[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016125874A1 - Thermosetting resin composition including polyhydric alcohol compound, acid anhydride compound and thermosetting resin, polycarboxylic acid resin, thermosetting resin composition using same, and photosemiconductor device using either one of the thermosetting resin compositions as sealing material or reflective material - Google Patents

Thermosetting resin composition including polyhydric alcohol compound, acid anhydride compound and thermosetting resin, polycarboxylic acid resin, thermosetting resin composition using same, and photosemiconductor device using either one of the thermosetting resin compositions as sealing material or reflective material Download PDF

Info

Publication number
WO2016125874A1
WO2016125874A1 PCT/JP2016/053430 JP2016053430W WO2016125874A1 WO 2016125874 A1 WO2016125874 A1 WO 2016125874A1 JP 2016053430 W JP2016053430 W JP 2016053430W WO 2016125874 A1 WO2016125874 A1 WO 2016125874A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermosetting resin
anhydride
acid
resin composition
group
Prior art date
Application number
PCT/JP2016/053430
Other languages
French (fr)
Japanese (ja)
Inventor
静 青木
政隆 中西
正人 鎗田
田中 栄一
義浩 川田
直佑 谷口
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015021450A external-priority patent/JP2016141799A/en
Priority claimed from JP2015021668A external-priority patent/JP2016141806A/en
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to CN201680008961.4A priority Critical patent/CN107250282A/en
Publication of WO2016125874A1 publication Critical patent/WO2016125874A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the first of the present invention (hereinafter referred to as the first invention) is a curing agent for a thermosetting resin, which can suppress the volatilization amount at the time of curing, and is less colored to a cured product, and a thermosetting resin using the same
  • the present invention relates to a composition and an optical semiconductor device using such a thermosetting resin composition as a sealing material or a reflecting material.
  • the second of the present invention (hereinafter referred to as the second invention) can sufficiently increase the glass transition temperature of the cured product, has excellent moldability, and has little coloration to the cured product.
  • the present invention relates to a thermosetting resin composition using the same, and an optical semiconductor device using the thermosetting resin composition as a sealing material or a reflecting material.
  • thermosetting resin composition When the thermosetting resin composition is used as a semiconductor sealing material or as a semiconductor reflector, if the thermosetting resin composition contains a highly volatile material, the Since the material is volatilized, voids are generated and the reliability may be lowered, or the equivalent ratio may be shifted to lower the cured physical properties. In addition, since there is a problem of odor during handling, it is desirable that the resin composition has a small amount of volatilization. Further, materials that have a long pot life and are difficult to be colored are required as semiconductor sealing materials and reflecting materials. And since the illuminance of an optical semiconductor will fall if the thermosetting resin composition absorbs the light which an optical semiconductor emits, the thermosetting resin composition has a high transmittance
  • the curing agent blended in the thermosetting resin composition is also required to have high transmittance and little coloration.
  • the glass transition temperature of the cured product is a certain temperature or more, and from the viewpoint of moldability, the softening point and viscosity of the curing agent are within a certain range. It is important to be.
  • Acid anhydrides used as curing agents for thermosetting resins have been used for optical semiconductor sealing and the like because of their excellent heat resistance and transparency.
  • a thermosetting resin composition containing only an acid anhydride as a curing agent for a thermosetting resin has reduced physical properties and odor due to volatilization of the acid anhydride. There was a problem. Furthermore, since it is volatile and has a low melting point, it has been a problem that it is not suitable for mold molding.
  • tetracarboxylic acid anhydride has a high melting point (150 ° C. or higher), it is difficult to handle as a liquid resin composition, and its formability is inferior, so it is difficult to use it for molding liquid resins. Then, it is not suitable for the intended use of the present invention.
  • carboxylic acid as a curing agent for epoxy resin is also known, but it has a relatively high melting point (150 ° C. or higher) and has the same problem as above. Since it is extremely difficult to ensure, it is not suitable for the intended use of the present invention.
  • polycarboxylic acid compounds also have problems of high melting point (150 ° C. or higher), high crystallinity, difficult resin kneading, and coloring, and cannot be used for the purpose of the present invention. Therefore, a compound that can solve the above problems has not been found as a conventionally known material.
  • the first object of the present invention is to provide a thermosetting resin composition that can sufficiently increase the glass transition temperature of a cured product, has a small amount of volatilization during curing, and has little coloration to the cured product, and such thermosetting properties.
  • the object is to provide a semiconductor device using a resin composition as a sealing material or a reflecting material.
  • the second object of the present invention is to sufficiently increase the glass transition temperature of the cured product, excellent in moldability, and less colored to the cured product, and a thermosetting resin composition using the same. And a semiconductor device using such a thermosetting resin composition as a sealing material or a reflecting material.
  • the first invention is to contain a polyhydric alcohol having 3 or more hydroxyl groups in the curable resin composition, thereby suppressing the volatilization amount at the time of curing, excellent moldability, and being less colored when made into a cured product.
  • the curable resin composition has a specific viscosity, a polyvalent carboxylic acid having an isocyanuric ring represented by the following formula (1), and the following formulas (1a) and / or (1b).
  • a polyvalent carboxylic acid resin containing the compound represented by a certain ratio it has a sufficient glass transition temperature when made into a cured product, has excellent moldability, and is colored when made into a cured product. It has been found that there are few.
  • thermosetting resin composition containing a polyhydric alcohol compound (A) having three or more hydroxyl groups, an acid anhydride compound (B), and a thermosetting resin (C).
  • the thermosetting resin composition according to (1), wherein the polyhydric alcohol compound (A) having three or more hydroxyl groups has a cyclic structure containing one or more heteroatoms in the molecule.
  • the thermosetting resin composition according to (2), wherein the heteroatom is a nitrogen atom.
  • the thermosetting resin composition according to (1), wherein the polyhydric alcohol compound (A) having three or more hydroxyl groups is a polyhydric alcohol compound represented by the following formula (5).
  • R 1 represents an alkylene group having 1 to 6 carbon atoms. In Formula (5), a plurality of R 1 may be the same or different.
  • the acid anhydride compound (B) is trimellitic anhydride, cyclohexanetricarboxylic anhydride, pyromellitic anhydride, hydrogenated pyromellitic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride.
  • R 1 represents an alkylene group having 1 to 6 carbon atoms
  • R 2 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a carboxyl group.
  • R 1 and R 2 may be the same or different.
  • R 1 and R 2 represent the same meaning as R 1 and R 2 in formula (1).
  • a plurality of R 1 and R 2 are the same. May be different.
  • R 1, R 2 is Formula (1)
  • R 1, R 2 the same meaning represents the. Formula in in (1b), R 1, R 2 existing in plural in the same May be different.
  • the polyvalent carboxylic acid resin is represented by the following formula (6):
  • thermosetting resin composition according to (7) which is a polyvalent carboxylic acid resin containing 5 to 20 area% of an acid anhydride represented by formula (1) as measured by gel permeation chromatography.
  • the polyvalent carboxylic acid resin is a compound obtained by reacting the compound represented by the formula (1) with the compound represented by the formula (6) described in (8),
  • the thermosetting property according to (7) which is a polyvalent carboxylic acid resin containing 0.5 to 10 area% of a high molecular weight compound having a retention time shorter than that of the compound represented by the formula (1) in the measurement of the association chromatography Resin composition.
  • thermosetting resin composition according to any one of (7) to (9), wherein the softening point is in the range of 20 ° C to 150 ° C.
  • (11) The polyvalent carboxylic resin and trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic anhydride, hydrogenated pyromellitic anhydride Product, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride, one or more compounds selected from trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, pyromellitic acid , Hydrogenated pyromellitic acid, pyromellitic acid anhydride, hydrogenated pyromellitic acid anhydride, hexahydr
  • thermosetting resin composition according to any one of - (10).
  • (12) The thermosetting resin composition according to any one of (7) to (11), which contains a thermosetting resin.
  • Tg glass transition temperature
  • (12) A cured product obtained by thermosetting the thermosetting resin composition according to any one of (1) to (6), (12) and (13).
  • (15) An optical semiconductor device sealed with the cured product according to (14).
  • (16) An optical semiconductor device using the cured product according to (14) as a reflector.
  • thermosetting resin composition that suppresses the volatilization amount at the time of curing, has excellent moldability, and has little coloration when made into a cured product, and the thermosetting resin composition as a sealing material or a reflective material
  • the optical semiconductor device used as can be provided.
  • a polyvalent carboxylic acid resin having a sufficient glass transition temperature of the cured product, excellent moldability, and less colored when made into a cured product, and a thermosetting resin composition using the same
  • an optical semiconductor device using the thermosetting resin composition as a sealing material or a reflecting material.
  • cured material and the reactivity of resin can be provided.
  • thermosetting resin composition obtained by this invention is the schematic at the time of using the thermosetting resin composition obtained by this invention as a reflector.
  • thermosetting resin composition of 1st invention contains the polyhydric alcohol (A) which has 3 or more of hydroxyl groups, It is characterized by the above-mentioned.
  • A polyhydric alcohol having three or more known hydroxyl groups
  • Specific examples include trimethylolpropane, pentaerythritol, glycerol, EO-modified glycerol, PO-modified glycerol, dipentaerythritol, polyhydric alcohol represented by the following formula (5), and the like.
  • numerator and especially the alcohol represented by following formula (5) is preferable from the amount of volatilization at the time of hardening being suppressed, and being excellent in handling with solid.
  • the polyhydric alcohol (A) having three or more hydroxyl groups even when there is no curing accelerator, the amount of volatilization at the time of curing can be suppressed, and the addition amount of the curing accelerator can be reduced. Since it can implement
  • R 1 represents an alkylene group having 1 to 6 carbon atoms.
  • R 1 examples include methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, isopropylene group, isobutylene group, isopentylene group, neopentylene group, isohexylene group, cyclohexylene group and the like.
  • a methylene group, an ethylene group, and a propylene group are preferable, and an ethylene group is particularly preferable.
  • a plurality of R 1 may be the same or different from each other.
  • the compounds represented by the formula (5) are preferable from the viewpoint of transparency of the cured product and gas barrier properties.
  • the polyhydric alcohol (A) to be used may be liquid or solid.
  • the softening point is preferably 180 ° C. or lower, more preferably 150 ° C. or lower, and particularly preferably 120 ° C. or lower. This is because if the softening point is higher than 180 ° C., the curing reaction proceeds rapidly during kneading, and a sufficiently uniform composition cannot be obtained.
  • the polyhydric alcohol (A) used has a functional group equivalent of 250 g / eq. Or less, preferably 240 g / eq. The following is more preferable. By being in such a range, it becomes possible to obtain a cured product having excellent heat resistance.
  • the ratio of the polyhydric alcohol compound (A) having 3 or more hydroxyl groups to the acid anhydride in the thermosetting resin composition of the first invention is from 0.1 to 0.1 mol of acid anhydride per 1 mol of hydroxyl group of the polyhydric alcohol. It is preferably 100 moles. If the acid anhydride is less than 0.1 mol, the glass transition temperature will not be sufficiently high, and if the acid anhydride is more than 100 mol, the volatile matter will increase and a sufficient effect may not be obtained. More preferably, the acid anhydride is 0.5 to 10 moles per mole of the hydroxyl group of the polyhydric alcohol.
  • the thermosetting resin composition of the first invention contains an acid anhydride compound (B).
  • the acid anhydride compound (B) used has a functional group equivalent of 250 g / eq. Or less, preferably 240 g / eq. The following is more preferable. By being in such a range, it becomes possible to obtain a cured product having excellent heat resistance.
  • Suitable acid anhydride compounds (B) include trimellitic anhydride, cyclohexanetricarboxylic anhydride, pyromellitic anhydride, hydrogenated pyromellitic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride.
  • trimellitic anhydride cyclohexanetricarboxylic anhydride
  • pyromellitic anhydride hydrogenated pyromellitic anhydride
  • hexahydrophthalic anhydride hexahydrophthalic anhydride
  • methylhexahydrophthalic anhydride methylhexahydrophthalic anhydride
  • a cured product having a high crosslinking density is obtained.
  • a cured product having a high glass transition temperature can be obtained.
  • trimellitic anhydride cyclohexanetricarboxylic anhydride, pyromellitic anhydride, hydrogenated pyromellitic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride
  • cyclohexanetricarboxylic acid is difficult to color. Acid anhydride, hydrogenated pyromellitic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride are preferred, and cyclohexanetricarboxylic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride are more preferred.
  • cyclohexanetricarboxylic acid anhydride examples include cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride and cyclohexane-1,2,3-tricarboxylic acid-1,2-anhydride.
  • these acid anhydrides can be used in combination, but cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride is preferred.
  • R 2 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a carboxyl group.
  • One or more acid anhydrides selected from trimellitic anhydride, cyclohexanetricarboxylic acid anhydride, pyromellitic acid anhydride, hydrogenated pyromellitic acid anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride Is preferably 0.1 to 10 mol of acid anhydride with respect to 1 mol of hydroxyl group of the polyhydric alcohol compound (A) having 3 or more hydroxyl groups. If the acid anhydride is less than 0.1 mol, the glass transition temperature will not be sufficiently high, and if the acid anhydride is more than 10 mol, the volatile matter will increase and there is a possibility that a sufficient effect will not be obtained. More preferably, the acid anhydride is 0.5 to 5 moles per mole of the hydroxyl group of the polyhydric alcohol.
  • thermosetting resin composition in the first invention contains a thermosetting resin (C).
  • thermosetting resin (C) examples include an epoxy resin, a phenol resin, a urea resin, a melamine resin, and an unsaturated polyester resin.
  • the epoxy resin can be used without any particular limitation as long as it is usually blended as a conventional thermosetting resin composition or epoxy resin composition.
  • epoxidized phenol and aldehyde novolac resins such as phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, diglycidyl ether such as bisphenol A, bisphenol F, bisphenol S, alkyl-substituted bisphenol, Glycidylamine type epoxy resin obtained by reaction of polyamine such as diaminodiphenylmethane and isocyanuric acid and epichlorohydrin, alicyclic epoxy resin obtained by oxidizing olefin bond with peracid such as peracetic acid, diglycidyl isocyanurate, triglycidyl isocyanate Examples thereof include triazine derivative epoxy resins such as nurate and silsesquioxane compounds having an epoxy group, and these may be used alone or in combination of two or more.
  • epoxy resins since those having high heat resistance and light resistance are preferred, specifically, from the viewpoint of melt viscosity, coloring of the resulting cured product and glass transition temperature, etc., it does not contain an aromatic ring, Preference is given to triazine derivative epoxy resins such as glycidyl ether type epoxy resins, alicyclic epoxy resins, diglycidyl isocyanurates, triglycidyl isocyanurates, and silsesquioxane compounds having an epoxy group.
  • triazine derivative epoxy resins such as glycidyl ether type epoxy resins, alicyclic epoxy resins, diglycidyl isocyanurates, triglycidyl isocyanurates, and silsesquioxane compounds having an epoxy group.
  • alicyclic epoxy resins include 1,2: 8,9-diepoxy limonene, 4-vinylcyclohexene monooxide, vinylcyclohexene dioxide, methylated vinylcyclohexene dioxide, (3,4-epoxycyclohexyl) methyl-3, 4-epoxycyclohexylcarboxylate, bis- (3,4-epoxycyclohexyl) adipate, bis- (3,4-epoxycyclohexylmethylene) adipate, bis- (2,3-epoxycyclopentyl) ether, (2,3-epoxy And compounds having at least one 4- to 7-membered cyclic aliphatic group in the molecule and at least one epoxy group in the molecule, such as -6-methylcyclohexylmethyl) adipate and dicyclopentadiene dioxide.
  • an alicyclic epoxy resin having two or more epoxy groups in the molecule is preferable.
  • An alicyclic epoxy resin having two or more epoxy groups in the molecule is available as a commercial product, for example, Celoxide 8000, Celoxide 2021P, Celoxide 2081, EHPE 3150 (all manufactured by Daicel Corporation) and the like. It is done.
  • triazine derivative epoxy resin examples include 1,3,5-tris (oxiranylmethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione and the like.
  • These triazine derivative epoxy resins are commercially available, and examples thereof include TEPIC-S, TEPIC-L, TEPIC-VL, TEPIC-PAS B22, and TEPIC-UC (all manufactured by Nissan Chemical Co., Ltd.).
  • silsesquioxane compound having an epoxy group that can be used a silsesquioxane compound having two or more epoxy groups in the molecule is preferable.
  • the silsesquioxane compound having two or more epoxy groups in the molecule the skeleton is not particularly limited. For example, a glycidyl group and a siloxane structure having a chain structure, a cyclic structure, a ladder structure, or a mixed structure of at least two of them can be used. And / or an epoxy resin having an epoxycyclohexane structure.
  • silsesquioxane compound having two or more epoxy groups in the molecule include, for example, a cage silsesquioxane having an epoxy ring described in Japanese Patent Laid-Open No. 2005-263869, and Japanese Patent Laid-Open No. 2008-2008.
  • An alicyclic epoxy group-containing silicone resin described in Japanese Patent No. 248169, and an organopolysilsesquioxane resin having at least two epoxy functional groups in one molecule described in Japanese Patent Application Laid-Open No. 2008-19422 are used. can do.
  • silsesquioxane compounds having two or more epoxy groups in the molecule are commercially available, and are cyclic siloxanes having two or more epoxy groups in the molecule, trade name “X-40-2670”. (Shin-Etsu Chemical Co., Ltd.).
  • the compounding ratio of the epoxy resin and the acid anhydride compound (B) is such that the carboxyl group generated by the reaction of the acid anhydride group with the hydroxyl group is 0.5 to 1.5 equivalents relative to 1 equivalent of the epoxy group in the epoxy resin. It is preferable to carry out the reaction so as to achieve a ratio, and particularly preferable to carry out the reaction so that the amount is 0.5 to 1.2 equivalent.
  • the carboxyl group is less than 0.5 equivalent relative to 1 equivalent of the epoxy group, or when the carboxyl group exceeds 1.5 equivalent, curing may be incomplete and good cured properties may not be obtained. In addition, there is a problem that it becomes easy to color.
  • thermosetting resin composition can contain various components as other components.
  • the carboxylic acid that can be contained as a component of the thermosetting resin composition of the first invention can be used without particular limitation as long as it is a known carboxylic acid. Specifically, in the presence of trimellitic acid, cyclohexanetricarboxylic acid, pyromellitic acid, and hydrogenated pyromellitic acid, a cured product having a high crosslinking density can be obtained, so that a cured product having a high glass transition temperature can be obtained.
  • trimellitic acid cyclohexanetricarboxylic acid, pyromellitic acid, and hydrogenated pyromellitic acid
  • cyclohexanetricarboxylic acid and hydrogenated pyromellitic acid are preferable from the viewpoint of difficulty in coloring.
  • the total of one or more compounds selected from trimellitic acid, cyclohexanetricarboxylic acid, pyromellitic acid and hydrogenated pyromellitic acid is thermosetting.
  • the proportion of the conductive resin composition is 1% to 90% by weight. If it is lower than 1% by weight, the glass transition temperature is not sufficiently high, and if it is higher than 90% by weight, the melting point becomes high and handling becomes difficult. More preferably, it is 10 to 60% by weight, and still more preferably 20 to 50% by weight.
  • thermosetting resin composition of the first invention the polyhydric alcohol compound (A) having three or more hydroxyl groups as the weight ratio: (trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, and cyclohexanetricarboxylic acid
  • One or more compounds selected from anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic acid anhydride, hydrogenated pyromellitic acid anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride ) Is preferably 99: 1 to 1:99, more preferably 90:10 to 10:90, and particularly preferably 50:50 to 10:90.
  • the polyhydric alcohol compound (A) having three or more hydroxyl groups trimellitic anhydride, cyclohexanetricarboxylic anhydride, pyromellitic anhydride, hydrogenated pyromellitic anhydride, hexahydrophthalic anhydride, and methyl
  • the total proportion of one or more compounds selected from hexahydrophthalic anhydride is preferably 1% by weight to 90% by weight in the thermosetting resin composition.
  • thermosetting resin composition of the first invention is represented by the following formula (10).
  • n is 2 or more and less than 12.
  • a specific structural formula is a compound having the structure of formula (10) and having an ester structure (preferably two ester structures) in the molecule. Moreover, it is a compound which has a some carboxyl group at the terminal.
  • the oligoester of the terminal carboxylic acid represented by the formula (10) is a compound obtained by an esterification reaction of a bi- to hexafunctional polyhydric alcohol having 6 or more carbon atoms and a saturated aliphatic cyclic acid anhydride. preferable.
  • the linking group R is preferably a cycloalkane skeleton having 4 to 10 carbon atoms or a norbornane skeleton, and the cycloalkane skeleton is substituted or
  • An unsubstituted cyclohexane structure, particularly a methylcyclohexane structure having a methyl group is preferred from the optical properties of the cured product.
  • the norbornane skeleton is preferably a norbornane or methylnorbornane structure.
  • substituent that can be applied to the substituted one include an alkyl group having 1 to 3 carbon atoms and a carboxyl group.
  • the linking group P is a residue of a polyhydric alcohol having 2 to 10 carbon atoms (residue obtained by removing a hydroxyl group from the polyhydric alcohol used in the reaction), and is preferably a branched cross-linking group or a cycloalkyl group.
  • P is preferably a divalent crosslinking group defined by the following (a) or (b).
  • the substituent R 3 is a group other than a hydrogen atom in the formula (2A) described later. Is more preferable.
  • the softening point of the said oligoester is 50 degreeC or more normally, 60 degreeC or more is preferable and 80 degreeC or more is more preferable.
  • it is 500 degrees C or less, It is preferable that it is 300 degrees C or less, and it is more preferable that it is 200 degrees C or less.
  • the particularly preferred oligoester of a terminal carboxylic acid in the first invention can be obtained by addition reaction of a bi- to hexafunctional polyhydric alcohol having 6 or more carbon atoms and a saturated aliphatic cyclic acid anhydride.
  • the oligoester of the terminal carboxylic acid in the first invention may be a composition containing two kinds of oligoesters of the terminal carboxylic acid.
  • an oligoester composition of a terminal carboxylic acid containing at least two oligoesters of a terminal carboxylic acid a method of mixing at least two kinds of oligoesters of a single terminal carboxylic acid obtained by the above method, or When synthesizing the oligoester of the above terminal carboxylic acid, the saturated aliphatic cyclic acid anhydride is selected from the following saturated aliphatic cyclic acid anhydrides, or a mixture of at least two kinds is used. There is a method of performing an addition reaction using two kinds of alcohols.
  • the saturated aliphatic cyclic acid anhydride used for the synthesis of the oligoester of a terminal carboxylic acid has a cyclohexane structure, has a methyl group substitution or a carboxyl group substitution on the cyclohexane ring, or is unsubstituted, and the cyclohexane ring And a compound having one or more (preferably one) acid anhydride groups bonded to.
  • hexahydrophthalic anhydride methylhexahydrophthalic anhydride, and cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride, trimellitic anhydride, cyclohexanetricarboxylic anhydride, pyromellitic anhydride And at least one acid anhydride selected from the group consisting of hydrogenated pyromellitic acid anhydride.
  • the bi- to hexafunctional polyhydric alcohol having 6 or more carbon atoms used for the synthesis of the oligoester of the terminal carboxylic acid in the first invention is specifically a hydroxyl group at the end of the bridging group P in the formula (10).
  • the crosslinkable group represented by P is preferably a divalent crosslinkable group defined by the above (a) or (b), and will be specifically described below.
  • the divalent crosslinking group defined in (a) is a divalent chain alkyl chain obtained by removing a hydroxyl group from a divalent alcohol (diol) having a branched structure having 6 to 20 carbon atoms.
  • the side chain may be branched from any carbon atom constituting the main chain, and includes, for example, a case where the side chain is branched from a carbon atom to which an alcoholic hydroxyl group is bonded (terminal carbon atom of the main chain).
  • Any crosslinking group having such a structure may be used, and a specific example of such a crosslinking group is shown in the following formula (a1).
  • the alkylene bridging group defined in (a) is not particularly limited as long as it has a structure having an alkyl branched chain (side chain) with respect to the main chain alkylene group, but the main chain has 3 or more main chain carbon atoms.
  • those having at least one alkyl side chain are preferred, and those having two or more alkyl side chains are particularly preferred.
  • More preferable examples include a bridging group having a linear main chain having 3 to 12 carbon atoms and 2 to 4 side chains, and at least one of the side chains having 2 to 10 carbon atoms. Can do.
  • a crosslinking group in which at least two of the side chains have 2 to 10 carbon atoms is more preferable.
  • the 2 to 4 side chains are preferably branched from carbon atoms having different main chains.
  • the compound include a compound in which a hydroxyl group is bonded to the position of * in the crosslinking group described in the formula (a1).
  • polyhydric alcohols used as the raw material polyhydric alcohols having at least two side chains and at least two of which are side chains having 2 to 4 carbon atoms are preferred.
  • particularly preferred polyhydric alcohols are 2,4-diethyl-1,5-pentanediol, 2-ethyl-2-butyl-1,3-propanediol, 2-ethyl-1,3- Examples include hexanediol, and particularly 2,4-diethyl-1,5-pentanediol.
  • Examples of the crosslinking group defined in (b) include a divalent group represented by the following formula (b1).
  • the crosslinked polycyclic diol residue is a diol residue having a tricyclodecane structure or a pentacyclopentadecane structure as the main skeleton, and is represented by the following formula (b2). Is done.
  • a plurality of R 2 each independently represents a hydrogen atom or a methyl group. Of these, a bridging group in which all R 2 are hydrogen atoms is preferred. Specific examples include tricyclodecane dimethanol, methyl tricyclodecane dimethanol, and pentacyclopentadecane dimethanol.
  • the reaction between the acid anhydride and the polyhydric alcohol is generally an addition reaction using an acid or a base as a catalyst, but in the first invention, a reaction without a catalyst is particularly preferable.
  • a catalyst examples of the catalyst that can be used include hydrochloric acid, sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, nitric acid, trifluoroacetic acid, trichloroacetic acid and other acidic compounds, sodium hydroxide, hydroxide Metal hydroxides such as potassium, calcium hydroxide and magnesium hydroxide, amine compounds such as triethylamine, tripropylamine and tributylamine, pyridine, dimethylaminopyridine, 1,8-diazabicyclo [5.4.0] undec-7 -Heterocyclic compounds such as ene, imidazole, triazole, tetrazole, tetramethylammonium hydrox
  • the amount of the catalyst used is not particularly limited, but it is usually preferable to use 0.001 to 5 parts by weight, if necessary, with respect to 100 parts by weight of the total weight of the raw materials.
  • a reaction without a solvent is preferable, but an organic solvent may be used.
  • the amount of the organic solvent used is 0.005 to 1 part by weight, preferably 0.005 to 0.7 part, based on 1 part of the total amount of the acid anhydride and the polyhydric alcohol as reaction substrates. More preferably, it is 0.005 to 0.5 part (that is, 50% by weight or less).
  • the amount of the organic solvent used exceeds 1 part by weight with respect to 1 part by weight of the reaction substrate, it is not preferable because the progress of the reaction becomes extremely slow.
  • organic solvents that can be used include alkanes such as hexane, cyclohexane and heptane, aromatic hydrocarbon compounds such as toluene and xylene, ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and anone, diethyl ether , Ethers such as tetrahydrofuran and dioxane, and ester compounds such as ethyl acetate, butyl acetate and methyl formate can be used.
  • alkanes such as hexane, cyclohexane and heptane
  • aromatic hydrocarbon compounds such as toluene and xylene
  • ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and anone
  • diethyl ether Ethers such as tetrahydrofuran and dioxane
  • the reaction temperature is preferably 30 to 200 ° C, more preferably 40 to 200 ° C, and particularly preferably 40 to 150 ° C.
  • the reaction at 100 ° C. or lower is preferred, and the reaction at 30 to 100 ° C. or 40 to 100 ° C. is particularly preferred because of the volatilization of the acid anhydride.
  • the reaction ratio between the acid anhydride and the polyhydric alcohol is theoretically preferably equimolar, but can be changed as necessary.
  • the specific charging ratio of the two at the time of reaction is such that the polyhydric alcohol is equivalent to 0.001 to 2 equivalents in terms of the hydroxyl group equivalent to 1 equivalent of the acid anhydride group in terms of the functional group equivalent. It is preferable to charge at a ratio of preferably 0.01 to 1.5 equivalents, more preferably 0.1 to 1.2 equivalents.
  • the obtained terminal carboxylic acid oligoester is preferably solid, and in order to obtain a solid resinous terminal carboxylic acid oligoester, ideally an equimolar equivalent or more of polyhydric alcohol
  • fluidity is important because of the addition of filler, and in order to secure this fluidity, some balance is lost in the range where the solids are maintained (softening point of 50 ° C or higher). It doesn't matter.
  • the equivalent ratio of the alcoholic hydroxyl group to the acid anhydride equivalent is preferably 0.85 to 1.20 molar equivalent, particularly preferably 0.90 to 1.1.0 molar equivalent.
  • reaction time depends on the reaction temperature, the amount of catalyst, etc., from the viewpoint of industrial production, a long reaction time is not preferable because it consumes a great deal of energy.
  • An excessively short reaction time means that the reaction is abrupt and is not preferable from the viewpoint of safety.
  • a preferred range is 1 to 48 hours, preferably 1 to 36 hours, more preferably 1 to 24 hours, and still more preferably about 2 to 10 hours.
  • the catalyst After completion of the reaction, when a catalyst is used, the catalyst is removed by neutralization, washing with water, adsorption, etc., and the solvent is distilled off to obtain the desired terminal carboxylic acid oligoester.
  • the desired oligoester of the terminal carboxylic acid can be obtained by distilling off the solvent as necessary.
  • the oligoester of the terminal carboxylic acid made into the objective is obtained by removing a solvent. Further, in the case of no solvent and no catalyst, the product can be obtained by taking it out as it is.
  • the most preferable production method is a method in which the acid anhydride and the polyhydric alcohol are reacted at 40 to 150 ° C. under non-catalytic conditions to remove the solvent and then taken out.
  • the thus obtained terminal carboxylic acid oligoester or the composition containing the terminal carboxylic acid oligoester usually shows a colorless to pale yellow solid resinous form (which may crystallize in some cases).
  • the softening point of the terminal carboxylic acid oligoester is preferably 50 to 190 ° C, more preferably 55 to 150 ° C, and particularly preferably 60 to 120 ° C.
  • the crosslinking group is an alkylene group having a side chain defined by (a)
  • it shows a colorless to pale yellow solid resinous form.
  • the oligoester of the terminal carboxylic acid is in the form of a solid resin. .
  • the bridging group is a bridging group defined by (b)
  • the aliphatic hydrocarbon group is a cycloalkane skeleton or a norbornane skeleton having 4 to 10 carbon atoms
  • all of the alicyclic substituents are at the end of the hydrogen atom.
  • Carboxylic acid oligoesters show coloration upon curing and are not suitable for particularly demanding optical applications.
  • the aliphatic hydrocarbon group is a cycloalkane skeleton or a norbornane skeleton having 4 to 10 carbon atoms
  • the compound having a methyl group or a carboxyl group as the substituent is less colored and the optical properties are improved.
  • the substituent is a methyl group or a carboxyl group. This is preferable because optical characteristics are improved.
  • the terminal carboxylic acid oligoester composition of the first invention is a cycloalkane skeleton or norbornane skeleton having 4 to 10 carbon atoms
  • the substituent is preferably a formula having a methyl group or a carboxyl group, or both ( A composition containing an oligoester of terminal carboxylic acid 9) is preferred.
  • an oligoester composition of a terminal carboxylic acid containing two or more kinds of oligoesters of the terminal carboxylic acid at least the terminal carboxylic acid oligoester of the formula (1) in which the substituent is not a hydrogen atom (the substituent is the alkyl group) .
  • an oligoester of a terminal carboxylic acid having a methyl group or a carboxyl group is preferably 50 mol% or more based on the total amount of oligoesters of the terminal carboxylic acid.
  • a terminal carboxylic acid oligoester composition containing 70 mol% or more, most preferably 90 mol% or more of the terminal carboxylic acid oligoester of the formula (9) in which the substituent is not a hydrogen atom is preferred.
  • the remainder is an oligoester of a terminal carboxylic acid of the following formula (2A) in which R 3 is a hydrogen atom.
  • a terminal carboxylic acid oligoester represented by the following formula (2A) is used as a suitable terminal carboxylic acid oligoester in the first invention.
  • the terminal carboxylic acid oligoester is preferably an oligoester of a terminal carboxylic acid having a number average molecular weight Mn of 300 or more.
  • curing agents that can be used in combination include, for example, amine compounds, acid anhydride compounds having an unsaturated ring structure, acid anhydrides having an organosiloxane skeleton, amide compounds, phenol compounds, and carboxylic acid compounds.
  • Etc Specific examples of the curing agent that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from ethylenediamine and phthalic anhydride, pyromellitic anhydride.
  • Acid maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2 , 1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol Diol, terpene diphenol, 4,4'-biphenol, 2,2'-biphenol, 3,3 ', 5,5'-tetramethyl- [1,1'-biphenyl] -4,4'-diol, hydroquinone , Resorcinol, naphthalenediol, tris- (4-hydroxyphenyl
  • Curing accelerators include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl- 2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 2,4-diamino-6 (2′-methylimidazole (1 ′)) ) Ethyl-s-triazine, 2,4-diamino-6 (2′-undecylimidazole (1 ′)) ethyl-s-triazine, 2,4-diamino-6 (2′-ethyl, 4-methylimidazole (
  • curing accelerators which of these curing accelerators is used is appropriately selected depending on characteristics required for the obtained transparent resin composition, such as heat resistance, curing speed, and working conditions.
  • a phosphonium compound preferably quaternary phosphonium
  • the curing accelerator is usually used in an amount of 0.001 to 15 parts by weight, preferably 0.01 to 5 parts by weight, based on 100 parts by weight of the epoxy resin.
  • additives other than those mentioned above commonly used additives for epoxy resins such as pigments, dyes, fluorescent brighteners, reinforcing materials, fillers, white pigments, nucleating agents, interfaces
  • An activator, a plasticizer, a viscosity modifier, a fluidity modifier, a flame retardant, an antioxidant, an ultraviolet absorber, and a light stabilizer may be added.
  • the filler examples include, but are not limited to, crystalline silica, fused silica, antimony oxide, titanium oxide, magnesium oxide, zirconium oxide, aluminum hydroxide, magnesium hydroxide, and alumina. These may be used alone or in combination of two or more.
  • the blending amount of the inorganic filler is preferably 1 to 1000 parts by weight, and more preferably 1 to 800 parts by weight with respect to 100 parts by weight of the total amount of the curable resin composition.
  • the white pigment described above is not particularly limited, and for example, alumina, magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, zinc oxide, basic zinc carbonate, kaolin, calcium carbonate, and the like can be used.
  • the white pigment may be a hollow particle.
  • the average particle size of the white pigment is preferably in the range of 0.01 to 50 ⁇ m. If it is less than 0.01 ⁇ m, the particles tend to aggregate and the dispersibility tends to deteriorate, and if it exceeds 50 ⁇ m, the reflective properties of the cured product tend not to be sufficiently obtained.
  • the average particle diameter can be measured using, for example, a laser diffraction / scattering particle size distribution meter.
  • titanium oxide particularly titanium dioxide powder. This is because whiteness, light reflectivity, and hiding power are high, dispersibility stability is excellent, and availability is easy.
  • the crystal form of titanium oxide is not particularly limited, and may be a rutile type, anatase type, or a mixture of both, but the anatase type has a photocatalytic function and deteriorates the resin. In the first invention, the rutile type is preferable.
  • the content of the white pigment is in the range of 10 to 95% by weight, more preferably 50 to 95% with respect to the entire resin composition. If the total content is less than 10% by weight, the light reflection characteristics of the cured product tend not to be obtained sufficiently, and if it exceeds 95% by weight, the moldability of the resin composition tends to be poor, and the substrate tends to be difficult to produce. It is in.
  • the ICI cone plate viscosity is 0.01 to 10 Pa ⁇ s in the range of 100 to 200 ° C. If it is less than 0.01 Pa ⁇ s, burrs may be easily generated. On the other hand, if it is greater than 10 Pa ⁇ s, the productivity may decrease.
  • the ICI viscosity of the thermosetting resin composition at 150 ° C. is preferably 0.01 Pa ⁇ s to 10 Pa ⁇ s, and more preferably 0.05 Pa ⁇ s to 5 Pa ⁇ s.
  • thermosetting resin composition of the first invention when the ICI cone plate viscosity is 0.01 to 10 Pa ⁇ s in the range of 100 to 200 ° C., and a high viscosity liquid or solid at room temperature, the conventional acid In the case of an anhydride curing agent, kneading, which was impossible without pretreatment such as prepolymerization, can be performed without pretreatment, which is preferable. Moreover, since the thermosetting resin composition after kneading is solid at room temperature, it is also characterized in that it can be easily molded as a tablet.
  • adjusting to the said range means that when a filler such as an inorganic filler is blended, the composition becomes solid at room temperature (25 ° C.), so that molding becomes easy, and since there are few volatile components, there are problems such as voids. This is preferable because it can be effectively prevented.
  • thermosetting resin composition of the first invention since defects such as voids can be effectively prevented as compared with the case where a normal acid anhydride is used, molding becomes easy.
  • thermosetting resin composition of the first invention desirably has a softening point in the range of 20 ° C to 150 ° C. More specifically, it is preferably in the range of 30 ° C. to 130 ° C., more preferably in the range of 40 ° C. to 120 ° C.
  • various components can be easily stirred and mixed with a mixer, etc., and further kneaded or melt kneaded with a mixing roll, extruder, kneader, roll, extruder, etc., cooled, pulverized It becomes possible to do.
  • the glass transition temperature of the cured product is preferably higher than the molding temperature.
  • the glass transition temperature of the cured product is lower than the molding temperature, the cured product in the mold is in a low-elasticity rubber state, so the rubber-like cured product will be taken out of the mold, and when the ejector is pushed in There is a risk of malfunction due to deformation.
  • the glass transition temperature is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, and further preferably 50 ° C. or higher.
  • 150 degreeC or less is preferable and, as for the glass transition temperature of hardened
  • thermosetting resin composition of the first invention can be obtained by uniformly dispersing and mixing the various components described above.
  • the method is not particularly limited. Can be mentioned.
  • the conditions for kneading or melt-kneading may be determined depending on the types and amounts of the components, and are not particularly limited. However, kneading at 20 to 200 ° C. for 5 to 40 minutes is more preferable.
  • the kneading temperature is less than 20 ° C., the dispersibility of each component is lowered and it is difficult to sufficiently knead, and when the temperature is higher than 200 ° C., the crosslinking reaction of the resin composition proceeds rapidly.
  • the resin composition may be cured.
  • thermosetting resin composition of the first invention is preferably capable of being pressed (tablet) at room temperature of 0 to 30 ° C. before heat molding.
  • the pressure molding may be performed under conditions of 0.01 to 10 MPa and 1 to 5 seconds.
  • the mold used at the time of pressing (tablet) molding is not particularly limited, and for example, it is composed of a vertical mold (upper mold) and a mortar mold (lower mold) made of a ceramic material, a fluorine resin material, or the like. It is preferable to use what is used.
  • thermosetting resin composition of the first invention is useful in applications such as optical semiconductor sealing materials and optical semiconductor reflectors that require high glass transition temperatures and high transmittance.
  • the production method is not particularly limited.
  • the thermosetting resin composition of the first invention is poured into a mold and, for example, cured for 60 to 800 seconds under conditions of a mold temperature of 150 to 190 ° C. and a molding pressure of 2 to 20 MPa, and then taken out from the mold. And heat curing at an after-cure temperature of 150 ° C. to 180 ° C. for 1 to 3 hours.
  • a light reflection preventing member having a cylindrical hollow portion is disposed on a substrate, An optical semiconductor element is disposed on the substrate in the internal space of the cylindrical hollow portion. And the one end part and board
  • the reflective material suitably applied to the resin composition of the first invention will be described in more detail.
  • the reflective material obtained by molding discoloration due to thermal deterioration is suppressed.
  • the reflective material can be used as an LED reflector for an LED lighting apparatus such as an LED bulb.
  • the reflective material obtained from the thermosetting resin composition of the first invention can constitute an inexpensive LED reflector having a long lifetime.
  • FIG. 1 shows an example of an LED lighting device using a reflective material obtained by molding a thermosetting resin composition.
  • This reflector is the LED reflector 1.
  • the reflective material is formed in a frame shape, and has a recess 2 and a hole 3 at the center.
  • the recess 2 is provided as an inclined surface.
  • the wall surface of the recess 2 serves as a reflecting surface that reflects light.
  • the hole 3 is provided at the bottom of the recess 2 so as to penetrate the LED reflector 1.
  • a lead frame 4 on which an LED 5 as a light emitting element is mounted is fitted in the hole 3.
  • the lead frame 4 may be provided with wiring for supplying electricity to the LED 5.
  • the light emitting surface side (upper part in the figure) of the recess 2 is covered with a transparent cover 6.
  • the cover 6 is joined to the LED reflector 1 at the opening edge of the recess 2.
  • the LED reflector 1 functions as a reflector for efficiently reflecting the light emitted from the LED 5.
  • the shape of the LED reflector 1 is not limited to the shape shown in FIG. 1, and can be appropriately designed in consideration of the light quantity, color, directivity characteristics, and the like of the mounted LED 5. With the thermosetting resin composition for light reflectors described above, since the moldability is good, it is possible to easily obtain a molded body having a desired shape.
  • thermosetting resin composition of the second invention is obtained by gel permeation chromatography (hereinafter, referred to as polyvalent carboxylic acid (A1) having an isocyanuric ring represented by the following formula (1) from the viewpoint of increasing the glass transition temperature. It is characterized by containing a carboxylic acid resin containing 70% by area or more as measured by GPC). Here, it is preferable to contain 75 area% or more, and it is more preferable that it is 80 area% or more. Although an upper limit is not specifically limited, For example, what is necessary is just 99.9 area% or less.
  • R 1 represents an alkylene group having 1 to 6 carbon atoms
  • R 2 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a carboxyl group.
  • R 1 examples include methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, isopropylene group, isobutylene group, isopentylene group, neopentylene group, isohexylene group, cyclohexylene group and the like.
  • a methylene group, an ethylene group, and a propylene group are preferable, and an ethylene group is particularly preferable.
  • alkyl group having 1 to 6 carbon atoms in R 2 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, isopentyl group, neopentyl group, A cyclopentyl group, a hexyl group, an isohexyl group, a cyclohexyl group and the like can be mentioned, and a methyl group is preferable from the viewpoint of heat-resistant transparency of the obtained cured product.
  • thermosetting resin composition containing the polyvalent carboxylic acid (A1) has a viewpoint that the viscosity at room temperature (25 ° C.) does not increase excessively, A methyl group is preferable from the viewpoint of transparency, and a carboxyl group is particularly preferable from the viewpoint of gas barrier properties, high glass transition temperature (Tg), and hardness of the resulting cured product.
  • a plurality of R 1 and R 2 may be the same or different from each other.
  • thermosetting resin composition of the second invention is represented by the following formula (1a) from the viewpoint of enhancing the reliability and cured physical properties of a member such as a sealing material or a light reflecting material using the thermosetting resin composition.
  • the ratio of the total amount of the polycarboxylic acid (A2) and / or the carboxylic acid (A3) represented by the following formula (1b) in the polyvalent carboxylic acid resin is 0.5 to 10 area% in the GPC measurement. It contains a carboxylic acid resin.
  • the content is preferably 0.5 to 5 area%, more preferably 1 to 3 area%.
  • R 1 represents an alkylene group having 1 to 6 carbon atoms
  • R 2 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a carboxyl group.
  • R 1 examples include methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, isopropylene group, isobutylene group, isopentylene group, neopentylene group, isohexylene group, cyclohexylene group and the like.
  • a methylene group, an ethylene group, and a propylene group are preferable, and an ethylene group is particularly preferable.
  • alkyl group having 1 to 6 carbon atoms in R 2 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, isopentyl group, neopentyl group, A cyclopentyl group, a hexyl group, an isohexyl group, a cyclohexyl group and the like can be mentioned, and a methyl group is preferable from the viewpoint of heat-resistant transparency of the obtained cured product.
  • a methyl group and a carboxyl group are preferable, and a viewpoint that the viscosity at room temperature (25 ° C.) of the thermosetting resin composition containing a polyvalent carboxylic acid resin does not increase too much and the transparency of the resulting cured product are obtained.
  • a methyl group is preferable, and a carboxyl group is particularly preferable from the viewpoint of gas barrier properties, high glass transition temperature (Tg), and hardness of the obtained cured product.
  • a plurality of R 1 and R 2 may be the same or different from each other.
  • the proportion of the polyvalent carboxylic acid (A2) represented by the formula (1a) in the polyvalent carboxylic acid resin is 0 to 10% by area in GPC measurement. It is preferable to contain a carboxylic acid resin.
  • the content is more preferably 0 to 5% by area, and further preferably 0 to 3% by area.
  • R 1 represents an alkylene group having 1 to 6 carbon atoms
  • R 2 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a carboxyl group.
  • R 1 examples include methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, isopropylene group, isobutylene group, isopentylene group, neopentylene group, isohexylene group, cyclohexylene group and the like.
  • a methylene group, an ethylene group, and a propylene group are preferable, and an ethylene group is particularly preferable.
  • alkyl group having 1 to 6 carbon atoms in R 2 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, isopentyl group, neopentyl group, A cyclopentyl group, a hexyl group, an isohexyl group, a cyclohexyl group and the like can be mentioned, and a methyl group is preferable from the viewpoint of heat-resistant transparency of the obtained cured product.
  • a methyl group and a carboxyl group are preferable, and a viewpoint that the viscosity at room temperature (25 ° C.) of the thermosetting resin composition containing a polyvalent carboxylic acid resin does not increase too much and the transparency of the resulting cured product are obtained.
  • a methyl group is preferable, and a carboxyl group is particularly preferable from the viewpoint of gas barrier properties, high glass transition temperature (Tg), and hardness of the obtained cured product.
  • a plurality of R 1 and R 2 may be the same or different from each other.
  • the ratio of the polyvalent carboxylic acid (A2) represented by the above formula (1b) in the polyvalent carboxylic acid resin is 0.5 to 10 area in GPC measurement.
  • % Carboxylic acid resin is preferably contained.
  • the content is more preferably 0.5 to 5 area%, and further preferably 0.5 to 3 area%.
  • thermosetting resin composition of the second invention has a large total amount of the high molecular weight mixture represented by the polyvalent carboxylic acids (A4) to (A6) represented by the following formulas (1c) to (1e). It is preferable to contain a carboxylic acid resin whose proportion in the polyvalent carboxylic acid resin is 0.5 to 15 area% in the GPC measurement. Here, the content is more preferably 0.5 to 10 area%, and further preferably 1 to 5 area%.
  • R 1 represents an alkylene group having 1 to 6 carbon atoms
  • R 2 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a carboxyl group.
  • R 1 examples include methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, isopropylene group, isobutylene group, isopentylene group, neopentylene group, isohexylene group, cyclohexylene group and the like.
  • a methylene group, an ethylene group, and a propylene group are preferable, and an ethylene group is particularly preferable.
  • alkyl group having 1 to 6 carbon atoms in R 2 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, isopentyl group, neopentyl group, A cyclopentyl group, a hexyl group, an isohexyl group, a cyclohexyl group and the like can be mentioned, and a methyl group is preferable from the viewpoint of heat-resistant transparency of the obtained cured product.
  • a methyl group and a carboxyl group are preferable, and a viewpoint that the viscosity at room temperature (25 ° C.) of the thermosetting resin composition containing a polyvalent carboxylic acid resin does not increase too much and the transparency of the resulting cured product are obtained.
  • a methyl group is preferable, and a carboxyl group is particularly preferable from the viewpoint of gas barrier properties, high glass transition temperature (Tg), and hardness of the obtained cured product.
  • a plurality of R 1 and R 2 may be the same or different from each other.
  • * represents a hydroxyl group, a residue obtained by reacting a hydroxyl group present in the above formulas (1a) to (1b) with a carboxyl group present in the above formulas (1) and (1a) to (1b), or
  • the hydroxyl group present in the formula (6) represents a residue obtained by reacting with the carboxyl group present in the formula (1) and the formulas (1a) to (1b).
  • the high molecular weight substance (A4) is eluted with a shorter retention time than the compound represented by the formula (1) in the GPC retention time.
  • the compound obtained by reacting the compound represented by the formula (1) with the compound represented by the formula (6), wherein the retention time in the measurement of gel permeation chromatography is the formula (1).
  • thermosetting resin composition of the second invention is a carboxylic acid resin in which the proportion of the acid anhydride represented by the following formula (6) in the polyvalent carboxylic acid resin is 5 to 20 area% in the GPC measurement. It is preferable to contain. Here, the content is preferably 5 to 15% by area.
  • R 2 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a carboxyl group, respectively.
  • alkyl group having 1 to 6 carbon atoms in R 2 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, isopentyl group, neopentyl group, A cyclopentyl group, a hexyl group, an isohexyl group, a cyclohexyl group and the like can be mentioned, and a methyl group is preferable from the viewpoint of heat-resistant transparency of the obtained cured product.
  • a methyl group and a carboxyl group are preferable, and a viewpoint that the viscosity at room temperature (25 ° C.) of the thermosetting resin composition containing a polyvalent carboxylic acid resin does not increase too much and the transparency of the resulting cured product are obtained.
  • a methyl group is preferable, and a carboxyl group is particularly preferable from the viewpoint of gas barrier properties, high glass transition temperature (Tg), and hardness of the obtained cured product.
  • the polyvalent carboxylic resin of the second invention is obtained by an addition reaction between a trishydroxyalkyl compound isocyanurate represented by the following formula (5) and a carboxylic acid anhydride compound represented by the following formula (6). be able to.
  • R 1 represents the same meaning as described above.
  • the compounds represented by the formula (5) are preferable from the viewpoint of transparency of the cured product and gas barrier properties.
  • the production of the polyvalent carboxylic acid resin of the second invention can be carried out in a solvent or without a solvent.
  • a solvent any solvent that does not react with the trishydroxyalkyl compound of isocyanuric acid represented by the above formula (5) and the carboxylic acid anhydride compound represented by the formula (6) can be used without particular limitation.
  • solvents that can be used include aprotic polar solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydrofuran and acetonitrile, ketones such as methyl ethyl ketone, cyclopentanone and methyl isobutyl ketone, toluene and xylene.
  • an aromatic hydrocarbon and ketones are preferable.
  • These solvents may be used alone or in combination of two or more.
  • the amount used is 0.1% relative to a total of 100 parts by mass of the trishydroxyalkyl compound isocyanurate represented by the above formula (5) and the carboxylic acid anhydride compound represented by the formula (6). 5 to 300 parts by mass are preferred.
  • the polyvalent carboxylic acid resin of the second invention is often solid at room temperature (25 ° C.), it is preferably synthesized in a solvent from the viewpoint of workability.
  • the polyvalent carboxylic acid resin of the second invention can be produced without a catalyst or with a catalyst.
  • usable catalysts are hydrochloric acid, sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, nitric acid, trifluoroacetic acid, trichloroacetic acid and other acidic compounds, sodium hydroxide, potassium hydroxide, water Metal hydroxides such as calcium oxide and magnesium hydroxide, amine compounds such as triethylamine, tripropylamine and tributylamine, pyridine, dimethylaminopyridine, 1,8-diazabicyclo [5.4.0] undec-7-ene, Heterocyclic compounds such as imidazole, triazole, tetrazole, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide,
  • a catalyst When using a catalyst, it can also be used 1 type or in mixture of 2 or more types.
  • the amount used in the case of using a catalyst is 0. 0 with respect to a total of 100 parts by mass of the trishydroxyalkyl compound isocyanurate represented by the above formula (5) and the carboxylic acid anhydride compound represented by the formula (6). 05 to 10 parts by mass are preferred.
  • As a method for adding the catalyst it is added directly or used in a state dissolved in a soluble solvent or the like. At this time, it is preferable to avoid using an alcoholic solvent such as methanol or ethanol or water because it reacts with an unreacted carboxylic acid anhydride compound represented by the formula (6).
  • thermosetting resin composition in the cured product of the obtained thermosetting resin composition, from the viewpoint of improving transparency and heat-resistant transparency, zinc carboxylate such as zinc octylate can be preferably used as a catalyst, From the viewpoint of reducing the coloration of the resulting polyvalent carboxylic acid resin or thermosetting resin composition, it is preferable to carry out the reaction without a catalyst.
  • calcium stearate in order to obtain a cured product excellent in transparency and sulfidation resistance, calcium stearate, zinc carboxylate (zinc 2-ethylhexanoate, zinc stearate, zinc behenate, zinc myristylate) and zinc phosphate ester ( Zinc compounds such as zinc octyl phosphate and zinc stearyl phosphate are preferably used.
  • the reaction temperature during the production of the polyvalent carboxylic acid resin of the second invention is usually 20 to 160 ° C., preferably 50 to 150 ° C., particularly preferably 60 to 145 ° C., although it depends on the amount of catalyst and the solvent used. .
  • the total reaction time is usually 1 to 20 hours, preferably 3 to 18 hours.
  • the reaction may be performed in two or more stages. For example, the reaction may be performed at 20 to 100 ° C. for 1 to 8 hours and then at 100 to 160 ° C. for 1 to 12 hours.
  • the carboxylic acid anhydride compound represented by the formula (6) is often highly volatile, and when such a compound is used, it is reacted at 20 to 100 ° C. and then reacted at 100 to 160 ° C. By doing so, volatilization can be suppressed. Thereby, not only can the diffusion of harmful substances into the atmosphere be suppressed, but a polyvalent carboxylic acid resin as designed can be obtained.
  • the catalyst When the production is carried out using a catalyst, the catalyst can be removed by quenching and / or washing with water as necessary, but the polycarboxylic acid resin and / or thermosetting resin composition is left as it is. It can also be used as a curing accelerator for epoxy resin compositions containing.
  • Preferred solvents include ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclopentanone, esters such as ethyl acetate, butyl acetate, ethyl lactate and isopropyl butanoate, hydrocarbons such as hexane, cyclohexane, toluene and xylene. Can be illustrated.
  • ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclopentanone
  • esters such as ethyl acetate, butyl acetate, ethyl lactate and isopropyl butanoate
  • hydrocarbons such as hexane, cyclohexane, toluene and xylene.
  • the acid value (measured by the method described in JIS K-2501) of the produced polyvalent carboxylic acid resin of the second invention is preferably 150 to 415 mgKOH / g, more preferably 185 to 375 mgKOH / g, Particularly preferred is 200 to 320 mg KOH / g. If the acid value is 150 mgKOH / g or more, it is preferable because the mechanical properties of the cured product are improved, and if it is 415 mgKOH / g or less, the cured product does not become too hard and the elastic modulus becomes appropriate.
  • the functional group equivalent of the polyvalent carboxylic acid resin of the second invention is preferably 135 to 312 g / eq, more preferably 150 to 300 g / eq, and particularly preferably 180 to 280 g / eq.
  • thermosetting resin composition suitable for kneading
  • thermosetting resin composition of the second invention is a resin composition containing the polyvalent carboxylic acid resin of the second invention and other components.
  • a curing agent for thermosetting resin can be contained in the polyvalent carboxylic acid composition of the second invention.
  • Suitable curing agents for thermosetting resins include trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, and cyclohexanetricarboxylic anhydride pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic anhydride, hydrogenated pyro Examples thereof include one or more compounds selected from merit acid anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride.
  • a cured product having a high crosslinking density can be obtained, so that a cured product having a high glass transition temperature can be obtained.
  • carboxylic acids such as trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic acid anhydride, and hydrogenated pyromellitic acid anhydride or
  • An acid anhydride has a high softening point or melting point because it has crystallinity, and a specific melting point is 150 ° C. to 300 ° C., which may cause a problem in molding.
  • hexahydrophthalic anhydride and methylhexahydrophthalic anhydride have a melting point of not more than room temperature, there is a problem in molding.
  • Hydrophthalic anhydride is preferred, with cyclohexanetricarboxylic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride being more preferred.
  • cyclohexanetricarboxylic acid anhydride examples include cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride, and cyclohexane-1,2,3-tricarboxylic acid-1,2-anhydride.
  • these acid anhydrides can be used in combination, but cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride is preferred.
  • the total of one or more compounds selected from methylhexahydrophthalic anhydride preferably accounts for 1% to 90% by weight in the thermosetting resin composition. If it is lower than 1% by weight, the glass transition temperature will not be sufficiently high. If it is higher than 90% by weight, the melting point will be high and handling may be difficult. More preferably, it is 10 to 60% by weight, and still more preferably 20 to 50% by weight.
  • thermosetting resin composition of the second invention the polyvalent carboxylic acid (A1) represented by the above formula (1) and trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride Of one or more compounds selected from products, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic anhydride, hydrogenated pyromellitic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride
  • the functional group equivalent in the mixture is 250 g / eq. Or less, preferably 240 g / eq. The following is more preferable.
  • trimellitic acid trimellitic anhydride, cyclohexanetricarboxylic acid, and cyclohexanetricarboxylic anhydride
  • pyromellitic acid hydrogenated pyromellitic acid
  • pyromellitic anhydride hydrogenated pyromellitic acid
  • the weight ratio is the polyvalent carboxylic acid (A1) represented by the above formula (1): (trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated 1 or 2 or more compounds selected from pyromellitic acid, pyromellitic anhydride, hydrogenated pyromellitic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride) are 99; 1 to 10:90 90:10 to 20:80 is more preferable, and 80:20 to 50:50 is particularly preferable.
  • By being in the said ratio while being extremely excellent in heat resistance, it becomes possible to fully knead
  • thermosetting resin composition of the second invention includes the polyvalent carboxylic acid resin of the second invention, trimellitic acid, trimellitic acid anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic acid anhydride, pyromellitic acid, water Contains one or more compounds selected from the group consisting of pyromellitic acid anhydride, pyromellitic acid anhydride, hydrogenated pyromellitic acid anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride.
  • thermosetting resin composition in the second invention is preferably a composition containing a thermosetting resin such as an epoxy resin, a phenol resin, a urea resin, a melamine resin, and an unsaturated polyester resin.
  • a thermosetting resin such as an epoxy resin, a phenol resin, a urea resin, a melamine resin, and an unsaturated polyester resin.
  • the epoxy resin can be used without any particular limitation as long as it is usually blended as a conventional thermosetting resin composition or epoxy resin composition.
  • epoxidized phenol and aldehyde novolac resins such as phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, diglycidyl ether such as bisphenol A, bisphenol F, bisphenol S, alkyl-substituted bisphenol, Glycidylamine type epoxy resin obtained by reaction of polyamine such as diaminodiphenylmethane and isocyanuric acid and epichlorohydrin, alicyclic epoxy resin obtained by oxidizing olefin bond with peracid such as peracetic acid, diglycidyl isocyanurate, triglycidyl isocyanate Examples thereof include nurate and silsesquioxane compounds, and these may be used alone or in combination of two or more.
  • epoxy resins those having high heat resistance are preferable. Specifically, from the viewpoints of melt viscosity, coloring of the cured product and glass transition temperature, glycidyl ether type epoxy resin, alicyclic epoxy A resin, triglycidyl isocyanurate is preferred.
  • the compounding ratio of the epoxy resin and the curing agent for thermosetting resin of the second invention is such that the active group in the curing agent for thermosetting resin capable of reacting with the epoxy group is equivalent to 1 equivalent of the epoxy group in the epoxy resin.
  • (Acid anhydride group or hydroxyl group) is preferably 0.5 to 1.5 equivalents (the carboxylic acid is considered to be monofunctional and the acid anhydride is assumed to be monofunctional), particularly preferably 0.5 to 1.2 equivalents.
  • curing may be incomplete and good cured properties may not be obtained, and coloration is likely to occur. There is also a problem.
  • the oligoester of the terminal carboxylic acid that can be contained as a component of the curing agent for the thermosetting resin of the second invention is represented by the following formula (10).
  • n is 2 or more and less than 12.
  • Specific structural formula is a compound having the structure of the following formula (10) and having an ester structure (preferably two ester structures) in the molecule. Moreover, it is a compound which has a some carboxyl group at the terminal.
  • the oligoester of the terminal carboxylic acid represented by the formula (10) is a compound obtained by an esterification reaction of a bi- to hexafunctional polyhydric alcohol having 6 or more carbon atoms and a saturated aliphatic cyclic acid anhydride. preferable.
  • the linking group R is preferably a cycloalkane skeleton having 4 to 10 carbon atoms or a norbornane skeleton, and the cycloalkane skeleton is substituted or
  • An unsubstituted cyclohexane structure, particularly a methylcyclohexane structure having a methyl group is preferred from the optical properties of the cured product.
  • the norbornane skeleton is preferably a norbornane or methylnorbornane structure.
  • substituent that can be applied to the substituted one include an alkyl group having 1 to 3 carbon atoms and a carboxyl group.
  • the linking group P is a residue of a polyhydric alcohol having 2 to 10 carbon atoms (residue obtained by removing a hydroxyl group from the polyhydric alcohol used in the reaction), and is preferably a branched cross-linking group or a cycloalkyl group.
  • P is preferably a divalent crosslinking group defined by the following (a) or (b).
  • the substituent R 3 is a group other than a hydrogen atom in the formula (2A) described later. Is more preferable.
  • the softening point of the said oligoester is 50 degreeC or more normally, 60 degreeC or more is preferable and 80 degreeC or more is more preferable.
  • it is 500 degrees C or less, It is preferable that it is 300 degrees C or less, and it is more preferable that it is 200 degrees C or less.
  • the particularly preferred oligoester of the terminal carboxylic acid in the second invention can be obtained by addition reaction of a bi- to hexafunctional polyhydric alcohol having 6 or more carbon atoms and a saturated aliphatic cyclic acid anhydride.
  • the oligoester of the terminal carboxylic acid in the second invention may be a composition containing two oligoesters of the terminal carboxylic acid.
  • an oligoester composition of a terminal carboxylic acid containing at least two oligoesters of a terminal carboxylic acid a method of mixing at least two kinds of oligoesters of a single terminal carboxylic acid obtained by the above method, or When synthesizing the oligoester of the above terminal carboxylic acid, the saturated aliphatic cyclic acid anhydride is selected from the following saturated aliphatic cyclic acid anhydrides, or a mixture of at least two kinds is used. There is a method of performing an addition reaction using two kinds of alcohols.
  • the saturated aliphatic cyclic acid anhydride used for the synthesis of the oligoester of a terminal carboxylic acid has a cyclohexane structure, has a methyl group substitution or a carboxyl group substitution on the cyclohexane ring, or is unsubstituted, and the cyclohexane ring And a compound having one or more (preferably one) acid anhydride groups bonded to.
  • hexahydrophthalic anhydride methylhexahydrophthalic anhydride, and cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride, trimellitic anhydride, cyclohexanetricarboxylic anhydride, pyromellitic anhydride And at least one acid anhydride selected from the group consisting of hydrogenated pyromellitic acid anhydride.
  • the bi- to hexafunctional polyhydric alcohol having 6 or more carbon atoms used for the synthesis of the terminal carboxylic acid oligoester in the second invention is specifically a hydroxyl group at the end of the bridging group P in the formula (10). And an oligoester of a terminal carboxylic acid marked with.
  • the crosslinkable group represented by P is preferably a divalent crosslinkable group defined by the above (a) or (b), and will be specifically described below.
  • the divalent crosslinking group defined in (a) is a divalent chain alkyl chain obtained by removing a hydroxyl group from a divalent alcohol (diol) having a branched structure having 6 to 20 carbon atoms.
  • the side chain may be branched from any carbon atom constituting the main chain, and includes, for example, a case where the side chain is branched from a carbon atom to which an alcoholic hydroxyl group is bonded (terminal carbon atom of the main chain).
  • Any crosslinking group having such a structure may be used, and a specific example of such a crosslinking group is shown in the following formula (a1).
  • the alkylene bridging group defined in (a) is not particularly limited as long as it has a structure having an alkyl branched chain (side chain) with respect to the main chain alkylene group, but the main chain has 3 or more main chain carbon atoms.
  • those having at least one alkyl side chain are preferred, and those having two or more alkyl side chains are particularly preferred.
  • More preferable examples include a bridging group having a linear main chain having 3 to 12 carbon atoms and 2 to 4 side chains, and at least one of the side chains having 2 to 10 carbon atoms. Can do.
  • a crosslinking group in which at least two of the side chains have 2 to 10 carbon atoms is more preferable.
  • the 2 to 4 side chains are preferably branched from carbon atoms having different main chains.
  • the compound include a compound in which a hydroxyl group is bonded to the position of * in the crosslinking group described in the formula (a1).
  • polyhydric alcohols used as the raw material polyhydric alcohols having at least two side chains and at least two of which are side chains having 2 to 4 carbon atoms are preferred.
  • particularly preferred polyhydric alcohols are 2,4-diethyl-1,5-pentanediol, 2-ethyl-2-butyl-1,3-propanediol, 2-ethyl-1,3- Examples include hexanediol, and particularly 2,4-diethyl-1,5-pentanediol.
  • Examples of the crosslinking group defined in (b) include a divalent group represented by the following formula (b1).
  • the crosslinked polycyclic diol residue is a diol residue having a tricyclodecane structure or a pentacyclopentadecane structure as the main skeleton, and is represented by the following formula (b2). Is done.
  • a plurality of R 2 each independently represents a hydrogen atom or a methyl group. Of these, a bridging group in which all R 2 are hydrogen atoms is preferred. Specific examples include tricyclodecane dimethanol, methyl tricyclodecane dimethanol, and pentacyclopentadecane dimethanol.
  • the reaction between the acid anhydride and the polyhydric alcohol is generally an addition reaction using an acid or a base as a catalyst, but in the second invention, a reaction without a catalyst is particularly preferable.
  • a catalyst examples of the catalyst that can be used include hydrochloric acid, sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, nitric acid, trifluoroacetic acid, trichloroacetic acid and other acidic compounds, sodium hydroxide, hydroxide Metal hydroxides such as potassium, calcium hydroxide and magnesium hydroxide, amine compounds such as triethylamine, tripropylamine and tributylamine, pyridine, dimethylaminopyridine, 1,8-diazabicyclo [5.4.0] undec-7 -Heterocyclic compounds such as ene, imidazole, triazole, tetrazole, tetramethylammonium hydrox
  • the amount of the catalyst used is not particularly limited, but it is usually preferable to use 0.001 to 5 parts by weight, if necessary, with respect to 100 parts by weight of the total weight of the raw materials.
  • a reaction without a solvent is preferable, but an organic solvent may be used.
  • the amount of the organic solvent used is 0.005 to 1 part by weight, preferably 0.005 to 0.7 part, based on 1 part of the total amount of the acid anhydride and the polyhydric alcohol as reaction substrates. More preferably, it is 0.005 to 0.5 part (that is, 50% by weight or less).
  • the amount of the organic solvent used exceeds 1 part by weight with respect to 1 part by weight of the reaction substrate, it is not preferable because the progress of the reaction becomes extremely slow.
  • organic solvents that can be used include alkanes such as hexane, cyclohexane and heptane, aromatic hydrocarbon compounds such as toluene and xylene, ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and anone, diethyl ether , Ethers such as tetrahydrofuran and dioxane, and ester compounds such as ethyl acetate, butyl acetate and methyl formate can be used.
  • alkanes such as hexane, cyclohexane and heptane
  • aromatic hydrocarbon compounds such as toluene and xylene
  • ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and anone
  • diethyl ether Ethers such as tetrahydrofuran and dioxane
  • the reaction temperature is preferably 30 to 200 ° C, more preferably 40 to 200 ° C, and particularly preferably 40 to 150 ° C.
  • the reaction at 100 ° C. or lower is preferred, and the reaction at 30 to 100 ° C. or 40 to 100 ° C. is particularly preferred because of the volatilization of the acid anhydride.
  • the reaction ratio between the acid anhydride and the polyhydric alcohol is theoretically preferably equimolar, but can be changed as necessary.
  • the specific charging ratio of the two at the time of reaction is such that the polyhydric alcohol is equivalent to 0.001 to 2 equivalents in terms of the hydroxyl group equivalent to 1 equivalent of the acid anhydride group in terms of the functional group equivalent. It is preferable to charge at a ratio of preferably 0.01 to 1.5 equivalents, more preferably 0.1 to 1.2 equivalents.
  • the obtained terminal carboxylic acid oligoester is preferably solid, and in order to obtain a solid resinous terminal carboxylic acid oligoester, ideally an equimolar equivalent or more of polyhydric alcohol
  • fluidity is important because of the addition of filler, and in order to secure this fluidity, some balance is lost in the range where the solids are maintained (softening point of 50 ° C or higher). It doesn't matter.
  • the equivalent ratio of the alcoholic hydroxyl group to the acid anhydride equivalent is preferably 0.85 to 1.20 molar equivalent, particularly preferably 0.90 to 1.1.0 molar equivalent.
  • reaction time depends on the reaction temperature, the amount of catalyst, etc., from the viewpoint of industrial production, a long reaction time is not preferable because it consumes a great deal of energy.
  • An excessively short reaction time means that the reaction is abrupt and is not preferable from the viewpoint of safety.
  • a preferred range is 1 to 48 hours, preferably 1 to 36 hours, more preferably 1 to 24 hours, and still more preferably about 2 to 10 hours.
  • the catalyst After completion of the reaction, when a catalyst is used, the catalyst is removed by neutralization, washing with water, adsorption, etc., and the solvent is distilled off to obtain the desired terminal carboxylic acid oligoester.
  • the desired oligoester of the terminal carboxylic acid can be obtained by distilling off the solvent as necessary.
  • the oligoester of the terminal carboxylic acid made into the objective is obtained by removing a solvent. Further, in the case of no solvent and no catalyst, the product can be obtained by taking it out as it is.
  • the most preferable production method is a method in which the acid anhydride and the polyhydric alcohol are reacted at 40 to 150 ° C. under non-catalytic conditions to remove the solvent and then taken out.
  • the thus obtained terminal carboxylic acid oligoester or the composition containing the terminal carboxylic acid oligoester usually shows a colorless to pale yellow solid resinous form (which may crystallize in some cases).
  • the softening point of the terminal carboxylic acid oligoester is preferably 50 to 190 ° C, more preferably 55 to 150 ° C, and particularly preferably 60 to 120 ° C.
  • the crosslinking group is an alkylene group having a side chain defined by (a)
  • it shows a colorless to pale yellow solid resinous form.
  • the oligoester of the terminal carboxylic acid is in the form of a solid resin. .
  • the bridging group is a bridging group defined by (b)
  • the aliphatic hydrocarbon group is a cycloalkane skeleton or a norbornane skeleton having 4 to 10 carbon atoms
  • all of the alicyclic substituents are at the end of the hydrogen atom.
  • Carboxylic acid oligoesters show coloration upon curing and are not suitable for particularly demanding optical applications.
  • the aliphatic hydrocarbon group is a cycloalkane skeleton or a norbornane skeleton having 4 to 10 carbon atoms
  • the compound having a methyl group or a carboxyl group as the substituent is less colored and the optical properties are improved.
  • the substituent is a methyl group or a carboxyl group. This is preferable because optical characteristics are improved.
  • the terminal carboxylic acid oligoester composition of the second invention is a cycloalkane skeleton or a norbornane skeleton having 4 to 10 carbon atoms
  • the substituent is preferably a formula having a methyl group or a carboxyl group, or both (
  • the composition containing the oligoester of terminal carboxylic acid of 10) is preferable.
  • an oligoester composition of a terminal carboxylic acid containing two or more kinds of oligoesters of the terminal carboxylic acid at least the terminal carboxylic acid oligoester of the formula (1) in which the substituent is not a hydrogen atom (the substituent is the alkyl group) .
  • an oligoester of a terminal carboxylic acid having a methyl group or a carboxyl group is preferably 50 mol% or more based on the total amount of oligoesters of the terminal carboxylic acid.
  • a terminal carboxylic acid oligoester composition containing 70 mol% or more, most preferably 90 mol% or more of the terminal carboxylic acid oligoester of the formula (10), in which the substituent is not a hydrogen atom.
  • the remainder is an oligoester of a terminal carboxylic acid of the following formula (2A) in which R 3 is a hydrogen atom.
  • a terminal carboxylic acid oligoester represented by the following formula (2A) is used as a suitable terminal carboxylic acid oligoester in the second invention.
  • the terminal carboxylic acid oligoester is preferably an oligoester of a terminal carboxylic acid having a number average molecular weight Mn of 300 or more.
  • Examples of the curing agent that can be used in combination include an amine compound, an acid anhydride compound having an unsaturated ring structure, an acid anhydride having an organosiloxane skeleton, an amide compound, a phenol compound, and a carboxylic acid compound. .
  • the curing agent that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from linolenic acid and ethylenediamine, phthalic anhydride, pyromellitic anhydride Acid, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2 , 1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, bisphenol A, bisphenol F, bisphenol
  • a curing accelerator can be added to the thermosetting resin composition of the second invention as necessary.
  • Curing accelerators include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl- 2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 2,4-diamino-6 (2′-methylimidazole (1 ′)) ) Ethyl-s-triazine, 2,4-diamino-6 (2′-undecylimidazole (1 ′)) ethyl-s-triazine, 2,4-diamino-6 (2′-ethyl, 4-methylimidazole
  • the curing accelerator is usually used in an amount of 0.001 to 15 parts by weight, preferably 0.01 to 5 parts by weight, based on 100 parts by weight of the epoxy resin.
  • additives other than those mentioned above commonly used additives for epoxy resins such as pigments, dyes, fluorescent brighteners, reinforcing materials, fillers, white pigments, nucleating agents, interfaces
  • An activator, a plasticizer, a viscosity modifier, a fluidity modifier, a flame retardant, an antioxidant, an ultraviolet absorber, and a light stabilizer may be added.
  • thermosetting resin composition of the second invention it is desirable that the ICI cone plate viscosity of the curing agent for the thermosetting resin under a high temperature condition during molding is higher than that of a conventional acid anhydride curing agent, etc. Specifically, it is desirable that the pressure is 0.01 to 10 Pa ⁇ s within the range of 100 to 200 ° C. which is the molding temperature range. If it is less than 0.01 Pa ⁇ s, burrs are likely to occur. On the other hand, if it is greater than 10 Pa ⁇ s, the productivity may decrease. In this embodiment, the ICI viscosity of the thermosetting resin curing agent at 150 ° C.
  • each component that has been conventionally difficult to knead due to its crystallinity has a high softening point or melting point, and is sufficiently melted and dispersed in the curing agent. Therefore, the crystals are broken and are sufficiently kneaded with the epoxy resin as the main agent, so that each component is effectively arranged and a cured product having excellent physical properties can be obtained.
  • the thermosetting resin composition of the second invention preferably has a softening point of 20 to 150 ° C, more preferably in the range of 30 ° C to 130 ° C, and in the range of 40 ° C to 120 ° C. More preferably, it is 50 to 130 ° C.
  • various components can be easily stirred and mixed with a mixer, etc., and further kneaded or melt kneaded with a mixing roll, extruder, kneader, roll, extruder, etc., cooled, pulverized It becomes possible to do.
  • the glass transition temperature (Tg) of the cured product is desirably higher than the molding temperature. If the glass transition temperature (Tg) of the cured product is equal to or lower than the molding temperature, the cured product in the mold is in a low elastic rubber state, so the rubber-like cured product is taken out of the mold, and the ejector is removed. When pushing, there is a possibility that a problem may occur due to deformation.
  • the glass transition temperature (Tg) is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, and further preferably 50 ° C. or higher.
  • 150 degreeC or less is preferable and, as for the glass transition temperature (Tg) of hardened
  • thermosetting resin composition of the second invention can be obtained by uniformly dispersing and mixing the various components described above.
  • the method is not particularly limited. Can be mentioned.
  • the conditions for kneading or melt-kneading may be determined depending on the types and amounts of the components, and are not particularly limited. However, kneading at 20 to 100 ° C. for 5 to 40 minutes is more preferable. When the kneading temperature is less than 20 ° C., the dispersibility of each component is lowered and it is difficult to sufficiently knead. When the kneading temperature is higher than 100 ° C., the crosslinking reaction of the resin composition proceeds and the resin composition There is a risk that things will harden.
  • thermosetting resin composition of the second invention can be molded under pressure (tablet) at room temperature of 0 to 30 ° C. before heat molding.
  • the pressure molding may be performed under conditions of 0.01 to 10 MPa and 1 to 5 seconds.
  • the mold used at the time of pressing (tablet) molding is not particularly limited, and for example, it is composed of a vertical mold (upper mold) and a mortar mold (lower mold) made of a ceramic material, a fluorine resin material, or the like. It is preferable to use what is used.
  • thermosetting resin composition of the second invention is useful in applications such as optical semiconductor sealing materials and optical semiconductor reflectors that require high glass transition temperatures and high transmittance.
  • the production method is not particularly limited.
  • the thermosetting resin composition of the second invention is injected into a mold and, for example, cured for 60 to 800 seconds under conditions of a mold temperature of 150 to 190 ° C. and a molding pressure of 2 to 20 MPa, and then taken out from the mold.
  • the composition is heat-cured at an after-cure temperature of 150 ° C. to 180 ° C. for 1 to 3 hours.
  • the semiconductor device of the second invention when a specific example is illustrated with respect to a typical structure, arranges a light reflection preventing member having a cylindrical hollow portion on a substrate as described in International Publication No. 2012/124147, An optical semiconductor element is disposed on the substrate in the internal space of the cylindrical hollow portion. And the one end part and board
  • the reflective material suitably applied to the resin composition of the second invention will be described in more detail.
  • the reflective material obtained by molding discoloration due to thermal deterioration is suppressed.
  • the reflective material can be used as an LED reflector for an LED lighting apparatus such as an LED bulb.
  • the reflective material obtained from the thermosetting resin composition of the second invention can constitute an inexpensive LED reflector having a long lifetime.
  • FIG. 1 shows an example of an LED lighting device using a reflective material obtained by molding a thermosetting resin composition.
  • This reflector is the LED reflector 1.
  • the reflective material is formed in a frame shape, and has a recess 2 and a hole 3 at the center.
  • the recess 2 is provided as an inclined surface.
  • the wall surface of the recess 2 serves as a reflecting surface that reflects light.
  • the hole 3 is provided at the bottom of the recess 2 so as to penetrate the LED reflector 1.
  • a lead frame 4 on which an LED 5 as a light emitting element is mounted is fitted in the hole 3.
  • the lead frame 4 may be provided with wiring for supplying electricity to the LED 5.
  • the light emitting surface side (upper part in the figure) of the recess 2 is covered with a transparent cover 6.
  • the cover 6 is joined to the LED reflector 1 at the opening edge of the recess 2.
  • the LED reflector 1 functions as a reflector for efficiently reflecting the light emitted from the LED 5.
  • the shape of the LED reflector 1 is not limited to the shape shown in FIG. 1, and can be appropriately designed in consideration of the light quantity, color, directivity characteristics, and the like of the mounted LED 5. With the thermosetting resin composition for light reflectors described above, since the moldability is good, it is possible to easily obtain a molded body having a desired shape.
  • thermosetting light reflecting resin composition (Examples 1-1 to 1-2, Comparative Examples 1-1 to 1-2) EHPE-3150 (alicyclic epoxy resin manufactured by Daicel Chemical Industries, Ltd.), THEIC-G (polyhydric alcohol compound manufactured by Shikoku Kasei Kogyo Co., Ltd.), Ricacid MH-T (curing agent for epoxy resin manufactured by Shin Nippon Chemical Co., Ltd.) Using Hishicolin PX-4MP (a curing catalyst manufactured by Nippon Chemical Industry Co., Ltd.), the respective components were blended according to the blending table shown in Table 1-1, and Examples 1-1 to 1-2 and Comparative Example 1- 1 to 1-2 thermosetting resin compositions were prepared. In Table 1-1, the unit of the blending amount of each component is parts by weight, and the blank indicates that the component is not used.
  • thermosetting light reflecting resin composition (Examples 1-3 to 1-4) EHPE-3150 (alicyclic epoxy resin manufactured by Daicel Chemical Industries, Ltd.), ditrimethylolpropane (polyhydric alcohol compound manufactured by Perstorp Japan Co., Ltd.), Rikacid MH-T (curing agent for epoxy resin manufactured by Shin Nippon Chemical Co., Ltd.)
  • EHPE-3150 alicyclic epoxy resin manufactured by Daicel Chemical Industries, Ltd.
  • ditrimethylolpropane polyhydric alcohol compound manufactured by Perstorp Japan Co., Ltd.
  • Rikacid MH-T curing agent for epoxy resin manufactured by Shin Nippon Chemical Co., Ltd.
  • Table 1-2 The unit of the amount of each component in Table 1-2 is parts by weight.
  • thermosetting resin composition About the resin composition of each Example, DMA, TMA, and the transmittance
  • Examples 1 to 4 and Comparative Examples 1 and 2 in Table 1-1 and Table 1-2 below represent Examples 1-1 to 1-4 and Comparative Examples 1-1 to 1-2, respectively. .
  • thermosetting resin composition of the first invention has a feature of low volatilization at the time of curing.
  • GPC gel permeation chromatography
  • ICI viscosity ICI viscosity
  • softening point ICI viscosity
  • the column is a Shodex SYSTEM-21 column (KF-803L, KF-802.5 ( ⁇ 2), KF-802), the coupled eluent is tetrahydrofuran, and the flow rate is 1 ml / min.
  • the column temperature was 40 ° C.
  • the detection was performed by RI (Reflective index)
  • a standard polystyrene made by Shodex was used for the calibration curve.
  • the functional group equivalent was calculated from the ratio calculated from GPC, and the value was determined with 1 equivalent each of carboxylic acid and acid anhydride.
  • the melt viscosity in the cone plate method at an ICI viscosity of 150 ° C. was measured.
  • Softening point Measured by a method according to JIS K-7234.
  • Synthesis Example 2-2 (Curing Agent A-2 for Thermosetting Resin) 7840 parts of isocyanuric acid tris (2-hydroxyethyl), methylhexahydrophthalic anhydride (manufactured by Shin Nippon Rika Co., Ltd., Spaincid) while purging with nitrogen in a reaction vessel equipped with a stirrer, reflux condenser, and stirrer 15140 parts of (MH-T) and 23000 parts of methyl ethyl ketone (MEK) were added, and a MEK solution containing the compound was obtained by heating and stirring at 70 ° C. for 7 hours.
  • MH-T methyl ethyl ketone
  • the softening point was 82.9 ° C.
  • the GPC area ratio was 82.59% for the 3-substituted product, which was the main component, 0.00% for the 2-substituted product, and 1.25% for the 1-substituted product.
  • Examples 1-2 in Table 2-1 above show the results of GPC analysis of the curing agents obtained in Synthesis Examples 2-1 and 2-2, respectively.
  • the mono-substituted product is obtained by replacing one compound of the formula (5) with the compound of the formula (6), and the 2-substituted product is represented by the formula (5).
  • the compound is a compound in which two compounds are substituted with the compound of the above formula (6), and the 3-substituent represents a compound in which three compounds of the above formula (5) are substituted with the compound of the above formula (6).
  • a polyvalent carboxylic acid resin that provides a cured product having excellent moldability, less coloration when cured into a cured product, and a sufficient glass transition temperature, a thermosetting resin composition using the same, and An optical semiconductor device using the thermosetting resin composition as a sealing material or a reflecting material can be provided. Furthermore, by suppressing the softening point of the polyvalent carboxylic acid resin or the thermosetting resin composition using the same, the handling of the thermosetting resin composition is facilitated and sufficient kneading is possible, resulting in cured physical properties. It is possible to provide a cured product that is excellent in. Moreover, the thermosetting resin composition excellent also in the reactivity of resin, and the hardened
  • the curing agent for thermosetting resins of the first invention has a low volatility and excellent moldability, and the thermosetting resin composition using the curing agent for thermosetting resins has a sufficiently high glass transition temperature.
  • the thermosetting resin composition of the first invention is useful as a sealing material for optical semiconductors or a material for light reflecting materials because it gives a cured product with little coloring.
  • a sufficiently high glass transition temperature is important for formability and reliability. Further, when used as a reflective material, the reflectance can be increased.
  • the curing agent for thermosetting resins of the second invention has a low melt viscosity and excellent moldability, and the thermosetting resin composition using the curing agent for thermosetting resins has a sufficient glass transition temperature.
  • the thermosetting resin composition of the second invention is useful as a sealing material for an optical semiconductor or a material for a light reflecting material because it gives a cured product that is high and less colored.
  • a sufficiently high glass transition temperature is important for formability and reliability.
  • less coloring can increase the transmittance when used as a sealing material, and can increase the reflectance when used as a reflecting material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided are a thermosetting resin composition including a polyhydric alcohol compound (A) with three or more hydroxyl groups, an acid anhydride compound (B), and a thermosetting resin (C), a thermoset resin composition characterized by including a polycarboxylic acid (A) represented by formula (1) below, wherein the ICI cone-plate viscosity is within a range from 0.01 Pa∙s to 10 Pa∙s in a 100-200°C range, and a photosemiconductor device using either one of the thermosetting resin compositions as a sealing material or reflective material. (In formula (1), R1 represents a 1-6C alkylene group, and R2 represents a hydrogen atom, or a 1-6C alkyl group, or a carboxyl group. In formula (1), R1 and R2, pluralities of which exist, may be identical to or different from one another.)

