WO2015146345A1 - エンジン冷却水回路 - Google Patents
エンジン冷却水回路 Download PDFInfo
- Publication number
- WO2015146345A1 WO2015146345A1 PCT/JP2015/053899 JP2015053899W WO2015146345A1 WO 2015146345 A1 WO2015146345 A1 WO 2015146345A1 JP 2015053899 W JP2015053899 W JP 2015053899W WO 2015146345 A1 WO2015146345 A1 WO 2015146345A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cooling water
- engine
- exhaust gas
- heat exchanger
- path
- Prior art date
Links
- 239000002826 coolant Substances 0.000 title claims abstract description 62
- 239000007789 gas Substances 0.000 claims abstract description 75
- 239000002918 waste heat Substances 0.000 claims abstract description 39
- 238000011084 recovery Methods 0.000 claims abstract description 32
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 32
- 239000000498 cooling water Substances 0.000 claims description 220
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 36
- 238000010521 absorption reaction Methods 0.000 claims description 11
- 230000002159 abnormal effect Effects 0.000 claims description 3
- 230000005856 abnormality Effects 0.000 abstract description 21
- 239000012530 fluid Substances 0.000 abstract 1
- 238000001514 detection method Methods 0.000 description 13
- 239000003054 catalyst Substances 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 230000003584 silencer Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000003111 delayed effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000004043 responsiveness Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/20—Cooling circuits not specific to a single part of engine or machine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N5/00—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
- F01N5/02—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2060/00—Cooling circuits using auxiliaries
- F01P2060/16—Outlet manifold
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to an engine coolant circuit that cools an engine by circulating coolant.
- Patent Document 1 discloses that exhaust heat of cooling water that has flowed out of an engine is radiated by a radiator and then exhausted from the engine by an exhaust gas heat exchanger. An engine cooling water circuit that exchanges heat with the engine and returns it to the engine is disclosed.
- the temperature of the cooling water is detected, and whether or not an abnormality has occurred in the engine cooling water circuit is detected based on the detected temperature of the cooling water.
- the coolant temperature detection when detecting the coolant temperature, the coolant temperature detection may be delayed. For example, when local boiling occurs in the exhaust gas heat exchanger when the amount of cooling water is reduced by stopping the cooling water pump or the like, the cooling water vaporized without heat exchange between the cooling water and the exhaust gas becomes high temperature. However, this high-temperature boiled water is detected by the water temperature sensor only after flowing downstream and liquefying. If it does so, the responsiveness of the abnormality determination of an engine cooling water circuit based on the temperature of a cooling water will deteriorate.
- an object of the present invention is to present a configuration capable of performing abnormality determination of an engine coolant circuit that does not depend on the temperature of coolant.
- the present invention is an engine cooling water circuit that circulates cooling water to cool an engine, and includes a radiator, an exhaust gas heat exchanger, an engine waste heat recovery device, and a cooling water pump.
- an engine coolant circuit provided with a control unit.
- FIG. 1 is a block diagram illustrating a schematic configuration of a cogeneration apparatus including an engine coolant circuit according to the present embodiment.
- FIG. 2 is a perspective view of the engine coolant circuit and its peripheral portion in the cogeneration apparatus shown in FIG.
- FIG. 3 is a perspective view of the engine coolant circuit and its peripheral portion in the cogeneration apparatus shown in FIG.
- FIG. 4 is a block diagram showing a system configuration for controlling the abnormality determination of the engine coolant circuit by the control device.
- FIG. 5 is a flowchart showing an example of a control operation for controlling the abnormality determination of the engine coolant circuit by the control device.
- FIG. 1 is a block diagram showing a schematic configuration of a cogeneration apparatus 100 including an engine coolant circuit 200 according to the present embodiment.
- 2 is a perspective view of the engine coolant circuit 200 and its peripheral portion in the cogeneration apparatus 100 shown in FIG.
- FIG. 3 is a perspective view of the engine coolant circuit 200 and its peripheral part in the cogeneration apparatus 100 shown in FIG. 2 and 3, the front side is indicated by F.
- the exhaust silencer 185 and the like are not shown in FIG. 2, and the exhaust silencer 185, the radiator 220, the three-way catalyst 130 and the like are omitted in FIG.
- the cogeneration apparatus 100 electrically connects a commercial power system of an external commercial power source and a generated power system of the generator 120 to a power transmission system to a power consuming device (load), and obtains the demand power of the load. It is a system that covers and recovers waste heat generated by power generation and uses the recovered waste heat. That is, the cogeneration apparatus 100 includes an engine 110, a generator 120, an engine coolant circuit 200, and an engine waste heat recovery unit 230, and in addition to a power generation function that outputs generated power from the generator 120 driven by the engine 110.
- a function of recovering the waste heat of the coolant circulated by the engine coolant circuit 200 and heated by heat exchange with the waste heat of the engine 110 by the engine waste heat recovery unit 230 (in this example, the waste heat of the coolant is It has a function to collect and use for hot water supply.
- the engine coolant circuit 200 includes an exhaust gas heat exchanger 210 that performs heat exchange between the exhaust gas discharged from the engine 110 and the coolant discharged from the engine 110.
- a radiator 220 (not shown in FIG. 3) that dissipates the waste heat of the cooling water flowing out of the exhaust gas heat exchanger 210, and an engine waste heat that recovers the waste heat of the cooling water flowing out of the exhaust gas heat exchanger 210.
- the recovery unit 230, the engine 110, the exhaust gas heat exchanger 210, the radiator 220, and the engine waste heat recovery unit 230 are passed through the cooling water path 240 (specifically, the cooling water pipe) and the cooling water path 240.
- the engine waste heat recovery unit 230 is a water / water heat exchanger that performs heat exchange between the cooling water and the hot water of the water heater 400 (see FIG. 1).
- the engine coolant circuit 200 passes from the engine 110 via the exhaust gas heat exchanger 210 to the radiator 220 and / or the engine waste heat recovery unit 230 and passes through the water absorption part 251 of the coolant pump 250 (see FIGS. 1 and 2). ), A circuit for returning the coolant to the engine 110 is configured.
- the engine cooling water circuit 200 is provided with a plurality of (two in this example) thermostat type switching valves 260 and 260 in parallel on the cooling water outlet 111 (see FIG. 1) side path of the engine 110.
- electric three-way valves 270 and 270 are provided downstream of the thermostat switching valves 260 and 260, respectively, and cooling of the electric three-way valves 270 and 270 is performed.
- the radiator 220 and the engine waste heat recovery unit 230 are installed in parallel in the water outlet (272, 273), (272, 273) (see FIG. 1) side path.
- cooling water outlet 272, 272 communicates with the radiator 220, and the other cooling water outlet 273.
- 273 communicate with the engine waste heat recovery unit 230.
- the engine coolant circuit 200 further includes a plurality (two in this example) of thermostat switching valves 260 and 260 and a plurality (two in this example) of electric three-way valves 270 and 270. Yes.
- the thermostat type switching valve 260 and the electric three-way valve 270 used here are of the same type as those conventionally used. Therefore, the sizes of the conventional thermostat type switching valve and the electric three-way valve are It is the same size.
