[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015140846A1 - 厚肉高靭性高張力鋼板およびその製造方法 - Google Patents

厚肉高靭性高張力鋼板およびその製造方法 Download PDF

Info

Publication number
WO2015140846A1
WO2015140846A1 PCT/JP2014/004631 JP2014004631W WO2015140846A1 WO 2015140846 A1 WO2015140846 A1 WO 2015140846A1 JP 2014004631 W JP2014004631 W JP 2014004631W WO 2015140846 A1 WO2015140846 A1 WO 2015140846A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
toughness
thick
steel sheet
mold
Prior art date
Application number
PCT/JP2014/004631
Other languages
English (en)
French (fr)
Inventor
茂樹 木津谷
克行 一宮
長谷 和邦
照久 衣川
直己 松永
謙次 林
正之 堀江
祐介 寺澤
遠藤 茂
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020167025832A priority Critical patent/KR101838424B1/ko
Priority to US15/126,838 priority patent/US10443110B2/en
Priority to JP2016508308A priority patent/JP6156574B2/ja
Priority to EP14886339.2A priority patent/EP3120941B1/en
Priority to SG11201607711XA priority patent/SG11201607711XA/en
Priority to NO14886339A priority patent/NO3120941T3/no
Priority to CN201480077199.6A priority patent/CN106102940B/zh
Publication of WO2015140846A1 publication Critical patent/WO2015140846A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/02Die forging; Trimming by making use of special dies ; Punching during forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a steel plate excellent in strength, toughness and weldability used for steel structures such as buildings, bridges, shipbuilding, marine structures, construction machinery, tanks and penstocks, and in particular, a plate manufacturing method thereof. It is an object of the present invention to provide a thick-walled, high-toughness, high-tensile steel sheet having a thickness of 100 mm or more and a drawing value of 40% or more in the thickness direction tension at the center of the sheet thickness and a method for producing the same.
  • a thick steel plate having a thickness of 100 mm or more is usually produced by subjecting a large steel ingot produced by the ingot-making method to ingot rolling and hot rolling the resulting ingot slab.
  • this ingot-bundling process requires that the thick segregation part of the feeder part and the negative segregation part of the bottom part of the steel ingot be cut off, so that the yield does not increase and the production cost increases and the construction period becomes longer. There is.
  • Non-Patent Document 1 describes a technique for crimping center porosity by increasing the rolling shape ratio during hot rolling of a continuously cast slab.
  • Patent Document 3 describes a technique for pressing a center porosity by forging before hot rolling when manufacturing a thick steel plate having a cumulative reduction of 70% or less from a continuous cast slab.
  • Patent Document 4 when manufacturing an extra-thick steel plate from a continuously cast slab by forging and thick plate rolling with a total reduction ratio of 35 to 67%, the center of the thickness of the material is kept at a temperature of 1200 ° C or higher for 20 hours before forging.
  • a technique for maintaining the above and setting the forging reduction ratio to 16% or more and reducing the center segregation zone in addition to the disappearance of the center porosity and tempering and improving the embrittlement characteristics is described.
  • Patent Document 5 describes a technique for improving center porosity and center segregation by performing hot rolling after performing cross forging on a continuously cast slab.
  • Patent Document 6 states that a continuous cast slab is maintained at a temperature of 1200 ° C. or higher for 20 hours or more, the forging reduction ratio is 17% or more, and the total rolling reduction including forging is in the range of 23 to 50%.
  • a technique relating to a method for producing a thick steel plate having a tensile strength of 588 MPa or more with a reduced center segregation zone is described.
  • Patent Document 7 a continuous cast slab having a specific component is reheated to 1100 to 1350 ° C, the weldability is set to 0.05 to 3 / s at a strain rate of 1000 ° C or higher, and the cumulative reduction amount is 15% or higher.
  • a technique relating to a method for producing a thick steel plate having excellent ductility in the thickness direction is described.
  • JP-A-55-114404 Japanese Patent Laid-Open No. 61-27320 Japanese Patent No. 3333619 Japanese Patent Laid-Open No. 2002-194431 JP 2000-263103 A JP 2006-1111918 A JP 2010-106298 A
  • Non-Patent Document 1 it is necessary to repeatedly perform rolling with a high rolling shape ratio in order to obtain a steel sheet with good inner quality.
  • the range exceeds the upper limit of the equipment specifications of the rolling mill. There is a problem.
  • board thickness center part becomes inadequate, and there exists a possibility that a center porosity may remain
  • Patent Documents 1 and 2 have a problem that it is necessary to enlarge a continuous casting facility in order to manufacture a thick steel plate having a thickness of 100 mm or more, which requires a large-scale capital investment. There is.
  • Patent Documents 3 to 7 are effective in reducing the center porosity and improving the center segregation zone, they are applied to the production of thick steel plates with a yield strength of 620 MPa or more and a large amount of alloy added. In this case, since the susceptibility to defects is increased by increasing the strength of the material, both the elongation and toughness of the center portion of the plate thickness are insufficient.
  • the present invention advantageously solves the above-mentioned problems, and even in a thick high-strength steel plate that requires an increase in the amount of alloy elements added, the thickness of the continuous casting equipment and rolling mill is not increased.
  • An object of the present invention is to provide a thick high-strength steel sheet having excellent strength and toughness at the center and a method for producing the same. Note that the thickness of the target thick-walled high-tensile steel plate is 100 mm or more.
  • the inventors have conducted intensive research on the microstructural control factors inside the steel sheet, particularly with respect to the strength, toughness and elongation at the center of the sheet thickness, with a thickness of 100 mm or more. The following findings were obtained.
  • the present invention has been made by further studying the above knowledge, and the gist of the present invention is as follows. 1. Thick, high-toughness, high-tensile steel sheet with a drawing value of 40% or more in the thickness direction tension at the center of the plate thickness and a plate thickness of 100 mm or more.
  • C 0.08 to 0.20%
  • Si 0.40% or less
  • Mn 0.5 to 5.0%
  • P 0.015% or less
  • S 0.0050% or less
  • Cr 3.0% or less
  • Ni 5.0% or less
  • Ti The content of 0.005 to 0.020%, Al: 0.080% or less, N: 0.0070% or less, and B: 0.0030% or less, satisfying the relationship of the following formula (1), with the balance being Fe and inevitable impurities
  • Ceq IIW C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 ⁇ 0.57 (1)
  • each element symbol is the content (% by mass) in the steel, and those not contained are calculated as 0.
  • the thick wall according to the above item 2 which contains one or two or more kinds selected from Cu: 0.50% or less, Mo: 1.50% or less, V: 0.200% or less, and Nb: 0.100% or less. High toughness and high strength steel plate.
  • a method for producing a thick-walled, high-toughness, high-tensile steel sheet that is hot-forged, hot-rolled, and then quenched and tempered.
  • the present invention it is possible to obtain a thick steel plate having a yield strength and toughness of the base material of 100 mm or more, increasing the size of the steel structure, improving the safety of the steel structure, improving the yield, and the production period. This greatly contributes to shortening the time and is extremely useful in the industry. In particular, even when the reduction ratio from the raw material before processing, which has not been able to obtain sufficient center thickness characteristics, is 3 or less, good characteristics can be obtained without taking measures such as increasing the size of continuous casting equipment. Bring the resulting effect.
  • the present invention is a forged material having a thickness of 100 mm or more, and is characterized in that a drawing value by tensile in the thickness direction at the central portion of the thickness is 40% or more. This is because the center porosity in the steel can be pressure-bonded to a size of 100 ⁇ m or less, thereby making it substantially harmless.
  • the above-mentioned thick high-tensile steel sheet has a feature that the yield strength is 620 MPa or more, and it is possible to increase the size of the steel structure and improve the safety of the steel structure.
  • the said characteristic is acquired even if the rolling ratio from the raw material before a process which was difficult with the prior art is 3 or less.
  • C 0.08 to 0.20%
  • the content exceeds 0.20%, the toughness of the base metal and the weld heat affected zone is remarkably deteriorated, so the upper limit is preferably made 0.20%. More preferably, it is 0.08 to 0.14%.
  • Si 0.40% or less Si is added for deoxidation, but if added over 0.40%, the toughness of the base metal and the weld heat affected zone is remarkably lowered, so the Si content is preferably 0.40% or less. More preferably, it is in the range of 0.05 to 0.30%. More preferably, it is in the range of 0.1 to 0.30%.
  • Mn 0.5-5.0% Mn is added from the viewpoint of securing the strength of the base metal. However, if it is added less than 0.5%, its effect is not sufficient.
  • the upper limit is preferably 5.0% to increase the porosity of the slab. More preferably, it is in the range of 0.6 to 2.0%. More preferably, it is in the range of 0.6 to 1.6%.
  • P 0.015% or less
  • the lower limit value is not particularly limited and may be 0%.
  • the lower limit value is not particularly limited and may be 0%.
  • Cr 3.0% or less Cr is an element effective for increasing the strength of the base material, but if added in a large amount, weldability is lowered, so 3.0% or less is preferable. From the viewpoint of production cost, it is more preferably 0.1 to 2.0%.
  • Ni 5.0% or less Ni is a beneficial element that improves the strength of the steel and the toughness of the heat affected zone. However, if added over 5.0%, the economy is significantly reduced, so the upper limit of Ni content is 5.0. % Or less is preferable. More preferably, it is 0.5 to 4.0%.
  • Ti 0.005-0.020% Ti generates TiN during heating, effectively suppresses coarsening of austenite grains and improves the toughness of the base metal and the weld heat affected zone. However, if added over 0.020%, the Ti nitride becomes coarse and the toughness of the base material decreases, so when Ti is added, the Ti content is preferably in the range of 0.005 to 0.020%. More preferably, it is in the range of 0.008 to 0.015%.
  • Al 0.080% or less Al is added to sufficiently deoxidize the molten steel, but adding more than 0.080% increases the amount of Al that dissolves in the base metal, reducing the base metal toughness.
  • the Al content is preferably 0.080% or less. More preferably, it is in the range of 0.020 to 0.080%. More preferably, it is in the range of 0.020 to 0.060%.
  • N 0.0070% or less N has the effect of refining the structure by forming a nitride such as Ti and improving the toughness of the base material and the weld heat affected zone, but if added over 0.0070%, the base material The amount of N dissolved therein increases, the toughness of the base metal decreases remarkably, and coarse carbonitrides are formed also in the weld heat affected zone to reduce the toughness. Therefore, the N amount should be 0.0070% or less. preferable. More preferably, it is 0.0050% or less, More preferably, it is 0.0040% or less.
  • B 0.0030% or less B has the effect of suppressing the ferrite transformation from the grain boundary by segregating at the austenite grain boundary and improving the hardenability, but if added over 0.0030%, it precipitates as carbonitride. Since hardenability is lowered and toughness is lowered, the content is preferably 0.0030% or less. When B is added, the content is more preferably in the range of 0.0003 to 0.0030%. More preferably, it is in the range of 0.0005 to 0.0020%.
  • the high-tensile steel of the present invention can contain one or more selected from Cu, Mo, V and Nb for the purpose of further enhancing the strength and toughness.