Description

多価アルコール化合物、酸無水物化合物及び熱硬化性樹脂を含有する熱硬化性樹脂組成物並びに多価カルボン酸樹脂及びそれを用いた熱硬化性樹脂組成物並びに前記熱硬化性樹脂組成物のいずれか一つを封止材あるいは反射材として使用した光半導体装置Any of a thermosetting resin composition containing a polyhydric alcohol compound, an acid anhydride compound and a thermosetting resin, a polycarboxylic acid resin, a thermosetting resin composition using the same, and the thermosetting resin composition Optical semiconductor device using one of them as sealing material or reflecting material
 本発明の第一(以下、第一の発明という)は、硬化時の揮発量を抑えることができ、硬化物への着色が少ない熱硬化性樹脂用硬化剤、それを用いた熱硬化性樹脂組成物、および、かかる熱硬化性樹脂組成物を封止材あるいは反射材として使用した光半導体装置に関する。また、本発明の第二(以下、第二の発明という)は、硬化物のガラス転移温度を十分高めることができ、成形性に優れ、硬化物への着色が少ない熱硬化性樹脂用硬化剤、それを用いた熱硬化性樹脂組成物、および、かかる熱硬化性樹脂組成物を封止材あるいは反射材として使用した光半導体装置に関する。 The first of the present invention (hereinafter referred to as the first invention) is a curing agent for a thermosetting resin, which can suppress the volatilization amount at the time of curing, and is less colored to a cured product, and a thermosetting resin using the same The present invention relates to a composition and an optical semiconductor device using such a thermosetting resin composition as a sealing material or a reflecting material. The second of the present invention (hereinafter referred to as the second invention) can sufficiently increase the glass transition temperature of the cured product, has excellent moldability, and has little coloration to the cured product. The present invention relates to a thermosetting resin composition using the same, and an optical semiconductor device using the thermosetting resin composition as a sealing material or a reflecting material.
 熱硬化性樹脂組成物を半導体の封止材として利用したり、半導体用反射材として利用したりする場合、熱硬化性樹脂組成物に揮発性が高い材料を含有していると、硬化時に当該材料が揮発することで、ボイドが発生して信頼性が低下したり、当量比がずれて硬化物性が低下したりする恐れがあるため、揮発量の少ないものが望ましい。また、取り扱い時の臭気の問題もあるため、揮発量が少ない樹脂組成物であることが望ましい。さらに、半導体の封止材、反射材としてはポットライフが長く、着色しにくい材料が求められている。そして、熱硬化性樹脂組成物が光半導体の発する光を吸収すると光半導体の照度が低下するため、熱硬化性樹脂組成物は高い透過率を有し、着色の少ないものが望ましい。したがって、熱硬化性樹脂組成物に配合される硬化剤にも、高い透過率と着色の少ないことが要求される。また、耐熱性、成型性、信頼性の観点から、硬化物のガラス転移温度が一定温度以上であることが重要であり、成形性の観点から硬化剤の軟化点や粘度についても一定の範囲にあることが重要である。 When the thermosetting resin composition is used as a semiconductor sealing material or as a semiconductor reflector, if the thermosetting resin composition contains a highly volatile material, the Since the material is volatilized, voids are generated and the reliability may be lowered, or the equivalent ratio may be shifted to lower the cured physical properties. In addition, since there is a problem of odor during handling, it is desirable that the resin composition has a small amount of volatilization. Further, materials that have a long pot life and are difficult to be colored are required as semiconductor sealing materials and reflecting materials. And since the illuminance of an optical semiconductor will fall if the thermosetting resin composition absorbs the light which an optical semiconductor emits, the thermosetting resin composition has a high transmittance | permeability and a thing with little coloring is desirable. Therefore, the curing agent blended in the thermosetting resin composition is also required to have high transmittance and little coloration. In addition, from the viewpoint of heat resistance, moldability, and reliability, it is important that the glass transition temperature of the cured product is a certain temperature or more, and from the viewpoint of moldability, the softening point and viscosity of the curing agent are within a certain range. It is important to be.
 熱硬化性樹脂用硬化剤として使用される酸無水物は、耐熱性と透明性に優れることから、光半導体封止用などに使用されてきた。しかし、揮発性が高いこと、また低融点であることから、熱硬化性樹脂用硬化剤として酸無水物のみを含有する熱硬化性樹脂組成物は、酸無水物の揮発による物性低下や臭気の問題があった。さらに、揮発性があること、また低融点であることから、金型成形には向かないことが問題となっていた。 Acid anhydrides used as curing agents for thermosetting resins have been used for optical semiconductor sealing and the like because of their excellent heat resistance and transparency. However, because of its high volatility and low melting point, a thermosetting resin composition containing only an acid anhydride as a curing agent for a thermosetting resin has reduced physical properties and odor due to volatilization of the acid anhydride. There was a problem. Furthermore, since it is volatile and has a low melting point, it has been a problem that it is not suitable for mold molding.
 テトラカルボン酸無水物については、高融点(150℃以上)であるため、液状樹脂組成物としては扱い難く、成形性に劣ることから、液状の樹脂を成形させる用途への使用の困難さを考慮すると、本発明の目的とする用途には向かない。 Since tetracarboxylic acid anhydride has a high melting point (150 ° C. or higher), it is difficult to handle as a liquid resin composition, and its formability is inferior, so it is difficult to use it for molding liquid resins. Then, it is not suitable for the intended use of the present invention.
 カルボン酸をエポキシ樹脂用硬化剤として使用する例も知られているが、比較的融点が高く(150℃以上)上記と同様の課題があり、それだけでなく加熱すると着色しやすいため高い透過率を確保することが極めて困難であることから本発明の目的とする用途には向かない。 An example of using carboxylic acid as a curing agent for epoxy resin is also known, but it has a relatively high melting point (150 ° C. or higher) and has the same problem as above. Since it is extremely difficult to ensure, it is not suitable for the intended use of the present invention.
 同様に、ポリカルボン酸化合物についても、高融点(150℃以上)であること、結晶性が高く樹脂混練が難しいこと、また着色があることが問題となり本発明の目的とする用途では使用できない。
 そのため、従来知られている材料として、上記課題を解決できる化合物を見出せていなかった。
Similarly, polycarboxylic acid compounds also have problems of high melting point (150 ° C. or higher), high crystallinity, difficult resin kneading, and coloring, and cannot be used for the purpose of the present invention.
Therefore, a compound that can solve the above problems has not been found as a conventionally known material.
国際公開第2005/049597号International Publication No. 2005/049597 国際公開第2005/121202号International Publication No. 2005/121202
 本発明の第一の目的は、硬化物のガラス転移温度を十分高めることができ、硬化時の揮発量が少なく、硬化物への着色が少ない熱硬化性樹脂組成物、および、かかる熱硬化性樹脂組成物を封止材あるいは反射材として使用した半導体装置を提供することである。
 また、本発明の第二の目的は、硬化物のガラス転移温度を十分高めることができ、成形性に優れ、硬化物への着色が少ない多価カルボン酸、それを用いた熱硬化性樹脂組成物、および、かかる熱硬化性樹脂組成物を封止材あるいは反射材として使用した半導体装置を提供することである。
The first object of the present invention is to provide a thermosetting resin composition that can sufficiently increase the glass transition temperature of a cured product, has a small amount of volatilization during curing, and has little coloration to the cured product, and such thermosetting properties. The object is to provide a semiconductor device using a resin composition as a sealing material or a reflecting material.
In addition, the second object of the present invention is to sufficiently increase the glass transition temperature of the cured product, excellent in moldability, and less colored to the cured product, and a thermosetting resin composition using the same. And a semiconductor device using such a thermosetting resin composition as a sealing material or a reflecting material.
 第一の発明は、硬化性樹脂組成物に水酸基を3つ以上有する多価アルコールを含有させることで、硬化時の揮発量を抑え、成形性に優れ、硬化物にした際の着色が少ないことを見出したものである。
 また第二の発明は、硬化性樹脂組成物が特定の粘度を有し、後述の式(1)で表されるイソシアヌル環を有する多価カルボン酸及び後述の式(1a)及び/又は(1b)で表される化合物を一定割合で含む多価カルボン酸樹脂を含有させることで、硬化物とした際に十分なガラス転移温度を有し、成形性に優れ、硬化物にした際の着色が少ないことを見出したものである。
The first invention is to contain a polyhydric alcohol having 3 or more hydroxyl groups in the curable resin composition, thereby suppressing the volatilization amount at the time of curing, excellent moldability, and being less colored when made into a cured product. Is found.
In addition, in the second invention, the curable resin composition has a specific viscosity, a polyvalent carboxylic acid having an isocyanuric ring represented by the following formula (1), and the following formulas (1a) and / or (1b). ) By containing a polyvalent carboxylic acid resin containing the compound represented by a certain ratio, it has a sufficient glass transition temperature when made into a cured product, has excellent moldability, and is colored when made into a cured product. It has been found that there are few.
 即ち、本願発明は下記(1)~(16)に関する。
(1)水酸基を3つ以上有する多価アルコール化合物(A)、酸無水物化合物(B)及び熱硬化性樹脂(C)を含有する熱硬化性樹脂組成物。
(2)前記水酸基を3つ以上有する多価アルコール化合物(A)が、分子内に1個以上のヘテロ原子を含有する環状構造を有する(1)に記載の熱硬化性樹脂組成物。
(3)前記ヘテロ原子が、窒素原子である(2)に記載の熱硬化性樹脂組成物。
(4)前記水酸基を3つ以上有する多価アルコール化合物(A)が、下記式(5)で表される多価アルコール化合物である(1)に記載の熱硬化性樹脂組成物。
That is, the present invention relates to the following (1) to (16).
(1) A thermosetting resin composition containing a polyhydric alcohol compound (A) having three or more hydroxyl groups, an acid anhydride compound (B), and a thermosetting resin (C).
(2) The thermosetting resin composition according to (1), wherein the polyhydric alcohol compound (A) having three or more hydroxyl groups has a cyclic structure containing one or more heteroatoms in the molecule.
(3) The thermosetting resin composition according to (2), wherein the heteroatom is a nitrogen atom.
(4) The thermosetting resin composition according to (1), wherein the polyhydric alcohol compound (A) having three or more hydroxyl groups is a polyhydric alcohol compound represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式(5)中、Rは炭素数1~6のアルキレン基を表す。式(5)中、複数存在するRは同一であっても異なっていても構わない。)
(5)前記酸無水物化合物(B)が、無水トリメリット酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸から選ばれる1種または2種以上の化合物である、(1)~(4)のいずれかに記載の熱硬化性樹脂組成物。
(6)前記熱硬化性樹脂(C)がエポキシ樹脂であることを特徴とする(1)~(5)のいずれかに記載の熱硬化性樹脂組成物。
(7)下記式(1)
(In Formula (5), R 1 represents an alkylene group having 1 to 6 carbon atoms. In Formula (5), a plurality of R 1 may be the same or different.)
(5) The acid anhydride compound (B) is trimellitic anhydride, cyclohexanetricarboxylic anhydride, pyromellitic anhydride, hydrogenated pyromellitic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride. The thermosetting resin composition according to any one of (1) to (4), which is one or more compounds selected from:
(6) The thermosetting resin composition according to any one of (1) to (5), wherein the thermosetting resin (C) is an epoxy resin.
(7) Following formula (1)
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式(1)中、Rは炭素数1~6のアルキレン基を、Rは水素原子又は炭素数1~6のアルキル基又はカルボキシル基をそれぞれ表す。式(1)中、複数存在するR、Rは同一であっても異なっていても構わない。)
で表される多価カルボン酸(A1)をゲルパーミエーションクロマトグラフィーの測定において70面積%以上含有し、
 下記式(1a)
(In the formula (1), R 1 represents an alkylene group having 1 to 6 carbon atoms, and R 2 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a carboxyl group. R 1 and R 2 may be the same or different.)
Containing 70% by area or more in the measurement of gel permeation chromatography, polyvalent carboxylic acid (A1) represented by
The following formula (1a)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式(1a)中、R、Rは前記式(1)中のR、Rと同じ意味を表す。式(1a)中、複数存在するR、Rは同一であっても異なっていても構わない。)
で表される多価カルボン酸(A2)及び/又は下記式(1b)
(In formula (1a), R 1 and R 2 represent the same meaning as R 1 and R 2 in formula (1). In formula (1a), a plurality of R 1 and R 2 are the same. May be different.)
And / or the following formula (1b)
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式(1b)中、R、Rは前記式(1)中のR、Rと同じ意味を表す。式(1b)中、複数存在するR、Rは同一であっても異なっていても構わない。)
で表されるカルボン酸(A3)をゲルパーミエーションクロマトグラフィーの測定において0.5~10面積%含有する多価カルボン酸樹脂を含有する熱硬化性樹脂組成物。
(8)前記多価カルボン酸樹脂が、下記式(6)
(In the formula (1b), R 1, R 2 is Formula (1) R 1, R 2 the same meaning represents the. Formula in in (1b), R 1, R 2 existing in plural in the same May be different.)
A thermosetting resin composition containing a polyvalent carboxylic acid resin containing 0.5 to 10 area% of a carboxylic acid (A3) represented by the formula (1) as measured by gel permeation chromatography.
(8) The polyvalent carboxylic acid resin is represented by the following formula (6):
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式(6)中、Rは前記式(1)中のRと同じ意味を表す。)
で表される酸無水物を、ゲルパーミエーションクロマトグラフィーの測定において5~20面積%含有する多価カルボン酸樹脂である(7)に記載の熱硬化性樹脂組成物。
(9)前記多価カルボン酸樹脂が、前記式(1)で表される化合物と(8)に記載の式(6)で表される化合物を反応させて得られる化合物であって、ゲルパーミエーションクロマトグラフィーの測定においてリテンションタイムが前記式(1)で表される化合物より短い高分子量体を0.5~10面積%含有する多価カルボン酸樹脂である(7)に記載の熱硬化性樹脂組成物。
(10)軟化点が20℃~150℃の範囲にある(7)~(9)のいずれかに記載の熱硬化性樹脂組成物。
(11)前記多価カルボン樹脂並びにトリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸から選ばれる1種または2種以上の化合物を含み、トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸から選ばれる1種または2種以上の化合物の合計が、前記熱硬化性樹脂組成物において1重量%~90重量%を占める、(7)~(10)のいずれかに記載の熱硬化性樹脂組成物。
(12)熱硬化性樹脂を含有する(7)~(11)のいずれかに記載の熱硬化性樹脂組成物。
(13)前記熱硬化性樹脂組成物を硬化してなる硬化物のガラス転移温度(Tg)が30℃以上である、(12)に記載の熱硬化性樹脂組成物。
(14)(1)~(6)、(12)および(13)のいずれかに記載の熱硬化性樹脂組成物を熱硬化してなる硬化物。
(15)(14)に記載の硬化物によって封止された光半導体装置。
(16)(14)に記載の硬化物を反射材として使用した光半導体装置。
(In formula (6), R 2 represents the same meaning as R 2 in formula (1).)
(7) The thermosetting resin composition according to (7), which is a polyvalent carboxylic acid resin containing 5 to 20 area% of an acid anhydride represented by formula (1) as measured by gel permeation chromatography.
(9) The polyvalent carboxylic acid resin is a compound obtained by reacting the compound represented by the formula (1) with the compound represented by the formula (6) described in (8), The thermosetting property according to (7), which is a polyvalent carboxylic acid resin containing 0.5 to 10 area% of a high molecular weight compound having a retention time shorter than that of the compound represented by the formula (1) in the measurement of the association chromatography Resin composition.
(10) The thermosetting resin composition according to any one of (7) to (9), wherein the softening point is in the range of 20 ° C to 150 ° C.
(11) The polyvalent carboxylic resin and trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic anhydride, hydrogenated pyromellitic anhydride Product, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride, one or more compounds selected from trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, pyromellitic acid , Hydrogenated pyromellitic acid, pyromellitic acid anhydride, hydrogenated pyromellitic acid anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride are a total of one or more compounds. 1% by weight to 9% in the curable resin composition It occupies wt%, (7) The thermosetting resin composition according to any one of - (10).
(12) The thermosetting resin composition according to any one of (7) to (11), which contains a thermosetting resin.
(13) The thermosetting resin composition according to (12), wherein a glass transition temperature (Tg) of a cured product obtained by curing the thermosetting resin composition is 30 ° C. or higher.
(14) A cured product obtained by thermosetting the thermosetting resin composition according to any one of (1) to (6), (12) and (13).
(15) An optical semiconductor device sealed with the cured product according to (14).
(16) An optical semiconductor device using the cured product according to (14) as a reflector.
 第一の発明により、硬化時の揮発量を抑え、成形性に優れ、硬化物にした際の着色が少ない熱硬化性樹脂組成物、およびその熱硬化性樹脂組成物を封止材あるいは反射材として使用した光半導体装置を提供できる。
 また、第二の発明により、硬化物の十分なガラス転移温度を有し、成形性に優れ、硬化物にした際の着色が少ない多価カルボン酸樹脂、それを用いた熱硬化性樹脂組成物、およびその熱硬化性樹脂組成物を封止材あるいは反射材として使用した光半導体装置を提供できる。さらに、軟化点を抑えることで取扱いが容易になるとともに、十分な混練が可能となり硬化物性に優れる硬化物を提供することが可能となる。また硬化物の強靭性、樹脂の反応性にも優れた熱硬化性樹脂組成物を提供できる。
According to the first invention, a thermosetting resin composition that suppresses the volatilization amount at the time of curing, has excellent moldability, and has little coloration when made into a cured product, and the thermosetting resin composition as a sealing material or a reflective material The optical semiconductor device used as can be provided.
Further, according to the second invention, a polyvalent carboxylic acid resin having a sufficient glass transition temperature of the cured product, excellent moldability, and less colored when made into a cured product, and a thermosetting resin composition using the same And an optical semiconductor device using the thermosetting resin composition as a sealing material or a reflecting material. Further, by suppressing the softening point, handling becomes easy, and sufficient kneading is possible, and a cured product having excellent cured properties can be provided. Moreover, the thermosetting resin composition excellent also in the toughness of hardened | cured material and the reactivity of resin can be provided.
本発明により得られる熱硬化性樹脂組成物を反射材として使用した場合の概略図であるIt is the schematic at the time of using the thermosetting resin composition obtained by this invention as a reflector.
 以下に、第一の発明を詳細に説明する。 The first invention will be described in detail below.
 第一の発明の熱硬化性樹脂組成物は、水酸基を3つ以上有する多価アルコール(A)を含有することを特徴とする。
 第一の発明においては、公知の水酸基を3つ以上有する多価アルコールであれば、酸無水物(B)と併用した場合においても、硬化時の揮発量が抑えられた組成物を得ることが可能となる。具体的には、トリメチロールプロパン、ペンタエリスリトール、グリセロール、EO変性グリセロール、PO変性グリセロール、ジペンタエリスリトール、下記式(5)で表される多価アルコール等が挙げられる。中でも、分子内にヘテロ原子を含有する環状構造を備えることが好ましく、特に下記式(5)で表されるアルコールが、硬化時の揮発量を抑えられ、固形で取扱いに優れることから好ましい。
The thermosetting resin composition of 1st invention contains the polyhydric alcohol (A) which has 3 or more of hydroxyl groups, It is characterized by the above-mentioned.
In the first invention, if it is a polyhydric alcohol having three or more known hydroxyl groups, it is possible to obtain a composition in which the volatilization amount during curing is suppressed even when used in combination with the acid anhydride (B). It becomes possible. Specific examples include trimethylolpropane, pentaerythritol, glycerol, EO-modified glycerol, PO-modified glycerol, dipentaerythritol, polyhydric alcohol represented by the following formula (5), and the like. Especially, it is preferable to provide the cyclic structure containing a hetero atom in a molecule | numerator, and especially the alcohol represented by following formula (5) is preferable from the amount of volatilization at the time of hardening being suppressed, and being excellent in handling with solid.
 このように、水酸基を3つ以上有する多価アルコール(A)を使用することで、硬化促進剤が存在しない場合においても、硬化時の揮発量が抑えられ、硬化促進剤の添加量の低減を実現できることから、着色性を抑える樹脂組成物が得られると共に、ポットライフが長い熱硬化性樹脂組成物を実現することが可能となる。 Thus, by using the polyhydric alcohol (A) having three or more hydroxyl groups, even when there is no curing accelerator, the amount of volatilization at the time of curing can be suppressed, and the addition amount of the curing accelerator can be reduced. Since it can implement | achieve, while being able to obtain the resin composition which suppresses coloring property, it becomes possible to implement | achieve the thermosetting resin composition with a long pot life.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(5)中、Rは炭素数1~6のアルキレン基を表す。 In the formula (5), R 1 represents an alkylene group having 1 to 6 carbon atoms.
 Rの具体例としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、イソプロピレン基、イソブチレン基、イソペンチレン基、ネオペンチレン基、イソヘキシレン基、シクロヘキシレン基等が挙げられるが、得られる硬化物の耐熱透明性の観点からメチレン基、エチレン基、プロピレン基が好ましく、エチレン基が特に好ましい。 Specific examples of R 1 include methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, isopropylene group, isobutylene group, isopentylene group, neopentylene group, isohexylene group, cyclohexylene group and the like. However, from the viewpoint of heat-resistant transparency of the resulting cured product, a methylene group, an ethylene group, and a propylene group are preferable, and an ethylene group is particularly preferable.
 式(5)中、複数存在するRはそれぞれ互いに同一であっても異なっていても構わない。 In Formula (5), a plurality of R 1 may be the same or different from each other.
 式(5)で表される化合物の中でも、下記式(7)~(9)で表される化合物が、硬化物の透明性、ガスバリア性の観点から好ましい。 Among the compounds represented by the formula (5), the compounds represented by the following formulas (7) to (9) are preferable from the viewpoint of transparency of the cured product and gas barrier properties.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 第一の発明においては、使用する多価アルコール(A)は、液状であっても固形であってもよい。多価アルコールが固形の場合には、軟化点が180℃以下であることが好ましく、150℃以下であることがより好ましく、120℃以下であることが特に好ましい。軟化点が180℃より高いと、混練の際に硬化反応が急速に進んでしまい、十分に均一な組成物が得られないためである。 In the first invention, the polyhydric alcohol (A) to be used may be liquid or solid. When the polyhydric alcohol is solid, the softening point is preferably 180 ° C. or lower, more preferably 150 ° C. or lower, and particularly preferably 120 ° C. or lower. This is because if the softening point is higher than 180 ° C., the curing reaction proceeds rapidly during kneading, and a sufficiently uniform composition cannot be obtained.
 第一の発明においては、使用する多価アルコール(A)は、官能基当量が250g/eq.以下であることが好ましく、240g/eq.以下であることがより好ましい。このような範囲であることで、耐熱性に優れた硬化物を得ることが可能となる。 In the first invention, the polyhydric alcohol (A) used has a functional group equivalent of 250 g / eq. Or less, preferably 240 g / eq. The following is more preferable. By being in such a range, it becomes possible to obtain a cured product having excellent heat resistance.
 第一の発明の熱硬化性樹脂組成物に占める水酸基を3つ以上有する多価アルコール化合物(A)と酸無水物の割合は、多価アルコールの水酸基1モルに対し酸無水物0.1~100モルであることが好ましい。酸無水物が0.1モルより少ないとガラス転移温度が十分に高くならず、酸無水物が100モルより多いと揮発分が多くなり、十分な効果が得られないおそれがある。より好ましくは多価アルコールの水酸基1モルに対し酸無水物0.5~10モルである。 The ratio of the polyhydric alcohol compound (A) having 3 or more hydroxyl groups to the acid anhydride in the thermosetting resin composition of the first invention is from 0.1 to 0.1 mol of acid anhydride per 1 mol of hydroxyl group of the polyhydric alcohol. It is preferably 100 moles. If the acid anhydride is less than 0.1 mol, the glass transition temperature will not be sufficiently high, and if the acid anhydride is more than 100 mol, the volatile matter will increase and a sufficient effect may not be obtained. More preferably, the acid anhydride is 0.5 to 10 moles per mole of the hydroxyl group of the polyhydric alcohol.
 第一の発明の熱硬化性樹脂組成物は、酸無水物化合物(B)を含有する。使用する酸無水物化合物(B)は、官能基当量が250g/eq.以下であることが好ましく、240g/eq.以下であることがより好ましい。このような範囲であることで、耐熱性に優れた硬化物を得ることが可能となる。 The thermosetting resin composition of the first invention contains an acid anhydride compound (B). The acid anhydride compound (B) used has a functional group equivalent of 250 g / eq. Or less, preferably 240 g / eq. The following is more preferable. By being in such a range, it becomes possible to obtain a cured product having excellent heat resistance.
 好適な酸無水物化合物(B)としては、無水トリメリット酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸から選ばれる1種または2種以上の化合物が挙げられる。 Suitable acid anhydride compounds (B) include trimellitic anhydride, cyclohexanetricarboxylic anhydride, pyromellitic anhydride, hydrogenated pyromellitic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride. One type or two or more types of compounds selected may be mentioned.
 無水トリメリット酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸が存在すると架橋密度の高い硬化物が得られるため、高いガラス転移温度を有する硬化物を得ることができる。 In the presence of trimellitic anhydride, cyclohexanetricarboxylic anhydride, pyromellitic anhydride, hydrogenated pyromellitic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride, a cured product having a high crosslinking density is obtained. A cured product having a high glass transition temperature can be obtained.
 無水トリメリット酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸のうち、着色しにくさの点で、シクロヘキサントリカルボン酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸が好ましく、シクロヘキサントリカルボン酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸がさらに好ましい。 Of trimellitic anhydride, cyclohexanetricarboxylic anhydride, pyromellitic anhydride, hydrogenated pyromellitic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride, cyclohexanetricarboxylic acid is difficult to color. Acid anhydride, hydrogenated pyromellitic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride are preferred, and cyclohexanetricarboxylic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride are more preferred.
 シクロヘキサントリカルボン酸無水物としては、シクロヘキサン‐1、2、4‐トリカルボン酸‐1、2‐無水物が、シクロヘキサン‐1、2、3‐トリカルボン酸‐1、2‐無水物が挙げられる。第一の発明では、これらの酸無水物を組み合わせて使用することもできるが、シクロヘキサン‐1、2、4‐トリカルボン酸‐1、2‐無水物が好ましい。 Examples of the cyclohexanetricarboxylic acid anhydride include cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride and cyclohexane-1,2,3-tricarboxylic acid-1,2-anhydride. In the first invention, these acid anhydrides can be used in combination, but cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride is preferred.
 さらに、中でも、下記式(6)で表される化合物が好ましい。 Furthermore, among these, a compound represented by the following formula (6) is preferable.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(6)中、Rは水素原子、炭素数1~6のアルキル基又はカルボキシル基を表す。 In the formula (6), R 2 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a carboxyl group.
 式(6)で表される化合物のうち、下記(2)~(4)で表される化合物が特に好ましい。 Of the compounds represented by the formula (6), compounds represented by the following (2) to (4) are particularly preferred.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 無水トリメリット酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸から選ばれる1種または2種以上の酸無水物の合計が、熱硬化性樹脂組成物に占める割合は、水酸基を3つ以上有する多価アルコール化合物(A)の水酸基1モルに対し酸無水物0.1~10モルであることが好ましい。酸無水物が0.1モルより少ないとガラス転移温度が十分に高くならず、酸無水物が10モルより多いと揮発分が多くなり、十分な効果が得られないおそれがある。より好ましくは多価アルコールの水酸基1モルに対し酸無水物0.5~5モルである。 One or more acid anhydrides selected from trimellitic anhydride, cyclohexanetricarboxylic acid anhydride, pyromellitic acid anhydride, hydrogenated pyromellitic acid anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride Is preferably 0.1 to 10 mol of acid anhydride with respect to 1 mol of hydroxyl group of the polyhydric alcohol compound (A) having 3 or more hydroxyl groups. If the acid anhydride is less than 0.1 mol, the glass transition temperature will not be sufficiently high, and if the acid anhydride is more than 10 mol, the volatile matter will increase and there is a possibility that a sufficient effect will not be obtained. More preferably, the acid anhydride is 0.5 to 5 moles per mole of the hydroxyl group of the polyhydric alcohol.
 第一の発明における熱硬化性樹脂組成物は、熱硬化性樹脂(C)を含有する。熱硬化性樹脂(C)としては、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂等が挙げられ、第一の発明においては、エポキシ樹脂を使用することが望ましい。 The thermosetting resin composition in the first invention contains a thermosetting resin (C). Examples of the thermosetting resin (C) include an epoxy resin, a phenol resin, a urea resin, a melamine resin, and an unsaturated polyester resin. In the first invention, it is desirable to use an epoxy resin.
 エポキシ樹脂としては、従来の熱硬化性樹脂組成物やエポキシ樹脂組成物として通常配合されているものであれば、特に制限されることなく用いることができる。例えば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂をはじめとするフェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールF、ビスフェノールS、アルキル置換ビスフェノール等のジグリシジルエーテル、ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる脂環式エポキシ樹脂、ジグリシジルイソシアヌレート、トリグリシジルイソシアヌレート等のトリアジン誘導体エポキシ樹脂、エポキシ基を有するシルセスキオキサン化合物等が挙げられ、これらは単独でも二種以上併用してもよい。これらエポキシ樹脂のうち、高い耐熱性、耐光性を有するものが好ましいことから、具体的には、溶融粘度、得られる硬化物の着色およびガラス転移温度等の観点から、芳香族環を含有しない、グリシジルエーテル型エポキシ樹脂、脂環式エポキシ樹脂、ジグリシジルイソシアヌレート、トリグリシジルイソシアヌレート等のトリアジン誘導体エポキシ樹脂、エポキシ基を有するシルセスキオキサン化合物が好ましい。 The epoxy resin can be used without any particular limitation as long as it is usually blended as a conventional thermosetting resin composition or epoxy resin composition. For example, epoxidized phenol and aldehyde novolac resins such as phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, diglycidyl ether such as bisphenol A, bisphenol F, bisphenol S, alkyl-substituted bisphenol, Glycidylamine type epoxy resin obtained by reaction of polyamine such as diaminodiphenylmethane and isocyanuric acid and epichlorohydrin, alicyclic epoxy resin obtained by oxidizing olefin bond with peracid such as peracetic acid, diglycidyl isocyanurate, triglycidyl isocyanate Examples thereof include triazine derivative epoxy resins such as nurate and silsesquioxane compounds having an epoxy group, and these may be used alone or in combination of two or more. Among these epoxy resins, since those having high heat resistance and light resistance are preferred, specifically, from the viewpoint of melt viscosity, coloring of the resulting cured product and glass transition temperature, etc., it does not contain an aromatic ring, Preference is given to triazine derivative epoxy resins such as glycidyl ether type epoxy resins, alicyclic epoxy resins, diglycidyl isocyanurates, triglycidyl isocyanurates, and silsesquioxane compounds having an epoxy group.
 脂環式エポキシ樹脂としては1,2:8,9-ジエポキシリモネン、4-ビニルシクロヘキセンモノオキサイド、ビニルシクロヘキセンジオキサイド、メチル化ビニルシクロヘキセンジオキサイド、(3,4-エポキシシクロヘキシル)メチル-3,4-エポキシシクロヘキシルカルボキシレート、ビス-(3,4-エポキシシクロヘキシル)アジペート、ビス-(3,4-エポキシシクロヘキシルメチレン)アジペート、ビス-(2,3-エポキシシクロペンチル)エーテル、(2,3-エポキシ-6-メチルシクロヘキシルメチル)アジペート、ジシクロペンタジエンジオキサイド等の分子内に少なくとも1個の4~7員環の環状脂肪族基と分子内に少なくとも1個のエポキシ基とを有する化合物等が挙げられる。このような脂環式エポキシ樹脂としては、分子内に2以上のエポキシ基を有する脂環式エポキシ樹脂が好ましい。分子内に2以上のエポキシ基を有する脂環式エポキシ樹脂は、市販品として入手が可能で、例えば、セロキサイド8000、セロキサイド2021P、セロキサイド2081、EHPE 3150(いずれも(株)ダイセル製)等があげられる。 Examples of alicyclic epoxy resins include 1,2: 8,9-diepoxy limonene, 4-vinylcyclohexene monooxide, vinylcyclohexene dioxide, methylated vinylcyclohexene dioxide, (3,4-epoxycyclohexyl) methyl-3, 4-epoxycyclohexylcarboxylate, bis- (3,4-epoxycyclohexyl) adipate, bis- (3,4-epoxycyclohexylmethylene) adipate, bis- (2,3-epoxycyclopentyl) ether, (2,3-epoxy And compounds having at least one 4- to 7-membered cyclic aliphatic group in the molecule and at least one epoxy group in the molecule, such as -6-methylcyclohexylmethyl) adipate and dicyclopentadiene dioxide. It is done. As such an alicyclic epoxy resin, an alicyclic epoxy resin having two or more epoxy groups in the molecule is preferable. An alicyclic epoxy resin having two or more epoxy groups in the molecule is available as a commercial product, for example, Celoxide 8000, Celoxide 2021P, Celoxide 2081, EHPE 3150 (all manufactured by Daicel Corporation) and the like. It is done.
 また、トリアジン誘導体エポキシ樹脂としては、1,3,5-トリス(オキシラニルメチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン等が挙げられる。これらのトリアジン誘導体エポキシ樹脂は市販品として入手が可能で、例えば、TEPIC-S、TEPIC-L、TEPIC-VL、TEPIC-PAS B22、TEPIC-UC(いずれも日産化学製)があげられる。 Examples of the triazine derivative epoxy resin include 1,3,5-tris (oxiranylmethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione and the like. These triazine derivative epoxy resins are commercially available, and examples thereof include TEPIC-S, TEPIC-L, TEPIC-VL, TEPIC-PAS B22, and TEPIC-UC (all manufactured by Nissan Chemical Co., Ltd.).
 また、使用し得るエポキシ基を有するシルセスキオキサン化合物としては、分子内に2以上のエポキシ基を有するシルセスキオキサン化合物が好ましい。分子内に2以上のエポキシ基を有するシルセスキオキサン化合物としては、特に骨格は限定されないが、例えば鎖状、環状、ラダー状、あるいはそれら少なくとも2種以上の混合構造のシロキサン構造にグリシジル基および/またはエポキシシクロヘキサン構造を有するエポキシ樹脂が挙げられる。 Further, as the silsesquioxane compound having an epoxy group that can be used, a silsesquioxane compound having two or more epoxy groups in the molecule is preferable. As the silsesquioxane compound having two or more epoxy groups in the molecule, the skeleton is not particularly limited. For example, a glycidyl group and a siloxane structure having a chain structure, a cyclic structure, a ladder structure, or a mixed structure of at least two of them can be used. And / or an epoxy resin having an epoxycyclohexane structure.
 分子内に2以上のエポキシ基を有するシルセスキオキサン化合物の具体例としては、例えば、日本国特開2005-263869に記載のエポキシ環を有する籠型シルセスキオキサン、日本国特開2008-248169号公報に記載の脂環エポキシ基含有シリコーン樹脂、日本国特開2008-19422号公報に記載の一分子中に少なくとも2個のエポキシ官能性基を有するオルガノポリシルセスキオキサン樹脂などを使用することができる。これらの分子内に2以上のエポキシ基を有するシルセスキオキサン化合物は市販品として入手が可能で、分子内に2以上のエポキシ基を有する環状シロキサンである、商品名「X-40-2670」(信越化学工業(株)製)などがあげられる。  Specific examples of the silsesquioxane compound having two or more epoxy groups in the molecule include, for example, a cage silsesquioxane having an epoxy ring described in Japanese Patent Laid-Open No. 2005-263869, and Japanese Patent Laid-Open No. 2008-2008. An alicyclic epoxy group-containing silicone resin described in Japanese Patent No. 248169, and an organopolysilsesquioxane resin having at least two epoxy functional groups in one molecule described in Japanese Patent Application Laid-Open No. 2008-19422 are used. can do. These silsesquioxane compounds having two or more epoxy groups in the molecule are commercially available, and are cyclic siloxanes having two or more epoxy groups in the molecule, trade name “X-40-2670”. (Shin-Etsu Chemical Co., Ltd.).
 エポキシ樹脂と酸無水物化合物(B)の配合比は、エポキシ樹脂中のエポキシ基1当量に対して、酸無水物基が水酸基と反応して生じるカルボキシル基が0.5~1.5当量の比になるよう反応させることが好ましく、特に好ましくは0.5~1.2当量になるよう反応させることである。エポキシ基1当量に対して、カルボキシル基が0.5当量に満たない場合、あるいはカルボキシル基が1.5当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られない恐れがあるほか、着色しやすくなる問題もある。 The compounding ratio of the epoxy resin and the acid anhydride compound (B) is such that the carboxyl group generated by the reaction of the acid anhydride group with the hydroxyl group is 0.5 to 1.5 equivalents relative to 1 equivalent of the epoxy group in the epoxy resin. It is preferable to carry out the reaction so as to achieve a ratio, and particularly preferable to carry out the reaction so that the amount is 0.5 to 1.2 equivalent. When the carboxyl group is less than 0.5 equivalent relative to 1 equivalent of the epoxy group, or when the carboxyl group exceeds 1.5 equivalent, curing may be incomplete and good cured properties may not be obtained. In addition, there is a problem that it becomes easy to color.
 また、熱硬化性樹脂組成物にはその他の成分として、種々の成分を含有させることができる。第一の発明の熱硬化性樹脂組成物の成分として含有させることができるカルボン酸は、公知のものであれば特に限定することなく使用することができる。具体的には、トリメリット酸、シクロヘキサントリカルボン酸、ピロメリット酸、水添ピロメリット酸が存在すると架橋密度の高い硬化物が得られるため、高いガラス転移温度を有する硬化物を得ることができる。トリメリット酸、シクロヘキサントリカルボン酸、ピロメリット酸、水添ピロメリット酸のうち、着色しにくさの点で、シクロヘキサントリカルボン酸、水添ピロメリット酸が好ましい。 In addition, the thermosetting resin composition can contain various components as other components. The carboxylic acid that can be contained as a component of the thermosetting resin composition of the first invention can be used without particular limitation as long as it is a known carboxylic acid. Specifically, in the presence of trimellitic acid, cyclohexanetricarboxylic acid, pyromellitic acid, and hydrogenated pyromellitic acid, a cured product having a high crosslinking density can be obtained, so that a cured product having a high glass transition temperature can be obtained. Of trimellitic acid, cyclohexanetricarboxylic acid, pyromellitic acid, and hydrogenated pyromellitic acid, cyclohexanetricarboxylic acid and hydrogenated pyromellitic acid are preferable from the viewpoint of difficulty in coloring.
 上記カルボン酸を熱硬化性樹脂組成物に含有させる場合は、トリメリット酸、シクロヘキサントリカルボン酸、ピロメリット酸、水添ピロメリット酸から選ばれる1種または2種以上の化合物の合計が、熱硬化性樹脂組成物に占める割合が1重量%~90重量%であることを特徴とする。1重量%より低いとガラス転移温度が十分に高くならず、90重量%より高いと融点が高くなり、取扱いが困難になる。より好ましくは10~60重量%であり、さらに好ましくは20~50重量%である。 When the above carboxylic acid is contained in the thermosetting resin composition, the total of one or more compounds selected from trimellitic acid, cyclohexanetricarboxylic acid, pyromellitic acid and hydrogenated pyromellitic acid is thermosetting. The proportion of the conductive resin composition is 1% to 90% by weight. If it is lower than 1% by weight, the glass transition temperature is not sufficiently high, and if it is higher than 90% by weight, the melting point becomes high and handling becomes difficult. More preferably, it is 10 to 60% by weight, and still more preferably 20 to 50% by weight.
