[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015097999A1 - 冷蔵庫 - Google Patents

冷蔵庫 Download PDF

Info

Publication number
WO2015097999A1
WO2015097999A1 PCT/JP2014/006066 JP2014006066W WO2015097999A1 WO 2015097999 A1 WO2015097999 A1 WO 2015097999A1 JP 2014006066 W JP2014006066 W JP 2014006066W WO 2015097999 A1 WO2015097999 A1 WO 2015097999A1
Authority
WO
WIPO (PCT)
Prior art keywords
vegetable
cold air
compartment
room
refrigerator
Prior art date
Application number
PCT/JP2014/006066
Other languages
English (en)
French (fr)
Inventor
淳宏 大島
泰幸 岡本
堀尾 好正
章彦 真鍋
健一 岡部
愼一 堀井
亜有子 宮坂
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014159186A external-priority patent/JP6349549B2/ja
Priority claimed from JP2014159188A external-priority patent/JP2016038100A/ja
Priority claimed from JP2014159187A external-priority patent/JP6454866B2/ja
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201490001292.4U priority Critical patent/CN205860629U/zh
Priority to DE212014000236.2U priority patent/DE212014000236U1/de
Publication of WO2015097999A1 publication Critical patent/WO2015097999A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/061Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation through special compartments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/065Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return
    • F25D2317/0655Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return through the top
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/066Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply
    • F25D2317/0665Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply from the top
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/067Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by air ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/803Bottles