  • Cu 0.50% or less Cu can improve the strength of the steel without impairing toughness, but if added over 0.50%, cracks occur on the surface of the steel sheet during hot working, so 0.50% or less.
  • Mo 1.50% or less Mo is an element effective for increasing the strength of the base metal, but if added over 1.50%, the strength increases due to precipitation of hard alloy carbides and lowers the toughness. It is preferably 1.50%. More preferably, it is in the range of 0.02 to 0.80%.
  • V 0.200% or less
  • V is effective in improving the strength and toughness of the base metal, and is effective in reducing solid solution N by being precipitated as VN, but if added over 0.200%, it is hard
  • the toughness of steel decreases due to the precipitation of VC, when V is added, the content is preferably 0.200% or less. More preferably, it is in the range of 0.010 to 0.100%.
  • Nb 0.100% or less Nb is effective because it is effective in improving the strength of the base material. However, if Nb exceeds 0.100%, the toughness of the base material is remarkably reduced, so the upper limit is made 0.100%. Preferably, it is 0.025% or less.
  • the high-tensile steel of the present invention can contain one or more selected from Mg, Ta, Zr, Y, Ca and REM for the purpose of further improving the material in addition to the above components.
  • Mg 0.0005-0.0100%
  • Mg is an element effective for forming a stable oxide at high temperature, effectively suppressing the coarsening of austenite grains in the weld heat affected zone, and improving the toughness of the weld zone. In order to obtain this effect, addition of 0.0005% or more is effective. On the other hand, if it exceeds 0.0100%, the amount of inclusions increases and the toughness decreases, so when adding Mg, it is preferably 0.0100% or less. More preferably, it is in the range of 0.0005 to 0.0050%.
  • Ta 0.01 ⁇ 0.20%
  • the addition amount is preferably 0.01 to 0.20%.
  • Zr 0.005-0.1%
  • Zr is an element effective for increasing the strength.
  • the addition amount is less than 0.005%, a remarkable effect cannot be obtained.
  • the addition amount exceeds 0.1%, coarse precipitates are generated.
  • the added amount is 0.005 to 0.1% because the toughness of the steel is lowered.
  • Y 0.001-0.01%
  • Y is an element effective for forming a stable oxide at a high temperature, effectively suppressing coarsening of austenite grains in the weld heat affected zone, and improving the toughness of the weld zone.
  • the addition is less than 0.001%, the effect cannot be obtained. If the addition exceeds 0.01%, the amount of inclusions increases and the toughness decreases, so the addition amount is set to 0.001 to 0.01%.
  • Ca 0.0005-0.0050%
  • Ca is an element useful for controlling the morphology of sulfide inclusions, and 0.0005% or more must be added to exert its effect. On the other hand, if added over 0.0050%, the cleanliness is lowered and the toughness is deteriorated. Therefore, when adding Ca, the content is preferably made 0.0050% or less. More preferably, it is in the range of 0.0005 to 0.0025%.
  • REM 0.0005-0.0200% REM also has the effect of improving the material quality by forming oxides and sulfides in steel, similar to Ca. To obtain this effect, 0.0005% or more must be added. On the other hand, even if added over 0.0200%, the effect is saturated. Therefore, when REM is added, it is preferably 0.0200% or less. More preferably, it is in the range of 0.0005 to 0.0100%.
  • each element symbol in a formula shows content (mass%) of each element.
  • the temperature “° C.” means the temperature at the center of the plate thickness.
  • it is essential to subject the steel material to hot forging under the conditions described below in order to render casting defects such as center porosity in the steel material harmless.
  • Hot working conditions for steel material Heating temperature 1200-1350 °C
  • a slab having the above composition or a steel material of a slab is melted and continuously cast by a generally known method such as a converter, an electric furnace or a vacuum melting furnace, and then reheated to 1200 to 1350 ° C.
  • the reheating temperature is less than 1200 ° C., it is not possible to ensure the predetermined hot working cumulative rolling amount and the lower temperature limit, and the deformation resistance during hot forging is high, so that a sufficient rolling amount per pass cannot be secured.
  • an increase in the number of necessary passes not only causes a reduction in production efficiency, but also prevents casting defects such as center porosity in the steel material from being pressed and rendered harmless, so the temperature is set to 1200 ° C. or higher.
  • the reheating temperature exceeds 1350 ° C, excessive energy is consumed, surface flaws are likely to occur due to the scale during heating, and the maintenance load after hot forging increases, so the upper limit is set to 1350 ° C.
  • Forging temperature for hot forging 1000 ° C or more
  • the temperature forging temperature for hot forging is set to 1000 ° C. or higher.
  • the upper limit of the forging temperature is not particularly limited, but is preferably about 1350 ° C. from the viewpoint of manufacturing cost.
  • the shape of the opposed molds is asymmetrical.
  • Hot forging in the present invention is performed by a pair of opposed molds having a long side in the width direction of the continuous cast slab and a short side in the traveling direction of the continuous cast slab.
  • the hot forging of the present invention is characterized in that the short sides of the opposing molds have different lengths.
  • the short side of the upper mold in FIG. 1 of the pair of short sides of the opposing mold is set to 1, the short side of the mold opposite to this is short.
  • the ratio of the short side of the short side to the short side of the long side is less than 1.1, a sufficient detoxification effect cannot be obtained, while when it exceeds 3.0, the efficiency of hot forging is significantly reduced.
  • the short side of the short side of a pair of opposed molds when the short side of the short side of a pair of opposed molds is set to 1, the short side of the pair has a length of 1.1 to 3.0. It is important to have.
  • the mold having the shorter side of the mold may be above or below the continuous casting slab. It is only necessary that the short side of the mold on the opposite side has a length that satisfies the above ratio. That is, in FIG. 1, the short side of the lower mold may be short.
  • Cumulative reduction of hot forging 15% or more If the cumulative reduction of hot forging is less than 15%, casting defects such as center porosity in the steel material cannot be crimped and made harmless. To do. When the thickness is increased by hot forging the width direction of the continuous cast slab, the cumulative reduction amount from the thickness is taken.
  • strain rate of hot forging 3 / s or less If the strain rate of hot forging exceeds 3 / s, the deformation resistance during hot forging increases, the load on the forging machine increases, and the center porosity is rendered harmless. 3 / s or less because it cannot be done. Further, when the strain rate is less than 0.01 / s, the productivity decreases due to the long hot forging time. More preferably, it is in the range of 0.05 / s to 1 / s.
  • Forging with a reduction ratio of 5% or more or 7% or more per pass is applied once or more during hot forging.
  • the fine center porosity remains after forging. The amount is reduced. Therefore, if forging at 5% / pass or more is applied at least once during hot forging, the draw during the thickness direction tensile test may compress the center porosity in the steel to make its size 100 ⁇ m or less, making it substantially harmless. Because it can, it will be 40% or more.
  • the forging of 7% / pass or more is applied at least once during hot forging, the size of the center porosity in the steel can be made finer, so that the drawing during the thickness direction tensile test is 45% or more. The product can be manufactured.
  • At least one pass at the time of hot forging The maximum elapsed load of the relevant path ⁇ 0.9 or more
  • the cumulative elapsed time at load load of 0.9 or more and less than the maximum load At least 1 pass at the time of hot forging
  • the steel sheet having a desired thickness is hot-rolled after hot forging, and a quenching and tempering treatment can be performed in order to ensure a yield strength of 620 MPa or more and good toughness at the center of the thickness. Is possible.
  • the Ac 3 transformation point is a value calculated by the following formula (2).
  • Ac 3 (° C) 937.2-476.5C + 56Si-19.7Mn-16.3Cu-26.6Ni-4.9Cr + 38.1Mo + 124.8V + 136.3Ti + 198.4Al + 3315B (2)
  • each element symbol in the formula (2) indicates the content (mass%) of each alloy element in steel.
  • Hot rolling in which a pass with a reduction rate of 4% or more per pass is performed at least twice.
  • a pass with a reduction rate of 4% or more per pass after heating again to an Ac 3 point or more and 1250 ° C or less. It is preferable to perform hot rolling at least twice. By carrying out such rolling, it becomes possible to apply sufficient processing to the central portion of the plate thickness, and the structure is refined by the promotion of recrystallization, and the mechanical characteristics are improved.
  • Heat treatment conditions after hot rolling In order to obtain strength and toughness at the center of the plate thickness, in the present invention, it is allowed to cool after hot rolling, reheated to Ac 3 point to 1050 ° C, and at least at a temperature of Ar 3 point or higher Cool down to 350 °C or below.
  • the reason why the reheating temperature is set to 1050 ° C. or lower is that, when reheating at a high temperature exceeding 1050 ° C., the reduction in the base material toughness due to coarsening of austenite grains is significantly reduced.
  • the Ar 3 transformation point is a value calculated by the following equation (3).
  • Ar 3 (° C) 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo (3)
  • each element symbol in Formula (3) shows the content (mass%) in steel of each element.
  • the temperature at the center of the plate thickness is obtained by simulation calculation or the like from the plate thickness, surface temperature, cooling conditions, and the like.
  • the plate thickness center temperature is obtained by calculating the temperature distribution in the plate thickness direction using the difference method.
  • the quenching method is generally water cooling industrially, but since it is desirable that the cooling rate be as fast as possible, the cooling method may be other than water cooling, for example, gas cooling.
  • Tempering temperature 450-700 ° C After quenching, tempering at 450-700 ° C is less effective at removing residual stress at temperatures below 450 ° C. On the other hand, at temperatures above 700 ° C, various carbides precipitate and the matrix structure becomes coarse. This is because the strength and toughness are greatly reduced. Industrially, it may be repeatedly quenched for the purpose of toughening steel, and may be repeatedly quenched in the present invention, but at the final quenching, it is heated to Ac 3 point to 1050 ° C and then 350 ° C. It is preferable to cool rapidly to the following, and then temper at 450 to 700 ° C.
  • a steel sheet having excellent strength and toughness can be produced by quenching and tempering.
  • Thickness direction tensile test For each steel plate, three round bar tensile specimens ( ⁇ 10mm) were taken in the thickness direction, and the squeezed after rupture was measured and evaluated at its minimum value.
  • III Charpy impact test Three 2mmV notch Charpy test pieces each having the rolling direction as the longitudinal direction were sampled from the center of the plate thickness of each steel plate, and the absorbed energy ( V E -40 ) was measured, and the average value of three of each was determined. The test results are also shown in Table 2.
  • the steel plate (sample Nos. 1 to 35, 40 to 44, 46, 48, and 49) whose forging conditions of the steel meet the scope of the present invention are drawn in the thickness direction tensile test. Is 40% or more, and it can be seen that the sheet thickness direction tensile properties are excellent. Further, in the steel sheets (sample Nos.
  • YS is 620 MPa or more
  • TS is 720 MPa or more
  • the toughness of the base material ( V E ⁇ 40 ) is 70 J or more
  • the drawing during the thickness direction tensile test is 40% or more, and it can be seen that both the strength and toughness of the base metal and the tensile properties in the thickness direction are excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Abstract