- the thermostat type switching valve 260 includes one cooling water inlet 261 (see FIG. 1) through which cooling water flows, and two cooling water outlets 262 and 263 (see FIG. 1) through which cooling water from the cooling water inlet 261 flows out.
- the cooling water inlet 261 operates to flow to one of the cooling water outlets 262.
- the cooling water inlet 261 is configured to operate so as to flow from the cooling water outlet 263 to the other cooling water outlet 263.
- the electric three-way valve 270 has one cooling water inlet 271 (see FIG. 1) into which cooling water flows and two cooling water outlets 272, 273 (see FIG. 1) that branch out cooling water from the cooling water inlet 271 and flow out. ) And the second flow rate of the cooling water flowing from the cooling water inlet 271 to the one cooling water outlet 272 and the second flow rate of the cooling water flowing from the cooling water inlet 271 to the other cooling water outlet 273 are changed. It has a valve (not shown) and a drive unit 274 (specifically, a drive motor) that drives the operating valve.
- the drive unit 274 is electrically connected to the output system of the control device 150 (see FIG. 1), and drives the operating valve based on an instruction signal from the control device 150 to generate a first flow rate and a second flow rate. The flow rate ratio is changed.
- the cooling water path 240 includes a first cooling water path 241, a second cooling water path 242, a third cooling water path 243, a fourth cooling water path 244, a fifth cooling water path 245, and a sixth cooling water.
- a path 246, a seventh cooling water path 247, an eighth cooling water path 248, and a ninth cooling water path 249 are provided.
- the first cooling water path 241 is provided between the engine 110 and the exhaust gas heat exchanger 210.
- the first coolant passage 241 has an upstream end communicating with the coolant outlet 111 (see FIG. 1) of the engine 110, and a downstream end connected to the coolant inlet 211 (see FIG. 1) of the exhaust gas heat exchanger 210. Communicate.
- the second cooling water path 242 is provided between the exhaust gas heat exchanger 210 and the thermostat type switching valves 260 and 260.
- the second cooling water path 242 has an upstream end communicating with the cooling water outlet 212 of the exhaust gas heat exchanger 210, while the downstream side branches into a plurality (two in this example), and each downstream end has a thermostat.
- the mold switching valves 260 and 260 communicate with the cooling water inlets 261 and 261, respectively.
- the upper branch path of the second cooling water path 242 communicates with the upper thermostat switching valve 260
- the lower branch path of the second cooling water path 242 is the lower thermostat type.
- the switching valve 260 is communicated.
- the third cooling water path 243 is a plurality (two in this example) of cooling water paths, and is provided between the thermostat type switching valves 260 and 260 and the electric three-way valves 270 and 270, respectively.
- the third cooling water paths 243 and 243 have upstream ends communicating with one of the cooling water outlets 262 and 262 of the thermostat type switching valves 260 and 260, respectively, and downstream ends of the cooling water inlets of the electric three-way valves 270 and 270. 271 and 271 respectively.
- the upper third cooling water path 243 communicates with the upper thermostat switching valve 260 and the upper electric three-way valve 270
- the lower third cooling water path 243 is the lower thermostat.
- the mold switching valve 260 and the lower electric three-way valve 270 communicate with each other.
- the fourth cooling water path 244 is provided between the thermostat type switching valves 260 and 260 and the cooling water pump 250.
- the fourth cooling water passage 244 has a plurality of upstream branches (two in this example), and each upstream end communicates with the other cooling water outlets 263 and 263 of the thermostat switching valves 260 and 260, respectively.
- the downstream end communicates with the water absorption part 251 of the cooling water pump 250.
- the upper branch path of the fourth cooling water path 244 communicates with the upper thermostat switching valve 260
- the lower branch path of the fourth cooling water path 244 is the lower thermostat type.
- the switching valve 260 is communicated.
- the fifth cooling water path 245 is provided between the electric three-way valves 270 and 270 and the radiator 220.
- the fifth cooling water path 245 has a plurality of upstream branches (two in this example), and each upstream end communicates with one of the cooling water outlets 272 and 272 of the electric three-way valves 270 and 270, respectively.
- the downstream end communicates with the cooling water inlet 221 of the radiator 220 (see FIGS. 1 and 2).
- the upper branch path of the fifth cooling water path 245 communicates with the upper electric three-way valve 270
- the lower branch path of the fifth cooling water path 245 is the lower electric three-way valve. 270 communicates.
- the sixth cooling water path 246 is provided between the electric three-way valves 270 and 270 and the engine waste heat recovery unit 230.
- the sixth cooling water path 246 has a plurality of upstream branches (two in this example), and each upstream end communicates with the other cooling water outlets 273 and 273 of the electric three-way valves 270 and 270, respectively.
- the downstream end communicates with the cooling water inlet 231 (see FIGS. 1 and 2) of the engine waste heat recovery unit 230.
- the upper branch path of the sixth cooling water path 246 communicates with the upper electric three-way valve 270
- the lower branch path of the sixth cooling water path 246 is the lower electric three-way valve. 270 communicates.
- the seventh cooling water path 247 is provided between the radiator 220 and the cooling water pump 250.
- the seventh cooling water path 247 has an upstream end communicating with the cooling water outlet 222 (see FIGS. 1 and 2) of the radiator 220, and a downstream end communicating with the water absorption part 251 of the cooling water pump 250.
- the eighth cooling water path 248 is provided between the engine waste heat recovery unit 230 and the cooling water pump 250.
- the eighth cooling water path 248 has an upstream end communicating with the cooling water outlet 232 of the engine waste heat recovery unit 230, and a downstream end communicating with the water absorption part 251 of the cooling water pump 250.
- the ninth cooling water path 249 is provided between the cooling water pump 250 and the engine 110.
- the ninth coolant passage 249 has an upstream end communicating with the discharge portion 252 (see FIGS. 1 and 3) of the coolant pump 250, and a downstream end connected to the coolant inlet 112 (see FIG. 1) of the engine 110. Communicate.
- the ninth cooling water passage 249 has two branches on the downstream side, and one downstream end is the cooling water inlet 112 (see FIG. 1) on the cylinder head side 110a (see FIG. 3) of the engine 110. The other downstream side end communicates with the coolant inlet 112 (see FIG. 1) on the cylinder block side 110b (see FIG. 3) of the engine 110.
- the first cooling water passage 241 to the ninth cooling water passage 249 are of the same type as those conventionally used, and all of them (the second cooling water passage 242, the fourth cooling water passage 244, the first The fifth cooling water path 245 and the sixth cooling water path 246 (including the branch path) have the same pipe diameter.
- an inlet 233 and an outlet 234 through which the heat medium (hot water in this example) flows in and out are provided on the heat recovery side (in this example, the hot water heater 400 side) of the engine waste heat recovery unit 230.
- the inflow port 233 of the engine waste heat recovery unit 230 and the outflow port 401 (see FIG. 1) of the hot water heater 400 are communicated with each other via the inflow path 410 (see FIG. 1).
- the outflow port 234 of the water heater 230 and the inflow port 402 (see FIG. 1) of the water heater 400 are communicated with each other via an outflow path 420 (see FIG. 1).
- the cogeneration apparatus 100 further includes a water filter 280 that filters foreign matters in the cooling water.
- the water filter 280 is inserted in a cooling water path (specifically, the first cooling water path 241) between the engine 110 and the exhaust gas heat exchanger 210.
- the cogeneration apparatus 100 further includes an exhaust path 140 (specifically, an exhaust pipe) (see FIGS. 1 and 2) for exhausting the exhaust gas from the engine 110 to the outside via the exhaust gas heat exchanger 210. ing.
- an exhaust path 140 specifically, an exhaust pipe
- the exhaust path 140 is a first provided on the upstream side of the exhaust gas heat exchanger 210 (specifically, between the engine 110 and the exhaust gas heat exchanger 210) in the exhaust gas exhaust direction D (see FIG. 1).
- An exhaust path 141 and a second exhaust path 142 provided downstream of the exhaust gas heat exchanger 210 (specifically, between the exhaust gas heat exchanger 210 and the outside) are provided.
- the cogeneration apparatus 100 includes a three-way catalyst 130 (see FIGS. 1 and 2) that purifies exhaust gas exhausted from the engine 110, and when exhaust gas from the engine 110 is exhausted to the outside. And an exhaust silencer 185 (see FIG. 1) for reducing the exhaust noise.
- the three-way catalyst 130 and the exhaust silencer 185 are inserted in the first exhaust path 141 and the second exhaust path 142, respectively.
- engine coolant circuit 200 further includes a radiator fan 181 (see FIG. 1) that is driven and controlled by control device 150 to discharge the air in the exhaust chamber to the outside and radiate heat from radiator 220. Yes.
- the exhaust gas discharged from the engine 110 is purified by the three-way catalyst 130 through the first exhaust path 141 and enters the exhaust gas heat exchanger 210.
- the cooling water that has cooled the engine 110 and has flowed out of the cooling water outlet 111 passes through the first cooling water passage 241, the foreign matter is removed by the water filter 280, and flows into the cooling water inlet 221 of the exhaust gas heat exchanger 210. To do.
- the cooling water flowing out from the cooling water outlet 212 of the exhaust gas heat exchanger 210 is branched into two through the second cooling water passage 242, and flows into the cooling water inlets 261 of the thermostat type switching valves 260 and 260, respectively.
- the thermostat type switching valve 260 operates so that the cooling water flows out from the other cooling water outlets 263, 263. After flowing out from the outlets 263 and joining through the fourth cooling water passage 244, they are sucked into the water absorption part 251 of the cooling water pump 250.
- the thermostat switching valves 260 and 260 operate so that the cooling water flows out from the one cooling water outlets 262 and 262, The water flows out from the water outlets 262 and 262, respectively, and flows into the cooling water inlets 271 and 271 of the electric three-way valves 270 and 270 through the third cooling water paths 243 and 243, respectively.
- the drive unit 274 is driven according to the temperature of the cooling water detected by a temperature sensor (not shown) by the control device 150 and the usage state on the heat recovery side (in this example, the hot water heater 400 side).
- the flow rate ratio by the operating valve is changed, and the first flow rate of the cooling water flowing from the cooling water inlet 271 to one cooling water outlet 272 (on the radiator 220 side) and the other cooling water outlet 273 from the cooling water inlet 271 (engine waste)
- the second flow rate of the cooling water flowing to the heat recovery unit 230 side) is adjusted. For example, when the amount of heat exchange in the engine waste heat recovery unit 230 is small, the control device 150 increases the first flow rate (decreasing the second water amount) and increases the amount of water flowing to the radiator 220.
- the cooling water flowing out from one of the cooling water outlets 272 and 272 of the electric three-way valves 270 and 270 merges through the fifth cooling water passage 245 and then flows into the cooling water inlet 221 of the radiator 220.
- the radiator 220 radiates the waste heat of the cooling water flowing out from the exhaust gas heat exchanger 210 via the thermostat switching valves 260 and 260 and the electric three-way valves 270 and 270. Then, the waste heat from the radiator 220 is discharged to the outside by the radiator fan 181.
- the cooling water flowing out from the cooling water outlet 222 of the radiator 220 is sucked into the water absorption part 251 of the cooling water pump 250 through the seventh cooling water path 247.
- the engine waste heat recovery unit 230 recovers the waste heat of the cooling water flowing out from the exhaust gas heat exchanger 210 via the thermostat type switching valves 260 and 260 and the electric three-way valves 270 and 270. Then, the waste heat recovered by the engine waste heat recovery unit 230 is used on the heat recovery side (in this example, the water heater 400 side).
- the cooling water that has flowed out of the cooling water outlet 232 of the engine waste heat recovery unit 230 is sucked into the water absorption part 251 of the cooling water pump 250 through the eighth cooling water path 248.
- the cooling water discharged from the discharge part 252 of the cooling water pump 250 is branched into two through the ninth cooling water path 249, and one cooling water path is connected to the cooling water inlet 261 on the cylinder head side 110 a of the engine 110.
- the other coolant passage flows into the coolant inlet 261 on the cylinder block side 110b.
- the thermostat type switching valve 260, the electric three-way valve 270, and the third cooling water path 243 are two, but may be three or more.
- the second cooling water path 242, the fourth cooling water path 244, the fifth cooling water path 245 and the sixth cooling water path 246 are branched into three or more.
- the engine coolant circuit 200 can cool the engine 110 and the exhaust gas by circulating the coolant.
- the radiator 220 and the engine waste heat recovery unit 230 are connected in parallel, but may be connected in series.
- the temperature detection of the cooling water may be delayed. If it does so, the responsiveness of the abnormality determination of the engine cooling water circuit 200 will deteriorate.
- the engine coolant circuit 200 performs the following abnormality determination control.
- FIG. 4 is a block diagram showing a system configuration in which the control device 150 controls the abnormality determination of the engine coolant circuit 200.
- the engine coolant circuit 200 further includes a control device 150 (an example of a control unit).
- the control device 150 controls the engine coolant when the temperature difference between the exhaust gas upstream and downstream of the exhaust gas heat exchanger 210 in the exhaust gas exhaust direction D (see FIG. 1) from the engine 110 is equal to or less than a predetermined value Ts.
- the circuit 200 is configured to determine whether an abnormality has occurred in the circuit 200.
- the control device 150 includes a processing unit 151 composed of a microcomputer such as a CPU (Central Processing Unit) and a storage unit 152 including a nonvolatile memory such as a ROM (Read Only Memory) and a volatile memory such as a RAM. .
- a processing unit 151 composed of a microcomputer such as a CPU (Central Processing Unit) and a storage unit 152 including a nonvolatile memory such as a ROM (Read Only Memory) and a volatile memory such as a RAM.
- a processing unit 151 composed of a microcomputer such as a CPU (Central Processing Unit) and a storage unit 152 including a nonvolatile memory such as a ROM (Read Only Memory) and a volatile memory such as a RAM.
- ROM Read Only Memory
- the processing unit 151 loads and executes a control program stored in advance in the ROM of the storage unit 152 on the RAM of the storage unit 152, thereby performing operation control of various components. .