Definitions

  • the present invention relates to a refrigerator, particularly a vegetable cold storage configuration in a vegetable room.
  • a home refrigerator includes a plurality of storage rooms having different temperature bands, for example, a refrigerator room, a vegetable room, and a freezer room in the refrigerator body.
  • the layout of a refrigerator compartment, a vegetable compartment, and a freezer compartment is divided roughly into two according to a user's actual condition of use.
  • the first is a layout in which freezing rooms are arranged in the upper and lower central portions of the refrigerator body, and is the layout that is most easily used by the user.
  • the second is a layout in which a vegetable room is placed in the center of the top and bottom of the refrigerator body.
  • Refrigerators with a freezer in the center of the top and bottom of the refrigerator body are the mainstream today.
  • it is a refrigerator that is easy to use for users who frequently use frozen foods as lifestyle changes.
  • a refrigerator described in Patent Document 1 has been proposed.
  • FIG. 78 shows the refrigerator described in Patent Document 1.
  • the refrigerator main body 500 includes a refrigerator compartment 501 at the top and a vegetable compartment 502 at the bottom. And the freezer compartment 503 is arrange
  • the cooling room 504 is provided in the back side of the refrigerator across the vegetable compartment 502 and the freezer compartment 503.
  • a cooler 505 and a cooling fan 506 are disposed in the cooling chamber 504. The cool air generated by the cooler 505 is supplied and circulated by the cooling fan 506 to the refrigerator compartment 501, the vegetable compartment 502, and the freezer compartment 503. And the foodstuff stored in each room mentioned above is cooled and preserved.
  • a refrigerator of a type in which a vegetable room is arranged at the upper and lower central portions of the refrigerator body is abbreviated as “middle vegetable refrigerator” and has been proposed as a refrigerator that is convenient for users who mainly use vegetables in and out (for example, patent Reference 2).
  • FIG. 79 shows a refrigerator described in Patent Document 2.
  • the refrigerator main body 600 includes a refrigerator compartment 601 at the top and a freezer compartment 602 at the bottom.
  • a vegetable room 603 is disposed at the upper and lower central portions of the refrigerator body 600 between the refrigerator compartment 601 and the freezer compartment 602.
  • the cooling room 604 is provided in the back side of the refrigerator main body 200 across the freezer compartment 602 and the vegetable compartment 603.
  • a cooler 605 and a cooling fan 606 are disposed in the cooling chamber 604.
  • the cold air generated by the cooler 605 is supplied and circulated by the cooling fan 606 to the refrigerator compartment 601, the vegetable compartment 603, and the freezer compartment 602. And the food stored in each room mentioned above is cooled and preserved.
  • the cold air generated in the cooling room circulates in the vegetable room via the refrigerator room.
  • the vegetables stored in the vegetable compartment are cooled and stored by the cold air circulating in the vegetable compartment.
  • Patent Document 1 and Patent Document 2 may cause condensation in the vegetable compartments 503 and 603 during the cooling and preservation of vegetables, and deteriorate the vegetables stored by the condensation. have.
  • the vegetable compartments 503 and 603 receive cold radiation from the cooling compartments 504 and 604 located on the back thereof, and the temperature near the back of the vegetable compartments 503 and 603 tends to be lowered. As a result, condensation occurs.
  • the vegetable rooms 503 and 603 are supplied with cool air having a relatively high temperature after cooling the refrigerator compartments 501 and 601 as described above.
  • the vegetable rooms 503 and 603 continue to receive strong cold radiation from the cooling rooms 504 and 604. Thereby, the temperature of the vegetable room back surface part which opposes the cooling rooms 504 and 604 falls, and a big temperature difference arises between the cold air temperature in a vegetable room. As a result, condensation occurs near the back of the vegetable storage case provided in the vegetable compartments 503 and 603.
  • a heat insulating structure that suppresses cooling radiation from the cooling chambers 504 and 604 is adopted.
  • the temperature in the vicinity of the vegetables rises due to the heat of the vegetables.
  • the temperature difference in the vegetable compartment increases due to the cold radiation from the cooling chambers 504 and 604, and the cold air in the vegetable compartment begins to condense on the wall surface of the vegetable storage case.
  • large-sized plastic bottles or packs of drinking water, tea, and juices can be stored in vegetable storage cases. PET bottles are often at room temperature and have a larger heat capacity than vegetables.
  • the middle vegetable type refrigerator also receives cold radiation from the freezer compartment 602 in which the bottom of the vegetable compartment 603 is located below. This is because the cold radiation from the freezing room 602 is added to the cold radiation from the cooling room 604, and the lower part of the back of the vegetable room 603 is easily lowered due to the synergistic effect of both.
  • the problem of vegetable deterioration due to condensation in the vegetable room becomes an unavoidable problem.
  • Patent Document 3 proposes a refrigerator in which a cooling chamber is provided only on the back of the freezer compartment and is not positioned on the back of the vegetable compartment.
  • a cooling chamber is provided only on the back of the freezer compartment and is not positioned on the back of the vegetable compartment.
  • the size of the cooler provided in the cooling chamber is limited, and thus the cooling capacity is limited, and cannot be applied to a large capacity large refrigerator. Therefore, there is a problem that the large refrigerator cannot solve the problem of vegetable deterioration due to condensation caused by cold radiation from the cooling chamber.
  • JP 2010-60258 A JP-A-9-113109 JP-A-11-118314
  • the present invention has been made in view of the above-described conventional problems, and provides a refrigerator capable of eliminating the dew condensation in the vegetable room and storing the vegetables and the like in good cooling.
  • the refrigerator of the present invention includes a vegetable room fan disposed in the vegetable room, in addition to a cooling fan that circulates cold air to the refrigerator room, freezer room, and vegetable room.
  • FIG. 1 is a front view of the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 2 is a front view when the refrigerator door in the first embodiment is opened.
  • FIG. 3 is a view showing a 3-3 cross section of FIG. 2 showing the refrigerator in the first embodiment.
  • 4 is a diagram showing a cross section 4-4 of FIG. 2 showing the refrigerator according to the first embodiment.
  • FIG. 5 is a perspective view when the refrigerator in the first embodiment is cut in half in the vertical direction when viewed from the front.
  • FIG. 6 is a schematic cross-sectional view for explaining the cold air flow of the refrigerator in the first embodiment.
  • FIG. 7 is a schematic front view illustrating the cold air flow of the refrigerator in the first embodiment.
  • FIG. 8 is a perspective view for explaining a cold air flow in the rear portion of the cooling chamber of the refrigerator in the first embodiment.
  • FIG. 9 is an enlarged cross-sectional view of the main part of FIG. 3 showing the refrigerator according to the first embodiment.
  • FIG. 10 is a schematic cross-sectional view for explaining the cold air flow in FIG. 9.
  • FIG. 11 is a diagram showing an enlarged cross-sectional view of the main part of FIG. 4 showing the refrigerator in the first embodiment.
  • FIG. 12 is a schematic cross-sectional view for explaining the cold air flow in the vegetable compartment in FIG. 11.
  • FIG. 13 is an enlarged front view showing the vegetable compartment and the freezer compartment of the refrigerator in the first embodiment.
  • FIG. 14 is an enlarged front view showing a cooling fan and a cooler installed on the back of the vegetable compartment and freezer compartment of the refrigerator shown in FIG.
  • FIG. 15 is an enlarged perspective view showing the vegetable compartment of the refrigerator and the back wall portion of the freezer compartment in the first embodiment.
  • FIG. 16 is an enlarged perspective view of a rear partition wall block constituting the back wall portion of the vegetable compartment of the refrigerator shown in FIG.
  • FIG. 17 is an exploded perspective view of the rear partition wall block constituting the back wall portion of the vegetable compartment shown in FIG. 16.
  • FIG. 18 is an exploded perspective view of blocks constituting the back wall portion of the freezer compartment shown in FIG.
  • FIG. 19 is a perspective view of a partition plate and a cooling fan that partition the refrigerator storage room and the vegetable compartment in the first embodiment.
  • FIG. 20 is an exploded perspective view of the partition plate and the cooling fan in FIG.
  • FIG. 21 is a perspective view showing a vegetable storage case of the refrigerator in the first embodiment.
  • FIG. 22 is a control block diagram of the refrigerator in the first embodiment.
  • FIG. 23 is a perspective view for explaining a cold air flow in the rear portion of the cooling chamber of the refrigerator in the second embodiment of the present invention.
  • FIG. 24 is a schematic cross-sectional view for explaining the cold air flow in the vegetable compartment of the refrigerator in the second embodiment.
  • FIG. 25 is a front view of the refrigerator in the third embodiment of the present invention.
  • FIG. 26 is a front view when the door of the refrigerator in the third embodiment is opened.
  • 27 is a view showing a 27-27 cross section of FIG. 26 showing the refrigerator in the third embodiment.
  • FIG. 28 is a view showing a 28-28 cross section of FIG. 26 showing the refrigerator in the third embodiment.
  • FIG. 29 is a perspective view when the refrigerator according to Embodiment 3 is cut in half in the vertical direction when viewed from the front.
  • FIG. 30 is a schematic cross-sectional view for explaining the cold air flow of the refrigerator in the third embodiment.
  • FIG. 31 is a schematic front view illustrating the cold air flow of the refrigerator in the third embodiment.
  • FIG. 32 is a perspective view for explaining a cold air flow in the rear portion of the cooling chamber of the refrigerator in the third embodiment.
  • FIG. 33 is a diagram showing an enlarged cross-sectional view of the main part of FIG. 27 showing the refrigerator in the third embodiment.
  • FIG. 34 is a schematic cross-sectional view for explaining the cold air flow in FIG.
  • FIG. 35 is a diagram showing an enlarged cross-sectional view of the main part of FIG. 28 showing the refrigerator in the third embodiment.
  • FIG. 36 is a schematic cross-sectional view for explaining the cold air flow when the cooling fan rotates in the vegetable room of the refrigerator in the third embodiment.
  • FIG. 37 is a schematic cross-sectional view for explaining the cold air flow when the cooling fan is stopped in the vegetable room of the refrigerator in the third embodiment.
  • FIG. 38 is an enlarged front view showing the vegetable compartment and the freezer compartment of the refrigerator in the third embodiment.
  • FIG. 39 is an enlarged front view showing a cooling fan and a cooler installed on the back of the vegetable compartment and freezer compartment of the refrigerator shown in FIG.
  • FIG. 40 is an enlarged perspective view showing the vegetable compartment and the back wall portion of the freezer compartment in the third embodiment.
  • FIG. 41 is a perspective view of the rear partition wall block constituting the back wall portion of the vegetable compartment of the refrigerator shown in FIG.
  • FIG. 42 is an exploded perspective view of a rear partition wall block constituting the back wall portion of the vegetable compartment shown in FIG.
  • FIG. 43 is an exploded perspective view of blocks constituting the back wall portion of the freezer compartment shown in FIG. 44 is a perspective view of a partition plate and a cooling fan for partitioning the refrigerator storage room and the vegetable compartment in Embodiment 3.
  • FIG. 45 is an exploded perspective view of the partition plate and the cooling fan in FIG.
  • FIG. 46 is a perspective view showing a vegetable storage case of the refrigerator in the third embodiment.
  • FIG. 47 is a control block diagram of the refrigerator in the third embodiment.
  • FIG. 41 is a perspective view of the rear partition wall block constituting the back wall portion of the vegetable compartment of the refrigerator shown in FIG.
  • FIG. 42 is an exploded perspective view of a rear partition wall block constituting the back wall portion of the vegetable compartment shown in FIG.
  • FIG. 48 is a schematic cross-sectional view for explaining the cold air flow during rotation of the cooling fan in the vegetable compartment of the refrigerator in the fourth embodiment.
  • FIG. 49 is a schematic cross-sectional view for explaining the cold air flow when the cooling fan is stopped in the vegetable room of the refrigerator in the fourth embodiment.
  • FIG. 50 is a front view of the refrigerator in the fifth embodiment of the present invention.
  • FIG. 51 is a front view when the refrigerator door in the fifth embodiment is opened.
  • FIG. 52 is a view showing a section taken along the line 52-52 in FIG. 51, which shows the refrigerator according to the fifth embodiment.
  • FIG. 53 is a view showing a 53-3 cross section of FIG. 51 showing the refrigerator in the fifth embodiment.
  • FIG. 54 is a perspective view when the refrigerator in the fifth embodiment is cut in half in the vertical direction when viewed from the front.
  • FIG. 55 is a schematic cross-sectional view for explaining the cold air flow of the refrigerator in the fifth embodiment.
  • FIG. 56 is a schematic front view illustrating the cold air flow of the refrigerator in the fifth embodiment.
  • FIG. 57 is a perspective view for explaining a cold air flow in the rear portion of the cooling chamber of the refrigerator in the fifth embodiment.
  • FIG. 58 is an enlarged cross-sectional view of the main part of FIG. 52 showing the refrigerator in the fifth embodiment.
  • FIG. 59 is a schematic cross-sectional view for explaining the cold air flow in FIG.
  • FIG. 60 is an enlarged cross-sectional view of the main part of FIG. 53 showing the refrigerator according to the fifth embodiment.
  • FIG. 61 is a schematic cross-sectional view for explaining the cold air flow in FIG.
  • FIG. 62 is an enlarged front view showing the vegetable compartment and the freezer compartment of the refrigerator in the fifth embodiment.
  • FIG. 63 is an enlarged front view showing a cooling fan and a cooler installed on the back of the vegetable compartment and freezer compartment of the refrigerator shown in FIG.
  • FIG. 64 is an enlarged perspective view showing a back wall portion of the vegetable compartment and the freezer compartment of the refrigerator in the fifth embodiment.
  • FIG. 65 is a perspective view of the rear partition wall block constituting the back wall portion of the vegetable compartment of the refrigerator shown in FIG. 64.
  • 66 is an exploded perspective view of a rear partition wall block constituting the back wall portion of the vegetable compartment shown in FIG. 65.
  • FIG. 67 is an exploded perspective view of a block constituting the back wall portion of the freezer compartment shown in FIG.
  • FIG. 68 is a perspective view of a partition plate and a cooling fan for partitioning a refrigerator storage room and a vegetable room in the fifth embodiment.
  • FIG. 69 is a perspective view showing a vegetable storage case of the refrigerator in the fifth embodiment.
  • FIG. 70 is a control block diagram of the refrigerator in the fifth embodiment.
  • FIG. 71 is a flowchart illustrating the vegetable room cooling operation of the refrigerator in the fifth embodiment.
  • FIG. 72 is a timing chart showing an operation when the vegetable compartment of the refrigerator in the fifth embodiment is temperature-equalized by cold air circulation.
  • FIG. 73 is a timing chart showing a cooling operation when the vegetable compartment of the refrigerator in the fifth embodiment is cooled while being soaked by cold air circulation.
  • FIG. 74 is a timing chart showing temperature equalization and cooling operation by cold air circulation when the temperature of the vegetable compartment of the refrigerator in the fifth embodiment is higher than a predetermined temperature.
  • FIG. 75 is a timing chart showing the cooling state of the vegetable compartment controlled by the refrigerator control in the fifth embodiment.
  • FIG. 76 is a perspective view for explaining a cold air flow in the rear portion of the cooling chamber of the refrigerator in the fifth embodiment.
  • FIG. 77 is a schematic cross-sectional view for explaining the cold air flow in the vegetable compartment of the refrigerator in the fifth embodiment.
  • FIG. 78 is a schematic sectional view of a conventional refrigerator.
  • FIG. 79 is a schematic sectional view of another conventional refrigerator.
  • the refrigerator according to the first aspect includes a refrigerating room, a vegetable room, a freezing room, and a cooling room that is disposed on the back of the freezing room and the vegetable room and includes a cooler that generates cold air. Moreover, it is arrange
  • the cooling fan which supplies and circulates the cold air
  • the vegetable room has one vegetable cold air inlet / outlet communicating with the cold air passage through which the cold air generated in the cooling room circulates.
  • the cold air flowing through the cold air passage flows into the vegetable room through the vegetable cold air inlet / outlet. And the cold air which flowed in cools the vegetable room, and then flows out from the vegetable cold air outlet to the cold air passage. For this reason, the amount of cold air flowing into and out of the vegetable compartment is reduced, and the cold air in the vegetable compartment is maintained in a high humidity state including moisture transpiration from the vegetables. Then, the rotation of the vegetable room fan activates the entry / exit of cold air through the vegetable cold air inlet / outlet, but the cold air does not enter / exit so that the cold air in the vegetable room is replaced.
  • the vegetable room fan is disposed in an offset state at the vegetable cold air inlet / outlet.
  • the vegetable room in particular, in the refrigerator of the first aspect, includes a vegetable cold air inlet and a vegetable cold air return port, and the vegetable cold air inlet and the vegetable cold air return port are generated in the cooling chamber. It communicates with a cool air passage through which cool air circulates.
  • the vegetable compartment is arranged between the refrigeration compartment and the freezing compartment, and the vegetable compartment fan is cooled from the cooling compartment and the freezing compartment. Located near the lower back of the vegetable compartment that receives radiation.
  • the vegetable compartment includes a vegetable storage case, and the vegetable compartment fan causes at least one of diffusion and circulation of cold air to the outer periphery of the vegetable storage case. Is provided.
  • the refrigerator of the seventh aspect is the refrigerator of the sixth aspect, in particular, the vegetable room fan is disposed below the upper opening edge of the vegetable storage case.
  • the refrigerator according to the eighth aspect is particularly provided in the refrigerator according to the second aspect, further comprising a vegetable room passage part on the rear part of the vegetable room facing the cooling room, and the vegetable room passage part communicates with the upper space of the vegetable room.
  • a vegetable room fan is disposed below the vegetable room passage.
  • At least one of the diffusion and circulation in the vegetable room can be efficiently diffused and circulated in the vegetable room through the vegetable room passage by the rotation of the vegetable room fan, and condensation can be generated more effectively in the vegetable room. Can be suppressed.
  • the refrigerator according to the ninth aspect is the refrigerator according to the sixth aspect, particularly, in the refrigerator according to the sixth aspect, wherein the vegetable storage fan is provided with a non-vegetable storage part in a part of the vegetable storage case, and the vegetable room fan faces the non-vegetable storage part. And at least one of diffusion and circulation.
  • the vegetable room is provided with a first vegetable cold air intake port communicating with the suction side of the vegetable room fan at the upper part on the non-vegetable storage part side.
  • the 1st vegetable cold air inlet and the vegetable compartment fan are provided in the part by the side of the non-vegetable storage part of a vegetable storage case.
  • the refrigerator of the eleventh aspect is the refrigerator of the tenth aspect, in particular, in which the inside of the vegetable storage case is partitioned into left and right sides, a non-vegetable storage part is disposed on either side, and the vegetable compartment fan is a non-vegetable storage part
  • a second vegetable cold air inlet that is disposed below the rear part and communicates with the suction side of the vegetable room fan is disposed at the upper part of the vegetable room substantially diagonally to the vegetable fan.
  • the cold air blown from the vegetable room fan passes through the bottom part of the non-vegetable storage part of the vegetable storage case and moves forward through the vegetable room diagonally while at least one of diffusion and circulation, It flows to the upper second vegetable cold air return.
  • cold air can be diffused and / or circulated in a wide range on the outer periphery of the vegetable case while preventing the cold air from entering the vegetable compartment case, and the vegetables and plastic bottles in the vegetable case can be effectively used.
  • the refrigerator of the twelfth aspect is particularly provided in the refrigerator of the eighth aspect, in which the refrigerated cold air passage portion from the cooling room to the refrigerating room is provided at the substantial center part on the rear surface of the refrigerator main body. Further, a refrigerated cold air return passage portion from the refrigeration chamber to the cooling chamber is provided on the side of the refrigerated cold air going-out passage portion on the rear side of the refrigerator main body. Further, the vegetable compartment passage portion is disposed in the vertical direction in front of the return passage portion of the refrigerated cold air.
  • the vegetable cold air inlet / outlet is opened to the refrigerated cold air return passage portion, and a part of the cold air circulated from the cooling chamber is bypassed, It is mixed with the returned cold air and supplied to the vegetable room.
  • the refrigerator according to the fourteenth aspect is particularly controlled in the refrigerator according to the first aspect based on the temperature detected by the vegetable room temperature detecting means provided in the vegetable room.
  • the vegetable room fan can be driven to cause at least one of diffusion and circulation of the cold air in the vegetable room. Furthermore, if the temperature becomes higher than the predetermined temperature, the rotation speed of the vegetable compartment fan is further increased to increase the amount of cold air diffused and circulated. Thereby, a vegetable room can be cooled reliably and the reliability of a refrigerator can be improved. In addition, in the type of refrigerator that takes in fresh low temperature cold air and mixes it, the amount of the mixture can be increased and the vegetable room can be cooled reliably. nowadays.
  • the back of the vegetable compartment further includes a cold air return passage through which the cold air is circulated by a cooling fan, and is provided between the cold air return passage and the vegetable compartment.
  • a vegetable cold air inlet and a vegetable cold air return port communicating with the cold air return passage are respectively provided on the vegetable fan suction side and the exhaust side of the vegetable room.
  • the refrigerator of the sixteenth aspect is the refrigerator of the fifteenth aspect, in particular, the vegetable room fan and the vegetable cold air inlet are arranged at the lower back of the vegetable room, and the vegetable cold air inlet is provided at the upper part of the vegetable room.
  • the vegetable room fan can stably and efficiently take cold air into the vegetable room and diffuse or circulate the cold air in the vegetable room, so that the condensation can be more reliably suppressed and the vegetables can be stored in a cool state. can do.
  • the vegetable room fan and the vegetable cold air inlet are arranged in the ceiling part of the vegetable room, and the vegetable room fan outlet is opened at the upper part of the vegetable room, A vegetable cold air return opening is provided at the bottom of the vegetable compartment.
  • the vegetable room fan can stably and efficiently take cold air into the vegetable room and diffuse or circulate it in the vegetable room. As a result, it is possible to more reliably suppress the occurrence of dew condensation and cool the vegetables in a good state.
  • the vegetable room is arranged in the lower part of the refrigeration room, and the vegetable room fan configures the ceiling of the vegetable room by partitioning the vegetable room and the refrigeration room.
  • the partition plate In the partition plate to be inclined, it is disposed obliquely.
  • the refrigerator of the nineteenth aspect is further provided with a control unit that controls the vegetable compartment fan, particularly in the refrigerator of the first aspect, and the control unit has a vegetable compartment when the temperature of the vegetable compartment is within a predetermined temperature range.
  • Timer control operation that drives the fan for a predetermined time
  • temperature control operation that drives the vegetable room fan for a set time based on the vegetable room temperature when the temperature of the vegetable room is higher than the predetermined temperature range I do.
  • the vegetable room fan is rotated for a time set according to the vegetable room temperature.
  • the amount of cold air taken into the vegetable room is increased, and the vegetable room is cooled and held at a low temperature by using the increased cold air and the low-temperature cold air near the lower back, which has been lowered by cold radiation from the cooling room, as a cooling source. can do.
  • the vegetable room fan is controlled to rotate at a predetermined time, so the temperature in the vegetable room is constantly detected and the vegetable room fan is controlled to rotate. It is possible to reduce temperature control variations due to temperature detection delays that tend to occur. Thereby, the temperature of the vegetable compartment can be stabilized and the vegetables can be stored in a cooled state in a good state.
  • the refrigerator of the twentieth aspect is the refrigerator of the nineteenth aspect, in particular, the controller sets the vegetable room fan driving time during the timer control operation based on the outside air temperature.
  • the control unit corrects the drive time of the vegetable room fan during the temperature control operation based on the temperature in the vegetable room and is set by the timer control operation.
  • the driving time is longer than that.
  • the refrigerator according to the twenty-second aspect particularly in the refrigerator according to the nineteenth aspect, causes the control unit to forcibly stop the vegetable room fan when the temperature of the vegetable room is low outside the predetermined temperature range.
  • control unit forcibly causes the vegetable compartment fan to stop when the compressor for generating cold air is stopped.
  • the refrigerator according to the twenty-fourth aspect is the refrigerator according to the nineteenth aspect, in particular, the control unit forcibly stops the vegetable compartment fan when the operation of the compressor for generating cold air is within a predetermined time. If the compressor is stopped for a certain time or longer, the vegetable compartment fan is driven based on the timer control operation.
  • the vegetable compartment is lower than the predetermined temperature range, and the temperature difference is small, the vegetable compartment fan is stopped and wasteful power consumption is caused by the rotation of the vegetable compartment fan. Suppress. If the stop time of the vegetable room fan becomes long and a temperature difference occurs in the vegetable room due to the cold radiation from the cooling room, the vegetable room fan can be rotated to eliminate the temperature difference and suppress the occurrence of condensation. As described above, the vegetables can be stored in good cooling while always preventing condensation.
  • the refrigerator of the twenty-fifth aspect includes a refrigerator compartment, a vegetable compartment, a freezer compartment, and a cooling compartment equipped with a cooler for generating cold air disposed on the back of the freezer compartment and the vegetable compartment.
  • a cooling fan is provided in the cooling chamber and supplies and circulates the cold air generated by the cooler to the refrigerator compartment, the vegetable compartment, and the freezer compartment.
  • the vegetable room is provided with one vegetable cold air inlet / outlet communicating with a cold air passage through which the cold air generated in the cooling room circulates.
  • the cold air flowing through the cold air passage flows into the vegetable compartment through the vegetable cold air inlet / outlet due to the pressure difference between the vegetable compartment and the cold air passage, and after the cooled cold air cools the vegetable compartment, It flows out to the passage.
  • the amount of cold air entering and exiting the vegetable compartment is reduced, and the cold air in the vegetable compartment is maintained in a high humidity state including moisture transpiration from the vegetables. Therefore, it is possible to greatly reduce the drying and deterioration of the vegetables in the vegetable room due to the circulation of cold air, and the vegetables can be cooled and stored in a considerably better state than before.
  • the vegetable room is disposed between the refrigerator room and the freezer room.
  • the vegetable room is cooled by cold radiation from the freezing room in addition to the cold radiation from the cooling room, and is kept at a relatively low temperature. Therefore, even if the cold air flows into and out of the vegetable room by reducing the amount of cold air flowing into the vegetable room by reducing the cooling capacity, the vegetables in the vegetable room can be cooled well. In addition to this, it is possible to maintain the cold air humidity in the vegetable room at a high level, to reduce the drying deterioration of the vegetable, and to improve the usability of the user who mainly uses the vegetables in and out.
  • FIG. 1 is a front view of the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 2 is a front view when the door of the refrigerator in the first embodiment is opened.
  • 3 is a cross-sectional view taken along the line 3-3 of FIG. 2 showing the refrigerator according to the first embodiment.
  • 4 is a cross-sectional view taken along the line 4-4 of FIG. 2 showing the refrigerator according to the first embodiment.
  • FIG. 5 is a perspective view when the refrigerator in the first embodiment is cut in half in the vertical direction when viewed from the front.
  • FIG. 6 is a schematic cross-sectional view for explaining the cold air flow of the refrigerator in the first embodiment.
  • FIG. 7 is a schematic front view illustrating the cold air flow of the refrigerator in the first embodiment.
  • FIG. 8 is a perspective view for explaining a cold air flow in the rear portion of the cooling chamber of the refrigerator in the first embodiment.
  • FIG. 9 is an enlarged cross-sectional view of the main part of FIG. 3 showing the refrigerator in the first embodiment.
  • FIG. 10 is a schematic cross-sectional view for explaining the cold air flow in FIG. 11 is an enlarged cross-sectional view of the main part of FIG. 4 showing the refrigerator 90 in the first embodiment.
  • FIG. 12 is a schematic cross-sectional view for explaining the cold air flow in the vegetable compartment in FIG.
  • FIG. 13 is an enlarged front view showing the vegetable compartment and the freezer compartment of the refrigerator in the first embodiment.
  • 14 is an enlarged front view showing a cooling fan and a cooler installed on the back of the vegetable compartment and freezer compartment of the refrigerator shown in FIG.
  • FIG. 15 is an enlarged perspective view showing the vegetable compartment and the back wall portion of the freezer compartment in the first embodiment.
  • FIG. 16 is a perspective view of a rear partition wall block constituting the back wall portion of the vegetable compartment of the refrigerator shown in FIG.
  • FIG. 17 is an exploded perspective view of the rear partition wall block constituting the back wall portion of the vegetable compartment shown in FIG. 18 is an exploded perspective view of a block constituting the back wall portion of the freezer compartment shown in FIG.
  • FIG. 19 is a perspective view of a partition plate and a cooling fan that partition the refrigerator storage room and the vegetable compartment in the first embodiment.
  • 20 is an exploded perspective view of the partition plate and the cooling fan in FIG.
  • FIG. 21 is a perspective view showing the vegetable storage case of the refrigerator in the first embodiment.
  • FIG. 22 is a control block diagram of the refrigerator in the first embodiment.
  • a refrigerator 90 according to the present embodiment includes a refrigerator main body 1 whose front can be opened and closed.
  • the refrigerator main body 1 has an outer box 2 mainly using a steel plate, an inner box 3 formed of a hard resin such as ABS, and a foam filling between the outer box 2 and the inner box 3. It is comprised from the foaming heat insulating materials 4, such as the made rigid foaming urethane.
  • the refrigerator body 1 is divided into a plurality of storage rooms by partition plates 5 and 6.
  • the refrigerator body 1 includes a refrigerator compartment 7 at the top, a vegetable compartment 8 at the bottom of the refrigerator compartment 7, and a freezer compartment 9 at the bottom.
  • the front opening of each storage chamber is closed by a door 10, a door 11, and a door 12 so as to be opened and closed.
  • a machine room 14 is provided in the upper rear region of the refrigerator main body 1.
  • the machine room 14 accommodates high-pressure components of the refrigeration cycle such as the compressor 15 and a dryer (not shown) for removing moisture.
  • a cooling chamber 16 for generating cold air is provided on the back surface of the refrigerator body 1.
  • the cooling chamber 16 is formed from the back surface of the freezing chamber 9 to the lower back surface of the vegetable chamber 8.
  • a rear partition wall body 17 is provided that has heat insulation properties using polystyrene foam or the like, and thereby a heat insulation partition is formed.
  • a cooler 18 is disposed in the cooling chamber 16, and a cooling fan 19 is disposed above the cooler 18.
  • the cooling fan 19 forcibly circulates the cold air cooled by the cooler 18 to the refrigerating room 7, the vegetable room 8, and the freezing room 9 to cool each room.
  • the refrigerator compartment 7 is usually cooled to a temperature of 1 ° C. to 5 ° C. at which food is not frozen
  • the vegetable compartment 8 is cooled to a temperature 2 ° C. to 7 ° C. that is equal to or slightly higher than the refrigerator compartment 7.
  • the freezer compartment 9 is usually cooled to a freezing temperature range of ⁇ 22 ° C. to ⁇ 15 ° C. for frozen storage, and in some cases, for example, a low temperature of ⁇ 30 ° C. or ⁇ 25 ° C. to improve the frozen storage state. It may be cooled down.
  • the cooling fan 19 is assembled to the partition plate 6 that partitions the vegetable compartment 8 and the cooling compartment 16.
  • the cooling fan 19 is attached inside the refrigerator main body 1 by setting the partition plate 6 in the inner box 3 of the refrigerator main body 1. In this state, the cooling fan 19 is located in a portion facing the back of the vegetable compartment 8 as shown in FIGS.
  • the cooling fan 19 blows cool air toward the rear partition wall body 17 that partitions the vegetable compartment 8 and brings strong cold radiation to the lower back of the vegetable compartment.
  • FIG. 20 shows the structure of the partition plate 6 and the cooling fan 19. That is, the partition plate 6 is filled with the foam heat insulating material 4 (not shown in FIG. 20) between the upper surface member 6a and the lower surface member 6b, and the opening 20 is formed on the back surface side.
  • a cooling fan 19 is assembled in the opening 20.
  • a cooler 18 is located below the opening 20.
  • the opening 20 is formed larger than the upper surface projected area of the cooler 18.
  • a projecting piece 21 that protrudes downward is formed on the lower surface of the opening rear side edge portion of the lower surface member 6b.
  • an upward protruding piece 22 is formed that protrudes upward from the opening edge of the upper surface member 6a.
  • a first heater 23 for preventing condensation such as a sheathed heater, is embedded in the partition plate 6 in front of the cooling fan 19 and on the bottom of the vegetable compartment.
  • the heat insulating barrier 24 covers the front portion of the opening edge of the opening 20 and is made of foamed polystyrene or the like.
  • a passage opening 26 is formed in one side piece of the heat insulating barrier 24.
  • the passage opening 26 corresponds to the cold air return passage opening 25 provided in the partition plate 6.
  • a tank installation portion 27 is formed on a portion of the partition plate 6 opposite to the cold air return passage opening 25.
  • the tank installation unit 27 is provided with a tank for supplying water to an ice making device provided in the freezer compartment 9.
  • a defrost heater 28 for defrosting frost and ice adhering to the cooler 18 or the periphery of the cooler 18 is disposed in the lower space of the cooler 18.
  • a drain pan 29 for receiving defrost water generated at the time of defrosting is disposed below the defrost heater 28. The defrost water is discharged from the deepest part of the drain pan 29 to an evaporating dish outside the refrigerator via a drain tube (not shown).
  • the cooling fan 19 has an opening downstream of the cooling chamber cool air conveyance path 30 formed between the rear partition wall body 17 and the refrigerator body 1. ing. Cold air is blown into each chamber via the cooling chamber cold air conveyance path 30.
  • the upper portion of the cooling chamber cold air conveyance path 30 communicates with the refrigerated cold air going-out passage 32 via the refrigeration chamber damper 31.
  • the refrigerating / refrigerating air passage 32 is formed at a substantially central portion on the back surface of the refrigerating chamber 7.
  • a refrigerated cold air return passage 33 from the refrigeration chamber 7 is provided adjacent to the side of the refrigerated cold air passage 32.
  • the lower part of the refrigerated cold air return passage 33 communicates with the vegetable compartment 8 and the cooling compartment 16.
  • a refrigerating / cooling air inlet 35 of the refrigerating / refrigerating air passage 32 is provided at an appropriate position above the rear wall of the refrigerating chamber 7.
  • a refrigerated cold air return port 36 that opens to the refrigerated cold air return passage 33 is provided at an appropriate position below the rear wall. The cold air blown from the cooling chamber 16 is supplied to the refrigerating / refrigerating air passage 32 via the refrigerating chamber damper 31, and further supplied to the refrigerating chamber 7 from the refrigerating / refrigerating air inlet 35.
  • the cold air that has cooled the refrigerating room is supplied from the refrigerating cold air return port 36 to the vegetable room 8 through the refrigerating cold air return passage 33, and then circulates to the cooling room 16.
  • the partial chamber is provided in the lower part of the refrigerator compartment 7 so that it may mention later. As shown in FIG. 8, cold air is supplied to the partial chamber through a partial chamber damper 31a, a partial chamber cold air passage 32a, and a partial chamber cold air inlet 35a.
  • an outward passage 37 and a return passage 38 are formed on the back surface of the rear partition wall body 17 and the partition plate 6.
  • the forward passage 37 connects the cooling chamber cold air conveyance path 30 and the refrigerated cold air forward passage 32. Further, the forward passage 37 connects the cooling chamber cold air conveyance path 30 and the partial chamber cold air forward passage 32a.
  • the return passage 38 communicates the refrigerated cold air return passage 33 with the vegetable compartment 8 and the cooling compartment 16.
  • the refrigerator compartment damper 31 is provided in the outgoing passage 37.
  • a communication passage 39 is provided between the refrigerated cold air return passage 32 and the refrigerated cold air return passage 33, and a part of the low temperature cold air flowing through the refrigerated cold air return passage 32 is mixed directly into the refrigerated cold air return passage 33.
  • a cold air return duct 40 is provided on the back surface of the freezer compartment 9 so as to extend downward on the sides of the cooling fan 19 and the cooler 18.
  • the upper part of the cold air return duct 40 communicates with the vegetable compartment 8 via the return passage 38.
  • the lower part of the cold air return duct 40 is opened near the lower part of the cooling chamber 16, and the cold air that has cooled the vegetable room 8 passes from the lower opening to the cooling chamber 16 via the return passage 38 and the cold air return duct 40. Circulate.
  • the freezing cold air inlet 42 is formed in the upper part of the back wall body 41 (refer FIG. 18).
  • the freezing cold air inlet 42 communicates with the lower portion of the cooling chamber cold air conveyance path 30 on the back of the rear partition wall body 17.
  • a refrigerated cold air return port 43 that opens to the lower part of the cooling chamber 16 is formed in the lower part of the back wall body 41.
  • the cold air circulated from the cooling chamber 16 is supplied to the freezing chamber from the lower portion of the cooling chamber cold air conveyance path 30 via the freezing cold air inlet 42.
  • the cold air after cooling in the freezer compartment circulates to the cooling compartment 16 via the freezer cold air return port 43.
  • the vegetable room 8 is provided on either the left or right side of the back wall.
  • the vegetable compartment 8 is provided in the lower part of the right side part seeing from the front.
  • the vegetable compartment 8 is provided with one vegetable cold air inlet / outlet 44 that opens to the return passage 38 portion from the refrigerated cold air return passage 33.
  • the vegetable cold air inlet / outlet 44 is provided so as to be positioned above the lower end of the bell mouth opening of the cooling fan 19.
  • the vegetable compartment passage portion 50 is provided at the front position of the cold return passage 38 using the rear partition wall 17 provided on the back of the vegetable compartment 8. It is formed in the vertical direction.
  • the upper part of the vegetable compartment passage portion 50 communicates with the first vegetable cold air inlet 47 of the first passage 47a provided in the front-rear direction at the upper part of the vegetable compartment 8.
  • the lower part of the vegetable compartment passage portion 50 communicates with the vegetable cold air inlet / outlet 44.
  • a vegetable room fan 53 made of a propeller fan or the like is arranged at a portion facing the vegetable cold air inlet / outlet 44.
  • the vegetable compartment fan 53 is arranged so as to be offset so that the horizontal central axis is positioned below the horizontal central axis of the vegetable cold air inlet / outlet 44.
  • the vegetable room fan 53 is positioned in front of the vegetable cold air inlet / outlet 44, and is installed so that the vegetable room fan 53 and the vegetable cold air inlet / outlet 44 overlap each other when viewed from the front.
  • the lower end of the vegetable cold air inlet / outlet 44 is provided at a position lower than the upper end of the vegetable compartment fan 53 and is installed so as to overlap in the front-rear direction.
  • the upper part of the vegetable compartment 8 is an upper part of the rear partition wall body 17, which is the rear face of the vegetable compartment 8.
  • a second vegetable cold air inlet 51 is provided at the corner position.
  • a second vegetable cold air inlet 51 is provided at the upper left side of the vegetable compartment 8.
  • path 51a provided with the 2nd vegetable cold air inlet 51 is connected to the upper part of the vegetable compartment channel
  • FIG. 17 is an exploded perspective view of the rear partition wall body 17 forming the vegetable compartment passage portion 50, the second vegetable cold air inlet 51, and the second vegetable cold air inlet 51.
  • the vegetable compartment passage portion 50 is formed between a front partition plate 17a and a rear partition plate 17b that are polymerized via a polystyrene foam (not shown).
  • the upper end portion 50a of the vegetable compartment passage portion 50 is open to the first passage 47a and the second passage 51a.
  • the vegetable compartment fan 53 is incorporated in the lower portion of the vegetable compartment passage portion 50, and the blowout port 54 opens into the vegetable compartment 8.
  • the vegetable room fan 53 blows the cold air flowing from the vegetable cold air inlet / outlet 44 and the vegetable room cold air sucked from the first vegetable cold air inlet 47 and the second vegetable cold air inlet 51 into the vegetable room 8. To do.
  • the air outlet 54 of the vegetable room fan 53 opens toward the rear surface of the lower vegetable storage case 49a described later.
  • the rear lower part of the lower vegetable storage case 49a facing the vegetable compartment fan 53 is an inclined surface 55 positioned forward as it goes downward.
  • a second heater 56 made of a sheathed heater or the like for preventing condensation is embedded in the surface of the back partition wall 17 facing the cooling chamber 16.
  • the second heater 56 is disposed at a position facing the upper part of the cooling chamber 16 and in a low temperature cooling chamber temperature zone below the refrigerator compartment damper 31.
  • the refrigerator compartment damper 31 opens and closes the cold air from the refrigerator compartment 16 to the refrigerator compartment 7.
  • cooling chamber cool air conveyance path 30 which is a low temperature cooling chamber temperature zone
  • electricity such as the cooling fan 19, the first heater 23 in the partition plate 6, the second heater 56 in the rear partition wall body 17, and the like.
  • a connector connecting portion 57 (box) of the member is installed (see FIG. 14). Electrical connection is made in the cooling chamber cool air conveyance path 30 that is in the cooling chamber temperature zone.
  • the vegetable compartment 8 is provided with a vegetable storage case 48 as shown in FIG.
  • the vegetable storage case 48 includes a lower vegetable storage case 49a placed on the frame of the door 11 and an upper vegetable storage case 49b placed on the lower vegetable storage case 49a.
  • a space is provided between the vegetable storage case 48 and the partition plate 6 disposed thereunder, and a space is also provided between the vegetable storage case 48 and the inner peripheral wall surface of the vegetable compartment 8. Yes. These spaces constitute an air passage through which cold air flowing from the vegetable cold air inlet / outlet 44 flows.
  • the upper opening edge of the upper vegetable storage case 49b of the vegetable storage case 48 is located in a portion close to the partition plate 5 in the upper portion of the vegetable compartment 8, and is located in an upper portion from the vegetable cold air inlet / outlet 44. This prevents the cold air flowing from the vegetable cold air inlet / outlet 44 from directly entering the upper vegetable storage case 49b and the lower vegetable storage case 49a.
  • a lid that closes the upper vegetable storage case 49b may be provided at the upper opening of the upper vegetable storage case 49b to prevent cold air from entering the vegetable storage case 48 more reliably.
  • the lower vegetable storage case 49a may be divided into left and right by a case partition plate 58.
  • the lower vegetable storage case 49a has a side deeper than the vegetable cold air inlet / outlet 44 (in this embodiment, the right side when viewed from the front) and is deepened to a non-vegetable storage portion 59 such as a PET bottle or a pack (hereinafter referred to as PET bottle). And so on.)
  • the inside of the vegetable compartment 8 may be divided back and forth, and the front side part may be used as a storage part 59 such as a plastic bottle.
  • the refrigerating chamber 7 includes a plurality of storage shelves 60 and a partial chamber 61 that can be cooled to a semi-refrigeration temperature zone.
  • the cold storage cold air inlet 35 and the cold storage cold air return port 36 are provided in each suitable place of the refrigerator compartment 7.
  • the operation part 62 which performs the setting of the chamber internal temperature setting of each room
  • the freezing cold air inlet 42 communicating with the lower portion of the cooling room cold air conveyance path 30 formed on the back surface of the rear partition wall body 17 is formed at the upper rear wall of the freezing chamber 9.
  • a freezing cold air return port 43 communicating with the cooling chamber 16 is formed in the lower part of the back wall of the freezing chamber 9.
  • a freezer damper is incorporated at an appropriate position in the passage from the cooling chamber 16 to the freezer compartment 9.
  • the freezer compartment 9 is also provided with a freezer compartment case 63 placed on the frame of the door 12, as shown in FIG.
  • an ice making device 64 is incorporated in the upper part of the freezer compartment 63.
  • FIG. 22 shows a control block diagram in refrigerator 90 of the present embodiment.
  • the refrigerator compartment temperature detector 65, the vegetable compartment temperature detector 66, and the freezer compartment temperature detector 67 are all formed of thermistors and are installed at appropriate locations in the refrigerator compartment 7, the vegetable compartment 8, and the freezer compartment 9, respectively.
  • the control unit 68 that performs overall control of the entire refrigerator 90 is configured by a microcomputer or the like.
  • the controller 68 controls opening / closing of the refrigerator compartment damper 31 and the freezer compartment damper 34 according to control software incorporated in advance based on outputs from the refrigerator compartment temperature detector 65 and the freezer compartment temperature detector 67.
  • control unit 68 drives the compressor 15, the cooling fan 19, and the first heater 23 and the second heater 56 as necessary to control each chamber to a set temperature.
  • the control unit 68 controls the operation of the vegetable compartment fan 53 incorporated in the vegetable compartment passage portion 50 of the vegetable compartment 8 based on outputs from the refrigerator compartment temperature detection portion 65 and the vegetable compartment temperature detection portion 66. Specifically, when one of the detection units detects that the temperature detected by the refrigerator temperature detection unit 65 and the vegetable room temperature detection unit 66 is higher than the set temperature, the vegetable room fan is detected. 53 is driven.
  • the control unit 68 does not stop the vegetable room fan 53. Drive.
  • the refrigeration cycle is operated by a signal from the control unit 68, and the cooling operation is performed.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 15 is condensed and liquefied to some extent by a condenser (not shown). Further, the refrigerant condenses and liquefies while preventing condensation of the refrigerator 90 via a refrigerant pipe (not shown) disposed on the side surface and the rear surface of the refrigerator 90 and the front opening of the refrigerator 90, and the capillary tube ( (Not shown).
  • the refrigerant is depressurized in the capillary tube while exchanging heat with a suction pipe (not shown) to the compressor 15 and reaches a cooler 18 as a low-temperature and low-pressure liquid refrigerant.
  • the refrigerant supplied into the cooler 18 evaporates and cool air for cooling each storage chamber is generated in the cooling chamber 16.
  • the low temperature cold air generated in the cooling chamber 16 is sent from the cooling chamber cold air conveyance path 30 to the refrigerator compartment 7 and the freezer compartment 9 by the cooling fan 19.
  • the cool air supplied to the refrigerator compartment 7 cools the refrigerator compartment 7, and then supplies it to the vegetable compartment 8, where each room is cooled to a set temperature. Then, the cold air that has cooled each chamber returns to the cooling chamber 16 again, is cooled by the cooler 18, and is circulated to each chamber by the cooling fan 19.
  • the controller 68 supplies cold air to each chamber by causing the compressor 15 and the cooling fan 19 to operate and stop based on the detected temperatures of the refrigerator compartment temperature detector 65 and the freezer compartment temperature detector 67. Is done. Moreover, the control part 68 controls opening and closing of the refrigerator compartment damper 31 and the freezer compartment damper 34, and maintains each chamber in a setting temperature range.
  • the cold air after cooling in the refrigerator compartment is supplied from the vegetable cold air inlet / outlet 44 provided in the cold return passage 38 as shown in FIG. 12, and the vegetable compartment 8 is cooled. Since the opening provided in the vegetable compartment 8 is only one vegetable cold air inlet / outlet 44, the cold air supplied to the vegetable compartment 8 circulates as follows. During the operation of the cooling fan 19, that is, during the cooling operation, due to the pressure difference between the vegetable room 8 and the return passage 38 generated by the ventilation of the cooling fan 19, the cold air is replaced with a part of the cold air in the vegetable room. Slowly flow into chamber 8. Furthermore, the cold air flows through the space between the vegetable storage case 48 and the inner peripheral wall of the vegetable compartment 8, and indirectly cools the vegetables, plastic bottles, etc. stored in the vegetable storage case 48 from the outer periphery of the case. It flows out from the cold air inlet / outlet 44 to the return passage 38. Then, the cold air circulates from the cold air return duct 40 to the cooling chamber 16.
  • the cold air entering and exiting the vegetable compartment 8 is gradual and the amount thereof is relatively small compared to the case where the cold air inlet / outlet is provided separately. Therefore, the amount of cold air in the vegetable room 8 is slightly changed, and most of the cold air remains in the vegetable room 8. That is, the cold air in the vegetable compartment 8 is maintained in a high humidity state including moisture transpiration from the vegetables. Therefore, compared with the case where the cold air in the vegetable room 8 is circulated and replaced in large quantities, the drying deterioration of the vegetables can be greatly reduced, and the vegetables can be stored in a cooled state in a considerably better state than before. It becomes.
  • a vegetable room fan 53 is provided at a lower portion of the vegetable room passage portion 50 of the vegetable room 8 and facing the vegetable cold air inlet / outlet 44. ing.
  • the vegetable compartment fan 53 rotates during the cooling operation, most of the return cold air flowing through the return passage 38 is sucked into the vegetable compartment passage portion 50 from the vegetable cold air inlet / outlet 44.
  • Cold air is supplied from the outlet 54 of the vegetable compartment fan 53 toward the rear surface of the lower vegetable storage case 49a in the vegetable compartment 8.
  • the vegetable room fan 53 is arranged in an offset state from the vegetable cold air inlet / outlet 44. For this reason, the entry and exit of the cold air through the vegetable cold air inlet / outlet 44 is smooth even if the number of the openings is only one of the vegetable cold air inlet / outlet 44, and reliable suction and intake are possible. That is, as shown by X and Y in FIG. 12, in the portion near the lower end of the vegetable cold air inlet / outlet 44 close to the central axis of the vegetable compartment fan 53 (lower part in FIG. 12), cold air enters the vegetable compartment 8 as shown by X. Flows in.
  • the cold air is clearly divided so as to flow out of the vegetable room 8. Become. Therefore, even if it is one vegetable cold air entrance / exit 44, it can be prevented that cold air enters and exits and the cold air stagnates, resulting in insufficient cold air intake. That is, the cool air can be reliably sucked and taken in from the return passage 38, and the cool air can be supplied into the vegetable chamber 8 from the outlet 54 of the vegetable chamber fan 53.
  • the amount of cold air in the vegetable room is less than in the case where the cold air inlet / outlet is provided separately, and the inside of the vegetable room 8 is kept in a high humidity state, The effect of preventing drying deterioration is maintained.
  • the cold air taken into the vegetable compartment 8 and supplied toward the vegetable storage case 48 in the vegetable compartment 8 as described above is the space between the vegetable storage case 48 and the bottom of the vegetable compartment 8, and the vegetable storage case.