 本発明に従い、板厚を100mm以上とし、板厚中心部における板厚方向引張による絞り値を40%以上とすることによって、合金元素の添加量を増やす必要がある厚肉の高強度鋼板においても、設備の大型化をせずに、板厚中心部の強度・靭性に優れる厚肉高張力鋼を得ることができる。

Description

厚肉高靭性高張力鋼板およびその製造方法
 本発明は、建築、橋梁、造船、海洋構造物、建産機、タンクおよびペンストックなどの鉄鋼構造物に用いられる、強度と靭性および溶接性に優れる厚鋼板およびその製造方法に関し、特に、板厚:100mm以上で、かつ板厚中心部における板厚方向引張による絞り値が40%以上である厚肉高靭性高張力鋼板とその製造方法を提供しようとするものである。
 建築、橋梁、造船、海洋構造物、建産機、タンクおよびペンストック等の各分野で鋼材が使用される場合には、鉄鋼構造物の形状に対応して、溶接により所望の形状に仕上げられる。近年、鉄鋼構造物の大型化が著しく進展しており、使用される鋼材の高強度化や厚肉化が顕著に進んでいる。
 板厚:100mm以上の厚肉の鋼板は、通常、造塊法により製造された大型鋼塊を分塊圧延し、得られた分塊スラブを熱間圧延することによって製造されている。しかし、この造塊-分塊プロセスは押湯部の濃厚偏析部や、鋼塊底部の負偏析部を切り捨てる必要があるため、歩留まりが上がらず、製造コストの上昇や、工期が長くなるという課題がある。
 一方、板厚:100mm以上の厚肉の鋼板の製造を、連続鋳造スラブを素材とするプロセスで行った場合、上記の懸念はないものの、連続鋳造スラブの厚さが造塊法で製造されたスラブに比べて小さいため、製品厚までの圧下量が少ないという問題がある。また、近年では、一般的に鋼材の高強度化や、厚肉化が要求される傾向にあり、必要な特性を確保するために添加される合金元素量が増加し、結果、中心偏析に起因するセンターポロシティの発生や、大型化による内質の劣化などが新たな問題として発生している。
 これらの問題を解決するために、連続鋳造スラブから極厚鋼板を製造する過程で、センターポロシティを圧着して、鋼板内の中心偏析部の特性を改善することを目的に、以下のような技術が提案されている。
 例えば、非特許文献1では、連続鋳造スラブの熱間圧延時の圧延形状比を大きくすることによって、センターポロシティを圧着する技術が記載されている。
 また、特許文献1および2では、連続鋳造スラブを製造する際に、連続鋳造機中でロールまたは平金敷を用いて加工することにより、連続鋳造スラブのセンターポロシティを圧着する技術が記載されている。
 特許文献3では、連続鋳造スラブから累積圧下率が70%以下の厚肉鋼板を製造する際に、熱間圧延前に鍛造加工することによりセンターポロシティの圧着を図る技術が記載されている。
 特許文献4では、全圧下率:35~67%の鍛造および厚板圧延により連続鋳造スラブから極厚鋼板を製造するに当たり、鍛造前に素材の板厚中心部を1200℃以上の温度に20時間以上保持し、鍛造の圧下率を16%以上として、センターポロシティの消滅に加え、中心偏析帯を軽減して、耐焼もどし脆化特性の改善を図る技術が記載されている。
 特許文献5には、連続鋳造スラブにクロス鍛造を実施した後、熱間圧延することによって、センターポロシティと中心偏析の改善を図る技術が記載されている。
 特許文献6には、連続鋳造スラブを1200℃以上の温度に20時間以上保持し、鍛造の圧下率を17%以上とし、厚板圧延は鍛造を含めた全圧下率が23~50%の範囲で行い、厚板圧延後に2回焼入れ処理を行うことで、センターポロシティの消滅に加え、中心偏析帯を軽減した引張強さ588MPa以上の厚鋼板の製造方法に関する技術が記載されている。
 特許文献7には、特定の成分を有する連続鋳造スラブを、1100~1350℃に再加熱して1000℃以上における歪速度を0.05~3/s、累積圧下量を15%以上とする溶接性と板厚方向の延性に優れる厚鋼板の製造方法に関する技術が記載されている。
特開昭55-114404号公報 特開昭61-27320号公報 特許第3333619号公報 特開2002-194431号公報 特開2000-263103号公報 特開2006-111918号公報 特開2010-106298号公報
鉄と鋼, 66(1980), 201-210頁
 しかしながら、非特許文献1に記載の技術では、内質の良好な鋼板を得るために圧延形状比の高い圧延を繰り返し行う必要があるが、圧延機の設備仕様の上限を超える範囲となり、製造上の課題がある。また、通常の方法で圧延すると、板厚中心部の加工が不十分となって、センターポロシティが残存し内質が劣化する懸念がある。
 また、特許文献1および2に記載された技術は、板厚:100mm以上の厚鋼板を製造するためには連続鋳造設備を大型化する必要があり、大規模な設備投資を必要とするという課題がある。
 さらに、特許文献3~7に記載された技術は、センターポロシティの低減や、中心偏析帯の改善には有効であるものの、降伏強度が620MPa以上の合金添加量の多い厚肉鋼板の製造に適用する場合には、材料の高強度化により欠陥感受性が高まるため、板厚中心部の伸びおよび靭性がいずれも不十分である。
 本発明は、上記した問題を有利に解決するもので、合金元素の添加量を増やす必要がある厚肉の高強度厚鋼板においても、連続鋳造設備や圧延機の大型化をせずに板厚中心部の強度・靭性に優れる厚肉高張力鋼板とその製造方法を提供することを目的とする。なお、対象とする厚肉高張力鋼板の板厚は100mm以上とする。
 発明者らは、上記課題を解決するために、特に、板厚:100mm以上の厚鋼板を対象に、板厚中心部における強度、靭性と伸びに関して、鋼板内部のミクロ組織制御因子について鋭意研究を行い、以下の知見を得た。
(A) 鋼板表面に比べて著しく冷却速度が低下する板厚中心部において、良好な強度および靭性を得るためには、鋼組成を適切に選定することで、低下した冷却速度であっても、ミクロ組織を、マルテンサイトおよび/またはベイナイト組織とすることが重要である。
(B) 高強度化により延性が低下しやすく、延性に対する欠陥の感受性が高まる厚鋼板の板厚中心部において良好な延性を確保するためには、熱間鍛造時の金型の形状および総圧下量と、その時の歪速度、1パス当たりの圧下率および加工時間を管理して、センターポロシティを圧着し無害化することが重要である。
 すなわち、本発明は、上記した知見に、さらに検討を加えてなされたものであって、本発明の要旨構成は次のとおりである。
1.板厚中心部における板厚方向引張による絞り値が40%以上であり、板厚:100mm以上である厚肉高靭性高張力鋼板。
2.質量%で、C:0.08~0.20%、Si:0.40%以下、Mn:0.5~5.0%、P:0.015%以下、S:0.0050%以下、Cr:3.0%以下、Ni:5.0%以下、Ti:0.005~0.020%、Al:0.080%以下、N:0.0070%以下およびB:0.0030%以下を含有し、かつ以下の(1)式の関係を満たし、残部はFeおよび不可避的不純物からなる前記1に記載の厚肉高靭性高張力鋼板。