- the engine coolant circuit 200 includes an upstream temperature sensor 191 (see FIGS. 1 and 4) that detects the temperature of exhaust gas upstream of the exhaust gas heat exchanger 210, and exhaust gas downstream of the exhaust gas heat exchanger 210.
- a downstream temperature sensor 192 (see FIGS. 1 and 4) for detecting the temperature of the gas is further provided.
- the upstream temperature sensor 191 is electrically connected to the input system of the control device 150.
- the upstream temperature sensor 191 detects the temperature of a pipe made of metal in the first exhaust path 141, and is provided on the outer peripheral surface of the pipe.
- the downstream temperature sensor 192 is electrically connected to the input system of the control device 150.
- the downstream temperature sensor 192 detects the temperature of the pipe made of metal in the second exhaust path 142, and is provided on the outer peripheral surface of the pipe.
- the storage unit 152 stores (sets) a predetermined value Ts that serves as a reference for the temperature difference between the exhaust gas upstream and downstream of the exhaust gas heat exchanger 210.
- the control device 150 Based on the detection signal detected by the upstream temperature sensor 191, the control device 150 detects the upstream temperature Ta of the exhaust gas (in response to the detection signal) and the downstream temperature sensor 192.
- a second detection unit P2 that detects a downstream temperature Tb of the exhaust gas based on the detection signal detected in response to the detection signal; an upstream temperature Ta that is detected by the first detection unit P1;
- a calculation unit P3 that calculates a difference from the downstream temperature Tb detected by the unit P2, and a determination unit P4 that determines whether the difference calculated by the calculation unit P3 is equal to or less than a predetermined value Ts stored in the storage unit 152; It is set as the structure provided with.
- FIG. 5 is a flowchart showing an example of a control operation in which the control device 150 controls the abnormality determination of the engine coolant circuit 200.
- control device 150 first detects the upstream temperature Ta of the exhaust gas from the detection signal from the upstream temperature sensor 191 by the first detection unit P1 (step S1), and the second detection unit. From P2, the downstream temperature Tb of the exhaust gas is detected by the detection signal from the downstream temperature sensor 192 (step S2).
- control device 150 calculates the difference between the upstream temperature Ta detected in step S1 and the downstream temperature Tb detected in step S2 by the calculation unit P3 (step S3), and the determination unit P4 performs step S3. It is determined whether or not the difference calculated in step S is equal to or less than a predetermined value Ts (step S4).
- step S4 determines whether or not the difference calculated in step S is equal to or less than a predetermined value Ts.
- step S4 Yes
- step S6 it is considered that the heat absorption by the cooling water in the exhaust gas heat exchanger 210 is not more than a predetermined amount (assuming that the cooling water cannot sufficiently exchange heat), and the engine cooling water circuit It is determined that an abnormality has occurred in 200 (step S6).
- examples of the abnormality in the engine coolant circuit 200 include an abnormality such as a failure of the exhaust gas heat exchanger 210, a failure of the radiator fan 181 and a poor adjustment of the flow rate ratio of the electric three-way valves 270 and 270.
- the control device 150 causes the exhaust gas temperature difference (Ta) between the upstream side and the downstream side of the exhaust gas heat exchanger 210 in the exhaust direction D of the exhaust gas from the engine 110.
- Ta exhaust gas temperature difference
- Tb predetermined value
- the occurrence of abnormality in the engine coolant circuit 200 is determined. Therefore, the abnormality determination of the engine coolant circuit 200 can be performed based on the temperature of the exhaust gas. The abnormality determination of the engine coolant circuit 200 that does not depend on the temperature can be performed.
- the cooling in the exhaust gas heat exchanger 210 is performed. It can be assumed that the heat absorption by the water is less than or equal to a predetermined amount (it can be considered that the cooling water is in a state where heat cannot be sufficiently exchanged), and therefore an abnormal occurrence of the engine cooling water circuit 200 (for example, an exhaust gas heat exchanger) 210) can be determined without depending on the temperature of the cooling water, that is, the detection of the temperature of the cooling water is not delayed, thereby improving the responsiveness of the abnormality determination of the engine cooling water circuit 200. It becomes possible to make it.
- the present invention relates to an engine cooling water circuit that circulates cooling water to cool the engine, and is particularly applicable to an application for determining abnormality of the engine cooling water circuit that does not depend on the temperature of the cooling water.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
冷却水を循環させてエンジンを冷却するエンジン冷却水回路は、ラジエータ、排気ガス熱交換器、エンジン廃熱回収器および冷却水ポンプを設け、エンジンから排気ガス熱交換器を経由してラジエータおよび/またはエンジン廃熱回収器を通過して冷却水ポンプの吸水部に到って冷却水をエンジンに還流する回路を構成し、エンジンからの排気ガスの排気方向において排気ガス熱交換器の上流側および下流側における排気ガスの温度差が所定値以下の場合に当該エンジン冷却水回路の異常発生を判定する制御部を設ける。
Description
本発明は、冷却水を循環させてエンジンを冷却するエンジン冷却水回路に関する。
冷却水を循環させてエンジンを冷却するエンジン冷却水回路として、例えば、特許文献1は、エンジンから流出した冷却水の廃熱をラジェータで放熱させた後、排気ガス熱交換器でエンジンの排気ガスと熱交換させてエンジンに戻すエンジン冷却水回路を開示している。
通常、このようなエンジン冷却水回路では、冷却水の温度を検知し、検知した冷却水の温度に基づいてエンジン冷却水回路の異常発生の有無を検出する。
しかしながら、従来のエンジン冷却水回路では、冷却水の温度を検知するにあたって、冷却水の温度検知が遅れる可能性がある。例えば、冷却水ポンプの停止等による冷却水量の低減時に、排気ガス熱交換器で局所沸騰が発生すると、冷却水と排気ガスとの間で熱交換が進まずに気化した冷却水が高温になるが、この高温沸騰した水は下流に流れて液化して初めて水温センサで検知される。そうすると、冷却水の温度に基づくエンジン冷却水回路の異常判定の即応性が悪化する。
そこで、本発明は、冷却水の温度に拠らないエンジン冷却水回路の異常判定を行うことが可能な構成を提示することを目的とする。
本発明は、前記課題を解決するために、冷却水を循環させてエンジンを冷却するエンジン冷却水回路であって、ラジエータ、排気ガス熱交換器、エンジン廃熱回収器および冷却水ポンプを設け、前記エンジンから前記排気ガス熱交換器を経由して前記ラジエータおよび/または前記エンジン廃熱回収器を通過して前記冷却水ポンプの吸水部に到って前記冷却水を前記エンジンに還流する回路を構成し、前記エンジンからの排気ガスの排気方向において前記排気ガス熱交換器の上流側および下流側における前記排気ガスの温度差が所定値以下の場合に当該エンジン冷却水回路の異常発生を判定する制御部を設けたことを特徴とするエンジン冷却水回路を提供する。
本発明によると、冷却水の温度に拠らないエンジン冷却水回路の異常判定を行うことが可能となる。
以下、本発明の実施の形態について添付図面を参照しつつ説明する。
図1は、本実施の形態に係るエンジン冷却水回路200を備えたコージェネレーション装置100の概略構成を示すブロック図である。図2は、図1に示すコージェネレーション装置100におけるエンジン冷却水回路200およびその周辺部分を背面側B左斜め上から視た斜視図である。また、図3は、図1に示すコージェネレーション装置100におけるエンジン冷却水回路200およびその周辺部分を背面側B右斜め上から視た斜視図である。なお、図2および図3において、正面側はFで示している。また、図2において排気サイレンサ185等は図示を省略しており、図3において排気サイレンサ185、ラジエータ220および三元触媒130等は図示を省略している。
本実施の形態は、本発明の構成をコージェネレーション装置100に採用した場合について説明する。なお、コージェネレーション装置100とは、電力消費機器(負荷)への送電系統に、外部商用電源の商用電力系統と発電機120の発電電力系統とを電気的に接続し、該負荷の需要電力を賄い、かつ、発電に伴い生じる廃熱を回収し、回収した廃熱を利用するシステムである。すなわち、コージェネレーション装置100は、エンジン110、発電機120、エンジン冷却水回路200およびエンジン廃熱回収器230を備え、エンジン110により駆動された発電機120からの発電電力を出力する発電機能に加えて、エンジン冷却水回路200により循環されてエンジン110の廃熱との熱交換より加熱された冷却水の廃熱をエンジン廃熱回収器230によって回収する機能(この例では冷却水の廃熱を回収して給湯に利用する機能)を有している。
図1から図3に示すように、エンジン冷却水回路200は、エンジン110から排出される排気ガスとエンジン110から流出される冷却水との間で熱交換を行う排気ガス熱交換器210と、排気ガス熱交換器210から流出される冷却水の廃熱を放熱するラジエータ220(図3では図示省略)と、排気ガス熱交換器210から流出される冷却水の廃熱を回収するエンジン廃熱回収器230と、エンジン110、排気ガス熱交換器210、ラジエータ220およびエンジン廃熱回収器230に冷却水を流通させる冷却水経路240(具体的には冷却水管)と、冷却水経路240を介してエンジン110、排気ガス熱交換器210、ラジエータ220およびエンジン廃熱回収器230に冷却水を循環させる冷却水ポンプ250とを備えている。エンジン廃熱回収器230は、この例では、冷却水と給湯機400(図1参照)の給湯水との間で熱交換を行う水/水熱交換器とされている。
エンジン冷却水回路200は、エンジン110から排気ガス熱交換器210を経由してラジエータ220および/またはエンジン廃熱回収器230を通過して冷却水ポンプ250の吸水部251(図1および図2参照)に到って冷却水をエンジン110に還流する回路を構成している。
詳しくは、エンジン冷却水回路200には、エンジン110の冷却水流出口111(図1参照)側経路に複数(この例では2つ)のサーモスタット型切替弁260,260が並列に設けられ、冷却水の循環方向C(図1参照)における各サーモスタット型切替弁260,260の下流側に電動三方弁270,270(具体的にはモータバルブ)がそれぞれ設けられ、各電動三方弁270,270の冷却水流出口(272,273),(272,273)(図1参照)側経路にラジエータ220とエンジン廃熱回収器230とが並列に設置されている。そして、各電動三方弁270,270における2つの冷却水流出口(272,273),(272,273)のうち、一方の冷却水流出口272,272がラジエータ220に連通し、他方の冷却水流出口273,273がエンジン廃熱回収器230に連通している。
具体的には、エンジン冷却水回路200は、複数(この例では2つ)のサーモスタット型切替弁260,260と、複数(この例では2つ)の電動三方弁270,270とをさらに備えている。
なお、ここで使用されているサーモスタット型切替弁260および電動三方弁270は、従来から使用されているものと同じタイプのものであり、従って、従来のサーモスタット型切替弁および電動三方弁のサイズと同じサイズとされている。
サーモスタット型切替弁260は、冷却水を流入する1つの冷却水流入口261(図1参照)と、冷却水流入口261からの冷却水を流出する2つの冷却水流出口262,263(図1参照)とを有しており、冷却水が予め定めた所定温度より大きい場合には、冷却水流入口261から一方の冷却水流出口262に流れるように動作する一方、冷却水が前記所定温度以下の場合には、冷却水流入口261から他方の冷却水流出口263に流れるように動作する構成とされている。
電動三方弁270は、冷却水を流入する1つの冷却水流入口271(図1参照)と、冷却水流入口271からの冷却水を分流して流出する2つの冷却水流出口272,273(図1参照)と、冷却水流入口271から一方の冷却水流出口272に流れる冷却水の第1流量と冷却水流入口271から他方の冷却水流出口273に流れる冷却水の第2流量との流量比率を変更する作動弁(図示せず)と、作動弁を駆動する駆動部274(具体的には駆動モータ)とを有している。駆動部274は、制御装置150(図1参照)の出力系に電気的に接続されており、制御装置150からの指示信号に基づいて作動弁を駆動して第1流量と第2流量との流量比率を変更する構成とされている。
冷却水経路240は、第1冷却水経路241と、第2冷却水経路242と、第3冷却水経路243と、第4冷却水経路244と、第5冷却水経路245と、第6冷却水経路246と、第7冷却水経路247と、第8冷却水経路248と、第9冷却水経路249とを備えている。
第1冷却水経路241は、エンジン110と排気ガス熱交換器210との間に設けられている。第1冷却水経路241は、上流側端がエンジン110の冷却水流出口111(図1参照)に連通する一方、下流側端が排気ガス熱交換器210の冷却水流入口211(図1参照)に連通している。
第2冷却水経路242は、排気ガス熱交換器210とサーモスタット型切替弁260,260との間に設けられている。第2冷却水経路242は、上流側端が排気ガス熱交換器210の冷却水流出口212に連通する一方、下流側が複数(この例では2つ)に分岐しており、各下流側端がサーモスタット型切替弁260,260の冷却水流入口261,261にそれぞれ連通している。図1に示す例では、第2冷却水経路242の上側の分岐経路は、上側のサーモスタット型切替弁260に連通し、第2冷却水経路242の下側の分岐経路は、下側のサーモスタット型切替弁260に連通している。
第3冷却水経路243は、複数(この例では2つ)の冷却水経路とされており、サーモスタット型切替弁260,260と電動三方弁270,270との間にそれぞれ設けられている。第3冷却水経路243,243は、上流側端がサーモスタット型切替弁260,260の一方の冷却水流出口262,262にそれぞれ連通する一方、下流側端が電動三方弁270,270の冷却水流入口271,271にそれぞれ連通している。図1に示す例では、上側の第3冷却水経路243は、上側のサーモスタット型切替弁260および上側の電動三方弁270に連通し、下側の第3冷却水経路243は、下側のサーモスタット型切替弁260および下側の電動三方弁270に連通している。
第4冷却水経路244は、サーモスタット型切替弁260,260と冷却水ポンプ250との間に設けられている。第4冷却水経路244は、上流側が複数(この例では2つ)に分岐しており、各上流側端がサーモスタット型切替弁260,260の他方の冷却水流出口263,263にそれぞれ連通する一方、下流側端が冷却水ポンプ250の吸水部251に連通している。図1に示す例では、第4冷却水経路244の上側の分岐経路は、上側のサーモスタット型切替弁260に連通し、第4冷却水経路244の下側の分岐経路は、下側のサーモスタット型切替弁260に連通している。
第5冷却水経路245は、電動三方弁270,270とラジエータ220との間に設けられている。第5冷却水経路245は、上流側が複数(この例では2つ)に分岐しており、各上流側端が電動三方弁270,270の一方の冷却水流出口272,272にそれぞれ連通する一方、下流側端がラジエータ220の冷却水流入口221(図1および図2参照)に連通している。図1に示す例では、第5冷却水経路245の上側の分岐経路は、上側の電動三方弁270に連通し、第5冷却水経路245の下側の分岐経路は、下側の電動三方弁270に連通している。
第6冷却水経路246は、電動三方弁270,270とエンジン廃熱回収器230との間に設けられている。第6冷却水経路246は、上流側が複数(この例では2つ)に分岐しており、各上流側端が電動三方弁270,270の他方の冷却水流出口273,273にそれぞれ連通する一方、下流側端がエンジン廃熱回収器230の冷却水流入口231(図1および図2参照)に連通している。図1に示す例では、第6冷却水経路246の上側の分岐経路は、上側の電動三方弁270に連通し、第6冷却水経路246の下側の分岐経路は、下側の電動三方弁270に連通している。
第7冷却水経路247は、ラジエータ220と冷却水ポンプ250との間に設けられている。第7冷却水経路247は、上流側端がラジエータ220の冷却水流出口222(図1および図2参照)に連通する一方、下流側端が冷却水ポンプ250の吸水部251に連通している。
第8冷却水経路248は、エンジン廃熱回収器230と冷却水ポンプ250との間に設けられている。第8冷却水経路248は、上流側端がエンジン廃熱回収器230の冷却水流出口232に連通する一方、下流側端が冷却水ポンプ250の吸水部251に連通している。
第9冷却水経路249は、冷却水ポンプ250とエンジン110との間に設けられている。第9冷却水経路249は、上流側端が冷却水ポンプ250の吐出部252(図1および図3参照)に連通する一方、下流側端がエンジン110の冷却水流入口112(図1参照)に連通している。この例では、第9冷却水経路249は、下流側が2つに分岐しており、一方の下流側端がエンジン110のシリンダヘッド側110a(図3参照)の冷却水流入口112(図1参照)に連通する一方、他方の下流側端がエンジン110のシリンダブロック側110b(図3参照)の冷却水流入口112(図1参照)に連通している。
なお、第1冷却水経路241から第9冷却水経路249は、従来から使用されているものと同じタイプのものであり、何れも(第2冷却水経路242、第4冷却水経路244、第5冷却水経路245および第6冷却水経路246は分岐経路も含めて)同じ管径とされている。
また、エンジン廃熱回収器230の熱回収側(この例では給湯機400側)には、熱媒体(この例では給湯水)がそれぞれ流入および流出する流入口233および流出口234が設けられている。具体的には、エンジン廃熱回収器230の流入口233と給湯機400の流出口401(図1参照)とが流入経路410(図1参照)を介して連通されており、エンジン廃熱回収器230の流出口234と給湯機400の流入口402(図1参照)とが流出経路420(図1参照)を介して連通されている。
本実施の形態では、コージェネレーション装置100は、冷却水における異物を濾過する水フィルタ280をさらに備えている。
水フィルタ280は、エンジン110と排気ガス熱交換器210との間の冷却水経路(具体的には、第1冷却水経路241)に介挿されている。
また、コージェネレーション装置100は、排気ガス熱交換器210を介してエンジン110からの排気ガスを外部に排出する排気経路140(具体的には排気管)(図1および図2参照)をさらに備えている。
排気経路140は、排気ガスの排気方向D(図1参照)における排気ガス熱交換器210の上流側(具体的にはエンジン110と排気ガス熱交換器210との間)に設けられた第1排気経路141と、排気ガス熱交換器210の下流側(具体的には排気ガス熱交換器210と外部との間)に設けられた第2排気経路142とを備えている。
本実施の形態では、コージェネレーション装置100は、エンジン110から排出される排気ガスを浄化する三元触媒130(図1および図2参照)と、エンジン110からの排気ガスが外部へ排出される際の排気音を低減する排気サイレンサ185(図1参照)とをさらに備えている。
三元触媒130および排気サイレンサ185は、それぞれ、第1排気経路141および第2排気経路142に介挿されている。
本実施の形態では、エンジン冷却水回路200は、制御装置150により駆動制御されることにより排気室内の空気を外部に排出してラジエータ220を放熱するラジエータファン181(図1参照)をさらに備えている。
以上説明したエンジン冷却水回路200では、エンジン110から排出された排気ガスは、第1排気経路141を通って三元触媒130で浄化されて排気ガス熱交換器210に入る。一方、エンジン110を冷却して冷却水流出口111から流出した冷却水は、第1冷却水経路241を通って水フィルタ280で異物が除去されて排気ガス熱交換器210の冷却水流入口221に流入する。
排気ガス熱交換器210では、三元触媒130から排出された排気ガスと水フィルタ280から流出された冷却水との間で熱交換を行う。
排気ガス熱交換器210の冷却水流出口212から流出した冷却水は、第2冷却水経路242を通って2つに分岐され、サーモスタット型切替弁260,260の冷却水流入口261にそれぞれ流入する。このとき、冷却水の温度が所定温度以下の場合には、サーモスタット型切替弁260は、他方の冷却水流出口263,263から冷却水を流出させるように作動し、冷却水は、他方の冷却水流出口263からそれぞれ流出し、第4冷却水経路244を通って合流した後、冷却水ポンプ250の吸水部251に吸入される。一方、冷却水の温度が所定温度より大きい場合には、サーモスタット型切替弁260,260は、一方の冷却水流出口262,262から冷却水を流出させるように動作し、冷却水は、一方の冷却水流出口262,262からそれぞれ流出し、第3冷却水経路243,243を通って電動三方弁270,270の冷却水流入口271,271にそれぞれ流入する。
電動三方弁270,270では、制御装置150により図示を省略した温度センサにて検知した冷却水の温度や熱回収側(この例では給湯機400側)の使用状況に応じて駆動部274が駆動されて作動弁による流量比率が変更され、冷却水流入口271から一方の冷却水流出口272(ラジエータ220側)に流れる冷却水の第1流量と冷却水流入口271から他方の冷却水流出口273(エンジン廃熱回収器230側)に流れる冷却水の第2流量とが調整される。例えば、制御装置150は、エンジン廃熱回収器230での熱交換量が少ない場合には、第1流量を増やして(第2水量を減らして)ラジエータ220へ流れる水量を多くする。
電動三方弁270,270の一方の冷却水流出口272,272からそれぞれ流出した冷却水は、第5冷却水経路245を通って合流した後、ラジエータ220の冷却水流入口221に流入する。ラジエータ220では、排気ガス熱交換器210からサーモスタット型切替弁260,260および電動三方弁270,270を経由して流出される冷却水の廃熱を放熱する。そして、ラジエータ220からの廃熱をラジエータファン181により外部に排出する。ラジエータ220の冷却水流出口222から流出した冷却水は、第7冷却水経路247を通って冷却水ポンプ250の吸水部251に吸入される。
電動三方弁270,270の他方の冷却水流出口273,273からそれぞれ流出した冷却水は、第6冷却水経路246を通って合流した後、エンジン廃熱回収器230の冷却水流入口231に流入する。エンジン廃熱回収器230では、排気ガス熱交換器210からサーモスタット型切替弁260,260および電動三方弁270,270を経由して流出される冷却水の廃熱を回収する。そして、エンジン廃熱回収器230で回収した廃熱を熱回収側(この例では給湯機400側)で利用する。エンジン廃熱回収器230の冷却水流出口232から流出した冷却水は、第8冷却水経路248を通って冷却水ポンプ250の吸水部251に吸入される。
冷却水ポンプ250の吐出部252から吐出した冷却水は、第9冷却水経路249を通って2つに分岐され、一方の冷却水経路は、エンジン110のシリンダヘッド側110aの冷却水流入口261に流入する一方、他方の冷却水経路は、シリンダブロック側110bの冷却水流入口261に流入する。
なお、この例では、サーモスタット型切替弁260、電動三方弁270および第3冷却水経路243を2つとしたが、3つ以上としてもよい。この場合、第2冷却水経路242、第4冷却水経路244、第5冷却水経路245および第6冷却水経路246は、3つ以上に分岐される。
こうして、エンジン冷却水回路200では、冷却水を循環させてエンジン110および排気ガスを冷却することができる。
なお、図1から図3に示すエンジン冷却水回路200では、ラジエータ220およびエンジン廃熱回収器230を並列に接続するように構成したが、直列に接続するように構成してもよい。
ところで、冷却水の温度を検知し、検知した冷却水の温度に基づいて(例えば冷却水の温度が所定温度以上か否かにより)エンジン冷却水回路200の異常発生の有無を検出することが考えられるが、この場合、冷却水の温度検知が遅れる可能性がある。そうすると、エンジン冷却水回路200の異常判定の即応性が悪化する。
この点、本実施の形態に係るエンジン冷却水回路200では、次のような異常判定の制御を行う。
図4は、制御装置150によりエンジン冷却水回路200の異常判定の制御を行うシステム構成を示すブロック図である。
エンジン冷却水回路200は、制御装置150(制御部の一例)をさらに備えている。
制御装置150は、エンジン110からの排気ガスの排気方向D(図1参照)において排気ガス熱交換器210の上流側および下流側における排気ガスの温度差が所定値Ts以下の場合にエンジン冷却水回路200の異常発生を判定する構成とされている。
制御装置150は、CPU(Central Processing Unit)等のマイクロコンピュータからなる処理部151と、ROM(Read Only Memory)等の不揮発性メモリ、RAM等の揮発性メモリを含む記憶部152とを備えている。
制御装置150は、処理部151が記憶部152のROMに予め格納された制御プログラムを記憶部152のRAM上にロードして実行することにより、各種構成要素の作動制御を行うようになっている。
エンジン冷却水回路200は、排気ガス熱交換器210の上流側における排気ガスの温度を検知する上流側温度センサ191(図1及び図4参照)と、排気ガス熱交換器210の下流側における排気ガスの温度を検知する下流側温度センサ192(図1及び図4参照)とをさらに備えている。
上流側温度センサ191は、制御装置150の入力系に電気的に接続されている。上流側温度センサ191は、この例では、第1排気経路141の金属からなる配管の温度を検知するものであり、該配管の外周面に設けられている。下流側温度センサ192は、制御装置150の入力系に電気的に接続されている。下流側温度センサ192は、この例では、第2排気経路142の金属からなる配管の温度を検知するものであり、該配管の外周面に設けられている。
記憶部152には、排気ガス熱交換器210の上流側および下流側における排気ガスの温度差の基準となる所定値Tsが予め記憶(設定)されている。
制御装置150は、上流側温度センサ191にて検知した検知信号に基づいて(該検知信号に応じた)排気ガスの上流側温度Taを検出する第1検出部P1と、下流側温度センサ192にて検知した検知信号に基づいて(該検知信号に応じた)排気ガスの下流側温度Tbを検出する第2検出部P2と、第1検出部P1にて検出した上流側温度Taと第2検出部P2にて検出した下流側温度Tbとの差分を算出する算出部P3と、算出部P3にて算出した差分が記憶部152に記憶した所定値Ts以下か否かを判定する判定部P4とを備える構成とされている。
図5は、制御装置150によりエンジン冷却水回路200の異常判定の制御を行う制御動作の一例を示すフローチャートである。
図5に示すフローチャートでは、制御装置150は、先ず、第1検出部P1により、上流側温度センサ191からの検知信号により排気ガスの上流側温度Taを検出し(ステップS1)、第2検出部P2により、下流側温度センサ192からの検知信号により排気ガスの下流側温度Tbを検出する(ステップS2)。
次に、制御装置150は、算出部P3により、ステップS1で検出した上流側温度TaとステップS2で検出した下流側温度Tbとの差分を算出し(ステップS3)、判定部P4により、ステップS3で算出した差分が所定値Ts以下であるか否かを判断する(ステップS4)。ステップS3で算出した差分が所定値より大きい場合には(ステップS4:No)、エンジン冷却水回路200が正常であると判定し(ステップS5)、ステップS3で算出した差分が所定値Ts以下の場合には(ステップS4:Yes)、排気ガス熱交換器210での冷却水による吸熱が所定量以下であるとみなして(冷却水が十分に熱交換できない状態とみなして)、エンジン冷却水回路200に異常が発生していると判定する(ステップS6)。
ここで、エンジン冷却水回路200の異常としては、排気ガス熱交換器210の不具合やラジエータファン181の不具合、電動三方弁270,270の流量比率の調整不良といった異常を例示できる。
以上説明したように、本実施の形態によれば、制御装置150により、エンジン110からの排気ガスの排気方向Dにおいて排気ガス熱交換器210の上流側および下流側における排気ガスの温度差(Ta-Tb)が所定値Ts以下の場合にエンジン冷却水回路200の異常発生を判定するので、排気ガスの温度に拠ってエンジン冷却水回路200の異常判定を行うことができ、従って、冷却水の温度に拠らないエンジン冷却水回路200の異常判定を行うことができる。詳しくは、排気ガス熱交換器210の上流側および下流側における排気ガスの温度差(Ta-Tb)が所定値Ts以下であることを検知した場合には、排気ガス熱交換器210での冷却水による吸熱が所定量以下であるとみなすことができ(冷却水が十分に熱交換できない状態であるとみなすことができ)、従って、エンジン冷却水回路200の異常発生(例えば排気ガス熱交換器210の不具合)を冷却水の温度に拠らずに判定することができ、すなわち、冷却水の温度検知が遅れるといったことがなく、これにより、エンジン冷却水回路200の異常判定の即応性を向上させることが可能となる。