  • the space between 48 and the inner peripheral wall flows faster than the flow when circulating only by the air blowing pressure of the cooling fan 19.
  • the cold air circulates back from the vegetable cold air inlet / outlet 44 to the cooling chamber 16 via the return passage 38.
  • the cold air other than the cold air returning to the cooling chamber 16 is circulated from the first vegetable cold air suction port 47 and the second vegetable cold air suction port 51 provided in the upper part of the vegetable chamber 8 and the first passage 47a.
  • the vegetable room 8 receives cold radiation from the cooling room 16 located on the back of the vegetable room 8 and the freezing room 9 located below.
  • the vicinity of the lower back of the vegetable compartment 8 is likely to be lowered in temperature.
  • the cold radiation from the cooling chamber 16 is strong.
  • the back of the vegetable room 8 receives strong cold radiation at a part facing the cooling room temperature zone from the cooling room 16 to the refrigerating room damper 31, and this part is easily lowered in temperature. This is because the cooling chamber cool air conveyance path 30 zone from the cooling chamber 16 to the refrigerating chamber damper 31 as well as the cooling chamber 16 itself is in the same cryogenic temperature zone as the cooling chamber 16.
  • the low temperature in the vicinity of the lower back of the vegetable room due to this cold radiation is eliminated by diffusing and circulating the cold air in the vegetable room 8 by driving the vegetable room fan 53 in both cases of cooling operation and cooling stop. . That is, when the vegetable room fan 53 is driven, the cold air in the vegetable room 8 diffuses and circulates, and the temperature is dispersed by the diffused and circulated cold air, and the temperature reduction is suppressed. More specifically, the cold air diffused and circulated in the vegetable compartment 8 by the vegetable compartment fan 53 is cooled from the cooling room temperature zone located on the back of the vegetable compartment 8 and the freezer compartment 9 located below the vegetable compartment 8.
  • the cold air in the freezer compartment 9 and the cooling chamber 16 is relatively low temperature and high in density, and is accumulated in these chambers, at least the cold air in the cooling chamber cold air conveyance path 30 flows down, The cold air reaches the height of the coldest cooling chamber 16.
  • the cooling chamber 16 and the freezing chamber 9 are filled with cold cold air, the cold cooling air flowing down is connected to the cooling air return passage 38 connected to the cooling chamber 16 via the freezing chamber 9. It spreads out.
  • the cool air that has spread to the return passage 38 flows back through the return passage 38 and reaches the upper end of the cool air that accumulates in the cooling chamber 16, that is, the lower end height of the cooling fan 19 that opens above the cooling chamber 16.
  • the lower end of the vegetable cold air inlet / outlet 44 is installed higher than the height of the bell mouth lower end of the cooling fan 19, it is possible to suppress backflow of cold air from flowing into the vegetable room 8 from the vegetable cold air inlet / outlet 44. Thereby, it can suppress that the vegetable compartment 8 is locally cooled by backflow cold air, and can prevent dew condensation in the vegetable compartment 8, freezing, and overcooling, and can prevent deterioration of preserved vegetables.
  • the cooler 18 for generating cold air is increased in size and the cooling compartment. Even if 16 is a large-capacity large-sized refrigerator that spans the freezer compartment 9 and the vegetable compartment 8, condensation due to cold radiation from the cooling compartment 16 can be suppressed. Therefore, it is possible to suppress the deterioration of vegetables due to dew condensation water caused by cold radiation from the cooling chamber 16 in the entire refrigerator ranging from a small refrigerator with a small capacity to a large refrigerator with a large capacity, and cool and store the vegetables in a good state. It becomes.
  • this refrigerator is a “middle vegetable room type” in which the vegetable room 8 is provided between the refrigerator room 7 and the freezer room 9, it is possible to prevent the occurrence of condensation and cool and store the vegetables in a good state. In addition, it is possible to improve the usability of the user who mainly uses the vegetables in and out.
  • the refrigerator 90 according to the present embodiment can suppress the occurrence of condensation due to the temperature difference in the vegetable room, and can cool and hold the vegetable room at a low temperature. can do. Furthermore, it has the effect shown below further about vegetable room cooling.
  • the vegetable compartment fan 53 cools air toward the outer periphery of the lower vegetable storage case 49a disposed at the lower stage of the vegetable storage case 48 and the upper vegetable storage case 49b disposed at the upper stage. Let at least one of diffusion and circulation. Therefore, it is possible to suppress the cool air diffused and circulated by the vegetable compartment fan 53 from entering the lower vegetable storage case 49a and the upper vegetable storage case 49b and flowing between the vegetables. As a result, it is possible to prevent the vegetables from drying and deterioration which tends to occur when cold air flows between the vegetables, and to cool and store the vegetables in a fresh and good state.
  • the first vegetable cold air inlet 47 and the second vegetable cold air inlet 51 are provided in the upper part of the vegetable storage case 48 constituted by the lower vegetable storage case 49a and the upper vegetable storage case 49b. ing.
  • the first vegetable cold air inlet 47 and the second vegetable cold air inlet 51 are cold air inlets that diffuse or circulate in the vegetable compartment. Cold air that diffuses and circulates in the vegetable compartment 8 does not enter the vegetable storage case 48 including the lower vegetable storage case 49a and the upper vegetable storage case 49b, and the first vegetable cold air inlet 47 and It flows to the second vegetable cold air inlet 51. As a result, it is possible to reliably prevent the vegetables from drying and to cool and store the vegetables in a fresh and good state.
  • the effect of preventing the drying deterioration of the vegetables can be further enhanced by bringing the upper opening edge of the upper vegetable storage case 49b closer to the partition plate 5 that also serves as the vegetable room ceiling surface. If the cover which covers the said upper surface opening edge is provided, the drying deterioration prevention effect of vegetables can be heightened more effectively.
  • the vegetable compartment fan 53 is located below the upper opening edge of the vegetable storage case 48. Therefore, the cool air blown from the vegetable compartment fan 53 spreads and circulates in the vegetable storage case 48, particularly in the vicinity of the bottom surface and the lower outer periphery of the lower vegetable storage case 49a. Accordingly, the cold air that is diffused and circulated by the vegetable compartment fan 53 is less likely to enter the vegetable storage case 48. As a result, it is possible to reliably prevent the deterioration of the vegetables caused by the cold air entering and circulating in the vegetable storage case 48, and to cool and store the vegetables in a fresher and better state.
  • the vegetable storage case 48 partitions the inside of the lower vegetable storage case 49a to the left and right, and a non-vegetable storage portion 59 such as a plastic bottle or a pack is provided on one side.
  • a vegetable room fan 53 is provided on the back side of the vegetable room on the side of the container 59 such as a plastic bottle so that the cold air in the vegetable room is diffused or circulated toward the container 59 of the plastic bottle. Accordingly, the cool air blown from the vegetable room fan 53 circulates intensively around the PET bottle storage 59, and the PET bottles and packs stored in the PET bottle storage 59 can be efficiently used. Can be cooled.
  • drinking water such as PET bottles and packs stored in the storage unit 59 such as PET bottles has a larger heat capacity than vegetables and is not easily cooled, and cooling is effective.
  • cooling is effective.
  • the first vegetable cold air suction port 47 is provided in the portion of the vegetable storage case 48 on the side of the storage portion 59 such as a plastic bottle.
  • the cold air from the vegetable compartment fan 53 can be circulated more efficiently and intensively to the storage part such as a plastic bottle.
  • a second vegetable cold air suction port 51 which is another suction port for circulating the cold air in the vegetable room 8 is provided at the upper part of the vegetable room substantially diagonally with the vegetable room fan 53. Thereby, a part of the cool air blown from the vegetable compartment fan 53 is diffused and circulated while passing through the bottom portion of the storage portion 59 of the plastic bottle etc. of the vegetable storage case 48 forward and obliquely longitudinally in the vegetable compartment 8. At least one of them flows to the second vegetable cold air inlet 51 at the top of the vegetable compartment.
  • the refrigerated cold air passage 37 that connects the cooling chamber 16 and the refrigeration chamber 7 is disposed at a substantially central portion on the rear surface of the refrigerator 90 main body.
  • a return passage 38 portion of the refrigerated cold air that communicates the refrigeration chamber 7 and the cooling chamber 16 is disposed on the side of the outward passage 37.
  • a vegetable room passage section 50 is provided vertically in front of the refrigerated cold air return passage 38 portion.
  • the vegetable compartment passage section 50 is vertically provided in front of the return passage 38 portion of the refrigerated cold air in which the air passage cross-sectional area can be set small.
  • the vegetable room passage portion 50 is located on the side of the refrigerated cold air passage portion 37 where the air passage cross-sectional area needs to be set large, and these do not overlap in the front-rear direction.
  • the depth dimension of the chamber 8 can be enlarged. Therefore, in addition to being able to cool and store vegetables in a good state, the amount of vegetables stored can be increased, and a convenient refrigerator can be obtained.
  • a communication path 39 is formed between the refrigerated cold air passage 32 and the refrigerated cold air return path 33.
  • the vegetable compartment fan 53 rotates, the low-temperature and fresh cold air in the refrigerated cold air passage 32 is directly mixed into the refrigerated cold air return passage 33 by the fan suction force, and the vegetables are fed from the vegetable cold air inlet / outlet 44 through the return passage 38. It is supplied into the chamber 8. That is, the vegetable room 8 is not only cooled by the return cold air having a relatively high temperature after the cold room cooling from the cold room 7, but also by the rotation of the vegetable room fan 53, fresh cold air at a low temperature is described above.
  • the vegetable compartment 8 can be effectively cooled, and the vegetable compartment 8 can be reliably cooled even when the cooling load condition is bad, for example, when many vegetables, plastic bottles, etc. are temporarily stored. can do. Further, the amount of low-temperature fresh cold air taken in through the communication passage 39 can be increased by increasing the rotation speed of the vegetable compartment fan 53. Therefore, even when a large amount of room temperature PET bottles having a large heat capacity are stored in the summer, it can be reliably cooled. Moreover, since the vegetable compartment 8 can be reliably cooled, the occurrence of condensation due to the cold radiation from the cooling compartment 16 can be efficiently suppressed, and the vegetables can be stored in a cool state in a good state.
  • the vegetable room fan 53 operates when the cold room damper 31 is opened by the output from the cold room temperature detection unit 65 and the cold room 7 and the vegetable room 8 are cooled, and diffuses the cold air in the vegetable room 8. Let at least one of the circulations. Furthermore, in the refrigerator 90 in the present embodiment, the vegetable compartment fan 53 is also controlled based on the temperature detected by the vegetable compartment temperature detection unit 66 provided in the vegetable compartment 8. Thereby, even when the temperature of the refrigerator compartment 7 is high and the cooling operation is not performed, when the temperature of the vegetable compartment 8 becomes equal to or higher than the set temperature, the vegetable compartment fan 53 starts to rotate and diffuses and circulates cold air into the vegetable compartment 8. Let at least one of them. Therefore, when the temperature of the vegetable room becomes high and a large temperature difference is caused by the cold radiation from the cooling chamber 16 and the condition is likely to cause dew condensation, the vegetable room fan 53 rotates to eliminate this problem and effectively generate dew condensation. Can be prevented.
  • the temperature of the vegetable compartment 8 becomes higher than the second set temperature in spite of the rotation of the vegetable compartment fan 53, the rotation speed of the vegetable compartment fan 53 is increased, and the cold air is diffused. Increase the amount of circulation. Thereby, the vegetable room 8 can be reliably cooled by increasing the intake amount of fresh cold air.
  • the second set temperature is set to a temperature slightly higher than the set temperature described above. Therefore, the lack of cooling in the summer can be solved, and good cooling storage of vegetables and the like can be surely realized to increase the reliability of the refrigerator.
  • FIG. 23 is a perspective view for explaining a cold air flow in the rear portion of the cooling chamber of the refrigerator in the second embodiment.
  • FIG. 24 is a schematic cross-sectional view for explaining the cold air flow in the vegetable room of the refrigerator in the second embodiment.
  • the refrigerator 90 includes a vegetable cold air inlet 45 and a vegetable cold air return port 46 separately from the vegetable cold air inlet / outlet 44 described in the first embodiment. That is, the vegetable compartment 8 returns to the vegetable cold air inlet 45 in a position above the vegetable cold air inlet 45, for example, near the merging of the first passage 47a, the second passage 51a, and the vegetable compartment passage portion 50.
  • a mouth 46 is provided.
  • cold air in the cold return passage 38 flows from the vegetable cold air inlet 45, and the cold air in the vegetable room 8 flows out from the vegetable cold air return port 46 to the cold air return passage 38. Therefore, compared with the case where cold air enters and exits from one vegetable cold air inlet / outlet 44, the cold air enters and exits smoothly, and more cold air flows into the vegetable compartment 8. Thereby, cold air can be efficiently taken into the vegetable compartment and the inside of the vegetable compartment 8 can be cooled strongly. Therefore, for example, it is effective when the vegetable room 8 is at the lowermost part of the refrigerator body and the bottom of the vegetable room 8 receives heat radiation from the outside air and is not easily cooled.
  • the cooling chamber 16 not only the cooling chamber 16 but also the cooling chamber cool air conveyance path 30 zone from the cooling chamber 16 to the refrigerating chamber damper 31 provided on the downstream side of the cooling fan of the cooling chamber 16 includes the cooling chamber 16.
  • the cooling chamber temperature range is the same as the cryogenic temperature zone. Therefore, the back of the vegetable compartment 8 receives strong cold radiation at the portion facing the cooling compartment temperature zone from the cooling compartment 16 to the refrigerator compartment damper 31.
  • the cooling chamber temperature zone including the cooling chamber cool air conveyance path 30 is collectively referred to as the cooling chamber 16.
  • the vegetable compartment 8 has been described by taking a “middle vegetable type” refrigerator provided between the refrigerator compartment 7 and the freezer compartment 9 as an example, but the invention is not limited thereto.
  • the present invention can also be applied to a refrigerator in which a cooling chamber 16 is installed across the backs of the vegetable compartment 8 and the freezing compartment 9 and the vegetable compartment 8 is disposed at the bottom.
  • path part 50 showed the example provided in the right side seeing from the front of the vegetable room 8, you may provide in the left side.
  • the storage part such as the plastic bottle of the vegetable storage case 48 is set on the left side.
  • the vegetable room passage part 50 showed the example provided in the position which is biased to the right side of the vegetable room, it may be provided over the back left-right whole area of the vegetable room 8.
  • path part 50 can also anticipate the function which interrupts
  • the vegetable compartment passage section 50 is not necessarily required, and the vegetable compartment fan 53 may be disposed on the suction side of the vegetable cold air inlet / outlet 44 and provided in the vegetable compartment 8 in an exposed state.
  • At least one of the supply and stop of the cold air to the vegetable room 8 is also performed as the cold room damper 31, but at least one of supply and stop is performed by providing a dedicated damper for the vegetable room. You may make it let. In that case, at least one of supply and stop may be operated to the vegetable room dedicated damper in conjunction with the vegetable room fan 53 by the outputs of the cold room temperature detection unit 65 and the vegetable room temperature detection unit 66. Or you may operate at least one of supply and a stop only with the damper only for vegetable compartments.
  • the vegetable room fan 53 showed the example controlled by the output from the vegetable room temperature detection part 66 provided in the vegetable room 8, it is not restricted to this, In interlocking with the output of the refrigerator compartment temperature detection part 65 It may be controlled. Or you may make it repeat rotation of the vegetable compartment fan 53 intermittently for a predetermined time, and what is necessary is just to select suitably according to the characteristic of a refrigerator.
  • the vegetable storage case 48 is comprised by one case. May be.
  • the upper opening of the vegetable storage case 48 refers to the opening of the uppermost vegetable storage case in the case of a combination of a plurality of cases as in the first and second embodiments.
  • non-vegetable storage part 59 such as a plastic bottle formed in the vegetable storage case 48 has been illustrated as being formed by dividing the inside of the vegetable storage case 48 into left and right, it is not limited thereto.
  • the inside of the vegetable storage case 48 may be partitioned in the front-rear direction, and the front portion may be a non-vegetable storage portion.
  • the vegetable room fan 53 is provided in order to suppress the dew condensation in the vegetable room 8, if only aiming at prevention of the drying deterioration at the time of the cold preservation
  • the vegetable room fan 53 is not always necessary.
  • One vegetable cold air inlet / outlet 44 described in the first embodiment may be provided, and the vegetable room fan 53 may not be provided.
  • the vegetable compartment 8 is a “middle vegetable compartment type” refrigerator between the refrigerator compartment 7 and the freezer compartment 9 and the cooling compartment 16 is located at the back, the vegetable compartment 8 is surrounded by outside air. It is in a low temperature state. For this reason, since the vegetable compartment 8 is maintained in a relatively low temperature state, even if the amount of cold air supplied to the vegetable compartment 8 is reduced with a single cold air inlet / outlet into the vegetable compartment 8, Good cooling is possible.
  • FIG. 25 is a front view of the refrigerator according to Embodiment 3 of the present invention.
  • FIG. 26 is a front view when the door of the refrigerator in the third embodiment is opened.
  • 27 is a cross-sectional view taken along the line 27-27 of FIG. 26 showing the refrigerator according to the third embodiment.
  • 28 is a cross-sectional view taken along the line 28-28 in FIG. 26 showing the refrigerator according to the third embodiment.
  • FIG. 29 is a perspective view when the refrigerator in the third embodiment is cut in half in the vertical direction when viewed from the front.
  • FIG. 30 is a schematic cross-sectional view for explaining the cold air flow of the refrigerator in the third embodiment.
  • FIG. 31 is a schematic front view illustrating the cold air flow of the refrigerator in the third embodiment.
  • FIG. 32 is a perspective view for explaining a cold air flow in the rear portion of the cooling chamber of the refrigerator in the third embodiment.
  • 33 is an enlarged cross-sectional view of the main part of FIG. 27 showing the refrigerator in the third embodiment.
  • 34 is a schematic cross-sectional view for explaining the cold air flow in FIG. 35 is an enlarged cross-sectional view of the main part of FIG. 28 showing the refrigerator in the third embodiment.
  • FIG. 36 is a schematic cross-sectional view for explaining the cold air flow when the cooling fan rotates in the vegetable compartment of the refrigerator in the third embodiment.
  • FIG. 37 is a schematic cross-sectional view for explaining the cold air flow when the cooling fan is stopped in the vegetable room of the refrigerator in the third embodiment.
  • FIG. 38 is an enlarged front view showing the vegetable compartment and the freezer compartment of the refrigerator in the third embodiment.
  • FIG. 39 is an enlarged front view showing a cooling fan and a cooler installed on the back of the vegetable compartment and freezer compartment of the refrigerator shown in FIG.
  • FIG. 40 is an enlarged perspective view showing the vegetable compartment and the back wall portion of the freezer compartment in the third embodiment.
  • FIG. 41 is a perspective view of a rear partition wall block constituting the back wall portion of the vegetable compartment of the refrigerator shown in FIG.
  • FIG. 41 is a perspective view of a rear partition wall block constituting the back wall portion of the vegetable compartment of the refrigerator shown in FIG.
  • FIG. 44 is a perspective view of a partition plate and a cooling fan for partitioning a refrigerator storage room and a vegetable room in the third embodiment.
  • FIG. 45 is an exploded perspective view of the partition plate and the cooling fan in FIG.
  • FIG. 46 is a perspective view showing a vegetable storage case of the refrigerator in the third embodiment.
  • FIG. 47 is a control block diagram of the refrigerator in the third embodiment.
  • Refrigerator 190 includes a refrigerator main body 101 whose front can be opened and closed. As shown in FIG. 27 and the like, the refrigerator main body 101 is foam-filled between the outer box 102 mainly using a steel plate, the inner box 103 molded with a hard resin such as ABS, and between the outer box 102 and the inner box 103. It is comprised from the foaming heat insulating materials 104, such as the made rigid foaming urethane.
  • the refrigerator main body 101 is divided into a plurality of storage rooms by partition plates 105 and 106.
  • the refrigerator main body 101 includes a refrigerator compartment 107 at the top, a vegetable compartment 108 at the bottom of the refrigerator compartment 107, and a freezer compartment 109 at the bottom, which is a “middle vegetable compartment” type refrigerator.
  • the front opening of each storage chamber is closed by a door 110, a door 111, and a door 112 so as to be opened and closed.
  • a machine room 114 is provided in the upper rear region of the refrigerator main body 101.
  • the machine room 114 accommodates high-pressure components of the refrigeration cycle such as the compressor 115 and a dryer (not shown) for removing moisture.
  • a cooling chamber 116 for generating cold air is provided on the back of the refrigerator main body 101.
  • the cooling chamber 116 is formed from the back surface of the freezing chamber 109 to the lower back surface of the vegetable chamber 108.
  • a back partition wall body 117 is provided which has a heat insulating property by using polystyrene foam or the like, thereby providing a heat insulating partition.
  • a cooler 118 is disposed in the cooling chamber 116, and a cooling fan 119 is disposed above the cooler 118.
  • the cooling fan 119 forcibly circulates the cold air cooled by the cooler 118 to the refrigerating room 107, the vegetable room 108, and the freezing room 109 to cool each room.
  • the refrigerator compartment 107 is usually cooled to a temperature of 1 ° C. to 5 ° C. at which food is not frozen
  • the vegetable compartment 108 is cooled to a temperature of 2 ° C. to 7 ° C. that is equal to or slightly higher than that of the refrigerator compartment 107.
  • the freezer compartment 109 is usually cooled to a freezing temperature range of ⁇ 22 ° C. to ⁇ 15 ° C. for frozen storage, and in some cases, for example, a low temperature of ⁇ 30 ° C. or ⁇ 25 ° C. to improve the frozen storage state. It may be cooled down.
  • the cooling fan 119 is assembled to the partition plate 106 that partitions the vegetable compartment 108 and the cooling compartment 116.
  • the cooling fan 119 is attached inside the refrigerator main body 101 by setting the partition plate 106 in the inner box 103 of the refrigerator main body 101. In this state, the cooling fan 119 is located at a portion facing the back of the vegetable compartment 108 as shown in FIGS.
  • the cooling fan 119 blows cold air toward the rear partition wall body 117 that partitions the vegetable compartment 108, and brings strong cold radiation to the lower back of the vegetable compartment.
  • FIG. 45 is an exploded perspective view showing the configuration of the partition plate 106 and the cooling fan 119.
  • a cooling fan 119 is assembled to the upper part of the opening 120.
  • a cooler 118 is located below the opening 120.
  • the opening 120 is formed larger than the upper surface projected area of the cooler 118 located below the opening 120.
  • a projecting piece 121 protruding downward is formed on the lower surface of the opening rear side edge portion of the lower surface member 106b.
  • an upward protruding piece 122 is formed that protrudes upward from the opening edge of the upper surface member 106a.
  • the partition plate 106 is embedded with a first heater 123 for preventing condensation, such as a sheathed heater, in a portion that is in front of the cooling fan 119 and that is the bottom of the vegetable compartment.
  • the heat insulating barrier 124 covers the front portion of the opening edge of the opening 120 and is made of foamed polystyrene or the like.
  • a passage opening 126 is formed in one side piece of the heat insulating barrier 124.
  • the passage opening 126 corresponds to the cold air return passage opening 125 provided in the partition plate 6.
  • a tank installation portion 127 is formed on a portion of the partition plate 106 opposite to the cold air return passage opening 125.
  • a tank for water supply to an ice making device provided in the freezer compartment 109 is installed in the tank installation unit 127.
  • a cooler 118 or a defrost heater 128 for defrosting frost and ice adhering to the periphery of the cooler 118 is disposed.
  • a drain pan 129 for receiving defrost water generated at the time of defrosting is disposed below the defrost heater 128. The defrost water is discharged from the deepest part of the drain pan 29 to an evaporating dish outside the refrigerator via a drain tube (not shown).
  • the cooling fan 119 is connected to the cooling chamber cool air conveyance path 130 formed between the rear partition wall body 117 and the refrigerator main body 101.
  • the downstream is open. The cold air is blown into each chamber through the cooling chamber cold air conveyance path 130.
  • the upper portion of the cooling chamber cool air conveyance path 130 communicates with the refrigerated cold air going-out passage 132 via the refrigeration chamber damper 131.
  • the refrigerating / refrigerating air passage 132 is formed at a substantially central portion on the back surface of the refrigerating chamber 107.
  • a refrigerated cold air return passage 133 from the refrigeration chamber 107 is provided adjacent to the side of the refrigerated cold air passage 132.
  • the lower part of the refrigerated cold air return passage 133 communicates with the vegetable compartment 108 and the cooling compartment 116.
  • a refrigerating / cooling air inlet 135 of the refrigerating / refrigerating air passage 132 is provided at an appropriate position above the rear wall of the refrigerating chamber 107.
  • a refrigerated cold air return port 136 that opens to the refrigerated cold air return passage 133 is provided at an appropriate position below the rear wall.
  • the cold air supplied from the cooling chamber 116 is supplied to the refrigerating / refrigerating air passage 132 via the refrigerating chamber damper 131 and further supplied from the refrigerating / refrigerating air inlet 135 to the refrigerating chamber 107.
  • the cold air that has cooled the refrigerating room is supplied to the vegetable room 108 from the refrigerating cold air return port 136 via the refrigerating cold air return passage 133 and then circulates to the cooling room 116.
  • a partial chamber is provided below the refrigerator compartment 107 as will be described later. As shown in FIG. 32, cold air is supplied to the partial chamber via a partial chamber damper 131a, a partial chamber cold air passage 132a, and a partial chamber cold air inlet 135a.
  • an outward passage 137 and a return passage 138 are formed on the back surface of the rear partition wall body 117 and the partition plate 106.
  • the forward passage 137 communicates the cooling chamber cold air conveyance path 130 and the refrigerated cold air forward passage 132. Further, the forward passage 137 communicates the cooling chamber cold air conveyance path 130 and the partial chamber cold air passage 132a.
  • the return passage 138 communicates the refrigerated cold air return passage 133 with the vegetable compartment 108 and the cooling compartment 116.
  • the refrigerator compartment damper 131 is provided in the outgoing passage 137.
  • a communication passage 139 is provided between the refrigerated cold air return passage 132 and the refrigerated cold air return passage 133, and a part of the low-temperature cold air flowing through the refrigerated cold air return passage 132 is mixed directly into the refrigerated cold air return passage 133.
  • a cool air return duct 140 is provided on the back surface of the freezer compartment 109 so as to extend downward from the cooling fan 119 and the cooler 118. As shown in FIG. The upper part of the cold air return duct 140 communicates with the vegetable compartment 8 via the return passage 38. The lower part of the cool air return duct 140 opens near the lower part of the cooling chamber 116, and the cool air that has cooled the vegetable compartment 108 circulates from the lower opening of the cooling chamber 116 to the cooling chamber 116 via the cool air return duct 140. To do.
  • the freezing cold air inlet 142 is formed in the upper part of the back wall body 141 (refer FIG. 43).
  • the refrigerated cold air inlet 142 communicates with the lower portion of the cooling chamber cold air conveyance path 130 on the back surface of the rear partition wall body 117.
  • a refrigerated cold air return port 143 that opens to the lower part of the cooling chamber 116 is formed in the lower part of the back wall body 141.
  • the cold air circulated from the cooling chamber 116 is supplied to the freezing chamber from the lower portion of the cooling chamber cold air conveyance path 130 via the freezing cold air inlet 142.
  • the cold air after cooling in the freezer compartment is circulated to the cooling compartment 116 via the freezer cold air return port 143.
  • the vegetable compartment 108 is provided on either the left or right side of the back wall. In the present embodiment, the vegetable compartment 108 is provided in the lower portion of the right side portion when viewed from the front.
  • the vegetable compartment 108 is provided with a vegetable cold air inlet 144 that opens to the return passage 138 from the refrigerated cold air return passage 133.
  • a vegetable cold air return port 146 that opens to the return passage 138 and connects to the cooling chamber 116 is provided substantially above the vegetable cold air inlet 144.
  • the vegetable cold air inlet 144 is provided so as to be positioned above the lower end of the bell mouth opening of the cooling fan 119.
  • a vegetable compartment fan 153 made of a propeller fan or the like is disposed in front of the vegetable cold air inlet 144 provided at the lower back of the vegetable compartment 108.
  • a vegetable cold air inlet 144 and a vegetable cold air return port 146 communicating with the cold air return passage 138 are provided between the cold air return passage 138 and the vegetable compartment 108 on the suction side and the exhaust side of the vegetable compartment fan 153 of the vegetable compartment 108. Each has.
  • the vegetable room fan 153 is located in front of the vegetable cold air inlet 144, and is installed so that the vegetable room fan 153 and the vegetable cold air inlet 144 overlap when viewed from the front.
  • the amount of cooling of the vegetable compartment 108 is required to be large, it is effective to increase the opening area of the vegetable cold air inlet 144, and when the amount of cooling is small, it is effective to reduce the opening area of the vegetable cold air inlet 144. It is.
  • the lower end of the vegetable cold air inlet 144 is provided at a position lower than the upper end of the vegetable compartment fan 153, and is installed so as to overlap in the front-rear direction.
  • a first passage 147 a having a first vegetable cold air inlet 147 that opens to the vegetable cold return port 146 at the rear and opens into the vegetable compartment 108 at the front is formed. Yes.
  • the upper part of the vegetable compartment 108 is an upper part of the rear partition wall 117 which is the rear face of the vegetable compartment 108 and is substantially diagonally positioned at the vegetable cold air inlet 144.
  • a second vegetable cold air inlet 151 is provided in the part.
  • a second vegetable cold air inlet 151 is provided on the upper left side of the vegetable compartment 108.
  • path 151a provided with the 2nd vegetable cold air suction inlet 151 is connected to the vegetable cold air return port 146, as shown in FIG.
  • FIG. 42 is an exploded perspective view of the rear partition wall body 117 provided with the second vegetable cold air inlet 151.
  • the rear partition wall 117 is configured by superposing a front partition plate 117a and a rear partition plate 117b via a polystyrene foam (not shown).
  • the vegetable compartment fan 153 is incorporated in the lower part of the rear partition wall body 117.
  • the air outlet 154 of the vegetable room fan 153 opens into the vegetable room 108.
  • the vegetable room fan 153 blows into the vegetable room 108 the cold air flowing from the vegetable cold air inlet 144 and the vegetable room cold air sucked from the first vegetable cold air inlet 147 and the second vegetable cold air inlet 151. .
  • the air outlet 154 of the vegetable compartment fan 153 opens toward the rear surface of a lower vegetable storage case 149a, which will be described later, and the lower rear portion of the lower vegetable storage case 149a that faces the vegetable compartment fan 153 is inclined forward. A surface 155 is formed. Thereby, it is comprised so that the cold air from the vegetable compartment fan 153 may flow intensively to the lower surface space of the lower vegetable storage case 149a.
  • a second heater 156 made of a sheathed heater or the like for preventing condensation is embedded in a surface of the rear partition wall 117 facing the cooling chamber 116.
  • the second heater 156 is disposed at a position facing the upper portion of the cooling chamber 116 and in a low-temperature cooling chamber temperature zone located below the refrigerator compartment damper 131.
  • the refrigerator compartment damper 131 opens and closes cool air from the refrigerator compartment 116 to the refrigerator compartment 107.
  • the cooling fan 119 In the cooling chamber cool air conveyance path 130 in the low temperature cooling chamber temperature zone, the cooling fan 119, the first heater 123 in the partition plate 106, the second heater 156 in the rear partition wall body 117, and the like A connector connecting portion 157 (box) of the member is installed (see FIG. 39). Electrical connection is made in the cooling chamber cool air conveyance path 130 which becomes the cooling chamber temperature zone.
  • a vegetable storage case 148 is disposed as shown in FIG.
  • the vegetable storage case 148 includes a lower vegetable storage case 149a placed on the frame of the door 111 and an upper vegetable storage case 149b placed on the lower vegetable storage case 149a.
  • a space is provided between the vegetable storage case 148 and the partition plate 106 disposed therebelow, and a space is also provided between the vegetable storage case 148 and the inner peripheral wall surface of the vegetable compartment 108. Yes.
  • These spaces constitute an air passage through which the cold air from the vegetable cold air inlet 144 flows.
  • the upper opening edge of the upper vegetable storage case 149b of the vegetable storage case 148 is located in the vicinity of the partition plate 105 above the vegetable chamber 108. This prevents the cold air flowing from the vegetable cold air inlet 144 from directly entering the upper vegetable storage case 149b and the lower vegetable storage case 149a of the vegetable storage case 148. Note that a lid that closes the upper vegetable storage case 149b may be provided to prevent cold air from entering the vegetable storage case 148.
  • the lower vegetable storage case 149a may be divided
  • the side opposite to the vegetable cold air inlet 144 (right side as viewed from the front in this embodiment) is made deeper, and as a non-vegetable storage unit 159 (hereinafter referred to as a PET bottle storage unit) such as a PET bottle or a pack.
  • a PET bottle storage unit such as a PET bottle or a pack.
  • the vegetable compartment 108 may be divided into front and rear, and the front portion may be a container 159 such as a plastic bottle.
  • the refrigerator compartment 107 includes a plurality of storage shelves 160 and a partial chamber 161 that can be cooled to a semi-refrigeration temperature zone.
  • the refrigerated cold air inlet 135 and the refrigerated cold air return port 136 are provided at appropriate positions in the cold room 107.
  • An operation unit 162 for setting the internal temperature of each room, ice making, quick cooling, and the like is disposed at an appropriate side wall of the refrigerator compartment 107.
  • ⁇ Freezer configuration> In the upper part of the back wall of the freezing chamber 109, as described above with reference to FIG. 34, the freezing cold air inlet 142 communicating with the lower part of the cooling room cold air conveyance path 130 formed on the back surface of the back surface partition wall body 117 is formed. Has been. Further, a freezing cold air return port 143 communicating with the freezing chamber 109 is formed in the lower part of the back wall of the freezing chamber 109. Although not shown, a freezer damper is also incorporated at an appropriate position in the passage from the cooling chamber 116 to the freezer chamber 109. Note that the freezer compartment 109 is also provided with a freezer compartment case 163 placed on the frame of the door 112 as shown in FIG. Furthermore, an ice making device 164 is incorporated in the upper part of the freezer compartment 163.
  • FIG. 47 shows a control block diagram in refrigerator 190 of the present embodiment.
  • the refrigerator compartment temperature detector 165, the vegetable compartment temperature detector 166, and the freezer compartment temperature detector 167 are all formed of thermistors, and are installed at appropriate locations in the refrigerator compartment 107, the vegetable compartment 108, and the freezer compartment 109, respectively.
  • the control unit 168 that performs overall control of the entire refrigerator 190 is configured by a microcomputer or the like.
  • the control unit 168 controls opening and closing of the refrigerator compartment damper 131 and the freezer compartment damper 134 according to control software incorporated in advance based on outputs from the refrigerator compartment temperature detector 165 and the freezer compartment temperature detector 167.
  • control unit 168 drives the compressor 115, the cooling fan 119, and, if necessary, the first heater 123 and the second heater 156 to control each chamber to a set temperature.
  • the control unit 168 controls the operation of the vegetable compartment fan 153 incorporated in the vegetable compartment passage portion 150 of the vegetable compartment 108 based on outputs from the refrigerator compartment temperature detection portion 165 and the vegetable compartment temperature detection portion 166. Specifically, when one of the detection means detects that the temperatures detected by the refrigerator temperature detection unit 165 and the vegetable room temperature detection unit 166 are higher than the set temperature, the vegetable room fan is detected. 153 is driven.
  • control unit 168 controls the vegetable room fan 153. Drive.
  • the refrigeration cycle is operated by a signal from the control unit 168, and the cooling operation is performed.
  • the high-temperature and high-pressure refrigerant discharged by the operation of the compressor 115 is condensed and liquefied to some extent by a condenser (not shown). Further, the refrigerant condenses and liquefies while preventing condensation of the refrigerator 190 via a refrigerant pipe (not shown) disposed on the side surface and the rear surface of the refrigerator 190 and the front opening of the refrigerator 190, and the capillary tube (FIG. (Not shown).
  • the refrigerant is depressurized in the capillary tube while exchanging heat with a suction pipe (not shown) to the compressor 115 to become a low-temperature and low-pressure liquid refrigerant in a cooler 118 disposed in the cooling chamber. It reaches.
  • the refrigerant in the cooler 118 evaporates and cool air for cooling each storage chamber is generated in the cooling chamber 116 having the cooler 118.
  • the low-temperature cold air generated in the cooling chamber 116 is sent to the refrigerating chamber 107 and the freezing chamber 109 from the cooling chamber cold-air conveyance path 130 by the cooling fan 119.
  • the cool air supplied to the refrigerator compartment 107 cools the refrigerator compartment 107 and then is supplied to the vegetable compartment 108, and each room is cooled to a set temperature. Then, the cold air that has cooled each chamber returns to the cooling chamber 116 again, is cooled by the cooler 118, and is circulated to each chamber by the operation of the cooling fan 119.
  • control unit 168 causes the compressor 115 and the cooling fan 119 to be at least one of operating and stopping based on the temperatures detected by the refrigerator compartment temperature detector 165 and the freezer compartment temperature detector 167.
  • control unit 168 controls opening and closing of the refrigerator compartment damper 131 and the freezer compartment damper 134, and maintains each chamber in a set temperature range.
  • the cold air after cooling in the refrigerator compartment flows into the vegetable compartment 108 from the vegetable cold air inlet 144 provided in the cold return passage 138, and cools the vegetable compartment 108.
  • a vegetable room fan 153 is provided in the vegetable room 108. Therefore, by the rotation of the vegetable room fan 153, a lot of cold air is sucked into the vegetable room 108 from the vegetable cold air inlet 144, and from the outlet 154 of the vegetable room fan 153 toward the rear surface of the lower vegetable storage case 149a in the vegetable room 108. Cold air is supplied.
  • the cold air supplied toward the lower vegetable storage case 149a of the vegetable compartment 108 is the space between the vegetable storage case 148 and the bottom of the vegetable compartment 108, as well as the vegetable storage case 148 and the vegetable as shown by the solid arrows in FIG. It flows in a space between the inner peripheral wall of the chamber 108. And most of the cold air is returned from the vegetable cold air return port 146 to the return passage 138 from the first vegetable cold air intake port 147 and the second vegetable cold air intake port 151 through the first passage 147a and the second passage 151a. Spill into. The other part of the cold air diffuses or circulates in the vegetable compartment 108 as indicated by broken arrows.
  • the vegetable room fan 153 When all the storage rooms are below the set temperature and the vegetable room fan 153 rotates with the compressor 115 and the cooling fan 119 stopped, all the cold air stops flowing, and the cold air return path 138 There is no flow of cold air. In this case, the ventilation resistance of the first vegetable cold air inlet 147, the second vegetable cold air inlet 151, the first passage 147a, and the second passage 151a is larger than the ventilation resistance in the vegetable compartment 108.
  • the vegetable room fan 153 causes all of the cold air to diffuse and circulate in the vegetable room 108 as indicated by solid arrows in FIG.
  • the cold air that is diffused and circulated by the vegetable room fan 153 is easily chilled by cold radiation from the cooling room 116 located at the back of the vegetable room 108 and cold radiation from the freezing room 109 located below.
  • the temperature near the lower back of the room is diffused into the vegetable room 108.
  • the temperature in the vegetable compartment 108 is lowered to cool the inside of the vegetable compartment 108 more effectively, and at the same time, an extremely low temperature and a temperature difference are prevented in the vicinity of the lower part of the back of the vegetable compartment. Condensation caused by cold radiation from 109 is suppressed.
  • the refrigerator 190 prevents the occurrence of condensation due to the local low temperature of the vegetable compartment 108 both in the cooling operation and in the cooling stop, so the cooler 118 for generating cold air is enlarged and cooled.
  • the chamber 116 is a large large-capacity refrigerator that spans the freezing chamber 109 and the vegetable chamber 108, dew condensation due to cold radiation from the cooling chamber 116 can be suppressed. Therefore, it is possible to suppress the vegetable deterioration due to the dew condensation water generated by the cold radiation from the cooling chamber 116 in the entire refrigerator ranging from the small-capacity small refrigerator to the large-capacity large refrigerator, and to cool and store the vegetables in a good state. It becomes.
  • the refrigerator 190 in this Embodiment is a "middle vegetable room type" refrigerator which provided the vegetable compartment 108 in the upper-lower-center part of the refrigerator main body 101 between the refrigerator compartment 107 and the freezer compartment 109, and is mentioned above. As described above, it is possible to improve the usability of the user who mainly uses the vegetables in and out while keeping the vegetables in a good state by preventing the occurrence of condensation.
  • the vegetable room fan 153 is provided in front of the vegetable cold air inlet 144 and overlapped when viewed from the front, the air passage area on the suction side of the vegetable room fan 153 can be increased, and the vegetable room fan The wind path resistance of 153 can be reduced. Thereby, since more cold air in the vegetable compartment 108 can be diffused and circulated, the effect of suppressing the occurrence of dew condensation can be further enhanced.
  • the vegetable compartment fan 153 causes at least one of diffusion and circulation of the cold air toward the outer periphery of the lower vegetable storage case 149a and the upper vegetable storage case 149b of the vegetable storage case 148. Therefore, it is possible to prevent cold air that is at least one of diffusion and circulation by the vegetable room fan 153 from entering the lower vegetable storage case 149a and the upper vegetable storage case 149b and flowing between the vegetables. As a result, it is possible to prevent the vegetables from drying and deterioration which tends to occur when cold air flows between the vegetables, and to cool and store the vegetables in a fresh and good state.
  • a first vegetable cold air inlet 147 and a second vegetable cold air inlet 151 are provided above the vegetable storage case 148 constituted by the lower vegetable storage case 149a and the upper vegetable storage case 149b. 40).
  • the first vegetable cold air inlet 147 and the second vegetable cold air inlet 151 also serve as cold air inlets that diffuse or circulate in the vegetable compartment.
  • the cold air that diffuses and circulates in the vegetable compartment 108 does not enter the vegetable storage case 148 including the lower vegetable storage case 149a and the upper vegetable storage case 149b, and the first vegetable cold air inlet 147 and It flows to the second vegetable cold air inlet 151.
  • the drying prevention effect of vegetables can be heightened more effectively.
  • the vegetable room fan 153 is located below the upper opening edge of the vegetable storage case 148.
  • the cool air blown from the vegetable compartment fan 153 spreads and circulates in the vegetable storage case 148, particularly in the vicinity of the bottom surface and lower outer periphery of the lower vegetable storage case 149a. Therefore, the cold air that is at least one of diffused and circulated by the vegetable compartment fan 53 is less likely to enter the vegetable storage case 148.
  • the vegetable storage case 148 divides the inside of the lower vegetable storage case 149a to the left and right, and a non-vegetable storage portion 159 such as a plastic bottle or a pack (hereinafter referred to as a PET bottle storage portion 159). Called).
  • a vegetable room fan 153 is provided in the back part of the vegetable room on the side of the storage part 159 such as a plastic bottle so that the cold air in the vegetable room is diffused or circulated toward the plastic bottle storage part 159. Accordingly, the cool air blown from the vegetable room fan 153 circulates intensively around the PET bottle storage section 159, and the PET bottles and packs stored in the PET bottle storage section 159 are efficiently used. Can be cooled.
  • the vegetable room fan 153 and the first vegetable cold air suction port 147 provided in the vegetable room 108 are provided in a portion of the vegetable storage case 148 on the storage part 159 side such as a plastic bottle.
  • the cold air from the vegetable compartment fan 153 can be circulated more efficiently and intensively to the storage part such as a plastic bottle.
  • a second vegetable cold air inlet 151 serving as another inlet for circulating the cold air in the vegetable compartment 108 is provided at the upper part of the vegetable compartment substantially diagonally with the vegetable compartment fan 153.
  • the cool air blown from the vegetable compartment fan 153 passes through the bottom portion of the plastic bottle storage portion 159 of the vegetable storage case 148 and forwards at least of diffusion and circulation while obliquely longitudinally passing through the vegetable compartment 108.
  • One side flows to the second vegetable cold air inlet 151 at the top of the vegetable compartment.
  • At least one of the diffusion and circulation of the cold air over a wide area on the outer periphery of the vegetable case can be performed while preventing the cold air from entering the vegetable compartment case including the lower vegetable storage case 149a and the upper vegetable storage case 149b. it can. Therefore, vegetables, plastic bottles, etc. can be cooled effectively.
  • a communication passage 139 is formed between the refrigerated cold air going-out passage 132 and the refrigerated cold air returning passage 133.
  • the vegetable room fan 153 rotates, the low-temperature and fresh cold air in the refrigerated cold air passage 132 is directly mixed into the refrigerated cold air return passage 133 by the suction force, and the vegetable room is fed from the vegetable cold air inlet 144 through the return passage 138. 108 is supplied. That is, the vegetable compartment 108 is cooled by the return cold air having a relatively high temperature after cooling the refrigerator compartment.
  • the vegetable room 108 is cooled by the rotation of the vegetable room fan 153 and the low-temperature fresh air mixed with the cold air after cooling in the refrigerator compartment.
  • the vegetable compartment 108 can be effectively cooled.
  • the vegetable compartment 108 can be reliably cooled even when the cooling load condition is bad, such as when a large amount of vegetables or plastic bottles are temporarily stored. can do.
  • the amount of low-temperature fresh cold air taken in via the communication path 139 can be increased by increasing the rotation speed of the vegetable compartment fan 153. Therefore, even when a large amount of room temperature PET bottles having a large heat capacity are stored in the summer, it can be reliably cooled.
  • the vegetable compartment 108 can be reliably cooled, the occurrence of condensation due to cold radiation from the cooling compartment 116 can be efficiently suppressed, and the vegetables can be stored in a cool state in a good state.
  • the vegetable compartment fan 153 operates when the refrigerator compartment damper 131 is opened by the output from the refrigerator compartment temperature detection unit 165 to cool the refrigerator compartment 107 and the vegetable compartment 108, and cool air in the vegetable compartment 108 is cooled. And at least one of diffusion and circulation. Further, in the present embodiment, the vegetable compartment fan 153 is also controlled based on the temperature detected by the vegetable compartment temperature detection unit 166 provided in the vegetable compartment 108. Thereby, even when the temperature of the refrigerator compartment 107 is high and the cooling operation is not performed, the vegetable compartment fan 153 starts to rotate when the temperature of the vegetable compartment 108 becomes equal to or higher than the set temperature, and the cold air is diffused and circulated in the vegetable compartment 108. To at least one of them. Therefore, when the temperature of the vegetable room becomes high and a large temperature difference is caused by the cold radiation from the cooling chamber 116 and the condition is likely to cause dew condensation, the vegetable room fan 153 rotates to solve this problem and effectively generate dew condensation. Can be prevented.
  • the second set temperature is set to a temperature that is slightly higher than the set temperature described above. Therefore, the lack of cooling in the summer can be solved, and good cooling storage of vegetables and the like can be surely realized to increase the reliability of the refrigerator.
  • FIG. 48 is a schematic cross-sectional view for explaining the cold air flow when the cooling fan rotates in the vegetable compartment of the refrigerator in the fourth embodiment.
  • FIG. 49 is a schematic cross-sectional view for explaining the cold air flow when the cooling fan is stopped in the vegetable room of the refrigerator in the fourth embodiment.
  • the vegetable room fan 153 is arranged on the ceiling of the vegetable room 108 together with the vegetable cold air inlet 144. Furthermore, the vegetable room fan 153 has a structure in which an air outlet 154 is opened at the upper part of the vegetable room and a vegetable cold air return port 146 is provided at the lower part of the vegetable room 108. The vegetable room fan 153 is disposed obliquely in a partition plate 105 that partitions the vegetable room 108 and the refrigerator compartment 107 and constitutes the ceiling of the vegetable room 108.
  • the vegetable compartment fan 153 sucks the cold air from the return passage 138 through the vegetable cold air inlet 144 and supplies it into the vegetable compartment 108 as shown by the solid line arrow in FIG.
  • the vegetable compartment fan 153 sucks the cold air from the return passage 138 through the vegetable cold air inlet 144 and supplies it into the vegetable compartment 108 as shown by the solid line arrow in FIG.
  • most of the cold air is returned from the vegetable cold air return port 146 to the return passage 138, and the remaining cold air diffuses and circulates in the vegetable compartment 108 as indicated by the dashed arrows. That is, as in Embodiment 3, cold air is taken in stably and efficiently and circulated in the vegetable compartment 108.
  • the vegetable room fan 153 is disposed in the partition plate 105 that partitions the vegetable room 108 and the refrigerated room 107, the vegetable room 108 can be efficiently cooled while securing the volume of the vegetable room 108.
  • the vegetable room fan 153 can be provided in the vegetable room 108 in the form. That is, since the refrigerator compartment 107 is located in the upper part of the vegetable compartment 108, the vegetable compartment 108 is cooled appropriately by the cold radiation from the refrigerator compartment 107.
  • the partition plate 105 does not need to incorporate a heat insulating material for reinforcing heat insulation, the vegetable room fan 153 can be incorporated using the space.
  • the vegetable compartment fan 153 is inclined, it is not necessary to greatly increase the thickness of the partition plate 105 even though the vegetable compartment fan 153 is incorporated. Thereby, the volume of the vegetable compartment 108 can be ensured large.
  • the cooling chamber 116 not only the cooling chamber 116 but also the cooling chamber cool air conveyance path 130 from the cooling chamber 116 to the refrigeration chamber damper 131 on the downstream side of the cooling fan 119 has the same cryogenic temperature as the cooling chamber 116. It is in the temperature range. Therefore, strong cold radiation is received in the portion facing the cooling chamber temperature zone from the cooling chamber 116 to the refrigerator compartment damper 31.
  • the cooling chamber temperature zone including the cooling chamber cool air conveyance path 130 is collectively referred to as a cooling chamber 116.
  • the refrigerator 190 in which the vegetable cold air inlet 144 and the vegetable cold air return port 146 are separately provided in the vegetable chamber 108 has been described as an example.
  • the vegetable cold air inlet 144 and the vegetable cold air return port 146 may be combined into a cold air inlet / outlet, and the vegetable room fan 153 may be provided in an offset state in front of the cold air inlet / outlet. In this case, the cold air in the cold air return passage 138 is sucked and supplied into the vegetable compartment 108 from the opening portion of the vegetable air inlet / outlet which is biased toward the vegetable compartment fan 153 side.
  • the cold air in the vegetable compartment 108 flows out into the cold air return passage 138 from the opening portion that is biased to the opposite side of the vegetable compartment fan 153. Therefore, although the amount of cold air flowing into and out of the vegetable compartment 108 decreases, this conversely suppresses the entire cold air in the vegetable compartment from being replaced one after another. Therefore, in the vegetable compartment 108, a large amount of high-humidity cold air containing moisture transpiration from the vegetables is retained, and drying deterioration of the vegetables can be prevented. In the vegetable compartment 108, the rotation of the vegetable compartment fan 153 causes the cool air to diffuse and circulate in the vegetable compartment, thereby preventing condensation.
  • the “middle vegetable type” refrigerator 190 in which the vegetable compartment 108 is provided between the refrigerator compartment 107 and the freezer compartment 109 has been described as an example.
  • the present invention is not limited thereto.
  • the present invention can also be applied to a refrigerator in which the vegetable compartment 108 is disposed at the lowermost part and the cooling compartment 116 is installed across the back of the vegetable compartment 108 and the freezing compartment 109.
  • At least one of the supply and stop of the cold air to the vegetable room 108 is performed also as the refrigerator compartment damper 131, but at least one of supply and stop is performed by providing a damper dedicated to the vegetable room. You may make it let. In that case, at least one of supply and stop may be operated to the vegetable room dedicated damper in conjunction with the vegetable room fan 153 by the outputs of the cold room temperature detection unit 165 and the vegetable room temperature detection unit 166. Or you may operate at least one of supply and a stop only with the damper only for vegetable compartments.
  • the vegetable room fan 153 showed the example controlled by the output from the vegetable room temperature detection part 166 provided in the vegetable room 108, it is not restricted to this, interlocking with the output of the refrigerator compartment temperature detection part 165 It may be controlled. Or you may make it repeat rotation of the vegetable compartment fan 153 intermittently for a predetermined time, and what is necessary is just to select suitably according to the characteristic of a refrigerator.
  • the compressor 115 has shown the example installed in the upper back area
  • the compressor 115 may be provided at the lower rear of the refrigerator main body 101.
  • FIG. 50 is a front view of the refrigerator in the fifth embodiment of the present invention.
  • FIG. 51 is a front view when the door of the refrigerator in the fifth embodiment is opened.
  • 52 is a cross-sectional view taken along the line 52-52 in FIG. 51, showing the refrigerator according to the fifth embodiment.
  • 53 is a cross-sectional view taken along the line 53-53 in FIG. 51, showing the refrigerator according to the fifth embodiment.
  • FIG. 54 is a perspective view when the refrigerator in the fifth embodiment is cut in half in the vertical direction when viewed from the front.
  • FIG. 55 is a schematic cross-sectional view for explaining the cold air flow of the refrigerator in the fifth embodiment.
  • FIG. 56 is a schematic front view illustrating the cold air flow of the refrigerator in the fifth embodiment.
  • FIG. 57 is a perspective view for explaining the cold air flow in the rear portion of the cooling chamber of the refrigerator in the fifth embodiment.
  • 58 is an enlarged cross-sectional view of the main part of FIG. 52 showing the refrigerator in the fifth embodiment.
  • FIG. 59 is a schematic cross-sectional view for explaining the cold air flow in FIG.
  • FIG. 60 is an enlarged cross-sectional view of the main part of FIG. 53 showing the refrigerator in the fifth embodiment.
  • FIG. 61 is a schematic cross-sectional view for explaining the cold air flow in FIG.
  • FIG. 62 is an enlarged front view showing the vegetable compartment and the freezer compartment of the refrigerator in the fifth embodiment.
  • FIG. 63 is an enlarged front view showing a cooling fan and a cooler installed on the back of the vegetable compartment and freezer compartment of the refrigerator shown in FIG.
  • FIG. 64 is an enlarged perspective view showing a back wall portion of the vegetable compartment and the freezer compartment of the refrigerator in the fifth embodiment.
  • FIG. 65 is a perspective view of a rear partition wall block constituting the back wall portion of the vegetable compartment of the refrigerator shown in FIG. 66 is an exploded perspective view of a rear partition wall block constituting the back wall portion of the vegetable compartment shown in FIG. 67 is an exploded perspective view of a block constituting the back wall portion of the freezer compartment shown in FIG.
  • FIG. 68 is a perspective view of a partition plate and a cooling fan for partitioning the refrigerator storage room and the vegetable compartment in the fifth embodiment.
  • FIG. 69 is a perspective view showing a vegetable storage case of the refrigerator in the fifth embodiment.
  • FIG. 70 is a control block diagram of the refrigerator in the fifth embodiment.
  • FIG. 71 is a flowchart illustrating the vegetable room cooling operation of the refrigerator in the fifth embodiment.
  • FIG. 72 is a timing chart showing the operation when the vegetable compartment of the refrigerator in the fifth embodiment is soaked by cold air circulation.
  • FIG. 73 is a timing chart showing a cooling operation when the vegetable compartment of the refrigerator in the fifth embodiment is cooled while being soaked by cold air circulation.
  • FIG. 74 is a timing chart showing temperature equalization and cooling operation by cold air circulation when the temperature of the vegetable compartment of the refrigerator in the fifth embodiment is higher than a predetermined temperature.
  • FIG. 75 is a timing chart showing the cooling state of the vegetable compartment controlled by the refrigerator control in the fifth embodiment.
  • Refrigerator 290 includes a refrigerator main body 201 whose front can be opened and closed.
  • the refrigerator main body 201 includes an outer box 202 mainly using a steel plate, an inner box 203 molded with a hard resin such as ABS, and between the outer box 202 and the inner box 203. It is composed of a foam heat insulating material 204 such as hard foam urethane filled with foam.
  • the refrigerator main body 201 is divided into a plurality of storage rooms by partition plates 205 and 206.
  • the refrigerator body 201 includes a refrigerator compartment 207 at the top, a vegetable compartment 208 at the bottom of the refrigerator compartment 207, and a freezer compartment 209 at the bottom.
  • the front opening of each storage chamber is closed by a door 210, a door 211, and a door 212 so as to be opened and closed.
  • a machine room 214 is provided in the upper rear region of the refrigerator main body 201.
  • the machine room 214 accommodates high-pressure components of the refrigeration cycle such as the compressor 215 and a dryer (not shown) for removing moisture.
  • a cooling chamber 216 for generating cold air is provided on the back of the refrigerator main body 201.
  • the cooling chamber 216 is formed from the back surface of the freezing chamber 209 to the lower back surface of the vegetable chamber 208.
  • a rear partition wall body 217 which is provided with a heat insulating property by a polystyrene foam or the like is provided, and thereby a heat insulating partition is formed.
  • a cooler 218 is disposed in the cooling chamber 216, and a cooling fan 219 is disposed above the cooler 218.
  • the cooling fan 219 cools each room by forcibly circulating the cold air cooled by the cooler 218 to the refrigerating room 207, the vegetable room 208, and the freezing room 209.
  • the refrigerator compartment 207 is cooled to a temperature of 1 ° C. to 5 ° C. at which food is not frozen
  • the vegetable compartment 208 is cooled to a temperature of 2 ° C. to 7 ° C. that is equal to or slightly higher than the refrigerator compartment 207.
  • the freezer compartment 209 is usually cooled to a freezing temperature range of ⁇ 22 ° C. to ⁇ 15 ° C. for frozen storage, and in some cases, for example, a low temperature of ⁇ 30 ° C. or ⁇ 25 ° C. to improve the frozen storage state. It may be cooled down.
  • the cooling fan 219 is assembled to a partition plate 206 that partitions the vegetable compartment 208 and the cooling compartment 216.
  • the cooling fan 219 is attached inside the refrigerator main body 201 by setting the partition plate 206 in the inner box 203 of the refrigerator main body 201. In this state, the cooling fan 219 is located at a portion facing the back of the vegetable compartment 208 as shown in FIGS.
  • the cooling fan 219 blows cold air toward the rear partition wall body 217 that partitions the vegetable compartment 208 and brings strong cold radiation to the lower back of the vegetable compartment.
  • a cooler 218 or a defrost heater 228 for defrosting frost and ice adhering to the periphery of the cooler 218 is arranged in the lower space of the cooler 218, as shown in FIG. 58 and the like.
  • a drain pan 229 for receiving defrost water generated at the time of defrosting is disposed below the defrost heater 228. The defrost water is discharged from the deepest part of the drain pan 229 to an evaporating dish outside the warehouse through a drain tube (not shown).
  • the upper part of the cooling chamber cold air conveyance path 230 communicates with the refrigerated cold air going-out passage 232 via the refrigeration chamber damper 231.
  • the refrigerated cold air passage 232 is formed substantially in the center of the back surface of the refrigeration chamber 207.
  • a refrigerated cold air return passage 233 from the refrigerator compartment 207 is installed adjacently.
  • the lower part of the refrigerated cold air return passage 233 communicates with the vegetable compartment 208 and the cooling compartment 216.
  • a refrigerating / cooling air inlet 235 of a refrigerating / refrigerating air passage 232 is provided at an appropriate position above the rear wall of the refrigerating chamber 207.
  • a refrigerated cold air return opening 236 that opens to the refrigerated cold air return passage 233 is provided at an appropriate position below the rear wall.
  • the cold air blown from the cooling chamber 216 is supplied to the refrigerating / refrigerating air passage 232 via the refrigerating chamber damper 231, and further supplied to the refrigerating chamber 207 from the refrigerating / refrigerating air inlet 235.
  • the cold air that has cooled the refrigerating room is supplied from the refrigerating cold air return port 236 to the vegetable room 208 via the refrigerating cold air return passage 233 and then circulates to the cooling room 216.
  • a partial chamber is provided below the refrigerator compartment 207 as will be described later. As shown in FIG. 57, the partial chamber is supplied with cold air through a partial chamber damper 231a, a partial chamber cold air passage 232a, and a partial chamber cold air inlet 235a.
  • an outward passage 237 and a return passage 238 are formed on the back surface of the rear partition wall 217 and the partition plate 206.
  • the forward passage 237 communicates the cooling chamber cold air conveyance passage 230 and the refrigerated cold air forward passage 232. Further, the forward passage 237 communicates the cooling chamber cold air conveyance path 230 and the partial chamber cold air forward passage 232a.
  • the return passage 238 communicates the refrigerated cold air return passage 233 with the vegetable compartment 208 and the cooling compartment 216.
  • the refrigerator compartment damper 231 and the like are provided in the outgoing passage 237.
  • a communication passage 239 is provided between the refrigerated cold air return passage 232 and the refrigerated cold air return passage 233, and a part of the low-temperature cold air flowing through the refrigerated cold air return passage 232 is directly mixed into the refrigerated cold air return passage 233.
  • a cool air return duct 240 is provided that extends downward on the side of the cooler 218.
  • the upper part of the cool air return duct 240 communicates with the vegetable compartment 208 via a return passage 238.
  • the lower part of the cool air return duct 240 opens near the lower part of the cooling chamber 216, and the cool air that has cooled the vegetable compartment 208 passes from the lower opening to the cooling chamber 216 via the return passage 238 and the cool air return duct 240. Circulate.
  • a freezing cold air inlet 242 communicating with the lower part of the cooling room cold air conveyance path 230 on the back surface of the rear partition wall body 217 is formed in the upper part of the back wall body 241.
  • a refrigerated cold air return port 243 that opens to the lower part of the cooling chamber 216 is formed in the lower part of the back wall 241. The cold air circulated from the cooling chamber 216 is supplied to the freezing chamber from the lower portion of the cooling chamber cold air conveyance path 230 via the freezing cold air inlet 242. Then, the cold air after cooling in the freezer compartment is circulated to the cooling chamber 216 via the freezer cold air return port 243.
  • the vegetable compartment 208 is provided on either the left or right side of the back wall.
  • the vegetable compartment 208 is provided in the lower part of the right side part seeing from the front.
  • the vegetable compartment 208 is provided with one vegetable cold air inlet / outlet 244 that opens to the return passage 238 from the refrigerated cold air return passage 233.
  • the vegetable cold air inlet / outlet 244 is provided so as to be located above the lower end of the bell mouth opening of the cooling fan 219.
  • a vegetable compartment passage portion 250 is formed in the vertical direction at the front position of the cool air return passage 238 using the rear partition wall 217 on the back of the vegetable compartment 208.
  • the upper part of the vegetable compartment passage portion 250 communicates with the first vegetable cold air inlet 247 of the first passage 247a provided in the front-rear direction at the upper part of the vegetable compartment 208.
  • the lower part of the vegetable compartment passage portion 250 communicates with the vegetable cold air inlet / outlet 244.
  • a vegetable room fan 253 made of a propeller fan or the like is arranged at a portion facing the vegetable cold air inlet / outlet 244.
  • the vegetable room fan 253 is arranged so as to be offset so that the horizontal central axis is positioned below the horizontal central axis of the vegetable cold air inlet / outlet 244.
  • the vegetable room fan 253 is located in front of the vegetable cold air inlet / outlet 244, and is installed so that the vegetable room fan 253 and the vegetable cold air outlet / exit 244 overlap when viewed from the front.
  • the lower end of the vegetable cold air inlet / outlet 244 is provided at a position lower than the upper end of the vegetable compartment fan 253, and is arranged so as to overlap in the front-rear direction.
  • the upper part of the vegetable compartment 208 in the upper part of the vegetable compartment 208, as shown in FIG. 62, FIG. 65, etc., it is the upper part of the back surface partition wall body 217 which becomes the back face of the vegetable compartment 208, and becomes the diagonal position of the vegetable cold air entrance / exit 244.
  • the part is provided with a second vegetable cold air inlet 251.
  • a second vegetable cold air inlet 251 is provided at the upper left side of the vegetable chamber 208.
  • path 251a provided with the 2nd vegetable cold air inlet 251 is connected to the upper part of the vegetable compartment channel
  • FIG. 66 is an exploded perspective view of the rear partition wall 217 forming the vegetable compartment passage section 250, the second vegetable cold air inlet 251 and the second vegetable cold air inlet 251.
  • the vegetable compartment passage section 250 is formed between a front partition plate 217a and a rear partition plate 217b that are polymerized via a polystyrene foam (not shown).
  • An upper end portion 250a of the vegetable compartment passage portion 250 is open to the first passage 247a and the second passage 251a.
  • the vegetable room fan 253 is incorporated in the lower part of the vegetable room passage section 250, and the air outlet 254 opens into the vegetable room 208.
  • the vegetable room fan 253 blows into the vegetable room 208 the cold air flowing from the vegetable cold air inlet / outlet 244 and the vegetable room cold air sucked from the first vegetable cold air inlet 247 and the second vegetable cold air inlet 251. To do.
  • a vegetable storage case 248 is disposed as shown in FIG.
  • the vegetable storage case 248 includes a lower vegetable storage case 249a placed on the frame of the door 211 and an upper vegetable storage case 249b placed on the lower vegetable storage case 249a.
  • a space is provided between the vegetable storage case 248 and the partition plate 206 disposed below the vegetable storage case 248, and a space is also provided between the vegetable storage case 248 and the inner peripheral wall surface of the vegetable room 208. Yes.
  • These spaces constitute an air passage through which cold air flowing from the vegetable cold air inlet / outlet 244 flows.
  • the upper opening edge of the upper vegetable storage case 249b of the vegetable storage case 248 is located in a portion close to the partition plate 205 in the upper portion of the vegetable chamber 208, and is located above the vegetable cold air inlet / outlet 244. This prevents the cold air flowing from the vegetable cold air inlet / outlet 244 from directly entering the upper vegetable storage case 249b and the lower vegetable storage case 249a.
  • a lid that closes the upper vegetable storage case 249b may be provided at the upper opening of the upper vegetable storage case 249b to more reliably prevent cold air from entering the vegetable storage case 248.
  • the lower vegetable storage case 249a may be divided into left and right by a case partition plate 258 as shown in FIG.
  • the lower vegetable storage case 249a has a non-vegetable storage portion 259 (hereinafter referred to as a PET bottle) such as a PET bottle or a pack, with the side facing the vegetable cold air inlet / outlet 244 (in this embodiment, the right side as viewed from the front) one step deeper. And so on.)
  • the inside of the vegetable compartment 208 may be partitioned back and forth, and the front portion may be a storage portion 259 such as a plastic bottle.
  • the refrigerator compartment 207 includes a plurality of storage shelves 260 and a partial chamber 261 that can be cooled to a semi-refrigeration temperature zone.
  • a refrigerated cold air inlet 235 and a refrigerated cold air return port 236 are provided at appropriate locations in the cold room 207.
  • An operation unit 262 for setting the internal temperature of each room, ice making, rapid cooling, and the like is arranged at an appropriate side wall of the refrigerator compartment 207.
  • a freezing cold air inlet 242 that communicates with the lower part of the cooling room cold air conveyance path 230 formed on the back surface of the rear surface partition wall body 217 is formed in the upper rear wall of the freezing room 209. ing. Further, a freezing cold air return port 243 communicating with the cooling chamber 216 is formed in the lower portion of the back wall of the freezing chamber 209.
  • the freezer damper 234 may be incorporated at an appropriate position in the passage from the cooling chamber 216 to the freezer compartment 209.
  • the freezer compartment 209 is also provided with a freezer compartment case 263 mounted on the frame of the door 212 as shown in FIG. Furthermore, an ice making device 264 is incorporated in the upper part of the freezer compartment 263.
  • FIG. 70 shows a control block diagram in the refrigerator of the present embodiment.
  • the refrigerator compartment temperature detector 265, the vegetable compartment temperature detector 266, the freezer compartment temperature detector 267, and the outside air temperature detector 268 are all formed of thermistors.
  • the control unit 269 that performs overall control of the refrigerator 290 is configured by a microcomputer or the like.
  • the control unit 269 controls opening and closing of the refrigerator compartment damper 231 and the freezer compartment damper 234 according to control software incorporated in advance based on outputs from the refrigerator compartment temperature detector 265 and the freezer compartment temperature detector 267.
  • control unit 269 drives the compressor 215 and the cooling fan 219 to control each chamber to a set temperature. Further, the control unit 269 operates the vegetable room fan 253 incorporated in the vegetable room passage unit 250 of the vegetable room 208 based on outputs from the refrigerator temperature detecting unit 265, the vegetable room temperature detecting unit 266, and the outside air temperature detecting unit 268. To control. A specific control method will be described later.
  • the refrigeration cycle is operated by a signal from the control unit 269 according to the set temperature in the refrigerator 290, and the cooling operation is performed.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 215 is condensed and liquefied to some extent by a condenser (not shown). Further, the refrigerant condenses and liquefies while preventing condensation of the refrigerator 290 via a refrigerant pipe (not shown) disposed on the side surface and the rear surface of the refrigerator 290 or the front opening of the refrigerator 290 and the like. (Not shown).
  • the refrigerant is decompressed while exchanging heat with a suction pipe (not shown) to the compressor 215 in the capillary tube to become a low-temperature and low-pressure liquid refrigerant and reaches the cooler 218.
  • the refrigerant supplied into the cooler 218 evaporates and cool air for cooling each storage chamber is generated in the cooling chamber 216.
  • the low temperature cold air generated in the cooling chamber 216 is sent from the cooling chamber cold air conveyance path 230 to the refrigerator compartment 207 and the freezer compartment 209 by the cooling fan 219.
  • the cold air supplied to the refrigerator compartment 207 cools the refrigerator compartment 207
  • a part of the return cold air is supplied to the vegetable compartment 208, and each room is cooled to a set temperature.
  • the cold air that has cooled each chamber returns to the cooling chamber 216, is cooled by the cooler 218, and is circulated to each chamber by the cooling fan 219.
  • the control unit 269 causes the compressor 215 and the cooling fan 219 to operate and stop based on the detected temperatures of the refrigerator compartment temperature detector 265 and the freezer compartment temperature detector 267, so that Cold supply is performed.
  • the control unit 269 controls opening and closing of the refrigerator compartment damper 231 and the freezer compartment damper 234, and maintains each chamber in a set temperature range.
  • the cold air after cooling in the refrigerator compartment is supplied to the vegetable compartment 208 from the vegetable cold air inlet / outlet 244 provided in the cold return passage 238 as shown in FIG. 61, and the vegetable compartment 208 is cooled. Since the opening provided in the vegetable compartment 208 is only one vegetable cold air entrance / exit 244, the cold air supplied to the vegetable compartment 208 circulates as follows. During the operation of the cooling fan 219, that is, during the cooling operation, the vegetable room is changed so that the cold air is replaced with a part of the cold air in the vegetable room due to the pressure difference between the vegetable room 208 and the return passage 238 generated by the ventilation of the cooling fan 219. It slowly flows into 208.
  • the cold air flows through the space between the vegetable storage case 248 and the inner peripheral wall of the vegetable compartment 208, indirectly cools the vegetables, plastic bottles, etc. stored in the vegetable storage case 248 from the outer periphery of the case. It flows out from the entrance / exit 244 to the return passage 238.
  • the cool air circulates from the cool air return duct 240 to the cooling chamber 216.
  • the cold air entering and exiting the vegetable compartment 208 is milder and the amount thereof is relatively smaller than when the cold air inlet / outlet is provided separately. Therefore, the amount of cold air in the vegetable compartment 208 is slightly changed, and most of the cold air remains in the vegetable compartment 208. That is, the cold air in the vegetable compartment 208 is maintained in a high humidity state including the moisture evaporated from the vegetables. Therefore, compared with the case where the cool air in the vegetable room 208 is circulated and replaced in large quantities, the drying deterioration of the vegetables can be greatly reduced, and the vegetables can be stored in a cooled state in a considerably better state than before. It becomes.
  • the vegetable room fan 253 is provided at the lower part of the vegetable room passage section 250 of the vegetable room 208 and facing the vegetable cold air inlet / outlet 244. ing.
  • the vegetable compartment fan 253 rotates during the cooling operation, most of the return cold air flowing through the return passage 238 is sucked into the vegetable compartment passage portion 250 from the vegetable cold air inlet / outlet 244.
  • Cold air is supplied from the outlet 254 of the vegetable compartment fan 253 toward the rear surface of the lower vegetable storage case 249a in the vegetable compartment 208.
  • the vegetable room fan 253 is arranged in an offset state with the vegetable cold air inlet / outlet 244. For this reason, the entry / exit of the cold air performed through the vegetable cold air inlet / outlet 244 becomes relatively smooth even if the opening is only one vegetable cold air inlet / outlet 244, and reliable suction and intake are possible. That is, as shown by X and Y in FIG. 61, in the portion near the lower end of the vegetable cold air inlet / outlet 244 close to the central axis of the vegetable room fan 253 (lower part in FIG. 61), cold air enters the vegetable room 208 as shown by X. Flows in.
  • the cold air is clearly divided so as to flow out of the vegetable room 208 as indicated by Y. Become. Therefore, even if it is one vegetable cold air entrance / exit 244, it can be prevented that cold air enters and exits and the cold air is stagnated, resulting in insufficient cold air intake. That is, the cool air can be reliably sucked and taken in from the return passage 238, and the cool air can be supplied into the vegetable compartment 208 from the outlet 254 of the vegetable compartment fan 253.
  • the cold air taken into the vegetable compartment 208 and supplied toward the vegetable storage case 248 in the vegetable compartment 208 as described above is the space between the vegetable storage case 248 and the bottom of the vegetable compartment 208, and the vegetable storage case.
  • the space between H.248 and the inner peripheral wall flows faster than the flow when circulating only by the blowing pressure of the cooling fan 219.
  • the cold air circulates from the vegetable cold air inlet / outlet 244 to the cooling chamber 216 via the return passage 238 and circulates.
  • the cold air other than the cold air returning to the cooling chamber 216 is circulated from the first vegetable cold air inlet 247 and the second vegetable cold air inlet 251 provided in the upper part of the vegetable chamber 208.
  • the vegetable room 208 receives cold radiation from the cooling room 216 located on the back of the vegetable room 208 and the freezing room 209 located below the vegetable room 208. As a result, the temperature in the vicinity of the lower back of the vegetable compartment 208 is likely to be lowered as in the conventional case. In particular, the cold radiation from the cooling chamber 216 is strong. The back side of the vegetable room 208 receives strong cold radiation at a part facing the cooling room temperature zone from the cooling room 216 to the refrigerating room damper 231, and this part tends to be lowered in temperature.
  • the cooling chamber cool air conveyance path 230 from the cooling chamber 216 to the refrigerating chamber damper 231 as well as the cooling chamber 216 itself is in the same cryogenic temperature range as the cooling chamber 216. .
  • the lowering of the temperature in the vicinity of the lower back of the vegetable room due to the cold radiation is resolved by the diffusion and circulation of the cold air in the vegetable room 208 by driving the vegetable room fan 253 in both cases of cooling operation and stopping cooling. To do. That is, when the vegetable room fan 253 is driven, the cold air in the vegetable room 208 diffuses and circulates, the temperature is dispersed by the cold air that diffuses and circulates, and local temperature reduction is suppressed.
  • the cold air diffused and circulated in the vegetable compartment 208 by the vegetable compartment fan 253 is generated from the cold radiation from the cooling room temperature zone located on the back of the vegetable compartment 208 and the freezer compartment 209 located below the vegetable compartment 208.
  • the temperature in the vicinity of the lower part of the back of the vegetable room which is easy to lower the temperature, is diffused into the vegetable room 208. That is, the cold air diffused and circulated in the vegetable compartment 208 by the vegetable compartment fan 253 cools the vegetable compartment 208 by lowering the temperature in the vegetable compartment 208, and at the same time, extremely low temperature or temperature near the lower back of the vegetable compartment. Suppresses the occurrence of differences and prevents condensation.
  • the pressure difference generated by the operation of the cooling fan 219 is eliminated, and all the cold air is generated due to the temperature difference. It begins to flow to the equilibrium state due to the density difference.
  • the pressure in the freezing chamber 209 is the second highest after the cooling chamber cold air conveyance path 230, the cold air in the cooling chamber cold air conveyance path 230, the cooling chamber 216, and the freezing chamber 209 continues to spread until the pressure difference is eliminated.
  • the cool air in the freezer compartment 209 and the cooler chamber 216 is relatively low temperature and high in density, the cool air in at least the cooler chamber cool air conveyance path 230 flows down, The cold air reaches the height of the coldest cooling chamber 216.
  • the cooling chamber 216 and the freezing chamber 209 are filled with cold cold air, the cold cooling air flowing down described above is connected to the cooling chamber 216 and the freezing chamber 209 through the cold air return passage 238. It spreads out.
  • the cold air that has spread to the return passage 238 reaches the upper end of the cool air that flows back through the return passage 238 and accumulates in the cooling chamber 216, that is, the lower end height of the cooling fan 219 that opens above the cooling chamber 216.
  • the lower end of the vegetable cold air inlet / outlet 244 is set higher than the height of the bell mouth lower end of the cooling fan 219, it is possible to suppress the backflow of cold air from flowing into the vegetable room 208 from the vegetable cold air inlet / outlet 244. Thereby, it is possible to prevent the vegetable compartment 208 from being locally cooled by the backflow cold air, and to prevent dew condensation, freezing, and overcooling in the vegetable compartment 208, so that deterioration of stored vegetables can be prevented.
  • the cooler 218 for generating cold air is enlarged, and the cooling compartment Even if 216 is a large-capacity large-sized refrigerator that spans the freezer compartment 209 and the vegetable compartment 208, dew condensation caused by cold radiation from the cooling compartment 216 can be suppressed. Therefore, in the entire refrigerator ranging from a small refrigerator with a small capacity to a large refrigerator with a large capacity, it is possible to suppress the deterioration of vegetables due to condensed water caused by cold radiation from the cooling chamber 216, and to cool and store the vegetables in a good state. It becomes.
  • this refrigerator is a “middle vegetable room type” in which the vegetable compartment 208 is provided between the refrigerator compartment 207 and the freezer compartment 209, so that condensation is prevented and the vegetables are cooled and stored in a good state.
  • this refrigerator it is possible to improve the usability of the user who mainly uses the vegetables in and out.
  • FIG. 71 is a flowchart illustrating the vegetable room cooling operation of the refrigerator in the fifth embodiment.
  • FIG. 72 is a timing chart showing the operation when the vegetable compartment is soaked by cold air circulation.
  • FIG. 73 is a timing chart showing a cooling operation when the vegetable compartment is cooled while being warmed by cold air circulation.
  • FIG. 74 is a timing chart showing temperature equalization and cooling operation by cold air circulation when the temperature of the vegetable compartment is higher than a predetermined temperature.
  • FIG. 75 is a flowchart showing an example of an actual cooling situation in the vegetable compartment.
  • the refrigerator 290 first determines whether or not the cooling operation is possible based on the temperature of the refrigerator compartment 207 or the freezer compartment 209, as in the case of an ordinary refrigerator (S1). That is, whether or not the compressor 215 and the cooling fan 219 can be operated is determined. For example, when the temperature of the freezer compartment 209 is equal to or higher than the set temperature, the controller 269 drives the compressor 215 and the cooling fan 219 based on the output from the freezer compartment temperature detector 267.
  • the control part 269 is the freezer compartment damper 234, the refrigerator compartment damper 231, and the partial compartment damper (Hereinafter, the refrigerator compartment damper 231 which controls the cold air supply to the vegetable compartment 208 is demonstrated as an example for simplification of explanation). open.
  • the cold air generated by the cooler 218 is supplied to the vegetable compartment 208 together with the freezer compartment 209, the refrigerator compartment 207, etc., and cools the refrigerator compartment 207, the vegetable compartment 208, and the freezer compartment 209.
  • the vegetable compartment 208 is gently cooled by the intake of cold air by the cooling fan 219.
  • the outside air temperature is taken in and the outside air temperature state is determined (S2). Based on the determined temperature result, the initially set driving time (ON driving time and OFF time) of the vegetable compartment fan 253 is corrected and set as the timer driving time (S3).
  • the timer drive time is set such that the fan drive time is increased in summer when the outside air temperature is equal to or higher than a predetermined temperature, and the fan drive time is shortened in winter when the external temperature is lower than the predetermined temperature.
  • the temperature of the vegetable room is taken in, and it is determined whether or not it is within a temperature range at the time of stable cooling, that is, a predetermined temperature range predetermined in design (S4). )to go into.
  • the temperature control operation (S6) is entered.
  • step (S4) If it is determined in the above step (S4) that the vegetable room temperature is not more than the predetermined temperature range, the temperature in the vegetable room 208 is sufficiently low, and the control unit 269 puts the vegetable room fan 253 in a stopped state (S14). Thereby, the electric power consumption accompanying rotating the vegetable compartment fan 253 can be suppressed, and favorable cooling preservation
  • the vegetable room fan 253 is stopped (S14). Thereby, although the refrigerator 290 has stopped operation, it can prevent giving a distrust to a user by the vegetable room fan 253 rotating and hearing the sound.
  • the refrigerator compartment damper 231 is opened, that is, the refrigerator compartment damper 231 is opened and the cold air from the refrigerator compartment 216 is supplied to the refrigerator compartment 207 and the vegetable compartment 208 to cool each of these compartments. It is confirmed whether or not (S9).
  • the temperature equalizing operation (S10) for preventing the condensation of the vegetable room is performed based on the timer driving time. .
  • the temperature equalizing operation performed when the refrigerator compartment damper 231 is closed the cold air does not flow through the return passage 238. Therefore, the cold air in the vegetable compartment 208 is circulated in the vegetable compartment 208 by the rotation of the vegetable compartment fan 253. Eliminates temperature differences in the vegetable compartment and suppresses condensation.
  • the temperature equalizing operation is performed even when the temperature of the refrigerator compartment and the temperature of the vegetable compartment is always low and the refrigerator compartment damper 231 is not opened continuously for a certain period of time or longer.
  • the fan 253 is driven to prevent the occurrence of condensation. That is, the control unit 269 forces the vegetable compartment fan 253 to stop when the operation of the compressor for generating cold air is stopped within a predetermined time. When the cold air generating compressor is stopped for a certain time or longer, the vegetable compartment fan 253 is driven based on the timer control operation.
  • the soaking operation is performed when the vegetable compartment fan 253 is rotationally controlled at a predetermined time, and thus the temperature in the vegetable compartment 208 is constantly detected and the vegetable compartment fan 253 is rotationally controlled. It is possible to reduce temperature control variations due to temperature detection delay. Thereby, the temperature in the vegetable compartment 208 can be stabilized, and vegetables can be cooled and stored in a good state.
  • the drive of the vegetable compartment fan 253 at the time of the temperature equalization operation (S10) in the timer control operation (S5) is controlled to be performed for the time set in consideration of the outside air temperature in the step (S3), the door Even if the amount of heat from the outside air received from the side or the like changes, the cold air in the vegetable compartment can be circulated without excess or deficiency. As a result, the temperature in the vegetable compartment can be surely equalized, and the condensation that occurs due to the temperature difference in the vegetable compartment can be reliably and efficiently suppressed.
  • FIG. 72 shows the driving state of the vegetable room fan 253 and the temperature state of the vegetable room 208 when the temperature is controlled by the timer control operation.
  • the compressor 215 When the compressor 215 is operated and the refrigerator compartment damper 231 is closed, the vegetable compartment fan 253 rotates.
  • the temperature in the vegetable compartment 208 is equalized to a substantially constant temperature without causing variations due to temperature detection delay or the like. Thereby, the dew condensation resulting from the temperature difference in the vegetable compartment 208 can be suppressed reliably.
  • a in FIG. 72 shows the temperature equalizing operation time of the timer control operation.
  • the refrigeration room damper 231 is open and the vegetable compartment 208 or the like is being cooled as a result of the operation state confirmation in step (S8), the vegetable compartment fan 253 is further cooled together with the above-described driving for temperature equalization. Is also performed, and the vegetable room 208 is cooled and soaked (S12). As described above, this cooling + temperature equalization operation is performed by actively sucking and taking in the cold air flowing in the return passage 238 by the rotation of the vegetable room fan 253, and together with the cold air originally circulated in the vegetable room. The inside of the vegetable compartment 208 is circulated and the inside of the vegetable compartment 208 is soaked to cool the inside of the vegetable compartment 208 while suppressing the occurrence of condensation.
  • FIG. 73 shows a driving state of the vegetable compartment fan 253 at the time of cooling and temperature equalization by the timer control operation.
  • the cooling rotation and the temperature equalizing rotation are performed for a predetermined timer driving time set in advance (S13a).
  • S13a timer driving time set in advance
  • the inside of the vegetable compartment 208 is kept cooled within a predetermined temperature range, and the cold in the vegetable compartment is circulated as described above to prevent a large temperature difference from occurring in the vegetable compartment and suppress the occurrence of condensation.
  • 73 in FIG. 73 indicates the cooling operation time in the timer control operation.
  • the vegetable room fan 253 is driven in the timer control operation (S5) during the cooling + temperature equalization operation (S12) for the time set in consideration of the outside air temperature in step (S3). (S13a). Therefore, as in the soaking operation, it is possible to circulate the cool air in the vegetable room without excess or deficiency according to the amount of radiant heat from the outside air received from the door side, etc. It becomes possible. As a result, the temperature in the vegetable room can be surely equalized, and the occurrence of condensation due to the temperature difference can be reliably and efficiently prevented. Furthermore, the inside of the vegetable compartment 208 can be reliably maintained within a predetermined temperature range without being influenced by the outside air temperature.
  • the rotation of the vegetable compartment fan 253 since the rotation of the vegetable compartment fan 253 is further controlled at a time determined by the timer control operation, the rotation of the vegetable compartment fan 253 may occur when the temperature in the vegetable compartment 208 is constantly detected. It is possible to reduce temperature control variations due to temperature detection delay. As described above, the temperature in the vegetable compartment 208 can be stabilized and the vegetables can be cooled and stored in a good state.
  • the timer driving time for cooling among the timer driving times set in step (S3) is further corrected according to the temperature of the vegetable compartment 208 and set as the temperature driving time for cooling (S7).
  • step (S4) since the determination of the vegetable room temperature in step (S4) is not less than the predetermined temperature range, the compressor 215 and the cooling fan 219 are naturally in operation. Then, whether or not the refrigerator compartment damper 231 is open, that is, whether or not the refrigerator compartment damper 231 is open and the cold air from the cooling compartment 216 is supplied to the refrigerator compartment 207 and the vegetable compartment 208 to cool each of these compartments. Confirm (S9). Also in this case, since the determination of the vegetable room temperature in the step (S4) is not less than the predetermined temperature range, the compressor 215 and the cooling fan 219 are in operation, and the cold room damper 231 is open and cooling. Therefore, the vegetable room fan 253 is driven, and the vegetable room 208 is cooled and soaked (S12).
  • the driving of the vegetable room fan 253 in the cooling + temperature equalizing operation (S12) in the temperature control operation (S6) is performed based on the cooling temperature driving time corrected based on the vegetable room temperature in step (S7).
  • the cooling temperature drive time elapses (S13b)
  • it stops (S14) that is, when the temperature rises due to outside air entering by opening and closing the vegetable room by taking in and out vegetables, the temperature driving time for cooling set based on the temperature in the vegetable room 208, the vegetable room fan 253 rotates. Then stop. Therefore, the vegetable room can be reliably and quickly cooled to a predetermined temperature, and the temperature in the vegetable room can be equalized to prevent condensation.
  • FIG. 74 shows a driving state of the vegetable room fan 253 by the temperature control operation (S6).
  • the cooling time for cooling the vegetable room is increased according to the temperature of the vegetable room 208, and is optimal according to the temperature of the vegetable room 208
  • the vegetable room fan 253 rotates for a long time (S13b). As a result, the amount of cold air taken into the vegetable compartment 208 is increased, the inside of the vegetable compartment 208 can be reliably and rapidly cooled, and the temperature inside the vegetable compartment 208 can be equalized to prevent the occurrence of condensation. .
  • the amount of cold air taken into the vegetable room 208 can be increased and the vegetable room 208 can be opened in a shorter time. It can be cooled to a predetermined temperature. Note that C in FIG. 74 indicates the cooling operation time in the temperature control operation.
  • FIG. 75 is a timing chart showing an example of the cooling state of the vegetable compartment 208 when controlled by the control of the fifth embodiment.
  • the vegetable compartment fan 253 is operated for the timer control operation time determined in step (S3). Driven for cooling and soaking. That is, when the vegetable room temperature is stable, the vegetable room 208 is cooled only by the cooling operation 1 (timer control). For example, when the vegetable room 208 is released for taking out vegetables or the like and the temperature in the vegetable room 208 becomes high (Y), the cooling time for driving the vegetable room fan 253 becomes longer according to the temperature in the vegetable room. Thus, the vegetable compartment 208 is efficiently cooled.
  • the cooling operation time is extended by adding the cooling operation 2 (temperature control) to the cooling operation 1 (timer control). And the cooling time which drives the vegetable compartment fan 253 becomes short as the temperature in the vegetable compartment 208 falls. When the temperature of the vegetable compartment 208 reaches a predetermined temperature or less, the cooling operation 2 (temperature control) is terminated.
  • the time returns to the timer control operation time determined in step (S3), and the vegetable room is cooled and temperature-equalized. That is, when the vegetable compartment 208 reaches an appropriate temperature, the operation returns to the cooling operation 1 (timer control) only.
  • FIG. 76 is a perspective view for explaining a cold air flow in the rear portion of the cooling chamber of the refrigerator in the sixth embodiment.
  • FIG. 77 is a schematic cross-sectional view for explaining the cold air flow in the vegetable room of the refrigerator in the sixth embodiment.
  • the refrigerator 290 in the present embodiment is provided with a vegetable cold air inlet 245 and a vegetable cold air return port 246 separately from the vegetable cold air inlet / outlet 244 described in the fifth embodiment. That is, the vegetable cold air inlet 245 is provided in the vegetable chamber 208, and further, the vegetable cold air return port is located above the vegetable cold air inlet 245, for example, in the vicinity of the first passage 247a, the second passage 251a, and the vegetable compartment passage portion 250. 246 is provided.
  • cold air in the cold return passage 238 flows from the vegetable cold air inlet 245, and the cold air in the vegetable room 208 flows out from the vegetable cold air return port 246 to the cold air return passage 238. Therefore, compared with the case where cold air enters and exits from one vegetable cold air inlet / outlet 244, the cold air enters and exits smoothly, and more cold air flows into the vegetable compartment 208. Thereby, cold air can be efficiently taken into the vegetable compartment and the inside of the vegetable compartment 208 can be cooled strongly. Therefore, for example, the vegetable compartment 208 is effective at the bottom of the refrigerator main body, and the bottom of the vegetable compartment 208 receives heat radiation from the outside air and is not easily cooled.
  • the refrigerator 290 of the fifth and sixth embodiments has a configuration in which the vegetable compartment 208 is disposed between the refrigerator compartment 207 and the freezer compartment 209, and the refrigerator compartment 207 and the freezer compartment 209 are connected to the vegetable compartment 208. Since there is no endothermic amount, the vegetable room temperature is stable except when the stored items are replaced into the vegetable room 208. Therefore, when the temperature of the vegetable compartment 208 is stable, that is, when the vegetable compartment temperature is within the predetermined temperature range, it is only necessary to perform a timer control operation for driving the vegetable compartment fan 253.
  • the vegetable room fan 253 is driven for a time set based on the vegetable room temperature. Perform temperature controlled operation. Thereby, optimal vegetable room temperature control is realizable.
  • the refrigerators 290 of the fifth and sixth embodiments can suppress the occurrence of dew condensation due to the temperature difference in the vegetable compartment 208 and at the same time can cool and keep the vegetable compartment at a low temperature, and always keep the vegetables in a good state in a cold state. Can do. Furthermore, the refrigerator 290 also has the following effects regarding vegetable room cooling.
  • the vegetable room fan 253 circulates cold air toward the outer periphery of the lower vegetable storage case 249a and the upper vegetable storage case 249b of the vegetable storage case 248. Thereby, it can suppress that the cold which circulates by the vegetable compartment fan 253 enters into the lower vegetable storage case 249a and the upper vegetable storage case 249b, and flows between vegetables. As a result, it is possible to prevent drying and deterioration of vegetables that tend to occur due to cold air flowing between the vegetables, and to cool and store the vegetables in a fresh and good state.
  • the refrigerator 290 includes a first vegetable cold air inlet 247 that also serves as an inlet for cold air that diffuses or circulates in the vegetable compartment 208 above the vegetable storage case 248 including the lower vegetable storage case 249a and the upper vegetable storage case 249b. And the 2nd vegetable cold air suction inlet 251 is provided. Therefore, the cold air circulating in the vegetable compartment 208 does not enter the vegetable storage case 248 including the lower vegetable storage case 249a and the upper vegetable storage case 249b, and the first vegetable cold air suction port 247 and the second vegetable cold air are left as they are. It flows to the suction port 251. As a result, it is possible to more reliably prevent the vegetables from being dried and to cool and store the vegetables in a fresh and good state.
  • the effect mentioned above can further be heightened by making the upper surface opening edge of the upper stage vegetable storage case 249b adjoin to the partition plate 205 used as a vegetable room ceiling surface.
  • the effect mentioned above can be heightened more effectively by providing the cover which covers upper surface opening.
  • the vegetable compartment fan 253 is located below the upper opening edge of the vegetable storage case 248 composed of the lower vegetable storage case 249a and the upper vegetable storage case 249b.
  • the cool air blown from the vegetable compartment fan 253 circulates in the vegetable storage case 248, particularly in the vicinity of the bottom surface and lower outer periphery of the lower vegetable storage case 249a. Therefore, the cold air circulated by the vegetable compartment fan 253 is more difficult to enter the vegetable storage case 248.
  • the vegetable storage case 248 is provided with a storage unit 259 such as a plastic bottle for partitioning the inside of the lower vegetable storage case 249a to the left and right and storing plastic bottles, packs and the like on one side.
  • the vegetable room fan 253 is provided in the back part of the vegetable room by the side of storage part 259, such as a plastic bottle, It is comprised so that the cool air in a vegetable room may be circulated toward the storage part 259, such as a plastic bottle. Therefore, the cold air from the vegetable room fan 253 circulates intensively around the PET bottle storage unit 259, and efficiently cools the PET bottles and packs stored in the PET bottle storage unit 259. be able to.
  • drinking water such as PET bottles and packs stored in the PET bottle storage unit 259 has a larger heat capacity than vegetables and is difficult to cool. Therefore, the increase in the temperature of the vegetable room due to the storage of PET bottles and the like can be efficiently suppressed, and the occurrence of condensation can be effectively prevented, and at the same time, the vegetables can be stored well.
  • a first vegetable cold air inlet 247 is provided in the vegetable storage case 248 on the side of the storage part 259 such as a plastic bottle.
  • the cold air from the vegetable compartment fan 253 can be circulated more efficiently and intensively to the storage part 259 such as a plastic bottle.
  • a second vegetable cold air suction port 251 that is another suction port for circulating the cold air in the vegetable chamber 208 is provided at the upper part of the vegetable room substantially diagonally with the vegetable room fan 253.
  • a part of the cool air blown from the vegetable compartment fan 253 circulates through the bottom of the plastic bottle storage 259 of the vegetable storage case 248 forward and obliquely longitudinally through the vegetable compartment 208.
  • a communication path 239 is formed between the refrigerated cold air passage 232 and the refrigerated cold air return path 233.
  • the vegetable room fan 253 When the vegetable room fan 253 is rotated, the low-temperature and fresh cold air in the refrigerated cold air passage 232 is mixed in the refrigerated cold air return passage 233 by the fan suction force, and the vegetable room is fed from the vegetable cold air inlet / outlet 244 via the return passage 238. 208 is supplied. That is, the vegetable room 208 is not only cooled by the return cold air having a relatively high temperature after the cold room cooling from the cold room 207, but also by the rotation of the vegetable room fan 253, fresh cold air at a low temperature is described above.
  • the vegetable compartment 208 can be effectively cooled, and the vegetable compartment 208 can be reliably cooled even when the cooling load condition is bad, for example, when many vegetables or plastic bottles are temporarily stored. can do.
  • the amount of low-temperature fresh cold air taken in via the communication path 239 can be increased by increasing the rotation speed of the vegetable compartment fan 253. Therefore, even when a large amount of room temperature PET bottles having a large heat capacity are stored in the summer, it can be reliably cooled.
  • the vegetable compartment 208 can be reliably cooled, the occurrence of condensation due to cold radiation from the cooling compartment 216 can be efficiently suppressed, and the vegetables can be stored in a cool state in a good state.
  • Embodiments 5 and 6 the soaking operation and the cooling operation of the vegetable room fan 253 are separately performed and described, but the soaking operation and the cooling operation are performed for one continuous time. You may make it carry out.
  • the temperature correction of the vegetable room fan driving time performed when the temperature of the vegetable room 208 is equal to or higher than the predetermined temperature has been described as being performed only for the cooling driving time, but the temperature equalizing driving time is also performed. It may be selected as appropriate.
  • At least one of cooling and cooling stop of the vegetable compartment 208 that is, at least one of supply and stop of cold air to the vegetable compartment 208 has been described as being performed using the refrigerator compartment damper 231. It is not limited.
  • a vegetable room damper dedicated to the vegetable room 208 may be provided to perform at least one of supply and stop. In this case, step (S9) may be set as “open vegetable room damper?”.
  • the “middle vegetable type” refrigerator in which the vegetable compartment 208 is provided between the refrigerator compartment 207 and the freezer compartment 209 has been described as an example. What is necessary is just to have the cooling chamber 216 installed over the back surface of the chamber 208 and the freezing chamber 209.
  • control method described above can be applied to the first, second, third, fourth and sixth embodiments.
  • the present invention can suppress the occurrence of dew condensation in the vegetable room and can cool and store the vegetables in a good state. Therefore, the present invention can be widely applied to commercial refrigerators as well as home use, and is useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

 冷蔵庫であって、冷蔵室、野菜室、および冷凍室を備えている。また、冷凍室および野菜室の背面に配設され、冷気を生成する冷却器を備えた冷却室と、冷却室に配設されており、冷却器で生成された冷気を冷蔵室、野菜室、および冷凍室に供給循環させる冷却ファンとを備えている。さらに、野菜室に配設されている野菜室ファンを備えている。

Description

冷蔵庫
 本発明は冷蔵庫、特に野菜室における野菜の冷却保存構成に関する。
 一般に家庭用冷蔵庫は、冷蔵庫本体内に温度帯域の異なる複数の貯蔵室、例えば、冷蔵室、野菜室、および冷凍室を備えている。そして、冷蔵室、野菜室、および冷凍室のレイアウトはユーザの使用実態に合わせ大きく二分されている。一つ目は、冷蔵庫本体の上下中央部分に冷凍室を配置するレイアウトであり、ユーザが最も使用し易いレイアウトとされている。二つ目は、冷蔵庫本体の上下中央部分に野菜室を配置するレイアウトである。
 冷蔵庫本体の上下中央部分に冷凍室を配置するタイプの冷蔵庫は、今日では主流となっている。特に、生活スタイルの変化に伴い冷凍食品を多用するユーザにとって使い勝手の良い冷蔵庫とされている。このタイプの冷蔵庫として、例えば、特許文献1に記載の冷蔵庫が提案されている。
 図78は特許文献1に記載の冷蔵庫を示す。冷蔵庫本体500は、上部に冷蔵室501、下部に野菜室502を備える。そして、冷蔵室501と野菜室502の間となる、冷蔵庫本体500の上下中央部分には冷凍室503が配置されている。そして、野菜室502と冷凍室503とにまたがって、冷蔵庫の背面側に冷却室504が設けられている。冷却室504には、冷却器505と冷却ファン506とが配設されている。冷却器505で生成された冷気は、冷却ファン506により、冷蔵室501、野菜室502、および冷凍室503に供給され循環される。そして、上述した各室に貯蔵されている食品が冷却保存される。
 冷蔵庫本体の上下中央部分に野菜室を配置するタイプの冷蔵庫は、「真ん中野菜冷蔵庫」と略称され、野菜等の出し入れを中心に使用するユーザにとって使い勝手が良い冷蔵庫として提案されている(例えば、特許文献2参照)。
 図79は、特許文献2に記載されている冷蔵庫を示す。冷蔵庫本体600は、上部に冷蔵室601、下部に冷凍室602を備える。冷蔵室601と冷凍室602との間となる、冷蔵庫体600の上下中央部分には野菜室603が配置されている。そして、冷凍室602と野菜室603とにまたがって、冷蔵庫本体200の背面側に冷却室604が設けられている。冷却室604には、冷却器605と冷却ファン606とが配設されている。冷却器605で生成された冷気は、冷却ファン606により、冷蔵室601、野菜室603、および冷凍室602に供給され循環される。そして上述した各室に貯蔵されている食品を冷却保存するようになっている。
 上述したいずれのタイプの冷蔵庫も、冷却室で生成される冷気は冷蔵室経由で野菜室内を循環する。そして、野菜室内を循環する冷気によって、野菜室内に収納されている野菜を冷却保存している。
 しかしながら、上記特許文献1および特許文献2に記載の冷蔵庫は、野菜の冷却保存中に野菜室503,603で結露が生じることがあり、この結露によって収納されている野菜を劣化させてしまうという課題を有している。
 すなわち、野菜室503,603はその背面に位置する冷却室504,604から冷輻射を受け、野菜室503,603の背面付近の温度が低温化しやすい。その結果、結露が生じる。特に野菜室503,603には、上述した通り、冷蔵室501,601を冷却した後の比較的温度の高い冷気が供給されている。一方、野菜室503,603は、冷却室504,604から強い冷輻射を受け続ける。これにより、冷却室504,604と対向する野菜室背面部分の温度が低下し、野菜室内の冷気温度との間に大きな温度差が生じる。その結果、野菜室503,603に設けられている野菜収納ケースの背面部付近に結露が生じる。
 通常の使用では結露が生じないように、冷却室504,604からの冷輻射を抑制する断熱構成が採用されている。しかしながら、野菜室503,603に多くの野菜、あるいはキャベツ等の大きな野菜等が一時的に収納される場合では、野菜が持つ熱によって野菜近傍の温度が上昇する。そして冷却室504,604からの冷輻射によって、野菜室内での温度差が大きくなって、野菜室内の冷気が野菜収納ケースの壁面等に結露し始める。特に近年の冷蔵庫では、野菜収納ケースに飲料水、お茶、ジュース類の大型のペットボトル、またはパックを収納できるようになっている。ペットボトル等は野菜に比べ常温であることが多いうえに熱容量が大きい。従って、野菜室503,603にペットボトル等が収納された際、収納直後からペットボトル等近傍の温度が上昇し始め、冷却室504,604からの冷輻射に伴う温度差が大きくなり易い。その結果、野菜室内冷気の結露による野菜劣化問題が顕在化し易い。
 さらに、このような問題は、特に「真ん中野菜冷蔵庫」と略称される冷蔵庫において生じやすい傾向がある。真ん中野菜タイプの冷蔵庫は、野菜室603の底面がその下方に位置する冷凍室602からも冷輻射を受ける。冷却室604からの冷輻射に、冷凍室602からの冷輻射も加わり、これら両者の相乗作用により、野菜室603の背面下部近傍が低温化しやすいからである。特に、冷却室604が野菜室背面部分にまで位置する大型の冷蔵庫においては、この野菜室内の結露による野菜劣化問題は、避けがたい課題となる。
 また、上述した結露に関する問題は、野菜及びペットボトル等の飲料水、お茶、ジュース類の温度が比較的高くなりがちな夏場において生じ易い。その結果、野菜室全体の温度が高目になりがちで、結露水が多くなるとともに、野菜やペットボトル等を十分冷却保存できなくなり、野菜の劣化が早まる。そして、ユーザに対し冷蔵庫が冷えないという印象を与えてしまい、冷蔵庫に対する信頼性を低下させてしまうというおそれもある。
 このような問題を解決する手段として、例えば特許文献3には、冷却室を冷凍室の背面のみに設けて野菜室の背面部分には位置させない冷蔵庫が提案されている。しかしながら、このような構成では、冷却室に設ける冷却器の大きさが限定されて冷却能力に制約が生じ、大能力の大型冷蔵庫には応用できない。従って、大型冷蔵庫では冷却室からの冷輻射で生じる結露による野菜劣化問題を解消することができないという課題がある。
特開2010-60258号公報 特開平9-113109号公報 特開平11-118314号公報
 本発明は、上述した従来の課題に鑑みてなされたもので、野菜室内での結露を解消して野菜等を良好に冷却保存できる冷蔵庫を提供するものである。
 本発明の冷蔵庫は、冷蔵室、冷凍室、および野菜室に冷気を循環させる冷却ファンに加えて、野菜室に配設されている野菜室ファンを備える。
 これにより、野菜室ファンを回転させ、野菜室内の冷気を拡散及び循環のうち少なくとも一方をさせて、冷却室からの冷輻射を受ける部分に大きな温度差が生じるのを抑制する。その結果、冷却室からの冷輻射に起因する結露発生を防止することができる。さらに、冷気生成用の冷却器が大型化され、冷却室が冷凍室と野菜室とにまたがる大きな能力の大型冷蔵庫であっても、冷却室からの冷輻射に起因する結露発生を抑制することができる。
図1は、本発明の実施の形態1における冷蔵庫の正面図である。 図2は、同実施の形態1における冷蔵庫の扉を開いた時の正面図である。 図3は、同実施の形態1における冷蔵庫を示す図2の3-3断面を示す図である。 図4は、同実施の形態1における冷蔵庫を示す図2の4-4断面を示す図である。 図5は、同実施の形態1における冷蔵庫を正面から見て縦方向に半分に切断した時の斜視図である。 図6は、同実施の形態1における冷蔵庫の冷気流れを説明するための概略断面図である。 図7は、同実施の形態1における冷蔵庫の冷気流れを説明する概略正面図である。 図8は、同実施の形態1における冷蔵庫の冷却室背面部分の冷気流れを説明する斜視図である。 図9は、同実施の形態1における冷蔵庫を示す図3の要部拡大断面を示す図である。 図10は、図9における冷気流れを説明するための概略断面図である。 図11は、同実施の形態1における冷蔵庫を示す図4の要部拡大断面を示す図である。 図12は、図11における野菜室の冷気流れを説明するための概略断面図である。 図13は、同実施の形態1における冷蔵庫の野菜室と冷凍室を示す拡大正面図である。 図14は、図13に示す冷蔵庫の野菜室と冷凍室の背面に設置された冷却ファンと冷却器を示す拡大正面図である。 図15は、同実施の形態1における冷蔵庫の野菜室と冷凍室の背面壁部分を示す拡大斜視図である。 図16は、図15に示す冷蔵庫の野菜室の背面壁部分を構成する奥面仕切壁ブロックの拡大斜視図である。 図17は、図16に示す野菜室の背面壁部分を構成する奥面仕切壁ブロックの分解斜視図である。 図18は、図16に示す冷凍室の背面壁部分を構成するブロックの分解斜視図である。 図19は、同実施の形態1における冷蔵庫の貯蔵室と野菜室を仕切る仕切板と冷却ファンの斜視図である。 図20は、図19における仕切板と冷却ファンの分解斜視図である。 図21は、同実施の形態1における冷蔵庫の野菜収納ケースを示す斜視図である。 図22は、同実施の形態1における冷蔵庫の制御ブロック図である。 図23は、本発明の実施の形態2における冷蔵庫の冷却室背面部分の冷気流れを説明する斜視図である。 図24は、同実施の形態2における冷蔵庫の野菜室における冷気流れを説明するための概略断面図である。 図25は、本発明の実施の形態3における冷蔵庫の正面図である。 図26は、同実施の形態3における冷蔵庫の扉を開いた時の正面図である。 図27は、同実施の形態3における冷蔵庫を示す図26の27-27断面を示す図である。 図28は、同実施の形態3における冷蔵庫を示す図26の28-28断面を示す図である。 図29は、同実施の形態3における冷蔵庫を正面から見て縦方向に半分に切断した時の斜視図である。 図30は、同実施の形態3における冷蔵庫の冷気流れを説明するための概略断面図である。 図31は、同実施の形態3における冷蔵庫の冷気流れを説明する概略正面図である。 図32は、同実施の形態3における冷蔵庫の冷却室背面部分の冷気流れを説明する斜視図である。 図33は、同実施の形態3における冷蔵庫を示す図27の要部拡大断面を示す図である。 図34は、図33における冷気流れを説明するための概略断面図である。 図35は、同実施の形態3における冷蔵庫を示す図28の要部拡大断面を示す図である。 図36は、同実施の形態3における冷蔵庫の野菜室における冷却ファン回転時の冷気流れを説明するための概略断面図である。 図37は、同実施の形態3における冷蔵庫の野菜室における冷却ファン停止時の冷気流れを説明するための概略断面図である。 図38は、同実施の形態3における冷蔵庫の野菜室と冷凍室を示す拡大正面図である。 図39は、図38に示す冷蔵庫の野菜室と冷凍室の背面に設置された冷却ファンと冷却器を示す拡大正面図である。 図40は、同実施の形態3における冷蔵庫の野菜室と冷凍室の背面壁部分を示す拡大斜視図である。 図41は、図40に示す冷蔵庫の野菜室の背面壁部分を構成する奥面仕切壁ブロックの斜視図である。 図42は、図41に示す野菜室の背面壁部分を構成する奥面仕切壁ブロックの分解斜視図である。 図43は、図41に示す冷凍室の背面壁部分を構成するブロックの分解斜視図である。 図44は、同実施の形態3における冷蔵庫の貯蔵室と野菜室を仕切る仕切板と冷却ファンの斜視図である。 図45は、図44における仕切板と冷却ファンの分解斜視図である。 図46は、同実施の形態3における冷蔵庫の野菜収納ケースを示す斜視図である。 図47は、同実施の形態3における冷蔵庫の制御ブロック図である。 図48は、同実施の形態4における冷蔵庫の野菜室の冷却ファン回転時の冷気流れを説明するための概略断面図である。 図49は、同実施の形態4における冷蔵庫の野菜室の冷却ファン停止時の冷気流れを説明するための概略断面図である。 図50は、本発明の実施の形態5における冷蔵庫の正面図である。 図51は、同実施の形態5における冷蔵庫の扉を開いた時の正面図である。 図52は、同実施の形態5における冷蔵庫を示す図51の52-52断面を示す図である。 図53は、同実施の形態5における冷蔵庫を示す図51の53-3断面を示す図である。 図54は、同実施の形態5における冷蔵庫を正面から見て縦方向に半分に切断した時の斜視図である。 図55は、同実施の形態5における冷蔵庫の冷気流れを説明するための概略断面図である。 図56は、同実施の形態5における冷蔵庫の冷気流れを説明する概略正面図である。 図57は、同実施の形態5における冷蔵庫の冷却室背面部分の冷気流れを説明する斜視図である。 図58は、同実施の形態5における冷蔵庫を示す図52の要部拡大断面を示す図である。 図59は、図58における冷気流れを説明するための概略断面図である。 図60は、同実施の形態5における冷蔵庫を示す図53の要部拡大断面を示す図である。 図61は、図60における冷気流れを説明するための概略断面図である。 図62は、同実施の形態5における冷蔵庫の野菜室と冷凍室を示す拡大正面図である。 図63は、図62に示す冷蔵庫の野菜室と冷凍室の背面に設置された冷却ファンと冷却器を示す拡大正面図である。 図64は、同実施の形態5における冷蔵庫の野菜室と冷凍室の背面壁部分を示す拡大斜視図である。 図65は、図64に示す冷蔵庫の野菜室の背面壁部分を構成する奥面仕切壁ブロックの斜視図である。 図66は、図65に示す野菜室の背面壁部分を構成する奥面仕切壁ブロックの分解斜視図である。 図67は、図62に示す冷凍室の背面壁部分を構成するブロックの分解斜視図である。 図68は、同実施の形態5における冷蔵庫の貯蔵室と野菜室を仕切る仕切板と冷却ファンの斜視図である。 図69は、同実施の形態5における冷蔵庫の野菜収納ケースを示す斜視図である。 図70は、同実施の形態5における冷蔵庫の制御ブロック図である。 図71は、同実施の形態5における冷蔵庫の野菜室冷却動作を説明するフローチャートである。 図72は、同実施の形態5における冷蔵庫の野菜室を冷気循環により均温化しているときの動作を示すタイミングチャートである。 図73は、同実施の形態5における冷蔵庫の野菜室を冷気循環により均温化しつつ冷却しているときの冷却動作を示すタイミングチャートである。 図74は、同実施の形態5における冷蔵庫の野菜室の温度が所定温度より高いときの冷気循環による均温化と冷却動作を示すタイミングチャートである。 図75は、同実施の形態5における冷蔵庫の制御で制御した野菜室の冷却状況を示すタイミングチャートである。 図76は、同実施の形態5における冷蔵庫の冷却室背面部分の冷気流れを説明する斜視図である。 図77は、同実施の形態5における冷蔵庫の野菜室における冷気流れを説明するための概略断面図である。 図78は、従来の冷蔵庫の概略断面図である。 図79は、同従来の他の冷蔵庫の概略断面図である。
 第1の態様の冷蔵庫は、冷蔵室と、野菜室と、冷凍室と、冷凍室および野菜室の背面に配設され、冷気を生成する冷却器を備えた冷却室とを備える。また、冷却室に配設されており、冷却器で生成された冷気を冷蔵室、野菜室、および冷凍室に供給循環させる冷却ファンと、野菜室に配設されている野菜室ファンとを備える。
 これにより、野菜室ファンを回転させることで、野菜室内の冷気を拡散及び循環のうち少なくとも一方をさせて、冷却室から冷輻射を受ける部分に大きな温度差が生じるのを抑制することができる。その結果、冷却室から受ける冷輻射に起因する結露発生を防止することができる。また、冷気生成用の冷却器が大型化され、冷却室が冷凍室と野菜室にまたがる大きな能力の大型冷蔵庫でも、冷却室から受ける冷輻射に起因する結露を抑制することができる。よって、小能力の小型冷蔵庫から大能力の大型冷蔵庫に至る全域の冷蔵庫において、冷却室から受ける冷輻射で生じる結露水による野菜劣化を抑制し、良好な状態で野菜を冷却保存することが可能となる。
 第2の態様の冷蔵庫は、特に、第1の態様の冷蔵庫において、野菜室は、冷却室で生成される冷気が循環する冷気通路に連通している野菜冷気出入り口を一つ備えている。
 これにより、野菜室と冷気通路との間の圧力差により、冷気通路を流れる冷気が野菜冷気出入り口を介して野菜室に流れ込む。そして、流れ込んだ冷気は、野菜室内を冷却した後、野菜冷気出入り口より冷気通路へと流出する。このため、野菜室内に流入し野菜室内から流出する冷気の量が少なくなり、野菜室内の冷気は野菜から蒸散した湿気を含む高湿度のままの状態に維持されるようになる。そして、野菜室ファンの回転により野菜冷気出入り口を介しての冷気の出入りが積極化されるが、野菜室内の冷気が入れ替わってしまうほどの冷気の出入りは起こらない。この結果、野菜室内の冷気は、野菜室内で循環するようになるから、冷却室から受ける冷輻射に起因する結露発生を防止することができる。したがって、野菜室内の野菜が結露によって劣化するのを防止すると同時に、野菜室内の野菜が冷気の循環によって乾燥劣化するのを低減することができ、更に良好な状態で野菜を冷却保存することができる。
 第3の態様の冷蔵庫は、特に、第2の態様の冷蔵庫において、野菜室ファンは、野菜冷気出入り口にオフセットした状態で配設されている。
 これにより、野菜室冷気出入り口を介して行われる冷気の出入りが円滑に行われる。従って、冷気の出入りが滞るなどして野菜の冷却保存が十分でなくなるような事態が発生するのを防止でき、常に良好な状態で野菜を冷却保存することができる。
 第4の態様の冷蔵庫は、特に、第1の態様の冷蔵庫において、野菜室は、野菜冷気入口と野菜冷気戻り口とを備え、野菜冷気入口および野菜冷気戻り口は、冷却室で生成される冷気が循環する冷気通路と連通する。
 これにより、一つの野菜冷気出入り口から冷気を出入りさせる場合に比べて、冷気の出入りが滞ることなく、円滑でより多くの冷気が野菜室内に流れ込む。従って、野菜室内に冷気を効率よく取り込んで、野菜室内を強力に冷却することができる。
 第5の態様の冷蔵庫は、特に、第1の態様の冷蔵庫において、野菜室は、冷蔵室と冷凍室との上下方向間に配設され、野菜室ファンは、冷却室と冷凍室からの冷輻射を受ける野菜室の背面下部近傍に配設されている。
 これにより、冷却室からの冷輻射と、冷凍室からの冷輻射とを受けて、背面下部近傍の温度が低温化し易い冷蔵庫であっても、冷輻射に起因する結露発生を防止することができる。従って、野菜等の出し入れを頻繁に行うユーザの使い勝手を高めると同時に、野菜を良好な状態に冷却保存することができる冷蔵庫を提供できる。
 第6の態様の冷蔵庫は、特に、第1の態様の冷蔵庫において、野菜室は野菜収納ケースを備え、野菜室ファンは、野菜収納ケースの外周に冷気を拡散及び循環のうち少なくとも一方をさせるように設けられている。
 これにより、野菜室ファンによって拡散及び循環のうち少なくとも一方がされる冷気が野菜同士の間を流れることを抑制できる。従って、野菜同士の間を冷気が流れることによって生じがちな野菜の乾燥劣化を防止して、新鮮かつ良好な状態で野菜を冷却保存することができる。
 第7の態様の冷蔵庫は、特に、第6の態様の冷蔵庫において、野菜室ファンは、野菜収納ケースの上部開口縁より下方に配置されている。
 これにより、野菜室ファンによって拡散及び循環のうち少なくとも一方がされる冷気は、野菜収納ケース内に入り込みにくくなる。その結果、野菜収納ケース内を冷気が循環して野菜が乾燥劣化するのを防止でき、新鮮かつ良好な状態で野菜を冷却保存することができる。
 第8の態様の冷蔵庫は、特に、第2の態様の冷蔵庫において、野菜室通路部を、冷却室と対向する野菜室背面部にさらに備え、野菜室通路部は、野菜室の上部空間に連通し、野菜室通路部の下部には、野菜室ファンが配設されている。
 これにより、野菜室ファンの回転によって野菜室内の冷気を、野菜室通路部を介して効率よく野菜室内で拡散及び循環のうち少なくとも一方をさせることができ、さらに効果的に野菜室内での結露発生を抑制することができる。
 第9の態様の冷蔵庫は、特に、第6の態様の冷蔵庫において、野菜収納ケース内の一部に、非野菜収納部を備え、野菜室ファンは非野菜収納部に向けて、野菜室内の冷気を拡散及び循環のうち少なくとも一方をさせる。
 これにより、野菜室ファンから受ける冷気は、非野菜収納部の周りを集中的に循環するようになり、野菜よりも熱容量が大きくて冷えにくいペットボトル等を迅速かつ効率よく冷却することができる。その結果、ペットボトル等の収納による野菜室温度の上昇を効率よく抑制して結露発生を効果的に防止すると同時に、野菜の冷却保存も良好に行うことができる。
 第10の態様の冷蔵庫は、特に、第9の態様の冷蔵庫において、野菜室は、非野菜収納部側の上部に、野菜室ファンの吸引側と連通する第一の野菜冷気吸込み口を備える。また、第一の野菜冷気吸込み口と野菜室ファンとを、野菜収納ケースの非野菜収納部側の部分に設けている。
 これにより、野菜室ファンから送風される冷気を、非野菜収納部に効率よく集中的に拡散循環させることができ、ペットボトル等を効率よく冷却することができる。
 第11の態様の冷蔵庫は、特に、第10の態様の冷蔵庫において、野菜収納ケース内が左右に仕切られ、いずれか一方に非野菜収納部が配設され、野菜室ファンは、非野菜収納部の後部下方に配置され、野菜室ファンの吸引側と連通する第二の野菜冷気吸込み口が、野菜ファンと実質的に対角位置の野菜室上部に配設されている。
 これにより、野菜室ファンから送風される冷気は、野菜収納ケースの非野菜収納部底面部分を通って前方へと野菜室内を斜めに縦断しながら拡散及び循環のうち少なくとも一方をして、野菜室上部の第二の野菜冷気戻り口へと流れる。その結果、野菜室ケース内への冷気の入り込みを防止しつつ野菜ケースの外周に広範囲に冷気を拡散及び循環のうち少なくとも一方をさせることができ、野菜ケース内の野菜及びペットボトル等を効果的に冷却することができる。
 第12の態様の冷蔵庫は、特に、第8の態様の冷蔵庫において、冷却室から冷蔵室への冷蔵冷気の往き通路部分を、冷蔵庫本体背面における実質的な中央部に備えている。また、冷蔵室から冷却室への冷蔵冷気の戻り通路部分を、冷蔵庫本体背面における冷蔵冷気の往き通路部分側方に備えている。さらに、野菜室通路部は、冷蔵冷気の戻り通路部分の前方に縦方向に配設されている。
 これにより、野菜室通路部は、風路断面積を小さく設定できる冷蔵冷気の戻り通路部分と前後方向に重なる。一方、風路断面積を大きく設定する必要のある冷蔵冷気の往き通路部分では、野菜室通路部と前後方向に重なることがないので、野菜室の奥行き寸法を拡大することができる。その結果、野菜を良好な状態で冷却保存可能にしつつ野菜収納量も多くすることができ、使い勝手の良い冷蔵庫とすることができる。
 第13の態様の冷蔵庫は、特に、第12の態様の冷蔵庫において、野菜冷気出入り口は、冷蔵冷気戻り通路部分に開口され、冷却室から循環される冷気の一部がバイパスして、冷蔵室からの戻り冷気に混流して野菜室に供給される。
 これにより、冷蔵室からの冷蔵室戻り冷気によって野菜室を冷却すると同時に、野菜室ファンの回転時には、冷却室からの新鮮な低温冷気が直接取り込まれる。その結果、効果的に野菜室内を冷却することができ、野菜室ファンの回転数を上げることで新鮮な低温冷気の取り込み混入量を増加させることができる。従って、野菜室への冷気の流れ込み量が少なく、熱容量の大きい常温のペットボトル等が大量に収納されている時でも、確実に冷却することができる。さらには、冷却室からの冷輻射による結露発生も抑制でき、野菜を良好な状態で冷却保存することができる。
 第14の態様の冷蔵庫は、特に、第1の態様の冷蔵庫において、野菜室ファンは、野菜室に設けた野菜室温度検出手段の検出温度に基づいて制御される。
 これにより、野菜室の温度が所定温度以上になれば、野菜室ファンを駆動させて野菜室内の冷気を拡散及び循環のうち少なくとも一方をさせることができる。さらに、所定温度よりもさらに高い温度になれば、野菜室ファンの回転数をさらに上げて、冷気が拡散され、循環される量を増強させる。これにより、野菜室を確実に冷却することができ、冷蔵庫の信頼性を高めることができる。なお、新鮮な低温冷気を取り込み混入させるタイプの冷蔵庫では、その混入量を増加させることができて野菜室を確実に冷却することができ、夏場における冷却不足を解消し野菜等の良好な冷却保存を確実に実現する。
 第15の態様の冷蔵庫は、特に、第1の態様の冷蔵庫において、野菜室の背面には、冷却ファンによって冷気が循環される冷気戻り通路をさらに備え、冷気戻り通路と野菜室との間であって、野菜室の野菜ファン吸引側および排気側に、冷気戻り通路と連通する野菜冷気入口および野菜冷気戻り口をそれぞれ備えている。
 これにより、野菜室ファンを回転させることで、冷気戻り通路から野菜室内に冷気を取り入れ、野菜室内で冷気を拡散及び循環のうちいずれか一方をさせる。その結果、冷却室からの冷輻射を受ける部分に大きな温度差が生じるのを抑制し、冷却室からの冷輻射に起因する結露発生を防止することができる。また、冷気生成用の冷却器が大型化されて冷却室が冷凍室と野菜室にまたがる大能力の大型冷蔵庫でも、冷却室からの冷輻射に起因する結露を抑制することができる。よって、小能力の小型冷蔵庫から大能力の大型冷蔵庫に至る全域の冷蔵庫において、冷却室からの冷輻射で生じる結露水による野菜劣化を抑制し、良好な状態で野菜を冷却保存することが可能となる。
 第16の態様の冷蔵庫は、特に、第15の態様の冷蔵庫において、野菜室ファンおよび野菜冷気入口は野菜室の背面下部に配置され、野菜室の上部に野菜冷気吸込み口を備えている。
 これにより、野菜室ファンは野菜室内に冷気を安定的かつ効率よく取り込んで、野菜室内で冷気を拡散または循環させることができるから、結露発生をより確実に抑制し良好な状態で野菜を冷却保存することができる。
 第17の態様の冷蔵庫は、特に、第15の態様の冷蔵庫において、野菜室ファンおよび野菜冷気入口は野菜室の天井部に配置され、野菜室上部に、野菜室ファンの吹出口が開口され、野菜冷気戻り口を野菜室の下部に設けている。
 これにより、第16の態様の冷蔵庫と同様、野菜室ファンは野菜室内に冷気を安定的かつ効率よく取り込んで同野菜室内で拡散または循環させることができる。その結果、結露発生をより確実に抑制し良好な状態で野菜を冷却保存することが可能となる。
 第18の態様の冷蔵庫は、特に、第17の態様の冷蔵庫において、野菜室は冷蔵室の下部に配置され、野菜室ファンは野菜室と冷蔵室との間を仕切って野菜室の天井を構成する仕切板の内に、斜めに傾斜して配設されている。
 これにより、野菜室の冷却を効率の良いものとしつつ、野菜室の容積を確保する形で野菜室ファンを野菜室内に設けることができる。すなわち、野菜室の上部に冷蔵室が位置しているので、野菜室は冷蔵室からの冷輻射によって適度に冷却される。その結果、仕切板は断熱強化のための断熱材を組み込む必要がなくなるので、そのスペースを利用して野菜室ファンを組み込むことができる。これに加えて、野菜室ファンは傾斜して配設されているから、野菜室ファンを組み込んでいるのにもかかわらず、仕切板厚さを大きく増加させる必要がなくなり、その分野菜室の容積を大きく確保することができる。
 第19の態様の冷蔵庫は、特に、第1の態様の冷蔵庫において、野菜室ファンを制御する制御部をさらに備え、制御部は、野菜室の温度が所定温度範囲内の場合には、野菜室ファンをあらかじめ定められている時間駆動させるタイマ制御運転を行い、野菜室の温度が所定温度範囲よりも高い場合には、野菜室ファンを野菜室温度に基づいて設定された時間駆動させる温度制御運転を行う。
 これにより、野菜室が所定温度範囲内の安定時にはあらかじめ定められた時間野菜室ファンを回転させる。これにより、野菜室内の冷気を強制循環して冷却室からの冷輻射により生じる野菜室内の温度差を解消し結露発生を抑制する。野菜室が所定温度範囲より高い温度である場合には、野菜室温度に応じて設定された時間野菜室ファンを回転させる。これにより、野菜室へ取り込む冷気の量を増加させ、増加された冷気と、冷却室からの冷輻射により低温化している背面下部近傍の低温冷気と、を冷却源として野菜室内を低温に冷却保持することができる。しかも野菜室内の温度が所定温度範囲内である安定時には、野菜室ファンはあらかじめ定められた時間で回転制御されているので、野菜室内の温度を常時検出して野菜室ファンが回転制御される場合に生じがちな温度検出遅れによる温度制御ばらつきを低減することができる。これにより、野菜室内の温度を安定させて良好な状態で野菜を冷却保存することができる。
 第20の態様の冷蔵庫は、特に、第19の態様の冷蔵庫において、制御部は、タイマ制御運転時における野菜室ファン駆動時間を外気温に基づいて設定する。
 これにより、野菜室ファンの駆動時間を外気温に応じて最適なものとすることができて、外気温の変動があっても野菜室ファンの回転を過不足なく行うことができる。したがって、タイマ制御運転であっても外気温に応じて確実かつ効率の良い冷却と結露防止を図ることができる。
 第21の態様の冷蔵庫は、特に、第19の態様の冷蔵庫において、制御部は、温度制御運転時における野菜室ファンの駆動時間を、野菜室内の温度に基づき補正を行いタイマ制御運転で設定されている駆動時間よりも長くしている。
 これにより、野菜等の出し入れ等によって野菜室内の温度が所定温度範囲よりも高くなる過渡時には野菜室ファンが当該野菜室の温度に応じて長い時間回転する。これにより、野菜室ファンの回転により野菜室に取り込まれる冷気の量が増加して、野菜室内を確実かつ迅速に所定温度範囲まで冷却することができる。
 第22の態様の冷蔵庫は、特に、第19の態様の冷蔵庫において、制御部は、野菜室の温度が所定温度範囲外の低温時には野菜室ファンを強制的に停止状態とさせる。
 これにより、野菜室が所定温度範囲よりも低く、温度差も少なくて結露発生のおそれが少ないときには、野菜室ファンを停止させて、野菜室ファンの回転による無駄な電力消費を抑制する。
 第23の態様の冷蔵庫は、特に、第19の態様の冷蔵庫において、制御部は、冷気生成用の圧縮機が運転停止中には野菜室ファンを強制的に停止状態とさせる。
 これにより、圧縮機が停止している冷却運転停止中に野菜室ファンが回転してその動作音を使用者が不審に思うことを解消でき、冷蔵庫に対する信頼性を損なうことを防止することができる。
 第24の態様の冷蔵庫は、特に、第19の態様の冷蔵庫において、制御部は、冷気生成用の圧縮機の運転停止が一定時間内の場合には、野菜室ファンを強制的に停止状態とさせ、圧縮機の停止状態が一定時間以上続く場合には、タイマ制御運転に基づき野菜室ファンを駆動させる。
 これにより、圧縮機が停止、すなわち冷却運転が停止していて野菜室が所定温度範囲よりも低く、温度差も少ない間は、野菜室ファンを停止させて野菜室ファンの回転による無駄な電力消費を抑制する。野菜室ファンの停止時間が長くなって野菜室内に冷却室からの冷輻射で温度差が生じるようになると、野菜室ファンを回転させて温度差を解消し結露発生を抑制することができる。以上より、常に結露防止を図りつつ野菜を良好に冷却保存することができる。
 第25の態様の冷蔵庫は、冷蔵室と、野菜室と、冷凍室と、冷凍室および野菜室の背面に配設されている冷気生成用の冷却器を備えた冷却室とを備える。また、冷却室に配設されており、冷却器で生成された冷気を冷蔵室、野菜室、および冷凍室に供給循環させる冷却ファンを備える。さらには、野菜室には、冷却室にて生成される冷気が循環する冷気通路と連通する野菜冷気出入り口を一つ備える。
 これにより、冷気通路を流れる冷気は、野菜室と冷気通路との間の圧力差により、野菜冷気出入り口を介して野菜室に流れ込み、流れ込んだ冷気が野菜室内を冷却した後、野菜冷気出入り口より冷気通路へと流出するようになる。その結果、野菜室内に出入りする冷気の量が少なくなり、野菜室内の冷気は野菜から蒸散した湿気を含む高湿度のままの状態に維持されるようになる。したがって、野菜室内の野菜を冷気の循環で乾燥劣化させてしまうのを大幅に低減することができ、従来に比べかなり良好な状態で野菜を冷却保存することができる。
 第26の態様の冷蔵庫は、特に、第25の態様の冷蔵庫において、野菜室は冷蔵室と冷凍室の間に配置されている。
 野菜室は冷却室からの冷輻射に加え冷凍室からの冷輻射によっても冷却されて比較的低温に維持される。従って、野菜冷気出入り口一つで冷気を出入りさせることで野菜室への冷気の流れ込み量が少なくなって冷却能力が低くなっても、野菜室内の野菜を良好に冷却できる。これに加えて、野菜室内の冷気湿度を高いままに維持でき、野菜の乾燥劣化も低減することができ、野菜等の出し入れを中心に使用するユーザの使い勝手を高めることができる。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態では、「真ん中野菜冷蔵庫」を例にして説明するが、本発明が実施の形態によって限定されるものではない。
 (実施の形態1)
 図1は本発明の実施の形態1における冷蔵庫の正面図である。図2は同実施の形態1における冷蔵庫の扉を開いた時の正面図である。図3は同実施の形態1における冷蔵庫を示す図2の3-3断面図である。図4は同実施の形態1における冷蔵庫を示す図2の4-4断面図である。図5は同実施の形態1における冷蔵庫を正面から見て縦方向に半分に切断した時の斜視図である。図6は同実施の形態1における冷蔵庫の冷気流れを説明するための概略断面図である。図7は同実施の形態1における冷蔵庫の冷気流れを説明する概略正面図である。図8は同実施の形態1における冷蔵庫の冷却室背面部分の冷気流れを説明する斜視図である。図9は同実施の形態1における冷蔵庫を示す図3の要部拡大断面図である。図10は図9における冷気流れを説明するための概略断面図である。図11は同実施の形態1における冷蔵庫90を示す図4の要部拡大断面図である。図12は図11における野菜室の冷気流れを説明するための概略断面図である。図13は同実施の形態1における冷蔵庫の野菜室と冷凍室を示す拡大正面図である。図14は図13に示す冷蔵庫の野菜室と冷凍室の背面に設置された冷却ファンと冷却器を示す拡大正面図である。図15は同実施の形態1における冷蔵庫の野菜室と冷凍室の背面壁部分を示す拡大斜視図である。図16は図15に示す冷蔵庫の野菜室の背面壁部分を構成する奥面仕切壁ブロックの斜視図である。図17は図16に示す野菜室の背面壁部分を構成する奥面仕切壁ブロックの分解斜視図である。図18は図16に示す冷凍室の背面壁部分を構成するブロックの分解斜視図である。図19は同実施の形態1における冷蔵庫の貯蔵室と野菜室を仕切る仕切板と冷却ファンの斜視図である。図20は図19における仕切板と冷却ファンの分解斜視図である。図21は同実施の形態1における冷蔵庫の野菜収納ケースを示す斜視図である。図22は同実施の形態1における冷蔵庫の制御ブロック図である。
 まず、冷蔵庫90の全体構成について説明する。
 <冷蔵庫本体構成>
 本実施の形態に係る冷蔵庫90は、前方が開閉可能な冷蔵庫本体1を備える。冷蔵庫本体1は、図3等に示すように、主に鋼板を用いた外箱2、ABSなどの硬質樹脂で成型された内箱3、および外箱2と内箱3との間に発泡充填された硬質発泡ウレタンなどの発泡断熱材4から構成されている。冷蔵庫本体1は、仕切板5,6によって複数の貯蔵室に区分されている。冷蔵庫本体1は、最上部に冷蔵室7、冷蔵室7の下部に野菜室8、最下部に冷凍室9を備えている。各貯蔵室の前面開口部は、扉10,扉11,扉12によって開閉可能に閉塞されている。
 図5に示されるように、冷蔵庫本体1の上部後方領域には、機械室14が設けられている。機械室14には、圧縮機15および水分除去を行うドライヤ(図示せず)等の冷凍サイクルの高圧側構成部品が収容されている。
 冷蔵庫本体1の背面には、冷気を生成する冷却室16が設けられている。冷却室16は、冷凍室9の背面から野菜室8の下部背面に渡って形成されている。冷却室16と野菜室8との間には、発泡スチロール等によって断熱性を持たせた奥面仕切壁体17が設けられ、これにより断熱仕切りがなされている。
 冷却室16内には冷却器18が配設されており、冷却器18の上部には冷却ファン19が配置されている。冷却ファン19は、冷却器18により冷却された冷気を冷蔵室7、野菜室8、および冷凍室9に強制循環させて、各室を冷却する。例えば、冷蔵室7は通常食品が凍らない程度の温度1℃~5℃に冷却され、野菜室8は冷蔵室7と同等もしくは若干高めの温度2℃~7℃に冷却されている。また、冷凍室9は冷凍保存のために通常-22℃~-15℃の冷凍温度帯に冷却されており、場合によっては冷凍保存状態向上のために、例えば-30℃や-25℃の低温に冷却されることもある。
 図6、図19に示すように、冷却ファン19は野菜室8と冷却室16とを仕切る仕切板6に組み付けられる。仕切板6を冷蔵庫本体1の内箱3にセットすることで、冷却ファン19は冷蔵庫本体1内に取り付けられている。この状態で冷却ファン19は、図9、図10に示すように、野菜室8の背面と対向する部分に位置する。冷却ファン19は、野菜室8との間を仕切る奥面仕切壁体17に向けて冷気を送風し、野菜室下部背面に強い冷輻射をもたらす。
 図20の分解斜視図は、仕切板6および冷却ファン19の構成を示す。すなわち、仕切板6は上面部材6aと下面部材6bとの間に発泡断熱材4(図20に図示せず)が充填されており、背面側に開口20が形成されている。開口20に冷却ファン19が組み付けられる。開口20の下方には、冷却器18が位置している。開口20は、冷却器18の上面投影面積よりも大きく形成されている。下面部材6bの開口背面側縁部分の下面には、下方に突出する突片21が形成されている。下面部材6bの開口背面側縁部分の上面には、上面部材6aの開口縁よりも上方に突出する上向き突片22が形成されている。仕切板6には、冷却ファン19よりも前方でかつ、野菜室底面となる部分に、シーズヒータ等からなる結露防止用の第一のヒータ23が埋設されている。
 なお、断熱性遮壁24は、開口20の開口縁前方部分を覆い、発泡スチロール等で構成されている。断熱性遮壁24の一側部片には、通路開口26が形成されている。通路開口26は、仕切板6に設けられている冷気戻り通路用開口25と対応する。仕切板6の冷気戻り通路用開口25と反対側部分には、タンク設置部27が形成されている。タンク設置部27は、冷凍室9に設けられる製氷装置への水供給用のタンクが設置される。
 図9等に示すように、冷却器18の下部空間には、冷却器18あるいは冷却器18周辺に付着する霜や氷を除霜する除霜ヒータ28が配置されている。除霜ヒータ28の下部には、除霜時に生じる除霜水を受けるためのドレンパン29が配置されている。除霜水は、ドレンパン29の最深部から図示しないドレンチューブを介して庫外の蒸発皿に排出される。
 次に冷気循環構成について説明する。
 <冷気循環通路構成>
 図9、図10等に示すように、冷却室16では、奥面仕切壁体17と冷蔵庫本体1との間に形成されている冷却室冷気搬送路30に、冷却ファン19の下流が開口している。冷気は、冷却室冷気搬送路30を介して各室に送風される。
 図7、図8、図10に示すように、冷却室冷気搬送路30の上部は、冷蔵室ダンパ31を介して冷蔵冷気往き通路32と連通している。冷蔵冷気往き通路32は、冷蔵室7の背面の実質的な中央部に形成されている。図7、図8に示すように、冷蔵冷気往き通路32の側方には、冷蔵室7からの冷蔵冷気戻り通路33が隣接設置されている。冷蔵冷気戻り通路33の下部は、野菜室8および冷却室16に連通している。
 図7に示すように、冷蔵室7の奥壁上部適所には、冷蔵冷気往き通路32の冷蔵冷気入口35が設けられている。同奥壁下部適所には、冷蔵冷気戻り通路33へ開口する冷蔵冷気戻り口36が設けられている。冷却室16から送風された冷気は、冷蔵室ダンパ31を介して冷蔵冷気往き通路32に供給され、さらに冷蔵冷気入口35から冷蔵室7に供給される。一方、冷蔵室を冷却した冷気は、冷蔵冷気戻り口36から冷蔵冷気戻り通路33を介して野菜室8に供給され、その後、冷却室16に循環する。また、冷蔵室7の下部には、後述するように、パーシャル室が設けられている。当該パーシャル室には、図8に示すように、パーシャル室ダンパ31a、パーシャル室冷気往き通路32a、およびパーシャル室冷気入口35aを介して、冷気が供給される。
 本実施の形態では、図8から明らかなように、奥面仕切壁体17と仕切板6の背面には、往き通路37と、戻り通路38とが形成されている。往き通路37は、冷却室冷気搬送路30と、冷蔵冷気往き通路32とを連絡する。また、往き通路37は、冷却室冷気搬送路30と、パーシャル室冷気往き通路32aとを連絡する。戻り通路38は、冷蔵冷気戻り通路33と、野菜室8および冷却室16とを連絡する。冷蔵室ダンパ31は、往き通路37に設けられている。
 冷蔵冷気往き通路32と冷蔵冷気戻り通路33との間には連通路39が設けられており、冷蔵冷気往き通路32を流れる低温冷気の一部が直接冷蔵冷気戻り通路33に混入する。
 図8に示すように、冷凍室9の背面には、冷却ファン19及び冷却器18の側方を下向きに延びる冷気戻りダクト40が設けられている。冷気戻りダクト40の上部は、戻り通路38を介して野菜室8に連通する。冷気戻りダクト40の下部は、冷却室16の下部近傍に開口しており、野菜室8を冷却した冷気が、戻り通路38および冷気戻りダクト40を介して、上記下部開口から冷却室16へと循環する。
 一方、冷凍室9では、図10に示すように、背面壁体41(図18参照)の上部に冷凍冷気入口42が形成されている。冷凍冷気入口42は、奥面仕切壁体17背面の冷却室冷気搬送路30下部に連通する。また、背面壁体41の下部には、冷却室16の下部に開口する冷凍冷気戻り口43が形成されている。冷却室16から循環してきた冷気は、冷凍冷気入口42を介して、冷却室冷気搬送路30下部から冷凍室に供給される。そして、冷凍室冷却後の冷気は、冷凍冷気戻り口43を介して冷却室16へ循環する。
 <野菜室構成>
 野菜室8は、図7、図8、および図12に示すように、奥壁左右いずれか一方寄りに設けられている。本実施の形態では、野菜室8は、正面から見て右側部分の下部に設けられている。そして、野菜室8には、冷蔵冷気戻り通路33からの戻り通路38部分に開口する野菜冷気出入り口44が一つ設けられている。野菜冷気出入り口44は、図8に示すように、冷却ファン19のベルマウス開口下端より上方に位置するように設けられている。これにより、冷却ファン19停止時に、冷却室16内の低温冷気が冷気戻りダクト40及び戻り通路38を介して逆流した場合、低温冷気が野菜冷気出入り口44より野菜室8に流入することを防止する。
 野菜室8には、特に図12に示すように、野菜室8背面に設けられている奥面仕切壁体17を利用して、冷気の戻り通路38の前面位置に、野菜室通路部50が上下方向に形成されている。野菜室通路部50の上部は、野菜室8上部に前後方向に設けられた第一の通路47aの第一の野菜冷気吸込み口47に連通している。また、野菜室通路部50の下部は、野菜冷気出入り口44と連通している。
 野菜室8には、野菜冷気出入り口44と対向する部分にプロペラファン等からなる野菜室ファン53が配置されている。野菜室ファン53は、水平方向の中心軸が野菜冷気出入り口44の水平方向の中心軸よりも下方に位置する様にオフセットして配置されている。また、野菜室ファン53は、野菜冷気出入り口44の前方に位置し、前から見て野菜室ファン53と野菜冷気出入り口44とが重なるように設置されている。なお、野菜室8の冷却量が大きく必要とされる場合は、野菜冷気出入り口44の開口面積を大きく、冷却量が小さくてよい場合は、野菜冷気出入り口44の開口面積を小さくすることが有効である。いずれの場合も、野菜冷気出入り口44の下端は野菜室ファン53の上端より低い位置に設け、前後に重なるように設置されている。
 また、野菜室8上部には、図13、図15、および図16等に示すように、野菜室8の奥の面となる奥面仕切壁体17の上部であって野菜冷気出入り口44の対角位置となる部分に、第二の野菜冷気吸込み口51が設けられている。本実施の形態では、野菜室8の左奥側上部に、第二の野菜冷気吸込み口51が設けられている。第二の野菜冷気吸込み口51を備えた第二の通路51aは、図12に示すように、野菜室通路部50の上部に連通している。
 図17は、野菜室通路部50、第二の野菜冷気吸込み口51、および第二の野菜冷気吸込み口51を形成している奥面仕切壁体17の分解斜視図である。野菜室通路部50は、発泡スチロール(図示せず)を介して重合させた前仕切板17aと後仕切板17bとの間に形成されている。野菜室通路部50の上端部分50aは、第一の通路47aと第二の通路51aとに開口している。野菜室通路部50の下部には、上述したとおり、野菜室ファン53が組み込まれており、吹出口54は野菜室8内に開口している。そして、野菜室ファン53は、野菜冷気出入り口44から流れ込む冷気と、第一の野菜冷気吸込み口47及び第二の野菜冷気吸込み口51から吸込まれる野菜室冷気と、を野菜室8内に送風する。
 野菜室ファン53の吹出口54は、後述する下段野菜収納ケース49aの後面に向かって開口している。野菜室ファン53と対向する下段野菜収納ケース49aの後下部は、図12に示すように、下方ほど前方に位置する傾斜面55となっている。この構成により、野菜室ファン53から送風される冷気を、下段野菜収納ケース49aの下面空間へと集中的に流すことができる。
 また、図10に示すように、奥面仕切壁体17の冷却室16と対向する面には、シーズヒータ等からなる結露防止用の第二のヒータ56が埋設されている。第二のヒータ56は、冷却室16の上部と対向する位置であって、冷蔵室ダンパ31よりも下方位置の低温の冷却室温度帯域に設置されている。冷蔵室ダンパ31は、冷却室16から冷蔵室7への冷気を開閉する。
 低温の冷却室温度帯域となる冷却室冷気搬送路30内には、冷却ファン19、仕切板6内の第一のヒータ23、および奥面仕切壁体17内の第二のヒータ56等の電気部材のコネクタ接続部57(ボックス)が設置されている(図14参照)。冷却室温度帯域となる冷却室冷気搬送路30内で電気的接続が行われている。
 なお、野菜室8には、図11等に示すように野菜収納ケース48が配設されている。野菜収納ケース48は、扉11のフレームに載置された下段野菜収納ケース49aと、下段野菜収納ケース49aの上に載置された上段野菜収納ケース49bとから構成されている。そして、野菜収納ケース48とその下に配設されている仕切板6との間に空間が設けられ、また野菜収納ケース48と野菜室8の内周壁面との間にも空間が設けられている。これらの空間は、野菜冷気出入り口44から流れ込む冷気が流れる風路を構成している。
 また、野菜収納ケース48の上段野菜収納ケース49bの上部開口縁は野菜室8上部の仕切板5と近接した部分に位置するとともに、野菜冷気出入り口44より上方部分に位置している。これにより、野菜冷気出入り口44から流れ込む冷気が、上段野菜収納ケース49b及び下段野菜収納ケース49a内に直接入り込むことを防止している。なお、上段野菜収納ケース49bの上部開口にこれを閉塞する蓋を設けて、冷気が野菜収納ケース48内へ侵入することをより確実に防止してもよい。
 また、図21に示すように、下段野菜収納ケース49aは、ケース仕切板58によって左右に分割されていてもよい。下段野菜収納ケース49aは、野菜冷気出入り口44と対向する側(本実施の形態では正面から見て右側部分)を一段深くして、ペットボトルやパック等の非野菜収納部59(以下、ペットボトル等収納部と称す)としている。なお、野菜室8内を前後に仕切り、前側部分をペットボトル等収納部59としてもよい。
 <冷蔵室構成>
 冷蔵室7は、図4等に示すように、内部に複数の収納棚60を有するとともに、準冷凍温度帯に冷却できるパーシャル室61を備えている。そして、冷蔵室7のそれぞれの適所に、冷蔵冷気入口35および冷蔵冷気戻り口36(いずれも図7参照)が設けられている。そして、冷蔵室7の側壁適所には、各室の庫内温度設定や製氷および急速冷却などの設定を行う操作部62が配置されている。
 <冷凍室構成>
 冷凍室9の奥壁上部には、図10を用いて上述したように、奥面仕切壁体17の背面に形成されている冷却室冷気搬送路30の下部と連通する冷凍冷気入口42が形成されている。さらに、冷凍室9の奥壁下部には、冷却室16に連通する冷凍冷気戻り口43が形成されている。そして図示していないが、冷却室16から冷凍室9への通路の適所に、冷凍室ダンパが組み込まれている。なお、冷凍室9にも、図4等に示すように、扉12のフレームに載置された冷凍室ケース63が設けられている。さらに、冷凍室ケース63の上部には、製氷装置64が組み込まれている。
 次にこの冷蔵庫90の制御構成について説明する。
 <制御構成>
 図22は、本実施の形態の冷蔵庫90における制御ブロック図を示す。冷蔵室温度検知部65、野菜室温度検知部66、および冷凍室温度検知部67は、いずれもサーミスタで形成してあり、それぞれ、冷蔵室7、野菜室8、および冷凍室9の適所に設置されている。冷蔵庫90全体を統括制御する制御部68は、マイクロコンピュータ等によって構成されている。制御部68は、冷蔵室温度検知部65、冷凍室温度検知部67からの出力に基づきあらかじめ組み込まれた制御ソフトにしたがって冷蔵室ダンパ31、冷凍室ダンパ34を開閉制御する。さらに、制御部68は、圧縮機15、冷却ファン19、および必要に応じて第一のヒータ23、第二のヒータ56を駆動して各室を設定温度に制御する。また、制御部68は、冷蔵室温度検知部65および野菜室温度検知部66からの出力に基づき、野菜室8の野菜室通路部50に組み込んだ野菜室ファン53の運転を制御する。具体的には、冷蔵室温度検知部65及び野菜室温度検知部66にて検出される温度が、それぞれ設定されている設定温度よりも高いことをいずれか一方の検知部が検知すると野菜室ファン53が駆動する。さらに冷蔵室温度検知部65および野菜室温度検知部66にて検出される温度が常に低く、一定時間以上連続して冷蔵室ダンパ31が開かないときにも、制御部68は、野菜室ファン53を駆動させる。
 以上のように構成された冷蔵庫90について、以下その動作、作用を説明する。
 まず、冷凍サイクルの動作について説明する。
 冷蔵庫90内の設定された温度に応じて、制御部68からの信号により冷凍サイクルが動作し、冷却運転が行われる。圧縮機15から吐出された高温高圧の冷媒は、凝縮器(図示せず)にてある程度凝縮液化される。さらに、冷媒は、冷蔵庫90の側面や背面、また冷蔵庫90の前面間口に配設された冷媒配管(図示せず)などを経由して冷蔵庫90の結露を防止しながら凝縮液化し、キャピラリーチューブ(図示せず)に至る。その後、冷媒は、キャピラリーチューブにおいて、圧縮機15への吸入管(図示せず)と熱交換しながら減圧されて、低温低圧の液冷媒となって冷却器18に至る。冷却器18内に供給された冷媒は蒸発気化し、冷却室16で各貯蔵室を冷却するための冷気が生成される。
 次に冷気循環による冷却動作について説明する。
 冷却室16内で生成された低温の冷気は、冷却ファン19によって、冷却室冷気搬送路30から冷蔵室7と冷凍室9とに送られる。冷蔵室7に供給された冷気は、冷蔵室7を冷却した後、野菜室8に供給され、それぞれの室が設定温度に冷却される。そして、各室を冷却した冷気は、再び冷却室16に戻って冷却器18により冷却され、冷却ファン19で各室に循環していく。
 制御部68が、冷蔵室温度検知部65及び冷凍室温度検知部67の検出温度に基づき、圧縮機15と冷却ファン19を運転および停止のうち少なくとも一方をさせることで、各室への冷気供給が行われる。また、制御部68は、冷蔵室ダンパ31、冷凍室ダンパ34を開閉制御し、それぞれの室を設定温度帯に維持する。
 次に、野菜室8の冷却動作について説明する。
 冷蔵室冷却後の冷気は、図12に示すように、冷気の戻り通路38に設けられている野菜冷気出入り口44から供給されて、野菜室8は冷却される。野菜室8に設けられている開口が野菜冷気出入り口44一つのみであるため、野菜室8に供給される冷気は、以下の通り循環する。冷却ファン19の運転中、すなわち冷却運転中は、冷却ファン19の送風によって生じる野菜室8と戻り通路38との間の圧力差により、冷気は、野菜室内の冷気の一部と入れ替わるように野菜室8へ緩やかに流れ込む。さらに、冷気は、野菜収納ケース48と野菜室8の内周壁との間の空間を流れ、野菜収納ケース48内に収納されている野菜やペットボトル等をケース外周から間接的に冷却し、野菜冷気出入り口44から戻り通路38へと流出する。そして、冷気は、冷気戻りダクト40から冷却室16へと循環する。
 そのため、野菜室8内に出入りする冷気は、冷気出入り口を別々に設けた場合に比べて緩やかでその量も比較的少ない。したがって、野菜室8内の冷気は若干量が入れ替わる程度となり、大部分は野菜室8内にとどまった状態となる。すなわち、野菜室8内の冷気は、野菜から蒸散した湿気を含む高湿度のままの状態に維持されるようになる。よって、野菜室8内の冷気が大量に循環して入れ替わるような場合に比べて、野菜の乾燥劣化を大きく低減させることができ、従来に比べかなり良好な状態で野菜を冷却保存することが可能となる。
 一方、本実施の形態で示す冷蔵庫90では、図12で示したように、野菜室8の野菜室通路部50下部であって、野菜冷気出入り口44と対向する部分に野菜室ファン53が設けられている。野菜室ファン53が冷却運転中に回転すると、戻り通路38を流れる戻り冷気の多くが野菜冷気出入り口44から野菜室通路部50内へと吸引される。野菜室ファン53の吹出口54より野菜室8内の下段野菜収納ケース49a後面に向かって、冷気が供給される。
 ここで本実施の形態では、野菜室ファン53が野菜冷気出入り口44とオフセットした状態で配置されている。このため、野菜冷気出入り口44を介して行われる冷気の出入りは、開口が野菜冷気出入り口44一つであっても円滑なものとなり、確実な吸引取り込みが可能となる。すなわち、図12のX,Yで示すように野菜室ファン53の中心軸に近い野菜冷気出入り口44の下端寄り部分(図12中の下部)では、Xで示すように冷気が野菜室8内に流れ込む。一方、野菜室ファン53の中心軸から遠い野菜冷気出入り口44の上端寄り部分(図12中の上部)では、Yで示すように冷気が野菜室8から流出するように明確に区分されるようになる。したがって、一つの野菜冷気出入り口44であっても冷気の出入りが入り乱れて冷気が滞り、結果的に冷気取り込み不足を招来することを防止できる。すなわち、戻り通路38内より確実に冷気を吸引取り込みして、野菜室ファン53の吹出口54より冷気を野菜室8内に供給することができる。
 そして、この場合でも冷気出入り口が一つのみであるため、冷気出入り口を別々に設けている場合に比べて野菜室内冷気の入れ代わり量は少なく、野菜室8内は高湿度状態に保持されて野菜の乾燥劣化防止効果が維持される。
 以上のようにして野菜室8内に取り込まれ、野菜室8の野菜収納ケース48に向かって供給された冷気は、野菜収納ケース48と野菜室8の底面との間の空間、および野菜収納ケース48と内周壁との間の空間を、冷却ファン19の送風圧によってのみ循環する際の流れよりも早く流れる。そして、上述した通り、冷気は、野菜冷気出入り口44から戻り通路38を介して冷却室16へと戻り循環する。その際、冷却室16へと戻り循環する冷気以外の冷気は、野菜室8の上部に設けた第一の野菜冷気吸込み口47及び第二の野菜冷気吸込み口51より第一の通路47a及び第二の通路51aに吸引され、これらの通路と連通している野菜室通路部50を介して野菜室ファン53に吸引される。野菜室通路部50を介して野菜室ファン53に吸引された冷気は、野菜室ファン53の吹出口54から再び野菜室8内の野菜収納ケース48に向けて供給され、野菜室8内を拡散及び循環する。
 次に、野菜室8の結露防止について説明する。
 野菜室8は、野菜室8の背面に位置している冷却室16および下方に位置している冷凍室9からの冷輻射を受ける。その結果、従来と同様、野菜室8の背面下部近傍が低温化しやすい。特に、冷却室16からの冷輻射が強い。野菜室8背面は、冷却室16から冷蔵室ダンパ31までの冷却室温度帯域と対向する部分で強い冷輻射を受け、この部分が低温化しやすい。これは、冷却室16自体はもちろん冷却室16から冷蔵室ダンパ31に至るまでの冷却室冷気搬送路30帯域が冷却室16と同じ極低温帯の冷却室温度域となっているからである。
 この冷輻射による野菜室背面下部近傍の低温化は、冷却運転中及び冷却停止中の何れの場合にも、野菜室ファン53の駆動により野菜室8内の冷気を拡散及び循環させることによって解消する。すなわち、野菜室ファン53が駆動すると、野菜室8内の冷気が拡散及び循環し、この拡散及び循環する冷気により温度が分散され、低温化が抑制される。より詳細には、野菜室ファン53によって野菜室8内を拡散及び循環した冷気は、野菜室8の背面に位置する冷却室温度帯域からの冷輻射および野菜室8の下方に位置する冷凍室9からの冷輻射によって低温化し易い野菜室背面下部付近の温度を野菜室8内に拡散させる。すなわち、野菜室ファン53によって野菜室8内を拡散及び循環された冷気は、野菜室8内の温度を下げて野菜室8内を冷却すると同時に、野菜室背面下部付近に極端な低温化や温度差が生じるのを抑制し、結露発生を防止する。
 なお、全ての室が設定温度を下回って、圧縮機15及び冷却ファン19の動作が停止すると、冷却ファン19の動作により生まれていた圧力差が解消され、全ての冷気は、温度の違いから生じる密度差に基づく平衡状態へ流れ始める。この場合、冷却室冷気搬送路30に次いで冷凍室9内の圧力が高いため、冷却室冷気搬送路30、冷却室16及び冷凍室9内の冷気は、圧力差が解消するまで広がり続ける。このとき、冷凍室9内及び冷却室16内の冷気は、比較的低温で密度が高くこれらの室に溜まっているため、少なくとも冷却室冷気搬送路30内の冷たい冷気が下方に流下してきて、最も冷たい冷却室16の高さまで冷気が達することになる。ここで、冷却室16及び冷凍室9内には冷たい冷気が充満しているため、上述した流下してくる冷たい冷気は、冷却室16と冷凍室9を介してつながっている冷気の戻り通路38へと広がる。そして、戻り通路38まで広がった冷気は戻り通路38を逆流して冷却室16に溜まる冷気の上端、つまり冷却室16の上方に開口した冷却ファン19の下端高さまで達する。
 本実施の形態では、野菜冷気出入り口44の下端は冷却ファン19のベルマウス下端高さよりも高く設置されているため、逆流した冷気が野菜冷気出入り口44から野菜室8へ流入することを抑制できる。これにより、野菜室8が逆流冷気により局所的に冷却されることを抑制し、野菜室8内の結露や凍結、過冷を防止できるため、保存野菜の劣化を防止できる。
 以上のようにして、冷却運転中と冷却停止中の何れの場合でも野菜室8の局部的な低温化による結露発生が防止されるため、冷気生成用の冷却器18が大型化され、冷却室16が冷凍室9と野菜室8にまたがる大能力の大型冷蔵庫であっても、冷却室16からの冷輻射に起因する結露を抑制することができる。したがって、小能力の小型冷蔵庫から大能力の大型冷蔵庫に至る全域の冷蔵庫において、冷却室16からの冷輻射で生じる結露水による野菜劣化を抑制し、良好な状態で野菜を冷却保存することが可能となる。しかも、この冷蔵庫は、野菜室8を、冷蔵室7と冷凍室9との間に設けた「真ん中野菜室タイプ」であるため、結露発生を防止して野菜を良好な状態に冷却保存しつつ、野菜等の出し入れを中心に使用するユーザの使い勝手を高めることができ効果的である。
 以上のように、本実施の形態における冷蔵庫90は、野菜室内の温度差に起因する結露発生を抑制すると同時に、野菜室内を低温に冷却保持することができ、常に良好な状態で野菜を冷却保存することができる。更に、野菜室冷却に関してさらに以下に示す効果を有する。
 まず、本実施の形態では、野菜室ファン53は、野菜収納ケース48の下段に配置されている下段野菜収納ケース49a、かつ上段に配置されている上段野菜収納ケース49bの外周に向けて、冷気を拡散および循環のうち少なくとも一方をさせる。従って、野菜室ファン53によって拡散され、循環される冷気が、下段野菜収納ケース49a及び上段野菜収納ケース49b内に入って野菜同士の間を流れることを抑制できる。その結果、野菜同士の間を冷気が流れることによって生じがちな野菜の乾燥劣化も防止して新鮮かつ良好な状態で野菜を冷却保存することができる。
 特に、本実施の形態では、下段野菜収納ケース49a及び上段野菜収納ケース49bで構成される野菜収納ケース48の上部に、第一の野菜冷気吸込み口47及び第二の野菜冷気吸込み口51を設けている。第一の野菜冷気吸込み口47及び第二の野菜冷気吸込み口51は、野菜室内を拡散または循環する冷気の吸込み口となる。野菜室8内を拡散および循環のうち少なくとも一方をする冷気は、下段野菜収納ケース49a及び上段野菜収納ケース49bからなる野菜収納ケース48内に入り込むことなく、そのまま第一の野菜冷気吸込み口47及び第二の野菜冷気吸込み口51へと流れる。これにより、確実に野菜の乾燥劣化を防止して新鮮かつ良好な状態で野菜を冷却保存することができる。この野菜の乾燥劣化防止効果は、上段野菜収納ケース49bの上面開口縁を、野菜室天井面ともなる仕切板5に近接させることでより高めることができる。当該上面開口縁を覆う蓋を設ければ、さらに効果的に野菜の乾燥劣化防止効果を高めることができる。
 加えて、野菜室ファン53は、野菜収納ケース48の上部開口縁より下方部分に位置している。従って、野菜室ファン53から送風される冷気は、野菜収納ケース48のうち、特に下段野菜収納ケース49aの底面及び下部外周付近を拡散及び循環のうち少なくとも一方をするようになる。したがって、この野菜室ファン53によって拡散及び循環のうち少なくとも一方をされる冷気は、さらに野菜収納ケース48内に入り込みにくいものとなる。これにより、野菜収納ケース48内に冷気が入り込んで循環することにより生じる野菜の乾燥劣化を確実に防止することができ、より新鮮かつ良好な状態で野菜を冷却保存することができる。
 また、本実施の形態では、野菜収納ケース48は、下段野菜収納ケース49aの内部を左右に仕切って、その一方にペットボトルやパック等の非野菜収納部59を設けている。ペットボトル等収納部59側の野菜室背面部分に野菜室ファン53を設けて、ペットボトル等収納部59に向けて野菜室内の冷気を拡散および循環のうち少なくとも一方をさせる。従って、野菜室ファン53から送風される冷気は、ペットボトル等収納部59の周りを集中的に循環するようになり、ペットボトル等収納部59に収納されているペットボトルやパック等を効率よく冷却することができる。特にペットボトル等収納部59に収納されているペットボトルやパック等の飲料水等は、野菜よりも熱容量が大きくて冷えにくく、冷却は効果的である。その結果、ペットボトル等の収納による野菜室温度の上昇を効率よく抑制し、結露発生を効果的に防止すると同時に野菜の保存も良好に行うことができる。
 特に本実施の形態では、野菜室ファン53とともに、第一の野菜冷気吸込み口47を野菜収納ケース48のペットボトル等収納部59側の部分に設けている。これにより、野菜室ファン53からの冷気をペットボトル等収納部にさらに効率よく集中的に循環させることができる。
 また、野菜室8内の冷気を循環させるためのもう一つの吸込み口ともなる第二の野菜冷気吸込み口51を、野菜室ファン53と実質的に対角位置の野菜室上部に備える。これにより、野菜室ファン53から送風される冷気の一部は、野菜収納ケース48のペットボトル等収納部59の底面部分を通って前方へと野菜室8内を斜めに縦断しながら拡散及び循環のうち少なくとも一方をして、野菜室上部の第二の野菜冷気吸込み口51へ流れる。従って、下段野菜収納ケース49a及び上段野菜収納ケース49bを備えた野菜室ケース内への冷気の入り込みを防止しつつ、野菜室ケースの外周に広範囲に冷気を拡散及び循環のうち少なくとも一方をさせることができる。従って、野菜及びペットボトル等を効果的に冷却することができる。
 一方、本実施の形態では、冷却室16と冷蔵室7とを連通する冷蔵冷気の往き通路37を、冷蔵庫90本体背面の実質的な中央部に配置している。そして、往き通路37の側方に、冷蔵室7と冷却室16とを連通する冷蔵冷気の戻り通路38部分を配置している。さらに、冷蔵冷気の戻り通路38部分の前方に、野菜室通路部50を縦設している。野菜室通路部50は、風路断面積を小さく設定できる冷蔵冷気の戻り通路38部分の前方に縦設されている。一方、野菜室通路部50は、風路断面積を大きく設定する必要のある冷蔵冷気の往き通路37部分の側方に位置して、これらが前後方向に重なることがないので、その分だけ野菜室8の奥行き寸法を拡大することができる。従って、野菜を良好な状態で冷却保存できることに加えて野菜収納量も多くすることができ、使い勝手の良い冷蔵庫とすることができる。
 また、この冷蔵庫90は、冷蔵冷気往き通路32と冷蔵冷気戻り通路33との間に連通路39が形成されている。野菜室ファン53が回転すると、ファン吸引力によって冷蔵冷気往き通路32内の低温で新鮮な冷気は、冷蔵冷気戻り通路33内に直接混入して、戻り通路38を介して野菜冷気出入り口44から野菜室8内に供給される。すなわち、野菜室8は、冷蔵室7からの冷蔵室冷却後の比較的温度が高くなっている戻り冷気によって冷却されるだけでなく、野菜室ファン53の回転により、低温で新鮮な冷気が上述した冷蔵室冷却後の冷気に混入して低温化された冷気にて冷却される。したがって、野菜室8を効果的に冷却することができ、例えば、野菜やペットボトル等が一時的に多く収納された時などのように冷却負荷条件が悪いときでも、野菜室8を確実に冷却することができる。また、連通路39を介して取り込む低温の新鮮冷気の量は、野菜室ファン53の回転数を上げることによって増加させることができる。従って、夏場で熱容量の大きい常温のペットボトル等が大量に収納された時でも、確実に冷却することができる。しかも、野菜室8を確実に冷却できるので、冷却室16からの冷輻射による結露発生も効率よく抑制でき、野菜を良好な状態で冷却保存することができる。
 野菜室ファン53は、冷蔵室温度検知部65からの出力によって冷蔵室ダンパ31が開かれ冷蔵室7及び野菜室8を冷却しているときに作動して、野菜室8内の冷気を拡散および循環のうち少なくとも一方をさせる。さらに、本実施の形態における冷蔵庫90は、野菜室8に設けられた野菜室温度検知部66の検出温度に基づいても野菜室ファン53は制御される。これにより、冷蔵室7の温度が高くて冷却動作を行なっていないときでも、野菜室8の温度が設定温度以上になると野菜室ファン53は、回転し始め野菜室8内に冷気を拡散及び循環の少なくとも一方をさせるようになる。したがって、野菜室温度が高くなって冷却室16からの冷輻射により大きな温度差が生じ結露が発生しやすい条件になると、野菜室ファン53が回転してこの課題を解消し、効果的に結露発生を防止することができる。
 また、野菜室8の温度が、野菜室ファン53の回転にもかかわらず、第二設定温度より高くなるようなことがあれば、野菜室ファン53の回転数を上げて、冷気が拡散され、循環される量を増強させる。これにより、低温の新鮮冷気の取り込み混入量を増加させて、野菜室8を確実に冷却することができる。なお、第二設定温度とは、前述した設定温度よりもさらに若干高い温度に設定されている。よって、夏場における冷却不足を解消し、野菜等の良好な冷却保存を確実に実現して冷蔵庫の信頼性を高めることができる。
 (実施の形態2)
 図23は実施の形態2における冷蔵庫の冷却室背面部分の冷気流れを説明する斜視図である。図24は同実施の形態2における冷蔵庫の野菜室における冷気流れを説明するための概略断面図である。
 実施の形態2の冷蔵庫90は、実施の形態1で説明した野菜冷気出入り口44の代わりに、野菜冷気入口45および野菜冷気戻り口46をそれぞれ別々に備えたものである。すなわち、野菜室8は、野菜冷気入口45に加えて、野菜冷気入口45より上方位置、例えば第一の通路47a、第二の通路51a、および野菜室通路部50の合流付近に、野菜冷気戻り口46を備えている。
 その他の構成は実施の形態1と同様であり、同一構成要素には同一符号を附記して説明は省略する。
 実施の形態2では、野菜冷気入口45から冷気の戻り通路38中の冷気が流れ込み、野菜室8内の冷気は野菜冷気戻り口46から冷気の戻り通路38へと流出する。したがって、一つの野菜冷気出入り口44から冷気が出入りする場合に比べ冷気の出入りは円滑で、より多くの冷気が野菜室8内に流れ込む。これにより、効率よく野菜室内に冷気を取り込んで、野菜室8内を強力に冷却できる。よって、例えば野菜室8が冷蔵庫本体の最下部にあって野菜室8の底部が外気からの熱輻射を受けて低温化しにくい冷蔵庫のような場合等に効果的である。
 その他の作用効果は、野菜冷気出入り口44一つで冷気を出入りさせて野菜の乾燥劣化を抑制する効果以外は実施の形態1と同様であり、説明は省略する。
 なお、上記各実施の形態において、冷却室16だけでなく、冷却室16から冷却室16の冷却ファン下流側に備えられた冷蔵室ダンパ31までの冷却室冷気搬送路30帯域が、冷却室16と同じ極低温帯の冷却室温度域となっている。従って、冷却室16から冷蔵室ダンパ31までの冷却室温度帯域と対向する部分で、野菜室8の背面は強い冷輻射を受ける。上述した実施形態においては、冷却室冷気搬送路30を含む冷却室温度帯域を総称して冷却室16と称している。
 以上、本発明の実施の形態を説明してきたが、上記実施の形態で説明した構成は本発明を実施する一例として示したものであり、本発明の目的を達成する範囲で種々変更可能なことは言うまでもない。
 <その他の実施形態>
 実施の形態1,2では、野菜室8を、冷蔵室7と冷凍室9との間に設けた「真ん中野菜タイプ」の冷蔵庫を例にして説明したが、これに限られない。野菜室8と冷凍室9の背面に渡って冷却室16が設置されており、かつ野菜室8が最下部に配置されているタイプの冷蔵庫にも本願発明を適用できる。
 また、野菜室通路部50は野菜室8の正面から見て右側部分に設けられている例を示したが、左側に設けてもよい。この場合、野菜収納ケース48のペットボトル等収納部は左側に設定する。
 また、野菜室通路部50は、野菜室の右側に偏る位置に設けられている例を示したが、野菜室8の背面左右全域にわたって設けられてもよい。この場合、野菜室通路部50が、背面冷却室からの冷輻射を遮断する機能も期待でき、より効果的に結露発生を防止することができる。
 また、野菜室通路部50は必ずしも必要とするものではなく、野菜室ファン53を野菜冷気出入り口44の吸込み側に配置して、野菜室8内に露出状態で設けてもよい。
 また、野菜室8への冷気の供給および停止のうち少なくとも一方は、冷蔵室ダンパ31を兼用して行うようにしているが、野菜室専用のダンパを設けて供給および停止のうち少なくとも一方を行わせるようにしてもよい。その際には、冷蔵室温度検知部65及び野菜室温度検知部66の出力により野菜室ファン53と連動させて、野菜室専用のダンパに供給および停止のうち少なくとも一方を動作させてもよい。或いは、野菜室専用のダンパ単独で、供給および停止のうち少なくとも一方を動作させてもよい。
 さらに、野菜室ファン53は、野菜室8に設けた野菜室温度検知部66からの出力によって制御されている例を示したがこれに限られず、冷蔵室温度検知部65の出力に連動させて制御されるようにしてもよい。あるいは、間欠的に所定時間、野菜室ファン53の回転を繰り返すようにしてもよく、冷蔵庫の特性に応じて適宜選択すればよい。
 また、下段野菜収納ケース49aと上段野菜収納ケース49bの複数のケースの組み合わせからなる野菜収納ケース48を用いた例を示したが、これに限られず、野菜収納ケース48を一つのケースで構成してもよい。なお、野菜収納ケース48の上部開口とは、実施の形態1および2のように複数のケースの組み合わせの場合は、最上段の野菜収納ケースの開口をいう。
 また、野菜収納ケース48に形成されたペットボトル等の非野菜収納部59は、野菜収納ケース48内を左右に仕切って形成した例を示したが、これに限られない。野菜収納ケース48内を前後方向に仕切って、前部を非野菜収納部としてもよい。
 更に圧縮機15を冷蔵庫本体1の上部後方領域に設置している例を示したが、これに限られるものではない。圧縮機15を、冷蔵庫本体1の下部後方に設けてもよい。
 また、野菜室8内の結露を抑制するために野菜室ファン53を設けているが、結露問題と同程度に大きな課題である、野菜の冷却保存時における乾燥劣化の防止を図るだけであれば、野菜室ファン53は必ずしも必要ではない。実施の形態1で説明した野菜冷気出入り口44を一つ設けて、野菜室ファン53を設けない構成としてもよい。例えば、野菜室8が、冷蔵室7と冷凍室9との間にあって、背部に冷却室16が位置している「真ん中野菜室タイプ」の冷蔵庫であれば、野菜室8はその周りが外気より低温の状態となっている。このため、野菜室8は、比較的低温の状態に維持されるため、野菜室8内への冷気の出入り口を一つとして野菜室8に供給される冷気量が少なくなっても、通常状態では良好な冷却が可能である。
 (実施の形態3)
 図25は本発明の実施の形態3における冷蔵庫の正面図である。図26は同実施の形態3における冷蔵庫の扉を開いた時の正面図である。図27は同実施の形態3における冷蔵庫を示す図26の27-27断面図である。図28は同実施の形態3における冷蔵庫を示す図26の28-28断面図である。図29は同実施の形態3における冷蔵庫を正面から見て縦方向に半分に切断したときの斜視図である。図30は同実施の形態3における冷蔵庫の冷気流れを説明するための概略断面図である。図31は同実施の形態3における冷蔵庫の冷気流れを説明する概略正面図である。図32は同実施の形態3における冷蔵庫の冷却室背面部分の冷気流れを説明する斜視図である。図33は同実施の形態3における冷蔵庫を示す図27の要部拡大断面図である。図34は図33における冷気流れを説明するための概略断面図である。図35は同実施の形態3における冷蔵庫を示す図28の要部拡大断面図である。図36は同実施の形態3における冷蔵庫の野菜室における冷却ファン回転時の冷気流れを説明するための概略断面図である。図37は同実施の形態3における冷蔵庫の野菜室における冷却ファン停止時の冷気流れを説明するための概略断面図である。図38は同実施の形態3における冷蔵庫の野菜室と冷凍室を示す拡大正面図である。図39は図38に示す冷蔵庫の野菜室と冷凍室の背面に設置された冷却ファンと冷却器を示す拡大正面図である。図40は同実施の形態3における冷蔵庫の野菜室と冷凍室の背面壁部分を示す拡大斜視図である。図41は図40に示す冷蔵庫の野菜室の背面壁部分を構成する奥面仕切壁ブロックの斜視図である。図42は図41に示す野菜室の背面壁部分を構成する奥面仕切壁ブロックの分解斜視図である。図43は図41に示す冷凍室の背面壁部分を構成するブロックの分解斜視図である。図44は同実施の形態3における冷蔵庫の貯蔵室と野菜室を仕切る仕切板と冷却ファンの斜視図である。図45は図44における仕切板と冷却ファンの分解斜視図である。図46は同実施の形態3における冷蔵庫の野菜収納ケースを示す斜視図である。図47は同実施の形態3における冷蔵庫の制御ブロック図である。
 まず、冷蔵庫190の全体構成について説明する。
 <冷蔵庫本体構成>
 本実施の形態に係る冷蔵庫190は、前方が開閉可能な冷蔵庫本体101を備える。冷蔵庫本体101は、図27等に示すように、主に鋼板を用いた外箱102、ABSなどの硬質樹脂で成型された内箱103、および外箱102と内箱103との間に発泡充填された硬質発泡ウレタンなどの発泡断熱材104から構成されている。冷蔵庫本体101は、仕切板105,106によって複数の貯蔵室に区分されている。冷蔵庫本体101は、最上部に冷蔵室107、冷蔵室107の下部に野菜室108、最下部に冷凍室109を備えており、「真ん中野菜室」タイプの冷蔵庫となっている。各貯蔵室の前面開口部は、扉110,扉111,扉112によって開閉可能に閉塞されている。
 図29に示されているように、冷蔵庫本体101の上部後方領域には、機械室114が設けられている。機械室114には、圧縮機115および水分除去を行うドライヤ(図示せず)等の冷凍サイクルの高圧側構成部品が収容されている。
 冷蔵庫本体101の背面には、冷気を生成する冷却室116が設けられている。冷却室116は、冷凍室109の背面から野菜室108の下部背面に渡って形成されている。冷却室116と野菜室108との間には、発泡スチロール等によって断熱性を持たせた奥面仕切壁体117を設けられ、これにより断熱仕切りがなされている。
 冷却室116内には冷却器118が配設されており、冷却器118の上部には冷却ファン119が配置されている。冷却ファン119は、冷却器118により冷却された冷気を冷蔵室107、野菜室108、および冷凍室109に強制循環させて、各室を冷却する。例えば、冷蔵室107は通常食品が凍らない程度の温度1℃~5℃に冷却され、野菜室108は冷蔵室107と同等もしくは若干高めの温度2℃~7℃に冷却されている。また、冷凍室109は冷凍保存のために通常-22℃~-15℃の冷凍温度帯に冷却しており、場合によっては冷凍保存状態向上のために、例えば-30℃や-25℃の低温に冷却されることもある。
 図30、図44に示すように、冷却ファン119は野菜室108と冷却室116とを仕切る仕切板106に組み付けられる。仕切板106を冷蔵庫本体101の内箱103にセットすることで、冷却ファン119は冷蔵庫本体101内に取り付けられている。この状態で冷却ファン119は、図33、図34に示すように、野菜室108の背面と対向する部分に位置する。冷却ファン119は、野菜室108との間を仕切る奥面仕切壁体117に向けて冷気を送風し、野菜室下部背面に強い冷輻射をもたらす。
 図45の分解斜視図は、仕切板106と冷却ファン119の構成を示す。すなわち、仕切板106は上面部材106aと下面部材106bとの間に発泡断熱材104(図45では図示せず)が充填されており、奥部側に開口120が形成されている。開口120の上部には、冷却ファン119が組み付けられている。開口120の下方には、冷却器118が位置している。開口120は、その下方に位置する冷却器118の上面投影面積よりも大きく形成されている。下面部材106bの開口背面側縁部分の下面には、下方に突出する突片121が形成されている。下面部材106bの開口背面側縁部分の上面には、上面部材106aの開口縁よりも上方に突出する上向き突片122が形成されている。また、仕切板106には、冷却ファン119よりも前方でかつ野菜室底面となる部分に、シーズヒータ等からなる結露防止用の第一のヒータ123が埋設されている。
 なお、断熱性遮壁124は、開口120の開口縁前方部分を覆い、発泡スチロール等で構成されている。断熱性遮壁124の一側部片には、通路開口126が形成されている。通路開口126は、仕切板6に設けられている冷気戻り通路用開口125と対応する。仕切板106の冷気戻り通路用開口125と反対側部分には、タンク設置部127が形成されている。タンク設置部127には、冷凍室109に設けられている製氷装置への水供給用のタンクが設置されている。
 冷却器118の下部空間には、図33等に示すように、冷却器118あるいは冷却器118周辺に付着する霜や氷を除霜する除霜ヒータ128が配置されている。除霜ヒータ128の下部には、除霜時に生じる除霜水を受けるためのドレンパン129が配置されている。除霜水は、ドレンパン29の最深部から図示しないドレンチューブを介して庫外の蒸発皿に排出される。
 次に冷気循環構成について説明する。
 <冷気循環通路構成>
 図33、図34等に示すように、冷気を生成する冷却室116では、奥面仕切壁体117と冷蔵庫本体101との間に形成されている冷却室冷気搬送路130に、冷却ファン119の下流が開口している。冷気は、冷却室冷気搬送路130を介して各室に送風される。
 図31、図32、および図34に示すように、冷却室冷気搬送路130の上部は、冷蔵室ダンパ131を介して冷蔵冷気往き通路132と連通している。冷蔵冷気往き通路132は、冷蔵室107の背面の実質的な中央部に形成されている。図31、図32に示すように、冷蔵冷気往き通路132の側方には、冷蔵室107からの冷蔵冷気戻り通路133が隣接して設置されている。冷蔵冷気戻り通路133の下部は、野菜室108および冷却室116に連通している。
 図31に示すように、冷蔵室107の奥壁上部適所には、冷蔵冷気往き通路132の冷蔵冷気入口135が設けられている。同奥壁下部適所には、冷蔵冷気戻り通路133へ開口する冷蔵冷気戻り口136が設けられている。冷却室116から供給される冷気は、冷蔵室ダンパ131を介して冷蔵冷気往き通路132に供給され、さらに冷蔵冷気入口135から冷蔵室107に供給される。一方、冷蔵室を冷却した冷気は、冷蔵冷気戻り口136から冷蔵冷気戻り通路133を介して野菜室108に供給され、その後、冷却室116に循環する。また、冷蔵室107の下部には、後述するように、パーシャル室が設けられている。パーシャル室には、図32に示すように、パーシャル室ダンパ131a、パーシャル室冷気往き通路132a、およびパーシャル室冷気入口135aを介して、冷気が供給される。
 本実施の形態では、図32から明らかなように、奥面仕切壁体117と仕切板106の背面には、往き通路137と、戻り通路138とが形成されている。往き通路137は、冷却室冷気搬送路130と、冷蔵冷気往き通路132とを連絡する。また、往き通路137は、冷却室冷気搬送路130とパーシャル室冷気往き通路132aとを連絡する。戻り通路138は、冷蔵冷気戻り通路133と、野菜室108および冷却室116とを連絡する。冷蔵室ダンパ131は、往き通路137に設けられている。
 冷蔵冷気往き通路132と冷蔵冷気戻り通路133との間には連通路139が設けられており、冷蔵冷気往き通路132を流れる低温冷気の一部が直接冷蔵冷気戻り通路133に混入する。
 図32に示すように、冷凍室109の背面には、冷却ファン119及び冷却器118の側方を下向きに延びる冷気戻りダクト140が設けられている。冷気戻りダクト140の上部は、戻り通路38を介して野菜室8に連通する。冷気戻りダクト140の下部は、冷却室116の下部近傍に開口しており、野菜室108を冷却した冷気が、冷気戻りダクト140を介して、冷却室116の下部開口から冷却室116へと循環する。
 一方、冷凍室109では、図34に示すように、背面壁体141(図43参照)の上部に冷凍冷気入口142が形成されている。冷凍冷気入口142は、奥面仕切壁体117背面の冷却室冷気搬送路130下部に連通する。また、背面壁体141の下部には、冷却室116の下部に開口する冷凍冷気戻り口143が形成されている。冷却室116から循環してきた冷気は、冷凍冷気入口142を介して、冷却室冷気搬送路130下部から冷凍室に供給される。冷凍室冷却後の冷気は、冷凍冷気戻り口143を介して冷却室116へ循環する。
 <野菜室構成>
 野菜室108は、図31、図32、および図34に示すように、奥壁左右いずれか一方寄りに設けられている。本実施の形態では、野菜室108は、正面から見て右側部分の下部に設けられている。そして、野菜室108には、冷蔵冷気戻り通路133からの戻り通路138部分に開口した野菜冷気入口144が設けられている。野菜冷気入口144の実質的な上方には、戻り通路138に開口して冷却室116へとつながる野菜冷気戻り口146が設けられている。野菜冷気入口144は、図32に示すように、冷却ファン119のベルマウス開口下端より上方に位置するように設けられている。これにより、冷却ファン119停止時に、冷却室116内の低温冷気が戻り通路138へと逆流した場合、野菜冷気入口144より野菜室108に冷気が流入することを防止している。
 さらに野菜室108には、特に図36に示すように、野菜室108の背面下部に設けられている野菜冷気入口144の前方部分にプロペラファン等からなる野菜室ファン153が配置してある。また、冷気戻り通路138と野菜室108との間であって、野菜室108の野菜室ファン153吸引側および排気側に、冷気戻り通路138と連通する野菜冷気入口144および野菜冷気戻り口146をそれぞれ備えている。
 野菜室ファン153は、野菜冷気入口144の前方に位置し、前から見て野菜室ファン153と野菜冷気入口144が重なるように設置されている。なお、野菜室108の冷却量が大きく必要とされるような場合は野菜冷気入口144の開口面積を大きく、冷却量が小さくてよい場合は、野菜冷気入口144の開口面積を小さくすることが有効である。いずれの場合も、野菜冷気入口144の下端は、野菜室ファン153の上端より低い位置に設けられ、前後に重なるように設置されている。
 野菜室108の上部には、後方が野菜冷気戻り口146に開口し、前方が野菜室108内に開口している第一の野菜冷気吸込み口147を備えた第一の通路147aが形成されている。
 野菜室108上部には、図38、図41等に示されるように、野菜室108の奥の面となる奥面仕切壁体117の上部であって野菜冷気入口144の実質的に対角位置となる部分に、第二の野菜冷気吸込み口151が設けられている。本実施の形態では、野菜室108の左奥側上部に、第二の野菜冷気吸込み口151が設けられている。第二の野菜冷気吸込み口151を備えた第二の通路151aは、図36に示すように野菜冷気戻り口146に連通している。
 図42は第二の野菜冷気吸込み口151を備えた奥面仕切壁体117の分解斜視図である。奥面仕切壁体117は、発泡スチロール(図示せず)を介して前仕切板117aと後仕切板117bとが重合されて構成されている。奥面仕切壁体117の下部には上述したように野菜室ファン153が組み込まれている。野菜室ファン153の吹出口154は、野菜室108内に開口している。そして、野菜室ファン153は、野菜冷気入口144から流れ込む冷気と、第一の野菜冷気吸込み口147及び第二の野菜冷気吸込み口151から吸い込まれる野菜室冷気と、を野菜室108内に送風する。野菜室ファン153の吹出口154は、後述する下段野菜収納ケース149aの後面に向かって開口しており、野菜室ファン153と対向する下段野菜収納ケース149aの後下部は下方ほど前方に位置する傾斜面155となっている。これにより、野菜室ファン153からの冷気が下段野菜収納ケース149aの下面空間へと集中的に流れる様に構成されている。
 また、奥面仕切壁体117の冷却室116と対向する面には、図34に示すように、シーズヒータ等からなる結露防止用の第二のヒータ156が埋設されている。第二のヒータ156は、冷却室116の上部と対向する位置であって、冷蔵室ダンパ131よりも下方位置にある低温の冷却室温度帯域に設置されている。冷蔵室ダンパ131は、冷却室116から冷蔵室107への冷気を開閉する。
 低温の冷却室温度帯域となる冷却室冷気搬送路130内には、冷却ファン119、仕切板106内の第一のヒータ123、および奥面仕切壁体117内の第二のヒータ156等の電気部材のコネクタ接続部157(ボックス)が設置されている(図39参照)。冷却室温度帯域となる冷却室冷気搬送路130内で電気的接続が行われている。
 なお、野菜室108には、図35等に示すように、野菜収納ケース148が配置されている。野菜収納ケース148は、扉111のフレームに載置された下段野菜収納ケース149aと、下段野菜収納ケース149aの上に載置された上段野菜収納ケース149bとから構成されている。そして、野菜収納ケース148とその下に配設されている仕切板106との間に空間が設けられ、また野菜収納ケース148と野菜室108の内周壁面との間にも空間が設けられている。これらの空間は野菜冷気入口144からの冷気が流れる風路を構成している。
 また、野菜収納ケース148の上段野菜収納ケース149bの上部開口縁は、野菜室108上部の仕切板105と近接した部分に位置していている。これにより、野菜冷気入口144から流れ込む冷気が、野菜収納ケース148の上段野菜収納ケース149b及び下段野菜収納ケース149a内に直接入り込むことを防止している。なお、上段野菜収納ケース149bの上部開口にこれを閉塞する蓋を設けて、冷気が野菜収納ケース148内へ侵入することをより確実に防止してもよい。
 また、下段野菜収納ケース149aは、図46に示すように、ケース仕切板158によって左右に分割されていてもよい。野菜冷気入口144と対向する側(本実施の形態では正面から見て右側部分)を一段深くして、ペットボトルやパック等の非野菜収納部159(以下、ペットボトル等収納部と称す)としている。なお、野菜室108内を前後に仕切り、前側部分をペットボトル等収納部159としてもよい。
 <冷蔵室構成>
 冷蔵室107は図28等に示すように内部に複数の収納棚160を有するとともに、準冷凍温度帯に冷却できるパーシャル室161を備えている。そして、冷蔵室107のそれぞれの適所に、上述した冷蔵冷気入口135及び冷蔵冷気戻り口136(いずれも図31参照)が設けられている。そして、冷蔵室107の側壁適所には、各室の庫内温度設定や製氷および急速冷却などの設定を行う操作部162が配置されている。
 <冷凍室構成>
 冷凍室109の奥壁上部には、図34を用いて上述したように、奥面仕切壁体117の背面に形成されている冷却室冷気搬送路130の下部と連通する冷凍冷気入口142が形成されている。さらに、冷凍室109の奥壁下部には、冷凍室109に連通する冷凍冷気戻り口143が形成されている。そして図示していないが、冷却室116から冷凍室109への通路の適所にも、冷凍室ダンパが組み込まれている。なお、冷凍室109にも、図28等に示すように、扉112のフレームに載置された冷凍室ケース163が設けられている。更に、冷凍室ケース163の上部には、製氷装置164が組み込まれている。
 次に冷蔵庫190の制御構成について説明する。
 <制御構成>
 図47は本実施の形態の冷蔵庫190における制御ブロック図を示す。冷蔵室温度検知部165、野菜室温度検知部166、および冷凍室温度検知部167は、いずれもサーミスタで形成してあり、それぞれ、冷蔵室107、野菜室108、および冷凍室109の適所に設置されている。冷蔵庫190全体を統括制御する制御部168は、マイクロコンピュータ等によって構成されている。制御部168は、冷蔵室温度検知部165、冷凍室温度検知部167からの出力に基づきあらかじめ組み込まれた制御ソフトにしたがって冷蔵室ダンパ131、冷凍室ダンパ134を開閉制御する。さらに、制御部168は、圧縮機115、冷却ファン119、及び必要に応じて第一のヒータ123、第二のヒータ156を駆動して各室を設定温度に制御する。また、制御部168は、冷蔵室温度検知部165および野菜室温度検知部166からの出力に基づき、野菜室108の野菜室通路部150に組み込んだ野菜室ファン153の運転を制御する。具体的には、冷蔵室温度検知部165および野菜室温度検知部166にて検出される温度が、それぞれ設定されている設定温度よりも高いことをいずれか一方の検知手段で検知すると野菜室ファン153を駆動させる。
 さらに冷蔵室温度検知部165および野菜室温度検知部166にて検出され温度が常に低く、一定時間以上連続して冷蔵室ダンパ131が開かないときにも、制御部168は、野菜室ファン153を駆動させる。
 以上のように構成された冷蔵庫190について、以下その動作、作用を説明する。
 まず、冷凍サイクルの動作について説明する。
 冷蔵庫190内の設定された温度に応じて、制御部168からの信号により冷凍サイクルが動作し、冷却運転が行われる。圧縮機115の動作により吐出された高温高圧の冷媒は、凝縮器(図示せず)である程度凝縮液化される。さらに、冷媒は、冷蔵庫190の側面や背面、また冷蔵庫190の前面間口に配設された冷媒配管(図示せず)などを経由し冷蔵庫190の結露を防止しながら凝縮液化し、キャピラリーチューブ(図示せず)に至る。その後、冷媒は、キャピラリーチューブにおいて、圧縮機115への吸入管(図示せず)と熱交換しながら減圧されて、低温低圧の液冷媒となって冷却室に配設されている冷却器118に至る。冷却器118内の冷媒は蒸発気化し、冷却器118を有する冷却室116で各貯蔵室を冷却するための冷気が生成される。
 次に冷気循環による冷却動作について説明する。
 冷却室116内で生成された低温の冷気は、冷却ファン119によって、冷却室冷気搬送路130から冷蔵室107と冷凍室109に送られる。冷蔵室107に供給された冷気は、冷蔵室107を冷却した後、野菜室108に供給され、それぞれの室が設定温度に冷却される。そして、各室を冷却した冷気は、再び冷却室116に戻って冷却器118により冷却され、冷却ファン119の動作により各室に循環していく。
 また、制御部168が、冷蔵室温度検知部165及び冷凍室温度検知部167の検出温度に基づき、圧縮機115と冷却ファン119を運転および停止のうち少なくとも一方をさせる。また制御部168は、冷蔵室ダンパ131、冷凍室ダンパ134を開閉制御し、それぞれの室を設定温度帯に維持する。
 次に、野菜室108の冷却動作について説明する。
 図36に示すように、冷蔵室冷却後の冷気は、冷気の戻り通路138に設けられている野菜冷気入口144から野菜室108に流れ込み、野菜室108を冷却させる。
 ここで、本実施形態における冷蔵庫190では、図36に示すように、野菜室108内に野菜室ファン153が設けられている。そのため、野菜室ファン153の回転によって、野菜冷気入口144から野菜室108内に多くの冷気を吸引し、野菜室ファン153の吹出口154より野菜室108内の下段野菜収納ケース149a後面に向かって冷気が供給される。
 野菜室108の下段野菜収納ケース149aに向かって供給された冷気は、図36の実線矢印で示すように、野菜収納ケース148と野菜室108の底面との間の空間および野菜収納ケース148と野菜室108の内周壁との間の空間を流れる。そして、大部分の冷気は、第一の野菜冷気吸込み口147および第二の野菜冷気吸込み口151から、第一の通路147a、第二の通路151aを介して野菜冷気戻り口146から戻り通路138へと流出する。他の一部の冷気は、破線矢印で示すように野菜室108内を拡散および循環の内いずれか一方をする。
 なお、全ての貯蔵室が設定温度を下回り、圧縮機115及び冷却ファン119の動作が停止した状態で野菜室ファン153が回転すると、全ての冷気は流れが停止し、冷気の戻り通路138での冷気の流れがなくなる。この場合、第一の野菜冷気吸込み口147、第二の野菜冷気吸込み口151、第一の通路147a、および第二の通路151aの通気抵抗が、野菜室108内の通気抵抗に比べて大きいため、野菜室ファン153は、図37の実線矢印で示すように野菜室108内で冷気のすべてを拡散および循環の内少なくとも一方をさせるようになる。
 この野菜室ファン153によって拡散及び循環の内少なくとも一方をする冷気は、野菜室108の背面に位置する冷却室116からの冷輻射および下方に位置する冷凍室109からの冷輻射によって低温化しやすい野菜室背面下部付近の温度を野菜室108内に拡散させる。これにより野菜室108内の温度を下げてより効果的に野菜室108内を冷却すると同時に、野菜室背面下部付近に極端な低温化や温度差が生じるのを防止し、冷却室116や冷凍室109からの冷輻射が原因となる結露発生を抑制する。
 以上のようにして、冷蔵庫190は冷却運転中と冷却停止中の何れの場合でも野菜室108の局部的な低温化による結露発生を防止するから、冷気生成用の冷却器118を大型化して冷却室116が冷凍室109と野菜室108にまたがる大きな大能力の大型冷蔵庫であっても、冷却室116からの冷輻射に起因する結露を抑制することができる。したがって、小能力の小型冷蔵庫から大能力の大型冷蔵庫に至る全域の冷蔵庫において、冷却室116からの冷輻射で生じる結露水による野菜劣化を抑制し、良好な状態で野菜を冷却保存することが可能となる。
 しかも、本実施の形態における冷蔵庫190は、野菜室108を、冷蔵室107と冷凍室109との間となる、冷蔵庫本体101上下中央部分に設けた「真ん中野菜室タイプ」の冷蔵庫であり、上述した如く結露発生を防止して野菜を良好な状態に冷却保存しつつ、野菜等の出し入れを中心に使用するユーザの使い勝手を高めることができる。
 加えて、野菜室ファン153は、野菜冷気入口144の前方でかつ前から見て重なる位置に設けられているため、野菜室ファン153の吸込み側の風路面積を大きくすることができ野菜室ファン153の風路抵抗を小さくすることができる。これにより、野菜室108内のより多くの冷気を拡散及び循環させることができるため、結露発生の抑制効果を更に高めることができる。
 また、野菜室ファン153は、野菜収納ケース148の下段野菜収納ケース149a及び上段野菜収納ケース149bの外周に向けて冷気を拡散及び循環の内少なくとも一方をさせる。従って、野菜室ファン153によって拡散及び循環の内少なくとも一方をする冷気が、下段野菜収納ケース149a及び上段野菜収納ケース149b内に入って野菜同士の間を流れることを抑制できる。この結果、野菜同士の間を冷気が流れることによって生じがちな野菜の乾燥劣化も防止して新鮮かつ良好な状態で野菜を冷却保存することができる。
 特に、本実施の形態では、下段野菜収納ケース149a及び上段野菜収納ケース149bで構成される野菜収納ケース148の上部に、第一の野菜冷気吸込み口147及び第二の野菜冷気吸込み口151(図40参照)を設けている。第一の野菜冷気吸込み口147及び第二の野菜冷気吸込み口151は、野菜室内を拡散または循環する冷気の吸込み口ともなる。野菜室108内を拡散及び循環の内少なくとも一方をする冷気は、下段野菜収納ケース149a及び上段野菜収納ケース149bからなる野菜収納ケース148内に入り込むことなく、そのまま第一の野菜冷気吸込み口147及び第二の野菜冷気吸込み口151へと流れる。これにより、より確実に野菜の乾燥劣化を防止して新鮮かつ良好な状態で野菜を冷却保存することができる。この野菜の乾燥劣化防止効果は、上段野菜収納ケース149bの上面開口縁を野菜室天井面ともなる仕切板105に近接させることでより高めることができる。当該上面面開口を覆う蓋を設ければ、さらに効果的に野菜の乾燥劣化防止効果を高めることができる。
 加えて、野菜室ファン153は、野菜収納ケース148の上部開口縁より下方部分に位置している。これにより、野菜室ファン153から送風される冷気は、野菜収納ケース148のうち、特にその下段野菜収納ケース149aの底面及び下部外周付近を拡散および循環のうち少なくとも一方をするようになる。したがって、野菜室ファン53によって拡散及び循環のうち少なくとも一方をされる冷気は、さらに野菜収納ケース148内に入り込みにくいものとなる。これにより、野菜収納ケース148内に冷気が入り込んで循環することにより生じる野菜の乾燥劣化を確実に防止することができ、より新鮮かつ良好な状態で野菜を冷却保存することができる。
 また、本実施の形態では、野菜収納ケース148は、下段野菜収納ケース149aの内部を左右に仕切って、その一方にペットボトルやパック等の非野菜収納部159(以下、ペットボトル等収納部159と称す)を設けている。ペットボトル等収納部159側の野菜室背面部分に野菜室ファン153を設けて、ペットボトル等収納部159に向けて野菜室内の冷気を拡散及び循環のうち少なくとも一方をさせる。従って、野菜室ファン153から送風される冷気は、ペットボトル等収納部159の周りを集中的に循環するようになり、ペットボトル等収納部159に収納されているペットボトルやパック等を効率よく冷却することができる。特にペットボトル等収納部159に収納されているペットボトルやパック等の飲料水等は、野菜よりも熱容量が大きくて冷えにくいことから、冷却は効果的である。以上より、ペットボトル等の収納による野菜室温度の上昇を効率よく抑制し、結露発生を効果的に防止すると同時に野菜の保存も良好に行うことができる。
 特に本実施の形態では、野菜室ファン153とともに、野菜室108に設けられた第一の野菜冷気吸込み口147を野菜収納ケース148のペットボトル等収納部159側の部分に設けた構成としている。これにより、野菜室ファン153からの冷気をペットボトル等収納部にさらに効率よく集中的に循環させることができる。
 また、野菜室108内の冷気を循環させるためのもう一つの吸込み口ともなる第二の野菜冷気吸込み口151を、野菜室ファン153と実質的に対角位置の野菜室上部に設けている。これにより、野菜室ファン153から送風される冷気は、野菜収納ケース148のペットボトル等収納部159の底面部分を通って前方へと野菜室108内を斜めに縦断しながら拡散及び循環のうち少なくとも一方をして、野菜室上部の第二の野菜冷気吸込み口151へと流れる。したがって、下段野菜収納ケース149a及び上段野菜収納ケース149bを備えた野菜室ケース内への冷気の入り込みを防止しつつ、野菜ケースの外周に広範囲に冷気を拡散及び循環のうち少なくとも一方をさせることができる。従って、野菜及びペットボトル等を効果的に冷却することができる。
 本実施の形態における冷蔵庫190は、冷蔵冷気往き通路132と冷蔵冷気戻り通路133との間に連通路139が形成されている。野菜室ファン153が回転すると、その吸引力によって冷蔵冷気往き通路132内の低温で新鮮な冷気が、冷蔵冷気戻り通路133内に直接混入して、戻り通路138を介し野菜冷気入口144から野菜室108内に供給される。すなわち、野菜室108は、冷蔵室冷却後の比較的温度が高くなっている戻り冷気によって冷却される。本実施の形態における冷蔵庫190では、野菜室ファン153の回転により、冷蔵室冷却後の冷気に低温の新鮮冷気が混入して低温化された冷気が、野菜室108を冷却する。
 したがって、野菜室108を効果的に冷却することができ、例えば、野菜やペットボトル等が一時的に多く収納された時などのように冷却負荷条件が悪いときでも、野菜室108を確実に冷却することができる。また、連通路139を介して取り込まれる低温の新鮮冷気の量は、野菜室ファン153の回転数を上げることによって増加させることができる。従って、夏場で熱容量の大きい常温のペットボトル等が大量に収納された時でも、確実に冷却することができる。しかも、野菜室108を確実に冷却できるので、冷却室116からの冷輻射による結露発生も効率よく抑制でき、野菜を良好な状態で冷却保存することができる。
 また、野菜室ファン153は、冷蔵室温度検知部165からの出力によって冷蔵室ダンパ131が開かれて冷蔵室107及び野菜室108を冷却しているときに作動して、野菜室108内の冷気を拡散及び循環のうち少なくとも一方をさせる。さらに、本実施の形態では、野菜室108に設けられた野菜室温度検知部166の検出温度に基づいても野菜室ファン153が制御される。これにより、冷蔵室107の温度が高くて冷却動作を行なっていないときでも、野菜室108の温度が設定温度以上になると野菜室ファン153は回転し始め、野菜室108内に冷気を拡散及び循環のうち少なくとも一方をさせるようになる。したがって、野菜室温度が高くなって冷却室116からの冷輻射により大きな温度差が生じ結露が発生しやすい条件になると、野菜室ファン153が回転してこの課題を解消し、効果的に結露発生を防止することができる。
 また、野菜室108の温度が、野菜室ファン153の回転にもかかわらず、第二設定温度より高くなるようなことがあれば、野菜室ファン153の回転数を上げて、冷気が拡散され、循環される量を増強させる。これにより、低温の新鮮冷気の取り込み混入量を増加させることができ、野菜室108を確実に冷却することができる。なお、第二設定温度とは、上述した設定温度よりもさらに若干高い温度に設定されている。よって、夏場における冷却不足を解消し、野菜等の良好な冷却保存を確実に実現して冷蔵庫の信頼性を高めることができる。
 (実施の形態4)
 図48は実施の形態4における冷蔵庫の野菜室における冷却ファン回転時の冷気流れを説明するための概略断面図である。図49は、同実施の形態4における冷蔵庫の野菜室における冷却ファン停止時の冷気流れを説明するための概略断面図である。
 実施の形態3における冷蔵庫190と共通する構成要素には、同一符号を付記して説明を省略する。
 本実施の形態では、野菜室ファン153を、野菜冷気入口144とともに野菜室108の天井部に配置している。さらに、野菜室ファン153は野菜室上部に吹出口154を開口させ、かつ、野菜冷気戻り口146を野菜室108の下部に設けた構成としてある。そして、野菜室ファン153は、野菜室108と冷蔵室107との間を仕切って野菜室108の天井を構成する仕切板105内に斜めに傾斜して配置してある。
 これにより、野菜室ファン153が回転すると、図48の実線矢印に示すように、野菜室ファン153は野菜冷気入口144から戻り通路138の冷気を吸引して野菜室108内に供給する。その結果、大部分の冷気が野菜冷気戻り口146から戻り通路138へと戻されるとともに、残りの冷気は破線矢印で示すように野菜室108内を拡散及び循環するようになる。すなわち、実施の形態3と同様、冷気を安定的かつ効率よく取り込んで野菜室108内で循環することになる。
 また、野菜室ファン153が停止したときには、図49の実線矢印で示すように大部分の冷気は戻り通路138を介して、一部の冷気は破線矢印で示すように野菜室108内を拡散し、循環する。よって、野菜室108内での結露発生を抑制し、良好な状態で野菜を冷却保存することが可能となる。
 また、野菜室ファン153は野菜室108と冷蔵室107との間を仕切る仕切板105内に配置されているので、野菜室108の冷却を効率の良いものとしつつ野菜室108の容積も確保する形態で野菜室ファン153を野菜室108内に設けることができる。すなわち、野菜室108の上部に冷蔵室107が位置しているので、野菜室108は冷蔵室107からの冷輻射によって適度に冷却される。その結果、仕切板105は断熱強化のための断熱材を組み込む必要がなくなるので、そのスペースを利用して野菜室ファン153を組み込むことができる。しかも野菜室ファン153は傾斜して配置されているから、野菜室ファン153を組み込んでいるのにもかかわらず仕切板105の厚さを大きく増加させる必要がなくなる。これにより、野菜室108の容積を大きく確保することができる。