CeqIIW = C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 ≧ 0.57・・・(1)

 上式において各元素記号は鋼中の含有量(質量%)とし、含有しないものは0として計算する。
3.さらに、質量%で、Cu:0.50%以下、Mo:1.50%以下、V:0.200%以下およびNb:0.100%以下のうちから選んだ1種または2種以上を含有する前記2に記載の厚肉高靭性高張力鋼板。
4.さらに、質量%で、Mg:0.0005~0.0100%、Ta:0.01~0.20%、Zr:0.005~0.1%、Y:0.001~0.01%、Ca:0.0005~0.0050%およびREM:0.0005~0.0200%のうちから選んだ1種または2種以上を含有することを特徴とする前記2または3に記載の厚肉高靭性高張力鋼板。
5.降伏強度が620MPa以上であって、靭性(VE-40)が70J以上である前記1~4のいずれかに記載の厚肉高靭性高張力鋼板。
6.前記1~5のいずれかに記載の厚肉高靭性高張力鋼板を製造する方法であって、連続鋳造スラブを、1200~1350℃に加熱後、対向する金型の短辺のうち短い方を1とした場合に、これに対向する金型の短辺の長さが1.1~3.0となる金型を用いて、1000℃以上で、歪速度を3/s以下とし、累積圧下量を15%以上とする熱間鍛造を行った後、熱間圧延を行い、その後、焼入れ焼戻しをする厚肉高靭性高張力鋼板の製造方法。
7.前記1~5のいずれかに記載の厚肉高靭性高張力鋼板を製造する方法であって、連続鋳造スラブを、1200~1350℃に加熱後、対向する金型の短辺のうち短い方を1とした場合に、これに対向する金型の短辺の長さが1.1~3.0となる金型を用いて、1000℃以上で、歪速度を3/s以下とし、累積圧下量を15%以上とする熱間鍛造を行った後、放冷し、再度、Ac3点~1250℃に加熱後、1パス当たりの圧下率が4%以上のパスを少なくとも2回以上行う熱間圧延を行った後、放冷して、Ac3点~1050℃に再加熱し、さらにAr3点~350℃になるまで急冷した後、450~700℃の範囲で焼戻しをする厚肉高靭性高張力鋼板の製造方法。
8.前記厚肉高靭性高張力鋼板における加工前の素材からの圧下比を3以下とする前記6または7に記載の厚肉高靭性高張力鋼板の製造方法。
9.前記熱間鍛造時に、圧下率が1パス当たり5%以上の鍛造を1回以上適用する前記6~8のいずれかに記載の厚肉高靭性高張力鋼板の製造方法。
10.前記熱間鍛造時に、圧下率が1パス当たり7%以上の鍛造を1回以上適用する前記6~8のいずれかに記載の厚肉高靭性高張力鋼板の製造方法。
11.前記熱間鍛造時に、少なくとも1パスを、該パスの最大荷重×0.9以上最大荷重以下の負荷荷重における累積経過時間を3s以上とする前記6~10のいずれかに記載の厚肉高靭性高張力鋼板の製造方法。
 本発明によれば、母材の降伏強度および靭性に優れた板厚:100mm以上の厚鋼板が得られ、鉄鋼構造物の大型化、鉄鋼構造物の安全性の向上、歩留まりの向上、製造工期の短縮に大きく寄与するので、産業上極めて有用である。特に、従来、十分な板厚中心部の特性が得られなかった加工前の素材からの圧下比が3以下となる場合でも、連続鋳造設備の大型化などの対策を行わずに良好な特性が得られる効果をもたらす。
対向する金型の短辺を示す図である。 素材(鋼板)中の相当塑性ひずみを計算した結果を示す図である。
 以下、本発明を具体的に説明する。
 本発明は、板厚:100mm以上の鍛造材であって、板厚中心部における板厚方向引張による絞り値が40%以上であることを特徴としている。鋼中のセンターポロシティを圧着してそのサイズを100μm以下にし、実質無害化することができるからである。
 また、前記の厚肉高張力鋼板は、降伏強度が620MPa以上である特徴を備えており、鉄鋼構造物の大型化や、鉄鋼構造物の安全性の向上を図ることができる。なお、上記特性は、従来技術では困難であった加工前の素材からの圧下比が3以下の範囲でも得られる。
 次に、本発明における、鋼板成分の好適範囲を説明する。なお、鋼板成分における各元素の含有量の%表示は全て、質量%である。
C:0.08~0.20%
 Cは、構造用鋼に求められる強度を安価に得るために有用な元素であり、その効果を得るためには0.08%以上の添加が好ましい。一方、0.20%を超えて含有すると、母材および溶接熱影響部の靭性を顕著に劣化させるため上限を0.20%とするのが好ましい。より好ましくは0.08~0.14%である。
Si:0.40%以下
 Siは、脱酸のために添加するが、0.40%を超えて添加すると母材および溶接熱影響部の靭性が顕著に低下するため、Si量は0.40%以下が好ましい。より好ましくは0.05~0.30%の範囲である。さらに好ましくは0.1~0.30%の範囲である。
Mn:0.5~5.0%
 Mnは、母材強度を確保する観点から添加するが、0.5%未満の添加ではその効果が十分でない一方で、5.0%を超えて添加すると、母材の靭性が劣化するだけではなく、中心偏析を助長し、スラブのポロシティを大型化するため上限は5.0%が好ましい。より好ましくは0.6~2.0%の範囲である。さらに好ましくは0.6~1.6%の範囲である。
P:0.015%以下
 Pは、0.015%を超えて含有すると、母材および溶接熱影響部の靭性を著しく低下させるため0.015%以下に制限するのが好ましい。なお、下限値は特に限定されず0%であっても良い。
S:0.0050%以下
 Sは、0.0050%を超えて含有すると、母材および溶接熱影響部の靭性を顕著に低下させるため、0.0050%以下とするのが好ましい。なお、下限値は特に限定されず0%であっても良い。
Cr:3.0%以下
 Crは、母材の高強度化に有効な元素であるが、多量に添加すると溶接性を低下させるので、3.0%以下とするのが好ましい。製造コストの観点からより好ましくは、0.1~2.0%である。
Ni:5.0%以下
 Niは、鋼の強度および溶接熱影響部の靭性を向上させる有益な元素であるが、5.0%を超えて添加すると、経済性が著しく低下するため、Ni量の上限は5.0%以下とすることが好ましい。より好ましくは、0.5~4.0%である。
Ti:0.005~0.020%
 Tiは加熱時にTiNを生成し、オーステナイト粒の粗大化を効果的に抑制し、母材および溶接熱影響部の靭性を向上させる。しかし、0.020%を超えて添加すると、Ti窒化物が粗大化し母材の靭性を低下させるので、Tiを添加する場合は、Ti量は0.005~0.020%の範囲とするのが好ましい。より好ましくは、0.008~0.015%の範囲である。
Al:0.080%以下
 Alは、溶鋼を十分に脱酸するために添加されるが、0.080%を超えて添加すると母材中に固溶するAl量が多くなり、母材靭性を低下させるので、Al量は0.080%以下とするのが好ましい。より好ましくは、0.020~0.080%の範囲である。さらに好ましくは、0.020~0.060%の範囲である。
N:0.0070%以下
 Nは、Tiなどと窒化物を形成することによって組織を微細化し、母材および溶接熱影響部の靭性を向上させる効果を有するが、0.0070%を超えて添加すると、母材中に固溶するN量が増大し、母材靭性が著しく低下し、さらに溶接熱影響部においても粗大な炭窒化物を形成し靭性を低下させるので、N量は0.0070%以下とするのが好ましい。より好ましくは、0.0050%以下、さらに好ましくは0.0040%以下である。
B:0.0030%以下
 Bは、オーステナイト粒界に偏析することで粒界からのフェライト変態を抑制し、焼入性を高める効果を有するが、0.0030%を超えて添加すると、炭窒化物として析出し焼入性を低下させ、靭性が低下するので0.0030%以下とするのが好ましい。Bを添加する場合は、0.0003~0.0030%の範囲とするのがより好ましい。さらに好ましくは0.0005~0.0020%の範囲である。
 本発明の高張力鋼は、上記元素に加えて、さらに強度・靭性を高める目的でCu、Mo、VおよびNbの中から選んだ1種類または2種類以上を含有することができる。
Cu: 0.50%以下
 Cuは、靭性を損なうことなく鋼の強度の向上が図れるが、0.50%より多く添加すると熱間加工時に鋼板表面に割れを生じるので0.50%以下とする。
Mo:1.50%以下
 Moは、母材の高強度化に有効な元素であるが、1.50%を超えて添加すると硬質の合金炭化物の析出による強度の上昇を引き起こして靭性を低下させるので、上限を1.50%とするのが好ましい。より好ましくは、0.02~0.80%の範囲である。
V:0.200%以下
 Vは、母材の強度・靭性の向上に効果があり、また、VNとして析出することで、固溶Nの低減に有効であるが、0.200%を超えて添加すると、硬質なVCの析出によって鋼の靭性が低下するので、Vを添加する場合は、0.200%以下とするのが好ましい。より好ましくは、0.010~0.100%の範囲である
Nb:0.100%以下
 Nbは、母材の強度の向上に効果があるため有効であるが、0.100%を超える添加は母材の靭性を顕著に低下させるため上限を0.100%とする。好ましくは、0.025%以下である。
 本発明の高張力鋼は、上記成分に加えて、さらに材質を改善する目的でMg、Ta、Zr、Y、CaおよびREMの中から選んだ1種類または2種類以上を含有することができる。
Mg:0.0005~0.0100%
 Mgは、高温で安定な酸化物を形成し、溶接熱影響部のオーステナイト粒の粗大化を効果的に抑制し、溶接部の靭性を向上させるのに有効な元素である。この効果を得るためには、0.0005%以上の添加が有効である。一方、0.0100%を超えて添加すると、介在物量が増加し靭性が低下するので、Mgを添加する場合は、0.0100%以下とするのが好ましい。より好ましくは、0.0005~0.0050%の範囲である。
Ta:0.01~0.20%
 Taは、適正量添加すると、強度向上に有効である。しかし、その添加量が0.01%未満の場合では明瞭な効果が得られない一方で、0.20%を超える場合は析出物生成によって靭性が低下するため、添加量は0.01~0.20%とするのが好ましい。
Zr:0.005~0.1%
 Zrは、強度上昇に有効な元素であるが、添加量が0.005%未満の場合は顕著な効果が得られない一方で、0.1%を超える添加の場合には、粗大な析出物を生成して、鋼の靭性が低下するため、添加量は0.005~0.1%とする。
Y:0.001~0.01%
 Yは、高温で安定な酸化物を形成し、溶接熱影響部のオーステナイト粒の粗大化を効果的に抑制し、溶接部の靭性を向上させるのに有効な元素である。しかし、0.001%未満の添加では効果が得られず、0.01%を超えて添加すると、介在物量が増加し靭性が低下するので、添加量は、0.001~0.01%とする。
Ca:0.0005~0.0050%
 Caは、硫化物系介在物の形態制御に有用な元素であり、その効果を発揮させるためには、0.0005%以上の添加が必要である。一方、0.0050%を超えて添加すると、清浄度の低下を招き靭性を劣化させるので、Caを添加する場合は、0.0050%以下とするのが好ましい。より好ましくは0.0005~0.0025%の範囲である。
REM:0.0005~0.0200%
 REMも、Caと同様に鋼中で酸化物および硫化物を形成して材質を改善する効果があり、その効果を得るためには0.0005%以上の添加が必要である。一方、0.0200%を超えて添加しても、その効果が飽和するため、REMを添加する場合は、0.0200%以下とするのが好ましい。より好ましくは0.0005~0.0100%の範囲である。
CeqIIW (%)≧ 0.57
 本発明では、板厚中心部において高強度と良好な靭性を確保するために、適切な成分の添加が必要であり、下記の(1)式で定義するCeqIIW (%)がCeqIIW ≧ 0.57の関係を満たすように成分を添加することが重要である。

