[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015152326A1 - Curing agent for thermosetting resins, thermosetting resin composition using same, cured product of said thermosetting resin composition, and optical semiconductor device using said cured product as sealing material or reflective material - Google Patents

Curing agent for thermosetting resins, thermosetting resin composition using same, cured product of said thermosetting resin composition, and optical semiconductor device using said cured product as sealing material or reflective material Download PDF

Info

Publication number
WO2015152326A1
WO2015152326A1 PCT/JP2015/060330 JP2015060330W WO2015152326A1 WO 2015152326 A1 WO2015152326 A1 WO 2015152326A1 JP 2015060330 W JP2015060330 W JP 2015060330W WO 2015152326 A1 WO2015152326 A1 WO 2015152326A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
thermosetting resin
anhydride
curing agent
resin composition
Prior art date
Application number
PCT/JP2015/060330
Other languages
French (fr)
Japanese (ja)
Inventor
静 青木
正人 鎗田
田中 栄一
義浩 川田
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Publication of WO2015152326A1 publication Critical patent/WO2015152326A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention is able to sufficiently increase the glass transition temperature of a cured product and has a low coloring to the cured product, a thermosetting resin curing agent, a thermosetting resin composition using the same, and the thermosetting resin composition thereof And an optical semiconductor device using the cured product as a sealing material or a reflective material.
  • thermosetting resin composition When the thermosetting resin composition is used as a semiconductor encapsulant or as a semiconductor reflector, the illuminance of the optical semiconductor decreases when the thermosetting resin composition absorbs light emitted from the optical semiconductor. . For this reason, it is desirable that the thermosetting resin composition has a high transmittance and is less colored. Therefore, the curing agent blended in the thermosetting resin composition is also required to have high transmittance and little coloration.
  • the glass transition temperature of the cured product is a certain temperature or higher, and the softening point and viscosity of the curing agent are also in a certain range from the viewpoint of moldability. This is very important.
  • the acid anhydride used as a curing agent for a thermosetting resin has a problem that it is not suitable for mold molding because it is volatile and has a low melting point.
  • tetracarboxylic acid anhydride has a high melting point (150 ° C. or higher), it is difficult to handle as a liquid resin composition, and its formability is inferior, so it is difficult to use it for molding liquid resins. Then, it is not suitable for the intended use of the present invention.
  • carboxylic acid as a curing agent for epoxy resin is also known, but it has a relatively high melting point (150 ° C. or higher) and has the same problem as above. Since it is extremely difficult to ensure, it is not suitable for the intended use of the present invention.
  • polycarboxylic acid compounds also have problems of high melting point (150 ° C. or higher), high crystallinity, difficult resin kneading, and coloring, and cannot be used for the purpose of the present invention. Therefore, a compound that can solve the above problems has not been found as a conventionally known material.
  • trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, and cyclohexanetricarboxylic acid anhydride are known to have high heat resistance, but have a high melting point and are used alone for the purposes of the present invention. It was difficult to use.
  • cyclohexanetricarboxylic acid anhydride there is a method in which only one isomer is separated from a mixture of isomers and liquid cyclohexanetricarboxylic acid is taken out. It was difficult.
  • Oligoesters of terminal carboxylic acids obtained by reacting acid anhydrides or carboxylic acids with polyhydric alcohols are disclosed, but as the functional group content is increased to increase the glass transition temperature, the viscosity increases. There was a problem that the moldability deteriorated.
  • Curing agent for thermosetting resin which can sufficiently increase the glass transition temperature of the cured product, and less colored to the cured product, a thermosetting resin composition using the same, a cured product of such a thermosetting resin composition, and A semiconductor device using such a cured product as a sealing material or a reflecting material is provided.
  • the present invention is selected from trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic acid anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic acid anhydride, and hydrogenated pyromellitic acid anhydride
  • a curing agent for thermosetting resin containing at least one compound and an oligoester of a terminal carboxylic acid having a number average molecular weight Mn of 300 or more has a sufficient glass transition temperature when used as a cured product, It has been found that there is little coloration when cured.
  • the present invention relates to the following (1) to (8).
  • Curing agent for thermosetting resin containing one kind of compound and oligoester of terminal carboxylic acid having number average molecular weight Mn of 300 or more trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic acid
  • thermosetting resin according to (1) wherein the viscosity of the ICI cone plate is in the range of 0.01 Pa ⁇ s to 10 Pa ⁇ s in the range of 100 ° C to 200 ° C.
  • a thermosetting resin composition comprising the thermosetting resin curing agent according to any one of (1) to (3).
  • Tg glass transition temperature
  • thermosetting resin composition excellent also in the toughness of hardened
  • Curing agents for thermosetting resins of the present invention are trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic anhydride, and hydrogenated. It contains at least one compound selected from pyromellitic acid anhydride and an oligoester of a terminal carboxylic acid having a number average molecular weight Mn of 300 or more.
  • carboxylic acids such as trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic acid anhydride, and hydrogenated pyromellitic acid anhydride or
  • An acid anhydride has a high softening point or melting point because it has crystallinity, and a specific melting point is 150 ° C. to 300 ° C., which may cause a problem in molding.
  • Curing agents of the present invention are trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic anhydride, and hydrogenated pyromellitic anhydride.
  • Mixing a carboxylic acid or acid anhydride with an oligoester of a terminal carboxylic acid gives a cured product having a high glass transition temperature, and the softening point or melting point is in the normal molding processing temperature range, so that the moldability is improved. It is designed to be excellent.
  • trimellitic acid trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic acid anhydride, hydrogenated pyromellitic acid anhydride, etc.
  • the mixing of the carboxylic acid or acid anhydride and the oligoester of the terminal carboxylic acid is desirably performed after completion of the reaction at the time of synthesis of each component. If mixing is performed by a method added at the time of molding, mixing is performed while the softening point or melting point is high, and thus mixing may not be sufficient.
  • trimellitic acid trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic anhydride, and hydrogenated pyromellitic anhydride are difficult to color.
  • cyclohexanetricarboxylic acid, cyclohexanetricarboxylic acid anhydride, hydrogenated pyromellitic acid, and hydrogenated pyromellitic acid anhydride are preferable, and cyclohexanetricarboxylic acid anhydride is more preferable.
  • the cyclohexanetricarboxylic acid anhydride include cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride, cyclohexane-1,2,3-tricarboxylic acid-1,2-anhydride, and the like. In the present invention, these acid anhydrides can be used in combination, but cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride is preferred.
  • the ratio of the total amount of the compound to the curing agent for thermosetting resin is 1% by weight to 90% by weight. If it is lower than 1% by weight, the glass transition temperature may not be sufficiently high. If it is higher than 90% by weight, the melting point may be high, and handling may be difficult. More preferably, it is 10 to 60% by weight, and still more preferably 20 to 50% by weight.
  • curing agent for thermosetting resins of this invention is represented by following formula (1).
  • formula (1) As a specific structural formula, the following formula (1)
  • a hydrocarbon group, a plurality of n and k are present independently and represent an average of 1 to 6. The total of n is 2 or more and less than 12.
  • a compound having an ester structure preferably two ester structures in the molecule. Moreover, it is a compound which has a some carboxyl group at the terminal.
  • the oligoester of the terminal carboxylic acid of the formula (1) is a compound obtained by an esterification reaction of a bi- to hexafunctional polyhydric alcohol having 6 or more carbon atoms and a saturated aliphatic cyclic acid anhydride.
  • the linking group R is preferably a cycloalkane skeleton having 4 to 10 carbon atoms or a norbornane skeleton, and the cycloalkane skeleton is substituted.
  • an unsubstituted cyclohexane structure particularly a methylcyclohexane structure having a methyl group is preferable from the optical properties of the cured product.
  • the norbornane skeleton is preferably a norbornane or methylnorbornane structure.
  • examples of the substituent that can be applied to the substituted one include an alkyl group having 1 to 3 carbon atoms and a carboxyl group.
  • the linking group P is a residue of a polyhydric alcohol having 2 to 10 carbon atoms (residue obtained by removing a hydroxyl group from the polyhydric alcohol used in the reaction), and is preferably a branched cross-linking group or a cycloalkyl group.
  • P is preferably a divalent crosslinking group defined by the following (a) or (b).
  • the linking group R is a cycloalkane skeleton or a norbornane skeleton having 4 to 10 carbon atoms
  • the substituent R 3 is a group other than a hydrogen atom in the formula (2A) described later. Is more preferable.
  • the softening point of the said oligoester is 50 degreeC or more normally, 60 degreeC or more is preferable and 80 degreeC or more is more preferable.
  • it is 500 degrees C or less, It is preferable that it is 300 degrees C or less, and it is more preferable that it is 200 degrees C or less.
  • the particularly preferred terminal carboxylic acid oligoester in the present invention can be obtained by addition reaction of a bi- to hexafunctional polyhydric alcohol having 6 or more carbon atoms and a saturated aliphatic cyclic acid anhydride.
  • the oligoester of a terminal carboxylic acid in the present invention may be a composition containing two types of oligoesters of a terminal carboxylic acid.
  • an oligoester composition of a terminal carboxylic acid containing at least two oligoesters of a terminal carboxylic acid a method of mixing at least two kinds of oligoesters of a single terminal carboxylic acid obtained by the above method, or When synthesizing the oligoester of the above terminal carboxylic acid, the saturated aliphatic cyclic acid anhydride is selected from the following saturated aliphatic cyclic acid anhydrides, or a mixture of at least two kinds is used. There is a method of performing an addition reaction using two kinds of alcohols.
  • the saturated aliphatic cyclic acid anhydride used for the synthesis of the oligoester of a terminal carboxylic acid has a cyclohexane structure, has a methyl group substitution or a carboxyl group substitution on the cyclohexane ring, or is unsubstituted, and the cyclohexane ring And a compound having one or more (preferably one) acid anhydride groups bonded to.
  • hexahydrophthalic anhydride methylhexahydrophthalic anhydride, and cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride, trimellitic anhydride, cyclohexanetricarboxylic anhydride, pyromellitic anhydride And at least one acid anhydride selected from the group consisting of hydrogenated pyromellitic acid anhydride.
  • the crosslinkable group represented by P is preferably a divalent crosslinkable group defined by the above (a) or (b), which will be specifically described below.
  • the divalent crosslinking group defined in (a) is a divalent chain alkyl chain obtained by removing a hydroxyl group from a divalent alcohol (diol) having a branched structure having 6 to 20 carbon atoms.
  • the side chain may be branched from any carbon atom constituting the main chain, and includes, for example, a case where the side chain is branched from a carbon atom to which an alcoholic hydroxyl group is bonded (terminal carbon atom of the main chain).
  • Any crosslinking group having such a structure may be used, and a specific example of such a crosslinking group is shown in the following formula (a1).
  • the alkylene bridging group defined in (a) is not particularly limited as long as it has a structure having an alkyl branched chain (side chain) with respect to the main chain alkylene group, but the main chain has 3 or more main chain carbon atoms.
  • those having at least one alkyl side chain are preferred, and those having two or more alkyl side chains are particularly preferred.
  • More preferable examples include a bridging group having a linear main chain having 3 to 12 carbon atoms and 2 to 4 side chains, and at least one of the side chains having 2 to 10 carbon atoms. Can do.
  • a crosslinking group in which at least two of the side chains have 2 to 10 carbon atoms is more preferable.
  • the 2 to 4 side chains are preferably branched from carbon atoms having different main chains.
  • More specific examples of the compound include a compound in which a hydroxyl group is bonded to the position of * in the crosslinking group described in the formula (a1).
  • polyhydric alcohols used as the raw material polyhydric alcohols having at least two side chains and at least two of which are side chains having 2 to 4 carbon atoms are preferred.
  • particularly preferred polyhydric alcohols are 2,4-diethyl-1,5-pentanediol, 2-ethyl-2-butyl-1,3-propanediol, 2-ethyl-1,3- Examples include hexanediol, and particularly 2,4-diethyl-1,5-pentanediol.
  • Examples of the crosslinking group defined in (b) include a divalent group represented by the following formula (b1).
  • the crosslinked polycyclic diol residue is a diol residue having a tricyclodecane structure or a pentacyclopentadecane structure as the main skeleton, and is represented by the following formula (b2). Is done.
  • a plurality of R 2 each independently represents a hydrogen atom or a methyl group. Of these, a bridging group in which all R 2 are hydrogen atoms is preferred. Specific examples include tricyclodecane dimethanol, methyl tricyclodecane dimethanol, and pentacyclopentadecane dimethanol.
  • the reaction between the acid anhydride and the polyhydric alcohol is generally an addition reaction using an acid or a base as a catalyst, but in the present invention, a reaction without a catalyst is particularly preferable.
  • a catalyst examples of the catalyst that can be used include hydrochloric acid, sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, nitric acid, trifluoroacetic acid, trichloroacetic acid and other acidic compounds, sodium hydroxide, hydroxide Metal hydroxides such as potassium, calcium hydroxide and magnesium hydroxide, amine compounds such as triethylamine, tripropylamine and tributylamine, pyridine, dimethylaminopyridine, 1,8-diazabicyclo [5.4.0] undec-7 -Heterocyclic compounds such as ene, imidazole, triazole, tetrazole, tetramethylammonium hydrox
  • the amount of the catalyst used is not particularly limited, but it is usually preferable to use 0.001 to 5 parts by weight, if necessary, with respect to 100 parts by weight of the total weight of the raw materials.
  • a reaction without a solvent is preferable, but an organic solvent may be used.
  • the amount of the organic solvent used is 0.005 to 1 part by weight, preferably 0.005 to 0.7 part, based on 1 part of the total amount of the acid anhydride and the polyhydric alcohol as reaction substrates. More preferably, it is 0.005 to 0.5 part (that is, 50% by weight or less).
  • the amount of the organic solvent used exceeds 1 part by weight with respect to 1 part by weight of the reaction substrate, it is not preferable because the progress of the reaction becomes extremely slow.
  • organic solvents that can be used include alkanes such as hexane, cyclohexane and heptane, aromatic hydrocarbon compounds such as toluene and xylene, ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and anone, diethyl ether , Ethers such as tetrahydrofuran and dioxane, and ester compounds such as ethyl acetate, butyl acetate and methyl formate can be used.
  • alkanes such as hexane, cyclohexane and heptane
  • aromatic hydrocarbon compounds such as toluene and xylene
  • ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and anone
  • diethyl ether Ethers such as tetrahydrofuran and dioxane
  • the reaction temperature is preferably 30 to 200 ° C, more preferably 40 to 200 ° C, and particularly preferably 40 to 150 ° C.
  • the reaction at 100 ° C. or lower is preferred, and the reaction at 30 to 100 ° C. or 40 to 100 ° C. is particularly preferred because of the volatilization of the acid anhydride.
  • the reaction ratio between the acid anhydride and the polyhydric alcohol is theoretically preferably equimolar, but can be changed as necessary.
  • the specific charging ratio of the two at the time of reaction is such that the polyhydric alcohol is equivalent to 0.001 to 2 equivalents in terms of the hydroxyl group equivalent to 1 equivalent of the acid anhydride group in terms of the functional group equivalent. It is preferable to charge at a ratio of preferably 0.01 to 1.5 equivalents, more preferably 0.1 to 1.2 equivalents.
  • the obtained terminal carboxylic acid oligoester is solid, and in order to obtain a solid resinous terminal carboxylic acid oligoester, ideally an equimolar equivalent or more of polyhydric alcohol is used.
  • the equivalent ratio of the alcoholic hydroxyl group to the acid anhydride equivalent is preferably 0.85 to 1.20 molar equivalent, particularly preferably 0.90 to 1.1.0 molar equivalent.
  • reaction time depends on the reaction temperature, the amount of catalyst, etc., from the viewpoint of industrial production, a long reaction time is not preferable because it consumes a great deal of energy.
  • An excessively short reaction time means that the reaction is abrupt and is not preferable from the viewpoint of safety.
  • a preferred range is 1 to 48 hours, preferably 1 to 36 hours, more preferably 1 to 24 hours, and still more preferably about 2 to 10 hours.
  • the catalyst After completion of the reaction, when a catalyst is used, the catalyst is removed by neutralization, washing with water, adsorption, etc., and the solvent is distilled off to obtain the desired terminal carboxylic acid oligoester.
  • the desired oligoester of the terminal carboxylic acid can be obtained by distilling off the solvent as necessary.
  • the oligoester of the terminal carboxylic acid made into the objective is obtained by removing a solvent. Further, in the case of no solvent and no catalyst, the product can be obtained by taking it out as it is.
  • the most preferable production method is a method in which the acid anhydride and the polyhydric alcohol are reacted at 40 to 150 ° C. under non-catalytic conditions to remove the solvent and then taken out.
  • the thus obtained terminal carboxylic acid oligoester or a composition containing the terminal carboxylic acid oligoester usually shows a colorless to pale yellow solid resinous form (which may crystallize in some cases).
  • the softening point of the terminal carboxylic acid oligoester is preferably 50 to 190 ° C, more preferably 55 to 150 ° C, and particularly preferably 60 to 120 ° C.
  • the crosslinking group is an alkylene group having a side chain defined by (a)
  • it shows a colorless to pale yellow solid resinous form.
  • the optimal method using the thermosetting resin composition containing the oligoester of terminal carboxylic acid is a shaping
  • the oligoester of terminal carboxylic acid is a solid resin form.
  • the bridging group is a bridging group defined by (b)
  • the aliphatic hydrocarbon group is a cycloalkane skeleton or a norbornane skeleton having 4 to 10 carbon atoms, all of the alicyclic substituents are at the end of the hydrogen atom.
  • Carboxylic acid oligoesters show coloration upon curing and are not suitable for particularly demanding optical applications.
  • the aliphatic hydrocarbon group is a cycloalkane skeleton or a norbornane skeleton having 4 to 10 carbon atoms
  • the compound having a methyl group or a carboxyl group as the substituent is less colored and the optical properties are improved.
  • the substituent is a methyl group or a carboxyl group. This is preferable because optical characteristics are improved.
  • the terminal carboxylic acid oligoester composition of the present invention is a cycloalkane skeleton or norbornane skeleton having 4 to 10 carbon atoms
  • the substituent is preferably a methyl group or a carboxyl group, or a group having the formula (1)
  • a composition comprising an oligoester of a terminal carboxylic acid is preferred.
  • an oligoester composition of a terminal carboxylic acid containing two or more kinds of oligoesters of the terminal carboxylic acid at least the terminal carboxylic acid oligoester of the formula (1) in which the substituent is not a hydrogen atom (the substituent is the alkyl group) .
  • an oligoester of a terminal carboxylic acid having a methyl group or a carboxyl group is preferably 50 mol% or more based on the total amount of oligoesters of the terminal carboxylic acid.
  • a terminal carboxylic acid oligoester composition containing 70 mol% or more, most preferably 90 mol% or more of a terminal carboxylic acid oligoester of the formula (1) in which the substituent is not a hydrogen atom is preferred.
  • the remainder is an oligoester of a terminal carboxylic acid of the following formula (2A) in which R 3 is a hydrogen atom.
  • an oligoester of a terminal carboxylic acid suitable in the present invention an oligoester of a terminal carboxylic acid represented by the following formula (2A) is used.
  • R 3 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a carboxyl group.
  • R 3 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a carboxyl group.
  • the curing agent for thermosetting resins of the present invention is preferably 1 Pa ⁇ s or less, more preferably 0.8 Pa ⁇ s or less, and more preferably 0.6 Pa or less in ICI viscosity at 150 ° C. from the viewpoints of meltability and dispersibility of each component. -S or less is particularly preferable.
  • a lower limit is not specifically limited, For example, what is necessary is just 1 mPa * s or more, and it is preferable if it is 100 mPa * s or more.
  • the softening point is preferably 40 to 130 ° C., more preferably 50 to 100 ° C., and particularly preferably 70 to 100 ° C. By being at such a softening point, sufficient kneading can be performed.
  • thermosetting resin composition of the present invention trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, and cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic anhydride, And a functional group equivalent in a mixture of one or more compounds selected from hydrogenated pyromellitic anhydride and an oligoester of a terminal carboxylic acid is 250 g / eq. Or less, preferably 240 g / eq. More preferably, it is 230 g / eq.
  • trimellitic acid trimellitic anhydride, cyclohexanetricarboxylic acid, and cyclohexanetricarboxylic anhydride
  • pyromellitic acid hydrogenated pyromellitic acid
  • pyromellitic anhydride hydrogenated pyromellitic anhydride
  • the weight ratio is (trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic acid anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic acid anhydride, and hydrogenated pyromellitic acid.
  • One or more compounds selected from an anhydride) :( oligoester of terminal carboxylic acid) is preferably 1:99 to 99: 1, and more preferably 10:90 to 50:50.
  • thermosetting curing agent of the present invention examples include (A) trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyro Prepare one or more compounds selected from merit acid anhydride and hydrogenated pyromellitic acid anhydride and terminal carboxylic acid oligoester separately (that is, synthesize terminal carboxylic acid oligoester first) In the presence of a solvent, after stirring at room temperature or heating, the solvent is distilled off to mix the two to obtain a composition.
  • thermosetting resin composition of the present invention trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, and cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic anhydride, and hydrogenated
  • a curing agent for a thermosetting resin containing one or more compounds selected from pyromellitic anhydride and an oligoester of a terminal carboxylic acid having a number average molecular weight Mn of 300 or more includes: You may use together.
  • the other curing agent is preferably used in an amount of 50% by weight or less of the entire other curing agent contained in the thermosetting resin composition, more preferably 40% by weight or less, and further preferably 30% by weight. % Or less use.
  • the curing agent that can be used in combination include an amine compound, an acid anhydride compound having an unsaturated ring structure, an acid anhydride having an organosiloxane skeleton, an amide compound, a phenol compound, and a carboxylic acid compound. .
  • curing agent examples include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from ethylenediamine and phthalic anhydride, pyromellitic anhydride.
  • Acid maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2 , 1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol Diol, terpene diphenol, 4,4'-biphenol, 2,2'-biphenol, 3,3 ', 5,5'-tetramethyl- [1,1'-biphenyl] -4,4'-diol, hydroquinone , Resorcinol, naphthalenediol, tris- (4-hydroxyphenyl
  • thermosetting resin composition in the present invention is a composition containing a thermosetting resin such as an epoxy resin, a phenol resin, a urea resin, a melamine resin, and an unsaturated polyester resin.
  • a thermosetting resin such as an epoxy resin, a phenol resin, a urea resin, a melamine resin, and an unsaturated polyester resin.
  • the epoxy resin It is desirable to use
  • the epoxy resin can be used without any particular limitation as long as it is usually blended as a conventional thermosetting resin composition or epoxy resin composition.
  • epoxidized phenol and aldehyde novolac resins such as phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, diglycidyl ether such as bisphenol A, bisphenol F, bisphenol S, alkyl-substituted bisphenol, Glycidylamine type epoxy resin obtained by reaction of polyamine such as diaminodiphenylmethane and isocyanuric acid and epichlorohydrin, alicyclic epoxy resin obtained by oxidizing olefin bond with peracid such as peracetic acid, diglycidyl isocyanurate, triglycidyl isocyanate Examples thereof include nurate and silsesquioxane compounds, and these may be used alone or in combination of two or more.
  • epoxy resins those having high heat resistance are preferable. Specifically, from the viewpoints of melt viscosity, coloring of the cured product and glass transition temperature, glycidyl ether type epoxy resin, alicyclic epoxy A resin, triglycidyl isocyanurate is preferred.
  • the compounding ratio of the epoxy resin and the curing agent for thermosetting resin of the present invention is as follows.
  • (Anhydride group or hydroxyl group) is preferably 0.5 to 1.5 equivalents (the carboxylic acid is considered to be monofunctional and the acid anhydride is assumed to be monofunctional), particularly preferably 0.5 to 1.2 equivalents.
  • 0.5 equivalent or more than 1.5 equivalent with respect to 1 equivalent of epoxy group in any case, curing may be incomplete and good cured properties may not be obtained, and coloration is likely to occur. There is also a problem.
  • Curing accelerators include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl- 2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 2,4-diamino-6 (2′-methylimidazole (1 ′)) ) Ethyl-s-triazine, 2,4-diamino-6 (2′-undecylimidazole (1 ′)) ethyl-s-triazine, 2,4-diamino-6 (2′-ethyl, 4-methylimidazole (
  • curing accelerators which of these curing accelerators is used is appropriately selected depending on characteristics required for the obtained transparent resin composition, such as transparency, curing speed, and working conditions.
  • the curing accelerator is usually used in an amount of 0.001 to 15 parts by weight, preferably 0.01 to 5 parts by weight, based on 100 parts by weight of the epoxy resin.
  • additives other than the above-mentioned additives generally used additives for epoxy resins, such as pigments, dyes, fluorescent brighteners, reinforcing materials, fillers, nucleating agents, surfactants, A plasticizer, a viscosity modifier, a fluidity modifier, a flame retardant, an antioxidant, an ultraviolet absorber, and a light stabilizer may be added.
  • the melt viscosity of the thermosetting resin curing agent under high temperature conditions during molding is higher than that of conventional acid anhydride curing agents and the like. Specifically, it is 0 at a molding temperature range of 100 ° C. to 200 ° C. It is desirable that the pressure be set to 0.01 Pa ⁇ s to 10 Pa ⁇ s. If it is less than 0.01 Pa ⁇ s, burrs are likely to occur. On the other hand, when it is larger than 10 Pa ⁇ s, the productivity is lowered.
  • the ICI viscosity of the thermosetting resin curing agent at 150 ° C. is preferably 0.01 Pa ⁇ s to 10 Pa ⁇ s, more preferably 0.05 Pa ⁇ s to 5 Pa ⁇ s. .
  • the softening point is preferably in the range of 20 ° C to 150 ° C. More specifically, it is preferably in the range of 30 ° C. to 130 ° C., more preferably in the range of 40 ° C. to 120 ° C.
  • the glass transition temperature of the cured product is preferably higher than the molding temperature.
  • the glass transition temperature of the cured product is lower than the molding temperature, the cured product in the mold is in a low-elasticity rubber state, so the rubber-like cured product will be taken out of the mold, and when the ejector is pushed in There is a risk of malfunction due to deformation.
  • the glass transition temperature is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, and further preferably 50 ° C. or higher.
  • thermosetting resin composition of the present invention can be obtained by uniformly dispersing and mixing the various components described above.
  • the method is not particularly limited, a method in which various components are sufficiently uniformly stirred and mixed by a mixer or the like and then kneaded or melt-kneaded by a mixing roll, an extruder, a kneader, a roll, an extruder, or the like, cooled, and pulverized.
  • the conditions for kneading or melt-kneading may be determined depending on the types and amounts of the components, and are not particularly limited. However, kneading at 20 to 100 ° C. for 5 to 40 minutes is more preferable.
  • the kneading temperature is less than 20 ° C., the dispersibility of each component is lowered and it is difficult to sufficiently knead.
  • the kneading temperature is higher than 100 ° C., the crosslinking reaction of the resin composition proceeds and the resin composition There is a risk that things will harden.
  • thermosetting resin composition of the present invention is preferably capable of being pressed (tablet) at room temperature of 0 to 30 ° C. before heat molding.
  • the pressure molding may be performed under conditions of 0.01 to 10 MPa and 1 to 5 seconds.
  • the mold used at the time of pressing (tablet) molding is not particularly limited, and for example, it is composed of a vertical mold (upper mold) and a mortar mold (lower mold) made of a ceramic material, a fluorine resin material, or the like. It is preferable to use what is used.
  • thermosetting resin composition of the present invention is useful in applications such as optical semiconductor sealing materials and optical semiconductor reflectors that require high glass transition temperatures and high transmittance.
  • the production method is not particularly limited.
  • the thermosetting resin composition of the present invention is poured into a mold, for example, cured for 60 to 800 seconds under conditions of a mold temperature of 150 to 190 ° C. and a molding pressure of 2 to 20 MPa. Heat curing is performed at a curing temperature of 150 ° C. to 180 ° C. for 1 to 3 hours.
  • a specific example of a typical structure of the semiconductor device of the present invention is as follows. As described in International Publication No. 2012-124147, a light reflection preventing member having a cylindrical hollow portion is disposed on a substrate to form a cylindrical shape. An optical semiconductor element is disposed on the substrate in the internal space of the hollow portion. And the one end part and board
  • GPC gel permeation chromatography
  • ICI viscosity ICI viscosity
  • softening point ICI viscosity
  • the column is a Shodex SYSTEM-21 column (KF-803L, KF-802.5 ( ⁇ 2), KF-802), the coupled eluent is tetrahydrofuran, and the flow rate is 1 ml / min.
  • the column temperature was 40 ° C.
  • the detection was performed by RI (Reflective index)
  • a standard polystyrene made by Shodex was used for the calibration curve.
  • the functional group equivalent was calculated from the ratio calculated from GPC, and the value was determined with 1 equivalent each of carboxylic acid and acid anhydride.
  • ICI viscosity The melt viscosity in the cone plate method at 150 ° C was measured.
  • Softening point Measured by a method according to JIS K-7234.
  • Synthesis example 1 (curing agent A-1 for thermosetting resin) A flask equipped with a stirrer, reflux condenser, and stirrer was purged with nitrogen while 98.1 parts of tricyclodecane dimethanol, a mixture of methylhexahydrophthalic anhydride and hexahydrophthalic anhydride (Shin Nippon Rika) 166.3 parts of Ricacid MHT ratio 7: 3 manufactured by Co., Ltd., 2.0 parts of cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride (H-TMAn manufactured by Mitsubishi Gas Chemical), methyl ethyl ketone ( MEK) 266.4 parts were added, reacted at 60 ° C.
  • Comparative Example 1 (Curing Agent A-2 for Thermosetting Resin) A flask equipped with a stirrer, reflux condenser, and stirrer was purged with nitrogen while 98.1 parts of tricyclodecane dimethanol, a mixture of methylhexahydrophthalic anhydride and hexahydrophthalic anhydride (Shin Nippon Rika) Jamaicacid MHT, ratio 7: 3) 117.6 parts, cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride (H-TMAn manufactured by Mitsubishi Gas Chemical) 59.4 parts, MEK275 .2 parts was added, reacted at 60 ° C. for 1 hour, heated and stirred at 80 ° C.
  • the obtained curing agent was represented by the following formula (2) and was colorless and solid.
  • the functional group equivalent was 225.2 g / eq. Met.
  • the ICI viscosity was 4.3 Pa ⁇ s at 150 ° C.
  • the softening point was 105.6 ° C.
  • the curing agent for thermosetting resin of the present invention has a low melt viscosity and excellent moldability.
  • thermosetting light reflecting resin composition (Examples 1 to 3) NC-6500 (Nippon Kayaku Co., Ltd. glycidyl ether type epoxy resin), TEPIC-S (Nissan Chemical Co., Ltd. triglycidyl isocyanurate), EHPE-3150 (Daicel Chemical Industries, Ltd. alicyclic epoxy resin), Using Hishikorin PX-4MP (Nippon Kagaku Kogyo Co., Ltd. curing catalyst), each component was blended according to the blending table shown in Table 1, sufficiently kneaded with a mixer, then melt-kneaded under a predetermined condition with a mixing roll, Cooling and pulverization were performed to prepare thermosetting resin compositions of Examples 1 to 3.
  • the unit of the compounding quantity of each component in Table 1 is parts by weight, and the blank represents that the component is not used.
  • thermosetting resin composition About the resin composition of each Example, DMA, TMA, and the transmittance
  • DMA Dynamic Mechanical Analysis
  • DMS6100 viscoelasticity manufactured by SII NanoTechnology Co., Ltd. according to the method described in JIS K7244 and JIS K7244-4 using a test piece prepared as follows. It measured on condition of the following using a measuring apparatus.
  • TMA Thermomechanical analysis
  • TMA test piece preparation method The resin composition of each example and each comparative example was transfer-molded under conditions of a mold temperature of 150 ° C., a molding pressure of 10.4 MPa, and a curing time of 300 seconds, and then post-cured at 150 ° C. for 3 hours to obtain a thickness of 4 A test piece of 0.0 mm was produced.
  • TMA measurement conditions Temperature rise condition: 2 ° C / min Measurement mode: Compression
  • thermosetting resin composition using the curing agent for thermosetting resin of the present invention gives a cured product having a sufficiently high glass transition temperature and little coloration of the cured product.
  • Synthesis example 3 (curing agent A-3 for thermosetting resin) A flask equipped with a stirrer, reflux condenser, and stirrer was purged with nitrogen while 98.1 parts of tricyclodecane dimethanol, a mixture of methylhexahydrophthalic anhydride and hexahydrophthalic anhydride (Shin Nippon Rika) Jamaicacid MHT ratio 7: 3) 166.3 parts, cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride (H-TMAn manufactured by Mitsubishi Gas Chemical) 2.0 parts, MEK266.
  • Synthesis example 4 (curing agent A-4 for thermosetting resin) A flask equipped with a stirrer, reflux condenser, and stirrer was purged with nitrogen while 98.1 parts of tricyclodecane dimethanol, a mixture of methylhexahydrophthalic anhydride and hexahydrophthalic anhydride (Shin Nippon Rika) Jamaicacid MHT ratio 7: 3) 166.3 parts, cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride (H-TMAn manufactured by Mitsubishi Gas Chemical) 2.0 parts, MEK266.
  • thermosetting resin composition using the curing agent for thermosetting resin of the present invention gives a cured product having a sufficiently high glass transition temperature and little coloration of the cured product.
  • thermosetting resin curing agent of the present invention has a low melt viscosity and excellent moldability, and the thermosetting resin composition using the thermosetting resin curing agent has a sufficiently high glass transition temperature and is colored. Therefore, the thermosetting resin composition of the present invention is useful as an optical semiconductor sealing material or a light reflecting material.
  • a sufficiently high glass transition temperature is important for formability and reliability. In addition, less coloring can increase the transmittance when used as a sealing material, and can increase the reflectance when used as a reflecting material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided are: a curing agent for thermosetting resins, which is capable of sufficiently increasing the glass transition temperature of a cured product, and which is not susceptible to coloring of the cured product; a thermosetting resin composition which uses this curing agent for thermosetting resins; and a semiconductor device which uses this thermosetting resin composition as a sealing material or a reflective material. A curing agent for thermosetting resins according to the present invention contains a compound such as a cyclohexane tricarboxylic acid anhydride and an oligoester of a terminal carboxylic acid having a number average molecular weight (Mn) of 300 or more. The compound such as a cyclohexane tricarboxylic acid anhydride accounts for 1-90% by weight of the curing agent for thermosetting resins.

Description

熱硬化性樹脂用硬化剤、それを用いた熱硬化性樹脂組成物、その熱硬化性樹脂組成物の硬化物およびその硬化物を封止材あるいは反射材として使用した光半導体装置Thermosetting resin curing agent, thermosetting resin composition using the same, cured product of the thermosetting resin composition, and optical semiconductor device using the cured product as a sealing material or a reflecting material
 本発明は、硬化物のガラス転移温度を十分高めることができ、硬化物への着色が少ない熱硬化性樹脂用硬化剤、それを用いた熱硬化性樹脂組成物、その熱硬化性樹脂組成物の硬化物および、かかる硬化物を封止材あるいは反射材として使用した光半導体装置に関する。 The present invention is able to sufficiently increase the glass transition temperature of a cured product and has a low coloring to the cured product, a thermosetting resin curing agent, a thermosetting resin composition using the same, and the thermosetting resin composition thereof And an optical semiconductor device using the cured product as a sealing material or a reflective material.
 熱硬化性樹脂組成物を半導体の封止材として利用したり、半導体用反射材として利用したりする場合、熱硬化性樹脂組成物が光半導体の発する光を吸収すると光半導体の照度が低下する。このため、熱硬化性樹脂組成物は高い透過率を有し、着色の少ないものが望ましい。したがって、熱硬化性樹脂組成物に配合される硬化剤にも、高い透過率と着色の少ないことが要求される。また、耐熱性、成型性、信頼性の観点から、硬化物のガラス転移温度が一定温度以上であること重要であり、成形性の観点から硬化剤の軟化点や粘度についても一定の範囲にあることが重要である。 When the thermosetting resin composition is used as a semiconductor encapsulant or as a semiconductor reflector, the illuminance of the optical semiconductor decreases when the thermosetting resin composition absorbs light emitted from the optical semiconductor. . For this reason, it is desirable that the thermosetting resin composition has a high transmittance and is less colored. Therefore, the curing agent blended in the thermosetting resin composition is also required to have high transmittance and little coloration. In addition, from the viewpoint of heat resistance, moldability, and reliability, it is important that the glass transition temperature of the cured product is a certain temperature or higher, and the softening point and viscosity of the curing agent are also in a certain range from the viewpoint of moldability. This is very important.
 熱硬化性樹脂用硬化剤として使用される酸無水物は、揮発性があること、また低融点であることから、金型成形には適していないことが問題となっていた。 The acid anhydride used as a curing agent for a thermosetting resin has a problem that it is not suitable for mold molding because it is volatile and has a low melting point.
 テトラカルボン酸無水物については、高融点(150℃以上)であるため、液状樹脂組成物としては扱い難く、成形性に劣ることから、液状の樹脂を成形させる用途への使用の困難さを考慮すると、本発明の目的とする用途には向かない。 Since tetracarboxylic acid anhydride has a high melting point (150 ° C. or higher), it is difficult to handle as a liquid resin composition, and its formability is inferior, so it is difficult to use it for molding liquid resins. Then, it is not suitable for the intended use of the present invention.
 カルボン酸をエポキシ樹脂用硬化剤として使用する例も知られているが、比較的融点が高く(150℃以上)上記と同様の課題があり、それだけでなく加熱すると着色しやすいため高い透過率を確保することが極めて困難であることから本発明の目的とする用途には向かない。 An example of using carboxylic acid as a curing agent for epoxy resin is also known, but it has a relatively high melting point (150 ° C. or higher) and has the same problem as above. Since it is extremely difficult to ensure, it is not suitable for the intended use of the present invention.
 同様に、ポリカルボン酸化合物についても、高融点(150℃以上)であること、結晶性が高く樹脂混練が難しいこと、また着色があることが問題となり本発明の目的とする用途では使用できない。
 そのため、従来知られている材料として、上記課題を解決できる化合物を見出せていなかった。
Similarly, polycarboxylic acid compounds also have problems of high melting point (150 ° C. or higher), high crystallinity, difficult resin kneading, and coloring, and cannot be used for the purpose of the present invention.
Therefore, a compound that can solve the above problems has not been found as a conventionally known material.
 そこで、トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、およびシクロヘキサントリカルボン酸無水物は、高い耐熱性を有することが知られているが、融点が高く、単独では本発明の目的とする用途で使用することが困難であった。
 シクロヘキサントリカルボン酸無水物については、異性体の混合物から一方の異性体のみを分離して液状のシクロヘキサントリカルボン酸を取り出す方法もあるが、得られる液状のシクロヘキサントリカルボン酸は高粘度であるため、取り扱いが困難であった。また、シクロヘキサントリカルボン酸無水物を低粘度の酸無水物と任意の比率で混合(希釈)して低粘度化する方法もあるが、硬化時の揮発がないというシクロヘキサントリカルボン酸無水物の特徴が失われるほか、保管安定性が悪いことが問題となっていた。
Therefore, trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, and cyclohexanetricarboxylic acid anhydride are known to have high heat resistance, but have a high melting point and are used alone for the purposes of the present invention. It was difficult to use.
As for cyclohexanetricarboxylic acid anhydride, there is a method in which only one isomer is separated from a mixture of isomers and liquid cyclohexanetricarboxylic acid is taken out. It was difficult. There is also a method of mixing (diluting) cyclohexanetricarboxylic acid anhydride with a low-viscosity acid anhydride at an arbitrary ratio to lower the viscosity. In addition, poor storage stability has been a problem.
 酸無水物あるいはカルボン酸を多価アルコールと反応させることにより得られる末端カルボン酸のオリゴエステルが開示されているが、ガラス転移温度を高めるために官能基量を増やしていくと、粘度も高くなり、成形性が悪くなる問題があった。 Oligoesters of terminal carboxylic acids obtained by reacting acid anhydrides or carboxylic acids with polyhydric alcohols are disclosed, but as the functional group content is increased to increase the glass transition temperature, the viscosity increases. There was a problem that the moldability deteriorated.
国際公開第2005/049597号International Publication No. 2005/049597 国際公開第2005/121202号International Publication No. 2005/121202
 硬化物のガラス転移温度を十分高めることができ、硬化物への着色が少ない熱硬化性樹脂用硬化剤、それを用いた熱硬化性樹脂組成物、かかる熱硬化性樹脂組成物の硬化物および、かかる硬化物を封止材あるいは反射材として使用した半導体装置を提供する。 Curing agent for thermosetting resin, which can sufficiently increase the glass transition temperature of the cured product, and less colored to the cured product, a thermosetting resin composition using the same, a cured product of such a thermosetting resin composition, and A semiconductor device using such a cured product as a sealing material or a reflecting material is provided.
 本発明は、トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、および水添ピロメリット酸無水物から選ばれる少なくとも1種の化合物と、数平均分子量Mnが300以上である末端カルボン酸のオリゴエステルとを含有する熱硬化性樹脂用硬化剤が、硬化物とした際に十分なガラス転移温度を有し、硬化物にした際の着色が少ないことを見出したものである。 The present invention is selected from trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic acid anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic acid anhydride, and hydrogenated pyromellitic acid anhydride A curing agent for thermosetting resin containing at least one compound and an oligoester of a terminal carboxylic acid having a number average molecular weight Mn of 300 or more has a sufficient glass transition temperature when used as a cured product, It has been found that there is little coloration when cured.
 即ち、本願発明は下記(1)~(8)に関する。
(1)トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、および水添ピロメリット酸無水物から選ばれる少なくとも1種の化合物と、数平均分子量Mnが300以上である末端カルボン酸のオリゴエステルとを含む熱硬化性樹脂用硬化剤であり、トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、および水添ピロメリット酸無水物から選ばれる少なくとも1種の化合物の合計の、熱硬化性樹脂用硬化剤に占める割合が1重量%~90重量%である熱硬化性樹脂用硬化剤。
(2)ICIコーンプレート粘度が100℃~200℃の範囲で0.01Pa・s~10Pa・sの範囲にある、(1)に記載の熱硬化性樹脂用硬化剤。
(3)軟化点が20℃~150℃の範囲にある、(1)又は(2)に記載の熱硬化性樹脂用硬化剤。
(4)(1)~(3)のいずれか一項に記載の熱硬化性樹脂用硬化剤を含有する熱硬化性樹脂組成物。
(5)硬化物のガラス転移温度(Tg)が30℃以上である、(4)に記載の熱硬化性樹脂組成物。
(6)(4)又は(5)に記載の熱硬化性樹脂組成物を熱硬化してなる硬化物。
(7)(6)に記載の硬化物によって封止された光半導体装置。
(8)(6)に記載の硬化物を反射材として使用した光半導体装置。
That is, the present invention relates to the following (1) to (8).
(1) At least selected from trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic acid anhydride, and hydrogenated pyromellitic acid anhydride Curing agent for thermosetting resin containing one kind of compound and oligoester of terminal carboxylic acid having number average molecular weight Mn of 300 or more, trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic acid The ratio of the total of at least one compound selected from anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic acid anhydride, and hydrogenated pyromellitic acid anhydride to the curing agent for thermosetting resin A curing agent for thermosetting resin, which is 1 to 90% by weight.
(2) The curing agent for thermosetting resin according to (1), wherein the viscosity of the ICI cone plate is in the range of 0.01 Pa · s to 10 Pa · s in the range of 100 ° C to 200 ° C.
(3) The curing agent for thermosetting resin according to (1) or (2), wherein the softening point is in the range of 20 ° C to 150 ° C.
(4) A thermosetting resin composition comprising the thermosetting resin curing agent according to any one of (1) to (3).
(5) The thermosetting resin composition as described in (4) whose glass transition temperature (Tg) of hardened | cured material is 30 degreeC or more.
(6) A cured product obtained by thermosetting the thermosetting resin composition according to (4) or (5).
(7) An optical semiconductor device sealed with the cured product according to (6).
(8) An optical semiconductor device using the cured product according to (6) as a reflector.
 本発明により、硬化物の十分なガラス転移温度を有し、硬化物にした際の着色が少ない熱硬化性樹脂用硬化剤、それを用いた熱硬化性樹脂組成物、およびその熱硬化性樹脂組成物を封止材あるいは反射材として使用した光半導体装置を提供できる。さらに、軟化点を抑えることで取扱いが容易になるとともに、十分な混練が可能となり硬化物性に優れる硬化物を提供することが可能となる。また硬化物の強靭性、樹脂の反応性にも優れた熱硬化性樹脂組成物を提供できる。 INDUSTRIAL APPLICABILITY According to the present invention, a curing agent for a thermosetting resin that has a sufficient glass transition temperature of the cured product and is less colored when converted into a cured product, a thermosetting resin composition using the same, and the thermosetting resin thereof An optical semiconductor device using the composition as a sealing material or a reflecting material can be provided. Further, by suppressing the softening point, handling becomes easy, and sufficient kneading is possible, and a cured product having excellent cured properties can be provided. Moreover, the thermosetting resin composition excellent also in the toughness of hardened | cured material and the reactivity of resin can be provided.
 以下に、本発明を詳細に説明する。
 本発明の熱硬化性樹脂用硬化剤は、トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、および水添ピロメリット酸無水物から選ばれる少なくとも1種の化合物と、数平均分子量Mnが300以上である末端カルボン酸のオリゴエステルとを含有する。
The present invention is described in detail below.
Curing agents for thermosetting resins of the present invention are trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic anhydride, and hydrogenated. It contains at least one compound selected from pyromellitic acid anhydride and an oligoester of a terminal carboxylic acid having a number average molecular weight Mn of 300 or more.
 トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、および水添ピロメリット酸無水物のいずれかが存在すると架橋密度の高い硬化物が得られるため、高いガラス転移温度を有する硬化物を得ることができる。しかしながら、トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、および水添ピロメリット酸無水物などのカルボン酸あるいは酸無水物は、結晶性を有するため軟化点あるいは融点が高く、具体的な融点は150℃~300℃であるため、成型する際に問題となることがある。本発明の硬化剤は、トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、および水添ピロメリット酸無水物などのカルボン酸あるいは酸無水物を末端カルボン酸のオリゴエステルと混合することで、高いガラス転移温度を有する硬化物を与え、軟化点あるいは融点が通常の成型加工温度範囲になるために成形性に優れるようにしたものである。
 上記の理由から、トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、および水添ピロメリット酸無水物などのカルボン酸あるいは酸無水物と、末端カルボン酸のオリゴエステルとの混合は、各成分の合成時反応終了後に行うことが望ましい。成型加工時に添加する方法で混合すると、軟化点あるいは融点が高いまま混合することになるため、十分に混合することができないことがある。オリゴエステルの合成反応終了後に混合させて硬化剤を得ることで、軟化点あるいは融点を下げることができ、容易に成型加工できるようになる。
 トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、および水添ピロメリット酸無水物のうち、着色しにくさの点で、シクロヘキサントリカルボン酸、シクロヘキサントリカルボン酸無水物、水添ピロメリット酸、および水添ピロメリット酸無水物が好ましく、シクロヘキサントリカルボン酸無水物がさらに好ましい。
 シクロヘキサントリカルボン酸無水物としては、シクロヘキサン‐1、2、4‐トリカルボン酸‐1、2‐無水物、シクロヘキサン‐1、2、3‐トリカルボン酸‐1、2‐無水物等が挙げられる。本発明では、これらの酸無水物を組み合わせて使用することもできるが、シクロヘキサン‐1、2、4‐トリカルボン酸‐1、2‐無水物が好ましい。
Crosslink in the presence of trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic anhydride, and hydrogenated pyromellitic anhydride Since a cured product having a high density is obtained, a cured product having a high glass transition temperature can be obtained. However, carboxylic acids such as trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic acid anhydride, and hydrogenated pyromellitic acid anhydride or An acid anhydride has a high softening point or melting point because it has crystallinity, and a specific melting point is 150 ° C. to 300 ° C., which may cause a problem in molding. Curing agents of the present invention are trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic anhydride, and hydrogenated pyromellitic anhydride. Mixing a carboxylic acid or acid anhydride with an oligoester of a terminal carboxylic acid gives a cured product having a high glass transition temperature, and the softening point or melting point is in the normal molding processing temperature range, so that the moldability is improved. It is designed to be excellent.
For the above reasons, such as trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic acid anhydride, hydrogenated pyromellitic acid anhydride, etc. The mixing of the carboxylic acid or acid anhydride and the oligoester of the terminal carboxylic acid is desirably performed after completion of the reaction at the time of synthesis of each component. If mixing is performed by a method added at the time of molding, mixing is performed while the softening point or melting point is high, and thus mixing may not be sufficient. By mixing after completion of the synthesis reaction of the oligoester to obtain a curing agent, the softening point or the melting point can be lowered and the molding process can be easily performed.
Of trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic anhydride, and hydrogenated pyromellitic anhydride are difficult to color. In this respect, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic acid anhydride, hydrogenated pyromellitic acid, and hydrogenated pyromellitic acid anhydride are preferable, and cyclohexanetricarboxylic acid anhydride is more preferable.
Examples of the cyclohexanetricarboxylic acid anhydride include cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride, cyclohexane-1,2,3-tricarboxylic acid-1,2-anhydride, and the like. In the present invention, these acid anhydrides can be used in combination, but cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride is preferred.
 トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、および水添ピロメリット酸無水物から選ばれる少なくとも1種の化合物の合計の、熱硬化性樹脂用硬化剤に占める割合が1重量%~90重量%であることを特徴とする。1重量%より低いとガラス転移温度が十分に高くならないことがあり、90重量%より高いと融点が高くなることがあり、取扱いが困難になることがある。より好ましくは10~60重量%であり、さらに好ましくは20~50重量%である。 At least one selected from trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic acid anhydride, and hydrogenated pyromellitic acid anhydride The ratio of the total amount of the compound to the curing agent for thermosetting resin is 1% by weight to 90% by weight. If it is lower than 1% by weight, the glass transition temperature may not be sufficiently high. If it is higher than 90% by weight, the melting point may be high, and handling may be difficult. More preferably, it is 10 to 60% by weight, and still more preferably 20 to 50% by weight.
 また、本発明の熱硬化性樹脂用硬化剤の他の成分である末端カルボン酸のオリゴエステルは、下記式(1)で表される。
 具体的な構造式としては、下記式(1)
Moreover, the oligoester of the terminal carboxylic acid which is another component of the hardening | curing agent for thermosetting resins of this invention is represented by following formula (1).
As a specific structural formula, the following formula (1)
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式中、複数存在するPは0~6の酸素原子、窒素原子、リン原子を含んでもよい、炭素数2~20の多価アルコールの残基を、Rは炭素数2~20の脂肪族炭化水素基を示す。複数存在するn、kは独立して存在し、平均で1~6を示す。またnの総計は2以上12未満である。)
の構造を有し、分子内にエステル構造(好ましくは2つのエステル構造)を有する化合物である。また末端に複数のカルボキシル基を有する化合物である。
 中でも、前記式(1)の末端カルボン酸のオリゴエステルが炭素数6以上の2~6官能の多価アルコールと飽和脂肪族環状酸無水物とのエステル化反応により得られた化合物であることが好ましい。
 より具体的には、前記式(1)で表される末端カルボン酸のオリゴエステルにおいて、連結基Rは炭素数4~10のシクロアルカン骨格、もしくはノルボルナン骨格が好ましく、シクロアルカン骨格においては置換、もしくは無置換のシクロヘキサン構造、特にメチル基を具備するメチルシクロヘキサン構造がその硬化物における光学特性から好ましい。またノルボルナン骨格としてはノルボルナン、メチルノルボルナン構造が好ましい。ここで、置換されたものにおいて適用できる置換基としては、炭素数1~3のアルキル基、カルボキシル基等が挙げられる。
 連結基Pは炭素数2~10の多価アルコールの残基(反応に用いた多価アルコールから水酸基を除いた残基)であるが、分岐鎖状の架橋基、もしくはシクロアルキル基が好ましく、特にPは下記(a)又は(b)で定義される2価の架橋基であることが好ましい。
(Wherein a plurality of P are residues of a polyhydric alcohol having 2 to 20 carbon atoms which may contain 0 to 6 oxygen, nitrogen and phosphorus atoms, and R is an aliphatic having 2 to 20 carbon atoms) A hydrocarbon group, a plurality of n and k are present independently and represent an average of 1 to 6. The total of n is 2 or more and less than 12.)
And a compound having an ester structure (preferably two ester structures) in the molecule. Moreover, it is a compound which has a some carboxyl group at the terminal.
Among them, the oligoester of the terminal carboxylic acid of the formula (1) is a compound obtained by an esterification reaction of a bi- to hexafunctional polyhydric alcohol having 6 or more carbon atoms and a saturated aliphatic cyclic acid anhydride. preferable.
More specifically, in the oligoester of a terminal carboxylic acid represented by the formula (1), the linking group R is preferably a cycloalkane skeleton having 4 to 10 carbon atoms or a norbornane skeleton, and the cycloalkane skeleton is substituted. Alternatively, an unsubstituted cyclohexane structure, particularly a methylcyclohexane structure having a methyl group is preferable from the optical properties of the cured product. The norbornane skeleton is preferably a norbornane or methylnorbornane structure. Here, examples of the substituent that can be applied to the substituted one include an alkyl group having 1 to 3 carbon atoms and a carboxyl group.
The linking group P is a residue of a polyhydric alcohol having 2 to 10 carbon atoms (residue obtained by removing a hydroxyl group from the polyhydric alcohol used in the reaction), and is preferably a branched cross-linking group or a cycloalkyl group. In particular, P is preferably a divalent crosslinking group defined by the following (a) or (b).
(a)炭素数6~20の分岐構造を有する鎖状アルキル鎖であり、該鎖状アルキル鎖が炭素数3~12の直鎖の主鎖と、2~4個の側鎖を有し、かつその側鎖の少なくとも1つが炭素数2~10である架橋基、
(b)シクロ環上にメチル基を有してもよい、トリシクロデカンジメタノール又はペンタシクロペンタデカンジメタノール、から選ばれる少なくとも1種の架橋多環ジオールから、2つの水酸基を取り除いた2価の架橋基
(A) a chain alkyl chain having a branched structure having 6 to 20 carbon atoms, the chain alkyl chain having a linear main chain having 3 to 12 carbon atoms and 2 to 4 side chains; And at least one of the side chains has a bridging group having 2 to 10 carbon atoms,
(B) a divalent diamine obtained by removing two hydroxyl groups from at least one crosslinked polycyclic diol selected from tricyclodecane dimethanol or pentacyclopentadecane dimethanol, which may have a methyl group on the cyclo ring. Cross-linking group
 但し、Pが(b)の場合、好ましいものは連結基Rが炭素数4~10のシクロアルカン骨格又はノルボルナン骨格のときは、後述する式(2A)において置換基Rが水素原子以外の基を表すことがより好ましい。
 尚、上記オリゴエステルの軟化点は通常50℃以上であるが、60℃以上が好ましく、80℃以上がより好ましい。上限値に特に制限はないが通常500℃以下であり、300℃以下であることが好ましく、200℃以下であることがより好ましい。
However, when P is (b), it is preferable that when the linking group R is a cycloalkane skeleton or a norbornane skeleton having 4 to 10 carbon atoms, the substituent R 3 is a group other than a hydrogen atom in the formula (2A) described later. Is more preferable.
In addition, although the softening point of the said oligoester is 50 degreeC or more normally, 60 degreeC or more is preferable and 80 degreeC or more is more preferable. Although there is no restriction | limiting in particular in an upper limit, Usually, it is 500 degrees C or less, It is preferable that it is 300 degrees C or less, and it is more preferable that it is 200 degrees C or less.
 本発明における上記の特に好ましい末端カルボン酸のオリゴエステルは、炭素数6以上の2~6官能の多価アルコールと飽和脂肪族環状酸無水物とを、付加反応させることにより得ることができる。
 本発明における末端カルボン酸のオリゴエステルは、2種の末端カルボン酸のオリゴエステルを含む組成物であってもよい。末端カルボン酸のオリゴエステルを少なくとも2種含む末端カルボン酸のオリゴエステル組成物を得る方法としては、上記方法で得られた単一の末端カルボン酸のオリゴエステルを少なくとも2種を混合する方法、または、上記の末端カルボン酸のオリゴエステルを合成する際に、上記飽和脂肪族環状酸無水物として、下記で選ばれる飽和脂肪族環状酸無水物から少なくとも2種の混合物を使用するか、前記多価アルコールを2種使用して、付加反応を行う方法がある。
The particularly preferred terminal carboxylic acid oligoester in the present invention can be obtained by addition reaction of a bi- to hexafunctional polyhydric alcohol having 6 or more carbon atoms and a saturated aliphatic cyclic acid anhydride.
The oligoester of a terminal carboxylic acid in the present invention may be a composition containing two types of oligoesters of a terminal carboxylic acid. As a method for obtaining an oligoester composition of a terminal carboxylic acid containing at least two oligoesters of a terminal carboxylic acid, a method of mixing at least two kinds of oligoesters of a single terminal carboxylic acid obtained by the above method, or When synthesizing the oligoester of the above terminal carboxylic acid, the saturated aliphatic cyclic acid anhydride is selected from the following saturated aliphatic cyclic acid anhydrides, or a mixture of at least two kinds is used. There is a method of performing an addition reaction using two kinds of alcohols.
 末端カルボン酸のオリゴエステルの合成に用いる飽和脂肪族環状酸無水物としては、シクロヘキサン構造を有し、該シクロヘキサン環上にメチル基置換又はカルボキシル基置換を有し、又は無置換であり、シクロヘキサン環に結合した酸無水物基を分子内に1つ以上(好ましくは1つ)有する化合物を挙げることができる。
 具体的にはヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、およびシクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物、無水トリメリット酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸無水物、および水添ピロメリット酸無水物からなる群から選ばれる少なくとも1種の酸無水物が挙げられる。
The saturated aliphatic cyclic acid anhydride used for the synthesis of the oligoester of a terminal carboxylic acid has a cyclohexane structure, has a methyl group substitution or a carboxyl group substitution on the cyclohexane ring, or is unsubstituted, and the cyclohexane ring And a compound having one or more (preferably one) acid anhydride groups bonded to.
Specifically, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, and cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride, trimellitic anhydride, cyclohexanetricarboxylic anhydride, pyromellitic anhydride And at least one acid anhydride selected from the group consisting of hydrogenated pyromellitic acid anhydride.
 本発明における末端カルボン酸のオリゴエステルの合成に用いる炭素数6以上の2~6官能の多価アルコールとしては、具体的には、前記式(1)中の架橋基Pの末端に水酸基を付けた末端カルボン酸のオリゴエステルを挙げることができる。
 前記式(1)において、Pで表される架橋基は、好ましくは前記(a)または(b)で定義される2価の架橋基であり、それらについて以下に具体的に説明する。
 前記(a)で定義される2価の架橋基は、炭素数6~20の分岐構造を有する2価のアルコール(ジオール)から、水酸基を除いた2価の鎖状アルキル鎖であり、ジオールの2個のアルコール性水酸基に挟まれたアルキル鎖を主鎖とし、該アルキル鎖から分岐したアルキル鎖(側鎖という)を有する構造である。該側鎖は、主鎖を構成するいずれの炭素原子から分岐していてもよく、例えばアルコール性水酸基が結合していた炭素原子(主鎖の末端炭素原子)から分岐している場合も含む。該構造を有する架橋基であれば何れでもよく、このような架橋基の具体例を下記式(a1)に示す。
As the bifunctional to hexafunctional polyhydric alcohol having 6 or more carbon atoms used for the synthesis of the oligoester of the terminal carboxylic acid in the present invention, specifically, a hydroxyl group is attached to the terminal of the crosslinking group P in the formula (1). And oligoesters of terminal carboxylic acids.
In the formula (1), the crosslinkable group represented by P is preferably a divalent crosslinkable group defined by the above (a) or (b), which will be specifically described below.
The divalent crosslinking group defined in (a) is a divalent chain alkyl chain obtained by removing a hydroxyl group from a divalent alcohol (diol) having a branched structure having 6 to 20 carbon atoms. This is a structure having an alkyl chain sandwiched between two alcoholic hydroxyl groups as a main chain and an alkyl chain (referred to as a side chain) branched from the alkyl chain. The side chain may be branched from any carbon atom constituting the main chain, and includes, for example, a case where the side chain is branched from a carbon atom to which an alcoholic hydroxyl group is bonded (terminal carbon atom of the main chain). Any crosslinking group having such a structure may be used, and a specific example of such a crosslinking group is shown in the following formula (a1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
前記式中、*印で式(1)におけるPの両側の酸素原子と結合する。
 上記(a)で定義されるアルキレン架橋基は、主鎖アルキレン基に対し、アルキル分岐鎖(側鎖)を有する構造であれば特に制限はないが、主鎖の炭素数が3以上の主鎖であり、少なくとも1個のアルキル側鎖を有するものが好ましく、またアルキル側鎖を2つ以上有するものが特に好ましい。より好ましいものとしては、炭素数3~12の直鎖の主鎖と、2~4個の側鎖を有し、かつその側鎖の少なくとも1つが炭素数2~10である架橋基を挙げることができる。この場合、側鎖の少なくとも2つが炭素数2~10である架橋基は更に好ましい。また、2~4個の側鎖は主鎖の異なる炭素原子から分岐していることが好ましい。
 より具体的な化合物としては前記式(a1)に記載した架橋基において、*印の位置にヒドロキシル基が結合した化合物を挙げることができる。
 原料として使用する多価アルコールの中では、少なくとも2個の側鎖を有し、該側鎖の中で少なくとも2個が炭素数2~4の側鎖である多価アルコールが好ましい。
 このような骨格の中で特に好ましい多価アルコールとしては2,4-ジエチル-1,5-ペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、2-エチル-1,3-ヘキサンジオールなどが挙げられ、特に2,4-ジエチル-1,5-ペンタンジオールが挙げられる。
In the above formula, it is bonded with oxygen atoms on both sides of P in the formula (1) at *.
The alkylene bridging group defined in (a) is not particularly limited as long as it has a structure having an alkyl branched chain (side chain) with respect to the main chain alkylene group, but the main chain has 3 or more main chain carbon atoms. In particular, those having at least one alkyl side chain are preferred, and those having two or more alkyl side chains are particularly preferred. More preferable examples include a bridging group having a linear main chain having 3 to 12 carbon atoms and 2 to 4 side chains, and at least one of the side chains having 2 to 10 carbon atoms. Can do. In this case, a crosslinking group in which at least two of the side chains have 2 to 10 carbon atoms is more preferable. The 2 to 4 side chains are preferably branched from carbon atoms having different main chains.
More specific examples of the compound include a compound in which a hydroxyl group is bonded to the position of * in the crosslinking group described in the formula (a1).
Among the polyhydric alcohols used as the raw material, polyhydric alcohols having at least two side chains and at least two of which are side chains having 2 to 4 carbon atoms are preferred.
Among such skeletons, particularly preferred polyhydric alcohols are 2,4-diethyl-1,5-pentanediol, 2-ethyl-2-butyl-1,3-propanediol, 2-ethyl-1,3- Examples include hexanediol, and particularly 2,4-diethyl-1,5-pentanediol.
 前記(b)で定義される架橋基としては、下記式(b1)で表される2価の基を挙げることができる。 Examples of the crosslinking group defined in (b) include a divalent group represented by the following formula (b1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 前記(b)で定義される架橋基の場合の、架橋多環ジオール残基としては、トリシクロデカン構造、ペンタシクロペンタデカン構造を主骨格とするジオール残基であり、下記式(b2)で表される。 In the case of the crosslinking group defined in (b) above, the crosslinked polycyclic diol residue is a diol residue having a tricyclodecane structure or a pentacyclopentadecane structure as the main skeleton, and is represented by the following formula (b2). Is done.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式中、複数存在するRはそれぞれ独立して、水素原子、もしくはメチル基を表す。これらの中で、Rが全て水素原子である架橋基が好ましい。
 具体的にはトリシクロデカンジメタノール、メチルトリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノールなどが挙げられる。
In the formula, a plurality of R 2 each independently represents a hydrogen atom or a methyl group. Of these, a bridging group in which all R 2 are hydrogen atoms is preferred.
Specific examples include tricyclodecane dimethanol, methyl tricyclodecane dimethanol, and pentacyclopentadecane dimethanol.
 酸無水物と多価アルコールの反応としては一般に酸や塩基を触媒とする付加反応であるが、本発明においては特に無触媒での反応が好ましい。
 触媒を用いる場合、使用しうる触媒としては、例えば塩酸、硫酸、メタンスルホン酸、トリフルオロメタンスルホン酸、パラトルエンスルホン酸、硝酸、トリフルオロ酢酸、トリクロロ酢酸等の酸性化合物、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム等の金属水酸化物、トリエチルアミン、トリプロピルアミン、トリブチルアミン等のアミン化合物、ピリジン、ジメチルアミノピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、イミダゾール、トリアゾール、テトラゾール等の複素環式化合物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルプロピルアンモニウムヒドロキシド、トリメチルブチルアンモニウムヒドロキシド、トリメチルセチルアンモニウムヒドロキシド、トリオクチルメチルアンモニウムヒドロキシド、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムヨージド、テトラメチルアンモニウムアセテート、トリオクチルメチルアンモニウムアセテート等の4級アンモニウム塩等が挙げられる。これらの触媒は1種又は2種以上を混合して用いても良い。これらの中で、トリエチルアミン、ピリジン、ジメチルアミノピリジンが好ましい。
The reaction between the acid anhydride and the polyhydric alcohol is generally an addition reaction using an acid or a base as a catalyst, but in the present invention, a reaction without a catalyst is particularly preferable.
When a catalyst is used, examples of the catalyst that can be used include hydrochloric acid, sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, nitric acid, trifluoroacetic acid, trichloroacetic acid and other acidic compounds, sodium hydroxide, hydroxide Metal hydroxides such as potassium, calcium hydroxide and magnesium hydroxide, amine compounds such as triethylamine, tripropylamine and tributylamine, pyridine, dimethylaminopyridine, 1,8-diazabicyclo [5.4.0] undec-7 -Heterocyclic compounds such as ene, imidazole, triazole, tetrazole, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethyl Ammonium hydroxide, trimethylpropylammonium hydroxide, trimethylbutylammonium hydroxide, trimethylcetylammonium hydroxide, trioctylmethylammonium hydroxide, tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, tetramethylammonium acetate, A quaternary ammonium salt such as trioctylmethylammonium acetate can be used. These catalysts may be used alone or in combination of two or more. Of these, triethylamine, pyridine, and dimethylaminopyridine are preferred.
 触媒の使用量には、特に制限はないが、原料の総重量100重量部に対して、通常0.001~5重量部を、必要により使用するのが好ましい。
 本反応においては無溶剤での反応が好ましいが、有機溶剤を使用しても構わない。有機溶剤の使用量としては、反応基質である前記酸無水物と前記多価アルコールの総量1部に対し、重量比で0.005~1部であり、好ましくは0.005~0.7部、より好ましくは0.005~0.5部(すなわち50重量%以下)である。有機溶剤の使用量が上記反応基質1重量部に対して、重量比で1部を超える場合、反応の進行が極度に遅くなることから好ましくない。使用できる有機溶剤の具体的な例としてはヘキサン、シクロヘキサン、ヘプタン等のアルカン類、トルエン、キシレン等の芳香族炭化水素化合物、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、アノン等のケトン類、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、酢酸エチル、酢酸ブチル、蟻酸メチルなどのエステル化合物などが使用できる。
The amount of the catalyst used is not particularly limited, but it is usually preferable to use 0.001 to 5 parts by weight, if necessary, with respect to 100 parts by weight of the total weight of the raw materials.
In this reaction, a reaction without a solvent is preferable, but an organic solvent may be used. The amount of the organic solvent used is 0.005 to 1 part by weight, preferably 0.005 to 0.7 part, based on 1 part of the total amount of the acid anhydride and the polyhydric alcohol as reaction substrates. More preferably, it is 0.005 to 0.5 part (that is, 50% by weight or less). When the amount of the organic solvent used exceeds 1 part by weight with respect to 1 part by weight of the reaction substrate, it is not preferable because the progress of the reaction becomes extremely slow. Specific examples of organic solvents that can be used include alkanes such as hexane, cyclohexane and heptane, aromatic hydrocarbon compounds such as toluene and xylene, ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and anone, diethyl ether , Ethers such as tetrahydrofuran and dioxane, and ester compounds such as ethyl acetate, butyl acetate and methyl formate can be used.
 本反応は20℃程度の温度でも十分に反応は進行する。反応時間の問題から反応温度は30~200℃が好ましく、より好ましくは40~200℃、特に好ましくは40~150℃である。特に本反応を無溶剤で行う場合は、酸無水物の揮発があるため、100℃以下での反応が好ましく、30~100℃または40~100℃での反応が特に好ましい。 This reaction proceeds sufficiently even at a temperature of about 20 ° C. In view of the reaction time, the reaction temperature is preferably 30 to 200 ° C, more preferably 40 to 200 ° C, and particularly preferably 40 to 150 ° C. In particular, when this reaction is carried out in the absence of a solvent, the reaction at 100 ° C. or lower is preferred, and the reaction at 30 to 100 ° C. or 40 to 100 ° C. is particularly preferred because of the volatilization of the acid anhydride.
 前記酸無水物と前記多価アルコールとの反応比率は理論的には等モルでの反応が好ましいが、必要に応じて変更可能である。
 反応させる際の具体的な両者の仕込み比率としては、その官能基当量で、該酸無水物基1当量に対して、該多価アルコールを、その水酸基当量で、0.001~2当量、より好ましくは0.01~1.5当量、さらに好ましくは0.1~1.2当量となる割合で仕込むのが好ましい。
 本発明においては得られる末端カルボン酸のオリゴエステルが固形であることが好ましく、固形の樹脂状末端カルボン酸のオリゴエステルを得るためには、理想的には等モル当量以上の多価アルコールを使用することが好ましいが、フィラーを添加するため流動性が重要となり、この流動性を確保する為に、その粘度バランスから、固形を保つ範囲(軟化点50℃以上)で多少のバランスを崩しても構わない。
 具体的には、酸無水物当量に対し、アルコール性水酸基の当量比において0.85~1.20モル当量が好ましく、特に0.90~1.1.0モル当量が好ましい。
The reaction ratio between the acid anhydride and the polyhydric alcohol is theoretically preferably equimolar, but can be changed as necessary.
The specific charging ratio of the two at the time of reaction is such that the polyhydric alcohol is equivalent to 0.001 to 2 equivalents in terms of the hydroxyl group equivalent to 1 equivalent of the acid anhydride group in terms of the functional group equivalent. It is preferable to charge at a ratio of preferably 0.01 to 1.5 equivalents, more preferably 0.1 to 1.2 equivalents.
In the present invention, it is preferable that the obtained terminal carboxylic acid oligoester is solid, and in order to obtain a solid resinous terminal carboxylic acid oligoester, ideally an equimolar equivalent or more of polyhydric alcohol is used. However, fluidity is important because the filler is added, and in order to secure this fluidity, even if some balance is lost in the range where the solids are maintained (softening point of 50 ° C. or higher) in order to secure this fluidity. I do not care.
Specifically, the equivalent ratio of the alcoholic hydroxyl group to the acid anhydride equivalent is preferably 0.85 to 1.20 molar equivalent, particularly preferably 0.90 to 1.1.0 molar equivalent.
 反応時間は反応温度、触媒量等にもよるが、工業生産という観点から、長時間の反応は多大なエネルギーを消費することになるため好ましくはない。また短すぎる反応時間はその反応が急激であることを意味し、安全性の面から好ましく無い。好ましい範囲としては1~48時間、好ましくは1~36時間、より好ましくは1~24時間、更に好ましくは2~10時間程度である。 Although the reaction time depends on the reaction temperature, the amount of catalyst, etc., from the viewpoint of industrial production, a long reaction time is not preferable because it consumes a great deal of energy. An excessively short reaction time means that the reaction is abrupt and is not preferable from the viewpoint of safety. A preferred range is 1 to 48 hours, preferably 1 to 36 hours, more preferably 1 to 24 hours, and still more preferably about 2 to 10 hours.
 反応終了後、触媒を用いた場合は、それぞれ中和、水洗、吸着などによって触媒の除去を行い、溶剤を留去することで目的とする末端カルボン酸のオリゴエステルが得られる。一方、無触媒で反応を行った場合は必要に応じて溶剤を留去することで目的とする末端カルボン酸のオリゴエステルが得られる。また、溶剤を使用した場合には、溶剤を除去することで目的とする末端カルボン酸のオリゴエステルが得られる。さらに無溶剤、無触媒の場合はそのまま取り出すことで製品とすることができる。 After completion of the reaction, when a catalyst is used, the catalyst is removed by neutralization, washing with water, adsorption, etc., and the solvent is distilled off to obtain the desired terminal carboxylic acid oligoester. On the other hand, when the reaction is carried out without a catalyst, the desired oligoester of the terminal carboxylic acid can be obtained by distilling off the solvent as necessary. Moreover, when a solvent is used, the oligoester of the terminal carboxylic acid made into the objective is obtained by removing a solvent. Further, in the case of no solvent and no catalyst, the product can be obtained by taking it out as it is.
 最も好適な製造方法としては、前記酸無水物、前記多価アルコールを、無触媒の条件下、40~150℃で反応させ、溶剤を除去したのち取り出すという手法である。 The most preferable production method is a method in which the acid anhydride and the polyhydric alcohol are reacted at 40 to 150 ° C. under non-catalytic conditions to remove the solvent and then taken out.
 このようにして得られる前記末端カルボン酸のオリゴエステルまたは該末端カルボン酸のオリゴエステルを含む組成物は、通常、無色~淡黄色の固形の樹脂状を示す(場合によっては結晶化する)。該末端カルボン酸のオリゴエステルの軟化点は50~190℃であることが好ましく、55~150℃であることがより好ましく、60~120℃であることが特に好ましい。このような軟化点を有する末端カルボン酸のオリゴエステルを液状とすることなく直接熱硬化性樹脂組成物中に混ぜることで、極めて高い反射率保持率を有することとなり、耐熱試験にかけた際にも反射率が低下し難い反射部材を提供することが可能となる。
 通常、架橋基が、(a)で定義される側鎖を有するアルキレン基である場合、無色~淡黄色の固形の樹脂状を示す。
 本発明においては、末端カルボン酸のオリゴエステルを含む熱硬化性樹脂組成物を使用する最適な方法が、トランスファーで成形であることから、末端カルボン酸のオリゴエステルは固形の樹脂状である。
 架橋基が(b)で定義される架橋基の場合、脂肪族炭化水素基が炭素数4~10のシクロアルカン骨格又はノルボルナン骨格であるとき、脂環式の置換基の全てが水素原子の末端カルボン酸のオリゴエステルは、硬化時の着色が見られ、特に厳しい光学用途には好適ではない。脂肪族炭化水素基が炭素数4~10のシクロアルカン骨格又はノルボルナン骨格であるとき、置換基がメチル基またはカルボキシル基の化合物ではそのような着色は少なく、その光学特性が向上する。
 前記(a)で定義される架橋基の化合物においても、脂肪族炭化水素基が炭素数4~10のシクロアルカン骨格又はノルボルナン骨格であるとき、置換基がメチル基またはカルボキシル基の化合物の場合の方が、光学特性が向上し、好ましい。
 すなわち、本発明の末端カルボン酸のオリゴエステル組成物として、炭素数4~10のシクロアルカン骨格又はノルボルナン骨格であるとき、置換基は好ましくはメチル基もしくはカルボキシル基、又は両者を有する式(1)の末端カルボン酸のオリゴエステルを含む組成物が好ましい。該末端カルボン酸のオリゴエステルを2種以上含む末端カルボン酸のオリゴエステル組成物の場合、少なくとも当該置換基が水素原子でない式(1)の末端カルボン酸のオリゴエステル(当該置換基が前記アルキル基、好ましくはメチル基、又はカルボキシル基の末端カルボン酸のオリゴエステル)、を、末端カルボン酸のオリゴエステルの総量に対して、50モル%以上含む組成物が好ましい。より好ましくは、当該置換基が水素原子でない式(1)の末端カルボン酸のオリゴエステルを70モル%以上、最も好ましくは90モル%以上含む末端カルボン酸のオリゴエステル組成物が好ましい。残部が、Rが水素原子である下記式(2A)の末端カルボン酸のオリゴエステルである。
 本発明において好適な末端カルボン酸のオリゴエステルとしては、下記式(2A)で表される末端カルボン酸のオリゴエステルが用いられる。
The thus obtained terminal carboxylic acid oligoester or a composition containing the terminal carboxylic acid oligoester usually shows a colorless to pale yellow solid resinous form (which may crystallize in some cases). The softening point of the terminal carboxylic acid oligoester is preferably 50 to 190 ° C, more preferably 55 to 150 ° C, and particularly preferably 60 to 120 ° C. By mixing the oligoester of a terminal carboxylic acid having such a softening point directly into a thermosetting resin composition without making it liquid, it has an extremely high reflectance retention rate, and even when subjected to a heat test. It is possible to provide a reflecting member whose reflectance is not easily lowered.
Usually, when the crosslinking group is an alkylene group having a side chain defined by (a), it shows a colorless to pale yellow solid resinous form.
In this invention, since the optimal method using the thermosetting resin composition containing the oligoester of terminal carboxylic acid is a shaping | molding by transfer, the oligoester of terminal carboxylic acid is a solid resin form.
When the bridging group is a bridging group defined by (b), when the aliphatic hydrocarbon group is a cycloalkane skeleton or a norbornane skeleton having 4 to 10 carbon atoms, all of the alicyclic substituents are at the end of the hydrogen atom. Carboxylic acid oligoesters show coloration upon curing and are not suitable for particularly demanding optical applications. When the aliphatic hydrocarbon group is a cycloalkane skeleton or a norbornane skeleton having 4 to 10 carbon atoms, the compound having a methyl group or a carboxyl group as the substituent is less colored and the optical properties are improved.
In the compound of the crosslinking group defined in (a), when the aliphatic hydrocarbon group is a cycloalkane skeleton or a norbornane skeleton having 4 to 10 carbon atoms, the substituent is a methyl group or a carboxyl group. This is preferable because optical characteristics are improved.
That is, when the terminal carboxylic acid oligoester composition of the present invention is a cycloalkane skeleton or norbornane skeleton having 4 to 10 carbon atoms, the substituent is preferably a methyl group or a carboxyl group, or a group having the formula (1) A composition comprising an oligoester of a terminal carboxylic acid is preferred. In the case of an oligoester composition of a terminal carboxylic acid containing two or more kinds of oligoesters of the terminal carboxylic acid, at least the terminal carboxylic acid oligoester of the formula (1) in which the substituent is not a hydrogen atom (the substituent is the alkyl group) , Preferably an oligoester of a terminal carboxylic acid having a methyl group or a carboxyl group) is preferably 50 mol% or more based on the total amount of oligoesters of the terminal carboxylic acid. More preferably, a terminal carboxylic acid oligoester composition containing 70 mol% or more, most preferably 90 mol% or more of a terminal carboxylic acid oligoester of the formula (1) in which the substituent is not a hydrogen atom is preferred. The remainder is an oligoester of a terminal carboxylic acid of the following formula (2A) in which R 3 is a hydrogen atom.
As an oligoester of a terminal carboxylic acid suitable in the present invention, an oligoester of a terminal carboxylic acid represented by the following formula (2A) is used.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(上記式中、Pは上記と同じ意味を表し、Rは水素原子、炭素数1~3のアルキル基またはカルボキシル基を表す。)
 ここで、上記式(2A)においては、上記に記載の通りの理由により、Rが炭素数1~3のアルキル基またはカルボキシル基を好適に使用できる。
(In the above formula, P represents the same meaning as described above, and R 3 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a carboxyl group.)
Here, in the above formula (2A), for the reasons described above, an alkyl group or a carboxyl group in which R 3 has 1 to 3 carbon atoms can be suitably used.
 本発明の熱硬化性樹脂用硬化剤は溶融性、各成分の分散性の観点から、150℃でのICI粘度において1Pa・s以下が好ましく、0.8Pa・s以下がより好ましく、0.6Pa・s以下が特に好ましい。このような低粘度の熱硬化性樹脂組成物に設定することで、従来結晶性を有するため軟化点あるいは融点が高く、混練が困難であった各成分が硬化剤に十分に溶融・分散するため、結晶が崩れ、主剤となるエポキシ樹脂と十分混練されることとなり、各成分が効果的に配列し、優れた物性を有する硬化物を得ることができる。尚、下限値が特に限定されず、例えば1mPa・s以上であればよく、100mPa・s以上であれば好ましい。軟化点においては、40~130℃であることが好ましく、50~100℃であることがより好ましく、特には70~100℃であることが好ましい。このような軟化点にあることで、十分な混練を行うことが可能となる。
 さらに、本発明の熱硬化性樹脂組成物においては、トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、およびシクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、および水添ピロメリット酸無水物から選ばれる1種または2種以上の化合物と末端カルボン酸のオリゴエステルの混合物における官能基当量が250g/eq.以下であることが好ましく、240g/eq.以下であることがより好ましく、230g/eq.以下であることが特に好ましい。このような範囲であることで、トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、およびシクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、および水添ピロメリット酸無水物から選ばれる1種または2種以上の化合物の化合物量の効果が有効に発揮され、耐熱性に優れた硬化物を得ることが可能となる。
 また、重量比としては、(トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、およびシクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、および水添ピロメリット酸無水物から選ばれる1種または2種以上の化合物):(末端カルボン酸のオリゴエステル)が1:99~99:1が好ましく、10:90~50:50であることがより好ましい。上記比率にあることで、極めて耐熱性に優れるとともに、粘度も低く十分に混練することが可能となることから硬化物性にも優れる熱硬化性樹脂組成物となる。
The curing agent for thermosetting resins of the present invention is preferably 1 Pa · s or less, more preferably 0.8 Pa · s or less, and more preferably 0.6 Pa or less in ICI viscosity at 150 ° C. from the viewpoints of meltability and dispersibility of each component. -S or less is particularly preferable. By setting to such a low-viscosity thermosetting resin composition, each component, which has a high softening point or melting point and has been difficult to knead because it has crystallinity, is sufficiently melted and dispersed in the curing agent. Then, the crystals are broken and are sufficiently kneaded with the epoxy resin as the main agent, and each component is effectively arranged, and a cured product having excellent physical properties can be obtained. In addition, a lower limit is not specifically limited, For example, what is necessary is just 1 mPa * s or more, and it is preferable if it is 100 mPa * s or more. The softening point is preferably 40 to 130 ° C., more preferably 50 to 100 ° C., and particularly preferably 70 to 100 ° C. By being at such a softening point, sufficient kneading can be performed.
Furthermore, in the thermosetting resin composition of the present invention, trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, and cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic anhydride, And a functional group equivalent in a mixture of one or more compounds selected from hydrogenated pyromellitic anhydride and an oligoester of a terminal carboxylic acid is 250 g / eq. Or less, preferably 240 g / eq. More preferably, it is 230 g / eq. It is particularly preferred that Within this range, trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, and cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic anhydride, and hydrogenated pyromellitic The effect of the compound amount of one or more compounds selected from acid anhydrides is effectively exhibited, and a cured product having excellent heat resistance can be obtained.
The weight ratio is (trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic acid anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic acid anhydride, and hydrogenated pyromellitic acid. One or more compounds selected from an anhydride) :( oligoester of terminal carboxylic acid) is preferably 1:99 to 99: 1, and more preferably 10:90 to 50:50. By being in the said ratio, while being extremely excellent in heat resistance, it becomes possible to fully knead | knead low viscosity, Therefore It becomes a thermosetting resin composition excellent also in cured | curing physical property.
 本発明の熱硬化性硬化剤を得る方法としては、例えば、(A)トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、およびシクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、および水添ピロメリット酸無水物から選ばれる1種または2種以上の化合物と、末端カルボン酸のオリゴエステルを別々に用意し(即ち、末端カルボン酸のオリゴエステルを先に合成しておく)、溶剤の存在下、常温ないし加熱して撹拌後、溶剤を留去させることにより、両者を混合させ組成物を得る方法、(B)末端カルボン酸のオリゴエステルを合成する際に、多価アルコールに対して、末端カルボン酸のオリゴエステルを得るために反応させる量以上のトリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、およびシクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、および水添ピロメリット酸無水物から選ばれる1種または2種以上の化合物を添加し、混合物を得る方法が挙げられる。
 ここで、(A)記載の方法のうち、オリゴエステルの合成反応終了後に反応時に残存した溶剤(或いは添加された溶剤)に対して酸無水物を混合させて硬化剤を得ることが好ましい。意図しない反応を防ぎ、目的とする化合物のみを得ることができるためである。
Examples of the method for obtaining the thermosetting curing agent of the present invention include (A) trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyro Prepare one or more compounds selected from merit acid anhydride and hydrogenated pyromellitic acid anhydride and terminal carboxylic acid oligoester separately (that is, synthesize terminal carboxylic acid oligoester first) In the presence of a solvent, after stirring at room temperature or heating, the solvent is distilled off to mix the two to obtain a composition. (B) When synthesizing an oligoester of a terminal carboxylic acid Trimellitic acid, trimellitic anhydride in excess of the amount reacted with polyhydric alcohol to obtain oligoester of terminal carboxylic acid , Cyclohexanetricarboxylic acid, and cyclohexanetricarboxylic acid anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic acid anhydride, and hydrogenated pyromellitic acid anhydride are added. And a method of obtaining a mixture.
Here, among the methods described in (A), it is preferable to obtain a curing agent by mixing an acid anhydride with a solvent (or an added solvent) remaining at the time of reaction after completion of the oligoester synthesis reaction. This is because an unintended reaction can be prevented and only the target compound can be obtained.
 本発明の熱硬化性樹脂組成物において、トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、およびシクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、および水添ピロメリット酸無水物から選ばれる1種または2種以上の化合物と、数平均分子量Mnが300以上である末端カルボン酸のオリゴエステルを含有する熱硬化性樹脂用硬化剤は、他の硬化剤と併用しても構わない。他の硬化剤は、熱硬化性樹脂組成物中に含まれる他の硬化剤全体の50重量%以下で使用することが好ましく、より好ましくは40重量%以下の使用であり、さらに好ましくは30重量%以下の使用である。
 併用しうる硬化剤としては、例えばアミン系化合物、不飽和環構造を有する酸無水物系化合物、オルガノシロキサン骨格を有する酸無水物、アミド系化合物、フェノール系化合物、カルボン酸系化合物などが挙げられる。用いうる硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂、無水フタル酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロロメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4’-ビス(クロロメチル)ベンゼン、1,4’-ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、イミダゾール、トリフルオロボラン-アミン錯体、グアニジン誘導体、テルペンとフェノール類の縮合物などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
In the thermosetting resin composition of the present invention, trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, and cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic anhydride, and hydrogenated A curing agent for a thermosetting resin containing one or more compounds selected from pyromellitic anhydride and an oligoester of a terminal carboxylic acid having a number average molecular weight Mn of 300 or more includes: You may use together. The other curing agent is preferably used in an amount of 50% by weight or less of the entire other curing agent contained in the thermosetting resin composition, more preferably 40% by weight or less, and further preferably 30% by weight. % Or less use.
Examples of the curing agent that can be used in combination include an amine compound, an acid anhydride compound having an unsaturated ring structure, an acid anhydride having an organosiloxane skeleton, an amide compound, a phenol compound, and a carboxylic acid compound. . Specific examples of the curing agent that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from ethylenediamine and phthalic anhydride, pyromellitic anhydride. Acid, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2 , 1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol Diol, terpene diphenol, 4,4'-biphenol, 2,2'-biphenol, 3,3 ', 5,5'-tetramethyl- [1,1'-biphenyl] -4,4'-diol, hydroquinone , Resorcinol, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenols (phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene , Dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetophenone, o-hydroxyacetophenone, dicyclopentadiene, furfural, 4,4′-bis ( (Rolomethyl) -1,1′-biphenyl, 4,4′-bis (methoxymethyl) -1,1′-biphenyl, 1,4′-bis (chloromethyl) benzene, 1,4′-bis (methoxymethyl) Examples include polycondensates with benzene and the like, modified products thereof, halogenated bisphenols such as tetrabromobisphenol A, imidazoles, trifluoroborane-amine complexes, guanidine derivatives, and condensates of terpenes and phenols. It is not limited to. These may be used alone or in combination of two or more.
 本発明における熱硬化性樹脂組成物とは、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂等の熱硬化性樹脂等を含有する組成物であり、本発明においては、エポキシ樹脂を使用することが望ましい。 The thermosetting resin composition in the present invention is a composition containing a thermosetting resin such as an epoxy resin, a phenol resin, a urea resin, a melamine resin, and an unsaturated polyester resin. In the present invention, the epoxy resin It is desirable to use
 エポキシ樹脂としては、従来の熱硬化性樹脂組成物やエポキシ樹脂組成物として通常配合されているものであれば、特に制限されることなく用いることができる。例えば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂をはじめとするフェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールF、ビスフェノールS、アルキル置換ビスフェノール等のジグリシジルエーテル、ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる脂環式エポキシ樹脂、ジグリシジルイソシアヌレート、トリグリシジルイソシアヌレート、シルセスキオキサン化合物等が挙げられ、これらは単独でも二種以上併用してもよい。これらエポキシ樹脂のうち、高い耐熱性を有するものが好ましいことから、具体的には、溶融粘度、得られる硬化物の着色およびガラス転移温度等の観点から、グリシジルエーテル型エポキシ樹脂、脂環式エポキシ樹脂、トリグリシジルイソシアヌレートが好ましい。 The epoxy resin can be used without any particular limitation as long as it is usually blended as a conventional thermosetting resin composition or epoxy resin composition. For example, epoxidized phenol and aldehyde novolac resins such as phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, diglycidyl ether such as bisphenol A, bisphenol F, bisphenol S, alkyl-substituted bisphenol, Glycidylamine type epoxy resin obtained by reaction of polyamine such as diaminodiphenylmethane and isocyanuric acid and epichlorohydrin, alicyclic epoxy resin obtained by oxidizing olefin bond with peracid such as peracetic acid, diglycidyl isocyanurate, triglycidyl isocyanate Examples thereof include nurate and silsesquioxane compounds, and these may be used alone or in combination of two or more. Among these epoxy resins, those having high heat resistance are preferable. Specifically, from the viewpoints of melt viscosity, coloring of the cured product and glass transition temperature, glycidyl ether type epoxy resin, alicyclic epoxy A resin, triglycidyl isocyanurate is preferred.
 エポキシ樹脂と本発明の熱硬化性樹脂用硬化剤の配合比は、エポキシ樹脂中のエポキシ基1当量に対して、当該エポキシ基と反応可能な熱硬化性樹脂用硬化剤中の活性基(酸無水物基や水酸基)が0.5~1.5当量(カルボン酸を1官能、酸無水物を1官能と考える)が好ましく、特に好ましくは0.5~1.2当量である。エポキシ基1当量に対して、0.5当量に満たない場合、あるいは1.5当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られない恐れがあるほか、着色しやすくなる問題もある。 The compounding ratio of the epoxy resin and the curing agent for thermosetting resin of the present invention is as follows. (Anhydride group or hydroxyl group) is preferably 0.5 to 1.5 equivalents (the carboxylic acid is considered to be monofunctional and the acid anhydride is assumed to be monofunctional), particularly preferably 0.5 to 1.2 equivalents. When less than 0.5 equivalent or more than 1.5 equivalent with respect to 1 equivalent of epoxy group, in any case, curing may be incomplete and good cured properties may not be obtained, and coloration is likely to occur. There is also a problem.
 本発明の硬化性樹脂組成物には、必要に応じて硬化促進剤を添加することができる。硬化促進剤としては、2-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2,4-ジアミノ-6(2'-メチルイミダゾール(1'))エチル-s-トリアジン、2,4-ジアミノ-6(2'-ウンデシルイミダゾール(1'))エチル-s-トリアジン、2,4-ジアミノ-6(2'-エチル,4-メチルイミダゾール(1'))エチル-s-トリアジン、2,4-ジアミノ-6(2'-メチルイミダゾール(1'))エチル-s-トリアジン・イソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸の2:3付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-3,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-ヒドロキシメチル-5-メチルイミダゾール、1-シアノエチル-2-フェニル-3,5-ジシアノエトキシメチルイミダゾールの各種イミダゾール類、及び、それらイミダゾール類とフタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、マレイン酸、蓚酸等の末端カルボン酸のオリゴエステルとの塩類、ジシアンジアミド等のアミド類、1,8-ジアザ-ビシクロ(5.4.0)ウンデセン-7等のジアザ化合物及びそれらのテトラフェニルボレート、フェノールノボラック等の塩類、前記末端カルボン酸のオリゴエステル類、又はホスフィン酸類との塩類、テトラブチルアンモニウムブロマイド、セチルトリメチルアンモニウムブロマイド、トリオクチルメチルアンモニウムブロマイド、ヘキサデシルトリメチルアンモニウムヒドロキシド等の4級アンモニウム塩(好ましくはC1~C20アルキルアンモニウム塩、トリフェニルホスフィン、トリ(トルイル)ホスフィン、テトラフェニルホスホニウムブロマイド、テトラフェニルホスホニウムテトラフェニルボレート等のホスフィン類やホスホニウム化合物、2,4,6-トリスアミノメチルフェノール等のフェノール類、アミンアダクト、オクチル酸スズ、オクタン酸亜鉛、ステアリン酸亜鉛、ナフテン酸銅、ナフテン酸コバルト等の金属化合物等、及びこれら硬化促進剤をマイクロカプセルにしたマイクロカプセル型硬化促進剤等が挙げられる。これら硬化促進剤のどれを用いるかは、例えば透明性、硬化速度、作業条件といった得られる透明樹脂組成物に要求される特性によって適宜選択される。本発明において好ましいものとしては、ホスホニウム化合物(より好ましくは4級ホスホニウム)またはステアリン酸亜鉛が挙げられる。
 硬化促進剤は、エポキシ樹脂100重量部に対し通常0.001~15重量部、好ましくは0.01~5重量部の範囲で使用される。
If necessary, a curing accelerator can be added to the curable resin composition of the present invention. Curing accelerators include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl- 2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 2,4-diamino-6 (2′-methylimidazole (1 ′)) ) Ethyl-s-triazine, 2,4-diamino-6 (2′-undecylimidazole (1 ′)) ethyl-s-triazine, 2,4-diamino-6 (2′-ethyl, 4-methylimidazole ( 1 ′)) Ethyl-s-triazine, 2,4-diamino-6 (2′-methylimidazole) (1 ')) ethyl-s-triazine isocyanuric acid adduct, 2-methylimidazole isocyanuric acid 2: 3 adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-3,5-dihydroxymethylimidazole , 2-phenyl-4-hydroxymethyl-5-methylimidazole, 1-cyanoethyl-2-phenyl-3,5-dicyanoethoxymethylimidazole imidazoles, and imidazoles with phthalic acid, isophthalic acid, terephthalic acid , Salts with oligoesters of terminal carboxylic acids such as trimellitic acid, pyromellitic acid, naphthalenedicarboxylic acid, maleic acid and succinic acid, amides such as dicyandiamide, 1,8-diaza-bicyclo (5.4.0) undecene Diaza compounds such as -7 and their tetrafes Salts such as ruborate and phenol novolac, oligoesters of the above terminal carboxylic acids, salts with phosphinic acids, quaternary compounds such as tetrabutylammonium bromide, cetyltrimethylammonium bromide, trioctylmethylammonium bromide, hexadecyltrimethylammonium hydroxide Ammonium salts (preferably C1-C20 alkyl ammonium salts, phosphines such as triphenylphosphine, tri (toluyl) phosphine, tetraphenylphosphonium bromide, tetraphenylphosphonium tetraphenylborate, phosphonium compounds, 2,4,6-trisaminomethyl Phenols and other phenols, amine adducts, tin octylate, zinc octoate, zinc stearate, copper naphthenate, naphthenic acid Examples thereof include metal compounds such as cobalt, and microcapsule type curing accelerators in which these curing accelerators are microcapsules. Which of these curing accelerators is used is appropriately selected depending on characteristics required for the obtained transparent resin composition, such as transparency, curing speed, and working conditions. In the present invention, preferred are phosphonium compounds (more preferably quaternary phosphonium) and zinc stearate.
The curing accelerator is usually used in an amount of 0.001 to 15 parts by weight, preferably 0.01 to 5 parts by weight, based on 100 parts by weight of the epoxy resin.
 必要に応じて、上述した添加剤以外の添加剤として、一般によく使用されるエポキシ樹脂用添加剤、例えば、顔料、染料、蛍光増白剤、補強材、充填剤、核剤、界面活性剤、可塑剤、粘度調整剤、流動性調整剤、難燃剤、酸化防止剤、紫外線吸収剤、光安定剤を添加してもよい。 If necessary, as additives other than the above-mentioned additives, generally used additives for epoxy resins, such as pigments, dyes, fluorescent brighteners, reinforcing materials, fillers, nucleating agents, surfactants, A plasticizer, a viscosity modifier, a fluidity modifier, a flame retardant, an antioxidant, an ultraviolet absorber, and a light stabilizer may be added.
 成形時の高温条件下における熱硬化性樹脂用硬化剤の溶融粘度が、従来の酸無水物硬化剤等より高いことが望ましく、具体的には、成型温度領域である100℃~200℃で0.01Pa・s~10Pa・sにすることが望ましい。0.01Pa・sより小さいと、バリが生じやすい。一方、10Pa・sより大きいと生産性が低下する。
 本実施形態においては、150℃における熱硬化性樹脂用硬化剤のICI粘度が0.01Pa・s~10Pa・sであることが好ましく、0.05Pa・s~5Pa・sであることがより好ましい。
Desirably, the melt viscosity of the thermosetting resin curing agent under high temperature conditions during molding is higher than that of conventional acid anhydride curing agents and the like. Specifically, it is 0 at a molding temperature range of 100 ° C. to 200 ° C. It is desirable that the pressure be set to 0.01 Pa · s to 10 Pa · s. If it is less than 0.01 Pa · s, burrs are likely to occur. On the other hand, when it is larger than 10 Pa · s, the productivity is lowered.
In this embodiment, the ICI viscosity of the thermosetting resin curing agent at 150 ° C. is preferably 0.01 Pa · s to 10 Pa · s, more preferably 0.05 Pa · s to 5 Pa · s. .
 軟化点は20℃~150℃の範囲にあることが望ましい。より具体的には、30℃~130℃の範囲にあることが好ましく、40℃~120℃の範囲にあることがより好ましい。 The softening point is preferably in the range of 20 ° C to 150 ° C. More specifically, it is preferably in the range of 30 ° C. to 130 ° C., more preferably in the range of 40 ° C. to 120 ° C.
 硬化物のガラス転移温度は、成形温度よりも高いことが望ましい。硬化物のガラス転移温度が成形温度以下であると、金型の中にある硬化物は低弾性のゴム状態であるため、ゴム状硬化物を金型から取り出すことになり、イジェクターを押し込む際に、変形するなどして不具合が生じるおそれがある。具体的には、ガラス転移温度は30℃以上であることが好ましく、40℃以上であることがより好ましく、50℃以上であることがさらに好ましい。 The glass transition temperature of the cured product is preferably higher than the molding temperature. When the glass transition temperature of the cured product is lower than the molding temperature, the cured product in the mold is in a low-elasticity rubber state, so the rubber-like cured product will be taken out of the mold, and when the ejector is pushed in There is a risk of malfunction due to deformation. Specifically, the glass transition temperature is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, and further preferably 50 ° C. or higher.
 本発明の熱硬化性樹脂組成物は、上記した各種成分を均一に分散混合することで得られる。その方法については特に限定されないが、各種成分をミキサー等によって十分均一に撹拌、混合した後、ミキシングロール、押出機、ニーダー、ロール、エクストルーダー等によって混練または溶融混練し、冷却、粉砕する方法を挙げることができる。混練または溶融混練の条件は、成分の種類や配合量により決定すればよく、特に限定されないが、20~100℃の範囲で5~40分間混練することがより好ましい。混練温度が20℃未満であると、各成分の分散性が低下し、十分に混練させることが困難であり、100℃よりも高温であると、樹脂組成物の架橋反応が進行し、樹脂組成物が硬化してしまう恐れがある。 The thermosetting resin composition of the present invention can be obtained by uniformly dispersing and mixing the various components described above. Although the method is not particularly limited, a method in which various components are sufficiently uniformly stirred and mixed by a mixer or the like and then kneaded or melt-kneaded by a mixing roll, an extruder, a kneader, a roll, an extruder, or the like, cooled, and pulverized. Can be mentioned. The conditions for kneading or melt-kneading may be determined depending on the types and amounts of the components, and are not particularly limited. However, kneading at 20 to 100 ° C. for 5 to 40 minutes is more preferable. When the kneading temperature is less than 20 ° C., the dispersibility of each component is lowered and it is difficult to sufficiently knead. When the kneading temperature is higher than 100 ° C., the crosslinking reaction of the resin composition proceeds and the resin composition There is a risk that things will harden.
 本発明の熱硬化性樹脂組成物は、加熱成型前、0~30℃の室温において加圧(タブレット)成型可能であることが望ましい。加圧成型は、例えば、0.01~10MPa、1~5秒程度の条件下で行う方法が挙げられる。また、加圧(タブレット)成型時に用いる金型は、特に限定されないが、例えば、セラミックス系材料やフッ素系樹脂材料等からなる杵型(上金型)と臼型(下金型)とで構成されるものを用いることが好ましい。 The thermosetting resin composition of the present invention is preferably capable of being pressed (tablet) at room temperature of 0 to 30 ° C. before heat molding. For example, the pressure molding may be performed under conditions of 0.01 to 10 MPa and 1 to 5 seconds. In addition, the mold used at the time of pressing (tablet) molding is not particularly limited, and for example, it is composed of a vertical mold (upper mold) and a mortar mold (lower mold) made of a ceramic material, a fluorine resin material, or the like. It is preferable to use what is used.
 本発明の熱硬化性樹脂組成物は、高いガラス転移温度および高い透過率を必要とする光半導体封止材料、光半導体用反射材などの用途において有用である。 The thermosetting resin composition of the present invention is useful in applications such as optical semiconductor sealing materials and optical semiconductor reflectors that require high glass transition temperatures and high transmittance.
 光反射用として使用する場合において、製造方法は特に限定されないが、例えば、本発明の熱硬化性樹脂組成物をトランスファー成型によって製造することが好ましい。本発明の熱硬化性樹脂組成物を金型に注入し、例えば、金型温度150~190℃、成形圧力2~20MPaの条件下で、60~800秒間硬化させた後に金型から取り出し、アフターキュア温度150℃~180℃で1~3時間にわたって熱硬化させる。 In the case of use for light reflection, the production method is not particularly limited. For example, it is preferable to produce the thermosetting resin composition of the present invention by transfer molding. The thermosetting resin composition of the present invention is poured into a mold, for example, cured for 60 to 800 seconds under conditions of a mold temperature of 150 to 190 ° C. and a molding pressure of 2 to 20 MPa. Heat curing is performed at a curing temperature of 150 ° C. to 180 ° C. for 1 to 3 hours.
(半導体装置)
 本発明の半導体装置は、代表的な構造について具体例を例示すると、国際公開第2012-124147号に記載の通り、基板上に円筒状の中空部を有する光反射防止部材を配置し、円筒状の中空部の内部空間において基板上に光半導体素子を配置する。そして、光半導体素子の一端部と基板をワイヤーで繋げ、上記中空部に封止樹脂が封入された構成を有している。
(Semiconductor device)
A specific example of a typical structure of the semiconductor device of the present invention is as follows. As described in International Publication No. 2012-124147, a light reflection preventing member having a cylindrical hollow portion is disposed on a substrate to form a cylindrical shape. An optical semiconductor element is disposed on the substrate in the internal space of the hollow portion. And the one end part and board | substrate of an optical semiconductor element are connected with the wire, and it has the structure by which sealing resin was enclosed with the said hollow part.
 以下、本発明を実施例により詳述するが、本発明は以下の記載に限定されるものではない。また合成例において、ゲルパーミエーションクロマトグラフィー(以下、「GPC」という)、ICI粘度、軟化点の各測定は以下の通り行った。
1)GPC
 カラムは、Shodex SYSTEM-21カラム(KF-803L、KF-802.5(×2本)、KF-802)、連結溶離液はテトラヒドロフラン、流速は1ml/min.カラム温度は40℃、また検出はRI(Reflective  index)で行い、検量線はShodex製標準ポリスチレンを使用した。また官能基当量はGPCより算出した比率より算出し、カルボン酸、酸無水物をそれぞれ1当量として値を求めた。
2)ICI粘度
 150℃におけるコーンプレート法における溶融粘度を測定した。
3)軟化点
 JIS K-7234に準じた方法で測定した。
EXAMPLES Hereinafter, although an Example explains in full detail this invention, this invention is not limited to the following description. In the synthesis examples, gel permeation chromatography (hereinafter referred to as “GPC”), ICI viscosity, and softening point were measured as follows.
1) GPC
The column is a Shodex SYSTEM-21 column (KF-803L, KF-802.5 (× 2), KF-802), the coupled eluent is tetrahydrofuran, and the flow rate is 1 ml / min. The column temperature was 40 ° C., the detection was performed by RI (Reflective index), and a standard polystyrene made by Shodex was used for the calibration curve. Further, the functional group equivalent was calculated from the ratio calculated from GPC, and the value was determined with 1 equivalent each of carboxylic acid and acid anhydride.
2) ICI viscosity The melt viscosity in the cone plate method at 150 ° C was measured.
3) Softening point Measured by a method according to JIS K-7234.
合成例1(熱硬化性樹脂用硬化剤A-1)
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらトリシクロデカンジメタノール98.1部、メチルヘキサヒドロフタル酸無水物とヘキサヒドロフタル酸無水物の混合物(新日本理化(株)製、リカシッドMHT  比率  7:3 )166.3部、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物(三菱ガス化学製 H-TMAn)2.0部、メチルエチルケトン(MEK)266.4部を加え、60℃で1時間反応後80℃で5時間加熱撹拌を行うことで(2)式で示される化合物のMEK溶液を得た。そこへ、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物(三菱ガス化学製 H-TMAn)59.4部を加え、80℃で2時間加熱撹拌を行った。その後、150℃1時間の条件で溶媒を除去し、熱硬化性樹脂用硬化剤を得た。
 得られた硬化剤は無色、固形であった。また、官能基当量は195g/eq.であった。ICI粘度は、150℃において0.53Pa・sであった。軟化点は、84.7℃であった。
Synthesis example 1 (curing agent A-1 for thermosetting resin)
A flask equipped with a stirrer, reflux condenser, and stirrer was purged with nitrogen while 98.1 parts of tricyclodecane dimethanol, a mixture of methylhexahydrophthalic anhydride and hexahydrophthalic anhydride (Shin Nippon Rika) 166.3 parts of Ricacid MHT ratio 7: 3 manufactured by Co., Ltd., 2.0 parts of cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride (H-TMAn manufactured by Mitsubishi Gas Chemical), methyl ethyl ketone ( MEK) 266.4 parts were added, reacted at 60 ° C. for 1 hour, and then heated and stirred at 80 ° C. for 5 hours to obtain a MEK solution of the compound represented by formula (2). Thereto was added 59.4 parts of cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride (H-TMAn manufactured by Mitsubishi Gas Chemical), and the mixture was heated and stirred at 80 ° C. for 2 hours. Thereafter, the solvent was removed at 150 ° C. for 1 hour to obtain a curing agent for thermosetting resin.
The obtained curing agent was colorless and solid. The functional group equivalent was 195 g / eq. Met. The ICI viscosity was 0.53 Pa · s at 150 ° C. The softening point was 84.7 ° C.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
比較例1(熱硬化性樹脂用硬化剤A-2)
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらトリシクロデカンジメタノール98.1部、メチルヘキサヒドロフタル酸無水物とヘキサヒドロフタル酸無水物の混合物(新日本理化(株)製、リカシッドMHT、比率 7:3)117.6部、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物(三菱ガス化学製 H-TMAn)59.4部、MEK275.2部を加え、60℃で1時間反応後80℃で5時間加熱撹拌を行い、その後、150℃1時間の条件で溶媒を除去し、熱硬化性樹脂用硬化剤を得た。得られた硬化剤は下記式(2)で表され、無色、固形であった。また、官能基当量は225.2g/eq.であった。ICI粘度は、150℃において4.3Pa・sであった。軟化点は105.6℃であった。
Comparative Example 1 (Curing Agent A-2 for Thermosetting Resin)
A flask equipped with a stirrer, reflux condenser, and stirrer was purged with nitrogen while 98.1 parts of tricyclodecane dimethanol, a mixture of methylhexahydrophthalic anhydride and hexahydrophthalic anhydride (Shin Nippon Rika) Ricacid MHT, ratio 7: 3) 117.6 parts, cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride (H-TMAn manufactured by Mitsubishi Gas Chemical) 59.4 parts, MEK275 .2 parts was added, reacted at 60 ° C. for 1 hour, heated and stirred at 80 ° C. for 5 hours, and then the solvent was removed at 150 ° C. for 1 hour to obtain a curing agent for thermosetting resin. The obtained curing agent was represented by the following formula (2) and was colorless and solid. The functional group equivalent was 225.2 g / eq. Met. The ICI viscosity was 4.3 Pa · s at 150 ° C. The softening point was 105.6 ° C.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 合成例1と比較例1の結果から明らかなように、本発明の熱硬化性樹脂用硬化剤は、溶融粘度が低く、成形性に優れることがわかる。 As is clear from the results of Synthesis Example 1 and Comparative Example 1, it can be seen that the curing agent for thermosetting resin of the present invention has a low melt viscosity and excellent moldability.
熱硬化性光反射用樹脂組成物の調製(実施例1~実施例3)
 NC-6500(日本化薬株式会社製グリシジルエーテル型エポキシ樹脂)、TEPIC-S(日産化学株式会社製トリグリシジルイソシアヌレート)、EHPE-3150(ダイセル化学工業(株)製脂環式エポキシ樹脂)、ヒシコーリンPX-4MP(日本化学工業株式会社製硬化触媒)を使用して、表1 に示した配合表に従って各成分を配合し、ミキサーによって十分混練した後、ミキシングロールにより所定条件で溶融混練し、冷却、粉砕を行い、実施例1~実施例3の熱硬化性樹脂組成物を調製した。なお、表1中の各成分の配合量の単位は重量部であり、空欄は当該成分を使用していないことを表す。
Preparation of thermosetting light reflecting resin composition (Examples 1 to 3)
NC-6500 (Nippon Kayaku Co., Ltd. glycidyl ether type epoxy resin), TEPIC-S (Nissan Chemical Co., Ltd. triglycidyl isocyanurate), EHPE-3150 (Daicel Chemical Industries, Ltd. alicyclic epoxy resin), Using Hishikorin PX-4MP (Nippon Kagaku Kogyo Co., Ltd. curing catalyst), each component was blended according to the blending table shown in Table 1, sufficiently kneaded with a mixer, then melt-kneaded under a predetermined condition with a mixing roll, Cooling and pulverization were performed to prepare thermosetting resin compositions of Examples 1 to 3. In addition, the unit of the compounding quantity of each component in Table 1 is parts by weight, and the blank represents that the component is not used.
熱硬化性樹脂組成物の評価
 各実施例の樹脂組成物について、下記に示す方法により硬化物のDMA、TMA、透過率を測定した。その結果を表1に示す。
Evaluation of thermosetting resin composition About the resin composition of each Example, DMA, TMA, and the transmittance | permeability of hardened | cured material were measured with the method shown below. The results are shown in Table 1.
(a)DMA
 粘弾性測定(DMA:Dynamic Mechanical Analysis)については、下記のように作成した試験片を用いて、JIS K7244、JIS K7244-4に記載の方法に従って、エスアイアイ・ナノテクノロジー(株)製DMS6100粘弾性測定装置を使用して下記条件で測定した。ガラス転移温度(Tg)は、貯蔵弾性率(E´)と損失弾性率(E´´)の商で表される損失係数(tanδ=E´´/E´)の極大点を示す際の温度を示す。
(DMA試験片作成方法)
 各実施例及び各比較例の樹脂組成物を、成型型温度150℃、成型圧力10.4MPa、キュア時間300秒の条件でトランスファー成型した後、150℃で3時間ポストキュアすることにより、長さ50.0mm、幅5.0mm、厚み0.5mmのテストピースを作製した。
(DMA測定条件)
初期張力:0.1N
周波数:10Hz
測定モード:引張振動 
測定温度:30℃~280℃
昇温速度:2℃/min
(A) DMA
For viscoelasticity measurement (DMA: Dynamic Mechanical Analysis), DMS6100 viscoelasticity manufactured by SII NanoTechnology Co., Ltd. according to the method described in JIS K7244 and JIS K7244-4 using a test piece prepared as follows. It measured on condition of the following using a measuring apparatus. The glass transition temperature (Tg) is a temperature at which the maximum point of the loss coefficient (tan δ = E ″ / E ′) represented by the quotient of the storage elastic modulus (E ′) and the loss elastic modulus (E ″). Indicates.
(DMA test piece preparation method)
The resin composition of each example and each comparative example was subjected to transfer molding under the conditions of a mold temperature of 150 ° C., a molding pressure of 10.4 MPa, and a curing time of 300 seconds, and then post-cured at 150 ° C. for 3 hours to obtain a length. A test piece having a width of 50.0 mm, a width of 5.0 mm, and a thickness of 0.5 mm was produced.
(DMA measurement conditions)
Initial tension: 0.1N
Frequency: 10Hz
Measurement mode: Tensile vibration
Measurement temperature: 30 ° C-280 ° C
Temperature increase rate: 2 ° C / min
(b)熱機械分析(TMA)
 熱機械分析(TMA)は、下記のように作成した試験片を用いて、エスアイアイ・ナノテクノロジー(株)製TMA/SS6100装置を使用して、下記条件で測定した。なお、ガラス転移温度(Tg)は、得られたデータの線膨張係数の変化点として定義される。
(TMA試験片作成方法)
 各実施例及び各比較例の樹脂組成物を、成型型温度150℃、成型圧力10.4MPa、キュア時間300秒の条件でトランスファー成型した後、150℃で3時間ポストキュアすることにより、厚み4.0mmのテストピースを作製した。
(TMA測定条件)
昇温条件:2℃/分
測定モード:圧縮
(B) Thermomechanical analysis (TMA)
Thermomechanical analysis (TMA) was measured under the following conditions using a TMA / SS6100 apparatus manufactured by SII NanoTechnology Co., Ltd. using a test piece prepared as described below. The glass transition temperature (Tg) is defined as the changing point of the linear expansion coefficient of the obtained data.
(TMA test piece preparation method)
The resin composition of each example and each comparative example was transfer-molded under conditions of a mold temperature of 150 ° C., a molding pressure of 10.4 MPa, and a curing time of 300 seconds, and then post-cured at 150 ° C. for 3 hours to obtain a thickness of 4 A test piece of 0.0 mm was produced.
(TMA measurement conditions)
Temperature rise condition: 2 ° C / min Measurement mode: Compression
(c)透過率
 各実施例及び各比較例の樹脂組成物を、成型型温度150℃、成型圧力10.4MPa、キュア時間300秒の条件でトランスファー成型した後、150℃で3時間ポストキュアすることにより、厚み1.0mmのテストピースを作製した。ついで、積分球型分光光度計UV-3600型(株式会社島津製作所製)にて波長460nmにおける透過率を測定し、各テストピースの着色を評価した。
(C) Transmittance The resin compositions of Examples and Comparative Examples were transfer molded under conditions of a mold temperature of 150 ° C., a molding pressure of 10.4 MPa, and a curing time of 300 seconds, and then post-cured at 150 ° C. for 3 hours. As a result, a test piece having a thickness of 1.0 mm was produced. Subsequently, the transmittance at a wavelength of 460 nm was measured with an integrating sphere spectrophotometer UV-3600 type (manufactured by Shimadzu Corporation), and the coloring of each test piece was evaluated.
[規則26に基づく補充 16.04.2015] 
Figure WO-DOC-TABLE-1
[Supplement under Rule 26 16.04.2015]
Figure WO-DOC-TABLE-1
 以上の結果から、本発明の熱硬化性樹脂用硬化剤を用いた熱硬化性樹脂組成物は、ガラス転移温度が十分に高く、硬化物の着色が少ない硬化物を与えることがわかる。 From the above results, it can be seen that the thermosetting resin composition using the curing agent for thermosetting resin of the present invention gives a cured product having a sufficiently high glass transition temperature and little coloration of the cured product.
合成例3(熱硬化性樹脂用硬化剤A-3)
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらトリシクロデカンジメタノール98.1部、メチルヘキサヒドロフタル酸無水物とヘキサヒドロフタル酸無水物の混合物(新日本理化(株)製、リカシッドMHT 比率 7:3)166.3部、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物(三菱ガス化学製 H-TMAn)2.0部、MEK266.4部を加え、60℃で1時間反応後80℃で5時間加熱撹拌を行うことで(2)式で示される化合物のMEK溶液を得た。そこへ、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物(三菱ガス化学製 H-TMAn)2.1部を加え、80℃で2時間加熱撹拌を行った。その後、150℃1時間の条件で溶媒を除去し、熱硬化性樹脂用硬化剤を得た。得られた硬化剤は無色、固形であった。また、官能基当量は263g/eq.であった。
Synthesis example 3 (curing agent A-3 for thermosetting resin)
A flask equipped with a stirrer, reflux condenser, and stirrer was purged with nitrogen while 98.1 parts of tricyclodecane dimethanol, a mixture of methylhexahydrophthalic anhydride and hexahydrophthalic anhydride (Shin Nippon Rika) Ricacid MHT ratio 7: 3) 166.3 parts, cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride (H-TMAn manufactured by Mitsubishi Gas Chemical) 2.0 parts, MEK266. 4 parts were added, reacted at 60 ° C for 1 hour, and then heated and stirred at 80 ° C for 5 hours to obtain a MEK solution of the compound represented by the formula (2). Thereto was added 2.1 parts of cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride (H-TMAn manufactured by Mitsubishi Gas Chemical), and the mixture was heated and stirred at 80 ° C. for 2 hours. Thereafter, the solvent was removed at 150 ° C. for 1 hour to obtain a curing agent for thermosetting resin. The obtained curing agent was colorless and solid. The functional group equivalent was 263 g / eq. Met.
合成例4(熱硬化性樹脂用硬化剤A-4)
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらトリシクロデカンジメタノール98.1部、メチルヘキサヒドロフタル酸無水物とヘキサヒドロフタル酸無水物の混合物(新日本理化(株)製、リカシッドMHT 比率 7:3)166.3部、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物(三菱ガス化学製 H-TMAn)2.0部、MEK266.4部を加え、60℃で1時間反応後80℃で5時間加熱撹拌を行うことで(2)式で示される化合物のMEK溶液を得た。その後、150℃1時間の条件で溶媒を除去し、熱硬化性樹脂用硬化剤を得た。得られた硬化剤は無色、固形であった。また、官能基当量は267g/eq.であった。
Synthesis example 4 (curing agent A-4 for thermosetting resin)
A flask equipped with a stirrer, reflux condenser, and stirrer was purged with nitrogen while 98.1 parts of tricyclodecane dimethanol, a mixture of methylhexahydrophthalic anhydride and hexahydrophthalic anhydride (Shin Nippon Rika) Ricacid MHT ratio 7: 3) 166.3 parts, cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride (H-TMAn manufactured by Mitsubishi Gas Chemical) 2.0 parts, MEK266. 4 parts were added, reacted at 60 ° C for 1 hour, and then heated and stirred at 80 ° C for 5 hours to obtain a MEK solution of the compound represented by the formula (2). Thereafter, the solvent was removed at 150 ° C. for 1 hour to obtain a curing agent for thermosetting resin. The obtained curing agent was colorless and solid. The functional group equivalent was 267 g / eq. Met.
[規則26に基づく補充 16.04.2015] 
Figure WO-DOC-TABLE-2
[Supplement under Rule 26 16.04.2015]
Figure WO-DOC-TABLE-2
 以上の結果から、本発明の熱硬化性樹脂用硬化剤を用いた熱硬化性樹脂組成物は、ガラス転移温度が十分に高く、硬化物の着色が少ない硬化物を与えることがわかる。 From the above results, it can be seen that the thermosetting resin composition using the curing agent for thermosetting resin of the present invention gives a cured product having a sufficiently high glass transition temperature and little coloration of the cured product.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本願は、2014年4月3日付で出願された日本国特許出願(2014-76635)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
In addition, this application is based on the Japan patent application (2014-76635) for which it applied on April 3, 2014, The whole is used by reference. Also, all references cited herein are incorporated as a whole.
 本発明の熱硬化性樹脂用硬化剤は、溶融粘度が低く、成形性に優れ、前記熱硬化性樹脂用硬化剤を用いた熱硬化性樹脂組成物は、ガラス転移温度が十分に高く、着色の少ない硬化物を与えることから、本発明の熱硬化性樹脂組成物は、光半導体の封止材あるいは光反射材の材料として有用である。ガラス転移温度が十分に高いことは、成形性および信頼性にとって重要である。また、着色が少ないことは、封止材として使用した場合には透過率を高めることができ、反射材として使用した場合には、反射率を高めることができる。 The thermosetting resin curing agent of the present invention has a low melt viscosity and excellent moldability, and the thermosetting resin composition using the thermosetting resin curing agent has a sufficiently high glass transition temperature and is colored. Therefore, the thermosetting resin composition of the present invention is useful as an optical semiconductor sealing material or a light reflecting material. A sufficiently high glass transition temperature is important for formability and reliability. In addition, less coloring can increase the transmittance when used as a sealing material, and can increase the reflectance when used as a reflecting material.

Claims (8)

  1.  トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、および水添ピロメリット酸無水物から選ばれる少なくとも1種の化合物と、数平均分子量Mnが300以上である末端カルボン酸のオリゴエステルとを含む熱硬化性樹脂用硬化剤であり、トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、および水添ピロメリット酸無水物から選ばれる少なくとも1種の化合物の合計の、熱硬化性樹脂用硬化剤に占める割合が1重量%~90重量%である熱硬化性樹脂用硬化剤。 At least one selected from trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic acid anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic acid anhydride, and hydrogenated pyromellitic acid anhydride It is a curing agent for a thermosetting resin containing a compound and an oligoester of a terminal carboxylic acid having a number average molecular weight Mn of 300 or more, trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, The ratio of the total of at least one compound selected from pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic acid anhydride, and hydrogenated pyromellitic acid anhydride to the curing agent for thermosetting resin is 1% by weight. A curing agent for thermosetting resin, which is 90% by weight.
  2.  ICIコーンプレート粘度が100~200℃の範囲で0.01Pa・s~10Pa・sの範囲にある、請求項1に記載の熱硬化性樹脂用硬化剤。 The curing agent for thermosetting resin according to claim 1, wherein the viscosity of the ICI cone plate is in the range of 0.01 Pa · s to 10 Pa · s in the range of 100 to 200 ° C.
  3.  軟化点が20℃~150℃の範囲にある、請求項1又は2に記載の熱硬化性樹脂用硬化剤。 The curing agent for a thermosetting resin according to claim 1 or 2, wherein the softening point is in the range of 20 ° C to 150 ° C.
  4.  請求項1~3のいずれか一項に記載の熱硬化性樹脂用硬化剤を含有する熱硬化性樹脂組成物。 A thermosetting resin composition comprising the thermosetting resin curing agent according to any one of claims 1 to 3.
  5.  硬化物のガラス転移温度(Tg)が30℃以上である、請求項4に記載の熱硬化性樹脂組成物。 The thermosetting resin composition of Claim 4 whose glass transition temperature (Tg) of hardened | cured material is 30 degreeC or more.
  6.  請求項4又は5に記載の熱硬化性樹脂組成物を熱硬化してなる硬化物。 Hardened | cured material formed by thermosetting the thermosetting resin composition of Claim 4 or 5.
  7.  請求項6に記載の硬化物によって封止された光半導体装置。 An optical semiconductor device sealed with the cured product according to claim 6.
  8.  請求項6に記載の硬化物を反射材として使用した光半導体装置。 An optical semiconductor device using the cured product according to claim 6 as a reflective material.
PCT/JP2015/060330 2014-04-03 2015-04-01 Curing agent for thermosetting resins, thermosetting resin composition using same, cured product of said thermosetting resin composition, and optical semiconductor device using said cured product as sealing material or reflective material WO2015152326A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-076635 2014-04-03
JP2014076635 2014-04-03

Publications (1)

Publication Number Publication Date
WO2015152326A1 true WO2015152326A1 (en) 2015-10-08

Family

ID=54240644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060330 WO2015152326A1 (en) 2014-04-03 2015-04-01 Curing agent for thermosetting resins, thermosetting resin composition using same, cured product of said thermosetting resin composition, and optical semiconductor device using said cured product as sealing material or reflective material

Country Status (3)

Country Link
JP (1) JP2015199904A (en)
TW (1) TW201605922A (en)
WO (1) WO2015152326A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7538666B2 (en) 2020-09-08 2024-08-22 日東電工株式会社 Resin moldings for sealing optical semiconductors

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625596A (en) * 1985-08-19 1994-02-01 Ppg Ind Inc Liquid crosslinkable composition capable of forming clear film
WO2006067955A1 (en) * 2004-12-21 2006-06-29 Hitachi Chemical Co., Ltd. Method for producing acid anhydride based epoxy resin curing agent, acid anhydride based epoxy resin curing agent, epoxy resin composition, cured article therefrom and optical semiconductor device
JP2008050573A (en) * 2006-07-25 2008-03-06 Hitachi Chem Co Ltd Thermosetting resin composition for reflecting light, substrate for loading optical semiconductor element using the same, method for producing the same and optical semiconductor device
WO2010150524A1 (en) * 2009-06-22 2010-12-29 日本化薬株式会社 Polyvalent carboxylic acid, composition thereof, curable resin composition, cured product, and method for manufacturing a polyvalent carboxylic acid
WO2012002404A1 (en) * 2010-06-30 2012-01-05 日本化薬株式会社 Polyvalent carboxylic acid composition, curing agent composition, and curable resin composition containing polyvalent carboxylic acid composition or curing agent composition as curing agent for epoxy resin
JP2013133407A (en) * 2011-12-27 2013-07-08 Nippon Kayaku Co Ltd Epoxy resin composition for transparent circuit board, and cured material thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE791129A (en) * 1971-11-10 1973-05-09 Ciba Geigy HOT-CURING MIXTURES BASED ON EPOXIDIC RESINS
JPS59152921A (en) * 1983-02-18 1984-08-31 Hitachi Chem Co Ltd Epoxy resin composition
JP3422066B2 (en) * 1994-02-07 2003-06-30 チッソ株式会社 Viscoelastic resin for vibration damping material and composition thereof
JP5179839B2 (en) * 2007-11-08 2013-04-10 株式会社ダイセル Epoxy resin composition and cured product thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625596A (en) * 1985-08-19 1994-02-01 Ppg Ind Inc Liquid crosslinkable composition capable of forming clear film
WO2006067955A1 (en) * 2004-12-21 2006-06-29 Hitachi Chemical Co., Ltd. Method for producing acid anhydride based epoxy resin curing agent, acid anhydride based epoxy resin curing agent, epoxy resin composition, cured article therefrom and optical semiconductor device
JP2008050573A (en) * 2006-07-25 2008-03-06 Hitachi Chem Co Ltd Thermosetting resin composition for reflecting light, substrate for loading optical semiconductor element using the same, method for producing the same and optical semiconductor device
WO2010150524A1 (en) * 2009-06-22 2010-12-29 日本化薬株式会社 Polyvalent carboxylic acid, composition thereof, curable resin composition, cured product, and method for manufacturing a polyvalent carboxylic acid
WO2012002404A1 (en) * 2010-06-30 2012-01-05 日本化薬株式会社 Polyvalent carboxylic acid composition, curing agent composition, and curable resin composition containing polyvalent carboxylic acid composition or curing agent composition as curing agent for epoxy resin
JP2013133407A (en) * 2011-12-27 2013-07-08 Nippon Kayaku Co Ltd Epoxy resin composition for transparent circuit board, and cured material thereof

Also Published As

Publication number Publication date
JP2015199904A (en) 2015-11-12
TW201605922A (en) 2016-02-16

Similar Documents

Publication Publication Date Title
JP5713898B2 (en) Polyvalent carboxylic acid, composition thereof, curable resin composition, cured product, and method for producing polyvalent carboxylic acid
JP6366504B2 (en) Epoxy resin, epoxy resin composition and cured product
JP6364187B2 (en) Optical epoxy resin composition and cured product thereof
TW201605816A (en) Polycarboxylic acid and polycarboxylic acid composition containing same, epoxy resin composition, thermosetting resin composition, and cured material of same, and optical semiconductor device
JP6147362B2 (en) Thermosetting resin composition, method for producing reflecting member for optical semiconductor device using the same, and optical semiconductor device
TW201211093A (en) Curable resin composition and cured product thereof
JP6570176B2 (en) Polyvalent carboxylic acid and polyvalent carboxylic acid composition, epoxy resin composition, thermosetting resin composition, cured product thereof, and optical semiconductor device containing the same
JP5686629B2 (en) Epoxy resin composition
KR20150105301A (en) Epoxy resin, epoxy resin composition and cured material
WO2015152326A1 (en) Curing agent for thermosetting resins, thermosetting resin composition using same, cured product of said thermosetting resin composition, and optical semiconductor device using said cured product as sealing material or reflective material
JP4762659B2 (en) Epoxy resin and epoxy resin composition
CN104877110B (en) Epoxy resin and its manufacturing method, composition epoxy resin and its application containing fluorene skeleton and hardening thing
JP2016141799A (en) Thermosetting resin composition containing polyhydric alcohol compound, acid anhydride compound and thermosetting resin and optical semiconductor device using the thermosetting resin composition as encapsulation material or reflector
JP6494092B2 (en) Polyvalent carboxylic acid resin, thermosetting resin composition using the same, and optical semiconductor device using the thermosetting resin composition as a reflector
TWI592408B (en) Phenol resin, epoxy resin composition containing the phenol resin, and hardened product thereof
JP2016141806A (en) Polycarboxylic acid resin, thermosetting resin composition using the same and optical semiconductor device using the thermosetting resin composition as encapsulation material or reflector
WO2016125874A1 (en) Thermosetting resin composition including polyhydric alcohol compound, acid anhydride compound and thermosetting resin, polycarboxylic acid resin, thermosetting resin composition using same, and photosemiconductor device using either one of the thermosetting resin compositions as sealing material or reflective material
JP2006249145A (en) Epoxy resin, its manufacturing method and epoxy resin composition
JP6511772B2 (en) Thermosetting composition
JP6767816B2 (en) Polycarboxylic acid and polyvalent carboxylic acid composition containing it, epoxy resin composition, cured products thereof, and optical semiconductor device
JP2023118357A (en) Compound, curable resin composition and cured product thereof
JP2009256448A (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP2015224311A (en) Curable resin composition, cured mattered thereof, and reflection member for optical semiconductor element using the same
JP2016117837A (en) Curable resin composition, cured product thereof and curing agent
JP2009120747A (en) Epoxy resin, epoxy resin composition and its cured product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15773499

Country of ref document: EP

Kind code of ref document: A1