 なお、本実施の形態では、冷却室116はもちろん、冷却室116から、冷却ファン119下流側の冷蔵室ダンパ131までの冷却室冷気搬送路130帯域が冷却室116と同じ極低温帯の冷却室温度域となっている。従って、冷却室116から冷蔵室ダンパ31までの冷却室温度帯域と対向する部分で強い冷輻射を受ける。本実施の形態では、冷却室冷気搬送路130を含む冷却室温度帯域を総称して冷却室116と称す。
 以上、本発明の実施の形態を説明してきたが、上記実施の形態で説明した構成は本発明を実施する一例として示したものであり、本発明の目的を達成する範囲で種々変更可能なことは言うまでもない。
 <その他の実施形態>
 実施の形態3,4では、野菜室108に野菜冷気入口144と野菜冷気戻り口146を別々に設けた冷蔵庫190を例示して説明したが、これに限られない。野菜冷気入口144と野菜冷気戻り口146とを一つにして冷気出入り口とし、冷気出入り口の前方にオフセット状態にして野菜室ファン153を設けた構成としてもよい。この場合は、野菜空気出入り口の野菜室ファン153側に偏った位置の開口部分から冷気戻り通路138の冷気が野菜室108内に吸引供給される。一方、野菜室ファン153とは反対側に偏った開口部分から、野菜室108内の冷気が冷気戻り通路138へと流出する。したがって、野菜室108への冷気の流出入量は少なくなるものの、これが逆に野菜室内の冷気全部が次々と入れ替わることを抑制する。したがって、野菜室108内では、野菜から蒸散した湿気を含む高湿度の冷気が多く保持されて、野菜の乾燥劣化を防止することができる。そして、野菜室108内では、野菜室ファン153の回転によって、冷気が野菜室内で拡散及び循環のうち少なくとも一方をするので、結露発生を防止することができる。
 また、実施の形態3,4では、野菜室108を冷蔵室107と冷凍室109との間に設けた「真ん中野菜タイプ」の冷蔵庫190を例にして説明したが、これに限られない。野菜室108が最下部に配置されており、野菜室108と冷凍室109の背面に渡って冷却室116が設置されているタイプの冷蔵庫にも本願発明を適用できる。
 また、野菜室108への冷気の供給および停止のうち少なくとも一方は、冷蔵室ダンパ131を兼用して行うようにしているが、野菜室専用のダンパを設けて供給および停止のうち少なくとも一方を行わせるようにしてもよい。その際には、冷蔵室温度検知部165及び野菜室温度検知部166の出力により野菜室ファン153と連動させて、野菜室専用のダンパに供給および停止のうち少なくとも一方を動作させてもよい。或いは、野菜室専用のダンパ単独で、供給および停止のうち少なくとも一方を動作させてもよい。
 さらに、野菜室ファン153は、野菜室108に設けた野菜室温度検知部166からの出力によって制御されている例を示したがこれに限られず、冷蔵室温度検知部165の出力に連動させて制御されるようにしてもよい。あるいは、間欠的に所定時間、野菜室ファン153の回転を繰り返すようにしてもよく、冷蔵庫の特性に応じて適宜選択すればよい。
 更に圧縮機115が、冷蔵庫本体101の上部後方領域に設置している例を示したが、これに限られるものではない。例えば圧縮機115を、冷蔵庫本体101の下部後方に設けてもよい。
 (実施の形態5)
 図50は本発明の実施の形態5における冷蔵庫の正面図である。図51は同実施の形態5における冷蔵庫の扉を開いた時の正面図である。図52は同実施の形態5における冷蔵庫を示す図51の52-52断面図である。図53は同実施の形態5における冷蔵庫を示す図51の53-53断面図である。図54は同実施の形態5における冷蔵庫を正面から見て縦方向に半分に切断した時の斜視図である。図55は同実施の形態5における冷蔵庫の冷気流れを説明するための概略断面図である。図56は同実施の形態5における冷蔵庫の冷気流れを説明する概略正面図である。図57は同実施の形態5における冷蔵庫の冷却室背面部分の冷気流れを説明する斜視図である。図58は同実施の形態5における冷蔵庫を示す図52の要部拡大断面図である。図59は図58における冷気流れを説明するための概略断面図である。図60は同実施の形態5における冷蔵庫を示す図53の要部拡大断面図である。図61は図60における冷気流れを説明するための概略断面図である。図62は同実施の形態5における冷蔵庫の野菜室と冷凍室を示す拡大正面図である。図63は図62に示す冷蔵庫の野菜室と冷凍室の背面に設置された冷却ファンと冷却器を示す拡大正面図である。図64は同実施の形態5における冷蔵庫の野菜室と冷凍室の背面壁部分を示す拡大斜視図である。図65は図64に示す冷蔵庫の野菜室の背面壁部分を構成する奥面仕切壁ブロックの斜視図である。図66は図65に示す野菜室の背面壁部分を構成する奥面仕切壁ブロックの分解斜視図である。図67は図65に示す冷凍室の背面壁部分を構成するブロックの分解斜視図である。図68は同実施の形態5における冷蔵庫の貯蔵室と野菜室を仕切る仕切板と冷却ファンの斜視図である。図69は同実施の形態5における冷蔵庫の野菜収納ケースを示す斜視図である。図70は同実施の形態5における冷蔵庫の制御ブロック図である。図71は同実施の形態5における冷蔵庫の野菜室冷却動作を説明するフローチャートである。図72は同実施の形態5における冷蔵庫の野菜室を冷気循環により均温化しているときの動作を示すタイミングチャートである。図73は同実施の形態5における冷蔵庫の野菜室を冷気循環により均温化しつつ冷却しているときの冷却動作を示すタイミングチャートである。図74は同実施の形態5における冷蔵庫の野菜室の温度が所定温度より高いときの冷気循環による均温化と冷却動作を示すタイミングチャートである。図75は同実施の形態5における冷蔵庫の制御で制御した野菜室の冷却状況を示すタイミングチャートである。
 まず、冷蔵庫290の全体構成について説明する。
 <冷蔵庫本体構成>
 本実施の形態に係る冷蔵庫290は、前方が開閉可能な冷蔵庫本体201を備える。冷蔵庫本体201は、図52等に示すように、主に鋼板を用いた外箱202と、ABSなどの硬質樹脂で成型された内箱203と、および外箱202と内箱203との間に発泡充填された硬質発泡ウレタンなどの発泡断熱材204から構成されている。冷蔵庫本体201は、仕切板205,206によって複数の貯蔵室に区分されている。冷蔵庫本体201は、最上部に冷蔵室207、冷蔵室207の下部に野菜室208、最下部に冷凍室209を備えている。各貯蔵室の前面開口部は、扉210,扉211,扉212によって開閉可能に閉塞されている。
 図52に示されるように、冷蔵庫本体201の上部後方領域には、機械室214が設けられている。機械室214には、圧縮機215および水分除去を行うドライヤ(図示せず)等の冷凍サイクルの高圧側構成部品が収容されている。
 冷蔵庫本体201の背面には、冷気を生成する冷却室216が設けられている。冷却室216は、冷凍室209の背面から野菜室208の下部背面に渡って形成されている。冷却室216と野菜室208との間には、発泡スチロール等によって断熱性を持たせた奥面仕切壁体217が設けられ、これにより断熱仕切りがなされている。
 冷却室216内には冷却器218が配設されており、冷却器218の上部には冷却ファン219が配置されている。冷却ファン219は、冷却器218により冷却された冷気を、冷蔵室207、野菜室208、および冷凍室209に強制循環させて各室を冷却する。例えば、冷蔵室207は食品が凍らない程度の温度1℃~5℃に冷却され、野菜室208は冷蔵室207と同等もしくは若干高めの温度2℃~7℃に冷却されている。また、冷凍室209は冷凍保存のために通常-22℃~-15℃の冷凍温度帯に冷却されており、場合によっては冷凍保存状態向上のために、例えば-30℃や-25℃の低温に冷却されることもある。
 図68に示すように、冷却ファン219は野菜室208と冷却室216とを仕切る仕切板206に組み付けられる。仕切板206を冷蔵庫本体201の内箱203にセットすることで、冷却ファン219は冷蔵庫本体201内に取り付けられている。この状態で冷却ファン219は、図58、図59に示すように野菜室208の背面と対向する部分に位置する。冷却ファン219は、野菜室208との間を仕切る奥面仕切壁体217に向けて冷気を送風し、野菜室下部背面に強い冷輻射をもたらす。
 また、冷却器218の下部空間には、図58等に示すように、冷却器218、或いは冷却器218周辺に付着する霜や氷を除霜する除霜ヒータ228が配置されている。除霜ヒータ228の下部には、除霜時に生じる除霜水を受けるためのドレンパン229が配置されている。除霜水は、ドレンパン229の最深部から図示しないドレンチューブを介して庫外の蒸発皿に排出される。
 次に冷気循環構成について説明する。
 <冷気循環通路構成>
 図58、図59等に示すように、冷却室216では、奥面仕切壁体217と冷蔵庫本体201との間に形成されている冷却室冷気搬送路230に、冷却ファン219の下流が開口している。冷気は、冷却室冷気搬送路230を介して各室に送風される。
 図56、図57、図59に示すように、冷却室冷気搬送路230の上部は、冷蔵室ダンパ231を介して冷蔵冷気往き通路232と連通している。冷蔵冷気往き通路232は、冷蔵室207の背面の実質的に中央部に形成されている。冷蔵冷気往き通路232の側方には、図56、図57に示すように、冷蔵室207からの冷蔵冷気戻り通路233が隣接設置されている。冷蔵冷気戻り通路233の下部は、野菜室208および冷却室216に連通している。
 図56に示すように、冷蔵室207の奥壁上部適所に冷蔵冷気往き通路232の冷蔵冷気入口235が設けられている。同奥壁下部適所には、冷蔵冷気戻り通路233へ開口する冷蔵冷気戻り口236が設けられている。冷却室216から送風された冷気は、冷蔵室ダンパ231を介して冷蔵冷気往き通路232に供給され、さらに冷蔵冷気入口235から冷蔵室207に供給される。一方、冷蔵室を冷却した冷気は、冷蔵冷気戻り口236から冷蔵冷気戻り通路233を介して野菜室208に供給され、その後、冷却室216へと循環する。また、冷蔵室207の下部には、後述するように、パーシャル室が設けられている。当該パーシャル室には、図57に示すように、パーシャル室ダンパ231a、パーシャル室冷気往き通路232a、およびパーシャル室冷気入口235aを介して、冷気が供給される。
 本実施の形態では、図57から明らかなように、奥面仕切壁体217と仕切板206の背面には、往き通路237と、戻り通路238とが形成されている。往き通路237は、冷却室冷気搬送路230と、冷蔵冷気往き通路232とを連絡する。また、往き通路237は、冷却室冷気搬送路230と、パーシャル室冷気往き通路232aとを連絡する。戻り通路238は、冷蔵冷気戻り通路233と、野菜室208および冷却室216とを連絡する。冷蔵室ダンパ231等は、往き通路237に設けられている。
 冷蔵冷気往き通路232と冷蔵冷気戻り通路233との間には、連通路239が設けられており、冷蔵冷気往き通路232を流れる低温冷気の一部が冷蔵冷気戻り通路233に直接混入する。
 図57に示すように、冷凍室209の背面には、冷却器218の側方を下向きに延びる冷気戻りダクト240が設けられている。冷気戻りダクト240の上部は、戻り通路238を介して野菜室208に連通する。冷気戻りダクト240の下部は、冷却室216の下部近傍に開口しており、野菜室208を冷却した冷気が、戻り通路238および冷気戻りダクト240を介して、上記下部開口から冷却室216へと循環する。
 一方、冷凍室209では、図59に示すように、背面壁体241の上部には、奥面仕切壁体217背面の冷却室冷気搬送路230下部に連通する冷凍冷気入口242が形成されている。また、背面壁体241の下部には、冷却室216の下部に開口する冷凍冷気戻り口243が形成されている。冷却室216から循環してきた冷気は、冷凍冷気入口242を介して冷却室冷気搬送路230下部から冷凍室に供給される。そして、冷凍室冷却後の冷気は、冷凍冷気戻り口243を介して冷却室216へ循環する。
 <野菜室構成>
 野菜室208は、図56、図57および図61に示すように、奥壁左右いずれか一方寄りに設けられている。本実施の形態では、野菜室208は、正面から見て右側部分の下部に設けられている。そして、野菜室208には、冷蔵冷気戻り通路233からの戻り通路238部分に開口する野菜冷気出入り口244が一つ設けられている。野菜冷気出入り口244は、図57に示すように、冷却ファン219のベルマウス開口下端より上方に位置するように設けられている。これにより、冷却ファン219停止時に、冷却室216内の低温冷気が冷気戻りダクト240及び戻り通路238を介して逆流してきた場合、低温冷気が野菜冷気出入り口244より野菜室208に流入することを防止する。
 野菜室208には、特に図61に示すように、野菜室208背面の奥面仕切壁体217を利用して、冷気の戻り通路238の前面位置に、野菜室通路部250が上下方向に形成されている。野菜室通路部250の上部は、野菜室208上部に前後方向に設けられた第一の通路247aの第一の野菜冷気吸込み口247に連通している。また、野菜室通路部250の下部は、野菜冷気出入り口244と連通している。
 野菜室208には、野菜冷気出入り口244と対向する部分にプロペラファン等からなる野菜室ファン253が配置されている。野菜室ファン253は、水平方向の中心軸が野菜冷気出入り口244の水平方向の中心軸よりも下方に位置する様にオフセットして配置されている。また、野菜室ファン253は、野菜冷気出入り口244の前方に位置し、前から見て野菜室ファン253と野菜冷気出入り口244とが重なるように設置されている。なお、野菜室208の冷却量が大きく必要とされる場合は、野菜冷気出入り口244の開口面積を大きく、冷却量が小さくてよい場合は、野菜冷気出入り口244の開口面積を小さくすることが有効である。いずれの場合も、野菜冷気出入り口244の下端は野菜室ファン253の上端より低い位置に設け、前後に重なるように配設されている。
 また、野菜室208上部には、図62、図65等に示すように、野菜室208の奥の面となる奥面仕切壁体217の上部であって野菜冷気出入り口244の対角位置となる部分に、第二の野菜冷気吸込み口251が設けられている。本実施の形態では、野菜室208の左奥側上部に、第二の野菜冷気吸込み口251が設けられている。第二の野菜冷気吸込み口251を備えた第二の通路251aは、図61に示すように、野菜室通路部250の上部に連通している。
 図66は、野菜室通路部250、第二の野菜冷気吸込み口251、および第二の野菜冷気吸込み口251を形成している奥面仕切壁体217の分解斜視図である。野菜室通路部250は、発泡スチロール(図示せず)を介して重合させた前仕切板217aと後仕切板217bとの間に形成されている。野菜室通路部250の上端部分250aは、第一の通路247aと第二の通路251aとに開口している。野菜室通路部250の下部には、上述したとおり、野菜室ファン253が組み込まれており、吹出口254は野菜室208内に開口している。そして、野菜室ファン253は、野菜冷気出入り口244から流れ込む冷気と、第一の野菜冷気吸込み口247及び第二の野菜冷気吸込み口251から吸込まれる野菜室冷気と、を野菜室208内に送風する。
 なお、野菜室208には、図60等に示すように野菜収納ケース248が配設されている。野菜収納ケース248は、扉211のフレームに載置された下段野菜収納ケース249aと、下段野菜収納ケース249aの上に載置された上段野菜収納ケース249bとから構成されている。そして、野菜収納ケース248とその下に配設されている仕切板206との間に空間が設けられ、また野菜収納ケース248と野菜室208の内周壁面との間にも空間が設けられている。これらの空間は、野菜冷気出入り口244から流れ込む冷気が流れる風路を構成している。
 また、野菜収納ケース248の上段野菜収納ケース249bの上部開口縁は野菜室208上部の仕切板205と近接した部分に位置するとともに、野菜冷気出入り口244より上方部分に位置している。これにより、野菜冷気出入り口244から流れ込む冷気が、上段野菜収納ケース249bおよび下段野菜収納ケース249a内に直接入り込むことを防止している。なお、上段野菜収納ケース249bの上部開口にこれを閉塞する蓋を設けて、冷気が野菜収納ケース248内へ侵入することをより確実に防止してもよい。
 また、下段野菜収納ケース249aは、図69に示すように、ケース仕切板258によって左右に分割されていてもよい。下段野菜収納ケース249aは、野菜冷気出入り口244と対向する側(本実施の形態では正面から見て右側部分)を一段深くして、ペットボトルやパック等の非野菜収納部259(以下、ペットボトル等収納部と称す)としている。なお、野菜室208内を前後に仕切り、前側部分をペットボトル等収納部259としてもよい。
 <冷蔵室構成>
 冷蔵室207は、図53等に示すように、内部に複数の収納棚260を有するとともに、準冷凍温度帯に冷却できるパーシャル室261を備えている。そして、冷蔵室207のそれぞれの適所に、冷蔵冷気入口235および冷蔵冷気戻り口236(いずれも図56参照)が設けられている。そして、冷蔵室207の側壁適所には、各室の庫内温度設定や製氷および急速冷却などの設定を行う操作部262が配置されている。
 <冷凍室構成>
 冷凍室209の奥壁上部には、図59を用いて上述したように、奥面仕切壁体217背面に形成されている冷却室冷気搬送路230の下部と連通する冷凍冷気入口242が形成されている。さらに、冷凍室209の奥壁下部には、冷却室216に連通する冷凍冷気戻り口243が形成されている。そして図示していないが、冷却室216から冷凍室209への通路の適所に、冷凍室ダンパ234を組み込んでもよい。なお、冷凍室209にも、図53等に示すように、扉212のフレームに載置された冷凍室ケース263が設けられている。さらに、冷凍室ケース263の上部には、製氷装置264が組み込まれている。
 次にこの冷蔵庫290の制御構成について説明する。
 <制御構成>
 図70は本実施の形態の冷蔵庫における制御ブロック図を示す。冷蔵室温度検知部265、野菜室温度検知部266、冷凍室温度検知部267、および外気温度検知部268は、いずれもサーミスタで形成してあり、それぞれ冷蔵室207、野菜室208、冷凍室209、および冷蔵庫本体201の適所に設置されている。冷蔵庫290全体を統括制御する制御部269は、マイクロコンピュータ等によって構成されている。制御部269は、冷蔵室温度検知部265、冷凍室温度検知部267からの出力に基づきあらかじめ組み込まれた制御ソフトにしたがって冷蔵室ダンパ231、冷凍室ダンパ234を開閉制御する。さらに、制御部269は、圧縮機215および冷却ファン219を駆動して各室を設定温度に制御する。また、制御部269は、冷蔵室温度検知部265、野菜室温度検知部266、外気温度検知部268からの出力に基づき、野菜室208の野菜室通路部250に組み込んだ野菜室ファン253の運転を制御する。具体的な制御方法については、後述する。
 以上のように構成された冷蔵庫290について、以下その動作、作用を説明する。
 まず、冷凍サイクルの動作について説明する。
 冷蔵庫290内の設定された温度に応じて、制御部269からの信号により冷凍サイクルが動作し、冷却運転が行われる。圧縮機215から吐出された高温高圧の冷媒は、凝縮器(図示せず)にてある程度凝縮液化される。さらに、冷媒は、冷蔵庫290の側面や背面、また冷蔵庫290の前面間口に配設された冷媒配管(図示せず)などを経由して冷蔵庫290の結露を防止しながら凝縮液化し、キャピラリーチューブ(図示せず)に至る。その後、冷媒は、キャピラリーチューブでは圧縮機215への吸入管(図示せず)と熱交換しながら減圧されて低温低圧の液冷媒となって冷却器218に至る。冷却器218内に供給された冷媒は蒸発気化し、冷却室216で各貯蔵室を冷却するための冷気が生成される。
 次に冷気循環による冷却動作について説明する。
 冷却室216内で生成された低温の冷気は、冷却ファン219によって、冷却室冷気搬送路230から冷蔵室207と冷凍室209とに送られる。冷蔵室207に供給された冷気は、冷蔵室207を冷却した後、その戻り冷気の一部が野菜室208に供給され、それぞれの室が設定温度に冷却される。そして、各室を冷却した冷気は、再び冷却室216に戻って冷却器218により冷却され、冷却ファン219で各室に循環していく。また、制御部269が、冷蔵室温度検知部265及び冷凍室温度検知部267の検出温度に基づき、圧縮機215と冷却ファン219を運転および停止のうち少なくとも一方をさせることで、各室への冷気供給が行われる。また、制御部269は、冷蔵室ダンパ231および冷凍室ダンパ234を開閉制御し、それぞれの室を設定温度帯に維持する。
 次に、野菜室208の冷却動作について説明する。
 冷蔵室冷却後の冷気は、図61に示すように、冷気の戻り通路238に設けられている野菜冷気出入り口244から野菜室208に供給されて、野菜室208は冷却される。野菜室208に設けられている開口が野菜冷気出入り口244一つのみであるため、野菜室208に供給される冷気は、以下の通り循環する。冷却ファン219の運転中、すなわち冷却運転中は、冷却ファン219の送風によって生じる野菜室208と戻り通路238との間の圧力差により、冷気は野菜室内の冷気の一部と入れ替わるように野菜室208に緩やかに流れ込む。さらに冷気は、野菜収納ケース248と野菜室208の内周壁との間の空間を流れ、野菜収納ケース248内に収納されている野菜やペットボトル等をケース外周から間接的に冷却し、野菜冷気出入り口244から戻り通路238へと流出する。そして、冷気は、冷気戻りダクト240から冷却室216へと循環する。
 そのため、野菜室208内に出入りする冷気は、冷気出入り口を別々に設けた場合に比べて緩やかでその量も比較的少ない。したがって、野菜室208内の冷気は若干量が入れ替わる程度となり、大部分は野菜室208内にとどまった状態となる。すなわち、野菜室208内の冷気は、野菜から蒸散した湿気を含む高湿度のままの状態に維持されるようになる。よって、野菜室208内の冷気が大量に循環して入れ替わるような場合に比べて、野菜の乾燥劣化を大きく低減させることができ、従来に比べかなり良好な状態で野菜を冷却保存することが可能となる。
 一方、本実施の形態で示す冷蔵庫290では、図61で示したように、野菜室208の野菜室通路部250下部であって、野菜冷気出入り口244と対向する部分に野菜室ファン253が設けられている。野菜室ファン253が冷却運転中に回転すると、戻り通路238を流れる戻り冷気の多くが野菜冷気出入り口244から野菜室通路部250内へと吸引される。野菜室ファン253の吹出口254より野菜室208内の下段野菜収納ケース249a後面に向かって、冷気が供給される。
 ここで本実施の形態では、野菜室ファン253が野菜冷気出入り口244とオフセット状態で配置されている。このため、野菜冷気出入り口244を介して行われる冷気の出入りは、開口が野菜冷気出入り口244一つであっても比較的円滑なものとなり、確実な吸引取り込みが可能となる。すなわち、図61のX,Yで示すように野菜室ファン253の中心軸に近い野菜冷気出入り口244の下端寄り部分(図61中の下部)では、Xで示すように冷気が野菜室208内に流れ込む。一方、野菜室ファン253の中心軸から遠い野菜冷気出入り口244の上端寄り部分(図61中の上部)では、Yで示すように冷気が野菜室208から流出するように明確に区分されるようになる。したがって、一つの野菜冷気出入り口244であっても冷気の出入りが入り乱れて冷気が滞り、結果的に冷気取り込み不足を招来することを防止できる。すなわち、戻り通路238内より確実に冷気を吸引取り込みして、野菜室ファン253の吹出口254より冷気を野菜室208内に供給することができる。
 そして、この場合でも冷気出入り口が一つのみであるため、冷気出入り口を別々に設けている場合に比べて野菜室内冷気の入れ代わり量は少なく、野菜室208内は高湿度状態に保持されて野菜の乾燥劣化防止効果が維持される。
 以上のようにして野菜室208内に取り込まれ、野菜室208の野菜収納ケース248に向かって供給された冷気は、野菜収納ケース248と野菜室208の底面との間の空間、および野菜収納ケース248と内周壁との間の空間を、冷却ファン219の送風圧によってのみ循環する際の流れよりも早く流れる。そして、上述したとおり、冷気は、野菜冷気出入り口244から戻り通路238を介して冷却室216へと戻り循環する。その際、冷却室216へと戻り循環する冷気以外の冷気は、野菜室208の上部に設けた第一の野菜冷気吸込み口247及び第二の野菜冷気吸込み口251より第一の通路247a及び第二の通路251aに吸引され、これらの通路と連通している野菜室通路部250を介して野菜室ファン253に吸引される。野菜室通路部250を介して野菜室ファン53に吸引された冷気は、野菜室ファン253の吹出口254から再び野菜室208内の野菜収納ケース248に向けて供給され、野菜室208内を拡散及び循環する。
 次に、野菜室208の結露防止について説明する。
 野菜室208は、野菜室208の背面に位置している冷却室216および野菜室208の下方に位置している冷凍室209からの冷輻射を受ける。その結果、従来と同様、野菜室208の背面下部近傍が低温化しやすい。特に、冷却室216からの冷輻射が強い。野菜室208背面は、冷却室216から冷蔵室ダンパ231までの冷却室温度帯域と対向する部分で強い冷輻射を受け、この部分が低温化しやすい。これは、冷却室216自体はもちろん、冷却室216から冷蔵室ダンパ231に至るまでの冷却室冷気搬送路230帯域が冷却室216と同じ極低温帯の冷却室温度域となっているからである。この冷輻射による野菜室背面下部近傍の低温化は、冷却運転中及び冷却停止中の何れの場合にも、野菜室ファン253の駆動により野菜室208内の冷気が拡散及び循環されることによって解消する。すなわち、野菜室ファン253が駆動すると、野菜室208内の冷気が拡散及び循環し、拡散及び循環する冷気により温度が分散され、局所的な低温化が抑制される。より詳細には、野菜室ファン253によって野菜室208内を拡散及び循環した冷気は、野菜室208の背面に位置する冷却室温度帯域からの冷輻射および野菜室208下方に位置する冷凍室209からの冷輻射によって低温化し易い野菜室背面下部付近の温度を野菜室208内に拡散させる。すなわち、野菜室ファン253によって野菜室208内を拡散及び循環された冷気は、野菜室208内の温度を下げて野菜室208内を冷却すると同時に、野菜室背面下部付近に極端な低温化や温度差が生じるのを抑制し、結露発生を防止する。
 なお、全ての室が設定温度を下回って、圧縮機215及び冷却ファン219の動作が停止すると、冷却ファン219の動作により発生していた圧力差が解消され、全ての冷気は温度の違いから生じる密度差による平衡状態へ流れ始める。この場合、冷却室冷気搬送路230に次いで冷凍室209内の圧力が高いため、冷却室冷気搬送路230、冷却室216、および冷凍室209内の冷気は圧力差が解消するまで広がり続ける。このとき、冷凍室209内および冷却室216内の冷気は、比較的低温で密度が高くこれらの室に溜まっているため、少なくとも冷却室冷気搬送路230内の冷たい冷気が下方に流下してきて、最も冷たい冷却室216の高さまで冷気が達することになる。ここで、冷却室216及び冷凍室209内には冷たい冷気が充満しているため、上述した流下してくる冷たい冷気は、冷却室216と冷凍室209を介してつながっている冷気の戻り通路238へと広がる。そして、戻り通路238まで広がった冷気は、戻り通路238を逆流して冷却室216に溜まる冷気の上端、つまり冷却室216の上方に開口した冷却ファン219の下端高さまで達する。
 本実施の形態では、野菜冷気出入り口244の下端は冷却ファン219のベルマウス下端高さよりも高く設置されているため、逆流した冷気が野菜冷気出入り口244から野菜室208へ流入することを抑制できる。これにより、野菜室208が逆流冷気により局所的に冷却されることを抑制し、野菜室208内の結露、凍結、および過冷を防止できるため、保存野菜の劣化を防止できる。
 以上のようにして、冷却運転中と冷却停止中の何れの場合でも野菜室208の局部的な低温化による結露発生が防止されるため、冷気生成用の冷却器218が大型化され、冷却室216が冷凍室209と野菜室208にまたがる大能力の大型冷蔵庫であっても、冷却室216からの冷輻射に起因する結露を抑制することができる。したがって、小能力の小型冷蔵庫から大能力の大型冷蔵庫に至る全域の冷蔵庫において、冷却室216からの冷輻射で生じる結露水による野菜劣化を抑制し、良好な状態で野菜を冷却保存することが可能となる。しかも、この冷蔵庫は、野菜室208を、冷蔵室207と冷凍室209との間に設けた「真ん中野菜室タイプ」であるため、結露発生を防止して野菜を良好な状態に冷却保存しつつ、野菜等の出し入れを中心に使用するユーザの使い勝手を高めることができ効果的である。
 次に野菜室208の冷却および結露防止制御について図71から図75を用いて説明する。
 図71は、実施の形態5における冷蔵庫の野菜室冷却動作を説明するフローチャートである。図72は、同野菜室を冷気循環により均温化しているときの動作を示すタイミングチャートである。図73は、同野菜室を冷気循環により均温化しつつ冷却しているときの冷却動作を示すタイミングチャートである。図74は同野菜室の温度が所定温度より高いときの冷気循環による均温化と冷却動作を示すタイミングチャートである。図75は、同野菜室の実際の冷却状況例を示すフローチャートである。
 本実施の形態にかかる冷蔵庫290は、図71のフローチャートに示すように、普通の冷蔵庫と同様、まず冷蔵室207あるいは冷凍室209の温度に基づき冷却運転の可否を決定する(S1)。すなわち、圧縮機215と冷却ファン219の運転の可否とを決定する。例えば冷凍室209の温度が設定温度以上であると、冷凍室温度検知部267からの出力に基づき制御部269が圧縮機215と冷却ファン219を駆動させる。かつ、制御部269は、冷凍室ダンパ234、冷蔵室ダンパ231、およびパーシャル室ダンパ(以下、説明簡略化のため野菜室208への冷気供給を制御する冷蔵室ダンパ231を例にして説明する)を開く。その結果、冷却器218で生成された冷気は冷凍室209、冷蔵室207等とともに野菜室208に供給され、冷蔵室207、野菜室208、および冷凍室209を冷却する。この時、野菜室208は、上述したとおり、冷却ファン219の送風による冷気取り込みによって穏やかに冷却される。
 次に、冷却運転可否決定(S1)の後、外気温を取り込んで外気温状態を判定する(S2)。判定された温度結果に基づき初期設定されている野菜室ファン253の駆動時間(オン駆動時間とオフ時間)を補正してタイマ駆動時間として設定する(S3)。例えば、外気温が所定温度以上の夏場等にはファン駆動時間を長くし、所定温度以下の冬場等にはファン駆動時間を短くなるようにタイマ駆動時間を設定する。
 次に野菜室温度を取り込んでこれが冷却安定時の温度範囲、すなわちあらかじめ設計的に定められた所定温度範囲内か否かを判定(S4)し、所定温度範囲内であればタイマ制御運転(S5)に入る。
 一方、上記ステップ(S4)で野菜室温度が所定温度範囲以上、例えば野菜等の出し入れによって温度が高くなっているような過渡時の温度、と判定されれば温度制御運転(S6)に入る。
 上記ステップ(S4)で野菜室温度が所定温度範囲以下と判定されると、野菜室208内の温度が十分低いことになり、制御部269は野菜室ファン253を停止状態(S14)にする。これにより、野菜室ファン253を回転させることに伴う電力消費を抑制し、野菜の良好な冷却保存を実現することができる。
 次にタイマ制御運転(S5)について説明する。
 タイマ制御運転(S5)に入ると、まず冷却運転中か否か、すなわち、圧縮機215および冷却ファン219が運転中か否かを確認(S8)する。
 運転中でなければ、野菜室ファン253を停止状態(S14)とする。これにより、冷蔵庫290が運転停止しているのにもかかわらず、野菜室ファン253が回転してその音が聞こえることにより使用者に不信感を持たせることを防止できる。
 運転中であれば、次に冷蔵室ダンパ231が開いているか、すなわち、冷蔵室ダンパ231が開いて冷却室216からの冷気を冷蔵室207および野菜室208に供給し、これらの各室を冷却しているか否かを確認(S9)する。
 冷蔵室ダンパ231が閉じており、冷蔵室207および野菜室208の冷却を停止しているときであれば、タイマ駆動時間に基づいて野菜室結露防止のための均温化運転(S10)を行う。冷蔵室ダンパ231が閉じている時に行われる均温化運転は、戻り通路238に冷気が流れていないので、野菜室ファン253の回転により野菜室208内の冷気を野菜室208内で循環させ、野菜室内の温度差を解消して結露発生を抑制する。
 なお、図示はしないが、上記均温化運転は、冷蔵室温度及び野菜室温度が常に低く、一定時間以上連続して冷蔵室ダンパ231が開かないときにも行い、タイマ駆動時間に基づき野菜室ファン253を駆動して結露発生を防止する。すなわち、制御部269は、冷気生成用の圧縮機の運転停止が一定時間内の時に野菜室ファン253を強制的に停止状態とする。冷気生成用の圧縮機の停止状態が一定時間以上続くことになると、タイマ制御運転に基づき野菜室ファン253を駆動させる。
 ここで、均温化運転は、野菜室ファン253をあらかじめ定められた時間で回転制御しているので、野菜室208内の温度を常時検出して野菜室ファン253を回転制御する場合に生じがちな温度検出遅れによる温度制御ばらつきを低減することができる。これにより、野菜室208内の温度を安定させて良好な状態で野菜を冷却保存することができる。
 また、タイマ制御運転(S5)における均温化運転(S10)時の野菜室ファン253の駆動は、ステップ(S3)で外気温を考慮して設定した時間行うように制御されているので、扉側等から受ける外気からの熱量が変化してもこれに応じて野菜室内の冷気を過不足なく循環させることができる。これにより、野菜室内温度を確実に均温化することができ、野菜室内の温度差に起因して発生する結露を確実かつ効率よく抑制することができる。
 図72はタイマ制御運転による均温化時の野菜室ファン253の駆動状態と野菜室208の温度状態を示す。圧縮機215が運転し冷蔵室ダンパ231が閉じているときに、野菜室ファン253が回転する。これにより、野菜室208内の温度は温度検出遅れ等によるばらつきを発生することなくほぼ一定の温度に均温化される。これにより、野菜室208内の温度差に起因して発生する結露を確実に抑制することができる。なお、図72中のAは、タイマ制御運転の均温化運転時間を示す。
 一方、ステップ(S8)での運転状態確認の結果、冷蔵室ダンパ231が開いていて野菜室208等を冷却中であれば、野菜室ファン253を上述した均温化のための駆動とともに更に冷却のための駆動も行って、野菜室208の冷却+均温化運転(S12)を行う。この冷却+均温化運転は、上述した通り野菜室ファン253の回転により、戻り通路238内に流れている冷気を積極的に吸引し取り込んで、野菜室内で元々循環している冷気とともに野菜室208内に循環させ、野菜室208内を均温化して結露発生を抑制しつつ野菜室208内を冷却する。
 図73はタイマ制御運転による冷却+均温化時の野菜室ファン253の駆動状態を示す。あらかじめ設定されている一定のタイマ駆動時間だけ冷却用回転及び均温化用回転が行われる(S13a)。これにより、野菜室208内を所定温度範囲内に冷却維持するとともに、野菜室内冷気が上述したように循環されて野菜室内に大きな温度差が生じるのを防止し結露発生を抑制する。なお、図73中のBは、タイマ制御運転における冷却運転時間を示す。
 ここで、タイマ制御運転(S5)における冷却+均温化運転(S12)時の野菜室ファン253の駆動は、ステップ(S3)にて外気温を考慮して設定された時間行うようになっている(S13a)。したがって、均温化運転時と同様に、扉側等から受ける外気からの輻射熱量に応じて野菜室内の冷気を過不足なく循環させることができるうえ、野菜室内温度に適した量の冷気取入れが可能となる。これにより、野菜室内温度を確実に均温化して温度差に起因する結露発生を確実かつ効率よく防止することができる。さらに、野菜室208内を外気温に左右されることなく確実に所定温度範囲内に冷却維持することができる。しかも、野菜室ファン253の回転は、さらにタイマ制御運転で定められた時間で回転制御されているので、野菜室208内の温度を常時検出して野菜室ファン253を回転制御する場合に生じがちな温度検出遅れによる温度制御ばらつきを低減することができる。以上より、野菜室208内の温度を安定させて、良好な状態で野菜を冷却保存することができる。
 次に温度制御運転(S6)について説明する。
 温度制御運転に入る(S6)と、まずステップ(S3)で設定したタイマ駆動時間のうち冷却用タイマ駆動時間を野菜室208の温度に応じて更に補正して冷却用温度駆動時間として設定(S7)する。
 その後、タイマ制御運転(S5)と同様、冷却運転中か否か、すなわち、圧縮機215および冷却ファン219が運転中か否かを確認(S8)する。
 この場合、ステップ(S4)での野菜室温度の判定が所定温度範囲以上であるから、圧縮機215および冷却ファン219は当然運転中である。そして、冷蔵室ダンパ231が開いているか、すなわち、冷蔵室ダンパ231が開いて冷却室216からの冷気を冷蔵室207および野菜室208に供給し、これらの各室を冷却しているか否かを確認(S9)する。この場合も、ステップ(S4)での野菜室温度の判定が所定温度範囲以上であるから、圧縮機215および冷却ファン219は運転中であって冷蔵室ダンパ231は開いて冷却中である。そこで、野菜室ファン253が駆動されて、野菜室208の冷却+均温化運転(S12)が行われる。
 ここで、温度制御運転(S6)における冷却+均温化運転(S12)の野菜室ファン253の駆動は、ステップ(S7)で野菜室温度に基づき補正された冷却用温度駆動時間に基づいて行われ、冷却用温度駆動時間が経過する(S13b)と、停止(S14)する。すなわち、野菜等の出し入れにより野菜室を開放したことにより外気が入り込むなどして温度が高くなると、野菜室208内の温度に基づいて設定されている冷却用温度駆動時間、野菜室ファン253は回転して停止する。したがって、野菜室内を確実かつ迅速に所定温度まで冷却し、かつ、野菜室内温度の均温化を行って結露発生も防止することができる。
 図74は温度制御運転(S6)による野菜室ファン253の駆動状態を示す。野菜室208内の均温化のための均温化時間に加えて行われる野菜室内冷却のための冷却時間が、野菜室208の温度に応じて長くなり、野菜室208の温度に応じて最適な時間、野菜室ファン253が回転する(S13b)。これにより、野菜室208内に取り込む冷気の量が増加して、野菜室208内を確実かつ迅速に冷却することができるとともに、野菜室208内を均温化して結露発生を防止することができる。この場合、野菜室ファン253の駆動時間を長くすると同時に回転数を上げる、あるいは回転数だけを上げるなどすれば、野菜室208内に取り込む冷気の量を多くしてより短時間に野菜室208を所定温度まで冷却することができる。なお、図74中のCは、温度制御運転における冷却運転時間を示す。
 図75は、本実施の形態5の制御で制御された場合の野菜室208の冷却状況の一例を示すタイミングチャートである。図75に示すように、野菜室208内の温度が安定温度状態である所定温度範囲内にあるとき(X)には、ステップ(S3)で定められたタイマ制御運転時間だけ野菜室ファン253が冷却及び均温化のため駆動される。すなわち、野菜室適温の安定時は、冷却運転1(タイマ制御)だけで野菜室208は冷却される。例えば野菜等の取り出しのために野菜室208が解放されて野菜室208内温度が高くなる過渡時(Y)となると、野菜室内の温度に応じて野菜室ファン253を駆動する冷却時間が長くなって、野菜室208を効率よく冷却する。ここでは、冷却運転1(タイマー制御)に、冷却運転2(温度制御)を追加して、冷却運転時間が延長される。そして、野菜室208内温度が低下するにしたがって、野菜室ファン253を駆動する冷却時間が短くなる。野菜室208の温度が所定温度以下に到達すると、冷却運転2(温度制御)を終了する。
 そして、野菜室208内の温度が安定時である所定温度範囲内に戻る(X)と、ステップ(S3)で定められたタイマ制御運転時間に戻って野菜室内の冷却及び均温化を行う。すなわち、野菜室208が適温になると、冷却運転1(タイマ制御)のみの運転に戻る。
 (実施の形態6)
 図76は実施の形態6における冷蔵庫の冷却室背面部分の冷気流れを説明する斜視図である。図77は同実施の形態6における冷蔵庫の野菜室における冷気流れを説明するための概略断面図である。
 本実施の形態における冷蔵庫290は、実施の形態5で説明した野菜冷気出入り口244の代わりに、野菜冷気入口245と野菜冷気戻り口246をそれぞれ別々に備えたものである。すなわち、野菜室208に野菜冷気入口245を設け、さらに、野菜冷気入口245より上方位置、例えば第一の通路247a、第二の通路251aと野菜室通路部250との合流付近に野菜冷気戻り口246を設けたものである。
 その他の構成は制御も含め実施の形態5と同様であり、同一構成要素には同一符号を附記して説明は省略する。
 本実施の形態6では、野菜冷気入口245から冷気の戻り通路238中の冷気が流れ込み、野菜室208内の冷気は野菜冷気戻り口246から冷気の戻り通路238へと流出する。したがって、一つの野菜冷気出入り口244から冷気が出入りする場合に比べて冷気の出入りは円滑で、より多くの冷気が野菜室208内に流れ込む。これにより、効率よく野菜室内に冷気を取り込んで、野菜室208内を強力に冷却できる。よって、例えば野菜室208が冷蔵庫本体の最下部にあって、野菜室208の底部が外気からの熱輻射を受けて低温化しにくいタイプの冷蔵庫等に効果的である。
 その他の作用効果は、野菜冷気出入り口244一つで冷気を出入りさせて野菜の乾燥劣化を抑制する効果以外は実施の形態5と同様であり、説明は省略する。
 以上のように、実施の形態5,6の冷蔵庫290は、野菜室208を冷蔵室207と冷凍室209との間に配置した構成であり、冷蔵室207および冷凍室209から野菜室208への吸熱量がないため、野菜室208への貯蔵物の入れ替え時を除いて野菜室温度は安定している。そのため、野菜室208の温度が安定している、つまり野菜室温度が所定温度範囲内の時は野菜室ファン253を駆動するタイマ制御運転を行うだけでよい。一方、野菜室温度が貯蔵物の入れ替え時等により急上昇して、野菜室温度が所定温度範囲より高い温度になっている時には、野菜室温度に基づいて設定された時間野菜室ファン253を駆動する温度制御運転を行う。これにより、最適な野菜室温度制御を実現できる。
 実施の形態5,6の冷蔵庫290は、野菜室208内の温度差に起因する結露発生を抑制すると同時に野菜室内を低温に冷却保持することができ、常に良好な状態で野菜を冷却保存することができる。更に冷蔵庫290は、野菜室冷却に関して以下の効果も有する。
 まず、野菜室ファン253は、野菜収納ケース248の下段野菜収納ケース249a及び上段野菜収納ケース249bの外周に向けて冷気を循環させる。これにより、野菜室ファン253によって循環する冷気が下段野菜収納ケース249a及び上段野菜収納ケース249b内に入って野菜同士の間を流れることを抑制できる。この結果、野菜同士の間を冷気が流れることによって生じがちな野菜の乾燥劣化も防止して、新鮮かつ良好な状態で野菜を冷却保存することができる。
 冷蔵庫290は、下段野菜収納ケース249a及び上段野菜収納ケース249bで構成される野菜収納ケース248の上部に、野菜室208内を拡散または循環する冷気の吸込み口ともなる第一の野菜冷気吸込み口247及び第二の野菜冷気吸込み口251を設けている。従って、野菜室208内を循環する冷気は、下段野菜収納ケース249a及び上段野菜収納ケース249bからなる野菜収納ケース248内に入り込むことなく、そのまま第一の野菜冷気吸込み口247及び第二の野菜冷気吸込み口251へと流れる。これにより、より確実に野菜の乾燥劣化を防止して新鮮かつ良好な状態で野菜を冷却保存することができる。上段野菜収納ケース249bの上面開口縁を野菜室天井面となる仕切板205に近接させることで、上述した効果をさらに高めることができる。なお、上面面開口を覆う蓋を設けることで、上述した効果をさらに効果的に高めることができる。
 加えて、野菜室ファン253は、下段野菜収納ケース249a及び上段野菜収納ケース249bで構成される野菜収納ケース248の上部開口縁より下方部分に位置している。これにより野菜室ファン253から送風される冷気は野菜収納ケース248のうち、特にその下段野菜収納ケース249aの底面及び下部外周付近を循環するようになる。したがって、野菜室ファン253によって循環する冷気は、さらに野菜収納ケース248内に入り込みにくいものとなる。これにより、野菜収納ケース248内に冷気が入り込んで循環することにより生じる野菜の乾燥劣化を確実に防止することができ、より新鮮かつ良好な状態で野菜を冷却保存することができる。
 また、野菜収納ケース248は、下段野菜収納ケース249aの内部を左右に仕切ってその一方にペットボトルやパック等を収納するペットボトル等収納部259を設けている。そして、ペットボトル等収納部259側の野菜室背面部分に野菜室ファン253を設けて、ペットボトル等収納部259に向けて野菜室内の冷気を循環させるように構成されている。従って、野菜室ファン253からの冷気は、ペットボトル等収納部259の周りを集中的に循環するようになり、ペットボトル等収納部259に収納されているペットボトルやパック等を効率よく冷却することができる。特にペットボトル等収納部259に収納されているペットボトルやパック等の飲料水等は、野菜よりも熱容量が大きくて冷えにくい。従って、ペットボトル等の収納による野菜室温度の上昇を効率よく抑制し、結露発生を効果的に防止すると同時に野菜の保存も良好に行うことができる。
 また、野菜室ファン253とともに、第一の野菜冷気吸込み口247を野菜収納ケース248のペットボトル等収納部259側の部分に設けている。これにより、野菜室ファン253からの冷気をペットボトル等収納部259にさらに効率よく集中的に循環させることができる。
 また、野菜室208内の冷気を循環させるためのもう一つの吸込み口ともなる第二の野菜冷気吸込み口251を、野菜室ファン253と実質的に対角位置の野菜室上部に設けている。これにより、野菜室ファン253から送風される冷気の一部は、野菜収納ケース248のペットボトル等収納部259の底面部分を通って前方へと野菜室208内を斜めに縦断しながら循環して、野菜室上部の第二の野菜冷気吸込み口251へと流れる。従って、下段野菜収納ケース249a及び上段野菜収納ケース249bを備えた野菜室ケース内への冷気の入り込みを防止しつつ、野菜室ケースの外周に広範囲に冷気を循環させることができる。従って、野菜及びペットボトル等を効果的に冷却することができる。
 また、冷蔵庫290は、冷蔵冷気往き通路232と冷蔵冷気戻り通路233との間に連通路239が形成されている。野菜室ファン253が回転すると、ファン吸引力によって冷蔵冷気往き通路232内の低温で新鮮な冷気は、冷蔵冷気戻り通路233内に混入して、戻り通路238を介して野菜冷気出入り口244から野菜室208内に供給される。すなわち、野菜室208は、冷蔵室207からの冷蔵室冷却後の比較的温度が高くなっている戻り冷気によって冷却されるだけでなく、野菜室ファン253の回転により、低温で新鮮な冷気が上述した冷蔵室冷却後の冷気に混入することで低温化された冷気にて冷却される。したがって、野菜室208を効果的に冷却することができ、例えば、野菜やペットボトル等が一時的に多く収納された時のように、冷却負荷条件が悪いときでも、野菜室208を確実に冷却することができる。また、連通路239を介して取り込む低温の新鮮冷気の量は、野菜室ファン253の回転数を上げることによって増加させることができる。従って、夏場で熱容量の大きい常温のペットボトル等が大量に収納された時でも、確実に冷却することができる。しかも、野菜室208を確実に冷却できるので、冷却室216からの冷輻射による結露発生も効率よく抑制でき、野菜を良好な状態で冷却保存することができる。
 以上、本発明の実施の形態を説明してきたが、上記実施の形態で説明した構成は本発明を実施する一例として示したものであり、本発明の目的を達成する範囲で種々変更可能なことは言うまでもない。
 実施の形態5,6では、野菜室ファン253の均温化運転と冷却運転とをそれぞれ別々に行うようにして区分けして説明したが、この均温化運転と冷却運転は連続した一つの時間で行うようにしてもよい。
 また、野菜室208の温度が所定温度以上の場合に行う野菜室ファン駆動時間の温度補正は、冷却用駆動時間だけ行うようにして説明したが、均温化用駆動時間も併せて行うようにしてもよく、適宜選択すればよい。
 また、野菜室208の冷却および冷却停止のうち少なくとも一方、すなわち野菜室208への冷気の供給および停止のうち少なくとも一方は、冷蔵室ダンパ231を利用して行うようにして説明したが、これに限られるものではない。例えば、野菜室208専用の野菜室ダンパを設けて、供給および停止のうち少なくとも一方を行わせるようにしてもよく、この場合、ステップ(S9)を「野菜室ダンパ開?」とすればよい。
 また、野菜室208を冷蔵室207と冷凍室209との間に設けた「真ん中野菜タイプ」の冷蔵庫を例にして説明したが、野菜室208が最下部にあるタイプの冷蔵庫であっても野菜室208と冷凍室209の背面に渡って冷却室216が設置されているものであればよい。
 なお、以上説明した制御方法は、実施の形態1,2,3,4および6にも適用することができる。
 以上述べたように、本発明は、野菜室内の結露発生を抑制し、良好な状態で野菜を冷却保存することができる。よって本発明は、家庭用はもちろん業務用冷蔵庫にも幅広く適用することができ、有用である。
 1,101,201  冷蔵庫本体
 2,102,202  外箱
 3,103,203  内箱
 4,104,204  発泡断熱材
 5,6,105,106,205,206  仕切板
 7,107,207  冷蔵室
 8,108,208  野菜室
 9,109,209  冷凍室
 10,11,12,110,111,112,210,211,212  扉
 14,114,214  機械室
 15,115,215  圧縮機
 16,116,216  冷却室
 17,117,217  奥面仕切壁体
 18,118,218  冷却器
 19,119,219  冷却ファン
 20,120  開口
 21,121  突片
 22,122  上向き突片
 23,123  第一のヒータ
 24,124  断熱性遮壁
 25,125  冷気戻り通路用開口
 26,126  通路開口
 27,127  タンク設置部
 28,128,228  除霜ヒータ
 29,129,229  ドレンパン
 30,130,230  冷却室冷気搬送路
 31,131,231  冷蔵室ダンパ
 32,132,232  冷蔵冷気往き通路
 32a,132a,232a  パーシャル室冷気往き通路
 33,133,233  冷蔵冷気戻り通路(冷気通路)
 34,134,234  冷凍室ダンパ
 35,135,235  冷蔵冷気入口
 36,136,236  冷蔵冷気戻り口
 37,137,237  往き通路
 38,138,238  戻り通路
 39,139,239  連通路
 40,140,240  冷気戻りダクト
 41,141,241  背面壁体
 42,142,242  冷凍冷気入口
 43,143,243  冷凍冷気戻り口
 44,244  野菜冷気出入り口
 45,144,245  野菜冷気入口
 46,146,246  野菜冷気戻り口
 47,147,247  第一の野菜冷気吸込み口
 47a,147a,247a  第一の通路
 48,148,248  野菜収納ケース
 49a,149a,249a  下段野菜収納ケース
 49b,149b,249b  上段野菜収納ケース
 50,150,250  野菜室通路部
 51,151,251  第二の野菜冷気吸込み口
 51a,151a,251a  第二の通路
 53,153,253  野菜室ファン
 54,154,254  吹出口
 55,155  傾斜面
 56,156  第二のヒータ
 57,157,257  コネクタ接続部
 58,158,258  ケース仕切板
 59,159,259  非野菜収納部(ペットボトル等収納部)
 60,160,260  収納棚
 61,161,261  パーシャル室
 62,162,262  操作部
 63,163,263  冷凍室ケース
 64,164,264  製氷装置
 65,165,265  冷蔵室温度検知部
 66,166,266  野菜室温度検知部
 67,167,267  冷凍室温度検知部
 68,168,269  制御部
 268  外気温度検知部
 90,190,290  冷蔵庫

Claims (26)

  1. 冷蔵室と、野菜室と、冷凍室と、
    前記冷凍室および前記野菜室の背面に配設され、冷気を生成する冷却器を備えた冷却室と、
    前記冷却室に配設されており、前記冷却器で生成される冷気を前記冷蔵室、前記野菜室、および前記冷凍室に供給循環させる冷却ファンと、
    前記野菜室に配設されている野菜室ファンと、
    を備えた冷蔵庫。
  2. 前記野菜室は、前記冷却室で生成される冷気が循環する冷気通路に連通している野菜冷気出入り口を一つ備えている、請求項1に記載の冷蔵庫。
  3. 前記野菜室ファンは、前記野菜冷気出入り口にオフセットした状態で配設されている、請求項2に記載の冷蔵庫。
  4. 前記野菜室は、野菜冷気入口と野菜冷気戻り口とを備え、
    前記野菜冷気入口および前記野菜冷気戻り口は、前記冷却室で生成される冷気が循環する冷気通路と連通する、請求項1に記載の冷蔵庫。
  5. 前記野菜室は、前記冷蔵室と前記冷凍室との上下方向間に配設され、
    前記野菜室ファンは、前記冷却室と前記冷凍室からの冷輻射を受ける前記野菜室の背面下部近傍に配設されている、請求項1に記載の冷蔵庫。
  6. 前記野菜室は野菜収納ケースを備え、
    前記野菜室ファンは、前記野菜収納ケースの外周に冷気を拡散および循環のうち少なくとも一方をさせるように設けられている請求項1に記載の冷蔵庫。
  7. 前記野菜室ファンは、前記野菜収納ケースの上部開口縁より下方に配置されている請求項6に記載の冷蔵庫。
  8. 野菜室通路部を、前記冷却室と対向する野菜室背面部にさらに備え、
    前記野菜室通路部は、前記野菜室の上部空間と連通し、
    前記野菜室通路部の下部には、前記野菜室ファンが配設されている、請求項2に記載の冷蔵庫。
  9. 前記野菜収納ケースの一部に、非野菜収納部を備え、
    前記野菜室ファンは前記非野菜収納部に向けて、前記野菜室内の冷気を拡散および循環のうち少なくとも一方をさせる、請求項6に記載の冷蔵庫。
  10. 前記野菜室は、前記非野菜収納部側の上部に、前記野菜室ファンの吸引側と連通する第一の野菜冷気吸込み口を備え、
    前記第一の野菜冷気吸込み口と前記野菜室ファンとを、前記野菜収納ケースの前記非野菜収納部側の部分に設けている、請求項9記載の冷蔵庫。
  11. 前記野菜収納ケース内が左右に仕切られ、いずれか一方に前記非野菜収納部が配設され、
    前記野菜室ファンは、前記非野菜収納部の後部下方に配置され、
    前記野菜室ファンの吸引側と連通する第二の野菜冷気吸込み口が、前記野菜ファンと実質的に対角位置の前記野菜室上部に配設されている、請求項10に記載の冷蔵庫。
  12. 前記冷却室から前記冷蔵室への冷蔵冷気の往き通路部分を、冷蔵庫本体背面における実質的な中央部に備え、
    前記冷蔵室から前記冷却室への冷蔵冷気の戻り通路部分を、前記冷蔵庫本体背面における前記冷蔵冷気の往き通路部分側方に備え、
    前記野菜室通路部は、前記冷蔵冷気の戻り通路部分の前方に縦方向に配設されている請求項8に記載の冷蔵庫。
  13. 前記野菜冷気出入り口は、前記冷蔵冷気戻り通路部分に開口され、
    前記冷却室から循環される冷気の一部がバイパスして、前記冷蔵室からの戻り冷気に混流して、前記野菜室に供給される、請求項12に記載の冷蔵庫。
  14. 前記野菜室ファンは、前記野菜室に配設されている野菜室温度検出部の検出温度に基づいて制御される、請求項1に記載の冷蔵庫。
  15. 前記野菜室の背面には、前記冷却ファンによって前記冷気が循環される冷気戻り通路をさらに備え、
    前記冷気戻り通路と前記野菜室との間であって、前記野菜室の前記野菜室ファン吸引側および排気側に、前記冷気戻り通路と連通する野菜冷気入口および野菜冷気戻り口をそれぞれ備えている、請求項1に記載の冷蔵庫。
  16. 前記野菜室ファンおよび前記野菜冷気入口は前記野菜室の背面下部に配置され、
    前記野菜室の上部に前記野菜冷気吸込み口を備えている、請求項15に記載の冷蔵庫。
  17. 前記野菜室ファンおよび前記野菜冷気入口は前記野菜室の天井部に配置され、
    前記野菜室上部に、前記野菜室ファンの吹出口が開口され、
    前記野菜冷気戻り口を前記野菜室の下部に設けている、請求項15に記載の冷蔵庫。
  18. 前記野菜室は前記冷蔵室の下部に配置され、
    前記野菜室ファンは、前記野菜室と前記冷蔵室との間を仕切って前記野菜室の天井を構成する仕切板の内に、斜めに傾斜して配設されている、請求項17に記載の冷蔵庫。
  19. 前記野菜室ファンを制御する制御部をさらに備え、
    前記制御部は、
    前記野菜室の温度が所定温度範囲内の場合には、前記野菜室ファンをあらかじめ定められている時間駆動させるタイマ制御運転を行い、
    前記野菜室の温度が所定温度範囲よりも高い場合には、前記野菜室ファンを前記野菜室温度に基づいて設定された時間駆動させる温度制御運転を行う、請求項1に記載の冷蔵庫。
  20. 前記制御部は、前記タイマ制御運転時における前記野菜室ファンの駆動時間を外気温に基づいて設定する、請求項19に記載の冷蔵庫。
  21. 前記制御部は、前記温度制御運転時における前記野菜室ファンの駆動時間を、前記野菜室内の温度に基づき補正を行い前記タイマ制御運転で設定されている駆動時間よりも長くする、請求項19に記載の冷蔵庫。
  22. 前記制御部は、前記野菜室の温度が所定温度範囲外の低温時には前記野菜室ファンを強制的に停止状態とさせる、請求項19に記載の冷蔵庫。
  23. 前記制御部は、冷気生成用の圧縮機が運転停止中には前記野菜室ファンを強制的に停止状態とさせる、請求項19に記載の冷蔵庫。
  24. 前記制御部は、冷気生成用の圧縮機の運転停止が一定時間内の場合には、前記野菜室ファンを強制的に停止状態とさせ、
    前記圧縮機の停止状態が一定時間以上続く場合には、前記タイマ制御運転に基づき前記野菜室ファンを駆動させる、請求項19に記載の冷蔵庫。
  25. 冷蔵室と、野菜室と、冷凍室と、
    前記冷凍室および前記野菜室の背面に配設されている冷気生成用の冷却器を備えた冷却室と、
    前記冷却室に配設されており、前記冷却器で生成された冷気を前記冷蔵室、前記野菜室、および前記冷凍室に供給循環させる冷却ファンと、を備えた冷蔵庫であって、
    前記野菜室には、前記冷却室にて生成される冷気が循環する冷気通路と連通する野菜冷気出入り口を一つ備えた冷蔵庫。
  26. 前記野菜室は、前記冷蔵室と前記冷凍室の間に配置されている請求項25に記載の冷蔵庫。
PCT/JP2014/006066 2013-12-25 2014-12-04 冷蔵庫 WO2015097999A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201490001292.4U CN205860629U (zh) 2013-12-25 2014-12-04 冷藏库
DE212014000236.2U DE212014000236U1 (de) 2013-12-25 2014-12-04 Kühlschrank

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2013-266813 2013-12-25
JP2013266813 2013-12-25
JP2014-159187 2014-08-05
JP2014159186A JP6349549B2 (ja) 2013-12-25 2014-08-05 冷蔵庫
JP2014159188A JP2016038100A (ja) 2014-08-05 2014-08-05 冷蔵庫
JP2014159187A JP6454866B2 (ja) 2014-08-05 2014-08-05 冷蔵庫
JP2014-159188 2014-08-05
JP2014-159186 2014-08-05

Publications (1)

Publication Number Publication Date
WO2015097999A1 true WO2015097999A1 (ja) 2015-07-02

Family

ID=53477907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/006066 WO2015097999A1 (ja) 2013-12-25 2014-12-04 冷蔵庫

Country Status (1)

Country Link
WO (1) WO2015097999A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015121387A (ja) * 2013-12-25 2015-07-02 パナソニックIpマネジメント株式会社 冷蔵庫

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144788U (ja) * 1988-03-24 1989-10-04
JPH0526557A (ja) * 1991-07-16 1993-02-02 Matsushita Refrig Co Ltd 野菜貯蔵用冷蔵庫
JPH0618152A (ja) * 1992-07-03 1994-01-25 Toshiba Corp 冷蔵庫
JPH0672738B2 (ja) * 1986-09-12 1994-09-14 株式会社東芝 冷蔵庫
JPH10176882A (ja) * 1996-12-13 1998-06-30 Mitsubishi Electric Corp 冷蔵庫
JPH10339549A (ja) * 1997-06-06 1998-12-22 Matsushita Refrig Co Ltd 冷蔵庫
JP2000266456A (ja) * 1999-03-18 2000-09-29 Sharp Corp 冷蔵庫
JP2001174119A (ja) * 1999-12-17 2001-06-29 Fukushima Industries Corp 温度調節機能付き保管庫
US20020104325A1 (en) * 1999-02-26 2002-08-08 Mandel Sheldon Wayne Refrigerator food storage compartment with quick chill feature
JP2003130527A (ja) * 2001-10-25 2003-05-08 Sharp Corp 冷蔵庫
JP2004028497A (ja) * 2002-06-27 2004-01-29 Hitachi Home & Life Solutions Inc 冷蔵庫
JP2005016903A (ja) * 2003-06-27 2005-01-20 Sanyo Electric Co Ltd 冷蔵庫
JP2008256257A (ja) * 2007-04-04 2008-10-23 Mitsubishi Electric Corp 冷蔵庫
JP2009121803A (ja) * 2007-10-25 2009-06-04 Sharp Corp 冷蔵庫
WO2013137838A2 (en) * 2012-03-16 2013-09-19 Karabulut Ozgur Refrigerator

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672738B2 (ja) * 1986-09-12 1994-09-14 株式会社東芝 冷蔵庫
JPH01144788U (ja) * 1988-03-24 1989-10-04
JPH0526557A (ja) * 1991-07-16 1993-02-02 Matsushita Refrig Co Ltd 野菜貯蔵用冷蔵庫
JPH0618152A (ja) * 1992-07-03 1994-01-25 Toshiba Corp 冷蔵庫
JPH10176882A (ja) * 1996-12-13 1998-06-30 Mitsubishi Electric Corp 冷蔵庫
JPH10339549A (ja) * 1997-06-06 1998-12-22 Matsushita Refrig Co Ltd 冷蔵庫
US20020104325A1 (en) * 1999-02-26 2002-08-08 Mandel Sheldon Wayne Refrigerator food storage compartment with quick chill feature
JP2000266456A (ja) * 1999-03-18 2000-09-29 Sharp Corp 冷蔵庫
JP2001174119A (ja) * 1999-12-17 2001-06-29 Fukushima Industries Corp 温度調節機能付き保管庫
JP2003130527A (ja) * 2001-10-25 2003-05-08 Sharp Corp 冷蔵庫
JP2004028497A (ja) * 2002-06-27 2004-01-29 Hitachi Home & Life Solutions Inc 冷蔵庫
JP2005016903A (ja) * 2003-06-27 2005-01-20 Sanyo Electric Co Ltd 冷蔵庫
JP2008256257A (ja) * 2007-04-04 2008-10-23 Mitsubishi Electric Corp 冷蔵庫
JP2009121803A (ja) * 2007-10-25 2009-06-04 Sharp Corp 冷蔵庫
WO2013137838A2 (en) * 2012-03-16 2013-09-19 Karabulut Ozgur Refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015121387A (ja) * 2013-12-25 2015-07-02 パナソニックIpマネジメント株式会社 冷蔵庫

Similar Documents

Publication Publication Date Title
KR101396956B1 (ko) 냉장고
WO2014198152A1 (zh) 电冰箱
JP6735436B2 (ja) 冷蔵庫
JP6349549B2 (ja) 冷蔵庫
JP2018155488A (ja) 冷蔵庫
JP2016038100A (ja) 冷蔵庫
JP6646818B2 (ja) 冷蔵庫
WO2015097999A1 (ja) 冷蔵庫
TWI678506B (zh) 電冰箱
JP6357644B2 (ja) 冷蔵庫
JP6326617B2 (ja) 冷蔵庫
JP4864830B2 (ja) 冷蔵庫
JP6778861B2 (ja) 冷蔵庫
JP6446665B2 (ja) 冷蔵庫
JP6454866B2 (ja) 冷蔵庫
JP6383936B2 (ja) 冷蔵庫
JP6745432B2 (ja) 冷蔵庫
JP6402356B2 (ja) 冷蔵庫
JP6326616B2 (ja) 冷蔵庫
CN205860629U (zh) 冷藏库
JP2019056550A (ja) 冷蔵庫
JP2019132503A (ja) 冷蔵庫
JP2009121784A (ja) 冷蔵庫
JPH10259985A (ja) 冷蔵庫
JP2006002998A (ja) 冷蔵庫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875322

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 212014000236

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875322

Country of ref document: EP

Kind code of ref document: A1