CeqIIW = C + Mn/6 + (Cu + Ni)/15 + (Cr + Mo + V)/5 ≧ 0.57 -(1)

なお、式中の各元素記号はそれぞれの元素の含有量(質量%)を示す。
 次に、本発明の製造条件について説明する。
 以下の説明において、温度「℃」は、板厚中心部における温度を意味するものとする。特に、本発明における厚鋼板の製造方法では、鋼素材中のセンターポロシティなどの鋳造欠陥を無害化させるため、下記に記載の条件で鋼素材に熱間鍛造を施すことを必須とする。
鋼素材の熱間加工条件
加熱温度:1200~1350℃
 上述の組成を有する鋳片または鋼片の鋼素材を転炉、電気炉、真空溶解炉等、通常公知の方法で溶製し連続鋳造した後、1200~1350℃に再加熱する。再加熱温度が1200℃未満では、所定の熱間加工の累積圧下量と温度下限を確保できず、また、熱間鍛造時の変形抵抗が高く、1パスあたりの十分な圧下量を確保できない。その結果、必要パス数が増加することで、製造能率の低下を招くだけでなく、鋼素材中のセンターポロシティなどの鋳造欠陥を圧着して無害化することができないため、1200℃以上とする。一方、再加熱温度が1350℃を超えると、過大なエネルギーを消費し、加熱時のスケールにより表面疵が生じやすくなり、熱間鍛造後の手入れ負荷が増大するため、上限は1350℃とする。
熱間鍛造の鍛造温度:1000℃以上
 熱間鍛造の鍛造温度が1000℃未満の場合、熱間鍛造時の変形抵抗が高くなるため、鍛造機への負荷が大きくなり、センターポロシティを確実に無害化することができなくなるため1000℃以上とする。なお、鍛造温度の上限に特に限定はないが、製造コストの観点から1350℃程度が好ましい。
対向する金型の形状が非対称
 本発明における熱間鍛造は、連続鋳造スラブの幅方向に長辺を持ち、連続鋳造スラブの進行方向に短辺を有した対向する1対の金型によって行われるが、図1に示すように、この対向する金型の短辺同士が異なる長さを有しているところに本発明の熱間鍛造の特徴がある。
 そして、この対向する金型の1対の短辺のうち、短い方の短辺(図1中では上金型の短辺)の長さを1とした時、これに対向する金型の短辺(図1中では下金型の短辺)を、短い方の短辺に比して1.1から3.0の長さの金型とすることで、歪分布を非対称にすることができるのみならず、鍛造時に加えられる歪が最小となる位置と、連続鋳造スラブのセンターポロシティの発生位置とを合致させないことが可能となる結果、センターポロシティをより確実に無害化できるのである。
 上記短い方の短辺と長い方の短辺の比が1.1未満の場合には、十分な無害化効果が得られない一方で、3.0を超える場合には、熱間鍛造の著しい能率の低下を招く。従って、本発明における熱間鍛造に用いる金型は、対向する1対の金型の短辺同士において、短い方の短辺を1とすると、対向する短辺は、1.1から3.0の長さを有することが肝要である。なお、上記金型の短い方の短辺を有する金型が、連続鋳造スラブの上方であっても下方であっても構わない。対向する側の金型の短辺が上記比を満足する長さであれば良い。すなわち、図1において、下金型の短辺が短くても良い。
 また、上下金型の短辺を同じにした場合(図中白丸で表す従来金型)と、短い方の短辺と長い方の短辺の比を2.5とした場合(図中黒丸で表す本発明に従う金型)との素材(鋼板)中の相当塑性ひずみを、素材の板厚方向に計算した結果を、図2に示す。なお、上記金型を用いた熱間鍛造の条件は、金型形状以外は同じとし、加熱温度:1250(℃)、加工開始温度:1215(℃)、加工終了温度:1050(℃)、累積圧下量:16(%)、歪速度:0.1(/s)、最大1パス圧下量:8(%)、幅方向加工無し、とした。
 図2より、本発明に従う金型を用いた熱間鍛造の方が、素材中心まで、十分な歪を付与できていることが分かる。
熱間鍛造の累積圧下量:15%以上
 熱間鍛造の累積圧下量が15%未満の場合、鋼素材中のセンターポロシティなどの鋳造欠陥を圧着し無害化することができないため、15%以上とする。連続鋳造スラブの幅方向を熱間鍛造することで厚みを増した場合は、その厚みからの累積圧下量とする。
熱間鍛造の歪速度:3/s以下
 熱間鍛造の歪速度が3/sを超えると、熱間鍛造時の変形抵抗が高くなり、鍛造機への負荷が増大し、センターポロシティを無害化することができなくなるため3/s以下とする。
 また、歪速度が0.01/s未満となる場合、熱間鍛造時間が長くなることで生産性が低下するため、0.01/s以上とすることが好ましい。より好ましくは、0.05/s~1/sの範囲である。
熱間鍛造時の圧下率を、1パス当たり、5%以上または7%以上とした鍛造を1回以上適用
 熱間鍛造時の圧下率を大きくすることで、微細なセンターポロシティの鍛造後の残存量が低下する。そのため5%/パス以上の鍛造を熱間鍛造時に1回以上適用すると、板厚方向引張試験時の絞りが鋼中のセンターポロシティを圧着してそのサイズを100μm以下にし、実質無害化することができるため、40%以上となる。他方、7%/パス以上の鍛造を熱間鍛造時に1回以上適用すると、鋼中のセンターポロシティのサイズをより微細にすることができるため、板厚方向引張試験時の絞りが45%以上の製品を製造することが可能になる。
熱間鍛造時の少なくとも1パスを当該パスの最大荷重×0.9以上最大荷重以下の負荷荷重における累積経過時間を3s以上
 熱間鍛造時において、少なくとも1パスを、そのパスにおける最大荷重×0.9以上最大荷重以下の負荷荷重における累積経過時間を3s以上とするように鍛造することで、センターポロシティが拡散的に接合して消滅するために、板厚方向引張試験時の絞りを向上させることができる。
 なお、本発明では、熱間鍛造後に熱間圧延して所望の板厚の鋼板とし、板厚中心部においても620MPa以上の降伏強度および良好な靭性を確保するため、焼入れ焼戻し処理を行うことが可能である。
熱間鍛造後の鋼素材の再加熱温度:Ac3点~1250℃
 鋼素材をAc3変態点以上に加熱するのは、鋼をオーステナイト組織一相に均一化するためであり、加熱温度としては、Ac3点以上1250℃以下とするのが好ましい。
 ここで、本発明では、Ac3変態点を、下記式(2)により計算される値とする。
Ac3 (℃)= 937.2 - 476.5C + 56Si - 19.7Mn - 16.3Cu - 26.6Ni - 4.9Cr + 38.1Mo + 124.8V + 136.3Ti + 198.4Al + 3315B  ・・・(2)
 なお、(2)式での各元素記号はそれぞれの合金元素の鋼中含有量(質量%)を示す。
1パス当たりの圧下率が4%以上のパスを少なくとも2回以上行う熱間圧延
 本発明では、再度、Ac3点以上1250℃以下に加熱後、1パス当たりの圧下率が4%以上のパスを少なくとも2回以上行う熱間圧延を行うことが好ましい。このような圧延を行うことで、板厚中心部に十分な加工を加えることが可能となり、再結晶の促進により組織が微細化し機械的特性が向上するためである。
熱間圧延後の熱処理条件
 板厚中心部での強度と靭性を得るために、本発明では熱間圧延後放冷し、Ac3点~1050℃に再加熱し、少なくともAr3点以上の温度から350℃以下になるまで急冷する。再加熱温度を1050℃以下とするのは、1050℃を超える高温の再加熱ではオーステナイト粒の粗大化による母材靭性の低下が著しく低下するためである。
 ここで、本発明では、Ar3変態点を、下記式(3)により計算される値とする。

Ar3 (℃)= 910 - 310C - 80Mn - 20Cu - 15Cr - 55Ni - 80Mo     ・・・(3)
 なお、(3)式での各元素記号はそれぞれの元素の鋼中含有量(質量%)を示す。
 板厚中心部の温度は、板厚、表面温度および冷却条件等から、シミュレーション計算等により求められる。例えば、差分法を用い、板厚方向の温度分布を計算することにより、板厚中心温度が求められる。
 急冷の方法は、工業的には水冷とすることが一般的であるが、冷却速度は可能な限り速いほうが望ましいため、冷却方法は水冷以外でも良く、例えばガス冷却などの方法もある。
焼戻し処理温度:450~700℃
 急冷後、450~700℃で焼もどすのは、450℃未満では残留応力の除去効果が少なく、一方、700℃を超える温度では、種々の炭化物が析出するとともに、母材の組織が粗大化し、強度、靭性が大幅に低下するためである。
 工業的には、鋼の強靭化を目的に繰返し焼入れする場合があり、本発明においても繰り返し焼入れしても良いが、最終の焼入れの際に、Ac3点~1050℃に加熱後、350℃以下になるまで急冷し、その後450~700℃で焼もどすことが好適である。
 以上説明したように、本発明の鋼板の製造では、焼入れ焼戻しを行うことによって、強度および靭性に優れる鋼板を製造することが可能となる。
 次に、本発明の実施例について説明する。
 表1に示すNo.1~35の鋼を溶製し、連続鋳造スラブとした後、表2に示す条件で、熱間加工および熱間圧延を施し、その際、板厚を100~240mmの範囲の鋼板とし、その後、焼入れ、焼戻し処理を行って、表2に示した試料No.1~49の製品を製造し、下記の試験に供した。
I 引張試験
 各鋼板の板厚中心部から、圧延方向と直角方向に丸棒引張試験片(Φ:12.5mm、 GL:50mm)を採取し、降伏強度(YS)、引張強度(TS)を測定した。
II 板厚方向引張試験
 各鋼板について板厚方向に丸棒引張試験片(φ10mm)を3本採取し、破断後の絞りを測定し、その最小値で評価した。
III シャルピー衝撃試験
 各鋼板の板厚中心部から、圧延方向を長手方向とする2mmVノッチシャルピー試験片を各3本ずつ採取し、各試験片について-40℃でシャルピー衝撃試験により吸収エネルギー(VE-40)を測定し、それぞれ3本の平均値を求めた。
 上記の試験結果を表2に併記する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示された結果から、鋼の鍛造条件が本発明の範囲に適合する鋼板(試料No.1~35、40~44、46、48、49)は、板厚方向引張試験時の絞りが40%以上であり、板厚方向引張特性が優れていることがわかる。さらに、鋼の製造条件と成分組成が共に本発明の好適範囲に適合する鋼板(試料No.1~24)では、いずれもYSが620MPa以上、TSが720MPa以上、母材の靭性(VE-40)が70J以上、板厚方向引張試験時の絞りが40%以上であり、母材の強度・靭性、板厚方向引張特性のいずれにおいても優れていることが分かる。
 なお、試料No.36~49に示すように、鋼の製造条件が本発明に適合していない場合、YSや、TS、靭性(VE-40)、および、板厚方向引張試験時の絞りの特性が、上記所望特性に満たず、本発明より劣っている。

Claims (11)

  1.  板厚中心部における板厚方向引張による絞り値が40%以上であり、板厚:100mm以上である厚肉高靭性高張力鋼板。
  2.  質量%で、C:0.08~0.20%、Si:0.40%以下、Mn:0.5~5.0%、P:0.015%以下、S:0.0050%以下、Cr:3.0%以下、Ni:5.0%以下、Ti:0.005~0.020%、Al:0.080%以下、N:0.0070%以下およびB:0.0030%以下を含有し、かつ以下の(1)式の関係を満たし、残部はFeおよび不可避的不純物からなる請求項1に記載の厚肉高靭性高張力鋼板。

    CeqIIW = C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 ≧ 0.57・・・(1)

