態では、温度:180℃±10℃、時間:60分程度のプレス条件で、真空雰囲気下において行う。これにより、接着層30を構成するm-PPEの高分子がアロイ化して高耐熱性を備えた柔らかい特性を示す。本実施形態の接着層30は柔軟性を備えるので、フレキシブルなプリント配線板1を得ることができる。本実施形態の第1絶縁性基材11、第2絶縁性基材21のガラス転移温度は、例えば300℃以上である。接着層30の加圧硬化温度は、第1絶縁性基材11/第2絶縁性基材21のガラス転移温度(300℃以上)よりも低い。これにより、熱圧着工程において第1絶縁性基材11、第2絶縁性基材21に生じる変形などのダメージを最小限に抑制できる。
 また、本実施形態の熱圧着工程では、高温での熱プレス処理が不要であるので、ポリイミド系樹脂を絶縁性基材として用いる既存のFPCの製造設備を用いて本発明の実施形態に係るプリント配線板1を作製できる。本実施形態の熱圧着工程においては、例えば蒸気加熱タイプや熱溶媒過熱油タイプなどの安価なプレス装置を用いることができるので、プリント配線板1の製造コストを低減させることができる。
 続いて、図2(c)に示すように、第1基材10と第2基材20とを貫通する所定径のスルーホールTHを形成する。スルーホールTHの形成手法は特に限定されず、NCドリルを用いて穿孔してもよいし、レーザー処理により穿孔してもよい。
 その後、図2(d)に示すように、第1基材10及び第2基材20にダイレクトプレーティングプロセスを施した後、スルーホールTHにめっき処理を行う。めっき処理により層間導通層50を形成する。層間導通層50により第1信号線130、第2信号線230、第1グランド層12、及び第2グランド層22を電気的に接続し、層間導通を図る。
 そして、図2(e)に示すように、第1グランド層12、第2グランド層22に所定の回路を形成する。
 図1に示すように、第1グランド層12を覆う保護層41と、第2グランド層22を覆う保護層42を形成し、図1に示すプリント配線板1を得る。なお、第1グランド層12、第2グランド層22は、基準電位(電源電位、接地電位)が付与されているため、第1信号線132、第2信号線232も基準電位となる。
 さらに、図示は省略するが、本実施形態では、同軸コネクタをプリント配線板1の表面に実装する。本実施形態において、信号の入出力は、プリント配線板1の上に表面実装された同軸コネクタを介して行う。同軸コネクタは、従来の実装ラインを用いて実装が可能であるので、新たな設備を導入することなく本実施形態に係るプリント配線板1を作製できる。また、信号の入出力に表面実装コネクタを使用することにより、部品着脱が容易になる。製品の小型化に応じて組み込みスペースが縮小された場合であても、効率よく製品の組み立てを行うことができる。この結果、作業工数の削減とプロセスコストの削減を実現できる。
 なお、プリント配線板1の外形を枝分かれさせることにより、全方向にパターニングができ、設計の自由度が向上する。プリント配線板1の外形加工は、金型又はレーザーにより行うことができるので、寸法精度も高く維持できる。
 本実施形態のプリント配線板1は、第1絶縁性基材11及び第2絶縁性基材21がLCPからなると共に、接着層30がm―PPEからなるため、誘電率及び誘電正接を低く抑えることができる。従来のポリイミド系の樹脂等を用いたものよりも高周波特性に優れ、柔軟性を損なわずに信号を高速で伝送できる構造を実現できる。
 本実施形態のプリント配線板1は、液晶ポリマーからなる第1、第2絶縁性基材11、21と、変性ポリフェニレンエーテルの接着層30との組み合わせにより、誘電率を低く抑制し、高周波での高速伝送を実現できる。また、本実施形態のプリント配線板1は、独立した複数の信号線を、多層基板を構成する接着層30の内部に配線できるので、一つのプリント配線板1において異なる二種類以上の周波数の信号を伝送できる。
 さらに、本実施形態のプリント配線板1は、第1信号線131(130)と第2信号線231(230)とが回路幅方向に沿ってずらして配置されているので、第1信号線131(130)と第2グランド層22との距離及び第2信号線231(230)と第1グランド層12との距離が確保されるので、信号線同士が互いに干渉せずに信号を伝送できる。このため、第1信号線131(130)及び第2信号線231(230)のいずれにおいても信頼性の高い信号伝送を実行できる。各信号線の特性インピーダンスをマッチングさせても、各信号線の回路幅を太く設計できるので、伝送特性を高く維持できる。また、プリント配線板1の厚さが厚くならないようにできるので、フレキシブル性、折り曲げ特性も損なわれない。
<実施例>
 以下、本発明の本実施形態における実施例を説明する。以下に説明する実施例により、本実施形態のプリント配線板1のクロストークなどの伝送特性を検証する。