 第一の発明の熱硬化性樹脂組成物においては、重量比として、水酸基を3つ以上有する多価アルコール化合物(A):(トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、およびシクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸から選ばれる1種または2種以上の化合物)が99:1~1:99であることが好ましく、90:10~10:90がより好ましく、50:50~10:90であることが特に好ましい。上記比率にあることで、極めて耐熱性に優れるとともに、粘度も低く十分に混練することが可能となることから硬化物性にも優れる熱硬化性樹脂組成物となる。 In the thermosetting resin composition of the first invention, the polyhydric alcohol compound (A) having three or more hydroxyl groups as the weight ratio: (trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, and cyclohexanetricarboxylic acid One or more compounds selected from anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic acid anhydride, hydrogenated pyromellitic acid anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride ) Is preferably 99: 1 to 1:99, more preferably 90:10 to 10:90, and particularly preferably 50:50 to 10:90. By being in the said ratio, while being extremely excellent in heat resistance, it becomes possible to fully knead | knead low viscosity, Therefore It becomes a thermosetting resin composition excellent also in cured | curing physical property.
 また、上記水酸基を3つ以上有する多価アルコール化合物(A)及び、無水トリメリット酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸から選ばれる1種または2種以上の化合物の合計が、熱硬化性樹脂組成物に占める割合が1重量%~90重量%であることが好ましい。当該重量%であることで、混練性および成型性が向上し、硬化物性にも優れる熱硬化性樹脂組成物となる。 In addition, the polyhydric alcohol compound (A) having three or more hydroxyl groups, trimellitic anhydride, cyclohexanetricarboxylic anhydride, pyromellitic anhydride, hydrogenated pyromellitic anhydride, hexahydrophthalic anhydride, and methyl The total proportion of one or more compounds selected from hexahydrophthalic anhydride is preferably 1% by weight to 90% by weight in the thermosetting resin composition. By being the said weight%, kneadability and moldability improve and it becomes a thermosetting resin composition which is excellent also in hardened | cured material property.
 さらに、第一の発明の熱硬化性樹脂組成物に含有させることができる末端カルボン酸のオリゴエステルは、下記式(10)で表される。 Furthermore, the oligoester of the terminal carboxylic acid that can be contained in the thermosetting resin composition of the first invention is represented by the following formula (10).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(式中、複数存在するPは0~6の酸素原子、窒素原子、リン原子を含んでもよい、炭素数2~20の多価アルコールの残基を、Rは炭素数2~20の脂肪族炭化水素基を示す。複数存在するn、kは独立して存在し、平均で1~6を示す。またnの総計は2以上12未満である。) (Wherein a plurality of P are residues of a polyhydric alcohol having 2 to 20 carbon atoms which may contain 0 to 6 oxygen, nitrogen and phosphorus atoms, and R is an aliphatic having 2 to 20 carbon atoms) A hydrocarbon group, a plurality of n and k are present independently and represent an average of 1 to 6. The total of n is 2 or more and less than 12.)
 具体的な構造式としては、式(10)の構造を有し、分子内にエステル構造(好ましくは2つのエステル構造)を有する化合物である。また末端に複数のカルボキシル基を有する化合物である。 A specific structural formula is a compound having the structure of formula (10) and having an ester structure (preferably two ester structures) in the molecule. Moreover, it is a compound which has a some carboxyl group at the terminal.
 中でも、前記式(10)の末端カルボン酸のオリゴエステルが炭素数6以上の2~6官能の多価アルコールと飽和脂肪族環状酸無水物とのエステル化反応により得られた化合物であることが好ましい。 Among them, the oligoester of the terminal carboxylic acid represented by the formula (10) is a compound obtained by an esterification reaction of a bi- to hexafunctional polyhydric alcohol having 6 or more carbon atoms and a saturated aliphatic cyclic acid anhydride. preferable.
 より具体的には、前記式(10)に記載の末端カルボン酸のオリゴエステルにおいて、連結基Rは炭素数4~10のシクロアルカン骨格、もしくはノルボルナン骨格が好ましく、シクロアルカン骨格においては置換、もしくは無置換のシクロヘキサン構造、特にメチル基を具備するメチルシクロヘキサン構造がその硬化物における光学特性から好ましい。またノルボルナン骨格としてはノルボルナン、メチルノルボルナン構造が好ましい。ここで、置換されたものにおいて適用できる置換基としては、炭素数1~3のアルキル基、カルボキシル基等が挙げられる。 More specifically, in the oligoester of a terminal carboxylic acid represented by the formula (10), the linking group R is preferably a cycloalkane skeleton having 4 to 10 carbon atoms or a norbornane skeleton, and the cycloalkane skeleton is substituted or An unsubstituted cyclohexane structure, particularly a methylcyclohexane structure having a methyl group is preferred from the optical properties of the cured product. The norbornane skeleton is preferably a norbornane or methylnorbornane structure. Here, examples of the substituent that can be applied to the substituted one include an alkyl group having 1 to 3 carbon atoms and a carboxyl group.
 連結基Pは炭素数2~10の多価アルコールの残基(反応に用いた多価アルコールから水酸基を除いた残基)であるが、分岐鎖状の架橋基、もしくはシクロアルキル基が好ましく、特にPは下記(a)又は(b)で定義される2価の架橋基であることが好ましい。
(a)炭素数6~20の分岐構造を有する鎖状アルキル鎖であり、該鎖状アルキル鎖が炭素数3~12の直鎖の主鎖と、2~4個の側鎖を有し、かつその側鎖の少なくとも1つが炭素数2~10である架橋基、
又は、
(b)シクロ環上にメチル基を有してもよい、トリシクロデカンジメタノール又はペンタシクロペンタデカンジメタノール、から選ばれる少なくとも1種の架橋多環ジオールから、2つの水酸基を取り除いた2価の架橋基。
 但し、Pが(b)の場合、好ましいものは連結基Rが炭素数4~10のシクロアルカン骨格又はノルボルナン骨格のときは、後述する式(2A)において置換基Rが水素原子以外の基を表すことがより好ましい。
The linking group P is a residue of a polyhydric alcohol having 2 to 10 carbon atoms (residue obtained by removing a hydroxyl group from the polyhydric alcohol used in the reaction), and is preferably a branched cross-linking group or a cycloalkyl group. In particular, P is preferably a divalent crosslinking group defined by the following (a) or (b).
(A) a chain alkyl chain having a branched structure having 6 to 20 carbon atoms, the chain alkyl chain having a linear main chain having 3 to 12 carbon atoms and 2 to 4 side chains; And at least one of the side chains has a bridging group having 2 to 10 carbon atoms,
Or
(B) a divalent diamine obtained by removing two hydroxyl groups from at least one crosslinked polycyclic diol selected from tricyclodecane dimethanol or pentacyclopentadecane dimethanol, which may have a methyl group on the cyclo ring. Cross-linking group.
However, when P is (b), it is preferable that when the linking group R is a cycloalkane skeleton or a norbornane skeleton having 4 to 10 carbon atoms, the substituent R 3 is a group other than a hydrogen atom in the formula (2A) described later. Is more preferable.
 尚、上記オリゴエステルの軟化点は通常50℃以上であるが、60℃以上が好ましく、80℃以上がより好ましい。上限値に特に制限はないが通常500℃以下であり、300℃以下であることが好ましく、200℃以下であることがより好ましい。 In addition, although the softening point of the said oligoester is 50 degreeC or more normally, 60 degreeC or more is preferable and 80 degreeC or more is more preferable. Although there is no restriction | limiting in particular in an upper limit, Usually, it is 500 degrees C or less, It is preferable that it is 300 degrees C or less, and it is more preferable that it is 200 degrees C or less.
 第一の発明における上記特に好ましい末端カルボン酸のオリゴエステルは、炭素数6以上の2~6官能の多価アルコールと飽和脂肪族環状酸無水物とを、付加反応させることにより得ることができる。
 第一の発明における末端カルボン酸のオリゴエステルは、2種の末端カルボン酸のオリゴエステルを含む組成物であってもよい。末端カルボン酸のオリゴエステルを少なくとも2種含む末端カルボン酸のオリゴエステル組成物を得る方法としては、上記方法で得られた単一の末端カルボン酸のオリゴエステルを少なくとも2種を混合する方法、または、上記の末端カルボン酸のオリゴエステルを合成する際に、上記飽和脂肪族環状酸無水物として、下記で選ばれる飽和脂肪族環状酸無水物から少なくとも2種の混合物を使用するか、前記多価アルコールを2種使用して、付加反応を行う方法がある。
The particularly preferred oligoester of a terminal carboxylic acid in the first invention can be obtained by addition reaction of a bi- to hexafunctional polyhydric alcohol having 6 or more carbon atoms and a saturated aliphatic cyclic acid anhydride.
The oligoester of the terminal carboxylic acid in the first invention may be a composition containing two kinds of oligoesters of the terminal carboxylic acid. As a method for obtaining an oligoester composition of a terminal carboxylic acid containing at least two oligoesters of a terminal carboxylic acid, a method of mixing at least two kinds of oligoesters of a single terminal carboxylic acid obtained by the above method, or When synthesizing the oligoester of the above terminal carboxylic acid, the saturated aliphatic cyclic acid anhydride is selected from the following saturated aliphatic cyclic acid anhydrides, or a mixture of at least two kinds is used. There is a method of performing an addition reaction using two kinds of alcohols.
 末端カルボン酸のオリゴエステルの合成に用いる飽和脂肪族環状酸無水物としては、シクロヘキサン構造を有し、該シクロヘキサン環上にメチル基置換又はカルボキシル基置換を有し、又は無置換であり、シクロヘキサン環に結合した酸無水物基を分子内に1つ以上(好ましくは1つ)有する化合物を挙げることができる。
 具体的にはヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、およびシクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物、無水トリメリット酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸無水物、および水添ピロメリット酸無水物からなる群から選ばれる少なくとも1種の酸無水物が挙げられる。
The saturated aliphatic cyclic acid anhydride used for the synthesis of the oligoester of a terminal carboxylic acid has a cyclohexane structure, has a methyl group substitution or a carboxyl group substitution on the cyclohexane ring, or is unsubstituted, and the cyclohexane ring And a compound having one or more (preferably one) acid anhydride groups bonded to.
Specifically, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, and cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride, trimellitic anhydride, cyclohexanetricarboxylic anhydride, pyromellitic anhydride And at least one acid anhydride selected from the group consisting of hydrogenated pyromellitic acid anhydride.
 第一の発明における末端カルボン酸のオリゴエステルの合成に用いる炭素数6以上の2~6官能の多価アルコールとしては、具体的には、前記式(10)中の架橋基Pの末端に水酸基を付けた末端カルボン酸のオリゴエステルを挙げることができる。
 前記式(10)において、Pで表される架橋基は、好ましくは前記(a)または(b)で定義される2価の架橋基であり、それらについて以下に具体的に説明する。
 前記(a)で定義される2価の架橋基は、炭素数6~20の分岐構造を有する2価のアルコール(ジオール)から、水酸基を除いた2価の鎖状アルキル鎖であり、ジオールの2個のアルコール性水酸基に挟まれたアルキル鎖を主鎖とし、該アルキル鎖から分岐したアルキル鎖(側鎖という)を有する構造である。該側鎖は、主鎖を構成するいずれの炭素原子から分岐していてもよく、例えばアルコール性水酸基が結合していた炭素原子(主鎖の末端炭素原子)から分岐している場合も含む。該構造を有する架橋基であれば何れでもよく、このような架橋基の具体例を下記式(a1)に示す。
The bi- to hexafunctional polyhydric alcohol having 6 or more carbon atoms used for the synthesis of the oligoester of the terminal carboxylic acid in the first invention is specifically a hydroxyl group at the end of the bridging group P in the formula (10). And an oligoester of a terminal carboxylic acid marked with.
In the formula (10), the crosslinkable group represented by P is preferably a divalent crosslinkable group defined by the above (a) or (b), and will be specifically described below.
The divalent crosslinking group defined in (a) is a divalent chain alkyl chain obtained by removing a hydroxyl group from a divalent alcohol (diol) having a branched structure having 6 to 20 carbon atoms. This is a structure having an alkyl chain sandwiched between two alcoholic hydroxyl groups as a main chain and an alkyl chain (referred to as a side chain) branched from the alkyl chain. The side chain may be branched from any carbon atom constituting the main chain, and includes, for example, a case where the side chain is branched from a carbon atom to which an alcoholic hydroxyl group is bonded (terminal carbon atom of the main chain). Any crosslinking group having such a structure may be used, and a specific example of such a crosslinking group is shown in the following formula (a1).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
前記式中、*印で式(10)におけるPの両側の酸素原子と結合する。 In the above formula, it is bonded with oxygen atoms on both sides of P in the formula (10) by * mark.
 上記(a)で定義されるアルキレン架橋基は、主鎖アルキレン基に対し、アルキル分岐鎖(側鎖)を有する構造であれば特に制限はないが、主鎖の炭素数が3以上の主鎖であり、少なくとも1個のアルキル側鎖を有するものが好ましく、またアルキル側鎖を2つ以上有するものが特に好ましい。より好ましいものとしては、炭素数3~12の直鎖の主鎖と、2~4個の側鎖を有し、かつその側鎖の少なくとも1つが炭素数2~10である架橋基を挙げることができる。この場合、側鎖の少なくとも2つが炭素数2~10である架橋基は更に好ましい。また、2~4個の側鎖は主鎖の異なる炭素原子から分岐していることが好ましい。 The alkylene bridging group defined in (a) is not particularly limited as long as it has a structure having an alkyl branched chain (side chain) with respect to the main chain alkylene group, but the main chain has 3 or more main chain carbon atoms. In particular, those having at least one alkyl side chain are preferred, and those having two or more alkyl side chains are particularly preferred. More preferable examples include a bridging group having a linear main chain having 3 to 12 carbon atoms and 2 to 4 side chains, and at least one of the side chains having 2 to 10 carbon atoms. Can do. In this case, a crosslinking group in which at least two of the side chains have 2 to 10 carbon atoms is more preferable. The 2 to 4 side chains are preferably branched from carbon atoms having different main chains.
 より具体的な化合物としては前記式(a1)に記載した架橋基において、*印の位置にヒドロキシル基が結合した化合物を挙げることができる。
 原料として使用する多価アルコールの中では、少なくとも2個の側鎖を有し、該側鎖の中で少なくとも2個が炭素数2~4の側鎖である多価アルコールが好ましい。
 このような骨格の中で特に好ましい多価アルコールとしては2,4-ジエチル-1,5-ペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、2-エチル-1,3-ヘキサンジオールなどが挙げられ、特に2,4-ジエチル-1,5-ペンタンジオールが挙げられる。
More specific examples of the compound include a compound in which a hydroxyl group is bonded to the position of * in the crosslinking group described in the formula (a1).
Among the polyhydric alcohols used as the raw material, polyhydric alcohols having at least two side chains and at least two of which are side chains having 2 to 4 carbon atoms are preferred.
Among such skeletons, particularly preferred polyhydric alcohols are 2,4-diethyl-1,5-pentanediol, 2-ethyl-2-butyl-1,3-propanediol, 2-ethyl-1,3- Examples include hexanediol, and particularly 2,4-diethyl-1,5-pentanediol.
 前記(b)で定義される架橋基としては、下記式(b1)で表される2価の基を挙げることができる。 Examples of the crosslinking group defined in (b) include a divalent group represented by the following formula (b1).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 前記(b)で定義される架橋基の場合の、架橋多環ジオール残基としては、トリシクロデカン構造、ペンタシクロペンタデカン構造を主骨格とするジオール残基であり、下記式(b2)で表される。 In the case of the crosslinking group defined in (b) above, the crosslinked polycyclic diol residue is a diol residue having a tricyclodecane structure or a pentacyclopentadecane structure as the main skeleton, and is represented by the following formula (b2). Is done.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
式中、複数存在するRはそれぞれ独立して、水素原子、もしくはメチル基を表す。これらの中で、Rが全て水素原子である架橋基が好ましい。
 具体的にはトリシクロデカンジメタノール、メチルトリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノールなどが挙げられる。
In the formula, a plurality of R 2 each independently represents a hydrogen atom or a methyl group. Of these, a bridging group in which all R 2 are hydrogen atoms is preferred.
Specific examples include tricyclodecane dimethanol, methyl tricyclodecane dimethanol, and pentacyclopentadecane dimethanol.
 酸無水物と多価アルコールの反応としては一般に酸や塩基を触媒とする付加反応であるが、第一の発明においては特に無触媒での反応が好ましい。
 触媒を用いる場合、使用しうる触媒としては、例えば塩酸、硫酸、メタンスルホン酸、トリフルオロメタンスルホン酸、パラトルエンスルホン酸、硝酸、トリフルオロ酢酸、トリクロロ酢酸等の酸性化合物、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム等の金属水酸化物、トリエチルアミン、トリプロピルアミン、トリブチルアミン等のアミン化合物、ピリジン、ジメチルアミノピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、イミダゾール、トリアゾール、テトラゾール等の複素環式化合物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルプロピルアンモニウムヒドロキシド、トリメチルブチルアンモニウムヒドロキシド、トリメチルセチルアンモニウムヒドロキシド、トリオクチルメチルアンモニウムヒドロキシド、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムヨージド、テトラメチルアンモニウムアセテート、トリオクチルメチルアンモニウムアセテート等の4級アンモニウム塩等が挙げられる。これらの触媒は1種又は2種以上を混合して用いても良い。これらの中で、トリエチルアミン、ピリジン、ジメチルアミノピリジンが好ましい。
The reaction between the acid anhydride and the polyhydric alcohol is generally an addition reaction using an acid or a base as a catalyst, but in the first invention, a reaction without a catalyst is particularly preferable.
When a catalyst is used, examples of the catalyst that can be used include hydrochloric acid, sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, nitric acid, trifluoroacetic acid, trichloroacetic acid and other acidic compounds, sodium hydroxide, hydroxide Metal hydroxides such as potassium, calcium hydroxide and magnesium hydroxide, amine compounds such as triethylamine, tripropylamine and tributylamine, pyridine, dimethylaminopyridine, 1,8-diazabicyclo [5.4.0] undec-7 -Heterocyclic compounds such as ene, imidazole, triazole, tetrazole, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethyl Ammonium hydroxide, trimethylpropylammonium hydroxide, trimethylbutylammonium hydroxide, trimethylcetylammonium hydroxide, trioctylmethylammonium hydroxide, tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, tetramethylammonium acetate, A quaternary ammonium salt such as trioctylmethylammonium acetate can be used. These catalysts may be used alone or in combination of two or more. Of these, triethylamine, pyridine, and dimethylaminopyridine are preferred.
 触媒の使用量には、特に制限はないが、原料の総重量100重量部に対して、通常0.001~5重量部を、必要により使用するのが好ましい。
 本反応においては無溶剤での反応が好ましいが、有機溶剤を使用しても構わない。有機溶剤の使用量としては、反応基質である前記酸無水物と前記多価アルコールの総量1部に対し、重量比で0.005~1部であり、好ましくは0.005~0.7部、より好ましくは0.005~0.5部(すなわち50重量%以下)である。有機溶剤の使用量が上記反応基質1重量部に対して、重量比で1部を超える場合、反応の進行が極度に遅くなることから好ましくない。使用できる有機溶剤の具体的な例としてはヘキサン、シクロヘキサン、ヘプタン等のアルカン類、トルエン、キシレン等の芳香族炭化水素化合物、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、アノン等のケトン類、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、酢酸エチル、酢酸ブチル、蟻酸メチルなどのエステル化合物などが使用できる。
The amount of the catalyst used is not particularly limited, but it is usually preferable to use 0.001 to 5 parts by weight, if necessary, with respect to 100 parts by weight of the total weight of the raw materials.
In this reaction, a reaction without a solvent is preferable, but an organic solvent may be used. The amount of the organic solvent used is 0.005 to 1 part by weight, preferably 0.005 to 0.7 part, based on 1 part of the total amount of the acid anhydride and the polyhydric alcohol as reaction substrates. More preferably, it is 0.005 to 0.5 part (that is, 50% by weight or less). When the amount of the organic solvent used exceeds 1 part by weight with respect to 1 part by weight of the reaction substrate, it is not preferable because the progress of the reaction becomes extremely slow. Specific examples of organic solvents that can be used include alkanes such as hexane, cyclohexane and heptane, aromatic hydrocarbon compounds such as toluene and xylene, ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and anone, diethyl ether , Ethers such as tetrahydrofuran and dioxane, and ester compounds such as ethyl acetate, butyl acetate and methyl formate can be used.
 本反応は20℃程度の温度でも十分に反応は進行する。反応時間の問題から反応温度は30~200℃が好ましく、より好ましくは40~200℃、特に好ましくは40~150℃である。特に本反応を無溶剤で行う場合は、酸無水物の揮発があるため、100℃以下での反応が好ましく、30~100℃または40~100℃での反応が特に好ましい。 This reaction proceeds sufficiently even at a temperature of about 20 ° C. In view of the reaction time, the reaction temperature is preferably 30 to 200 ° C, more preferably 40 to 200 ° C, and particularly preferably 40 to 150 ° C. In particular, when this reaction is carried out in the absence of a solvent, the reaction at 100 ° C. or lower is preferred, and the reaction at 30 to 100 ° C. or 40 to 100 ° C. is particularly preferred because of the volatilization of the acid anhydride.
 前記酸無水物と前記多価アルコールとの反応比率は理論的には等モルでの反応が好ましいが、必要に応じて変更可能である。
 反応させる際の具体的な両者の仕込み比率としては、その官能基当量で、該酸無水物基1当量に対して、該多価アルコールを、その水酸基当量で、0.001~2当量、より好ましくは0.01~1.5当量、さらに好ましくは0.1~1.2当量となる割合で仕込むのが好ましい。
 第一の発明においては得られる末端カルボン酸のオリゴエステルが固形であることが好ましく、固形の樹脂状末端カルボン酸のオリゴエステルを得るためには、理想的には等モル当量以上の多価アルコールを使用することが好ましいが、フィラーを添加するため流動性が重要となり、この流動性を確保する為に、その粘度バランスから、固形を保つ範囲(軟化点50℃以上)で多少のバランスを崩しても構わない。
 具体的には、酸無水物当量に対し、アルコール性水酸基の当量比において0.85~1.20モル当量が好ましく、特に0.90~1.1.0モル当量が好ましい。
The reaction ratio between the acid anhydride and the polyhydric alcohol is theoretically preferably equimolar, but can be changed as necessary.
The specific charging ratio of the two at the time of reaction is such that the polyhydric alcohol is equivalent to 0.001 to 2 equivalents in terms of the hydroxyl group equivalent to 1 equivalent of the acid anhydride group in terms of the functional group equivalent. It is preferable to charge at a ratio of preferably 0.01 to 1.5 equivalents, more preferably 0.1 to 1.2 equivalents.
In the first invention, the obtained terminal carboxylic acid oligoester is preferably solid, and in order to obtain a solid resinous terminal carboxylic acid oligoester, ideally an equimolar equivalent or more of polyhydric alcohol However, fluidity is important because of the addition of filler, and in order to secure this fluidity, some balance is lost in the range where the solids are maintained (softening point of 50 ° C or higher). It doesn't matter.
Specifically, the equivalent ratio of the alcoholic hydroxyl group to the acid anhydride equivalent is preferably 0.85 to 1.20 molar equivalent, particularly preferably 0.90 to 1.1.0 molar equivalent.
 反応時間は反応温度、触媒量等にもよるが、工業生産という観点から、長時間の反応は多大なエネルギーを消費することになるため好ましくはない。また短すぎる反応時間はその反応が急激であることを意味し、安全性の面から好ましく無い。好ましい範囲としては1~48時間、好ましくは1~36時間、より好ましくは1~24時間、更に好ましくは2~10時間程度である。 Although the reaction time depends on the reaction temperature, the amount of catalyst, etc., from the viewpoint of industrial production, a long reaction time is not preferable because it consumes a great deal of energy. An excessively short reaction time means that the reaction is abrupt and is not preferable from the viewpoint of safety. A preferred range is 1 to 48 hours, preferably 1 to 36 hours, more preferably 1 to 24 hours, and still more preferably about 2 to 10 hours.
 反応終了後、触媒を用いた場合は、それぞれ中和、水洗、吸着などによって触媒の除去を行い、溶剤を留去することで目的とする末端カルボン酸のオリゴエステルが得られる。一方、無触媒で反応を行った場合は必要に応じて溶剤を留去することで目的とする末端カルボン酸のオリゴエステルが得られる。また、溶剤を使用した場合には、溶剤を除去することで目的とする末端カルボン酸のオリゴエステルが得られる。さらに無溶剤、無触媒の場合はそのまま取り出すことで製品とすることができる。 After completion of the reaction, when a catalyst is used, the catalyst is removed by neutralization, washing with water, adsorption, etc., and the solvent is distilled off to obtain the desired terminal carboxylic acid oligoester. On the other hand, when the reaction is carried out without a catalyst, the desired oligoester of the terminal carboxylic acid can be obtained by distilling off the solvent as necessary. Moreover, when a solvent is used, the oligoester of the terminal carboxylic acid made into the objective is obtained by removing a solvent. Further, in the case of no solvent and no catalyst, the product can be obtained by taking it out as it is.
 最も好適な製造方法としては、前記酸無水物、前記多価アルコールを、無触媒の条件下、40~150℃で反応させ、溶剤を除去したのち取り出すという手法である。 The most preferable production method is a method in which the acid anhydride and the polyhydric alcohol are reacted at 40 to 150 ° C. under non-catalytic conditions to remove the solvent and then taken out.
 このようにして得られる前記末端カルボン酸のオリゴエステルまたは該末端カルボン酸のオリゴエステルを含む組成物は、通常、無色~淡黄色の固形の樹脂状を示す(場合によっては結晶化する)。該末端カルボン酸のオリゴエステルの軟化点は50~190℃であることが好ましく、55~150℃であることがより好ましく、60~120℃であることが特に好ましい。このような軟化点を有する末端カルボン酸のオリゴエステルを液状とすることなく直接熱硬化性樹脂組成物中に混ぜることで、極めて高い反射率保持率を有することとなり、耐熱試験にかけた際にも反射率が低下し難い反射部材を提供することが可能となる。 The thus obtained terminal carboxylic acid oligoester or the composition containing the terminal carboxylic acid oligoester usually shows a colorless to pale yellow solid resinous form (which may crystallize in some cases). The softening point of the terminal carboxylic acid oligoester is preferably 50 to 190 ° C, more preferably 55 to 150 ° C, and particularly preferably 60 to 120 ° C. By mixing the oligoester of a terminal carboxylic acid having such a softening point directly into a thermosetting resin composition without making it liquid, it has an extremely high reflectance retention rate, and even when subjected to a heat test. It is possible to provide a reflecting member whose reflectance is not easily lowered.
 通常、架橋基が、(a)で定義される側鎖を有するアルキレン基である場合、無色~淡黄色の固形の樹脂状を示す。
 第一の発明においては、末端カルボン酸のオリゴエステルを含む熱硬化性樹脂組成物を使用する最適な方法が、トランスファーで成形であることから、末端カルボン酸のオリゴエステルは固形の樹脂状である。
Usually, when the crosslinking group is an alkylene group having a side chain defined by (a), it shows a colorless to pale yellow solid resinous form.
In the first invention, since the optimum method of using the thermosetting resin composition containing the oligoester of the terminal carboxylic acid is molding by transfer, the oligoester of the terminal carboxylic acid is in the form of a solid resin. .
 架橋基が(b)で定義される架橋基の場合、脂肪族炭化水素基が炭素数4~10のシクロアルカン骨格又はノルボルナン骨格であるとき、脂環式の置換基の全てが水素原子の末端カルボン酸のオリゴエステルは、硬化時の着色が見られ、特に厳しい光学用途には好適ではない。脂肪族炭化水素基が炭素数4~10のシクロアルカン骨格又はノルボルナン骨格であるとき、置換基がメチル基またはカルボキシル基の化合物ではそのような着色は少なく、その光学特性が向上する。 When the bridging group is a bridging group defined by (b), when the aliphatic hydrocarbon group is a cycloalkane skeleton or a norbornane skeleton having 4 to 10 carbon atoms, all of the alicyclic substituents are at the end of the hydrogen atom. Carboxylic acid oligoesters show coloration upon curing and are not suitable for particularly demanding optical applications. When the aliphatic hydrocarbon group is a cycloalkane skeleton or a norbornane skeleton having 4 to 10 carbon atoms, the compound having a methyl group or a carboxyl group as the substituent is less colored and the optical properties are improved.
 前記(a)で定義される架橋基の化合物においても、脂肪族炭化水素基が炭素数4~10のシクロアルカン骨格又はノルボルナン骨格であるとき、置換基がメチル基またはカルボキシル基の化合物の場合の方が、光学特性が向上し、好ましい。 In the compound of the crosslinking group defined in (a), when the aliphatic hydrocarbon group is a cycloalkane skeleton or a norbornane skeleton having 4 to 10 carbon atoms, the substituent is a methyl group or a carboxyl group. This is preferable because optical characteristics are improved.
 すなわち、第一の発明の末端カルボン酸のオリゴエステル組成物として、炭素数4~10のシクロアルカン骨格又はノルボルナン骨格であるとき、置換基は好ましくはメチル基もしくはカルボキシル基、又は両者を有する式(9)の末端カルボン酸のオリゴエステルを含む組成物が好ましい。該末端カルボン酸のオリゴエステルを2種以上含む末端カルボン酸のオリゴエステル組成物の場合、少なくとも当該置換基が水素原子でない式(1)の末端カルボン酸のオリゴエステル(当該置換基が前記アルキル基、好ましくはメチル基、又はカルボキシル基の末端カルボン酸のオリゴエステル)、を、末端カルボン酸のオリゴエステルの総量に対して、50モル%以上含む組成物が好ましい。より好ましくは、当該置換基が水素原子でない式(9)の末端カルボン酸のオリゴエステルを70モル%以上、最も好ましくは90モル%以上含む末端カルボン酸のオリゴエステル組成物が好ましい。残部が、Rが水素原子である下記式(2A)の末端カルボン酸のオリゴエステルである。 That is, when the terminal carboxylic acid oligoester composition of the first invention is a cycloalkane skeleton or norbornane skeleton having 4 to 10 carbon atoms, the substituent is preferably a formula having a methyl group or a carboxyl group, or both ( A composition containing an oligoester of terminal carboxylic acid 9) is preferred. In the case of an oligoester composition of a terminal carboxylic acid containing two or more kinds of oligoesters of the terminal carboxylic acid, at least the terminal carboxylic acid oligoester of the formula (1) in which the substituent is not a hydrogen atom (the substituent is the alkyl group) , Preferably an oligoester of a terminal carboxylic acid having a methyl group or a carboxyl group) is preferably 50 mol% or more based on the total amount of oligoesters of the terminal carboxylic acid. More preferably, a terminal carboxylic acid oligoester composition containing 70 mol% or more, most preferably 90 mol% or more of the terminal carboxylic acid oligoester of the formula (9) in which the substituent is not a hydrogen atom is preferred. The remainder is an oligoester of a terminal carboxylic acid of the following formula (2A) in which R 3 is a hydrogen atom.
 第一の発明において好適な末端カルボン酸のオリゴエステルとしては、下記式(2A)で表される末端カルボン酸のオリゴエステルが用いられる。 As a suitable terminal carboxylic acid oligoester in the first invention, a terminal carboxylic acid oligoester represented by the following formula (2A) is used.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(上記式中、Pは上記と同じ意味を表し、Rは水素原子、炭素数1~3のアルキル基またはカルボキシル基を表す。)
 ここで、上記式(2A)においては、上記に記載の通りの理由により、Rが炭素数1~3のアルキル基またはカルボキシル基を好適に使用できる。
 末端カルボン酸オリゴエステルは、数平均分子量Mnが300以上である末端カルボン酸のオリゴエステルであることが好ましい。
(In the above formula, P represents the same meaning as described above, and R 3 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a carboxyl group.)
Here, in the above formula (2A), for the reasons described above, an alkyl group or a carboxyl group in which R 3 has 1 to 3 carbon atoms can be suitably used.
The terminal carboxylic acid oligoester is preferably an oligoester of a terminal carboxylic acid having a number average molecular weight Mn of 300 or more.
 さらに、併用しうる別の硬化剤としては、例えばアミン系化合物、不飽和環構造を有する酸無水物系化合物、オルガノシロキサン骨格を有する酸無水物、アミド系化合物、フェノール系化合物、カルボン酸系化合物などが挙げられる。用いうる硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂、無水フタル酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロロメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4’-ビス(クロロメチル)ベンゼン、1,4’-ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、イミダゾール、トリフルオロボラン-アミン錯体、グアニジン誘導体、テルペンとフェノール類の縮合物などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。 Further, other curing agents that can be used in combination include, for example, amine compounds, acid anhydride compounds having an unsaturated ring structure, acid anhydrides having an organosiloxane skeleton, amide compounds, phenol compounds, and carboxylic acid compounds. Etc. Specific examples of the curing agent that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from ethylenediamine and phthalic anhydride, pyromellitic anhydride. Acid, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2 , 1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol Diol, terpene diphenol, 4,4'-biphenol, 2,2'-biphenol, 3,3 ', 5,5'-tetramethyl- [1,1'-biphenyl] -4,4'-diol, hydroquinone , Resorcinol, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenols (phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene , Dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetophenone, o-hydroxyacetophenone, dicyclopentadiene, furfural, 4,4 -Bis (chloromethyl) -1,1'-biphenyl, 4,4'-bis (methoxymethyl) -1,1'-biphenyl, 1,4'-bis (chloromethyl) benzene, 1,4'-bis Examples include polycondensates with (methoxymethyl) benzene and the like, modified products thereof, halogenated bisphenols such as tetrabromobisphenol A, imidazole, trifluoroborane-amine complexes, guanidine derivatives, and condensates of terpenes and phenols. However, it is not limited to these. These may be used alone or in combination of two or more.
 第一の発明の硬化性樹脂組成物には、必要に応じて硬化促進剤を添加することができる。硬化促進剤としては、2-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2,4-ジアミノ-6(2'-メチルイミダゾール(1'))エチル-s-トリアジン、2,4-ジアミノ-6(2'-ウンデシルイミダゾール(1'))エチル-s-トリアジン、2,4-ジアミノ-6(2'-エチル,4-メチルイミダゾール(1'))エチル-s-トリアジン、2,4-ジアミノ-6(2'-メチルイミダゾール(1'))エチル-s-トリアジン・イソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸の2:3付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-3,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-ヒドロキシメチル-5-メチルイミダゾール、1-シアノエチル-2-フェニル-3,5-ジシアノエトキシメチルイミダゾールの各種イミダゾール類、及び、それらイミダゾール類とフタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、マレイン酸、蓚酸等の末端カルボン酸のオリゴエステルとの塩類、ジシアンジアミド等のアミド類、1,8-ジアザ-ビシクロ(5.4.0)ウンデセン-7等のジアザ化合物及びそれらのテトラフェニルボレート、フェノールノボラック等の塩類、前記末端カルボン酸のオリゴエステル類、又はホスフィン酸類との塩類、テトラブチルアンモニウムブロマイド、セチルトリメチルアンモニウムブロマイド、トリオクチルメチルアンモニウムブロマイド、ヘキサデシルトリメチルアンモニウムヒドロキシド等の4級アンモニウム塩(好ましくはC1~C20アルキルアンモニウム塩、トリフェニルホスフィン、トリ(トルイル)ホスフィン、テトラフェニルホスホニウムブロマイド、テトラフェニルホスホニウムテトラフェニルボレート等のホスフィン類やホスホニウム化合物、2,4,6-トリスアミノメチルフェノール等のフェノール類、アミンアダクト、オクチル酸スズ、オクタン酸亜鉛、ステアリン酸亜鉛、ナフテン酸銅、ナフテン酸コバルト等の金属化合物等、及びこれら硬化促進剤をマイクロカプセルにしたマイクロカプセル型硬化促進剤、カルボニル化合物亜鉛錯体等が挙げられる。これら硬化促進剤のどれを用いるかは、例えば耐熱性、硬化速度、作業条件といった得られる透明樹脂組成物に要求される特性によって適宜選択される。第一の発明において好ましいものとしては、ホスホニウム化合物(より好ましくは4級ホスホニウム)またはステアリン酸亜鉛が挙げられる。
 硬化促進剤は、エポキシ樹脂100重量部に対し通常0.001~15重量部、好ましくは0.01~5重量部の範囲で使用される。
A hardening accelerator can be added to the curable resin composition of 1st invention as needed. Curing accelerators include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl- 2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 2,4-diamino-6 (2′-methylimidazole (1 ′)) ) Ethyl-s-triazine, 2,4-diamino-6 (2′-undecylimidazole (1 ′)) ethyl-s-triazine, 2,4-diamino-6 (2′-ethyl, 4-methylimidazole ( 1 ′)) Ethyl-s-triazine, 2,4-diamino-6 (2′-methylimidazole) (1 ')) ethyl-s-triazine isocyanuric acid adduct, 2-methylimidazole isocyanuric acid 2: 3 adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-3,5-dihydroxymethylimidazole , 2-phenyl-4-hydroxymethyl-5-methylimidazole, 1-cyanoethyl-2-phenyl-3,5-dicyanoethoxymethylimidazole imidazoles, and imidazoles with phthalic acid, isophthalic acid, terephthalic acid , Salts with oligoesters of terminal carboxylic acids such as trimellitic acid, pyromellitic acid, naphthalenedicarboxylic acid, maleic acid and succinic acid, amides such as dicyandiamide, 1,8-diaza-bicyclo (5.4.0) undecene Diaza compounds such as -7 and their tetrafes Salts such as ruborates and phenol novolaks, oligoesters of the terminal carboxylic acids, salts with phosphinic acids, quaternary compounds such as tetrabutylammonium bromide, cetyltrimethylammonium bromide, trioctylmethylammonium bromide, hexadecyltrimethylammonium hydroxide Ammonium salts (preferably C1-C20 alkyl ammonium salts, phosphines such as triphenylphosphine, tri (toluyl) phosphine, tetraphenylphosphonium bromide, tetraphenylphosphonium tetraphenylborate, phosphonium compounds, 2,4,6-trisaminomethyl Phenols and other phenols, amine adducts, tin octylate, zinc octoate, zinc stearate, copper naphthenate, naphthenic acid Examples thereof include metal compounds such as cobalt, microcapsule-type curing accelerators in which these curing accelerators are microcapsules, and carbonyl compound zinc complexes. Which of these curing accelerators is used is appropriately selected depending on characteristics required for the obtained transparent resin composition, such as heat resistance, curing speed, and working conditions. As a thing preferable in 1st invention, a phosphonium compound (preferably quaternary phosphonium) or a zinc stearate is mentioned.
The curing accelerator is usually used in an amount of 0.001 to 15 parts by weight, preferably 0.01 to 5 parts by weight, based on 100 parts by weight of the epoxy resin.
 必要に応じて、上述した添加剤以外の添加剤として、一般によく使用されるエポキシ樹脂用添加剤、例えば、顔料、染料、蛍光増白剤、補強材、充填剤、白色顔料、核剤、界面活性剤、可塑剤、粘度調整剤、流動性調整剤、難燃剤、酸化防止剤、紫外線吸収剤、光安定剤を添加してもよい。 If necessary, as additives other than those mentioned above, commonly used additives for epoxy resins such as pigments, dyes, fluorescent brighteners, reinforcing materials, fillers, white pigments, nucleating agents, interfaces An activator, a plasticizer, a viscosity modifier, a fluidity modifier, a flame retardant, an antioxidant, an ultraviolet absorber, and a light stabilizer may be added.
 上述した充填剤としては、結晶シリカ、溶融シリカ、酸化アンチモン、酸化チタン、酸化マグネシウム、酸化ジルコニウム、水酸化アルミニウム、水酸化マグネシウム、アルミナ等が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
 無機充填剤の配合量は、硬化性樹脂組成物の合計量100重量部に対して、1~1000重量部であることが好ましく、1~800重量部であることがより好ましい。
Examples of the filler include, but are not limited to, crystalline silica, fused silica, antimony oxide, titanium oxide, magnesium oxide, zirconium oxide, aluminum hydroxide, magnesium hydroxide, and alumina. These may be used alone or in combination of two or more.
The blending amount of the inorganic filler is preferably 1 to 1000 parts by weight, and more preferably 1 to 800 parts by weight with respect to 100 parts by weight of the total amount of the curable resin composition.