     上式において各元素記号は鋼中の含有量(質量%)とし、含有しないものは0として計算する。
  3.  さらに、質量%で、Cu:0.50%以下、Mo:1.50%以下、V:0.200%以下およびNb:0.100%以下のうちから選んだ1種または2種以上を含有する請求項2に記載の厚肉高靭性高張力鋼板。
  4.  さらに、質量%で、Mg:0.0005~0.0100%、Ta:0.01~0.20%、Zr:0.005~0.1%、Y:0.001~0.01%、Ca:0.0005~0.0050%およびREM:0.0005~0.0200%のうちから選んだ1種または2種以上を含有することを特徴とする請求項2または3に記載の厚肉高靭性高張力鋼板。
  5.  降伏強度が620MPa以上であって、靭性(VE-40)が70J以上である請求項1~4のいずれかに記載の厚肉高靭性高張力鋼板。
  6.  請求項1~5のいずれかに記載の厚肉高靭性高張力鋼板を製造する方法であって、連続鋳造スラブを、1200~1350℃に加熱後、対向する金型の短辺のうち短い方を1とした場合に、これに対向する金型の短辺の長さが1.1~3.0となる金型を用いて、1000℃以上で、歪速度を3/s以下とし、累積圧下量を15%以上とする熱間鍛造を行った後、熱間圧延を行い、その後、焼入れ焼戻しをする厚肉高靭性高張力鋼板の製造方法。
  7.  請求項1~5のいずれかに記載の厚肉高靭性高張力鋼板を製造する方法であって、連続鋳造スラブを、1200~1350℃に加熱後、対向する金型の短辺のうち短い方を1とした場合に、これに対向する金型の短辺の長さが1.1~3.0となる金型を用いて、1000℃以上で、歪速度を3/s以下とし、累積圧下量を15%以上とする熱間鍛造を行った後、放冷し、再度、Ac3点~1250℃に加熱後、1パス当たりの圧下率が4%以上のパスを少なくとも2回以上行う熱間圧延を行った後、放冷して、Ac3点~1050℃に再加熱し、さらにAr3点~350℃になるまで急冷した後、450~700℃の範囲で焼戻しをする厚肉高靭性高張力鋼板の製造方法。
  8.  前記厚肉高靭性高張力鋼板における加工前の素材からの圧下比を3以下とする請求項6または7に記載の厚肉高靭性高張力鋼板の製造方法。
  9.  前記熱間鍛造時に、圧下率が1パス当たり5%以上の鍛造を1回以上適用する請求項6~8のいずれかに記載の厚肉高靭性高張力鋼板の製造方法。
  10.  前記熱間鍛造時に、圧下率が1パス当たり7%以上の鍛造を1回以上適用する請求項6~8のいずれかに記載の厚肉高靭性高張力鋼板の製造方法。
  11.  前記熱間鍛造時に、少なくとも1パスを、該パスの最大荷重×0.9以上最大荷重以下の負荷荷重における累積経過時間を3s以上とする請求項6~10のいずれかに記載の厚肉高靭性高張力鋼板の製造方法。
PCT/JP2014/004631 2014-03-20 2014-09-09 厚肉高靭性高張力鋼板およびその製造方法 WO2015140846A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020167025832A KR101838424B1 (ko) 2014-03-20 2014-09-09 후육 고인성 고장력 강판 및 그 제조 방법
US15/126,838 US10443110B2 (en) 2014-03-20 2014-09-09 High toughness and high tensile strength thick steel plate and production method therefor
JP2016508308A JP6156574B2 (ja) 2014-03-20 2014-09-09 厚肉高靭性高張力鋼板およびその製造方法
EP14886339.2A EP3120941B1 (en) 2014-03-20 2014-09-09 High toughness and high tensile strength thick steel plate and production method therefor
SG11201607711XA SG11201607711XA (en) 2014-03-20 2014-09-09 High toughness and high tensile strength thick steel plate and production method therefor
NO14886339A NO3120941T3 (ja) 2014-03-20 2014-09-09
CN201480077199.6A CN106102940B (zh) 2014-03-20 2014-09-09 厚壁高韧性高张力钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014058611 2014-03-20
JP2014-058611 2014-03-20

Publications (1)

Publication Number Publication Date
WO2015140846A1 true WO2015140846A1 (ja) 2015-09-24

Family

ID=54143872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004631 WO2015140846A1 (ja) 2014-03-20 2014-09-09 厚肉高靭性高張力鋼板およびその製造方法

Country Status (8)