 実施例として、図3に示す、所定の態様のプリント配線板1を得た。図3に示すように、本実施例に係るプリント配線板1は、1本の第1信号線131と1本の第2信号線231とを有する。第1信号線131の線幅を回路幅L1と定義し、第2信号線231の線幅を回路幅L2と定義した。実験の便宜のため、第1信号線131の回路幅L1と第2信号線231の回路幅L2とを共通する。第1基材10と第2基材20の積層方向に沿う第1信号線131の厚みを厚さt1と定義し、同じく積層方向に沿う第2信号線231の厚みを厚さt2と定義した。実験の便宜のため、第1信号線131の厚さt1と第2信号線231の厚さt2は同じ厚さとした。
 また、第1信号線131の幅方向に沿い、第1信号線131の両側の端部のうち第2信号線231から最も遠い一方端部の位置P1から、第2信号線231の幅方向に沿い、第2信号線231の両側の端部のうち第1信号線131に最も近い一方端部の位置P2までの距離をオフセット量Sと定義した。さらに、第1絶縁性基材11の主面に沿う第1信号線131の平面(第1絶縁性基材11と接しない方の平面)の位置と、第2絶縁性基材21の主面に沿う第2信号線231の平面(第2絶縁性基材21と接しない方の平面)の位置との距離を導体間距離Dと定義した。
 本実施例のプリント配線板1において、図3に示す基本的構造を有しつつ、回路幅Lの設計値を25[μm]、50[μm]、100[μm]に変化させるとともに、及び導体間距離Dの設計値を30[μm]、60[μm]に変化させた構造1、構造2、構造4及び構造4を以下の表1のとおりに定義した。
Figure JPOXMLDOC01-appb-T000001
 また、比較例として、第1絶縁性基材11´(相当の構成、以下同じ)及び第2絶縁性基材21´(相当の構成、以下同じ)がポリイミドからなり、接着層30´(相当の構成、以下同じ)がアクリルエポキシ系接着剤(誘電率3.6~3.8(2GHz)、誘電正接0.03~0.04、銅引き剥がし強さ9N/cm、吸水率2.0%である)であるプリント配線板1´を作製した。この比較例に係るプリント配線板1´は、本実施例と同じ上記表1の構造1、構造2、構造3及び構造4を備える。
 本実施例の第1絶縁性基材11及び第2絶縁性基材21において用いるLCPフィルムと、比較例の第1絶縁性基材11´及び第2絶縁性基材21´において用いるPIフィルムの物性値を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 本実施例の接着層30において用いるm-PPE樹脂フィルムは、誘電率2.2~2.6(2GHz)、誘電正接0.002~0.01、銅引き剥がし強さ7N/cm、吸水率0.2%である。m-PPE樹脂フィルムにより接着層30を構成するので、多層基板を作製する際の積層工程で180±(プラスマイナス)10℃程度でプレスをすることができる。このように比較的低温で処理ができるので、既存のフレキシブルプリント基板の製造装置を用いて製造できる。また、比較的低温で処理ができるので、作製するプリント配線板1の寸法バラツキを抑制することができる。
 また、m-PPE樹脂フィルムは柔らかく、低圧(0.1~1MPa)においても回路への埋め込みが可能であるので、積層ラミネート処理を一括で行うことができる。このような材質のm-PPE樹脂フィルムを接着層30として用いることにより、製造に要する工程数を低減させ、積層プレスを行う際に用いる副資材を削減できる。m-PPE樹脂フィルムは吸湿耐性がある。また、m-PPE樹脂フィルムは誘電率が低いため、これを介在させることにより伝送特性を向上させる。
 続いて、構造1~4を備えた実施例及び構造1~4を備えた比較例について、各周波数におけるオフセット量Sを変更させた場合のクロストークS41[dB]を計測し、これを比較した。本実施形態において計測したクロストークS41[dB]は、複数の信号線のうち、一の信号線(伝送路)における伝送信号が、他の信号線(伝送路)に漏れる程度を示す計測値である。本実施形態では、クロストークS41の値が低い実施例は信号の漏れが少なく、良好な伝送特性を示すものとして評価する。
 下掲の表3に、伝送する信号の周波数が700MHzにおけるオフセット量Sを変更させた場合の実施例1-1~1-4及び比較例1-1~1-4のクロストークS41[dB]の測定結果を示す。実施例1-1及び比較例1-1は構造1を備え、実施例1-2及び比較例1-2は構造2を備え、実施例1-3及び比較例1-3は構造3を備え、実施例1-4及び比較例1-4は構造4を備える。
Figure JPOXMLDOC01-appb-T000003
 構造1を備える実施例1-1及び比較例1-1について、オフセット量に対するクロストークS41の測定結果を図4Aに示す。構造2を備える実施例1-2及び比較例1-2について、オフセット量に対するクロストークS41の測定結果を図4Bに示す。構造3を備える実施例1-3及び比較例1-3について、オフセット量に対するクロストークS41の測定結果を図4Cに示す。構造4を備える実施例1-4及び比較例1-4について、オフセット量に対するクロストークS41の測定結果を図4Dに示す。実施例は実線で示し、比較例は破線で示す。
 下掲の表4に、伝送する信号の周波数が800MHzにおけるオフセット量Sを変更させた場合の実施例2-1~2-4及び比較例2-1~2-4のクロストークS41[dB]の測定結果を示す。実施例2-1及び比較例2-1は構造1を備え、実施例2-2及び比較例2-2は構造2を備え、実施例2-3及び比較例2-3は構造3を備え、実施例2-4及び比較例2-4は構造4を備える。本測定結果は、700MHzと同じ傾向を示したので、図示は省略する。
Figure JPOXMLDOC01-appb-T000004
 下掲の表5に、伝送する信号の周波数が900MHzにおけるオフセット量Sを変更させた場合の実施例3-1~3-4及び比較例3-1~3-4のクロストークS41[dB]の測定結果を示す。実施例3-1及び比較例3-1は構造1を備え、実施例3-2及び比較例3-2は構造2を備え、実施例3-3及び比較例3-3は構造3を備え、実施例3-4及び比較例3-4は構造4を備える。本測定結果は、700MHzと同じ傾向を示したので、図示は省略する。
Figure JPOXMLDOC01-appb-T000005
 下掲の表6に、伝送する信号の周波数が1.5GHzにおけるオフセット量Sを変更させた場合の実施例4-1~4-4及び比較例4-1~4-4のクロストークS41[dB]の結果を示す。実施例4-1及び比較例4-1は構造1を備え、実施例4-2及び比較例4-2は構造2を備え、実施例4-3及び比較例4-3は構造3を備え、実施例4-4及び比較例4-4は構造4を備える。本測定結果は、700MHzと同じ傾向を示したので、図示は省略する。
Figure JPOXMLDOC01-appb-T000006
 下掲の表7に、伝送する信号の周波数が1.7GHzにおけるオフセット量Sを変更させた場合の実施例5-1~5-4及び比較例5-1~5-4のクロストークS41[dB]の測定結果を示す。実施例5-1及び比較例5-1は構造1を備え、実施例5-2及び比較例5-2は構造2を備え、実施例5-3及び比較例5-3は構造3を備え、実施例5-4及び比較例5-4は構造4を備える。本測定結果は、700MHzと同じ傾向を示したので、図示は省略する。
Figure JPOXMLDOC01-appb-T000007
 下掲の表8に、伝送する信号の周波数が2.0GHzにおけるオフセット量Sを変更させた場合の実施例6-1~6-4及び比較例6-1~6-4のクロストークS41[dB]の測定結果を示す。実施例6-1及び比較例6-1は構造1を備え、実施例6-2及び比較例6-2は構造2を備え、実施例6-3及び比較例6-3は構造3を備え、実施例6-4及び比較例6-4は構造4を備える。本測定結果は、700MHzと同じ傾向を示したので、図示は省略する。
Figure JPOXMLDOC01-appb-T000008
 下掲の表9に、伝送する信号の周波数が2.5GHzにおけるオフセット量Sを変更させた場合の実施例7-1~7-4及び比較例7-1~7-4のクロストークS41[dB]の測定結果を示す。実施例7-1及び比較例7-1は構造1を備え、実施例7-2及び比較例7-2は構造2を備え、実施例7-3及び比較例7-3は構造3を備え、実施例7-4及び比較例7-4は構造4を備える。
Figure JPOXMLDOC01-appb-T000009
 構造1を備える実施例7-1及び比較例7-1について、オフセット量に対するクロストークS41の測定結果を図5Aに示す。構造2を備える実施例7-2及び比較例7-2について、オフセット量に対するクロストークS41の測定結果を図5Bに示す。構造3を備える実施例7-3及び比較例7-3について、オフセット量に対するクロストークS41の測定結果を図5Cに示す。構造4を備える実施例7-4及び比較例7-4について、オフセット量に対するクロストークS41の測定結果を図5Dに示す。実施例は実線で示し、比較例は破線で示す。図5A~図5Dに示すように、伝送する信号の周波数が2.5GHzのクロストークS41のパターンは、700MHz~2.0GHzのクロストークS41のパターンとおおむね同様である。
 下掲の表10に、伝送する信号の周波数が5.0GHzにおけるオフセット量Sを変更させた場合の実施例8-1~8-4及び比較例8-1~8-4のクロストークS41[dB]の測定結果を示す。実施例8-1及び比較例8-1は構造1を備え、実施例8-2及び比較例8-2は構造2を備え、実施例8-3及び比較例8-3は構造3を備え、実施例8-4及び比較例8-4は構造4を備える。
Figure JPOXMLDOC01-appb-T000010
 構造1を備える実施例8-1及び比較例8-1について、オフセット量に対するクロストークS41の測定結果を図6Aに示す。構造2を備える実施例8-2及び比較例8-2について、オフセット量に対するクロストークS41の測定結果を図6Bに示す。構造3を備える実施例8-3及び比較例8-3について、オフセット量に対するクロストークS41の測定結果を図6Cに示す。構造4を備える実施例8-4及び比較例8-4について、オフセット量に対するクロストークS41の測定結果を図6Dに示す。実施例は実線で示し、比較例は破線で示す。
 表3乃至表10、並びに図4A~図4D、図5A~図5D及び図6A~図6Dに示すように、オフセット量Sが400[μm]以下において、実施例1-1~1-4のプリント配線板1のクロストークS41の測定結果は、比較例1-1~1-4のプリント配線板1´のクロストークS41の測定結果よりも低く、良好な値を示した。実施例2-1~2-4のプリント配線板1のクロストークS41の測定結果は、比較例2-1~2-4のプリント配線板1´のクロストークS41の測定結果よりも低く、良好な値を示した。実施例3-1~3-4のプリント配線板1のクロストークS41の測定結果は、比較例3-1~3-4のプリント配線板1´のクロストークS41の測定結果よりも低く、良好な値を示した。実施例4-1~4-4のプリント配線板1のクロストークS41の測定結果は、比較例4-1~4-4のプリント配線板1´のクロストークS41の測定結果よりも低く、良好な値を示した。実施例5-1~5-4のプリント配線板1のクロストークS41の測定結果は、比較例5-1~5-4のプリント配線板1´のクロストークS41の測定結果よりも低く、良好な値を示した。実施例6-1~6-4のプリント配線板1のクロストークS41の測定結果は、比較例6-1~6-4のプリント配線板1´のクロストークS41の測定結果よりも低く、良好な値を示した。実施例7-1~7-4のプリント配線板1のクロストークS41の測定結果は、比較例7-1~7-4のプリント配線板1´のクロストークS41の測定結果よりも低く、良好な値を示した。実施例8-1~8-4のプリント配線板1のクロストークS41の測定結果は、比較例8-1~8-4のプリント配線板1´のクロストークS41の測定結果よりも低く、良好な値を示した。さらに、オフセット量Sが300[μm]以下である場合には、各実施例のプリント配線板1のクロストークS41の測定結果は、各比較例のプリント配線板1´のクロストークS41の測定結果に対して有利な差を示した。さらにまた、オフセット量Sが200[μm]以下である場合には、各実施例のプリント配線板1のクロストークS41の測定結果は、各比較例のプリント配線板1´のクロストークS41の測定結果に対してより有利な差を示した。
 特に、伝送する信号の周波数が5.0GHz未満である場合に、オフセット量Sが400[μm]以下において各実施例のプリント配線板1のクロストークS41の測定結果は、各比較例のプリント配線板1´のクロストークS41の測定結果よりも低い値を示す傾向が見られ、良好な結果を示した。同様に、伝送する信号の周波数が5.0GHz未満である場合に、オフセット量Sが300[μm]以下である場合には、各実施例のプリント配線板1のクロストークS41の測定結果は、各比較例のプリント配線板1´のクロストークS41の測定結果よりも低い値を示す傾向が見られた。同様に、伝送する信号の周波数が5.0GHz未満である場合に、オフセット量Sが200[μm]以下である場合には、各実施例のプリント配線板1のクロストークS41の測定結果は、各比較例のプリント配線板1´のクロストークS41の測定結果に対してさらに低い値を示す傾向が見られ、有利な差を示した。
 少なくとも、伝送する信号の周波数が2.5GHz未満である場合に、オフセット量Sが400[μm]以下において各実施例のプリント配線板1のクロストークS41の測定結果は、各比較例のプリント配線板1´のクロストークS41の測定結果よりも低く、良好な値を示した。同様に、伝送する信号の周波数が2、5GHz未満である場合に、オフセット量Sが300[μm]以下である場合には、各実施例のプリント配線板1のクロストークS41の測定結果は、各比較例のプリント配線板1´のクロストークS41の測定結果に対して有利な差を示した。同様に、伝送する信号の周波数が2.5GHz未満である場合に、オフセット量Sが200[μm]以下である場合には、各実施例のプリント配線板1のクロストークS41の測定結果は、各比較例のプリント配線板1´のクロストークS41の測定結果に対してさらに有利な差を示した。
 伝送する信号の周波数が2.5GHzである場合において、構造1を有する本実施例7-1のプリント配線板1のクロストークS41[dB]の測定結果は、オフセット量Sが22[μm]以上かつ400[μm]以下である場合に、比較例7-1に係るプリント配線板1のクロストークS41よりも良好な値を示した。伝送する信号の周波数が2.5GHzである場合において、構造2を有する本実施例7-2のプリント配線板1のクロストークS41[dB]の測定結果は、オフセット量Sが400[μm]以下であるときに、比較例7-2に係るプリント配線板1のクロストークS41よりも良好な値を示した。伝送する信号の周波数が2.5GHzである場合において、構造3を有する本実施例7-3のプリント配線板1のクロストークS41[dB]の測定結果は、オフセット量Sが400[μm]以下であるときに、比較例7-3に係るプリント配線板1のクロストークS41よりも良好な値を示した。構造4を有する本実施例7-4のプリント配線板1のクロストークS41[dB]の測定結果は、オフセット量Sが400[μm]以下であるときに、比較例7-4に係るプリント配線板1のクロストークS41よりも良好な値を示した。