本発明は、以上説明した実施の形態に限定されるものではなく、他のいろいろな形で実施することができる。そのため、かかる実施の形態はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
この出願は、2014年3月26日に日本で出願された特願2014-063050号に基づく優先権を請求する。これに言及することにより、その全ての内容は本出願に組み込まれるものである。
本発明は、冷却水を循環させてエンジンを冷却するエンジン冷却水回路に係るものであり、特に、冷却水の温度に拠らないエンジン冷却水回路の異常判定を行うための用途に適用できる。
100 コージェネレーション装置
110 エンジン
110a シリンダヘッド側
110b シリンダブロック側
111 冷却水流出口
112 冷却水流入口
120 発電機
130 三元触媒
140 排気経路
141 第1排気経路
142 第2排気経路
150 制御装置(制御部の一例)
151 処理部
152 記憶部
181 ラジエータファン
185 排気サイレンサ
191 上流側温度センサ
192 下流側温度センサ
200 エンジン冷却水回路
210 排気ガス熱交換器
211 冷却水流入口
212 冷却水流出口
220 ラジエータ
221 冷却水流入口
222 冷却水流出口
230 エンジン廃熱回収器
231 冷却水流入口
232 冷却水流出口
233 流入口
234 流出口
240 冷却水経路
250 冷却水ポンプ
251 吸水部
252 吐出部
260 サーモスタット型切替弁
261 冷却水流入口
262 冷却水流出口
263 冷却水流出口
270 電動三方弁
271 冷却水流入口
272 冷却水流出口
273 冷却水流出口
274 駆動部
280 水フィルタ
400 給湯機
401 流出口
402 流入口
410 流入経路
420 流出経路
B 背面側
C 循環方向
D 排気方向
F 正面側
P1 第1検出部
P2 第2検出部
P3 算出部
P4 判定部
Ts 所定値
Ta 上流側温度
Tb 下流側温度
110 エンジン
110a シリンダヘッド側
110b シリンダブロック側
111 冷却水流出口
112 冷却水流入口
120 発電機
130 三元触媒
140 排気経路
141 第1排気経路
142 第2排気経路
150 制御装置(制御部の一例)
151 処理部
152 記憶部
181 ラジエータファン
185 排気サイレンサ
191 上流側温度センサ
192 下流側温度センサ
200 エンジン冷却水回路
210 排気ガス熱交換器
211 冷却水流入口
212 冷却水流出口
220 ラジエータ
221 冷却水流入口
222 冷却水流出口
230 エンジン廃熱回収器
231 冷却水流入口
232 冷却水流出口
233 流入口
234 流出口
240 冷却水経路
250 冷却水ポンプ
251 吸水部
252 吐出部
260 サーモスタット型切替弁
261 冷却水流入口
262 冷却水流出口
263 冷却水流出口
270 電動三方弁
271 冷却水流入口
272 冷却水流出口
273 冷却水流出口
274 駆動部
280 水フィルタ
400 給湯機
401 流出口
402 流入口
410 流入経路
420 流出経路
B 背面側
C 循環方向
D 排気方向
F 正面側
P1 第1検出部
P2 第2検出部
P3 算出部
P4 判定部
Ts 所定値
Ta 上流側温度
Tb 下流側温度
Claims (1)
- 冷却水を循環させてエンジンを冷却するエンジン冷却水回路であって、
ラジエータ、排気ガス熱交換器、エンジン廃熱回収器および冷却水ポンプを設け、
前記エンジンから前記排気ガス熱交換器を経由して前記ラジエータおよび/または前記エンジン廃熱回収器を通過して前記冷却水ポンプの吸水部に到って前記冷却水を前記エンジンに還流する回路を構成し、
前記エンジンからの排気ガスの排気方向において前記排気ガス熱交換器の上流側および下流側における前記排気ガスの温度差が所定値以下の場合に当該エンジン冷却水回路の異常発生を判定する制御部を設けたことを特徴とするエンジン冷却水回路。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-063050 | 2014-03-26 | ||
JP2014063050A JP2015183659A (ja) | 2014-03-26 | 2014-03-26 | エンジン冷却水回路 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015146345A1 true WO2015146345A1 (ja) | 2015-10-01 |
Family
ID=54194883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/053899 WO2015146345A1 (ja) | 2014-03-26 | 2015-02-13 | エンジン冷却水回路 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015183659A (ja) |
WO (1) | WO2015146345A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63140264A (ja) * | 1986-12-01 | 1988-06-11 | 三菱電機株式会社 | エンジン駆動型冷暖房給湯装置 |
JPH05157006A (ja) * | 1991-11-29 | 1993-06-22 | Kubota Corp | エンジンの排熱回収装置 |
JP2005069161A (ja) * | 2003-08-27 | 2005-03-17 | Toyota Motor Corp | 内燃機関の排気浄化処理装置 |
-
2014
- 2014-03-26 JP JP2014063050A patent/JP2015183659A/ja active Pending
-
2015
- 2015-02-13 WO PCT/JP2015/053899 patent/WO2015146345A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63140264A (ja) * | 1986-12-01 | 1988-06-11 | 三菱電機株式会社 | エンジン駆動型冷暖房給湯装置 |
JPH05157006A (ja) * | 1991-11-29 | 1993-06-22 | Kubota Corp | エンジンの排熱回収装置 |
JP2005069161A (ja) * | 2003-08-27 | 2005-03-17 | Toyota Motor Corp | 内燃機関の排気浄化処理装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2015183659A (ja) | 2015-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5892120B2 (ja) | 暖房給湯システム | |
JP5851148B2 (ja) | 油冷式空気圧縮機 | |
JP7013944B2 (ja) | 冷却機構を備えた燃料電池システム | |
JP2010266148A (ja) | 給湯器の温度制御装置及び温度制御方法 | |
JP2010174848A (ja) | 排熱回生システム | |
JP4964637B2 (ja) | インバータ冷却装置 | |
JP6153328B2 (ja) | コージェネレーションシステム及び暖房設備 | |
JP6066953B2 (ja) | エンジン冷却水回路 | |
WO2015146345A1 (ja) | エンジン冷却水回路 | |
JP6341718B2 (ja) | 循環型給湯装置 | |
JP4833707B2 (ja) | 排熱回収装置 | |
JP2017114179A5 (ja) | ||
JP2006052902A (ja) | コージェネレーションシステム | |
JP2015078657A (ja) | 車両 | |
JP6710312B2 (ja) | 空気調和機 | |
JP2017110551A (ja) | 廃熱回収装置 | |
JP6028708B2 (ja) | 車両 | |
JP2011257130A (ja) | 排熱回収装置 | |
JP2009109059A (ja) | 空気調和装置 | |
JP4553715B2 (ja) | 冷却水システム | |
JP6268984B2 (ja) | 熱源機 | |
JP6350815B2 (ja) | 熱回収システム | |
JP6481637B2 (ja) | ボイラ | |
JP5893993B2 (ja) | 熱供給システム | |
JP2008196342A (ja) | 内燃機関の廃熱利用装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15770222 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15770222 Country of ref document: EP Kind code of ref document: A1 |