Country Link
US (1) US10443110B2 (ja)
EP (1) EP3120941B1 (ja)
JP (1) JP6156574B2 (ja)
KR (1) KR101838424B1 (ja)
CN (1) CN106102940B (ja)
NO (1) NO3120941T3 (ja)
SG (1) SG11201607711XA (ja)
WO (1) WO2015140846A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016114146A1 (ja) * 2015-01-16 2016-07-21 Jfeスチール株式会社 厚肉高靭性高強度鋼板およびその製造方法
JP2017186592A (ja) * 2016-04-04 2017-10-12 新日鐵住金株式会社 表層と板厚中心部の硬度に優れ、かつ表層と中心の硬度差の小さい板厚200mm超の厚鋼板およびその製造方法
KR20180096782A (ko) * 2016-05-31 2018-08-29 신닛테츠스미킨 카부시키카이샤 저온 인성이 우수한 고장력 강판
US10358688B2 (en) * 2014-04-24 2019-07-23 Jfe Steel Corporation Steel plate and method of producing same
JP2019166572A (ja) * 2018-03-22 2019-10-03 Jfeスチール株式会社 疲労特性に優れた厚鋼板、およびその製造方法
US10443110B2 (en) 2014-03-20 2019-10-15 Jfe Steel Corporation High toughness and high tensile strength thick steel plate and production method therefor
JP2021041446A (ja) * 2019-09-13 2021-03-18 Jfeスチール株式会社 優れた靭性を有する厚鋼板およびその製造方法、ならびに厚鋼板の素材となる鋼片
JP2022548144A (ja) * 2019-09-17 2022-11-16 ポスコ 低温衝撃靭性に優れた高強度極厚物鋼材及びその製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2942414B1 (en) * 2013-03-15 2019-05-22 JFE Steel Corporation Thick, tough, high tensile strength steel plate and production method therefor
SG11201703782WA (en) 2014-11-18 2017-06-29 Jfe Steel Corp High toughness and high tensile strength thick steel plate with excellent material homogeneity and production method for same
CN106756614B (zh) * 2016-11-26 2018-08-31 江阴兴澄特种钢铁有限公司 耐海洋大气、海水飞溅腐蚀的210mm厚易焊接F690钢板
CN106987769B (zh) * 2017-03-29 2018-08-03 苏州浩焱精密模具有限公司 一种高硬度精密蚀刻刀模
JP6795083B2 (ja) * 2017-09-08 2020-12-02 Jfeスチール株式会社 鋼板およびその製造方法
KR102586482B1 (ko) * 2019-03-13 2023-10-11 제이에프이 스틸 가부시키가이샤 후강판 및 그 제조 방법
CN111321348B (zh) * 2020-03-30 2022-01-11 南京钢铁股份有限公司 一种lng船用肋板l型钢及其制造方法
US20220025474A1 (en) * 2020-12-22 2022-01-27 Northeastern University 785 MPa LEVEL EXTRA-THICK QUENCHED AND TEMPERED RACK STEEL PLATE FOR OFFSHORE PLATFORMS AND PREPARATION METHOD THEREFOR
CN114763593B (zh) * 2021-01-12 2023-03-14 宝山钢铁股份有限公司 具有耐高湿热大气腐蚀性的海洋工程用钢及其制造方法
KR20230089770A (ko) 2021-12-14 2023-06-21 주식회사 포스코 두께 중심부 인성이 우수한 강판 및 그 제조방법
CN115323251B (zh) * 2022-08-24 2023-06-27 东北大学 一种超厚高强韧高均质水电用特厚钢板及其制造方法
CN118246350B (zh) * 2024-05-28 2024-07-26 洛阳船舶材料研究所(中国船舶集团有限公司第七二五研究所) 一种410mm厚船体结构铸钢强度性能替代性分析方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197383A (ja) * 1989-01-25 1990-08-03 Sumitomo Metal Ind Ltd 極厚鋼板の製造方法
JPH04190902A (ja) * 1990-11-26 1992-07-09 Nippon Steel Corp 極厚鋼板の製造方法
JP2009235524A (ja) * 2008-03-27 2009-10-15 Jfe Steel Corp 靭性および変形能に優れた板厚:25mm以上の高強度鋼管用鋼材およびその製造方法
JP2013095927A (ja) * 2011-10-28 2013-05-20 Nippon Steel & Sumitomo Metal Corp 靭性に優れた高張力鋼板およびその製造方法
WO2014038200A1 (ja) * 2012-09-06 2014-03-13 Jfeスチール株式会社 溶接熱影響部ctod特性に優れた厚肉高張力鋼およびその製造方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55114404A (en) 1979-02-28 1980-09-03 Nippon Steel Corp Production of continuous steel plate
JPS6020461B2 (ja) 1981-08-18 1985-05-22 住友金属工業株式会社 高強度高靭性を有する厚肉高張力鋼板
JPS6127320A (ja) 1984-07-17 1986-02-06 Sanyo Electric Co Ltd ブレ−キ装置の製造方法
JP2662409B2 (ja) 1988-02-26 1997-10-15 新日本製鐵株式会社 低温靭性の優れた極厚調質高張力鋼板の製造方法
JP2913426B2 (ja) 1991-03-13 1999-06-28 新日本製鐵株式会社 低温靱性の優れた厚肉高張力鋼板の製造法
JPH06198394A (ja) 1992-12-28 1994-07-19 Kawasaki Steel Corp 耐ラメラテア性に優れた構造用厚鋼板の製造方法
JP3333619B2 (ja) 1994-02-24 2002-10-15 川崎製鉄株式会社 極厚鋼板の製造方法
JP3290595B2 (ja) 1996-09-12 2002-06-10 川崎製鉄株式会社 靱性、溶接性に優れた高張力厚鋼板の製造方法
JP2000263103A (ja) 1999-03-18 2000-09-26 Kawasaki Steel Corp 連鋳スラブを用いた極厚鋼板の製造方法
JP2002194431A (ja) 2000-12-26 2002-07-10 Kawasaki Steel Corp 連続鋳造製極厚鋼板の製造方法
JP2002210502A (ja) 2001-01-19 2002-07-30 Kawasaki Steel Corp 極厚鋼材の製造方法
JP2002256380A (ja) 2001-03-06 2002-09-11 Sumitomo Metal Ind Ltd 脆性亀裂伝播停止特性と溶接部特性に優れた厚肉高張力鋼板およびその製造方法
JP4120531B2 (ja) 2003-08-27 2008-07-16 Jfeスチール株式会社 超大入熱溶接熱影響部靱性に優れる建築構造用高強度厚鋼板の製造方法
JP4715156B2 (ja) 2004-10-14 2011-07-06 Jfeスチール株式会社 板厚方向の均質性に優れた極厚高張力鋼板の製造方法
JP4058097B2 (ja) * 2006-04-13 2008-03-05 新日本製鐵株式会社 アレスト性に優れた高強度厚鋼板
JP5130796B2 (ja) * 2007-06-15 2013-01-30 Jfeスチール株式会社 大入熱溶接熱影響部靭性に優れた低降伏比高強度厚鋼板およびその製造方法
JP5399681B2 (ja) 2008-10-08 2014-01-29 Jfeスチール株式会社 化成処理性に優れた高加工性高強度鋼管およびその製造方法
JP5267048B2 (ja) 2008-10-29 2013-08-21 Jfeスチール株式会社 溶接性と板厚方向の延性に優れた厚鋼板の製造方法
JP5354164B2 (ja) 2008-12-09 2013-11-27 Jfeスチール株式会社 低降伏比高強度厚鋼板およびその製造方法
JP5509685B2 (ja) * 2009-06-08 2014-06-04 Jfeスチール株式会社 超大入熱溶接熱影響部靭性に優れた低降伏比高張力厚鋼板およびその製造方法