 伝送する信号の周波数が5.0GHzである場合において、構造1を有する本実施例8-1のプリント配線板1のクロストークS41[dB]の測定結果は、オフセット量Sが130[μm]以上かつ400[μm]以下であるときに、比較例8-1に係るプリント配線板1のクロストークS41よりも良好な値を示した。伝送する信号の周波数が5.0GHzである場合において、構造2を有する本実施例8-2のプリント配線板1のクロストークS41[dB]の測定結果は、オフセット量Sが42[μm]以上であるときに、比較例8-2に係るプリント配線板1のクロストークS41よりも良好な値を示した。伝送する信号の周波数が5.0GHzである場合において、構造3を有する本実施例8-3のプリント配線板1のクロストークS41[dB]の測定結果は、オフセット量Sが20[μm]以上であるときに、比較例8-3に係るプリント配線板1のクロストークS41よりも良好な値を示した。構造4を有する本実施例8-4のプリント配線板1のクロストークS41[dB]の測定結果は、オフセット量Sが76[μm]以上であるときに、比較例8-4に係るプリント配線板1のクロストークS41よりも良好な値を示した。
 次に、各周波数における、構造1を備えた実施例10-1~10-8及び構造1を備えた比較例10-1~10-8について、オフセット量Sを変更させた場合の伝送特性S31[dB]を計測し、これを比較した。本実施形態において計測した伝送特性S31[dB]は、入力した信号がどれだけ出力されたかを示す計測値である。つまり、本実施形態における伝送特性S31[dB]は、入力信号に対して信号がどれだけ流れたかを示す指標値である。本実施形態における伝送特性S31は、0~1の値をとる。本実施形態では、伝送特性S31の値が1.0に近いもの(差が小さいもの)を良好な伝送特性を示すものとして評価する。
 下掲の表11に、伝送する信号の周波数が700MHz~5.0GHzにおける伝送特性S31[dB]の測定結果を示す。実施例10-1~実施例10-8は構造1を備える。比較例10-1~10-8も同様に構造1を備える。
Figure JPOXMLDOC01-appb-T000011
 伝送する信号の周波数が700MHzである実施例10-1及び比較例10-1について、オフセット量に対する伝送特性S31の測定結果を図7Aに示す。伝送する信号の周波数が800MHzである実施例10-2及び比較例10-2について、オフセット量に対する伝送特性S31の測定結果を図7Bに示す。伝送する信号の周波数が900MHzである実施例10-3及び比較例10-3について、オフセット量に対する伝送特性S31の測定結果を図7Cに示す。伝送する信号の周波数が1.5GHzである実施例10-4及び比較例10-4について、オフセット量に対する伝送特性S31の測定結果を図7Dに示す。伝送する信号の周波数が1.7GHzである実施例10-5及び比較例10-5について、オフセット量に対する伝送特性S31の測定結果を図7Eに示す。伝送する信号の周波数が2.0GHzである実施例10-6及び比較例10-6について、オフセット量に対する伝送特性S31の測定結果を図7Fに示す。伝送する信号の周波数が2.5GHzである実施例10-7及び比較例10-7について、オフセット量に対する伝送特性S31の測定結果を図7Gに示す。伝送する信号の周波数が5.0GHzである実施例10-8及び比較例10-8について、オフセット量に対する伝送特性S31の測定結果を図7Hに示す。
 実施例は実線で示し、比較例は破線で示す。図7A~図7Hに示すように、各実施例に係るプリント配線板1の伝送特性S31の測定結果は、各比較例のプリント配線板1´の伝送特性S31の測定結果よりも1.0に近く、良好な値を示した。なお、伝送する信号の周波数が700MHz~2.5GHzの実施例の伝送特性S31のパターンはおおむね同様である。
 表11、及び図7A~図7Hに示すように、オフセット量Sが400[μm]以下である場合に、実施例10-1~10-8のプリント配線板1の伝送特性S31の測定結果は、比較例10-1~10-8のプリント配線板1´の伝送特性S31の測定結果よりも1に近い値乃至同等の値を示した。さらに、オフセット量Sが300[μm]以下である場合に、実施例10-1~10-8のプリント配線板1の伝送特性S31の測定結果は、比較例10-1~1-8のプリント配線板1´の伝送特性S31の測定結果よりも1.0により近い値乃至同等の値を示した。特に、オフセット量Sが200[μm]以下である場合に、実施例10-1~10-8のプリント配線板1の伝送特性S31の測定結果は、比較例10-1~10-8のプリント配線板1の伝送特性S31の測定結果よりも1.0に近い値を示した。
 伝送する信号の周波数が5.0GHz未満である場合には、オフセット量Sが200[μm]以下において実施例10-1~10-7のプリント配線板1の伝送特性S31の測定結果は、比較例10-1~10-7のプリント配線板1´の伝送特性S31の測定結果よりも1.0に近い値を示した。
 少なくとも、伝送する信号の周波数が2.5GHz以下である場合に、オフセット量Sが400[μm]以下である場合において、実施例10-1~10-7のプリント配線板1の伝送特性S31の測定結果は、比較例10-1~10-7のプリント配線板1´の伝送特性S31の測定結果よりも1.0に近い値乃至同等の値を示した。同様に、伝送する信号の周波数が2.5GHz以下である場合に、オフセット量Sが300[μm]以下において上記効果を確認できた。同様に、伝送する信号の周波数が2.5GHz以下である場合に、オフセット量Sが200[μm]以下において、実施例10-1~10-7のプリント配線板1の伝送特性S31の測定結果は、比較例10-1~10-7のプリント配線板1´の伝送特性S31の測定結果よりも1.0に低い値を示した。
 伝送する信号の周波数が5.0GHzである場合には、オフセット量Sが400[μm]以下において実施例10-8のプリント配線板1の伝送特性S31の測定結果は、比較例10-8のプリント配線板1´の伝送特性S31の測定結果よりも1.0に近い値を示した。伝送する信号の周波数が5.0GHzである場合には、オフセット量Sが300[μm]以下において実施例10-8のプリント配線板1の伝送特性S31の測定結果は、比較例10-8のプリント配線板1´の伝送特性S31の測定結果よりも1.0により近い値を示した。伝送する信号の周波数が5.0GHzである場合には、オフセット量Sが200[μm]以下において実施例10-8のプリント配線板1の伝送特性S31の測定結果は、比較例10-8のプリント配線板1´の伝送特性S31の測定結果よりも1.0により近い値を示した。伝送する信号の周波数が5.0GHzである場合には、オフセット量Sが61[μm]以上において実施例10-8のプリント配線板1の伝送特性S31の測定結果は、比較例10-8のプリント配線板1´の伝送特性S31の測定結果よりも1.0により近い値を示した。
 伝送する信号の周波数が5.0GHzである場合に、オフセット量Sが155[μm]以上において、本実施例10-8のプリント配線板1の伝送特性S31[dB]の測定結果が0.6以上という、高周波において比較例10-8よりも良好な値を示した。オフセット量Sが174[μm]以上において、本実施例10-8のプリント配線板1の伝送特性S31[dB]の測定結果が0.8以上という、高周波において比較例10-8よりも良好な値を示した。
 本実施例のプリント配線板1は、液晶ポリマーからなる第1絶縁性基材11と、第1絶縁性基材11の一方主面に形成された第1信号線131と、液晶ポリマーからなる第2絶縁性基材21と、第2絶縁性基材21の一方主面21aに、第1信号線131の延在方向に沿って形成された第2信号線232と、第1絶縁性基材11の一方主面11aと第2絶縁性基材21の一方主面21aとを接着させる変性ポリフェニレンエーテルからなる接着層30を備える構成を備える。本構成において、第1信号線131の幅方向に沿い、第2信号線231から最も遠い一方端部の位置から第2信号線231の幅方向に沿い第1信号線131に最も近い一方端部の位置P2までの距離であるオフセット量Sを、第1信号線131の回路幅L1よりも長く、かつ300[μm]以下とすることができるので、伝送特性を維持しつつ、薄型化及び小型化に対応可能なプリント配線板1を提供できる。特に、複数の信号線を備える場合には、ピッチ幅の累積量を小さくできるので、薄型化及び小型化に適したプリント配線板1を提供できる。
 さらに、オフセット量を200[μm]以下としても伝送特性を維持できるので、更なる薄型化及び小型化に寄与できる。特に、高周波の信号を伝送するプリント配線板1としては、オフセット量Sの縮小を図ることができる。
 信号線間のオフセット量を小さくできるので、設計の自由度が向上し、様々な配線のパターンに対応できる。
 各信号線の伝送特性を維持できるので、それぞれの信号線に異なる周波数の信号を伝達させることができる。つまり、第1信号線には第1周波数の信号を伝達させ、第2信号線には第2周波数の信号を伝達させることができる。これにより、一つの機器において複数の周波数の信号を伝達するという要請に応じることができる。
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
1…プリント配線板
11…第1絶縁性基材
131,132,133…第1信号線
12…第1グランド層
21…第2絶縁性基材
231,232,233…第2信号線
20…保護層
22…第2グランド層
30…接着層
41,42…カバー部材
TH…スルーホール
50…層間導通層

Claims (3)

  1.  液晶ポリマーからなる第1絶縁性基材と、
     前記第1絶縁性基材の一方主面に形成された第1信号線と、
     液晶ポリマーからなる第2絶縁性基材と、
     前記第2絶縁性基材の一方主面に、前記第1信号線の延在方向に沿って形成された第2信号線と、
     前記第1絶縁性基材の一方主面と前記第2絶縁性基材の一方主面とを接着させる、変性ポリフェニレンエーテルからなる接着層と、を備え、
     前記第1信号線及び前記第2信号線が伝達する信号の周波数が2.5GHz以上かつ5.0GHz以下である場合には、前記第1信号線の幅方向に沿う端部のうちの前記第2信号線から最も遠い一方端部の位置と、前記第2信号線の幅方向に沿う端部のうちの前記第1信号線に最も近い一方端部の位置との距離であるオフセット量が、前記第1信号線の回路幅よりも長く、130μm以上かつ300μm以下であることを特徴とするプリント配線板。
  2.  前記オフセット量は、200μm以下であることを特徴とする請求項1に記載のプリント配線板。
  3.  前記第1信号線は、第1周波数の信号を伝達し、
     前記第2信号線は、第1周波数とは異なる第2周波数の信号を伝達することを特徴とする請求項1又は2に記載のプリント配線板。
PCT/JP2015/064049 2014-05-21 2015-05-15 プリント配線板 WO2015178313A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167034279A KR101700397B1 (ko) 2014-05-21 2015-05-15 프린트 배선판
US15/305,232 US9807870B2 (en) 2014-05-21 2015-05-15 Printed wiring board
CN201580020126.8A CN106233825B (zh) 2014-05-21 2015-05-15 印刷布线板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-105107 2014-05-21
JP2014105107A JP5658399B1 (ja) 2014-05-21 2014-05-21 プリント配線板

Publications (1)

Publication Number Publication Date
WO2015178313A1 true WO2015178313A1 (ja) 2015-11-26

Family

ID=52437460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064049 WO2015178313A1 (ja) 2014-05-21 2015-05-15 プリント配線板

Country Status (6)

Country Link
US (1) US9807870B2 (ja)
JP (1) JP5658399B1 (ja)
KR (1) KR101700397B1 (ja)
CN (1) CN106233825B (ja)
TW (1) TWI592082B (ja)
WO (1) WO2015178313A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224323A1 (ja) * 2021-04-19 2022-10-27 山一電機株式会社 高周波信号伝送装置、及び高周波信号伝送ケーブル

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6537172B2 (ja) * 2015-06-01 2019-07-03 住友電工プリントサーキット株式会社 プリント配線板
TWI685133B (zh) * 2016-07-01 2020-02-11 薩摩亞商亮通國際有限公司 發光二極體元件結構、支架材料、以及支架的製備方法
KR102214641B1 (ko) * 2018-07-16 2021-02-10 삼성전기주식회사 인쇄회로기판
TWI696197B (zh) 2018-11-21 2020-06-11 貿聯國際股份有限公司 高頻軟性扁平排線
CN110113865A (zh) * 2019-05-28 2019-08-09 苏州福莱盈电子有限公司 一种防止高频信号泄露的线路板结构及其制作方法
JP2021170570A (ja) * 2020-04-14 2021-10-28 キオクシア株式会社 半導体記憶装置
CN111586965B (zh) * 2020-05-25 2022-03-22 上海航天电子通讯设备研究所 基于lcp基材的高功率共形组件制备方法及共形组件
JP2022032293A (ja) 2020-08-11 2022-02-25 日本メクトロン株式会社 配線体およびその製造方法
CN116235363A (zh) * 2020-10-12 2023-06-06 株式会社村田制作所 定向耦合器
CN215418829U (zh) * 2021-04-08 2022-01-04 东莞富强电子有限公司 电连接器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003101432A (ja) * 2001-09-21 2003-04-04 Matsushita Electric Ind Co Ltd 無線通信モジュールおよび無線通信機器
JP2006042098A (ja) * 2004-07-29 2006-02-09 Kyocera Corp 高周波用配線基板
JP2009010328A (ja) * 2007-04-24 2009-01-15 Panasonic Corp 差動伝送線路
JP2011130395A (ja) * 2009-12-21 2011-06-30 Nec Corp 信号合成分配回路、電力増幅器および信号合成分配回路の製造方法
WO2014046014A1 (ja) * 2012-09-20 2014-03-27 株式会社クラレ 回路基板およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4063533B2 (ja) 2001-12-10 2008-03-19 日本碍子株式会社 フレキシブル配線板
TWI237536B (en) 2003-09-30 2005-08-01 Hon Hai Prec Ind Co Ltd PCB and layout thereof
TWI321028B (en) 2007-02-14 2010-02-21 Unimicron Technology Corp Circuit board and method for manufacturing the same
JP2012243923A (ja) 2011-05-19 2012-12-10 Fujikura Ltd フレキシブルプリント回路及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003101432A (ja) * 2001-09-21 2003-04-04 Matsushita Electric Ind Co Ltd 無線通信モジュールおよび無線通信機器
JP2006042098A (ja) * 2004-07-29 2006-02-09 Kyocera Corp 高周波用配線基板
JP2009010328A (ja) * 2007-04-24 2009-01-15 Panasonic Corp 差動伝送線路
JP2011130395A (ja) * 2009-12-21 2011-06-30 Nec Corp 信号合成分配回路、電力増幅器および信号合成分配回路の製造方法
WO2014046014A1 (ja) * 2012-09-20 2014-03-27 株式会社クラレ 回路基板およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224323A1 (ja) * 2021-04-19 2022-10-27 山一電機株式会社 高周波信号伝送装置、及び高周波信号伝送ケーブル
JP7568976B2 (ja) 2021-04-19 2024-10-17 山一電機株式会社 高周波信号伝送装置、及び高周波信号伝送ケーブル

Also Published As

Publication number Publication date
KR20160148711A (ko) 2016-12-26
JP2015220425A (ja) 2015-12-07
US20170048968A1 (en) 2017-02-16
CN106233825A (zh) 2016-12-14
TWI592082B (zh) 2017-07-11
US9807870B2 (en) 2017-10-31
TW201613442A (en) 2016-04-01
KR101700397B1 (ko) 2017-01-26
JP5658399B1 (ja) 2015-01-21
CN106233825B (zh) 2017-09-19

Similar Documents

Publication Publication Date Title
JP5658399B1 (ja) プリント配線板
US8835768B2 (en) Flexible circuit board
WO2015040878A1 (ja) 多層プリント配線板の製造方法、および多層プリント配線板
CN110402615B (zh) 高频传输用印刷线路板
JP2011216841A (ja) 多層プリント配線板及び多層金属張積層板
CN103052281A (zh) 嵌入式多层电路板及其制作方法
JP2014207297A (ja) フレキシブルプリント回路及びその製造方法
JP2009141129A (ja) フレキシブルプリント配線板およびその製造方法
US20170064828A1 (en) Conductor connecting structure and mounting board
JP2013098296A (ja) 長尺フレキシブル配線板の製造方法
JP5002718B1 (ja) フレキシブルプリント配線板の製造方法、フレキシブルプリント配線板、及び電子機器
WO2015083216A1 (ja) 多層基板、及び、その製造方法
JP2008235346A (ja) フレキシブルプリント配線板
CN106612591A (zh) 挠性印刷线路板的制作方法
JP2016186986A (ja) プリント配線板及びプリント配線板の製造方法
JP5406252B2 (ja) プリント配線回路及びその製造方法
US20220418087A1 (en) Multilayered flexible printed circuit, method for manufacturing the same, and application thereof
JP5066718B2 (ja) フレキシブルプリント配線板の製造方法
CN113597084B (zh) 挠折线路板及其制作方法
US20220053636A1 (en) Wiring body and method for manufacturing same
JP2004342686A (ja) 多層配線板、多層基板用基材およびその製造方法
CN202679794U (zh) 柔性印刷电路板及其电子模组
WO2019198154A1 (ja) 部品内蔵基板、及び部品内蔵基板の製造方法
JP2008235345A (ja) フレキシブルプリント配線板
JP2017069320A (ja) 多層配線板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15795666

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15305232

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167034279

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15795666

Country of ref document: EP

Kind code of ref document: A1