 上述した白色顔料としては、特に限定されないが、例えば、アルミナ、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、酸化亜鉛、塩基性炭酸亜鉛、カオリン、炭酸カルシウム等を用いることができる。なお、白色顔料は中空粒子であってもよい。また、白色顔料に対して、ケイ素化合物、アルミニウム化合物、有機物等で適宜表面処理をしてもよい。これらは単独でも2種以上を併用しても構わない。また、上記白色顔料の平均粒径は、0.01~50μmの範囲にあることが好ましい。0.01μm未満であると粒子が凝集しやすく分散性が悪くなる傾向にあり、50μmを超えると硬化物の反射特性が十分に得られない傾向にある。上記平均粒径は、例えば、レーザー回折散乱式粒度分布計を用いて測定することができる。第一の発明においては酸化チタン、特に二酸化チタンの粉末を使用することが好ましい。白色度、光反射性、および隠蔽力が高く、分散性安定性に優れ、入手が容易なためである。酸化チタンの結晶形は特に限定されず、ルチル型であってもよいし、アナターゼ型であってもよいし、両者が混在していてもよいが、アナターゼ型は光触媒機能を有するため樹脂を劣化させる懸念があるので、第一の発明においてはルチル型が好ましい。 The white pigment described above is not particularly limited, and for example, alumina, magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, zinc oxide, basic zinc carbonate, kaolin, calcium carbonate, and the like can be used. The white pigment may be a hollow particle. Moreover, you may surface-treat with a silicon compound, an aluminum compound, organic substance etc. suitably with respect to a white pigment. These may be used alone or in combination of two or more. The average particle size of the white pigment is preferably in the range of 0.01 to 50 μm. If it is less than 0.01 μm, the particles tend to aggregate and the dispersibility tends to deteriorate, and if it exceeds 50 μm, the reflective properties of the cured product tend not to be sufficiently obtained. The average particle diameter can be measured using, for example, a laser diffraction / scattering particle size distribution meter. In the first invention, it is preferable to use titanium oxide, particularly titanium dioxide powder. This is because whiteness, light reflectivity, and hiding power are high, dispersibility stability is excellent, and availability is easy. The crystal form of titanium oxide is not particularly limited, and may be a rutile type, anatase type, or a mixture of both, but the anatase type has a photocatalytic function and deteriorates the resin. In the first invention, the rutile type is preferable.
 また、白色顔料の含有量は、樹脂組成物全体に対して、10重量%~95重量%、より好ましくは50~95%の範囲である。合計含有量が10重量%未満であると硬化物の光反射特性が十分得られない傾向にあり、95重量%を超えると樹脂組成物の成型性が悪くなり、基板の作製が困難となる傾向にある。 Further, the content of the white pigment is in the range of 10 to 95% by weight, more preferably 50 to 95% with respect to the entire resin composition. If the total content is less than 10% by weight, the light reflection characteristics of the cured product tend not to be obtained sufficiently, and if it exceeds 95% by weight, the moldability of the resin composition tends to be poor, and the substrate tends to be difficult to produce. It is in.
 第一の発明の熱硬化性樹脂組成物においては、通常ICIコーンプレート粘度が100~200℃の範囲で、0.01~10Pa・sであることが好ましい。0.01Pa・sより小さいと、バリが生じやすくなるおそれがある。一方、10Pa・sより大きいと生産性が低下するおそれがある。本実施形態においては、150℃における熱硬化性樹脂組成物のICI粘度が0.01Pa・s~10Pa・sであることが好ましく、0.05Pa・s~5Pa・sであることがより好ましい。第一の発明の熱硬化性樹脂組成物においてICIコーンプレート粘度が100~200℃の範囲で、0.01~10Pa・sであり、および室温で高粘度液状または固形であると、従来の酸無水物硬化剤の場合にはプレポリマー化などの前処理なしでは不可能であった混練が、前処理なしで可能となり好ましい。また混練後の熱硬化性樹脂組成物は、室温で固形になるため、タブレットとして成形しやすい点にも特徴を有している。そして、当該範囲に調整することは、無機フィラー等の充填剤を配合した場合に組成物は常温(25℃)で固形となるため成形が容易となり、揮発分が少ないことからボイド等の不具合を効果的に防止することができるようになるため好ましい。 In the thermosetting resin composition of the first invention, it is usually preferable that the ICI cone plate viscosity is 0.01 to 10 Pa · s in the range of 100 to 200 ° C. If it is less than 0.01 Pa · s, burrs may be easily generated. On the other hand, if it is greater than 10 Pa · s, the productivity may decrease. In the present embodiment, the ICI viscosity of the thermosetting resin composition at 150 ° C. is preferably 0.01 Pa · s to 10 Pa · s, and more preferably 0.05 Pa · s to 5 Pa · s. In the thermosetting resin composition of the first invention, when the ICI cone plate viscosity is 0.01 to 10 Pa · s in the range of 100 to 200 ° C., and a high viscosity liquid or solid at room temperature, the conventional acid In the case of an anhydride curing agent, kneading, which was impossible without pretreatment such as prepolymerization, can be performed without pretreatment, which is preferable. Moreover, since the thermosetting resin composition after kneading is solid at room temperature, it is also characterized in that it can be easily molded as a tablet. And adjusting to the said range means that when a filler such as an inorganic filler is blended, the composition becomes solid at room temperature (25 ° C.), so that molding becomes easy, and since there are few volatile components, there are problems such as voids. This is preferable because it can be effectively prevented.
 第一の発明の熱硬化性樹脂組成物においては、通常の酸無水物を使用した場合より、ボイド等の不具合を効果的に防止することができるようになるため、成形が容易となる。 In the thermosetting resin composition of the first invention, since defects such as voids can be effectively prevented as compared with the case where a normal acid anhydride is used, molding becomes easy.
 また、第一の発明の熱硬化性樹脂組成物は、軟化点は20℃~150℃の範囲にあることが望ましい。より具体的には、30℃~130℃の範囲にあることが好ましく、40℃~120℃の範囲にあることがより好ましい。当該範囲に調整することにより、各種成分をミキサー等によって容易に撹拌、混合することができ、それをさらにミキシングロール、押出機、ニーダー、ロール、エクストルーダー等によって混練または溶融混練し、冷却、粉砕することが可能となる。 Further, the thermosetting resin composition of the first invention desirably has a softening point in the range of 20 ° C to 150 ° C. More specifically, it is preferably in the range of 30 ° C. to 130 ° C., more preferably in the range of 40 ° C. to 120 ° C. By adjusting to this range, various components can be easily stirred and mixed with a mixer, etc., and further kneaded or melt kneaded with a mixing roll, extruder, kneader, roll, extruder, etc., cooled, pulverized It becomes possible to do.
 硬化物のガラス転移温度は、成形温度よりも高いことが好ましい。硬化物のガラス転移温度が成形温度以下であると、金型の中にある硬化物は低弾性のゴム状態であるため、ゴム状硬化物を金型から取り出すことになり、イジェクターを押し込む際に、変形するなどして不具合が生じるおそれがある。具体的には、ガラス転移温度は30℃以上であることが好ましく、40℃以上であることがより好ましく、50℃以上であることがさらに好ましい。
 ここで、本願発明において、硬化物のガラス転移温度は、150℃以下が好ましく、140℃以下がより好ましい。
The glass transition temperature of the cured product is preferably higher than the molding temperature. When the glass transition temperature of the cured product is lower than the molding temperature, the cured product in the mold is in a low-elasticity rubber state, so the rubber-like cured product will be taken out of the mold, and when the ejector is pushed in There is a risk of malfunction due to deformation. Specifically, the glass transition temperature is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, and further preferably 50 ° C. or higher.
Here, in this invention, 150 degreeC or less is preferable and, as for the glass transition temperature of hardened | cured material, 140 degrees C or less is more preferable.
 第一の発明の熱硬化性樹脂組成物は、上記した各種成分を均一に分散混合することで得られる。その方法については特に限定されないが、各種成分をミキサー等によって十分均一に撹拌、混合した後、ミキシングロール、押出機、ニーダー、ロール、エクストルーダー等によって混練または溶融混練し、冷却、粉砕する方法を挙げることができる。混練または溶融混練の条件は、成分の種類や配合量により決定すればよく、特に限定されないが、20~200℃の範囲で5~40分間混練することがより好ましい。混練温度が20℃未満であると、各成分の分散性が低下し、十分に混練させることが困難であり、200℃よりも高温であると、樹脂組成物の架橋反応が急激に進行し、樹脂組成物が硬化してしまう恐れがある。 The thermosetting resin composition of the first invention can be obtained by uniformly dispersing and mixing the various components described above. The method is not particularly limited. Can be mentioned. The conditions for kneading or melt-kneading may be determined depending on the types and amounts of the components, and are not particularly limited. However, kneading at 20 to 200 ° C. for 5 to 40 minutes is more preferable. When the kneading temperature is less than 20 ° C., the dispersibility of each component is lowered and it is difficult to sufficiently knead, and when the temperature is higher than 200 ° C., the crosslinking reaction of the resin composition proceeds rapidly. The resin composition may be cured.
 第一の発明の熱硬化性樹脂組成物は、加熱成型前、0~30℃の室温において加圧(タブレット)成型可能であることが望ましい。加圧成型は、例えば、0.01~10MPa、1~5秒程度の条件下で行う方法が挙げられる。また、加圧(タブレット)成型時に用いる金型は、特に限定されないが、例えば、セラミックス系材料やフッ素系樹脂材料等からなる杵型(上金型)と臼型(下金型)とで構成されるものを用いることが好ましい。 The thermosetting resin composition of the first invention is preferably capable of being pressed (tablet) at room temperature of 0 to 30 ° C. before heat molding. For example, the pressure molding may be performed under conditions of 0.01 to 10 MPa and 1 to 5 seconds. In addition, the mold used at the time of pressing (tablet) molding is not particularly limited, and for example, it is composed of a vertical mold (upper mold) and a mortar mold (lower mold) made of a ceramic material, a fluorine resin material, or the like. It is preferable to use what is used.
 第一の発明の熱硬化性樹脂組成物は、高いガラス転移温度および高い透過率を必要とする光半導体封止材料、光半導体用反射材などの用途において有用である。 The thermosetting resin composition of the first invention is useful in applications such as optical semiconductor sealing materials and optical semiconductor reflectors that require high glass transition temperatures and high transmittance.
 光反射用として使用する場合において、製造方法は特に限定されないが、例えば、第一の発明の熱硬化性樹脂組成物をトランスファー成型によって製造することが好ましい。第一の発明の熱硬化性樹脂組成物を金型に注入し、例えば、金型温度150~190℃、成形圧力2~20MPaの条件下で、60~800秒間硬化させた後に金型から取り出し、アフターキュア温度150℃~180℃で1~3時間にわたって熱硬化させる。 In the case of use for light reflection, the production method is not particularly limited. For example, it is preferable to produce the thermosetting resin composition of the first invention by transfer molding. The thermosetting resin composition of the first invention is poured into a mold and, for example, cured for 60 to 800 seconds under conditions of a mold temperature of 150 to 190 ° C. and a molding pressure of 2 to 20 MPa, and then taken out from the mold. And heat curing at an after-cure temperature of 150 ° C. to 180 ° C. for 1 to 3 hours.
(半導体装置)
 第一の発明の半導体装置は、代表的な構造について具体例を例示すると、国際公開第2012-124147号に記載の通り、基板上に円筒状の中空部を有する光反射防止部材を配置し、円筒状の中空部の内部空間において基板上に光半導体素子を配置する。そして、光半導体素子の一端部と基板をワイヤーで繋げ、上記中空部に封止樹脂が封入された構成を有している。
(Semiconductor device)
In the semiconductor device of the first invention, as a specific example of a typical structure, as described in International Publication No. 2012-124147, a light reflection preventing member having a cylindrical hollow portion is disposed on a substrate, An optical semiconductor element is disposed on the substrate in the internal space of the cylindrical hollow portion. And the one end part and board | substrate of an optical semiconductor element are connected with the wire, and it has the structure by which sealing resin was enclosed with the said hollow part.
 第一の発明の樹脂組成物に好適に適用される反射材について、より詳細に説明する。成形によって得た反射材は、熱劣化による変色が抑制される。反射材は、LED電球等のLED照明器具用のLEDリフレクターとして使用することができる。第一の発明の熱硬化性樹脂組成物から得られる反射材は、寿命が長い安価なLEDリフレクターを構成することができる。 The reflective material suitably applied to the resin composition of the first invention will be described in more detail. In the reflective material obtained by molding, discoloration due to thermal deterioration is suppressed. The reflective material can be used as an LED reflector for an LED lighting apparatus such as an LED bulb. The reflective material obtained from the thermosetting resin composition of the first invention can constitute an inexpensive LED reflector having a long lifetime.
 図1に、熱硬化性樹脂組成物を成形して得た反射材を用いたLED照明装置の一例を示す。この反射材はLEDリフレクター1である。反射材は枠状に形成されており、中央部に凹部2と穴部3とを有している。凹部2は、壁面が傾斜した面となって設けられている。凹部2の壁面が光を反射させる反射面となる。穴部3は、凹部2の底部においてLEDリフレクター1を貫通するように設けられている。この穴部3には、発光素子であるLED5が搭載されたリードフレーム4が嵌め込まれている。リードフレーム4には、LED5に電気を供給するための配線が設けられていてよい。凹部2の発光面側(図の上部)は、透明なカバー6により覆われている。それにより、LED5が保護される。カバー6は凹部2の開口縁部においてLEDリフレクター1に接合されている。LEDリフレクター1は、LED5の発光を効率よく反射するための反射板として機能する。LEDリフレクター1の形状は、図1の形状に限られるものではなく、実装されるLED5の光量や色、指向性特性等を考慮して適宜設計することができる。上記の光反射体用熱硬化性樹脂組成物では、成形性が良好なため目的とする形状の成形体を容易に得ることができる。 FIG. 1 shows an example of an LED lighting device using a reflective material obtained by molding a thermosetting resin composition. This reflector is the LED reflector 1. The reflective material is formed in a frame shape, and has a recess 2 and a hole 3 at the center. The recess 2 is provided as an inclined surface. The wall surface of the recess 2 serves as a reflecting surface that reflects light. The hole 3 is provided at the bottom of the recess 2 so as to penetrate the LED reflector 1. A lead frame 4 on which an LED 5 as a light emitting element is mounted is fitted in the hole 3. The lead frame 4 may be provided with wiring for supplying electricity to the LED 5. The light emitting surface side (upper part in the figure) of the recess 2 is covered with a transparent cover 6. Thereby, LED5 is protected. The cover 6 is joined to the LED reflector 1 at the opening edge of the recess 2. The LED reflector 1 functions as a reflector for efficiently reflecting the light emitted from the LED 5. The shape of the LED reflector 1 is not limited to the shape shown in FIG. 1, and can be appropriately designed in consideration of the light quantity, color, directivity characteristics, and the like of the mounted LED 5. With the thermosetting resin composition for light reflectors described above, since the moldability is good, it is possible to easily obtain a molded body having a desired shape.
 続いて、第二の発明を詳細に説明する。 Subsequently, the second invention will be described in detail.
 第二の発明の熱硬化性樹脂組成物は、ガラス転移温度を高める観点から下記式(1)で表される、イソシアヌル環を有する多価カルボン酸(A1)をゲルパーミエーションクロマトグラフィー(以下、GPCと称す。)における測定で70面積%以上含有するカルボン酸樹脂を含有することを特徴とする。ここで、75面積%以上含有することが好ましく、80面積%以上であることがより好ましい。上限は特に限定されないが、例えば99.9面積%以下であればよい。 The thermosetting resin composition of the second invention is obtained by gel permeation chromatography (hereinafter, referred to as polyvalent carboxylic acid (A1) having an isocyanuric ring represented by the following formula (1) from the viewpoint of increasing the glass transition temperature. It is characterized by containing a carboxylic acid resin containing 70% by area or more as measured by GPC). Here, it is preferable to contain 75 area% or more, and it is more preferable that it is 80 area% or more. Although an upper limit is not specifically limited, For example, what is necessary is just 99.9 area% or less.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 式(1)中、Rは炭素数1~6のアルキレン基を、Rは水素原子又は炭素数1~6のアルキル基又はカルボキシル基をそれぞれ表す。 In the formula (1), R 1 represents an alkylene group having 1 to 6 carbon atoms, and R 2 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a carboxyl group.
 Rの具体例としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、イソプロピレン基、イソブチレン基、イソペンチレン基、ネオペンチレン基、イソヘキシレン基、シクロヘキシレン基等が挙げられるが、得られる硬化物の耐熱透明性の観点からメチレン基、エチレン基、プロピレン基が好ましく、エチレン基が特に好ましい。 Specific examples of R 1 include methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, isopropylene group, isobutylene group, isopentylene group, neopentylene group, isohexylene group, cyclohexylene group and the like. However, from the viewpoint of heat-resistant transparency of the resulting cured product, a methylene group, an ethylene group, and a propylene group are preferable, and an ethylene group is particularly preferable.
 Rのうち炭素数1~6のアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、シクロペンチル基、ヘキシル基、イソヘキシル基、シクロヘキシル基等が挙げられるが、得られる硬化物の耐熱透明性の観点からメチル基が好ましい。 Specific examples of the alkyl group having 1 to 6 carbon atoms in R 2 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, isopentyl group, neopentyl group, A cyclopentyl group, a hexyl group, an isohexyl group, a cyclohexyl group and the like can be mentioned, and a methyl group is preferable from the viewpoint of heat-resistant transparency of the obtained cured product.
 Rの中でも、メチル基、カルボキシル基が好ましく、多価カルボン酸(A1)を含有する熱硬化性樹脂組成物の室温(25℃)での粘度が上がりすぎない観点と、得られる硬化物の透明性の観点からはメチル基が好ましく、得られる硬化物のガスバリア性、高いガラス転移温度(Tg)、硬さの観点からはカルボキシル基が特に好ましい。 Among R 2 , a methyl group and a carboxyl group are preferable, and the thermosetting resin composition containing the polyvalent carboxylic acid (A1) has a viewpoint that the viscosity at room temperature (25 ° C.) does not increase excessively, A methyl group is preferable from the viewpoint of transparency, and a carboxyl group is particularly preferable from the viewpoint of gas barrier properties, high glass transition temperature (Tg), and hardness of the resulting cured product.
 式(1)中、複数存在するR、Rはそれぞれ互いに同一であっても異なっていても構わない。 In the formula (1), a plurality of R 1 and R 2 may be the same or different from each other.
 第二の発明の熱硬化性樹脂組成物は、熱硬化性樹脂組成物を使用した封止材あるいは光反射材等の部材の信頼性、硬化物性を高める観点から下記式(1a)で表される多価カルボン酸(A2)及び/又は下記式(1b)で表されるカルボン酸(A3)の合計量の多価カルボン酸樹脂中の割合が、GPCの測定において0.5~10面積%含有するカルボン酸樹脂を含有することを特徴とする。ここで、0.5~5面積%含有することが好ましく、1~3面積%含有することがより好ましい。 The thermosetting resin composition of the second invention is represented by the following formula (1a) from the viewpoint of enhancing the reliability and cured physical properties of a member such as a sealing material or a light reflecting material using the thermosetting resin composition. The ratio of the total amount of the polycarboxylic acid (A2) and / or the carboxylic acid (A3) represented by the following formula (1b) in the polyvalent carboxylic acid resin is 0.5 to 10 area% in the GPC measurement. It contains a carboxylic acid resin. Here, the content is preferably 0.5 to 5 area%, more preferably 1 to 3 area%.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式(1a)中、Rは炭素数1~6のアルキレン基を、Rは水素原子又は炭素数1~6のアルキル基又はカルボキシル基をそれぞれ表す。 In the formula (1a), R 1 represents an alkylene group having 1 to 6 carbon atoms, and R 2 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a carboxyl group.
 Rの具体例としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、イソプロピレン基、イソブチレン基、イソペンチレン基、ネオペンチレン基、イソヘキシレン基、シクロヘキシレン基等が挙げられるが、得られる硬化物の耐熱透明性の観点からメチレン基、エチレン基、プロピレン基が好ましく、エチレン基が特に好ましい。 Specific examples of R 1 include methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, isopropylene group, isobutylene group, isopentylene group, neopentylene group, isohexylene group, cyclohexylene group and the like. However, from the viewpoint of heat-resistant transparency of the resulting cured product, a methylene group, an ethylene group, and a propylene group are preferable, and an ethylene group is particularly preferable.
 Rのうち炭素数1~6のアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、シクロペンチル基、ヘキシル基、イソヘキシル基、シクロヘキシル基等が挙げられるが、得られる硬化物の耐熱透明性の観点からメチル基が好ましい。 Specific examples of the alkyl group having 1 to 6 carbon atoms in R 2 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, isopentyl group, neopentyl group, A cyclopentyl group, a hexyl group, an isohexyl group, a cyclohexyl group and the like can be mentioned, and a methyl group is preferable from the viewpoint of heat-resistant transparency of the obtained cured product.
 Rの中でも、メチル基、カルボキシル基が好ましく、多価カルボン酸樹脂を含有する熱硬化性樹脂組成物の室温(25℃)での粘度が上がりすぎない観点と、得られる硬化物の透明性の観点からはメチル基が好ましく、得られる硬化物のガスバリア性、高いガラス転移温度(Tg)、硬さの観点からはカルボキシル基が特に好ましい。 Among R 2 , a methyl group and a carboxyl group are preferable, and a viewpoint that the viscosity at room temperature (25 ° C.) of the thermosetting resin composition containing a polyvalent carboxylic acid resin does not increase too much and the transparency of the resulting cured product are obtained. From the viewpoint of the above, a methyl group is preferable, and a carboxyl group is particularly preferable from the viewpoint of gas barrier properties, high glass transition temperature (Tg), and hardness of the obtained cured product.
 式(1a)中、複数存在するR、Rはそれぞれ互いに同一であっても異なっていても構わない。 In the formula (1a), a plurality of R 1 and R 2 may be the same or different from each other.
 第二の発明の熱硬化性樹脂組成物は、上記式(1a)で表される多価カルボン酸(A2)の多価カルボン酸樹脂中の割合は、GPCの測定において0~10面積%含有するカルボン酸樹脂を含有することが好ましい。ここで、0~5面積%含有することがより好ましく、0~3面積%含有することがさらに好ましい。 In the thermosetting resin composition of the second invention, the proportion of the polyvalent carboxylic acid (A2) represented by the formula (1a) in the polyvalent carboxylic acid resin is 0 to 10% by area in GPC measurement. It is preferable to contain a carboxylic acid resin. Here, the content is more preferably 0 to 5% by area, and further preferably 0 to 3% by area.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 式(1b)中、Rは炭素数1~6のアルキレン基を、Rは水素原子又は炭素数1~6のアルキル基又はカルボキシル基をそれぞれ表す。 In formula (1b), R 1 represents an alkylene group having 1 to 6 carbon atoms, and R 2 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a carboxyl group.
 Rの具体例としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、イソプロピレン基、イソブチレン基、イソペンチレン基、ネオペンチレン基、イソヘキシレン基、シクロヘキシレン基等が挙げられるが、得られる硬化物の耐熱透明性の観点からメチレン基、エチレン基、プロピレン基が好ましく、エチレン基が特に好ましい。 Specific examples of R 1 include methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, isopropylene group, isobutylene group, isopentylene group, neopentylene group, isohexylene group, cyclohexylene group and the like. However, from the viewpoint of heat-resistant transparency of the resulting cured product, a methylene group, an ethylene group, and a propylene group are preferable, and an ethylene group is particularly preferable.
 Rのうち炭素数1~6のアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、シクロペンチル基、ヘキシル基、イソヘキシル基、シクロヘキシル基等が挙げられるが、得られる硬化物の耐熱透明性の観点からメチル基が好ましい。 Specific examples of the alkyl group having 1 to 6 carbon atoms in R 2 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, isopentyl group, neopentyl group, A cyclopentyl group, a hexyl group, an isohexyl group, a cyclohexyl group and the like can be mentioned, and a methyl group is preferable from the viewpoint of heat-resistant transparency of the obtained cured product.
 Rの中でも、メチル基、カルボキシル基が好ましく、多価カルボン酸樹脂を含有する熱硬化性樹脂組成物の室温(25℃)での粘度が上がりすぎない観点と、得られる硬化物の透明性の観点からはメチル基が好ましく、得られる硬化物のガスバリア性、高いガラス転移温度(Tg)、硬さの観点からはカルボキシル基が特に好ましい。 Among R 2 , a methyl group and a carboxyl group are preferable, and a viewpoint that the viscosity at room temperature (25 ° C.) of the thermosetting resin composition containing a polyvalent carboxylic acid resin does not increase too much and the transparency of the resulting cured product are obtained. From the viewpoint of the above, a methyl group is preferable, and a carboxyl group is particularly preferable from the viewpoint of gas barrier properties, high glass transition temperature (Tg), and hardness of the obtained cured product.
 式(1b)中、複数存在するR、Rはそれぞれ互いに同一であっても異なっていても構わない。 In the formula (1b), a plurality of R 1 and R 2 may be the same or different from each other.
 第二の発明の熱硬化性樹脂組成物は、上記式(1b)で表される多価カルボン酸(A2)の多価カルボン酸樹脂中の割合は、GPCの測定において0.5~10面積%含有するカルボン酸樹脂を含有することが好ましい。ここで、0.5~5面積%含有することがより好ましく、0.5~3面積%含有することがさらに好ましい。 In the thermosetting resin composition of the second invention, the ratio of the polyvalent carboxylic acid (A2) represented by the above formula (1b) in the polyvalent carboxylic acid resin is 0.5 to 10 area in GPC measurement. % Carboxylic acid resin is preferably contained. Here, the content is more preferably 0.5 to 5 area%, and further preferably 0.5 to 3 area%.
 第二の発明の熱硬化性樹脂組成物は、下記式(1c)~(1e)で表される多価カルボン酸(A4)~(A6)で表される高分子量体混合物の合計量の多価カルボン酸樹脂中の割合がGPCの測定において0.5~15面積%含有するカルボン酸樹脂を含有することが好ましい。ここで、0.5~10面積%含有することがより好ましく、1~5面積%含有することがさらに好ましい。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
The thermosetting resin composition of the second invention has a large total amount of the high molecular weight mixture represented by the polyvalent carboxylic acids (A4) to (A6) represented by the following formulas (1c) to (1e). It is preferable to contain a carboxylic acid resin whose proportion in the polyvalent carboxylic acid resin is 0.5 to 15 area% in the GPC measurement. Here, the content is more preferably 0.5 to 10 area%, and further preferably 1 to 5 area%.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 式(1c)~(1e)中、Rは炭素数1~6のアルキレン基を、Rは水素原子又は炭素数1~6のアルキル基又はカルボキシル基をそれぞれ表す。 In the formulas (1c) to (1e), R 1 represents an alkylene group having 1 to 6 carbon atoms, and R 2 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a carboxyl group.
 Rの具体例としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、イソプロピレン基、イソブチレン基、イソペンチレン基、ネオペンチレン基、イソヘキシレン基、シクロヘキシレン基等が挙げられるが、得られる硬化物の耐熱透明性の観点からメチレン基、エチレン基、プロピレン基が好ましく、エチレン基が特に好ましい。 Specific examples of R 1 include methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, isopropylene group, isobutylene group, isopentylene group, neopentylene group, isohexylene group, cyclohexylene group and the like. However, from the viewpoint of heat-resistant transparency of the resulting cured product, a methylene group, an ethylene group, and a propylene group are preferable, and an ethylene group is particularly preferable.
 Rのうち炭素数1~6のアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、シクロペンチル基、ヘキシル基、イソヘキシル基、シクロヘキシル基等が挙げられるが、得られる硬化物の耐熱透明性の観点からメチル基が好ましい。 Specific examples of the alkyl group having 1 to 6 carbon atoms in R 2 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, isopentyl group, neopentyl group, A cyclopentyl group, a hexyl group, an isohexyl group, a cyclohexyl group and the like can be mentioned, and a methyl group is preferable from the viewpoint of heat-resistant transparency of the obtained cured product.
 Rの中でも、メチル基、カルボキシル基が好ましく、多価カルボン酸樹脂を含有する熱硬化性樹脂組成物の室温(25℃)での粘度が上がりすぎない観点と、得られる硬化物の透明性の観点からはメチル基が好ましく、得られる硬化物のガスバリア性、高いガラス転移温度(Tg)、硬さの観点からはカルボキシル基が特に好ましい。 Among R 2 , a methyl group and a carboxyl group are preferable, and a viewpoint that the viscosity at room temperature (25 ° C.) of the thermosetting resin composition containing a polyvalent carboxylic acid resin does not increase too much and the transparency of the resulting cured product are obtained. From the viewpoint of the above, a methyl group is preferable, and a carboxyl group is particularly preferable from the viewpoint of gas barrier properties, high glass transition temperature (Tg), and hardness of the obtained cured product.
 式(1c)~(1e)中、複数存在するR、Rはそれぞれ互いに同一であっても異なっていても構わない。 In the formulas (1c) to (1e), a plurality of R 1 and R 2 may be the same or different from each other.
 式(1c)中、*は水酸基、上記式(1a)~(1b)に存在する水酸基が前記式(1)及び式(1a)~(1b)に存在するカルボキシル基と反応した残基又は下記式(6)に存在する水酸基が前記式(1)及び式(1a)~(1b)に存在するカルボキシル基と反応した残基を表す。 In the formula (1c), * represents a hydroxyl group, a residue obtained by reacting a hydroxyl group present in the above formulas (1a) to (1b) with a carboxyl group present in the above formulas (1) and (1a) to (1b), or The hydroxyl group present in the formula (6) represents a residue obtained by reacting with the carboxyl group present in the formula (1) and the formulas (1a) to (1b).
 上記高分子量体(A4)はGPCのリテンションタイムにおいて、本願式(1)で表される化合物より短いリテンションタイムで溶出してくる。
 また、本願式(1)で表される化合物と本願式(6)で表される化合物を反応させて得られる化合物であって、ゲルパーミエーションクロマトグラフィーの測定においてリテンションタイムが本願式(1)で表される化合物より短い高分子量体を0.5~10面積%含有する多価カルボン酸樹脂であることが好ましい。
The high molecular weight substance (A4) is eluted with a shorter retention time than the compound represented by the formula (1) in the GPC retention time.
The compound obtained by reacting the compound represented by the formula (1) with the compound represented by the formula (6), wherein the retention time in the measurement of gel permeation chromatography is the formula (1). A polyvalent carboxylic acid resin containing 0.5 to 10 area% of a high molecular weight compound shorter than the compound represented by
 第二の発明の熱硬化性樹脂組成物は、下記式(6)で表される酸無水物の多価カルボン酸樹脂中の割合が、GPCの測定において5~20面積%含有するカルボン酸樹脂を含有することが好ましい。ここで、5~15面積%含有することが好ましい。 The thermosetting resin composition of the second invention is a carboxylic acid resin in which the proportion of the acid anhydride represented by the following formula (6) in the polyvalent carboxylic acid resin is 5 to 20 area% in the GPC measurement. It is preferable to contain. Here, the content is preferably 5 to 15% by area.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 式(6)中、Rは水素原子又は炭素数1~6のアルキル基又はカルボキシル基をそれぞれ表す。 In formula (6), R 2 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a carboxyl group, respectively.
 Rのうち炭素数1~6のアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、シクロペンチル基、ヘキシル基、イソヘキシル基、シクロヘキシル基等が挙げられるが、得られる硬化物の耐熱透明性の観点からメチル基が好ましい。 Specific examples of the alkyl group having 1 to 6 carbon atoms in R 2 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, isopentyl group, neopentyl group, A cyclopentyl group, a hexyl group, an isohexyl group, a cyclohexyl group and the like can be mentioned, and a methyl group is preferable from the viewpoint of heat-resistant transparency of the obtained cured product.
 Rの中でも、メチル基、カルボキシル基が好ましく、多価カルボン酸樹脂を含有する熱硬化性樹脂組成物の室温(25℃)での粘度が上がりすぎない観点と、得られる硬化物の透明性の観点からはメチル基が好ましく、得られる硬化物のガスバリア性、高いガラス転移温度(Tg)、硬さの観点からはカルボキシル基が特に好ましい。 Among R 2 , a methyl group and a carboxyl group are preferable, and a viewpoint that the viscosity at room temperature (25 ° C.) of the thermosetting resin composition containing a polyvalent carboxylic acid resin does not increase too much and the transparency of the resulting cured product are obtained. From the viewpoint of the above, a methyl group is preferable, and a carboxyl group is particularly preferable from the viewpoint of gas barrier properties, high glass transition temperature (Tg), and hardness of the obtained cured product.
 第二の発明の多価カルボン樹脂は、下記式(5)で表される、イソシアヌル酸トリスヒドロキシアルキル化合物と、下記式(6)で表される、カルボン酸無水物化合物との付加反応により得ることができる。 The polyvalent carboxylic resin of the second invention is obtained by an addition reaction between a trishydroxyalkyl compound isocyanurate represented by the following formula (5) and a carboxylic acid anhydride compound represented by the following formula (6). be able to.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 式(5)中、Rは前記と同じ意味を表す。 In formula (5), R 1 represents the same meaning as described above.
 式(5)で表される化合物の中でも、下記式(7)~(9)で表される化合物が、硬化物の透明性、ガスバリア性の観点から好ましい。 Among the compounds represented by the formula (5), the compounds represented by the following formulas (7) to (9) are preferable from the viewpoint of transparency of the cured product and gas barrier properties.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 式(6)で表される化合物のうち、下記(2)~(4)で表される化合物が特に好ましい。 Of the compounds represented by the formula (6), compounds represented by the following (2) to (4) are particularly preferred.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 第二の発明の多価カルボン酸樹脂の製造は、溶媒中でも無溶剤でも行うことができる。溶剤としては、前述の式(5)で表されるイソシアヌル酸トリスヒドロキシアルキル化合物と式(6)で表されるカルボン酸無水物化合物と反応しない溶剤であれば特に制限なく使用できる。使用しうる溶剤としては、例えばジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、テトラヒドロフラン、アセトニトリルの様な非プロトン性極性溶媒、メチルエチルケトン、シクロペンタノン、メチルイソブチルケトンのようなケトン類、トルエン、キシレンのような芳香族炭化水素等が挙げられ、これらの中で、芳香族炭化水素やケトン類が好ましい。
 これらの溶剤は1種又は2種以上を混合して用いても良い。溶剤を用いる場合の使用量は、前述の式(5)で表されるイソシアヌル酸トリスヒドロキシアルキル化合物と式(6)で表されるカルボン酸無水物化合物の合計100質量部に対して、0.5~300質量部が好ましい。
The production of the polyvalent carboxylic acid resin of the second invention can be carried out in a solvent or without a solvent. As the solvent, any solvent that does not react with the trishydroxyalkyl compound of isocyanuric acid represented by the above formula (5) and the carboxylic acid anhydride compound represented by the formula (6) can be used without particular limitation. Examples of solvents that can be used include aprotic polar solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydrofuran and acetonitrile, ketones such as methyl ethyl ketone, cyclopentanone and methyl isobutyl ketone, toluene and xylene. An aromatic hydrocarbon etc. are mentioned, Among these, an aromatic hydrocarbon and ketones are preferable.
These solvents may be used alone or in combination of two or more. When the solvent is used, the amount used is 0.1% relative to a total of 100 parts by mass of the trishydroxyalkyl compound isocyanurate represented by the above formula (5) and the carboxylic acid anhydride compound represented by the formula (6). 5 to 300 parts by mass are preferred.
 第二の発明の多価カルボン酸樹脂は室温(25℃)にて固体であることが多いため、溶剤中で合成することが作業性の観点から好ましい。 Since the polyvalent carboxylic acid resin of the second invention is often solid at room temperature (25 ° C.), it is preferably synthesized in a solvent from the viewpoint of workability.
 第二の発明の多価カルボン酸樹脂は無触媒でも、触媒を用いても製造する事ができる。触媒を用いる場合、用い得る触媒は、塩酸、硫酸、メタンスルホン酸、トリフルオロメタンスルホン酸、パラトルエンスルホン酸、硝酸、トリフルオロ酢酸、トリクロロ酢酸等の酸性化合物、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム等の金属水酸化物、トリエチルアミン、トリプロピルアミン、トリブチルアミン等のアミン化合物、ピリジン、ジメチルアミノピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、イミダゾール、トリアゾール、テトラゾール等の複素環式化合物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルプロピルアンモニウムヒドロキシド、トリメチルブチルアンモニウムヒドロキシド、トリメチルセチルアンモニウムヒドロキシド、トリオクチルメチルアンモニウムヒドロキシド、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムヨージド、テトラメチルアンモニウムアセテート、トリオクチルメチルアンモニウムアセテート等の4級アンモニウム塩、オルトチタン酸テトラエチル、オルトチタン酸テトラメチル等のオルトチタン酸類、オクチル酸スズ、オクチル酸コバルト、オクチル酸亜鉛、オクチル酸マンガン、オクチル酸カルシウム、オクチル酸ナトリウム、オクチル酸カリウム等の金属石鹸類が挙げられる。 The polyvalent carboxylic acid resin of the second invention can be produced without a catalyst or with a catalyst. When a catalyst is used, usable catalysts are hydrochloric acid, sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, nitric acid, trifluoroacetic acid, trichloroacetic acid and other acidic compounds, sodium hydroxide, potassium hydroxide, water Metal hydroxides such as calcium oxide and magnesium hydroxide, amine compounds such as triethylamine, tripropylamine and tributylamine, pyridine, dimethylaminopyridine, 1,8-diazabicyclo [5.4.0] undec-7-ene, Heterocyclic compounds such as imidazole, triazole, tetrazole, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium Roxide, trimethylpropylammonium hydroxide, trimethylbutylammonium hydroxide, trimethylcetylammonium hydroxide, trioctylmethylammonium hydroxide, tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, tetramethylammonium acetate, trioctyl Quaternary ammonium salts such as methylammonium acetate, orthotitanic acid such as tetraethyl orthotitanate, tetramethyl orthotitanate, tin octylate, cobalt octylate, zinc octylate, manganese octylate, calcium octylate, sodium octylate, Examples include metal soaps such as potassium octylate.
 触媒を用いる場合、1種または2種以上を混合して用いることもできる。
 触媒を用いる場合の使用量は、前述の式(5)で表されるイソシアヌル酸トリスヒドロキシアルキル化合物と式(6)で表されるカルボン酸無水物化合物の合計100質量部に対して、0.05~10質量部が好ましい。
 触媒の添加方法は、直接添加するか、可溶性の溶剤等に溶解させた状態で使用する。この際、メタノール、エタノール等のアルコール性の溶媒や水を用いることは、未反応の、式(6)で表されるカルボン酸無水物化合物と反応してしまうため、避けることが好ましい。
When using a catalyst, it can also be used 1 type or in mixture of 2 or more types.
The amount used in the case of using a catalyst is 0. 0 with respect to a total of 100 parts by mass of the trishydroxyalkyl compound isocyanurate represented by the above formula (5) and the carboxylic acid anhydride compound represented by the formula (6). 05 to 10 parts by mass are preferred.
As a method for adding the catalyst, it is added directly or used in a state dissolved in a soluble solvent or the like. At this time, it is preferable to avoid using an alcoholic solvent such as methanol or ethanol or water because it reacts with an unreacted carboxylic acid anhydride compound represented by the formula (6).
 第二の発明においては、得られる熱硬化性樹脂組成物の硬化物において、透明性、耐熱透明性を向上させる観点からはオクチル酸亜鉛等のカルボン酸亜鉛を触媒として好ましく使用することができ、得られる多価カルボン酸樹脂又は熱硬化性樹脂組成物の着色を低減させる観点からは無触媒で反応を行うことが好ましい。
 中でも、透明性、耐硫化性に優れる硬化物を得るために、特にステアリン酸カルシウム、カルボン酸亜鉛(2-エチルヘキサン酸亜鉛、ステアリン酸亜鉛、ベヘン酸亜鉛、ミスチリン酸亜鉛)やリン酸エステル亜鉛(オクチルリン酸亜鉛、ステアリルリン酸亜鉛等)等の亜鉛化合物が好ましく使用できる。
In the second invention, in the cured product of the obtained thermosetting resin composition, from the viewpoint of improving transparency and heat-resistant transparency, zinc carboxylate such as zinc octylate can be preferably used as a catalyst, From the viewpoint of reducing the coloration of the resulting polyvalent carboxylic acid resin or thermosetting resin composition, it is preferable to carry out the reaction without a catalyst.
Among them, in order to obtain a cured product excellent in transparency and sulfidation resistance, calcium stearate, zinc carboxylate (zinc 2-ethylhexanoate, zinc stearate, zinc behenate, zinc myristylate) and zinc phosphate ester ( Zinc compounds such as zinc octyl phosphate and zinc stearyl phosphate are preferably used.
 第二の発明の多価カルボン酸樹脂の製造時の反応温度は、触媒量、使用溶剤にもよるが、通常20~160℃、好ましくは50~150℃、特に好ましくは60~145℃である。又、反応時間の総計は通常1~20時間、好ましくは3~18時間である。反応は2段階以上で行なっても良く、例えば20~100℃で1~8時間反応させた後に、100~160℃で1~12時間などで反応させても良い。これは特に式(6)で表されるカルボン酸無水物化合物は揮発性の高いものが多く、そのようなものを用いる場合、あらかじめ20~100℃で反応させた後に、100~160℃で反応させることで、揮発を抑えることができる。これにより、大気中への有害物質の拡散を抑制するだけでなく、設計どおりの多価カルボン酸樹脂を得ることができる。 The reaction temperature during the production of the polyvalent carboxylic acid resin of the second invention is usually 20 to 160 ° C., preferably 50 to 150 ° C., particularly preferably 60 to 145 ° C., although it depends on the amount of catalyst and the solvent used. . The total reaction time is usually 1 to 20 hours, preferably 3 to 18 hours. The reaction may be performed in two or more stages. For example, the reaction may be performed at 20 to 100 ° C. for 1 to 8 hours and then at 100 to 160 ° C. for 1 to 12 hours. In particular, the carboxylic acid anhydride compound represented by the formula (6) is often highly volatile, and when such a compound is used, it is reacted at 20 to 100 ° C. and then reacted at 100 to 160 ° C. By doing so, volatilization can be suppressed. Thereby, not only can the diffusion of harmful substances into the atmosphere be suppressed, but a polyvalent carboxylic acid resin as designed can be obtained.
 触媒を用いて製造を行なった場合は必要に応じてクエンチ、および/又は水洗を行なうことで触媒を除くことができるが、そのまま残存させ、多価カルボン酸樹脂および/又は熱硬化性樹脂組成物を含有するエポキシ樹脂組成物の硬化促進剤として利用することもできる。
 水洗工程を行なう場合、使用している溶剤の種類によっては水と分離可能な溶剤を加えることが好ましい。好ましい溶剤としては例えばメチルエチルケトン、メチルイソブチルケトン、シクロペンタノンのようなケトン類、酢酸エチル、酢酸ブチル、乳酸エチル、ブタン酸イソプロピルなどのエステル類、ヘキサン、シクロヘキサン、トルエン、キシレンのような炭化水素等が例示できる。
 反応や水洗に溶剤を用いた場合、減圧濃縮などによって除くことができる。
When the production is carried out using a catalyst, the catalyst can be removed by quenching and / or washing with water as necessary, but the polycarboxylic acid resin and / or thermosetting resin composition is left as it is. It can also be used as a curing accelerator for epoxy resin compositions containing.
When performing a water washing process, it is preferable to add the solvent which can be isolate | separated from water depending on the kind of solvent currently used. Preferred solvents include ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclopentanone, esters such as ethyl acetate, butyl acetate, ethyl lactate and isopropyl butanoate, hydrocarbons such as hexane, cyclohexane, toluene and xylene. Can be illustrated.
When a solvent is used for the reaction or washing with water, it can be removed by vacuum concentration or the like.
 製造された第二の発明の多価カルボン酸樹脂の酸価(JIS K-2501に記載の方法で測定)は150~415mgKOH/gのものが好ましく、185~375mgKOH/gのものがより好ましく、特に200~320mgKOH/gのものが好ましい。酸価が150mgKOH/g以上であれば硬化物の機械特性が向上するため好ましく、415mgKOH/g以下であれば、その硬化物が硬くなり過ぎず、弾性率が適度なものとなり好ましい。
 また、第二の発明の多価カルボン酸樹脂の官能基当量は、135~312g/eqのものが好ましく、150~300g/eqのものがより好ましく、特に180~280g/eqが好ましい。
The acid value (measured by the method described in JIS K-2501) of the produced polyvalent carboxylic acid resin of the second invention is preferably 150 to 415 mgKOH / g, more preferably 185 to 375 mgKOH / g, Particularly preferred is 200 to 320 mg KOH / g. If the acid value is 150 mgKOH / g or more, it is preferable because the mechanical properties of the cured product are improved, and if it is 415 mgKOH / g or less, the cured product does not become too hard and the elastic modulus becomes appropriate.
The functional group equivalent of the polyvalent carboxylic acid resin of the second invention is preferably 135 to 312 g / eq, more preferably 150 to 300 g / eq, and particularly preferably 180 to 280 g / eq.
 第二の発明の多価カルボン酸樹脂を用いることで、優れた耐久性を実現することができるとともに、混練に適した熱硬化性樹脂組成物を得ることが可能となる。 By using the polyvalent carboxylic acid resin of the second invention, excellent durability can be realized and a thermosetting resin composition suitable for kneading can be obtained.
 第二の発明の熱硬化性樹脂組成物は、第二の発明の多価カルボン酸樹脂とその他の成分を含む樹脂組成物である。第二の発明の多価カルボン酸組成物においては、熱硬化性樹脂用硬化剤を含有させることができる。好適な熱硬化性樹脂用硬化剤としては、トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、およびシクロヘキサントリカルボン酸無水物ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸から選ばれる1種または2種以上の化合物が挙げられる。 The thermosetting resin composition of the second invention is a resin composition containing the polyvalent carboxylic acid resin of the second invention and other components. In the polyvalent carboxylic acid composition of the second invention, a curing agent for thermosetting resin can be contained. Suitable curing agents for thermosetting resins include trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, and cyclohexanetricarboxylic anhydride pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic anhydride, hydrogenated pyro Examples thereof include one or more compounds selected from merit acid anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride.
 トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸が存在すると架橋密度の高い硬化物が得られるため、高いガラス転移温度を有する硬化物を得ることができる。しかしながら、トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、および水添ピロメリット酸無水物などのカルボン酸あるいは酸無水物は、結晶性を有するため軟化点あるいは融点が高く、具体的な融点は150℃~300℃であるため、成型する際に問題となることがある。一方、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸については、融点が室温以下であるため、成形する際に問題となる。トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、およびシクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸のうち、着色しにくさの点で、シクロヘキサントリカルボン酸、およびシクロヘキサントリカルボン酸無水物、水添ピロメリット酸、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸が好ましく、シクロヘキサントリカルボン酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸がさらに好ましい。
 シクロヘキサントリカルボン酸無水物としては、シクロヘキサン‐1、2、4‐トリカルボン酸‐1、2‐無水物が、シクロヘキサン‐1、2、3‐トリカルボン酸‐1、2‐無水物が挙げられる。第二の発明では、これらの酸無水物を組み合わせて使用することもできるが、シクロヘキサン‐1、2、4‐トリカルボン酸‐1、2‐無水物が好ましい。
Trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic anhydride, hydrogenated pyromellitic anhydride, hexahydrophthalic anhydride, and methyl In the presence of hexahydrophthalic anhydride, a cured product having a high crosslinking density can be obtained, so that a cured product having a high glass transition temperature can be obtained. However, carboxylic acids such as trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic acid anhydride, and hydrogenated pyromellitic acid anhydride or An acid anhydride has a high softening point or melting point because it has crystallinity, and a specific melting point is 150 ° C. to 300 ° C., which may cause a problem in molding. On the other hand, since hexahydrophthalic anhydride and methylhexahydrophthalic anhydride have a melting point of not more than room temperature, there is a problem in molding. Trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, and cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic acid anhydride, hydrogenated pyromellitic acid anhydride, hexahydrophthalic anhydride, and Among the methylhexahydrophthalic anhydrides, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic acid anhydride, hydrogenated pyromellitic acid, hydrogenated pyromellitic anhydride, hexahydrophthalic anhydride, and methylhexahexan anhydride are difficult to color. Hydrophthalic anhydride is preferred, with cyclohexanetricarboxylic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride being more preferred.
Examples of the cyclohexanetricarboxylic acid anhydride include cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride, and cyclohexane-1,2,3-tricarboxylic acid-1,2-anhydride. In the second invention, these acid anhydrides can be used in combination, but cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride is preferred.
 トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、およびシクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸から選ばれる1種または2種以上の化合物の合計が、熱硬化性樹脂組成物において1重量%~90重量%を占めることが好ましい。1重量%より低いとガラス転移温度が十分に高くならず、90重量%より高いと融点が高くなり、取扱いが困難になるおそれがある。より好ましくは10~60重量%であり、さらに好ましくは20~50重量%である。 Trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, and cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic acid anhydride, hydrogenated pyromellitic acid anhydride, hexahydrophthalic anhydride, and The total of one or more compounds selected from methylhexahydrophthalic anhydride preferably accounts for 1% to 90% by weight in the thermosetting resin composition. If it is lower than 1% by weight, the glass transition temperature will not be sufficiently high. If it is higher than 90% by weight, the melting point will be high and handling may be difficult. More preferably, it is 10 to 60% by weight, and still more preferably 20 to 50% by weight.
 さらに、第二の発明の熱硬化性樹脂組成物においては、上記式(1)で表される多価カルボン酸(A1)とトリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸から選ばれる1種または2種以上の化合物の混合物における官能基当量が250g/eq.以下であることが好ましく、240g/eq.以下であることがより好ましい。このような範囲であることで、トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、およびシクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸から選ばれる1種または2種以上の化合物の化合物量の効果が有効に発揮され、耐熱性に優れた硬化物を得ることが可能となる。 Further, in the thermosetting resin composition of the second invention, the polyvalent carboxylic acid (A1) represented by the above formula (1) and trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride Of one or more compounds selected from products, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic anhydride, hydrogenated pyromellitic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride The functional group equivalent in the mixture is 250 g / eq. Or less, preferably 240 g / eq. The following is more preferable. By being in this range, trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, and cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic anhydride, hydrogenated pyromellitic acid The effect of the compound amount of one or more compounds selected from anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride is effectively exhibited, and a cured product having excellent heat resistance can be obtained. Become.
 また、重量比としては、上記式(1)で表される多価カルボン酸(A1):(トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸から選ばれる1種または2種以上の化合物)が99;1~10:90であることが好ましく、90:10~20:80がより好ましく、80:20~50:50であることが特に好ましい。上記比率にあることで、極めて耐熱性に優れるとともに、粘度も低く十分に混練することが可能となることから硬化物性にも優れる熱硬化性樹脂組成物となる。 The weight ratio is the polyvalent carboxylic acid (A1) represented by the above formula (1): (trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated 1 or 2 or more compounds selected from pyromellitic acid, pyromellitic anhydride, hydrogenated pyromellitic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride) are 99; 1 to 10:90 90:10 to 20:80 is more preferable, and 80:20 to 50:50 is particularly preferable. By being in the said ratio, while being extremely excellent in heat resistance, it becomes possible to fully knead | knead low viscosity, Therefore It becomes a thermosetting resin composition excellent also in cured | curing physical property.
 また、第二の発明の熱硬化性樹脂組成物は、第二の発明の多価カルボン酸樹脂並びにトリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸から選ばれる1種または2種以上の化合物を含み、トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸から選ばれる1種または2種以上の化合物の合計が、前記熱硬化性樹脂組成物において1重量%~90重量%を占めることが好ましい。当該重量%であることで、混練性および成型性が向上し、硬化物性にも優れる熱硬化性樹脂組成物となる。 The thermosetting resin composition of the second invention includes the polyvalent carboxylic acid resin of the second invention, trimellitic acid, trimellitic acid anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic acid anhydride, pyromellitic acid, water Contains one or more compounds selected from the group consisting of pyromellitic acid anhydride, pyromellitic acid anhydride, hydrogenated pyromellitic acid anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride. Trimellitic acid, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic anhydride, hydrogenated pyromellitic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride The total of one or more compounds selected from It is preferable to account for 1 wt% to 90 wt% in the thermosetting resin composition. By being the said weight%, kneadability and moldability improve and it becomes a thermosetting resin composition which is excellent also in hardened | cured material property.
 第二の発明における熱硬化性樹脂組成物は、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂等の熱硬化性樹脂等を含有する組成物であることが好ましく、第二の発明においては、エポキシ樹脂を使用することが望ましい。 The thermosetting resin composition in the second invention is preferably a composition containing a thermosetting resin such as an epoxy resin, a phenol resin, a urea resin, a melamine resin, and an unsaturated polyester resin. In the invention, it is desirable to use an epoxy resin.
 エポキシ樹脂としては、従来の熱硬化性樹脂組成物やエポキシ樹脂組成物として通常配合されているものであれば、特に制限されることなく用いることができる。例えば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂をはじめとするフェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールF、ビスフェノールS、アルキル置換ビスフェノール等のジグリシジルエーテル、ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる脂環式エポキシ樹脂、ジグリシジルイソシアヌレート、トリグリシジルイソシアヌレート、シルセスキオキサン化合物等が挙げられ、これらは単独でも二種以上併用してもよい。これらエポキシ樹脂のうち、高い耐熱性を有するものが好ましいことから、具体的には、溶融粘度、得られる硬化物の着色およびガラス転移温度等の観点から、グリシジルエーテル型エポキシ樹脂、脂環式エポキシ樹脂、トリグリシジルイソシアヌレートが好ましい。 The epoxy resin can be used without any particular limitation as long as it is usually blended as a conventional thermosetting resin composition or epoxy resin composition. For example, epoxidized phenol and aldehyde novolac resins such as phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, diglycidyl ether such as bisphenol A, bisphenol F, bisphenol S, alkyl-substituted bisphenol, Glycidylamine type epoxy resin obtained by reaction of polyamine such as diaminodiphenylmethane and isocyanuric acid and epichlorohydrin, alicyclic epoxy resin obtained by oxidizing olefin bond with peracid such as peracetic acid, diglycidyl isocyanurate, triglycidyl isocyanate Examples thereof include nurate and silsesquioxane compounds, and these may be used alone or in combination of two or more. Among these epoxy resins, those having high heat resistance are preferable. Specifically, from the viewpoints of melt viscosity, coloring of the cured product and glass transition temperature, glycidyl ether type epoxy resin, alicyclic epoxy A resin, triglycidyl isocyanurate is preferred.
 エポキシ樹脂と第二の発明の熱硬化性樹脂用硬化剤の配合比は、エポキシ樹脂中のエポキシ基1当量に対して、当該エポキシ基と反応可能な熱硬化性樹脂用硬化剤中の活性基(酸無水物基や水酸基)が0.5~1.5当量(カルボン酸を1官能、酸無水物を1官能と考える)が好ましく、特に好ましくは0.5~1.2当量である。エポキシ基1当量に対して、0.5当量に満たない場合、あるいは1.5当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られない恐れがあるほか、着色しやすくなる問題もある。 The compounding ratio of the epoxy resin and the curing agent for thermosetting resin of the second invention is such that the active group in the curing agent for thermosetting resin capable of reacting with the epoxy group is equivalent to 1 equivalent of the epoxy group in the epoxy resin. (Acid anhydride group or hydroxyl group) is preferably 0.5 to 1.5 equivalents (the carboxylic acid is considered to be monofunctional and the acid anhydride is assumed to be monofunctional), particularly preferably 0.5 to 1.2 equivalents. When less than 0.5 equivalent or more than 1.5 equivalent with respect to 1 equivalent of epoxy group, in any case, curing may be incomplete and good cured properties may not be obtained, and coloration is likely to occur. There is also a problem.
 また、第二の発明の熱硬化性樹脂用硬化剤の成分として含有させることができる末端カルボン酸のオリゴエステルは、下記式(10)で表される。 Moreover, the oligoester of the terminal carboxylic acid that can be contained as a component of the curing agent for the thermosetting resin of the second invention is represented by the following formula (10).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
(式中、複数存在するPは0~6の酸素原子、窒素原子、リン原子を含んでもよい、炭素数2~20の多価アルコールの残基を、Rは炭素数2~20の脂肪族炭化水素基を示す。複数存在するn、kは独立して存在し、平均で1~6を示す。またnの総計は2以上12未満である。) (Wherein a plurality of P are residues of a polyhydric alcohol having 2 to 20 carbon atoms which may contain 0 to 6 oxygen, nitrogen and phosphorus atoms, and R is an aliphatic having 2 to 20 carbon atoms) A hydrocarbon group, a plurality of n and k are present independently and represent an average of 1 to 6. The total of n is 2 or more and less than 12.)
 具体的な構造式としては、下記式(10)の構造を有し、分子内にエステル構造(好ましくは2つのエステル構造)を有する化合物である。また末端に複数のカルボキシル基を有する化合物である。 Specific structural formula is a compound having the structure of the following formula (10) and having an ester structure (preferably two ester structures) in the molecule. Moreover, it is a compound which has a some carboxyl group at the terminal.
 中でも、前記式(10)の末端カルボン酸のオリゴエステルが炭素数6以上の2~6官能の多価アルコールと飽和脂肪族環状酸無水物とのエステル化反応により得られた化合物であることが好ましい。 Among them, the oligoester of the terminal carboxylic acid represented by the formula (10) is a compound obtained by an esterification reaction of a bi- to hexafunctional polyhydric alcohol having 6 or more carbon atoms and a saturated aliphatic cyclic acid anhydride. preferable.
 より具体的には、前記式(10)に記載の末端カルボン酸のオリゴエステルにおいて、連結基Rは炭素数4~10のシクロアルカン骨格、もしくはノルボルナン骨格が好ましく、シクロアルカン骨格においては置換、もしくは無置換のシクロヘキサン構造、特にメチル基を具備するメチルシクロヘキサン構造がその硬化物における光学特性から好ましい。またノルボルナン骨格としてはノルボルナン、メチルノルボルナン構造が好ましい。ここで、置換されたものにおいて適用できる置換基としては、炭素数1~3のアルキル基、カルボキシル基等が挙げられる。 More specifically, in the oligoester of a terminal carboxylic acid represented by the formula (10), the linking group R is preferably a cycloalkane skeleton having 4 to 10 carbon atoms or a norbornane skeleton, and the cycloalkane skeleton is substituted or An unsubstituted cyclohexane structure, particularly a methylcyclohexane structure having a methyl group is preferred from the optical properties of the cured product. The norbornane skeleton is preferably a norbornane or methylnorbornane structure. Here, examples of the substituent that can be applied to the substituted one include an alkyl group having 1 to 3 carbon atoms and a carboxyl group.
 連結基Pは炭素数2~10の多価アルコールの残基(反応に用いた多価アルコールから水酸基を除いた残基)であるが、分岐鎖状の架橋基、もしくはシクロアルキル基が好ましく、特にPは下記(a)又は(b)で定義される2価の架橋基であることが好ましい。
(a)炭素数6~20の分岐構造を有する鎖状アルキル鎖であり、該鎖状アルキル鎖が炭素数3~12の直鎖の主鎖と、2~4個の側鎖を有し、かつその側鎖の少なくとも1つが炭素数2~10である架橋基、
又は、
(b)シクロ環上にメチル基を有してもよい、トリシクロデカンジメタノール又はペンタシクロペンタデカンジメタノール、から選ばれる少なくとも1種の架橋多環ジオールから、2つの水酸基を取り除いた2価の架橋基。
 但し、Pが(b)の場合、好ましいものは連結基Rが炭素数4~10のシクロアルカン骨格又はノルボルナン骨格のときは、後述する式(2A)において置換基Rが水素原子以外の基を表すことがより好ましい。
The linking group P is a residue of a polyhydric alcohol having 2 to 10 carbon atoms (residue obtained by removing a hydroxyl group from the polyhydric alcohol used in the reaction), and is preferably a branched cross-linking group or a cycloalkyl group. In particular, P is preferably a divalent crosslinking group defined by the following (a) or (b).
(A) a chain alkyl chain having a branched structure having 6 to 20 carbon atoms, the chain alkyl chain having a linear main chain having 3 to 12 carbon atoms and 2 to 4 side chains; And at least one of the side chains has a bridging group having 2 to 10 carbon atoms,
Or
(B) a divalent diamine obtained by removing two hydroxyl groups from at least one crosslinked polycyclic diol selected from tricyclodecane dimethanol or pentacyclopentadecane dimethanol, which may have a methyl group on the cyclo ring. Cross-linking group.
However, when P is (b), it is preferable that when the linking group R is a cycloalkane skeleton or a norbornane skeleton having 4 to 10 carbon atoms, the substituent R 3 is a group other than a hydrogen atom in the formula (2A) described later. Is more preferable.
 尚、上記オリゴエステルの軟化点は通常50℃以上であるが、60℃以上が好ましく、80℃以上がより好ましい。上限値に特に制限はないが通常500℃以下であり、300℃以下であることが好ましく、200℃以下であることがより好ましい。 In addition, although the softening point of the said oligoester is 50 degreeC or more normally, 60 degreeC or more is preferable and 80 degreeC or more is more preferable. Although there is no restriction | limiting in particular in an upper limit, Usually, it is 500 degrees C or less, It is preferable that it is 300 degrees C or less, and it is more preferable that it is 200 degrees C or less.
 第二の発明における上記特に好ましい末端カルボン酸のオリゴエステルは、炭素数6以上の2~6官能の多価アルコールと飽和脂肪族環状酸無水物とを、付加反応させることにより得ることができる。
 第二の発明における末端カルボン酸のオリゴエステルは、2種の末端カルボン酸のオリゴエステルを含む組成物であってもよい。末端カルボン酸のオリゴエステルを少なくとも2種含む末端カルボン酸のオリゴエステル組成物を得る方法としては、上記方法で得られた単一の末端カルボン酸のオリゴエステルを少なくとも2種を混合する方法、または、上記の末端カルボン酸のオリゴエステルを合成する際に、上記飽和脂肪族環状酸無水物として、下記で選ばれる飽和脂肪族環状酸無水物から少なくとも2種の混合物を使用するか、前記多価アルコールを2種使用して、付加反応を行う方法がある。
The particularly preferred oligoester of the terminal carboxylic acid in the second invention can be obtained by addition reaction of a bi- to hexafunctional polyhydric alcohol having 6 or more carbon atoms and a saturated aliphatic cyclic acid anhydride.
The oligoester of the terminal carboxylic acid in the second invention may be a composition containing two oligoesters of the terminal carboxylic acid. As a method for obtaining an oligoester composition of a terminal carboxylic acid containing at least two oligoesters of a terminal carboxylic acid, a method of mixing at least two kinds of oligoesters of a single terminal carboxylic acid obtained by the above method, or When synthesizing the oligoester of the above terminal carboxylic acid, the saturated aliphatic cyclic acid anhydride is selected from the following saturated aliphatic cyclic acid anhydrides, or a mixture of at least two kinds is used. There is a method of performing an addition reaction using two kinds of alcohols.
 末端カルボン酸のオリゴエステルの合成に用いる飽和脂肪族環状酸無水物としては、シクロヘキサン構造を有し、該シクロヘキサン環上にメチル基置換又はカルボキシル基置換を有し、又は無置換であり、シクロヘキサン環に結合した酸無水物基を分子内に1つ以上(好ましくは1つ)有する化合物を挙げることができる。
 具体的にはヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、およびシクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物、無水トリメリット酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸無水物、および水添ピロメリット酸無水物からなる群から選ばれる少なくとも1種の酸無水物が挙げられる。
The saturated aliphatic cyclic acid anhydride used for the synthesis of the oligoester of a terminal carboxylic acid has a cyclohexane structure, has a methyl group substitution or a carboxyl group substitution on the cyclohexane ring, or is unsubstituted, and the cyclohexane ring And a compound having one or more (preferably one) acid anhydride groups bonded to.
Specifically, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, and cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride, trimellitic anhydride, cyclohexanetricarboxylic anhydride, pyromellitic anhydride And at least one acid anhydride selected from the group consisting of hydrogenated pyromellitic acid anhydride.
 第二の発明における末端カルボン酸のオリゴエステルの合成に用いる炭素数6以上の2~6官能の多価アルコールとしては、具体的には、前記式(10)中の架橋基Pの末端に水酸基を付けた末端カルボン酸のオリゴエステルを挙げることができる。
 前記式(10)において、Pで表される架橋基は、好ましくは前記(a)または(b)で定義される2価の架橋基であり、それらについて以下に具体的に説明する。
 前記(a)で定義される2価の架橋基は、炭素数6~20の分岐構造を有する2価のアルコール(ジオール)から、水酸基を除いた2価の鎖状アルキル鎖であり、ジオールの2個のアルコール性水酸基に挟まれたアルキル鎖を主鎖とし、該アルキル鎖から分岐したアルキル鎖(側鎖という)を有する構造である。該側鎖は、主鎖を構成するいずれの炭素原子から分岐していてもよく、例えばアルコール性水酸基が結合していた炭素原子(主鎖の末端炭素原子)から分岐している場合も含む。該構造を有する架橋基であれば何れでもよく、このような架橋基の具体例を下記式(a1)に示す。
The bi- to hexafunctional polyhydric alcohol having 6 or more carbon atoms used for the synthesis of the terminal carboxylic acid oligoester in the second invention is specifically a hydroxyl group at the end of the bridging group P in the formula (10). And an oligoester of a terminal carboxylic acid marked with.
In the formula (10), the crosslinkable group represented by P is preferably a divalent crosslinkable group defined by the above (a) or (b), and will be specifically described below.
The divalent crosslinking group defined in (a) is a divalent chain alkyl chain obtained by removing a hydroxyl group from a divalent alcohol (diol) having a branched structure having 6 to 20 carbon atoms. This is a structure having an alkyl chain sandwiched between two alcoholic hydroxyl groups as a main chain and an alkyl chain (referred to as a side chain) branched from the alkyl chain. The side chain may be branched from any carbon atom constituting the main chain, and includes, for example, a case where the side chain is branched from a carbon atom to which an alcoholic hydroxyl group is bonded (terminal carbon atom of the main chain). Any crosslinking group having such a structure may be used, and a specific example of such a crosslinking group is shown in the following formula (a1).
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
前記式中、*印で式(10)におけるPの両側の酸素原子と結合する。 In the above formula, it is bonded with oxygen atoms on both sides of P in the formula (10) by * mark.
 上記(a)で定義されるアルキレン架橋基は、主鎖アルキレン基に対し、アルキル分岐鎖(側鎖)を有する構造であれば特に制限はないが、主鎖の炭素数が3以上の主鎖であり、少なくとも1個のアルキル側鎖を有するものが好ましく、またアルキル側鎖を2つ以上有するものが特に好ましい。より好ましいものとしては、炭素数3~12の直鎖の主鎖と、2~4個の側鎖を有し、かつその側鎖の少なくとも1つが炭素数2~10である架橋基を挙げることができる。この場合、側鎖の少なくとも2つが炭素数2~10である架橋基は更に好ましい。また、2~4個の側鎖は主鎖の異なる炭素原子から分岐していることが好ましい。 The alkylene bridging group defined in (a) is not particularly limited as long as it has a structure having an alkyl branched chain (side chain) with respect to the main chain alkylene group, but the main chain has 3 or more main chain carbon atoms. In particular, those having at least one alkyl side chain are preferred, and those having two or more alkyl side chains are particularly preferred. More preferable examples include a bridging group having a linear main chain having 3 to 12 carbon atoms and 2 to 4 side chains, and at least one of the side chains having 2 to 10 carbon atoms. Can do. In this case, a crosslinking group in which at least two of the side chains have 2 to 10 carbon atoms is more preferable. The 2 to 4 side chains are preferably branched from carbon atoms having different main chains.
 より具体的な化合物としては前記式(a1)に記載した架橋基において、*印の位置にヒドロキシル基が結合した化合物を挙げることができる。
 原料として使用する多価アルコールの中では、少なくとも2個の側鎖を有し、該側鎖の中で少なくとも2個が炭素数2~4の側鎖である多価アルコールが好ましい。
 このような骨格の中で特に好ましい多価アルコールとしては2,4-ジエチル-1,5-ペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、2-エチル-1,3-ヘキサンジオールなどが挙げられ、特に2,4-ジエチル-1,5-ペンタンジオールが挙げられる。
More specific examples of the compound include a compound in which a hydroxyl group is bonded to the position of * in the crosslinking group described in the formula (a1).
Among the polyhydric alcohols used as the raw material, polyhydric alcohols having at least two side chains and at least two of which are side chains having 2 to 4 carbon atoms are preferred.
Among such skeletons, particularly preferred polyhydric alcohols are 2,4-diethyl-1,5-pentanediol, 2-ethyl-2-butyl-1,3-propanediol, 2-ethyl-1,3- Examples include hexanediol, and particularly 2,4-diethyl-1,5-pentanediol.
 前記(b)で定義される架橋基としては、下記式(b1)で表される2価の基を挙げることができる。 Examples of the crosslinking group defined in (b) include a divalent group represented by the following formula (b1).
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 前記(b)で定義される架橋基の場合の、架橋多環ジオール残基としては、トリシクロデカン構造、ペンタシクロペンタデカン構造を主骨格とするジオール残基であり、下記式(b2)で表される。 In the case of the crosslinking group defined in (b) above, the crosslinked polycyclic diol residue is a diol residue having a tricyclodecane structure or a pentacyclopentadecane structure as the main skeleton, and is represented by the following formula (b2). Is done.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
式中、複数存在するRはそれぞれ独立して、水素原子、もしくはメチル基を表す。これらの中で、Rが全て水素原子である架橋基が好ましい。
 具体的にはトリシクロデカンジメタノール、メチルトリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノールなどが挙げられる。
In the formula, a plurality of R 2 each independently represents a hydrogen atom or a methyl group. Of these, a bridging group in which all R 2 are hydrogen atoms is preferred.
Specific examples include tricyclodecane dimethanol, methyl tricyclodecane dimethanol, and pentacyclopentadecane dimethanol.
 酸無水物と多価アルコールの反応としては一般に酸や塩基を触媒とする付加反応であるが、第二の発明においては特に無触媒での反応が好ましい。
 触媒を用いる場合、使用しうる触媒としては、例えば塩酸、硫酸、メタンスルホン酸、トリフルオロメタンスルホン酸、パラトルエンスルホン酸、硝酸、トリフルオロ酢酸、トリクロロ酢酸等の酸性化合物、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム等の金属水酸化物、トリエチルアミン、トリプロピルアミン、トリブチルアミン等のアミン化合物、ピリジン、ジメチルアミノピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、イミダゾール、トリアゾール、テトラゾール等の複素環式化合物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルプロピルアンモニウムヒドロキシド、トリメチルブチルアンモニウムヒドロキシド、トリメチルセチルアンモニウムヒドロキシド、トリオクチルメチルアンモニウムヒドロキシド、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムヨージド、テトラメチルアンモニウムアセテート、トリオクチルメチルアンモニウムアセテート等の4級アンモニウム塩等が挙げられる。これらの触媒は1種又は2種以上を混合して用いても良い。これらの中で、トリエチルアミン、ピリジン、ジメチルアミノピリジンが好ましい。
The reaction between the acid anhydride and the polyhydric alcohol is generally an addition reaction using an acid or a base as a catalyst, but in the second invention, a reaction without a catalyst is particularly preferable.
When a catalyst is used, examples of the catalyst that can be used include hydrochloric acid, sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, nitric acid, trifluoroacetic acid, trichloroacetic acid and other acidic compounds, sodium hydroxide, hydroxide Metal hydroxides such as potassium, calcium hydroxide and magnesium hydroxide, amine compounds such as triethylamine, tripropylamine and tributylamine, pyridine, dimethylaminopyridine, 1,8-diazabicyclo [5.4.0] undec-7 -Heterocyclic compounds such as ene, imidazole, triazole, tetrazole, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethyl Ammonium hydroxide, trimethylpropylammonium hydroxide, trimethylbutylammonium hydroxide, trimethylcetylammonium hydroxide, trioctylmethylammonium hydroxide, tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, tetramethylammonium acetate, A quaternary ammonium salt such as trioctylmethylammonium acetate can be used. These catalysts may be used alone or in combination of two or more. Of these, triethylamine, pyridine, and dimethylaminopyridine are preferred.
 触媒の使用量には、特に制限はないが、原料の総重量100重量部に対して、通常0.001~5重量部を、必要により使用するのが好ましい。
 本反応においては無溶剤での反応が好ましいが、有機溶剤を使用しても構わない。有機溶剤の使用量としては、反応基質である前記酸無水物と前記多価アルコールの総量1部に対し、重量比で0.005~1部であり、好ましくは0.005~0.7部、より好ましくは0.005~0.5部(すなわち50重量%以下)である。有機溶剤の使用量が上記反応基質1重量部に対して、重量比で1部を超える場合、反応の進行が極度に遅くなることから好ましくない。使用できる有機溶剤の具体的な例としてはヘキサン、シクロヘキサン、ヘプタン等のアルカン類、トルエン、キシレン等の芳香族炭化水素化合物、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、アノン等のケトン類、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、酢酸エチル、酢酸ブチル、蟻酸メチルなどのエステル化合物などが使用できる。
The amount of the catalyst used is not particularly limited, but it is usually preferable to use 0.001 to 5 parts by weight, if necessary, with respect to 100 parts by weight of the total weight of the raw materials.
In this reaction, a reaction without a solvent is preferable, but an organic solvent may be used. The amount of the organic solvent used is 0.005 to 1 part by weight, preferably 0.005 to 0.7 part, based on 1 part of the total amount of the acid anhydride and the polyhydric alcohol as reaction substrates. More preferably, it is 0.005 to 0.5 part (that is, 50% by weight or less). When the amount of the organic solvent used exceeds 1 part by weight with respect to 1 part by weight of the reaction substrate, it is not preferable because the progress of the reaction becomes extremely slow. Specific examples of organic solvents that can be used include alkanes such as hexane, cyclohexane and heptane, aromatic hydrocarbon compounds such as toluene and xylene, ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and anone, diethyl ether , Ethers such as tetrahydrofuran and dioxane, and ester compounds such as ethyl acetate, butyl acetate and methyl formate can be used.
 本反応は20℃程度の温度でも十分に反応は進行する。反応時間の問題から反応温度は30~200℃が好ましく、より好ましくは40~200℃、特に好ましくは40~150℃である。特に本反応を無溶剤で行う場合は、酸無水物の揮発があるため、100℃以下での反応が好ましく、30~100℃または40~100℃での反応が特に好ましい。 This reaction proceeds sufficiently even at a temperature of about 20 ° C. In view of the reaction time, the reaction temperature is preferably 30 to 200 ° C, more preferably 40 to 200 ° C, and particularly preferably 40 to 150 ° C. In particular, when this reaction is carried out in the absence of a solvent, the reaction at 100 ° C. or lower is preferred, and the reaction at 30 to 100 ° C. or 40 to 100 ° C. is particularly preferred because of the volatilization of the acid anhydride.
 前記酸無水物と前記多価アルコールとの反応比率は理論的には等モルでの反応が好ましいが、必要に応じて変更可能である。
 反応させる際の具体的な両者の仕込み比率としては、その官能基当量で、該酸無水物基1当量に対して、該多価アルコールを、その水酸基当量で、0.001~2当量、より好ましくは0.01~1.5当量、さらに好ましくは0.1~1.2当量となる割合で仕込むのが好ましい。
 第二の発明においては得られる末端カルボン酸のオリゴエステルが固形であることが好ましく、固形の樹脂状末端カルボン酸のオリゴエステルを得るためには、理想的には等モル当量以上の多価アルコールを使用することが好ましいが、フィラーを添加するため流動性が重要となり、この流動性を確保する為に、その粘度バランスから、固形を保つ範囲(軟化点50℃以上)で多少のバランスを崩しても構わない。
 具体的には、酸無水物当量に対し、アルコール性水酸基の当量比において0.85~1.20モル当量が好ましく、特に0.90~1.1.0モル当量が好ましい。
The reaction ratio between the acid anhydride and the polyhydric alcohol is theoretically preferably equimolar, but can be changed as necessary.
The specific charging ratio of the two at the time of reaction is such that the polyhydric alcohol is equivalent to 0.001 to 2 equivalents in terms of the hydroxyl group equivalent to 1 equivalent of the acid anhydride group in terms of the functional group equivalent. It is preferable to charge at a ratio of preferably 0.01 to 1.5 equivalents, more preferably 0.1 to 1.2 equivalents.
In the second invention, the obtained terminal carboxylic acid oligoester is preferably solid, and in order to obtain a solid resinous terminal carboxylic acid oligoester, ideally an equimolar equivalent or more of polyhydric alcohol However, fluidity is important because of the addition of filler, and in order to secure this fluidity, some balance is lost in the range where the solids are maintained (softening point of 50 ° C or higher). It doesn't matter.
Specifically, the equivalent ratio of the alcoholic hydroxyl group to the acid anhydride equivalent is preferably 0.85 to 1.20 molar equivalent, particularly preferably 0.90 to 1.1.0 molar equivalent.
 反応時間は反応温度、触媒量等にもよるが、工業生産という観点から、長時間の反応は多大なエネルギーを消費することになるため好ましくはない。また短すぎる反応時間はその反応が急激であることを意味し、安全性の面から好ましく無い。好ましい範囲としては1~48時間、好ましくは1~36時間、より好ましくは1~24時間、更に好ましくは2~10時間程度である。 Although the reaction time depends on the reaction temperature, the amount of catalyst, etc., from the viewpoint of industrial production, a long reaction time is not preferable because it consumes a great deal of energy. An excessively short reaction time means that the reaction is abrupt and is not preferable from the viewpoint of safety. A preferred range is 1 to 48 hours, preferably 1 to 36 hours, more preferably 1 to 24 hours, and still more preferably about 2 to 10 hours.
 反応終了後、触媒を用いた場合は、それぞれ中和、水洗、吸着などによって触媒の除去を行い、溶剤を留去することで目的とする末端カルボン酸のオリゴエステルが得られる。一方、無触媒で反応を行った場合は必要に応じて溶剤を留去することで目的とする末端カルボン酸のオリゴエステルが得られる。また、溶剤を使用した場合には、溶剤を除去することで目的とする末端カルボン酸のオリゴエステルが得られる。さらに無溶剤、無触媒の場合はそのまま取り出すことで製品とすることができる。 After completion of the reaction, when a catalyst is used, the catalyst is removed by neutralization, washing with water, adsorption, etc., and the solvent is distilled off to obtain the desired terminal carboxylic acid oligoester. On the other hand, when the reaction is carried out without a catalyst, the desired oligoester of the terminal carboxylic acid can be obtained by distilling off the solvent as necessary. Moreover, when a solvent is used, the oligoester of the terminal carboxylic acid made into the objective is obtained by removing a solvent. Further, in the case of no solvent and no catalyst, the product can be obtained by taking it out as it is.
 最も好適な製造方法としては、前記酸無水物、前記多価アルコールを、無触媒の条件下、40~150℃で反応させ、溶剤を除去したのち取り出すという手法である。 The most preferable production method is a method in which the acid anhydride and the polyhydric alcohol are reacted at 40 to 150 ° C. under non-catalytic conditions to remove the solvent and then taken out.
 このようにして得られる前記末端カルボン酸のオリゴエステルまたは該末端カルボン酸のオリゴエステルを含む組成物は、通常、無色~淡黄色の固形の樹脂状を示す(場合によっては結晶化する)。該末端カルボン酸のオリゴエステルの軟化点は50~190℃であることが好ましく、55~150℃であることがより好ましく、60~120℃であることが特に好ましい。このような軟化点を有する末端カルボン酸のオリゴエステルを液状とすることなく直接熱硬化性樹脂組成物中に混ぜることで、極めて高い反射率保持率を有することとなり、耐熱試験にかけた際にも反射率が低下し難い反射部材を提供することが可能となる。 The thus obtained terminal carboxylic acid oligoester or the composition containing the terminal carboxylic acid oligoester usually shows a colorless to pale yellow solid resinous form (which may crystallize in some cases). The softening point of the terminal carboxylic acid oligoester is preferably 50 to 190 ° C, more preferably 55 to 150 ° C, and particularly preferably 60 to 120 ° C. By mixing the oligoester of a terminal carboxylic acid having such a softening point directly into a thermosetting resin composition without making it liquid, it has an extremely high reflectance retention rate, and even when subjected to a heat test. It is possible to provide a reflecting member whose reflectance is not easily lowered.
 通常、架橋基が、(a)で定義される側鎖を有するアルキレン基である場合、無色~淡黄色の固形の樹脂状を示す。
 第二の発明においては、末端カルボン酸のオリゴエステルを含む熱硬化性樹脂組成物を使用する最適な方法が、トランスファーで成形であることから、末端カルボン酸のオリゴエステルは固形の樹脂状である。
Usually, when the crosslinking group is an alkylene group having a side chain defined by (a), it shows a colorless to pale yellow solid resinous form.
In the second invention, since the optimum method of using the thermosetting resin composition containing the oligoester of the terminal carboxylic acid is molding by transfer, the oligoester of the terminal carboxylic acid is in the form of a solid resin. .
 架橋基が(b)で定義される架橋基の場合、脂肪族炭化水素基が炭素数4~10のシクロアルカン骨格又はノルボルナン骨格であるとき、脂環式の置換基の全てが水素原子の末端カルボン酸のオリゴエステルは、硬化時の着色が見られ、特に厳しい光学用途には好適ではない。脂肪族炭化水素基が炭素数4~10のシクロアルカン骨格又はノルボルナン骨格であるとき、置換基がメチル基またはカルボキシル基の化合物ではそのような着色は少なく、その光学特性が向上する。 When the bridging group is a bridging group defined by (b), when the aliphatic hydrocarbon group is a cycloalkane skeleton or a norbornane skeleton having 4 to 10 carbon atoms, all of the alicyclic substituents are at the end of the hydrogen atom. Carboxylic acid oligoesters show coloration upon curing and are not suitable for particularly demanding optical applications. When the aliphatic hydrocarbon group is a cycloalkane skeleton or a norbornane skeleton having 4 to 10 carbon atoms, the compound having a methyl group or a carboxyl group as the substituent is less colored and the optical properties are improved.
 前記(a)で定義される架橋基の化合物においても、脂肪族炭化水素基が炭素数4~10のシクロアルカン骨格又はノルボルナン骨格であるとき、置換基がメチル基またはカルボキシル基の化合物の場合の方が、光学特性が向上し、好ましい。 In the compound of the crosslinking group defined in (a), when the aliphatic hydrocarbon group is a cycloalkane skeleton or a norbornane skeleton having 4 to 10 carbon atoms, the substituent is a methyl group or a carboxyl group. This is preferable because optical characteristics are improved.
 すなわち、第二の発明の末端カルボン酸のオリゴエステル組成物として、炭素数4~10のシクロアルカン骨格又はノルボルナン骨格であるとき、置換基は好ましくはメチル基もしくはカルボキシル基、又は両者を有する式(10)の末端カルボン酸のオリゴエステルを含む組成物が好ましい。該末端カルボン酸のオリゴエステルを2種以上含む末端カルボン酸のオリゴエステル組成物の場合、少なくとも当該置換基が水素原子でない式(1)の末端カルボン酸のオリゴエステル(当該置換基が前記アルキル基、好ましくはメチル基、又はカルボキシル基の末端カルボン酸のオリゴエステル)、を、末端カルボン酸のオリゴエステルの総量に対して、50モル%以上含む組成物が好ましい。より好ましくは、当該置換基が水素原子でない式(10)の末端カルボン酸のオリゴエステルを70モル%以上、最も好ましくは90モル%以上含む末端カルボン酸のオリゴエステル組成物が好ましい。残部が、Rが水素原子である下記式(2A)の末端カルボン酸のオリゴエステルである。 That is, when the terminal carboxylic acid oligoester composition of the second invention is a cycloalkane skeleton or a norbornane skeleton having 4 to 10 carbon atoms, the substituent is preferably a formula having a methyl group or a carboxyl group, or both ( The composition containing the oligoester of terminal carboxylic acid of 10) is preferable. In the case of an oligoester composition of a terminal carboxylic acid containing two or more kinds of oligoesters of the terminal carboxylic acid, at least the terminal carboxylic acid oligoester of the formula (1) in which the substituent is not a hydrogen atom (the substituent is the alkyl group) , Preferably an oligoester of a terminal carboxylic acid having a methyl group or a carboxyl group) is preferably 50 mol% or more based on the total amount of oligoesters of the terminal carboxylic acid. More preferably, a terminal carboxylic acid oligoester composition containing 70 mol% or more, most preferably 90 mol% or more of the terminal carboxylic acid oligoester of the formula (10), in which the substituent is not a hydrogen atom. The remainder is an oligoester of a terminal carboxylic acid of the following formula (2A) in which R 3 is a hydrogen atom.
 第二の発明において好適な末端カルボン酸のオリゴエステルとしては、下記式(2A)で表される末端カルボン酸のオリゴエステルが用いられる。 As a suitable terminal carboxylic acid oligoester in the second invention, a terminal carboxylic acid oligoester represented by the following formula (2A) is used.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
(上記式中、Pは上記と同じ意味を表し、Rは水素原子、炭素数1~3のアルキル基またはカルボキシル基を表す。)
 ここで、上記式(2A)においては、上記に記載の通りの理由により、Rが炭素数1~3のアルキル基またはカルボキシル基を好適に使用できる。
 末端カルボン酸オリゴエステルは、数平均分子量Mnが300以上である末端カルボン酸のオリゴエステルであることが好ましい。
(In the above formula, P represents the same meaning as described above, and R 3 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a carboxyl group.)
Here, in the above formula (2A), for the reasons described above, an alkyl group or a carboxyl group in which R 3 has 1 to 3 carbon atoms can be suitably used.
The terminal carboxylic acid oligoester is preferably an oligoester of a terminal carboxylic acid having a number average molecular weight Mn of 300 or more.
 併用しうる硬化剤としては、例えばアミン系化合物、不飽和環構造を有する酸無水物系化合物、オルガノシロキサン骨格を有する酸無水物、アミド系化合物、フェノール系化合物、カルボン酸系化合物などが挙げられる。用いうる硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂、無水フタル酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロロメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4’-ビス(クロロメチル)ベンゼン、1,4’-ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、イミダゾール、トリフルオロボラン-アミン錯体、グアニジン誘導体、テルペンとフェノール類の縮合物などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。 Examples of the curing agent that can be used in combination include an amine compound, an acid anhydride compound having an unsaturated ring structure, an acid anhydride having an organosiloxane skeleton, an amide compound, a phenol compound, and a carboxylic acid compound. . Specific examples of the curing agent that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from linolenic acid and ethylenediamine, phthalic anhydride, pyromellitic anhydride Acid, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2 , 1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol Diol, terpene diphenol, 4,4'-biphenol, 2,2'-biphenol, 3,3 ', 5,5'-tetramethyl- [1,1'-biphenyl] -4,4'-diol, hydroquinone , Resorcinol, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenols (phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene , Dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetophenone, o-hydroxyacetophenone, dicyclopentadiene, furfural, 4,4 -Bis (chloromethyl) -1,1'-biphenyl, 4,4'-bis (methoxymethyl) -1,1'-biphenyl, 1,4'-bis (chloromethyl) benzene, 1,4'-bis Examples include polycondensates with (methoxymethyl) benzene and the like, modified products thereof, halogenated bisphenols such as tetrabromobisphenol A, imidazole, trifluoroborane-amine complexes, guanidine derivatives, and condensates of terpenes and phenols. However, it is not limited to these. These may be used alone or in combination of two or more.
 第二の発明の熱硬化性樹脂組成物には、必要に応じて硬化促進剤を添加することができる。硬化促進剤としては、2-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2,4-ジアミノ-6(2'-メチルイミダゾール(1'))エチル-s-トリアジン、2,4-ジアミノ-6(2'-ウンデシルイミダゾール(1'))エチル-s-トリアジン、2,4-ジアミノ-6(2'-エチル,4-メチルイミダゾール(1'))エチル-s-トリアジン、2,4-ジアミノ-6(2'-メチルイミダゾール(1'))エチル-s-トリアジン・イソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸の2:3付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-3,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-ヒドロキシメチル-5-メチルイミダゾール、1-シアノエチル-2-フェニル-3,5-ジシアノエトキシメチルイミダゾールの各種イミダゾール類、及び、それらイミダゾール類とフタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、マレイン酸、蓚酸等の末端カルボン酸のオリゴエステルとの塩類、ジシアンジアミド等のアミド類、1,8-ジアザ-ビシクロ(5.4.0)ウンデセン-7等のジアザ化合物及びそれらのテトラフェニルボレート、フェノールノボラック等の塩類、前記末端カルボン酸のオリゴエステル類、又はホスフィン酸類との塩類、テトラブチルアンモニウムブロマイド、セチルトリメチルアンモニウムブロマイド、トリオクチルメチルアンモニウムブロマイド、ヘキサデシルトリメチルアンモニウムヒドロキシド等の4級アンモニウム塩(好ましくはC1~C20アルキルアンモニウム塩、トリフェニルホスフィン、トリ(トルイル)ホスフィン、テトラフェニルホスホニウムブロマイド、テトラフェニルホスホニウムテトラフェニルボレート等のホスフィン類やホスホニウム化合物、2,4,6-トリスアミノメチルフェノール等のフェノール類、アミンアダクト、オクチル酸スズ、オクタン酸亜鉛、ステアリン酸亜鉛、ナフテン酸銅、ナフテン酸コバルト等の金属化合物等、及びこれら硬化促進剤をマイクロカプセルにしたマイクロカプセル型硬化促進剤、カルボニル化合物亜鉛錯体等が挙げられる。これら硬化促進剤のどれを用いるかは、例えば透明性、耐熱着色性、硬化速度、作業条件といった得られる透明樹脂組成物に要求される特性によって適宜選択される。第二の発明において好ましいものとしては、ホスホニウム化合物(より好ましくは4級ホスホニウム)またはステアリン酸亜鉛が挙げられる。
 硬化促進剤は、エポキシ樹脂100重量部に対し通常0.001~15重量部、好ましくは0.01~5重量部の範囲で使用される。
A curing accelerator can be added to the thermosetting resin composition of the second invention as necessary. Curing accelerators include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl- 2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 2,4-diamino-6 (2′-methylimidazole (1 ′)) ) Ethyl-s-triazine, 2,4-diamino-6 (2′-undecylimidazole (1 ′)) ethyl-s-triazine, 2,4-diamino-6 (2′-ethyl, 4-methylimidazole ( 1 ′)) Ethyl-s-triazine, 2,4-diamino-6 (2′-methylimidazole) (1 ')) ethyl-s-triazine isocyanuric acid adduct, 2-methylimidazole isocyanuric acid 2: 3 adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-3,5-dihydroxymethylimidazole , 2-phenyl-4-hydroxymethyl-5-methylimidazole, 1-cyanoethyl-2-phenyl-3,5-dicyanoethoxymethylimidazole imidazoles, and imidazoles with phthalic acid, isophthalic acid, terephthalic acid , Salts with oligoesters of terminal carboxylic acids such as trimellitic acid, pyromellitic acid, naphthalenedicarboxylic acid, maleic acid and succinic acid, amides such as dicyandiamide, 1,8-diaza-bicyclo (5.4.0) undecene Diaza compounds such as -7 and their tetrafes Salts such as ruborate and phenol novolac, oligoesters of the above terminal carboxylic acids, salts with phosphinic acids, quaternary compounds such as tetrabutylammonium bromide, cetyltrimethylammonium bromide, trioctylmethylammonium bromide, hexadecyltrimethylammonium hydroxide Ammonium salts (preferably C1-C20 alkyl ammonium salts, phosphines such as triphenylphosphine, tri (toluyl) phosphine, tetraphenylphosphonium bromide, tetraphenylphosphonium tetraphenylborate, phosphonium compounds, 2,4,6-trisaminomethyl Phenols and other phenols, amine adducts, tin octylate, zinc octoate, zinc stearate, copper naphthenate, naphthenic acid Examples thereof include metal compounds such as cobalt, microcapsule-type curing accelerators in which these curing accelerators are microcapsules, and carbonyl compound zinc complexes. Which of these curing accelerators is used is appropriately selected depending on characteristics required for the obtained transparent resin composition, such as transparency, heat-resistant colorability, curing speed, and working conditions. Preferred examples of the second invention include phosphonium compounds (more preferably quaternary phosphonium) and zinc stearate.
The curing accelerator is usually used in an amount of 0.001 to 15 parts by weight, preferably 0.01 to 5 parts by weight, based on 100 parts by weight of the epoxy resin.
 必要に応じて、上述した添加剤以外の添加剤として、一般によく使用されるエポキシ樹脂用添加剤、例えば、顔料、染料、蛍光増白剤、補強材、充填剤、白色顔料、核剤、界面活性剤、可塑剤、粘度調整剤、流動性調整剤、難燃剤、酸化防止剤、紫外線吸収剤、光安定剤を添加してもよい。 If necessary, as additives other than those mentioned above, commonly used additives for epoxy resins such as pigments, dyes, fluorescent brighteners, reinforcing materials, fillers, white pigments, nucleating agents, interfaces An activator, a plasticizer, a viscosity modifier, a fluidity modifier, a flame retardant, an antioxidant, an ultraviolet absorber, and a light stabilizer may be added.
 第二の発明の熱硬化性樹脂組成物においては、成形時の高温条件下における熱硬化性樹脂用硬化剤のICIコーンプレート粘度が、従来の酸無水物硬化剤等より高いことが望ましく、具体的には、成型温度領域である100~200℃の範囲で、0.01~10Pa・sであることが望ましい。0.01Pa・sより小さいと、バリが生じやすい。一方、10Pa・sより大きいと生産性が低下するおそれがある。
 本実施形態においては、150℃における熱硬化性樹脂用硬化剤のICI粘度が0.01Pa・s~10Pa・sであることが好ましく、0.05Pa・s~5Pa・sであることがより好ましい。
 当該範囲に調整することにより、常温(25℃)で固形となり、成形が容易となり、ボイド等の不具合を効果的に防止することができる。また、室温で固形であることから、液状の場合にはプレポリマー化などの前処理なしでは不可能であった混練が、前処理なしで可能となり、固形であるため、タブレットとして成形しやすい。さらに、このような低粘度の熱硬化性樹脂組成物に設定することで、従来結晶性を有するため軟化点あるいは融点が高く、混練が困難であった各成分が硬化剤に十分に溶融・分散するため、結晶が崩れ、主剤となるエポキシ樹脂と十分混練されることとなり、各成分が効果的に配列し、優れた物性を有する硬化物を得ることができる。
In the thermosetting resin composition of the second invention, it is desirable that the ICI cone plate viscosity of the curing agent for the thermosetting resin under a high temperature condition during molding is higher than that of a conventional acid anhydride curing agent, etc. Specifically, it is desirable that the pressure is 0.01 to 10 Pa · s within the range of 100 to 200 ° C. which is the molding temperature range. If it is less than 0.01 Pa · s, burrs are likely to occur. On the other hand, if it is greater than 10 Pa · s, the productivity may decrease.
In this embodiment, the ICI viscosity of the thermosetting resin curing agent at 150 ° C. is preferably 0.01 Pa · s to 10 Pa · s, more preferably 0.05 Pa · s to 5 Pa · s. .
By adjusting to the said range, it becomes solid at normal temperature (25 degreeC), shaping | molding becomes easy, and malfunctions, such as a void, can be prevented effectively. Further, since it is solid at room temperature, kneading, which is impossible without pretreatment such as prepolymerization in the case of liquid, is possible without pretreatment, and since it is solid, it is easy to mold as a tablet. Furthermore, by setting to such a low-viscosity thermosetting resin composition, each component that has been conventionally difficult to knead due to its crystallinity has a high softening point or melting point, and is sufficiently melted and dispersed in the curing agent. Therefore, the crystals are broken and are sufficiently kneaded with the epoxy resin as the main agent, so that each component is effectively arranged and a cured product having excellent physical properties can be obtained.
 また、第二の発明の熱硬化性樹脂組成物は、軟化点が20~150℃であることが好ましく、30℃~130℃の範囲にあることがより好ましく、40℃~120℃の範囲にあることがさらに好ましく、50~130℃であることが特に好ましい。
 当該範囲に調整することにより、各種成分をミキサー等によって容易に撹拌、混合することができ、それをさらにミキシングロール、押出機、ニーダー、ロール、エクストルーダー等によって混練または溶融混練し、冷却、粉砕することが可能となる。
The thermosetting resin composition of the second invention preferably has a softening point of 20 to 150 ° C, more preferably in the range of 30 ° C to 130 ° C, and in the range of 40 ° C to 120 ° C. More preferably, it is 50 to 130 ° C.
By adjusting to this range, various components can be easily stirred and mixed with a mixer, etc., and further kneaded or melt kneaded with a mixing roll, extruder, kneader, roll, extruder, etc., cooled, pulverized It becomes possible to do.
 硬化物のガラス転移温度(Tg)は、成形温度よりも高いことが望ましい。硬化物のガラス転移温度(Tg)が成形温度以下であると、金型の中にある硬化物は低弾性のゴム状態であるため、ゴム状硬化物を金型から取り出すことになり、イジェクターを押し込む際に、変形するなどして不具合が生じるおそれがある。具体的には、ガラス転移温度(Tg)は30℃以上であることが好ましく、40℃以上であることがより好ましく、50℃以上であることがさらに好ましい。
 ここで、第二の発明において、硬化物のガラス転移温度(Tg)は、150℃以下が好ましく、140℃以下がより好ましい。
The glass transition temperature (Tg) of the cured product is desirably higher than the molding temperature. If the glass transition temperature (Tg) of the cured product is equal to or lower than the molding temperature, the cured product in the mold is in a low elastic rubber state, so the rubber-like cured product is taken out of the mold, and the ejector is removed. When pushing, there is a possibility that a problem may occur due to deformation. Specifically, the glass transition temperature (Tg) is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, and further preferably 50 ° C. or higher.
Here, in 2nd invention, 150 degreeC or less is preferable and, as for the glass transition temperature (Tg) of hardened | cured material, 140 degreeC or less is more preferable.
 第二の発明の熱硬化性樹脂組成物は、上記した各種成分を均一に分散混合することで得られる。その方法については特に限定されないが、各種成分をミキサー等によって十分均一に撹拌、混合した後、ミキシングロール、押出機、ニーダー、ロール、エクストルーダー等によって混練または溶融混練し、冷却、粉砕する方法を挙げることができる。混練または溶融混練の条件は、成分の種類や配合量により決定すればよく、特に限定されないが、20~100℃の範囲で5~40分間混練することがより好ましい。混練温度が20℃未満であると、各成分の分散性が低下し、十分に混練させることが困難であり、100℃よりも高温であると、樹脂組成物の架橋反応が進行し、樹脂組成物が硬化してしまう恐れがある。 The thermosetting resin composition of the second invention can be obtained by uniformly dispersing and mixing the various components described above. The method is not particularly limited. Can be mentioned. The conditions for kneading or melt-kneading may be determined depending on the types and amounts of the components, and are not particularly limited. However, kneading at 20 to 100 ° C. for 5 to 40 minutes is more preferable. When the kneading temperature is less than 20 ° C., the dispersibility of each component is lowered and it is difficult to sufficiently knead. When the kneading temperature is higher than 100 ° C., the crosslinking reaction of the resin composition proceeds and the resin composition There is a risk that things will harden.
 第二の発明の熱硬化性樹脂組成物は、加熱成型前、0~30℃の室温において加圧(タブレット)成型可能であることが望ましい。加圧成型は、例えば、0.01~10MPa、1~5秒程度の条件下で行う方法が挙げられる。また、加圧(タブレット)成型時に用いる金型は、特に限定されないが、例えば、セラミックス系材料やフッ素系樹脂材料等からなる杵型(上金型)と臼型(下金型)とで構成されるものを用いることが好ましい。 It is desirable that the thermosetting resin composition of the second invention can be molded under pressure (tablet) at room temperature of 0 to 30 ° C. before heat molding. For example, the pressure molding may be performed under conditions of 0.01 to 10 MPa and 1 to 5 seconds. In addition, the mold used at the time of pressing (tablet) molding is not particularly limited, and for example, it is composed of a vertical mold (upper mold) and a mortar mold (lower mold) made of a ceramic material, a fluorine resin material, or the like. It is preferable to use what is used.
 第二の発明の熱硬化性樹脂組成物は、高いガラス転移温度および高い透過率を必要とする光半導体封止材料、光半導体用反射材などの用途において有用である。 The thermosetting resin composition of the second invention is useful in applications such as optical semiconductor sealing materials and optical semiconductor reflectors that require high glass transition temperatures and high transmittance.
 光反射用として使用する場合において、製造方法は特に限定されないが、例えば、第二の発明の熱硬化性樹脂組成物をトランスファー成型によって製造することが好ましい。第二の発明の熱硬化性樹脂組成物を金型に注入し、例えば、金型温度150~190℃、成形圧力2~20MPaの条件下で、60~800秒間硬化させた後に金型から取り出し、アフターキュア温度150℃~180℃で1~3時間にわたって熱硬化させる。 In the case of using for light reflection, the production method is not particularly limited. For example, it is preferable to produce the thermosetting resin composition of the second invention by transfer molding. The thermosetting resin composition of the second invention is injected into a mold and, for example, cured for 60 to 800 seconds under conditions of a mold temperature of 150 to 190 ° C. and a molding pressure of 2 to 20 MPa, and then taken out from the mold. The composition is heat-cured at an after-cure temperature of 150 ° C. to 180 ° C. for 1 to 3 hours.
(半導体装置)
 第二の発明の半導体装置は、代表的な構造について具体例を例示すると、国際公開第2012/124147号に記載の通り、基板上に円筒状の中空部を有する光反射防止部材を配置し、円筒状の中空部の内部空間において基板上に光半導体素子を配置する。そして、光半導体素子の一端部と基板をワイヤーで繋げ、上記中空部に封止樹脂が封入された構成を有している。
(Semiconductor device)
The semiconductor device of the second invention, when a specific example is illustrated with respect to a typical structure, arranges a light reflection preventing member having a cylindrical hollow portion on a substrate as described in International Publication No. 2012/124147, An optical semiconductor element is disposed on the substrate in the internal space of the cylindrical hollow portion. And the one end part and board | substrate of an optical semiconductor element are connected with the wire, and it has the structure by which sealing resin was enclosed with the said hollow part.
 第二の発明の樹脂組成物に好適に適用される反射材について、より詳細に説明する。成形によって得た反射材は、熱劣化による変色が抑制される。反射材は、LED電球等のLED照明器具用のLEDリフレクターとして使用することができる。第二の発明の熱硬化性樹脂組成物から得られる反射材は、寿命が長い安価なLEDリフレクターを構成することができる。 The reflective material suitably applied to the resin composition of the second invention will be described in more detail. In the reflective material obtained by molding, discoloration due to thermal deterioration is suppressed. The reflective material can be used as an LED reflector for an LED lighting apparatus such as an LED bulb. The reflective material obtained from the thermosetting resin composition of the second invention can constitute an inexpensive LED reflector having a long lifetime.
 図1に、熱硬化性樹脂組成物を成形して得た反射材を用いたLED照明装置の一例を示す。この反射材はLEDリフレクター1である。反射材は枠状に形成されており、中央部に凹部2と穴部3とを有している。凹部2は、壁面が傾斜した面となって設けられている。凹部2の壁面が光を反射させる反射面となる。穴部3は、凹部2の底部においてLEDリフレクター1を貫通するように設けられている。この穴部3には、発光素子であるLED5が搭載されたリードフレーム4が嵌め込まれている。リードフレーム4には、LED5に電気を供給するための配線が設けられていてよい。凹部2の発光面側(図の上部)は、透明なカバー6により覆われている。それにより、LED5が保護される。カバー6は凹部2の開口縁部においてLEDリフレクター1に接合されている。LEDリフレクター1は、LED5の発光を効率よく反射するための反射板として機能する。LEDリフレクター1の形状は、図1の形状に限られるものではなく、実装されるLED5の光量や色、指向性特性等を考慮して適宜設計することができる。上記の光反射体用熱硬化性樹脂組成物では、成形性が良好なため目的とする形状の成形体を容易に得ることができる。 FIG. 1 shows an example of an LED lighting device using a reflective material obtained by molding a thermosetting resin composition. This reflector is the LED reflector 1. The reflective material is formed in a frame shape, and has a recess 2 and a hole 3 at the center. The recess 2 is provided as an inclined surface. The wall surface of the recess 2 serves as a reflecting surface that reflects light. The hole 3 is provided at the bottom of the recess 2 so as to penetrate the LED reflector 1. A lead frame 4 on which an LED 5 as a light emitting element is mounted is fitted in the hole 3. The lead frame 4 may be provided with wiring for supplying electricity to the LED 5. The light emitting surface side (upper part in the figure) of the recess 2 is covered with a transparent cover 6. Thereby, LED5 is protected. The cover 6 is joined to the LED reflector 1 at the opening edge of the recess 2. The LED reflector 1 functions as a reflector for efficiently reflecting the light emitted from the LED 5. The shape of the LED reflector 1 is not limited to the shape shown in FIG. 1, and can be appropriately designed in consideration of the light quantity, color, directivity characteristics, and the like of the mounted LED 5. With the thermosetting resin composition for light reflectors described above, since the moldability is good, it is possible to easily obtain a molded body having a desired shape.
 以下、本発明を実施例により詳述するが、本発明は以下の記載に限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited to the following description.
 まず、第一の発明を実施例により詳述する。 First, the first invention will be described in detail by way of examples.
熱硬化性光反射用樹脂組成物の調製(実施例1-1~1-2、比較例1-1~1-2)
 EHPE-3150(ダイセル化学工業(株)製脂環式エポキシ樹脂)、THEIC-G(四国化成工業(株)製多価アルコール化合物)、リカシッドMH-T(新日本理化製エポキシ樹脂用硬化剤)、ヒシコーリンPX-4MP(日本化学工業株式会社製硬化触媒)を使用して、表1-1に示した配合表に従って各成分を配合し、実施例1-1~1-2および比較例1-1~1-2の熱硬化性樹脂組成物を調製した。なお、表1-1中の各成分の配合量の単位は重量部であり、空欄は当該成分を使用していないことを表す。
Preparation of thermosetting light reflecting resin composition (Examples 1-1 to 1-2, Comparative Examples 1-1 to 1-2)
EHPE-3150 (alicyclic epoxy resin manufactured by Daicel Chemical Industries, Ltd.), THEIC-G (polyhydric alcohol compound manufactured by Shikoku Kasei Kogyo Co., Ltd.), Ricacid MH-T (curing agent for epoxy resin manufactured by Shin Nippon Chemical Co., Ltd.) Using Hishicolin PX-4MP (a curing catalyst manufactured by Nippon Chemical Industry Co., Ltd.), the respective components were blended according to the blending table shown in Table 1-1, and Examples 1-1 to 1-2 and Comparative Example 1- 1 to 1-2 thermosetting resin compositions were prepared. In Table 1-1, the unit of the blending amount of each component is parts by weight, and the blank indicates that the component is not used.
熱硬化性光反射用樹脂組成物の調製(実施例1-3~1-4)
 EHPE-3150(ダイセル化学工業(株)製脂環式エポキシ樹脂)、ジトリメチロールプロパン(パーストープジャパン(株)製多価アルコール化合物)、リカシッドMH-T(新日本理化製エポキシ樹脂用硬化剤)、ヒシコーリンPX-4MP(日本化学工業株式会社製硬化触媒)を使用して、表1-2に示した配合表に従って各成分を配合し、実施例1-3~1-4の熱硬化性樹脂組成物を調製した。なお、表1-2中の各成分の配合量の単位は重量部である。
Preparation of thermosetting light reflecting resin composition (Examples 1-3 to 1-4)
EHPE-3150 (alicyclic epoxy resin manufactured by Daicel Chemical Industries, Ltd.), ditrimethylolpropane (polyhydric alcohol compound manufactured by Perstorp Japan Co., Ltd.), Rikacid MH-T (curing agent for epoxy resin manufactured by Shin Nippon Chemical Co., Ltd.) Each component was blended according to the blending table shown in Table 1-2 using Hishicolin PX-4MP (a curing catalyst manufactured by Nippon Chemical Industry Co., Ltd.), and the thermosetting resins of Examples 1-3 to 1-4 A composition was prepared. The unit of the amount of each component in Table 1-2 is parts by weight.
熱硬化性樹脂組成物の評価
 各実施例の樹脂組成物について、下記に示す方法により硬化物のDMA、TMA、透過率を測定した。その結果を表1-1に示す。
Evaluation of thermosetting resin composition About the resin composition of each Example, DMA, TMA, and the transmittance | permeability of hardened | cured material were measured with the method shown below. The results are shown in Table 1-1.
(a)示差熱-熱重量同時測定(TG/DTA)
示差熱-熱重量同時測定(TG/DTA)については、示差熱熱量同時測定装置(エスアイアイ・ナノテクノロジー(株)製 Exstar TG/DTA7200)を使用して下記条件で測定した。
(測定条件)
測定温度:40℃~150℃
昇温速度:20℃/分
保持時間:150℃1時間
フローガス:窒素ガス
流量:200ml/分
パン:アルミニウム製
サンプル量:4~6mg
(A) Differential thermal-thermogravimetric simultaneous measurement (TG / DTA)
About the differential thermal-thermogravimetric simultaneous measurement (TG / DTA), it measured on the following conditions using the differential thermal calorific value simultaneous measuring apparatus (SII nanotechnology Co., Ltd. Exstar TG / DTA7200).
(Measurement condition)
Measurement temperature: 40 ° C to 150 ° C
Temperature increase rate: 20 ° C./min Retention time: 150 ° C. for 1 hour Flow gas: Nitrogen gas Flow rate: 200 ml / min Pan: Aluminum sample amount: 4-6 mg
 なお、下記表1-1及び表1-2における実施例1~4及び比較例1~2は、それぞれ前記実施例1-1~1-4及び前記比較例1-1~1-2を表す。 In addition, Examples 1 to 4 and Comparative Examples 1 and 2 in Table 1-1 and Table 1-2 below represent Examples 1-1 to 1-4 and Comparative Examples 1-1 to 1-2, respectively. .
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 以上の結果から、第一の発明の熱硬化性樹脂組成物は、硬化時の揮発が少ない特徴を有することがわかる。 From the above results, it can be seen that the thermosetting resin composition of the first invention has a feature of low volatilization at the time of curing.
 続いて、第二の発明を実施例により詳述する。 Subsequently, the second invention will be described in detail by way of examples.
 ここで、合成例において、ゲルパーミエーションクロマトグラフィー(以下、「GPC」という)、ICI粘度、軟化点の各測定は以下の通り行った。
1)GPC
カラムは、Shodex SYSTEM-21カラム(KF-803L、KF-802.5(×2本)、KF-802)、連結溶離液はテトラヒドロフラン、流速は1ml/min.カラム温度は40℃、また検出はRI(Reflective  index)で行い、検量線はShodex製標準ポリスチレンを使用した。また官能基当量はGPCより算出した比率より算出し、カルボン酸、酸無水物をそれぞれ1当量として値を求めた。
2)ICI粘度
150℃におけるコーンプレート法における溶融粘度を測定した。
3)軟化点
JIS  K-7234に準じた方法で測定した。
Here, in the synthesis examples, gel permeation chromatography (hereinafter referred to as “GPC”), ICI viscosity, and softening point were measured as follows.
1) GPC
The column is a Shodex SYSTEM-21 column (KF-803L, KF-802.5 (× 2), KF-802), the coupled eluent is tetrahydrofuran, and the flow rate is 1 ml / min. The column temperature was 40 ° C., the detection was performed by RI (Reflective index), and a standard polystyrene made by Shodex was used for the calibration curve. Further, the functional group equivalent was calculated from the ratio calculated from GPC, and the value was determined with 1 equivalent each of carboxylic acid and acid anhydride.
2) The melt viscosity in the cone plate method at an ICI viscosity of 150 ° C. was measured.
3) Softening point Measured by a method according to JIS K-7234.
合成例2-1(熱硬化性樹脂用硬化剤A-1)
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらイソシアヌル酸トリス(2-ヒドロキシエチル)261.2部、メチルヘキサヒドロフタル酸無水物(新日本理化(株)製、リカシッドMH‐T)504.6部、MEK766.0部を加え、70℃で7時間加熱撹拌を行うことで化合物を含むMEK溶液を得た。そこへ、メチルヘキサヒドロフタル酸無水物(新日本理化(株)製、リカシッドMH‐T)153.2部を加え、70℃で1時間加熱撹拌を行った。その後、70℃から150℃まで約1時間で昇温し、150℃1時間の条件で溶媒を除去し、熱硬化性樹脂用硬化剤を得た。
 得られた硬化剤は無色、固形であった。また、官能基当量は232g/eq.であった。ICI粘度は、150℃において0.38Pa・sであった。軟化点は、82.6℃であった。
 また、GPC面積比は、主成分である3置換体が81.1%、2置換体が3.04%、1置換体が1.04%であった。
Synthesis Example 2-1 (Curing Agent A-1 for Thermosetting Resin)
A flask equipped with a stirrer, a reflux condenser, and a stirrer was charged with 261.2 parts of tris (2-hydroxyethyl) isocyanurate while purging with nitrogen, methylhexahydrophthalic anhydride (manufactured by Shin Nippon Rika Corporation) (Licacid MH-T) 504.6 parts and MEK 766.0 parts were added, and a MEK solution containing the compound was obtained by heating and stirring at 70 ° C. for 7 hours. Thereto, 153.2 parts of methylhexahydrophthalic anhydride (manufactured by Shin Nippon Rika Co., Ltd., Ricacid MH-T) was added, and the mixture was heated and stirred at 70 ° C. for 1 hour. Thereafter, the temperature was raised from 70 ° C. to 150 ° C. in about 1 hour, and the solvent was removed under the conditions of 150 ° C. for 1 hour to obtain a curing agent for thermosetting resin.
The obtained curing agent was colorless and solid. The functional group equivalent was 232 g / eq. Met. The ICI viscosity was 0.38 Pa · s at 150 ° C. The softening point was 82.6 ° C.
Further, the GPC area ratio was 81.1% for the 3-substituted product as the main component, 3.04% for the 2-substituted product, and 1.04% for the 1-substituted product.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
合成例2-2(熱硬化性樹脂用硬化剤A-2)
 撹拌機、還流冷却管、撹拌装置を備えた反応槽に、窒素パージを施しながらイソシアヌル酸トリス(2-ヒドロキシエチル)7840部、メチルヘキサヒドロフタル酸無水物(新日本理化(株)製、リカシッドMH‐T)15140部、メチルエチルケトン(MEK)23000部を加え、70℃で7時間加熱撹拌を行うことで化合物を含むMEK溶液を得た。そのMEK溶液の温度を室温まで下げたところへ、メチルヘキサヒドロフタル酸無水物(新日本理化(株)製、リカシッドMHT)4600部を加え、40℃で1時間加熱撹拌を行った。その後、40℃から150℃までを約5時間かけ徐々に減圧昇温を行い、150℃1時間の条件で溶媒を除去し、熱硬化性樹脂用硬化剤を得た。
 得られた硬化剤は無色、固形であった。また、官能基当量は234g/eq.であった。ICI粘度は、150℃において0.40Pa・sであった。軟化点は、82.9℃であった。
 また、GPC面積比は、主成分である3置換体が82.59%、2置換体が0.00%、1置換体が1.25%であった。
Synthesis Example 2-2 (Curing Agent A-2 for Thermosetting Resin)
7840 parts of isocyanuric acid tris (2-hydroxyethyl), methylhexahydrophthalic anhydride (manufactured by Shin Nippon Rika Co., Ltd., Ricacid) while purging with nitrogen in a reaction vessel equipped with a stirrer, reflux condenser, and stirrer 15140 parts of (MH-T) and 23000 parts of methyl ethyl ketone (MEK) were added, and a MEK solution containing the compound was obtained by heating and stirring at 70 ° C. for 7 hours. To the place where the temperature of the MEK solution was lowered to room temperature, 4600 parts of methylhexahydrophthalic anhydride (manufactured by Shin Nippon Rika Co., Ltd., Ricacid MHT) was added, and the mixture was heated and stirred at 40 ° C. for 1 hour. Thereafter, the temperature was gradually raised from 40 ° C. to 150 ° C. under reduced pressure over about 5 hours, and the solvent was removed under the conditions of 150 ° C. for 1 hour to obtain a curing agent for thermosetting resin.
The obtained curing agent was colorless and solid. The functional group equivalent was 234 g / eq. Met. The ICI viscosity was 0.40 Pa · s at 150 ° C. The softening point was 82.9 ° C.
The GPC area ratio was 82.59% for the 3-substituted product, which was the main component, 0.00% for the 2-substituted product, and 1.25% for the 1-substituted product.
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
 上記表2-1おける実施例1~2は、それぞれ前記合成例2-1~2-2で得られた硬化剤のGPC分析の結果を表す。また、上記表2-1において、1置換体とは上記式(5)の化合物が上記式(6)の化合物で1つ置換されたものであり、2置換体とは上記式(5)の化合物が上記式(6)の化合物で2つ置換されたものであり、3置換体とは上記式(5)の化合物が上記式(6)の化合物で3つ置換されたものを表す。
Figure JPOXMLDOC01-appb-T000039
Examples 1-2 in Table 2-1 above show the results of GPC analysis of the curing agents obtained in Synthesis Examples 2-1 and 2-2, respectively. In Table 2-1, the mono-substituted product is obtained by replacing one compound of the formula (5) with the compound of the formula (6), and the 2-substituted product is represented by the formula (5). The compound is a compound in which two compounds are substituted with the compound of the above formula (6), and the 3-substituent represents a compound in which three compounds of the above formula (5) are substituted with the compound of the above formula (6).
 第二の発明により、成形性に優れ、硬化物にした際の着色が少なく、十分なガラス転移温度を有する硬化物を与える多価カルボン酸樹脂、それを用いた熱硬化性樹脂組成物、およびその熱硬化性樹脂組成物を封止材あるいは反射材として使用した光半導体装置を提供することが可能となる。さらに、多価カルボン酸樹脂、またはそれを用いた熱硬化性樹脂組成物の軟化点を抑えることで、熱硬化性樹脂組成物の取扱いが容易になるとともに、十分な混練が可能となり、硬化物性に優れる硬化物を提供することが可能となる。また、樹脂の反応性にも優れた熱硬化性樹脂組成物、強靭性に優れた硬化物を提供できる。 According to the second invention, a polyvalent carboxylic acid resin that provides a cured product having excellent moldability, less coloration when cured into a cured product, and a sufficient glass transition temperature, a thermosetting resin composition using the same, and An optical semiconductor device using the thermosetting resin composition as a sealing material or a reflecting material can be provided. Furthermore, by suppressing the softening point of the polyvalent carboxylic acid resin or the thermosetting resin composition using the same, the handling of the thermosetting resin composition is facilitated and sufficient kneading is possible, resulting in cured physical properties. It is possible to provide a cured product that is excellent in. Moreover, the thermosetting resin composition excellent also in the reactivity of resin, and the hardened | cured material excellent in toughness can be provided.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本願は、2015年2月5日付で出願された日本国特許出願(特願2015-021450及び特願2015-021668)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese patent applications (Japanese Patent Application Nos. 2015-021450 and 2015-021668) filed on Feb. 5, 2015, which are incorporated by reference in their entirety. Also, all references cited herein are incorporated as a whole.
 第一の発明の熱硬化性樹脂用硬化剤は、揮発量が低く、成形性に優れ、前記熱硬化性樹脂用硬化剤を用いた熱硬化性樹脂組成物は、ガラス転移温度が十分に高く、着色の少ない硬化物を与えることから、第一の発明の熱硬化性樹脂組成物は、光半導体の封止材あるいは光反射材の材料として有用である。ガラス転移温度が十分に高いことは、成形性および信頼性にとって重要である。また、反射材として使用した場合には、反射率を高めることができる。 The curing agent for thermosetting resins of the first invention has a low volatility and excellent moldability, and the thermosetting resin composition using the curing agent for thermosetting resins has a sufficiently high glass transition temperature. The thermosetting resin composition of the first invention is useful as a sealing material for optical semiconductors or a material for light reflecting materials because it gives a cured product with little coloring. A sufficiently high glass transition temperature is important for formability and reliability. Further, when used as a reflective material, the reflectance can be increased.
 また第二の発明の熱硬化性樹脂用硬化剤は、溶融粘度が低く、成形性に優れ、前記熱硬化性樹脂用硬化剤を用いた熱硬化性樹脂組成物は、ガラス転移温度が十分に高く、着色の少ない硬化物を与えることから、第二の発明の熱硬化性樹脂組成物は、光半導体の封止材あるいは光反射材の材料として有用である。ガラス転移温度が十分に高いことは、成形性および信頼性にとって重要である。また、着色が少ないことは、封止材として使用した場合には透過率を高めることができ、反射材として使用した場合には、反射率を高めることができる。 The curing agent for thermosetting resins of the second invention has a low melt viscosity and excellent moldability, and the thermosetting resin composition using the curing agent for thermosetting resins has a sufficient glass transition temperature. The thermosetting resin composition of the second invention is useful as a sealing material for an optical semiconductor or a material for a light reflecting material because it gives a cured product that is high and less colored. A sufficiently high glass transition temperature is important for formability and reliability. In addition, less coloring can increase the transmittance when used as a sealing material, and can increase the reflectance when used as a reflecting material.
1 LEDリフレクター、2 反射材、3 穴部、4 リードフレーム、5 LED、6 カバー 1 LED reflector, 2 reflector, 3 holes, 4 lead frame, 5 LED, 6 cover

Claims (16)

  1.  水酸基を3つ以上有する多価アルコール化合物(A)、酸無水物化合物(B)及び熱硬化性樹脂(C)を含有する熱硬化性樹脂組成物。 A thermosetting resin composition containing a polyhydric alcohol compound (A) having three or more hydroxyl groups, an acid anhydride compound (B), and a thermosetting resin (C).
  2.  前記水酸基を3つ以上有する多価アルコール化合物(A)が、分子内に1個以上のヘテロ原子を含有する環状構造を有する請求項1に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 1, wherein the polyhydric alcohol compound (A) having three or more hydroxyl groups has a cyclic structure containing one or more heteroatoms in the molecule.
  3.  前記ヘテロ原子が、窒素原子である請求項2に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 2, wherein the heteroatom is a nitrogen atom.
  4.  前記水酸基を3つ以上有する多価アルコール化合物(A)が、下記式(5)で表される多価アルコール化合物である請求項1に記載の熱硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(5)中、Rは炭素数1~6のアルキレン基を表す。式(5)中、複数存在するRは同一であっても異なっていても構わない。)
    The thermosetting resin composition according to claim 1, wherein the polyhydric alcohol compound (A) having three or more hydroxyl groups is a polyhydric alcohol compound represented by the following formula (5).
    Figure JPOXMLDOC01-appb-C000001
    (In Formula (5), R 1 represents an alkylene group having 1 to 6 carbon atoms. In Formula (5), a plurality of R 1 may be the same or different.)
  5.  前記酸無水物化合物(B)が、無水トリメリット酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸から選ばれる1種または2種以上の化合物である、請求項1~4のいずれか一項に記載の熱硬化性樹脂組成物。 The acid anhydride compound (B) is selected from trimellitic anhydride, cyclohexanetricarboxylic anhydride, pyromellitic anhydride, hydrogenated pyromellitic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride. The thermosetting resin composition according to any one of claims 1 to 4, wherein the thermosetting resin composition is one or more compounds.
  6.  前記熱硬化性樹脂(C)がエポキシ樹脂である請求項1~5のいずれか一項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 5, wherein the thermosetting resin (C) is an epoxy resin.
  7.  下記式(1)
    Figure JPOXMLDOC01-appb-C000002
    (式(1)中、Rは炭素数1~6のアルキレン基を、Rは水素原子又は炭素数1~6のアルキル基又はカルボキシル基をそれぞれ表す。式(1)中、複数存在するR、Rは同一であっても異なっていても構わない。)
    で表される多価カルボン酸(A1)をゲルパーミエーションクロマトグラフィーの測定において70面積%以上含有し、
     下記式(1a)
    Figure JPOXMLDOC01-appb-C000003
    (式(1a)中、R、Rは前記式(1)中のR、Rと同じ意味を表す。式(1a)中、複数存在するR、Rは同一であっても異なっていても構わない。)
    で表される多価カルボン酸(A2)及び/又は下記式(1b)
    Figure JPOXMLDOC01-appb-C000004
    (式(1b)中、R、Rは前記式(1)中のR、Rと同じ意味を表す。式(1b)中、複数存在するR、Rは同一であっても異なっていても構わない。)
    で表されるカルボン酸(A3)を、ゲルパーミエーションクロマトグラフィーの測定において0.5~10面積%含有する多価カルボン酸樹脂を含有する熱硬化性樹脂組成物。
    Following formula (1)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (1), R 1 represents an alkylene group having 1 to 6 carbon atoms, and R 2 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a carboxyl group. R 1 and R 2 may be the same or different.)
    Containing 70% by area or more in the measurement of gel permeation chromatography, polyvalent carboxylic acid (A1) represented by
    The following formula (1a)
    Figure JPOXMLDOC01-appb-C000003
    (In formula (1a), R 1 and R 2 represent the same meaning as R 1 and R 2 in formula (1). In formula (1a), a plurality of R 1 and R 2 are the same. May be different.)
    And / or the following formula (1b)
    Figure JPOXMLDOC01-appb-C000004
    (In the formula (1b), R 1, R 2 is Formula (1) R 1, R 2 the same meaning represents the. Formula in in (1b), R 1, R 2 existing in plural in the same May be different.)
    A thermosetting resin composition containing a polyvalent carboxylic acid resin containing 0.5 to 10 area% of a carboxylic acid (A3) represented by the formula (1) as measured by gel permeation chromatography.
  8.  前記多価カルボン酸樹脂が、下記式(6)
    Figure JPOXMLDOC01-appb-C000005
    (式(6)中、Rは前記式(1)中のRと同じ意味を表す。)
    で表される酸無水物を、ゲルパーミエーションクロマトグラフィーの測定において5~20面積%含有する多価カルボン酸樹脂である請求項7に記載の熱硬化性樹脂組成物。
    The polyvalent carboxylic acid resin is represented by the following formula (6).
    Figure JPOXMLDOC01-appb-C000005
    (In formula (6), R 2 represents the same meaning as R 2 in formula (1).)
    The thermosetting resin composition according to claim 7, which is a polyvalent carboxylic acid resin containing 5 to 20% by area of an acid anhydride represented by the following formula as measured by gel permeation chromatography.
  9.  前記多価カルボン酸樹脂が、前記式(1)で表される化合物と請求項8に記載の式(6)で表される化合物を反応させて得られる化合物であって、ゲルパーミエーションクロマトグラフィーの測定においてリテンションタイムが前記式(1)で表される化合物より短い高分子量体を0.5~10面積%含有する多価カルボン酸樹脂である請求項7に記載の熱硬化性樹脂組成物。 The polyvalent carboxylic acid resin is a compound obtained by reacting the compound represented by the formula (1) with the compound represented by the formula (6) according to claim 8, and the gel permeation chromatography The thermosetting resin composition according to claim 7, which is a polyvalent carboxylic acid resin containing 0.5 to 10 area% of a high molecular weight product whose retention time is shorter than that of the compound represented by the formula (1) in the measurement of .
  10.  軟化点が20℃~150℃の範囲にある請求項7~9のいずれか一項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 7 to 9, wherein the softening point is in the range of 20 ° C to 150 ° C.
  11.  前記多価カルボン樹脂並びにトリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、クロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸から選ばれる1種または2種以上の化合物を含み、トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸から選ばれる1種または2種以上の化合物の合計が、前記熱硬化性樹脂組成物において1重量%~90重量%を占める、請求項7~10のいずれか一項に記載の熱硬化性樹脂組成物。 Trivalent acid, trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, chlorohexanetricarboxylic acid anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic acid anhydride, hydrogenated pyromellitic acid anhydride, Contains one or more compounds selected from hexahydrophthalic anhydride and methylhexahydrophthalic anhydride, trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, pyromellitic acid, water The thermosetting property is a total of one or two or more compounds selected from an added pyromellitic acid, pyromellitic anhydride, hydrogenated pyromellitic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride. 1% to 90% by weight in the resin composition Occupied, the thermosetting resin composition according to any one of claims 7-10.
  12.  熱硬化性樹脂を含有する請求項7~11のいずれか一項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 7 to 11, which contains a thermosetting resin.
  13.  前記熱硬化性樹脂組成物を硬化してなる硬化物のガラス転移温度(Tg)が30℃以上である、請求項12に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 12, wherein a glass transition temperature (Tg) of a cured product obtained by curing the thermosetting resin composition is 30 ° C or higher.
  14.  請求項1~6、請求項12および請求項13のいずれか一項に記載の熱硬化性樹脂組成物を熱硬化してなる硬化物。 A cured product obtained by thermosetting the thermosetting resin composition according to any one of claims 1 to 6, 12, and 13.
  15.  請求項14に記載の硬化物によって封止された光半導体装置。 An optical semiconductor device sealed with the cured product according to claim 14.
  16.  請求項14に記載の硬化物を反射材として使用した光半導体装置。 An optical semiconductor device using the cured product according to claim 14 as a reflector.
PCT/JP2016/053430 2015-02-05 2016-02-04 Thermosetting resin composition including polyhydric alcohol compound, acid anhydride compound and thermosetting resin, polycarboxylic acid resin, thermosetting resin composition using same, and photosemiconductor device using either one of the thermosetting resin compositions as sealing material or reflective material WO2016125874A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680008961.4A CN107250282A (en) 2015-02-05 2016-02-04 Hot curing resin composition and Polycarboxylic acid resin containing polyol compound, anhydride compound and heat-curing resin and its hot curing resin composition is used and has used any of foregoing hot curing resin composition as encapsulating material or the optical semiconductor device of reflecting material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-021668 2015-02-05
JP2015021450A JP2016141799A (en) 2015-02-05 2015-02-05 Thermosetting resin composition containing polyhydric alcohol compound, acid anhydride compound and thermosetting resin and optical semiconductor device using the thermosetting resin composition as encapsulation material or reflector
JP2015021668A JP2016141806A (en) 2015-02-05 2015-02-05 Polycarboxylic acid resin, thermosetting resin composition using the same and optical semiconductor device using the thermosetting resin composition as encapsulation material or reflector
JP2015-021450 2015-02-05

Publications (1)

Publication Number Publication Date
WO2016125874A1 true WO2016125874A1 (en) 2016-08-11

Family

ID=56564213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053430 WO2016125874A1 (en) 2015-02-05 2016-02-04 Thermosetting resin composition including polyhydric alcohol compound, acid anhydride compound and thermosetting resin, polycarboxylic acid resin, thermosetting resin composition using same, and photosemiconductor device using either one of the thermosetting resin compositions as sealing material or reflective material

Country Status (3)

Country Link
CN (1) CN107250282A (en)
TW (1) TW201702298A (en)
WO (1) WO2016125874A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124197A (en) * 1975-04-22 1976-10-29 Dainippon Ink & Chem Inc A resin composition
JPH01193317A (en) * 1987-11-27 1989-08-03 Enichem Sintesi Spa Thermosetting liquid composition
JPH03121155A (en) * 1989-10-04 1991-05-23 New Japan Chem Co Ltd Epoxy resin composition
JP2001059017A (en) * 1999-08-24 2001-03-06 Nitto Denko Corp Epoxy resin composition for flow casting
JP2007099901A (en) * 2005-10-04 2007-04-19 Nippon Steel Chem Co Ltd Epoxy resin and epoxy resin composition
WO2008142931A1 (en) * 2007-05-17 2008-11-27 Nitto Denko Corporation Epoxy resin composition for optical semiconductor device encapsulation, cured body thereof, and optical semiconductor device using the epoxy resin composition
WO2014050978A1 (en) * 2012-09-27 2014-04-03 日本化薬株式会社 Polycarboxylic acid resin and epoxy resin composition
US20140128511A1 (en) * 2009-04-03 2014-05-08 Ccp Composites Us Llc Thermosetting Compositions Containing Isocyanurate Rings
JP2015096602A (en) * 2013-10-07 2015-05-21 株式会社ダイセル Curable epoxy resin composition
WO2016013257A1 (en) * 2014-07-24 2016-01-28 日本化薬株式会社 Polycarboxylic acid, polycarboxylic acid composition, epoxy resin composition and heat-curable resin composition each containing said polycarboxylic acid, cured products of said compositions, and optical semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733030B2 (en) * 1987-10-05 1995-04-12 住友重機械工業株式会社 Injection molding method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124197A (en) * 1975-04-22 1976-10-29 Dainippon Ink & Chem Inc A resin composition
JPH01193317A (en) * 1987-11-27 1989-08-03 Enichem Sintesi Spa Thermosetting liquid composition
JPH03121155A (en) * 1989-10-04 1991-05-23 New Japan Chem Co Ltd Epoxy resin composition
JP2001059017A (en) * 1999-08-24 2001-03-06 Nitto Denko Corp Epoxy resin composition for flow casting
JP2007099901A (en) * 2005-10-04 2007-04-19 Nippon Steel Chem Co Ltd Epoxy resin and epoxy resin composition
WO2008142931A1 (en) * 2007-05-17 2008-11-27 Nitto Denko Corporation Epoxy resin composition for optical semiconductor device encapsulation, cured body thereof, and optical semiconductor device using the epoxy resin composition
US20140128511A1 (en) * 2009-04-03 2014-05-08 Ccp Composites Us Llc Thermosetting Compositions Containing Isocyanurate Rings
WO2014050978A1 (en) * 2012-09-27 2014-04-03 日本化薬株式会社 Polycarboxylic acid resin and epoxy resin composition
JP2015096602A (en) * 2013-10-07 2015-05-21 株式会社ダイセル Curable epoxy resin composition
WO2016013257A1 (en) * 2014-07-24 2016-01-28 日本化薬株式会社 Polycarboxylic acid, polycarboxylic acid composition, epoxy resin composition and heat-curable resin composition each containing said polycarboxylic acid, cured products of said compositions, and optical semiconductor device

Also Published As

Publication number Publication date
TW201702298A (en) 2017-01-16
CN107250282A (en) 2017-10-13

Similar Documents

Publication Publication Date Title
JP5864031B1 (en) Polyvalent carboxylic acid and polyvalent carboxylic acid composition, epoxy resin composition, thermosetting resin composition, cured product thereof, and optical semiconductor device containing the same
EP2647667B1 (en) Curable epoxy resin composition
JP6366504B2 (en) Epoxy resin, epoxy resin composition and cured product
JP6147362B2 (en) Thermosetting resin composition, method for producing reflecting member for optical semiconductor device using the same, and optical semiconductor device
JP2015117325A (en) Epoxy resin composition for optical use and cured product of the same
JP6735097B2 (en) Epoxy resin mixture, epoxy resin composition, cured product and semiconductor device
JP6570176B2 (en) Polyvalent carboxylic acid and polyvalent carboxylic acid composition, epoxy resin composition, thermosetting resin composition, cured product thereof, and optical semiconductor device containing the same
JP2016141799A (en) Thermosetting resin composition containing polyhydric alcohol compound, acid anhydride compound and thermosetting resin and optical semiconductor device using the thermosetting resin composition as encapsulation material or reflector
JP6494092B2 (en) Polyvalent carboxylic acid resin, thermosetting resin composition using the same, and optical semiconductor device using the thermosetting resin composition as a reflector
JP5995238B2 (en) Epoxy resin and epoxy resin composition
JP2019065058A (en) Curable epoxy resin composition for white reflector and cured product thereof, substrate for mounting optical semiconductor element, optical semiconductor device and production methods thereof
KR20110135917A (en) Diolefin compound, epoxy resin and composition thereof
JP2017137408A (en) Curable epoxy resin composition for white reflector and cured article thereof, substrate for mounting optical semiconductor element and optical semiconductor device
WO2016125874A1 (en) Thermosetting resin composition including polyhydric alcohol compound, acid anhydride compound and thermosetting resin, polycarboxylic acid resin, thermosetting resin composition using same, and photosemiconductor device using either one of the thermosetting resin compositions as sealing material or reflective material
JPWO2011043474A1 (en) Curable resin composition and cured product thereof
JP2015199904A (en) Curing agent for thermosetting resin, thermosetting resin composition using the same and photo-semiconductor device using the thermosetting resin composition as encapsulating material or reflector
JP2016141806A (en) Polycarboxylic acid resin, thermosetting resin composition using the same and optical semiconductor device using the thermosetting resin composition as encapsulation material or reflector
JP6767816B2 (en) Polycarboxylic acid and polyvalent carboxylic acid composition containing it, epoxy resin composition, cured products thereof, and optical semiconductor device
JP2015224311A (en) Curable resin composition, cured mattered thereof, and reflection member for optical semiconductor element using the same
JP2009120747A (en) Epoxy resin, epoxy resin composition and its cured product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746705

Country of ref document: EP

Kind code of ref document: A1