CN101962741B (zh) 2009-07-24 2012-08-08 宝山钢铁股份有限公司 一种调质钢板及其制造方法
JP2011202214A (ja) 2010-03-25 2011-10-13 Jfe Steel Corp 多層溶接部の低温靭性に優れた厚肉高張力鋼板およびその製造方法
CN102712972B (zh) 2010-05-14 2013-08-07 新日铁住金株式会社 高强度钢板及其制造方法
JP5924058B2 (ja) 2011-10-03 2016-05-25 Jfeスチール株式会社 溶接熱影響部の低温靭性に優れた高張力鋼板およびその製造方法
DE102011121910A1 (de) 2011-12-21 2013-06-27 Ultrasonic Systems Gmbh Verfahren zur Behandlung sulfidhaltiger Ablauge
CN102605280A (zh) 2012-03-15 2012-07-25 宝山钢铁股份有限公司 海洋平台用特厚高强度优良低温韧性钢板及其制造方法
JP2014038200A (ja) 2012-08-15 2014-02-27 Oki Electric Ind Co Ltd 表示装置、金融システム装置および液晶画面表示方法
JP5477457B2 (ja) 2012-12-12 2014-04-23 Jfeスチール株式会社 板厚40mm以下の鋼構造用高強度低降伏比鋼材
EP2942414B1 (en) 2013-03-15 2019-05-22 JFE Steel Corporation Thick, tough, high tensile strength steel plate and production method therefor
CN104254143A (zh) 2013-06-26 2014-12-31 华为技术有限公司 实现放音收号的方法、设备及系统
CN103710640B (zh) 2013-12-30 2016-05-25 钢铁研究总院 一种经济节约型调质处理690MPa级高强高韧钢板
JP6156574B2 (ja) 2014-03-20 2017-07-05 Jfeスチール株式会社 厚肉高靭性高張力鋼板およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197383A (ja) * 1989-01-25 1990-08-03 Sumitomo Metal Ind Ltd 極厚鋼板の製造方法
JPH04190902A (ja) * 1990-11-26 1992-07-09 Nippon Steel Corp 極厚鋼板の製造方法
JP2009235524A (ja) * 2008-03-27 2009-10-15 Jfe Steel Corp 靭性および変形能に優れた板厚:25mm以上の高強度鋼管用鋼材およびその製造方法
JP2013095927A (ja) * 2011-10-28 2013-05-20 Nippon Steel & Sumitomo Metal Corp 靭性に優れた高張力鋼板およびその製造方法
WO2014038200A1 (ja) * 2012-09-06 2014-03-13 Jfeスチール株式会社 溶接熱影響部ctod特性に優れた厚肉高張力鋼およびその製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10443110B2 (en) 2014-03-20 2019-10-15 Jfe Steel Corporation High toughness and high tensile strength thick steel plate and production method therefor
US10358688B2 (en) * 2014-04-24 2019-07-23 Jfe Steel Corporation Steel plate and method of producing same
JP6048626B1 (ja) * 2015-01-16 2016-12-21 Jfeスチール株式会社 厚肉高靭性高強度鋼板およびその製造方法
WO2016114146A1 (ja) * 2015-01-16 2016-07-21 Jfeスチール株式会社 厚肉高靭性高強度鋼板およびその製造方法
JP2017186592A (ja) * 2016-04-04 2017-10-12 新日鐵住金株式会社 表層と板厚中心部の硬度に優れ、かつ表層と中心の硬度差の小さい板厚200mm超の厚鋼板およびその製造方法
KR20180096782A (ko) * 2016-05-31 2018-08-29 신닛테츠스미킨 카부시키카이샤 저온 인성이 우수한 고장력 강판
JPWO2017208329A1 (ja) * 2016-05-31 2018-11-29 新日鐵住金株式会社 低温靭性に優れた高張力鋼板
CN108603258A (zh) * 2016-05-31 2018-09-28 新日铁住金株式会社 低温韧性优异的高强度钢板
EP3467130A4 (en) * 2016-05-31 2019-10-30 Nippon Steel Corporation STEEL PLATE WITH HIGH RESISTANCE AND EXCELLENT RESISTANCE TO LOW TEMPERATURES
KR102184966B1 (ko) 2016-05-31 2020-12-01 닛폰세이테츠 가부시키가이샤 저온 인성이 우수한 고장력 강판
JP2019166572A (ja) * 2018-03-22 2019-10-03 Jfeスチール株式会社 疲労特性に優れた厚鋼板、およびその製造方法
JP2021041446A (ja) * 2019-09-13 2021-03-18 Jfeスチール株式会社 優れた靭性を有する厚鋼板およびその製造方法、ならびに厚鋼板の素材となる鋼片
JP7156220B2 (ja) 2019-09-13 2022-10-19 Jfeスチール株式会社 優れた靭性を有する厚鋼板およびその製造方法、ならびに厚鋼板の素材となる鋼片
JP2022548144A (ja) * 2019-09-17 2022-11-16 ポスコ 低温衝撃靭性に優れた高強度極厚物鋼材及びその製造方法
JP7411072B2 (ja) 2019-09-17 2024-01-10 ポスコホールディングス インコーポレーティッド 低温衝撃靭性に優れた高強度極厚物鋼材及びその製造方法

Also Published As

Publication number Publication date
EP3120941A4 (en) 2017-03-15
KR101838424B1 (ko) 2018-03-13
US20170088913A1 (en) 2017-03-30
JP6156574B2 (ja) 2017-07-05
JPWO2015140846A1 (ja) 2017-04-06
NO3120941T3 (ja) 2018-08-25
EP3120941B1 (en) 2018-03-28
CN106102940A (zh) 2016-11-09
KR20160124847A (ko) 2016-10-28
CN106102940B (zh) 2018-05-01
SG11201607711XA (en) 2016-11-29
EP3120941A1 (en) 2017-01-25
US10443110B2 (en) 2019-10-15

Similar Documents

Publication Publication Date Title
JP6156574B2 (ja) 厚肉高靭性高張力鋼板およびその製造方法
JP5979338B1 (ja) 材質均一性に優れた厚肉高靭性高張力鋼板およびその製造方法
JP5928654B2 (ja) 厚肉高靭性高張力鋼板およびその製造方法
CN107208212B (zh) 厚壁高韧性高强度钢板及其制造方法
US10358688B2 (en) Steel plate and method of producing same
CN105200341B (zh) 一种抗拉强度大于1000MPa的经济型双相不锈钢及其制造方法
EP3209806A1 (en) An ultra-high strength thermo-mechanically processed steel
JP2010229514A (ja) 冷延鋼板およびその製造方法
JP2012193404A (ja) 継目無鋼管およびその製造方法
JP6051735B2 (ja) 溶接性および耐遅れ破壊特性に優れた高張力鋼板の製造方法
RU2346060C2 (ru) Способ производства штрипсов
JP5589335B2 (ja) 高靭性鋼の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886339

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016508308

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014886339

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014886339

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15126838

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167025832

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE