WO2015083576A1 - Heat-curable resin composition for optical semiconductor device, lead frame for optical semiconductor device and obtained using same, and optical semiconductor device - Google Patents
Heat-curable resin composition for optical semiconductor device, lead frame for optical semiconductor device and obtained using same, and optical semiconductor device Download PDFInfo
- Publication number
- WO2015083576A1 WO2015083576A1 PCT/JP2014/081035 JP2014081035W WO2015083576A1 WO 2015083576 A1 WO2015083576 A1 WO 2015083576A1 JP 2014081035 W JP2014081035 W JP 2014081035W WO 2015083576 A1 WO2015083576 A1 WO 2015083576A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical semiconductor
- semiconductor device
- resin composition
- thermosetting resin
- reflector
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 109
- 239000004065 semiconductor Substances 0.000 title claims abstract description 109
- 239000011342 resin composition Substances 0.000 title claims abstract description 56
- 239000000463 material Substances 0.000 claims abstract description 21
- 229920005989 resin Polymers 0.000 claims abstract description 19
- 239000011347 resin Substances 0.000 claims abstract description 19
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000012463 white pigment Substances 0.000 claims abstract description 17
- 229910001928 zirconium oxide Inorganic materials 0.000 claims abstract description 17
- 229920001187 thermosetting polymer Polymers 0.000 claims description 69
- 229920002050 silicone resin Polymers 0.000 claims description 43
- 239000011256 inorganic filler Substances 0.000 claims description 12
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 12
- 238000001721 transfer moulding Methods 0.000 claims description 10
- 238000001746 injection moulding Methods 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 abstract description 25
- 239000002184 metal Substances 0.000 abstract description 25
- 239000003795 chemical substances by application Substances 0.000 description 33
- 239000003822 epoxy resin Substances 0.000 description 32
- 229920000647 polyepoxide Polymers 0.000 description 32
- 239000003054 catalyst Substances 0.000 description 24
- -1 diethyl glutaric anhydride Methylhexahydrophthalic anhydride Chemical compound 0.000 description 18
- 238000007259 addition reaction Methods 0.000 description 17
- 238000006482 condensation reaction Methods 0.000 description 14
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 13
- 229920001296 polysiloxane Polymers 0.000 description 13
- 238000006459 hydrosilylation reaction Methods 0.000 description 12
- 239000002245 particle Substances 0.000 description 12
- 239000000843 powder Substances 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 150000002430 hydrocarbons Chemical group 0.000 description 10
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 10
- 150000008065 acid anhydrides Chemical class 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 150000003377 silicon compounds Chemical class 0.000 description 9
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 238000007789 sealing Methods 0.000 description 7
- 238000009833 condensation Methods 0.000 description 6
- 230000005494 condensation Effects 0.000 description 6
- 239000003063 flame retardant Substances 0.000 description 6
- 238000001579 optical reflectometry Methods 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 5
- 229910010293 ceramic material Inorganic materials 0.000 description 5
- 238000011049 filling Methods 0.000 description 5
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 5
- 238000004898 kneading Methods 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 229910000077 silane Inorganic materials 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 5
- MUTGBJKUEZFXGO-OLQVQODUSA-N (3as,7ar)-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1CCC[C@@H]2C(=O)OC(=O)[C@@H]21 MUTGBJKUEZFXGO-OLQVQODUSA-N 0.000 description 4
- OUPZKGBUJRBPGC-UHFFFAOYSA-N 1,3,5-tris(oxiran-2-ylmethyl)-1,3,5-triazinane-2,4,6-trione Chemical compound O=C1N(CC2OC2)C(=O)N(CC2OC2)C(=O)N1CC1CO1 OUPZKGBUJRBPGC-UHFFFAOYSA-N 0.000 description 4
- FKBMTBAXDISZGN-UHFFFAOYSA-N 5-methyl-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1C(C)CCC2C(=O)OC(=O)C12 FKBMTBAXDISZGN-UHFFFAOYSA-N 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 150000007973 cyanuric acids Chemical class 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 229920006136 organohydrogenpolysiloxane Polymers 0.000 description 4
- 239000011787 zinc oxide Substances 0.000 description 4
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- 239000006087 Silane Coupling Agent Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 125000002723 alicyclic group Chemical group 0.000 description 3
- 239000002518 antifoaming agent Substances 0.000 description 3
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 3
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 3
- LSDYBCGXPCFFNM-UHFFFAOYSA-M dimethyl phosphate;tributyl(methyl)phosphanium Chemical compound COP([O-])(=O)OC.CCCC[P+](C)(CCCC)CCCC LSDYBCGXPCFFNM-UHFFFAOYSA-M 0.000 description 3
- 239000004205 dimethyl polysiloxane Substances 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229920003986 novolac Polymers 0.000 description 3
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- KMOUUZVZFBCRAM-OLQVQODUSA-N (3as,7ar)-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C=CC[C@@H]2C(=O)OC(=O)[C@@H]21 KMOUUZVZFBCRAM-OLQVQODUSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 2
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 2
- QXBYUPMEYVDXIQ-UHFFFAOYSA-N 4-methyl-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound CC1CCCC2C(=O)OC(=O)C12 QXBYUPMEYVDXIQ-UHFFFAOYSA-N 0.000 description 2
- LWMIDUUVMLBKQF-UHFFFAOYSA-N 4-methyl-3a,4,5,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound CC1CC=CC2C(=O)OC(=O)C12 LWMIDUUVMLBKQF-UHFFFAOYSA-N 0.000 description 2
- JDBDDNFATWXGQZ-UHFFFAOYSA-N 5-methyl-3a,4,5,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1=CC(C)CC2C(=O)OC(=O)C12 JDBDDNFATWXGQZ-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- DSVRVHYFPPQFTI-UHFFFAOYSA-N bis(ethenyl)-methyl-trimethylsilyloxysilane;platinum Chemical compound [Pt].C[Si](C)(C)O[Si](C)(C=C)C=C DSVRVHYFPPQFTI-UHFFFAOYSA-N 0.000 description 2
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- 239000005350 fused silica glass Substances 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 2
- 150000002460 imidazoles Chemical class 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 150000003018 phosphorus compounds Chemical class 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 150000003057 platinum Chemical class 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- JIYNFFGKZCOPKN-UHFFFAOYSA-N sbb061129 Chemical compound O=C1OC(=O)C2C1C1C=C(C)C2C1 JIYNFFGKZCOPKN-UHFFFAOYSA-N 0.000 description 2
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical group [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 2
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- KNDQHSIWLOJIGP-UMRXKNAASA-N (3ar,4s,7r,7as)-rel-3a,4,7,7a-tetrahydro-4,7-methanoisobenzofuran-1,3-dione Chemical compound O=C1OC(=O)[C@@H]2[C@H]1[C@]1([H])C=C[C@@]2([H])C1 KNDQHSIWLOJIGP-UMRXKNAASA-N 0.000 description 1
- QIKSEZYONUMDRR-UHFFFAOYSA-N 1,3-dioxo-3a,4,5,6,7,7a-hexahydro-2-benzofuran-4,5-dicarboxylic acid Chemical compound OC(=O)C1C(C(=O)O)CCC2C(=O)OC(=O)C12 QIKSEZYONUMDRR-UHFFFAOYSA-N 0.000 description 1
- YYRQGUCZNDDATE-UHFFFAOYSA-N 1,3-dioxo-3a,4,5,6,7,7a-hexahydro-2-benzofuran-4-carboxylic acid Chemical compound OC(=O)C1CCCC2C(=O)OC(=O)C12 YYRQGUCZNDDATE-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 1
- ODGCZQFTJDEYNI-UHFFFAOYSA-N 2-methylcyclohex-3-ene-1,2-dicarboxylic acid Chemical compound OC(=O)C1(C)C=CCCC1C(O)=O ODGCZQFTJDEYNI-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- PAVNZLVXYJDFNR-UHFFFAOYSA-N 3,3-dimethyloxane-2,6-dione Chemical compound CC1(C)CCC(=O)OC1=O PAVNZLVXYJDFNR-UHFFFAOYSA-N 0.000 description 1
- IKYAJDOSWUATPI-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propane-1-thiol Chemical compound CO[Si](C)(OC)CCCS IKYAJDOSWUATPI-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- ULKLGIFJWFIQFF-UHFFFAOYSA-N 5K8XI641G3 Chemical compound CCC1=NC=C(C)N1 ULKLGIFJWFIQFF-UHFFFAOYSA-N 0.000 description 1
- MWSKJDNQKGCKPA-UHFFFAOYSA-N 6-methyl-3a,4,5,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1CC(C)=CC2C(=O)OC(=O)C12 MWSKJDNQKGCKPA-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- GLDDVZPZOFCMTE-UHFFFAOYSA-N CCO[SiH](C)CCCOCC1CO1 Chemical compound CCO[SiH](C)CCCOCC1CO1 GLDDVZPZOFCMTE-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 1
- SVYKKECYCPFKGB-UHFFFAOYSA-N N,N-dimethylcyclohexylamine Chemical compound CN(C)C1CCCCC1 SVYKKECYCPFKGB-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910001361 White metal Inorganic materials 0.000 description 1
- VYGUBTIWNBFFMQ-UHFFFAOYSA-N [N+](#[C-])N1C(=O)NC=2NC(=O)NC2C1=O Chemical group [N+](#[C-])N1C(=O)NC=2NC(=O)NC2C1=O VYGUBTIWNBFFMQ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 125000004018 acid anhydride group Chemical group 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000004844 aliphatic epoxy resin Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- NIDNOXCRFUCAKQ-UHFFFAOYSA-N bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid Chemical compound C1C2C=CC1C(C(=O)O)C2C(O)=O NIDNOXCRFUCAKQ-UHFFFAOYSA-N 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 229910002026 crystalline silica Inorganic materials 0.000 description 1
- IFDVQVHZEKPUSC-UHFFFAOYSA-N cyclohex-3-ene-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCC=CC1C(O)=O IFDVQVHZEKPUSC-UHFFFAOYSA-N 0.000 description 1
- QSAWQNUELGIYBC-UHFFFAOYSA-N cyclohexane-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCCCC1C(O)=O QSAWQNUELGIYBC-UHFFFAOYSA-N 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- OTARVPUIYXHRRB-UHFFFAOYSA-N diethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](C)(OCC)CCCOCC1CO1 OTARVPUIYXHRRB-UHFFFAOYSA-N 0.000 description 1
- FJWRGPWPIXAPBJ-UHFFFAOYSA-N diethyl(dimethyl)silane Chemical compound CC[Si](C)(C)CC FJWRGPWPIXAPBJ-UHFFFAOYSA-N 0.000 description 1
- JJQZDUKDJDQPMQ-UHFFFAOYSA-N dimethoxy(dimethyl)silane Chemical compound CO[Si](C)(C)OC JJQZDUKDJDQPMQ-UHFFFAOYSA-N 0.000 description 1
- WHGNXNCOTZPEEK-UHFFFAOYSA-N dimethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](C)(OC)CCCOCC1CO1 WHGNXNCOTZPEEK-UHFFFAOYSA-N 0.000 description 1
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 1
- ZZTCPWRAHWXWCH-UHFFFAOYSA-N diphenylmethanediamine Chemical class C=1C=CC=CC=1C(N)(N)C1=CC=CC=C1 ZZTCPWRAHWXWCH-UHFFFAOYSA-N 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- FPVGTPBMTFTMRT-NSKUCRDLSA-L fast yellow Chemical compound [Na+].[Na+].C1=C(S([O-])(=O)=O)C(N)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 FPVGTPBMTFTMRT-NSKUCRDLSA-L 0.000 description 1
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- VANNPISTIUFMLH-UHFFFAOYSA-N glutaric anhydride Chemical compound O=C1CCCC(=O)O1 VANNPISTIUFMLH-UHFFFAOYSA-N 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- CZWLNMOIEMTDJY-UHFFFAOYSA-N hexyl(trimethoxy)silane Chemical compound CCCCCC[Si](OC)(OC)OC CZWLNMOIEMTDJY-UHFFFAOYSA-N 0.000 description 1
- WJRBRSLFGCUECM-UHFFFAOYSA-N hydantoin Chemical compound O=C1CNC(=O)N1 WJRBRSLFGCUECM-UHFFFAOYSA-N 0.000 description 1
- 229940091173 hydantoin Drugs 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- YTVNOVQHSGMMOV-UHFFFAOYSA-N naphthalenetetracarboxylic dianhydride Chemical compound C1=CC(C(=O)OC2=O)=C3C2=CC=C2C(=O)OC(=O)C1=C32 YTVNOVQHSGMMOV-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 150000002898 organic sulfur compounds Chemical class 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- ZCLUFPPYOPQBQL-UHFFFAOYSA-N oxiran-2-ylmethanamine 1,3,5-triazinane-2,4,6-trione Chemical class NCC1CO1.O=c1[nH]c(=O)[nH]c(=O)[nH]1 ZCLUFPPYOPQBQL-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 150000004965 peroxy acids Chemical class 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- CLSUSRZJUQMOHH-UHFFFAOYSA-L platinum dichloride Chemical compound Cl[Pt]Cl CLSUSRZJUQMOHH-UHFFFAOYSA-L 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 238000011417 postcuring Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical class OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 125000005372 silanol group Chemical group 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- RKHXQBLJXBGEKF-UHFFFAOYSA-M tetrabutylphosphanium;bromide Chemical compound [Br-].CCCC[P+](CCCC)(CCCC)CCCC RKHXQBLJXBGEKF-UHFFFAOYSA-M 0.000 description 1
- UFDHBDMSHIXOKF-UHFFFAOYSA-N tetrahydrophthalic acid Natural products OC(=O)C1=C(C(O)=O)CCCC1 UFDHBDMSHIXOKF-UHFFFAOYSA-N 0.000 description 1
- BRKFQVAOMSWFDU-UHFFFAOYSA-M tetraphenylphosphanium;bromide Chemical compound [Br-].C1=CC=CC=C1[P+](C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 BRKFQVAOMSWFDU-UHFFFAOYSA-M 0.000 description 1
- USFPINLPPFWTJW-UHFFFAOYSA-N tetraphenylphosphonium Chemical compound C1=CC=CC=C1[P+](C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 USFPINLPPFWTJW-UHFFFAOYSA-N 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- WUMSTCDLAYQDNO-UHFFFAOYSA-N triethoxy(hexyl)silane Chemical compound CCCCCC[Si](OCC)(OCC)OCC WUMSTCDLAYQDNO-UHFFFAOYSA-N 0.000 description 1
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 1
- JCVQKRGIASEUKR-UHFFFAOYSA-N triethoxy(phenyl)silane Chemical compound CCO[Si](OCC)(OCC)C1=CC=CC=C1 JCVQKRGIASEUKR-UHFFFAOYSA-N 0.000 description 1
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical class OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 1
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 1
- JLGNHOJUQFHYEZ-UHFFFAOYSA-N trimethoxy(3,3,3-trifluoropropyl)silane Chemical compound CO[Si](OC)(OC)CCC(F)(F)F JLGNHOJUQFHYEZ-UHFFFAOYSA-N 0.000 description 1
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000010969 white metal Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/52—Encapsulations
- H01L33/56—Materials, e.g. epoxy or silicone resin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/93—Batch processes
- H01L24/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L24/97—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/58—Optical field-shaping elements
- H01L33/60—Reflective elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/62—Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2244—Oxides; Hydroxides of metals of zirconium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48257—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12041—LED
Definitions
- the present invention relates to a thermosetting resin composition for an optical semiconductor device, which is a material for forming a reflector (reflecting portion) that reflects light having a wavelength of 350 to 410 nm emitted from a light emitting element, and an optical semiconductor device lead obtained using the same
- the present invention relates to a frame and an optical semiconductor device.
- a ceramic material has been used as a reflector for reflecting light from the light emitting element.
- the reflector in recent years, in an optical semiconductor device in which a light emitting element other than a light emitting element that emits light in a specific wavelength region such as the UV region is mounted, the reflector is represented by an epoxy resin or the like. For example, it is molded and produced by transfer molding using the thermosetting resin. Conventionally, titanium oxide is blended in the thermosetting resin as a white pigment to reflect light emitted from the optical semiconductor element (see Patent Document 1).
- thermosetting resin containing titanium oxide as a white pigment is used as a reflector material in an optical semiconductor device equipped with a light emitting element that emits light in a specific wavelength region such as the UV region, light reflection with respect to the light is performed. Since the rate is low and the problem of coloring dark blue due to photochromism arises, as described above, ceramic must be used as the reflector material.
- a reflector made of the ceramic material usually has a wavelength region of the above range. There is no light reflectivity with respect to light exceeding 90%, and there is a strong demand for a reflector material that can replace a ceramic material, particularly an organic reflector material that can be produced in various shapes by various molding methods.
- the present invention has been made in view of such circumstances, and is an optical material that exhibits high light reflectance in a specific wavelength region of 350 to 410 nm and can be easily formed into various shapes.
- An object of the present invention is to provide a thermosetting resin composition for a semiconductor device, a lead frame for an optical semiconductor device obtained using the same, and an optical semiconductor device.
- thermosetting resin composition for an optical semiconductor device used as a reflector forming material of an optical semiconductor device having a light emitting element having a wavelength of 350 to 410 nm.
- thermosetting resin compositions for optical semiconductor devices are thermosetting resin compositions for optical semiconductor devices.
- B A white pigment composed solely of zirconium oxide.
- the present invention is a plate-shaped lead frame for an optical semiconductor device for mounting an optical semiconductor element only on one surface in the thickness direction, and includes a plurality of plate portions arranged with a gap therebetween, and A lead frame for an optical semiconductor device in which a gap is formed by filling the gap with the thermosetting resin composition for an optical semiconductor device according to the first aspect and curing it is a second aspect.
- the present invention is a three-dimensional lead frame for an optical semiconductor device comprising an optical semiconductor element mounting region, wherein a reflector is formed in a state surrounding at least a part of the optical semiconductor element mounting region,
- a third aspect of the present invention is an optical semiconductor device lead frame in which the reflector is formed using the thermosetting resin composition for an optical semiconductor device of the first aspect.
- a plate portion having an element mounting area for mounting a light emitting element on one side thereof is arranged with a gap therebetween, and a light emitting element having a wavelength of 350 to 410 nm is mounted at a predetermined position of the element mounting area.
- the present invention also includes a light emitting element mounting region, and a wavelength of 350 to 410 nm at a predetermined position of a lead frame for an optical semiconductor device in which a reflector is formed so as to surround at least a part of the element mounting region.
- the inventors of the present invention have made extensive studies to obtain a thermosetting resin composition for optical semiconductor devices having a high light reflectance in a specific wavelength region of near ultraviolet to ultraviolet instead of a conventional ceramic material. As a result, it was found that the intended purpose is achieved when zirconium oxide is used among the various white pigments in the reflector material. That is, as a result of repeated research, the present inventors have found that the above-mentioned zirconium oxide has a characteristic that it does not absorb light at a wavelength of 350 to 410 nm in the near ultraviolet to ultraviolet region.
- the present invention is a thermosetting resin composition for an optical semiconductor device used as a reflector forming material of an optical semiconductor device having a light emitting element having a wavelength of 350 to 410 nm, the thermosetting resin (A) And a white pigment (B) comprising only zirconium oxide. For this reason, it comes to have a high light reflectance with respect to the light in the specific wavelength region. Therefore, it is useful as a reflector forming material in place of the conventional ceramic material, and by using the thermosetting resin composition, it is easy to form various reflector shapes, and a highly reliable optical semiconductor device can be obtained.
- FIG. 10 is a cross-sectional view taken along the line XX ′ of the plan view schematically showing another configuration of the optical semiconductor device.
- thermosetting resin composition for optical semiconductor devices of the present invention is, for example, an optical semiconductor device shown in FIG. 1 described later or an optical semiconductor shown in FIGS. It is used as a reflector forming material of an apparatus, and is obtained using a thermosetting resin (component A) and a specific white pigment (component B), and is usually liquid, sheet-like, or It is used as a reflector forming material in the form of a powder or a tablet obtained by tableting the powder.
- the thermosetting resin composition of the present invention is intended for a material for forming a reflector in an optical semiconductor device including a light emitting element that emits light having a wavelength of 350 to 410 nm in the near ultraviolet to ultraviolet region.
- thermosetting resin examples include epoxy resins and silicone resins. These may be used alone or in combination.
- epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, novolak type epoxy resin such as phenol novolac type epoxy resin and cresol novolac type epoxy resin, monoglycidyl isocyanurate, di Nitrogen-containing ring epoxy resins such as glycidyl isocyanurate, triglycidyl isocyanurate, hydantoin epoxy resin, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin, aliphatic epoxy resin, silicone modified epoxy resin, glycidyl ether type Polyamines and epichlorohydres such as epoxy resins, diglycidyl ethers such as alkyl-substituted bisphenols, diaminodiphenylmethane and isocyanuric acid Glycidylamine type epoxy resin obtained by reaction with ethylene, linear aliphatic and alicyclic epoxy resins obtained by oxidizing olefinic bonds with peracids such as
- epoxy resins may be used alone or in combination of two or more.
- an alicyclic epoxy resin or an isocyanuric ring structure such as triglycidyl isocyanurate alone or in combination from the viewpoint of excellent transparency and discoloration resistance.
- diglycidyl esters of dicarboxylic acids such as phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, methyltetrahydrophthalic acid, nadic acid and methylnadic acid are also suitable.
- glycidyl esters such as nuclear hydrogenated trimellitic acid and nuclear hydrogenated pyromellitic acid having an alicyclic structure in which an aromatic ring is hydrogenated.
- the epoxy resin may be solid or liquid at normal temperature, but in general, the epoxy resin used preferably has an average epoxy equivalent of 90 to 1,000. From the viewpoint of convenience, a softening point of 50 to 160 ° C. is preferable. That is, if the epoxy equivalent is too small, the cured product of the thermosetting resin composition may become brittle. Moreover, it is because the glass transition temperature (Tg) of a thermosetting resin composition hardened
- Tg glass transition temperature
- a curing agent When using the epoxy resin as the thermosetting resin (component A), a curing agent is usually used.
- the curing agent include an acid anhydride curing agent and an isocyanuric acid derivative curing agent. These may be used alone or in combination of two or more. Among these, it is preferable to use an acid anhydride curing agent from the viewpoint of heat resistance and light resistance.
- acid anhydride curing agent examples include phthalic anhydride, maleic anhydride, succinic anhydride, trimellitic anhydride, pyromellitic anhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride.
- an oligomer having an acid anhydride as a terminal group of a saturated fatty chain skeleton, an unsaturated fatty chain skeleton, or a silicone skeleton or a side chain thereof alone or in combination of two or more thereof, and the above acid anhydride can be used together.
- these acid anhydride curing agents phthalic anhydride, hexahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, tetrahydrophthalic anhydride, 3-methyltetrahydrophthalic anhydride, 4-Methyltetrahydrophthalic anhydride is preferably used.
- the acid anhydride curing agent is preferably a colorless or light yellow acid anhydride curing agent.
- Examples of the isocyanuric acid derivative-based curing agent include 1,3,5-tris (1-carboxymethyl) isocyanurate, 1,3,5-tris (2-carboxyethyl) isocyanurate, 1,3,5, Examples thereof include 5-tris (3-carboxypropyl) isocyanurate and 1,3-bis (2-carboxyethyl) isocyanurate. These may be used alone or in combination of two or more. Furthermore, as the isocyanuric acid derivative-based curing agent, a colorless or light yellow curing agent is preferable.
- the blending ratio of the epoxy resin and the curing agent is an active group (an acid anhydride group or a carboxy group) that can react with the epoxy group in the curing agent with respect to 1 equivalent of the epoxy group in the epoxy resin.
- epoxy resin-based curing agents other than the above-mentioned acid anhydride-based curing agents and isocyanuric acid derivative-based curing agents such as phenol-based curing agents, amine-based curing agents, and acid Curing agents such as those obtained by partially esterifying an anhydride-based curing agent with alcohol can be used alone or in combination of two or more.
- blending ratio should just follow the mixing
- the silicone resin contains at least a catalyst, and specifically contains a catalyst and a silicone resin.
- the catalyst is, for example, a curing catalyst that accelerates the reaction of the silicone resin to cure the silicone resin, and preferably hydrosilylation that accelerates the hydrosilylation reaction of the silicone resin to be described later and cures the silicone resin by hydrosilylation. It is a catalyst.
- the catalyst contains a transition metal, and examples of the transition metal include white metal elements such as platinum, palladium and rhodium, preferably platinum.
- the catalyst when the catalyst contains platinum, for example, platinum black, platinum chloride, inorganic platinum such as chloroplatinic acid, for example, platinum-olefin complex, platinum-carbonyl complex, platinum-acetyl
- platinum complexes such as acetate, and preferably platinum complexes. More specifically, examples of the platinum complex include a platinum-vinylsiloxane complex, a platinum-tetramethyldivinyldisiloxane complex, a platinum-carbonylcyclovinylmethylsiloxane complex, a platinum-divinyltetramethyldisiloxane complex, and a platinum-cyclovinyl.
- the said catalyst has the aspect mixed with the silicone resin mentioned later, and the aspect contained in a silicone resin as a component which comprises a silicone resin.
- the content (concentration) of the transition metal in the catalyst is preferably 0.1 to 500 ppm, more preferably 0.15 to 100 ppm, and still more preferably 0.2 to 50 ppm, based on the weight of the whole silicone resin. Particularly preferred is 0.3 to 10 ppm.
- the above-mentioned silicone resin is a curable silicone resin that is cured by a reaction accelerated by a catalyst, and examples thereof include a thermosetting silicone resin such as a one-step curable silicone resin and a two-step curable silicone resin.
- the above-mentioned two-stage curable silicone resin has a two-stage reaction mechanism, and heats B-staged (semi-cured) by the first-stage reaction and C-stage (completely cured) by the second-stage reaction. It is a curable silicone resin.
- the B stage is a state between the A stage in which the thermosetting silicone resin is soluble in the solvent and the fully cured C stage, and the curing and gelation progresses slightly, Although it swells but does not completely dissolve, it softens by heating but does not melt.
- the one-step curable silicone resin has a one-step reaction mechanism and is a thermosetting silicone resin that is completely cured by the first-step reaction.
- the one-step curable silicone resin include addition reaction curable polyorganopolysiloxane disclosed in JP2012-124428A.
- the addition reaction curable polyorganopolysiloxane contains, for example, an ethylenically unsaturated hydrocarbon group-containing silicon compound and a hydrosilyl group-containing silicon compound.
- Examples of the ethylenically unsaturated hydrocarbon group-containing silicon compound include vinyl group-containing polyorganosiloxane having two or more vinyl groups in the molecule, preferably vinyl polydimethylsiloxane at both ends.
- hydrosilyl group-containing silicon compound examples include, for example, a hydrosilyl group-containing polyorganosiloxane having two or more hydrosilyl groups in the molecule, preferably both-end hydrosilyl polydimethylsiloxane, both-end trimethylsilyl-blocked methylhydrosiloxane-dimethylsiloxane copolymer, etc. Is given.
- Examples of the two-stage curable silicone resin include a condensation reaction / addition reaction curable silicone resin having two reaction systems of a condensation reaction and an addition reaction.
- Such condensation reaction / addition reaction curable silicone resin contains a catalyst, for example, silanol-terminated polysiloxane, alkenyl group-containing trialkoxysilane, organohydrogenpolysiloxane, condensation catalyst and hydrosilylation catalyst.
- a first condensation reaction / addition reaction curable silicone resin For example, a second condensation containing a silanol group-terminated polysiloxane, an ethylenically unsaturated hydrocarbon group-containing silicon compound, an ethylenically unsaturated hydrocarbon group-containing silicon compound, an organohydrogenpolysiloxane, a condensation catalyst, and a hydrosilylation catalyst Reaction / addition reaction curable silicone resin, For example, a third condensation reaction / addition reaction curable silicone resin containing a silanol type silicone oil at both ends, an alkenyl group-containing dialkoxyalkylsilane, an organohydrogenpolysiloxane, a condensation catalyst and a hydrosilylation catalyst, For example, a fourth condensation reaction containing an organopolysiloxane having at least two alkenylsilyl groups in one molecule, an organopolysiloxane having at least two hydrosilyl groups in one molecule, a hydrosily
- the condensation reaction / addition reaction curable silicone resin is preferably the second condensation reaction / addition reaction curable silicone resin, and specifically described in, for example, JP-A-2010-265436.
- the second condensation reaction / addition reaction curable silicone resin for example, first, an ethylenically unsaturated hydrocarbon group-containing silicon compound and an ethylenically unsaturated hydrocarbon group which are condensation raw materials are used. It can be prepared by adding the silicon compound and the condensation catalyst all at once, then adding the organohydrogenpolysiloxane as an addition raw material, and then adding a hydrosilylation catalyst (addition catalyst).
- the white pigment is characterized by comprising only zirconium oxide (ZrO 2 ). That is, in the present invention, the white pigment is substantially composed only of zirconium oxide, and other white pigments such as titanium oxide and zinc oxide used for organic reflector materials as in the past are used. It is not used.
- zirconium oxide one having an average particle diameter of 0.01 to 50 ⁇ m is preferably used from the viewpoint of fluidity and the like, and particularly preferably 0.1 to 20 ⁇ m.
- the said average particle diameter can be measured using a laser diffraction scattering type particle size distribution analyzer, for example.
- the content ratio of the zirconium oxide (component B) is preferably 2 to 30% by volume, more preferably 5 to 30% by volume, based on the entire thermosetting resin composition. That is, when the content ratio of the component B is too small, there is a tendency that sufficient light reflectivity is hardly obtained. This is because when the content ratio of the component B is too large, there may be a difficulty in producing a thermosetting resin composition by kneading or the like due to remarkable thickening.
- an inorganic filler (C component) can be used with the said A and B components.
- the inorganic filler (C component) include silica glass powder, talc, silica powder such as fused silica powder and crystalline silica powder, alumina powder, aluminum nitride powder, and silicon nitride powder.
- the inorganic filler (C component) excludes the specific white pigment (B component).
- the average particle size of the inorganic filler (component C) is preferably 5 to 100 ⁇ m, particularly preferably 10 to 80 ⁇ m.
- the said average particle diameter can be measured using a laser diffraction scattering type particle size distribution meter similarly to the above-mentioned.
- the total content ratio of the specific white pigment (component B) and the inorganic filler (component C) is 75 to 75% of the entire thermosetting resin composition. It is preferable to set so that it may become 90 volume%. Particularly preferred is 75 to 85% by volume. That is, if the total content is too small, there is a tendency for problems such as warpage to occur during molding. In addition, if the total content is too large, when kneading the compounding components, a great load is applied to the kneader, and the kneading tends to be impossible. As a result, the thermosetting resin composition that is a molding material It tends to be difficult to fabricate.
- thermosetting resin composition of this invention can mix
- various additives such as a modifier (plasticizer), an antioxidant, a flame retardant, an antifoaming agent, a leveling agent, and an ultraviolet absorber can be appropriately blended.
- curing accelerator examples include 1,8-diaza-bicyclo [5.4.0] undecene-7, triethylenediamine, tri-2,4,6-dimethylaminomethylphenol, N, N-dimethylbenzylamine. , Tertiary amines such as N, N-dimethylaminobenzene and N, N-dimethylaminocyclohexane, imidazoles such as 2-ethyl-4-methylimidazole and 2-methylimidazole, triphenylphosphine, tetraphenylphosphonium tetrafluoro Borate, tetraphenylphosphonium tetraphenylborate, tetra-n-butylphosphonium bromide, tetraphenylphosphonium bromide, methyltributylphosphonium dimethylphosphoate, tetraphenylphosphonium-o, o-diethylphosphorologici Phosphorus compounds such as t
- quaternary ammonium salts organometallic salts, and derivatives thereof. These may be used alone or in combination of two or more.
- curing accelerators it is preferable to use tertiary amines, imidazoles, and phosphorus compounds. Among them, it is particularly preferable to use a phosphorus compound in order to obtain a transparent and tough cured product with a low degree of coloring.
- the content of the curing accelerator is preferably set to 0.001 to 8.0% by weight, more preferably 0.01 to 5% by weight with respect to the specific thermosetting resin (component A). is there. That is, if the content of the curing accelerator is too small, a sufficient curing acceleration effect may not be obtained, and if the content of the curing accelerator is too large, the resulting cured product tends to be discolored. Because.
- release agents are used as the release agent. Among them, it is preferable to use a release agent having an ether bond.
- a release agent having a structural formula represented by the following general formula (1) Agent for example, a release agent having a structural formula represented by the following general formula (1) Agent.
- Rm and Rn are a hydrogen atom or a monovalent alkyl group, and both may be the same or different. Further, k is a positive number from 1 to 100, and x is a positive number from 1 to 100. ]
- Rm and Rn are hydrogen atoms or monovalent alkyl groups, preferably k is a positive number from 10 to 50, and x is a positive number from 3 to 30. More preferably, Rm and Rn are hydrogen atoms, k is a positive number of 28 to 48, and x is a positive number of 5 to 20. That is, when the value of the number of repetitions k is too small, the releasability is lowered, and when the value of the number of repetitions x is too small, the dispersibility is lowered, so that stable strength and releasability tend not to be obtained. Be looked at.
- the content of the release agent is preferably set in the range of 0.001 to 3% by weight, more preferably in the range of 0.01 to 1% by weight of the entire thermosetting resin composition object. That is, if the content of the release agent is too little or too much, the strength of the cured product tends to be insufficient or the release property tends to be lowered.
- silane compound examples include a silane coupling agent and silane.
- silane coupling agent examples include 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropylmethylethoxysilane.
- silane examples include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethylsilane, phenyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, and dezyltrimethoxy.
- silane examples include silane, trifluoropropyltrimethoxysilane, hexamethyldisilazane, and siloxane containing a hydrolyzable group. These may be used alone or in combination of two or more.
- modifier examples include glycols, silicones, alcohols and the like.
- antioxidant examples include phenol compounds, amine compounds, organic sulfur compounds, phosphine compounds, and the like.
- the flame retardant examples include metal hydroxides such as magnesium hydroxide, bromine-based flame retardants, nitrogen-based flame retardants, phosphorus-based flame retardants and the like, and further use a flame retardant aid such as antimony trioxide. You can also.
- antifoaming agent examples include conventionally known defoaming agents such as silicone.
- thermosetting resin composition of the present invention can be produced, for example, as follows. That is, the above-mentioned components A to C, further a curing accelerator and a release agent, and various additives used as necessary are appropriately blended, then kneaded using a kneader or the like, melt-mixed, and then mixed. By cooling, solidifying and pulverizing, a powdery thermosetting resin composition can be produced.
- the cured product of the obtained thermosetting resin composition preferably has a light reflectance of 80% or more, more preferably 83% or more, with respect to light having a wavelength of 350 to 410 nm. .
- the upper limit is usually 100%.
- the light reflectance is measured as follows, for example. That is, a cured product of a thermosetting resin composition having a thickness of 1 mm is prepared by predetermined curing conditions, for example, by molding at 175 ° C. ⁇ 2 minutes, and post-curing at 175 ° C.
- the light reflectance of the cured product at a wavelength within the above range can be measured by using a spectrophotometer (for example, a spectrophotometer V-670 manufactured by JASCO Corporation) at a wavelength within the above range.
- a spectrophotometer for example, a spectrophotometer V-670 manufactured by JASCO Corporation
- thermosetting resin composition of the present invention is manufactured as follows, for example. That is, a metal lead frame is placed in a mold of a transfer molding machine, and a reflector is formed by transfer molding using the thermosetting resin composition. In this manner, a metal lead frame for an optical semiconductor device in which an annular reflector is formed so as to surround the periphery of the optical semiconductor element mounting region is manufactured. Next, an optical semiconductor element is mounted in the optical semiconductor element mounting region on the metal lead frame inside the reflector, and the optical semiconductor element and the metal lead frame are electrically connected using a bonding wire. And the sealing resin layer is formed by resin-sealing the inner area
- the three-dimensional (cup type) optical semiconductor device shown in FIG. 1 is manufactured.
- an optical semiconductor element 3 is mounted on a second plate portion 2 of a metal lead frame composed of a first plate portion 1 and a second plate portion 2, and the periphery of the optical semiconductor element 3 is
- the light reflection reflector 4 made of the thermosetting resin composition of the present invention is formed so as to enclose it.
- a transparent sealing resin layer 6 for sealing the optical semiconductor element 3 is formed in the recess 5 formed by the metal lead frame and the inner peripheral surface of the reflector 4.
- the sealing resin layer 6 contains a phosphor as necessary.
- 7 and 8 are bonding wires for electrically connecting an electrode circuit (not shown) formed on the metal lead frame and the optical semiconductor element 3.
- various substrates may be used in place of the metal lead frame shown in FIG.
- the various substrates include organic substrates, inorganic substrates, and flexible printed substrates.
- the reflector may be formed by injection molding.
- an optical semiconductor device shown in FIG. 2 and FIG. can give. That is, in this optical semiconductor device, the optical semiconductor elements 3 are respectively mounted at predetermined positions on one surface in the thickness direction of the metal lead frames 10 arranged at intervals, and the gap between the metal lead frames 10 is in accordance with the present invention.
- the light reflection reflector 11 made of a thermosetting resin composition is formed. Further, as shown in FIG. 3, a plurality of reflectors 11 are formed on the surface opposite to the surface of the metal lead frame 10 on which the optical semiconductor element 3 is mounted by filling and curing the thermosetting resin composition of the present invention. .
- reference numeral 12 denotes a bonding wire for electrically connecting the optical semiconductor element 3 and the metal lead frame 10.
- the metal lead frame 10 is placed in a mold of a transfer molding machine, and the gap between the metal lead frames 10 arranged at intervals and the optical semiconductor of the metal lead frame 10 are formed by transfer molding.
- the reflectors 11 are respectively formed by filling the concave portions formed on the surface opposite to the element 3 mounting surface with a thermosetting resin composition and curing.
- the optical semiconductor element 3 and the metal lead frame 10 are electrically connected using the bonding wire 12. In this manner, the optical semiconductor device shown in FIGS. 2 and 3 is manufactured.
- thermosetting resin composition each component shown below was prepared prior to preparation of the thermosetting resin composition.
- Zinc oxide Zinc oxide (Type I), manufactured by Hakusui Tech Co., Ltd.
- Examples 1 to 10 Comparative Examples 1 to 16
- the components shown in Tables 1 to 3 below are blended in the proportions shown in the same table, melt kneaded (temperature 100 to 130 ° C.) with a kneader, aged, cooled to room temperature (25 ° C.) and pulverized Thus, a target powdery thermosetting resin composition was produced.
- thermosetting resin compositions of Examples and Comparative Examples Using the thermosetting resin compositions of Examples and Comparative Examples thus obtained, light reflectance (wavelength: 365 nm, 405 nm, 450 nm) was measured according to the following method. The results are shown in Tables 1 to 3 below.
- a comparative product obtained by adding a small amount of titanium oxide or zinc oxide in addition to zirconium oxide as a white pigment has a result that the light reflectance particularly with respect to light having a wavelength of 365 nm is remarkably lowered.
- an optical semiconductor (light emitting) device having the configuration shown in FIG. 1 was manufactured using the powdery thermosetting resin composition which is the product of the above example. That is, a metal lead frame having a plurality of pairs of a first plate portion 1 and a second plate portion 2 made of copper (silver plating) is placed in a mold of a transfer molding machine, and the thermosetting resin By performing transfer molding using the composition (conditions: molding at 175 ° C. ⁇ 2 minutes + 175 ° C. ⁇ 3 hours), the reflector 4 shown in FIG. 1 was formed at a predetermined position on the metal lead frame surface.
- an optical semiconductor (light emitting) element (size 1 mm ⁇ 1 mm, emission wavelength: 395 to 400 nm) 3 is mounted, and the optical semiconductor element 3 and the metal lead frame are electrically connected by bonding wires 7 and 8.
- a unit including the reflector 4, the metal lead frame, and the optical semiconductor element 3 was manufactured.
- a recess 5 formed by the metal lead frame and the inner peripheral surface of the reflector 4 is filled with a silicone resin (manufactured by Shin-Etsu Silicone Co., Ltd., KER-2500), and the optical semiconductor element 3 is resin-sealed (molded). (Condition: 150 ° C. ⁇ 4 hours), a transparent sealing resin layer 6 was formed, and each reflector was separated into pieces by dicing to produce the optical semiconductor (light emitting) device shown in FIG. The obtained optical semiconductor (light emitting) device had high light reflectivity, and a good one with high reliability was obtained.
- thermosetting resin composition for an optical semiconductor device of the present invention is useful as a reflector forming material that reflects light having a wavelength of 350 to 410 nm emitted from an optical semiconductor element incorporated in the optical semiconductor device.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Led Device Packages (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
In the present invention, in an optical semiconductor device provided with a metal lead frame and a reflector formed in a manner so as to encircle the periphery of an optical semiconductor element for wavelengths of 350-410 nm mounted on the metal lead frame, the material forming the reflector is a heat-curable resin composition for an optical semiconductor device and containing a heat-curable resin (A) and a white pigment (B) consisting of zirconium oxide. As a result, the formed reflector exerts high optical reflectance at the specific wavelength region of 350-410nm, and the heat-curable resin composition can be easily formed in a variety of shapes.
Description
本発明は、発光素子から発する波長350~410nmの光を反射させる、リフレクタ(反射部)の形成材料となる光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、ならびに光半導体装置に関するものである。
The present invention relates to a thermosetting resin composition for an optical semiconductor device, which is a material for forming a reflector (reflecting portion) that reflects light having a wavelength of 350 to 410 nm emitted from a light emitting element, and an optical semiconductor device lead obtained using the same The present invention relates to a frame and an optical semiconductor device.
従来から、紫外線(UV)領域の光を発する発光素子を搭載してなる光半導体装置においては、その発光素子からの光を反射させるためのリフレクタとしては、セラミック材料が用いられてきた。
Conventionally, in an optical semiconductor device in which a light emitting element that emits light in the ultraviolet (UV) region is mounted, a ceramic material has been used as a reflector for reflecting light from the light emitting element.
一方、このような光半導体装置において、上記UV領域のような特定波長領域の光を発する発光素子以外の発光素子を搭載してなる光半導体装置では、近年、上記リフレクタを、エポキシ樹脂等に代表される熱硬化性樹脂を用いて、例えば、トランスファー成形等により成形し製造している。そして、上記熱硬化性樹脂には、従来から白色顔料として酸化チタンを配合し、上記光半導体素子から発する光を反射させている(特許文献1参照)。
On the other hand, in such an optical semiconductor device, in recent years, in an optical semiconductor device in which a light emitting element other than a light emitting element that emits light in a specific wavelength region such as the UV region is mounted, the reflector is represented by an epoxy resin or the like. For example, it is molded and produced by transfer molding using the thermosetting resin. Conventionally, titanium oxide is blended in the thermosetting resin as a white pigment to reflect light emitted from the optical semiconductor element (see Patent Document 1).
上記UV領域のような特定波長領域の光を発する発光素子を搭載してなる光半導体装置において、白色顔料として酸化チタンを配合した熱硬化性樹脂をリフレクタ材料として用いた場合、上記光に対する光反射率が低く、かつフォトクロミズムにより暗青色に着色するという問題が生じることから、先に述べたように、リフレクタ材料としてセラミックを用いるしかなかった。
When a thermosetting resin containing titanium oxide as a white pigment is used as a reflector material in an optical semiconductor device equipped with a light emitting element that emits light in a specific wavelength region such as the UV region, light reflection with respect to the light is performed. Since the rate is low and the problem of coloring dark blue due to photochromism arises, as described above, ceramic must be used as the reflector material.
しかしながら、上記のようにUV領域リフレクタ材料としてセラミックを用いた場合、当然ながらその材料特性から様々な形状に付与することが困難であり、しかも上記セラミック材料からなるリフレクタでは、通常、上記波長領域の光に対する光反射率が90%を超えるものはなく、セラミック材料に代わるリフレクタ材料、とりわけ各種成形方法により様々な形状に作製することのできる有機系のリフレクタ材料が強く要望されている。
However, when ceramic is used as the UV region reflector material as described above, it is of course difficult to impart it to various shapes due to its material characteristics. In addition, a reflector made of the ceramic material usually has a wavelength region of the above range. There is no light reflectivity with respect to light exceeding 90%, and there is a strong demand for a reflector material that can replace a ceramic material, particularly an organic reflector material that can be produced in various shapes by various molding methods.
本発明は、このような事情に鑑みなされたもので、350~410nmという特定の波長領域に対して高い光反射率を発揮し、かつ様々な形状に容易に形成可能な有機系材料である光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、ならびに光半導体装置の提供をその目的とする。
The present invention has been made in view of such circumstances, and is an optical material that exhibits high light reflectance in a specific wavelength region of 350 to 410 nm and can be easily formed into various shapes. An object of the present invention is to provide a thermosetting resin composition for a semiconductor device, a lead frame for an optical semiconductor device obtained using the same, and an optical semiconductor device.
上記目的を達成するために、本発明は、波長350~410nmの発光素子を備えた光半導体装置のリフレクタ形成材料として用いられる光半導体装置用熱硬化性樹脂組成物であって、下記の(A)および(B)を含有する光半導体装置用熱硬化性樹脂組成物を第1の要旨とする。
(A)熱硬化性樹脂。
(B)酸化ジルコニウムのみからなる白色顔料。 In order to achieve the above object, the present invention provides a thermosetting resin composition for an optical semiconductor device used as a reflector forming material of an optical semiconductor device having a light emitting element having a wavelength of 350 to 410 nm. ) And (B) are thermosetting resin compositions for optical semiconductor devices.
(A) Thermosetting resin.
(B) A white pigment composed solely of zirconium oxide.
(A)熱硬化性樹脂。
(B)酸化ジルコニウムのみからなる白色顔料。 In order to achieve the above object, the present invention provides a thermosetting resin composition for an optical semiconductor device used as a reflector forming material of an optical semiconductor device having a light emitting element having a wavelength of 350 to 410 nm. ) And (B) are thermosetting resin compositions for optical semiconductor devices.
(A) Thermosetting resin.
(B) A white pigment composed solely of zirconium oxide.
そして、本発明は、厚み方向の片面のみに光半導体素子を搭載するための板状の光半導体装置用リードフレームであって、互いに隙間を隔てて配置される複数のプレート部を備えるとともに、上記隙間に、上記第1の要旨の光半導体装置用熱硬化性樹脂組成物を用いて充填し、硬化してなるリフレクタが形成されてなる光半導体装置用リードフレームを第2の要旨とする。また、本発明は、光半導体素子搭載領域を備え、それ自体の少なくとも一部で素子搭載領域の周囲を囲んだ状態でリフレクタが形成されてなる立体状の光半導体装置用リードフレームであって、上記リフレクタが、上記第1の要旨の光半導体装置用熱硬化性樹脂組成物を用いて形成されてなる光半導体装置用リードフレームを第3の要旨とする。
The present invention is a plate-shaped lead frame for an optical semiconductor device for mounting an optical semiconductor element only on one surface in the thickness direction, and includes a plurality of plate portions arranged with a gap therebetween, and A lead frame for an optical semiconductor device in which a gap is formed by filling the gap with the thermosetting resin composition for an optical semiconductor device according to the first aspect and curing it is a second aspect. Further, the present invention is a three-dimensional lead frame for an optical semiconductor device comprising an optical semiconductor element mounting region, wherein a reflector is formed in a state surrounding at least a part of the optical semiconductor element mounting region, A third aspect of the present invention is an optical semiconductor device lead frame in which the reflector is formed using the thermosetting resin composition for an optical semiconductor device of the first aspect.
さらに、本発明は、その片面に発光素子を搭載するための素子搭載領域を有するプレート部が、互いに隙間を隔てて配置され、上記素子搭載領域の所定位置に波長350~410nmの発光素子が搭載されてなる光半導体装置であって、上記隙間に、上記第1の要旨の半導体装置用熱硬化性樹脂組成物を用いて充填し、硬化してなるリフレクタに形成されてなる光半導体装置を第4の要旨とする。また、本発明は、発光素子搭載領域を備え、それ自体の少なくとも一部で素子搭載領域の周囲を囲んだ状態でリフレクタが形成されてなる光半導体装置用リードフレームの所定位置に波長350~410nmの発光素子が搭載されてなる光半導体装置であって、上記リフレクタが、上記第1の要旨の光半導体装置用熱硬化性樹脂組成物を用いて形成されてなる光半導体装置を第5の要旨とする。
Further, according to the present invention, a plate portion having an element mounting area for mounting a light emitting element on one side thereof is arranged with a gap therebetween, and a light emitting element having a wavelength of 350 to 410 nm is mounted at a predetermined position of the element mounting area. An optical semiconductor device formed by a reflector formed by filling the gap with the thermosetting resin composition for a semiconductor device according to the first aspect and curing the first optical semiconductor device. It is the gist of 4. The present invention also includes a light emitting element mounting region, and a wavelength of 350 to 410 nm at a predetermined position of a lead frame for an optical semiconductor device in which a reflector is formed so as to surround at least a part of the element mounting region. An optical semiconductor device on which the light emitting element is mounted, wherein the reflector is formed using the thermosetting resin composition for optical semiconductor devices according to the first aspect. And
本発明者らは、従来のセラミック材料に代わる、近紫外~紫外線の特定波長領域において高い光反射率を備えた光半導体装置用熱硬化性樹脂組成物を得るべく鋭意検討を重ねた。その結果、リフレクタ材料において、各種白色顔料の中でも、酸化ジルコニウムを用いると、所期の目的が達成されることを突き止めた。すなわち、本発明者らは、研究を重ねた結果、上記酸化ジルコニウムが近紫外~紫外線領域である波長350~410nmにおいて光吸収を示さないという特性を備えているという知見を得た。この知見に基づき更に研究を重ねた結果、白色顔料として酸化ジルコニウムのみを用いると、特定波長領域である350~410nmの光に対して高い光反射率を発揮することが可能となり、従来のセラミック材料に代わる優れたリフレクタ形成材料となりうることを見出したのである。
The inventors of the present invention have made extensive studies to obtain a thermosetting resin composition for optical semiconductor devices having a high light reflectance in a specific wavelength region of near ultraviolet to ultraviolet instead of a conventional ceramic material. As a result, it was found that the intended purpose is achieved when zirconium oxide is used among the various white pigments in the reflector material. That is, as a result of repeated research, the present inventors have found that the above-mentioned zirconium oxide has a characteristic that it does not absorb light at a wavelength of 350 to 410 nm in the near ultraviolet to ultraviolet region. As a result of further research based on this knowledge, when only zirconium oxide is used as a white pigment, it becomes possible to exhibit high light reflectivity with respect to light in a specific wavelength region of 350 to 410 nm. It has been found that it can be an excellent reflector forming material instead of the above.
このように、本発明は、波長350~410nmの発光素子を備えた光半導体装置のリフレクタ形成材料として用いられる光半導体装置用熱硬化性樹脂組成物であって、前記熱硬化性樹脂(A)と、酸化ジルコニウムのみからなる白色顔料(B)とを含有する。このため、上記特定波長領域の光に対して高い光反射率を備えるようになる。したがって、従来のセラミック材料に代わるリフレクタ形成材料として有用であり、上記熱硬化性樹脂組成物を用いることにより各種リフレクタ形状の形成が容易となり、しかも信頼性の高い光半導体装置が得られる。
As described above, the present invention is a thermosetting resin composition for an optical semiconductor device used as a reflector forming material of an optical semiconductor device having a light emitting element having a wavelength of 350 to 410 nm, the thermosetting resin (A) And a white pigment (B) comprising only zirconium oxide. For this reason, it comes to have a high light reflectance with respect to the light in the specific wavelength region. Therefore, it is useful as a reflector forming material in place of the conventional ceramic material, and by using the thermosetting resin composition, it is easy to form various reflector shapes, and a highly reliable optical semiconductor device can be obtained.
さらに、無機質充填剤(C)を用いると、線膨張係数を低下させるという効果を奏する。
Furthermore, when the inorganic filler (C) is used, the effect of reducing the linear expansion coefficient is exhibited.
本発明の光半導体装置用熱硬化性樹脂組成物(以下、「熱硬化性樹脂組成物」ともいう)は、例えば、後述の図1に示す光半導体装置あるいは図2および図3に示す光半導体装置の、リフレクタ形成材料として用いられるものであって、熱硬化性樹脂(A成分)と、特定の白色顔料(B成分)とを用いて得られるものであり、通常、液状、シート状、あるいは粉末状、もしくはその粉末を打錠したタブレット状にしてリフレクタ形成材料に供される。そして、本発明の熱硬化性樹脂組成物は、近紫外~紫外線領域である波長350~410nmの光を発する発光素子を備えた光半導体装置におけるリフレクタの形成材料を対象とする。
The thermosetting resin composition for optical semiconductor devices of the present invention (hereinafter also referred to as “thermosetting resin composition”) is, for example, an optical semiconductor device shown in FIG. 1 described later or an optical semiconductor shown in FIGS. It is used as a reflector forming material of an apparatus, and is obtained using a thermosetting resin (component A) and a specific white pigment (component B), and is usually liquid, sheet-like, or It is used as a reflector forming material in the form of a powder or a tablet obtained by tableting the powder. The thermosetting resin composition of the present invention is intended for a material for forming a reflector in an optical semiconductor device including a light emitting element that emits light having a wavelength of 350 to 410 nm in the near ultraviolet to ultraviolet region.
〈A:熱硬化性樹脂〉
上記熱硬化性樹脂(A成分)としては、例えば、エポキシ樹脂、シリコーン樹脂等があげられる。これらは単独でもしくは併せて用いられる。 <A: Thermosetting resin>
Examples of the thermosetting resin (component A) include epoxy resins and silicone resins. These may be used alone or in combination.
上記熱硬化性樹脂(A成分)としては、例えば、エポキシ樹脂、シリコーン樹脂等があげられる。これらは単独でもしくは併せて用いられる。 <A: Thermosetting resin>
Examples of the thermosetting resin (component A) include epoxy resins and silicone resins. These may be used alone or in combination.
上記エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、モノグリシジルイソシアヌレート、ジグリシジルイソシアヌレート、トリグリシジルイソシアヌレート、ヒダントインエポキシ樹脂等の含窒素環エポキシ樹脂、水素添加ビスフェノールA型エポキシ樹脂、水素添加ビスフェノールF型エポキシ樹脂、脂肪族系エポキシ樹脂、シリコーン変性エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、アルキル置換ビスフェノール等のジグリシジルエーテル、ジアミノジフェニルメタンおよびイソシアヌル酸等のポリアミンとエピクロルヒドリンとの反応により得られるグリシジルアミン型エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族および脂環式エポキシ樹脂、低吸水率硬化体タイプの主流であるビフェニル型エポキシ樹脂、ジシクロ環型エポキシ樹脂、ナフタレン型エポキシ樹脂等があげられる。これらは単独でもしくは2種以上併せて用いることができる。これらエポキシ樹脂の中でも、透明性および耐変色性に優れるという点から、脂環式エポキシ樹脂や、トリグリシジルイソシアヌレート等のイソシアヌル環構造を有するものを単独でもしくは併せて用いることが好ましい。同様の理由から、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルテトラヒドロフタル酸、ナジック酸、メチルナジック酸等のジカルボン酸のジグリシジルエステルも好適である。また、芳香環が水素化された脂環式構造を有する核水素化トリメリット酸、核水素化ピロメリット酸等のグリシジルエステル等もあげられる。
Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, novolak type epoxy resin such as phenol novolac type epoxy resin and cresol novolac type epoxy resin, monoglycidyl isocyanurate, di Nitrogen-containing ring epoxy resins such as glycidyl isocyanurate, triglycidyl isocyanurate, hydantoin epoxy resin, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin, aliphatic epoxy resin, silicone modified epoxy resin, glycidyl ether type Polyamines and epichlorohydres such as epoxy resins, diglycidyl ethers such as alkyl-substituted bisphenols, diaminodiphenylmethane and isocyanuric acid Glycidylamine type epoxy resin obtained by reaction with ethylene, linear aliphatic and alicyclic epoxy resins obtained by oxidizing olefinic bonds with peracids such as peracetic acid, biphenyl which is the mainstream of low water absorption cured type Type epoxy resin, dicyclo ring type epoxy resin, naphthalene type epoxy resin and the like. These may be used alone or in combination of two or more. Among these epoxy resins, it is preferable to use an alicyclic epoxy resin or an isocyanuric ring structure such as triglycidyl isocyanurate alone or in combination from the viewpoint of excellent transparency and discoloration resistance. For the same reason, diglycidyl esters of dicarboxylic acids such as phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, methyltetrahydrophthalic acid, nadic acid and methylnadic acid are also suitable. Also included are glycidyl esters such as nuclear hydrogenated trimellitic acid and nuclear hydrogenated pyromellitic acid having an alicyclic structure in which an aromatic ring is hydrogenated.
上記エポキシ樹脂としては、常温で固形であっても液状であってもよいが、一般に、使用するエポキシ樹脂の平均エポキシ当量が90~1000のものが好ましく、また、固形の場合には、取り扱い性の利便性の観点から、軟化点が50~160℃のものが好ましい。すなわち、エポキシ当量が小さすぎると、熱硬化性樹脂組成物硬化物が脆くなる場合がある。また、エポキシ当量が大きすぎると、熱硬化性樹脂組成物硬化物のガラス転移温度(Tg)が低くなる傾向がみられるからである。
The epoxy resin may be solid or liquid at normal temperature, but in general, the epoxy resin used preferably has an average epoxy equivalent of 90 to 1,000. From the viewpoint of convenience, a softening point of 50 to 160 ° C. is preferable. That is, if the epoxy equivalent is too small, the cured product of the thermosetting resin composition may become brittle. Moreover, it is because the glass transition temperature (Tg) of a thermosetting resin composition hardened | cured material tends to become low when an epoxy equivalent is too large.
熱硬化性樹脂(A成分)として上記エポキシ樹脂を用いる際には、通常、硬化剤が用いられる。上記硬化剤としては、例えば、酸無水物系硬化剤、イソシアヌル酸誘導体系硬化剤等があげられる。これらは単独でもしくは2種以上併せて用いることができる。これらのなかでも、耐熱性および耐光性の観点から、酸無水物系硬化剤を用いることが好ましい。
When using the epoxy resin as the thermosetting resin (component A), a curing agent is usually used. Examples of the curing agent include an acid anhydride curing agent and an isocyanuric acid derivative curing agent. These may be used alone or in combination of two or more. Among these, it is preferable to use an acid anhydride curing agent from the viewpoint of heat resistance and light resistance.
上記酸無水物系硬化剤としては、例えば、無水フタル酸、無水マレイン酸、無水コハク酸、無水トリメリット酸、無水ピロメリット酸、ナフタレン-1,4,5,8-テトラカルボン酸二無水物、およびその核水素化物、ヘキサヒドロ無水フタル酸、3-メチルヘキサヒドロ無水フタル酸、4-メチルヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、3-メチルテトラヒドロ無水フタル酸、4-メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、シクロヘキサン-1,2,3-トリカルボン酸-2,3-無水物、およびその位置異性体、シクロヘキサン-1,2,3,4-テトラカルボン酸-3,4-無水物、およびその位置異性体、無水ナジック酸、無水グルタル酸、無水ジメチルグルタル酸、無水ジエチルグルタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸等があげられる。これらは単独でもしくは2種以上併せて用いることができる。また、飽和脂肪鎖骨格、不飽和脂肪鎖骨格、またはシリコーン骨格の末端基、ないし、側鎖としてこれら酸無水物を有するオリゴマーも単独で、もしくは2種以上併せて、および、上記酸無水物と併せて用いることができる。これら酸無水物系硬化剤の中でも、無水フタル酸、ヘキサヒドロ無水フタル酸、3-メチルヘキサヒドロ無水フタル酸、4-メチルヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、3-メチルテトラヒドロ無水フタル酸、4-メチルテトラヒドロ無水フタル酸を用いることが好ましい。さらに、酸無水物系硬化剤としては、無色ないし淡黄色の酸無水物系硬化剤が好ましい。また、上記酸無水物の加水分解物であるカルボン酸を併用してもよい。
Examples of the acid anhydride curing agent include phthalic anhydride, maleic anhydride, succinic anhydride, trimellitic anhydride, pyromellitic anhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride. And its nuclear hydride, hexahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, tetrahydrophthalic anhydride, 3-methyltetrahydrophthalic anhydride, 4-methyltetrahydrophthalic anhydride Methyl nadic acid anhydride, cyclohexane-1,2,3-tricarboxylic acid-2,3-anhydride, and its positional isomer, cyclohexane-1,2,3,4-tetracarboxylic acid-3,4-anhydride , And its positional isomers, nadic anhydride, glutaric anhydride, dimethyl glutaric anhydride, diethyl glutaric anhydride Methylhexahydrophthalic anhydride, and methyl tetrahydrophthalic anhydride and the like. These may be used alone or in combination of two or more. In addition, an oligomer having an acid anhydride as a terminal group of a saturated fatty chain skeleton, an unsaturated fatty chain skeleton, or a silicone skeleton or a side chain thereof alone or in combination of two or more thereof, and the above acid anhydride They can be used together. Among these acid anhydride curing agents, phthalic anhydride, hexahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, tetrahydrophthalic anhydride, 3-methyltetrahydrophthalic anhydride, 4-Methyltetrahydrophthalic anhydride is preferably used. Further, the acid anhydride curing agent is preferably a colorless or light yellow acid anhydride curing agent. Moreover, you may use together the carboxylic acid which is a hydrolyzate of the said acid anhydride.
また、上記イソシアヌル酸誘導体系硬化剤としては、例えば、1,3,5-トリス(1-カルボキシメチル)イソシアヌレート、1,3,5-トリス(2-カルボキシエチル)イソシアヌレート、1,3,5-トリス(3-カルボキシプロピル)イソシアヌレート、1,3-ビス(2-カルボキシエチル)イソシアヌレート等があげられる。これらは単独でもしくは2種以上併せて用いることができる。さらに、イソシアヌル酸誘導体系硬化剤としては、無色ないし淡黄色の硬化剤が好ましい。
Examples of the isocyanuric acid derivative-based curing agent include 1,3,5-tris (1-carboxymethyl) isocyanurate, 1,3,5-tris (2-carboxyethyl) isocyanurate, 1,3,5, Examples thereof include 5-tris (3-carboxypropyl) isocyanurate and 1,3-bis (2-carboxyethyl) isocyanurate. These may be used alone or in combination of two or more. Furthermore, as the isocyanuric acid derivative-based curing agent, a colorless or light yellow curing agent is preferable.
ここで、上記エポキシ系樹脂と上記硬化剤との配合割合は、エポキシ系樹脂中のエポキシ基1当量に対して、硬化剤中におけるエポキシ基と反応可能な活性基(酸無水基あるいはカルボキシ基)が0.3~1.3当量となるよう設定することが好ましく、より好ましくは0.5~1.1当量である。すなわち、活性基が少なすぎると、熱硬化性樹脂組成物の硬化速度が遅くなるとともに、その硬化物のガラス転移温度(Tg)が低くなる傾向がみられ、活性基が多すぎると耐湿性が低下する傾向がみられるからである。
Here, the blending ratio of the epoxy resin and the curing agent is an active group (an acid anhydride group or a carboxy group) that can react with the epoxy group in the curing agent with respect to 1 equivalent of the epoxy group in the epoxy resin. Is preferably set to 0.3 to 1.3 equivalents, more preferably 0.5 to 1.1 equivalents. That is, if there are too few active groups, the curing rate of the thermosetting resin composition will be slow and the glass transition temperature (Tg) of the cured product will tend to be low. If there are too many active groups, the moisture resistance will be low. This is because there is a tendency to decrease.
また、その目的および用途に応じて、上述の上記酸無水物系硬化剤およびイソシアヌル酸誘導体系硬化剤以外の他のエポキシ樹脂系硬化剤、例えば、フェノール系硬化剤、アミン系硬化剤、上記酸無水物系硬化剤をアルコールで部分エステル化したもの等の硬化剤を、単独でもしくは2種以上併せて用いることができる。なお、これら硬化剤を用いる場合においても、その配合割合は、上述のエポキシ樹脂と硬化剤との配合割合(当量比)に準じればよい。
Depending on the purpose and application, other epoxy resin-based curing agents other than the above-mentioned acid anhydride-based curing agents and isocyanuric acid derivative-based curing agents, such as phenol-based curing agents, amine-based curing agents, and acid Curing agents such as those obtained by partially esterifying an anhydride-based curing agent with alcohol can be used alone or in combination of two or more. In addition, also when using these hardening | curing agents, the mixing | blending ratio should just follow the mixing | blending ratio (equivalent ratio) of the above-mentioned epoxy resin and hardening | curing agent.
つぎに、上記熱硬化性樹脂(A成分)として上記シリコーン樹脂を用いる場合について述べる。上記シリコーン樹脂としては、少なくとも触媒を含有し、具体的には、触媒およびシリコーン樹脂を含有する。上記触媒は、例えば、シリコーン樹脂の反応を促進させてシリコーン樹脂を硬化させる硬化触媒であって、好ましくは、後述するシリコーン樹脂のヒドロシリル化反応を促進させてシリコーン樹脂をヒドロシリル付加により硬化させるヒドロシリル化触媒である。そして、上記触媒は、遷移金属を含有し、上記遷移金属としては、例えば、白金、パラジウム、ロジウム等の白金属元素、好ましくは、白金があげられる。具体的には、触媒としては、触媒が白金を含有する場合には、例えば、白金黒、塩化白金、塩化白金酸等の無機白金、例えば、白金-オレフィン錯体、白金-カルボニル錯体、白金-アセチルアセテート等の白金錯体等があげられ、好ましくは、白金錯体があげられる。より具体的には、白金錯体としては、例えば、白金-ビニルシロキサン錯体、白金-テトラメチルジビニルジシロキサン錯体、白金-カルボニルシクロビニルメチルシロキサン錯体、白金-ジビニルテトラメチルジシロキサン錯体、白金-シクロビニルメチルシロキサン錯体、白金-オクタナル/オクタノール錯体等があげられる。なお、上記触媒は、後述のシリコーン樹脂と区別して配合される態様や、シリコーン樹脂を構成する成分としてシリコーン樹脂に含有される態様がある。
Next, the case where the silicone resin is used as the thermosetting resin (component A) will be described. The silicone resin contains at least a catalyst, and specifically contains a catalyst and a silicone resin. The catalyst is, for example, a curing catalyst that accelerates the reaction of the silicone resin to cure the silicone resin, and preferably hydrosilylation that accelerates the hydrosilylation reaction of the silicone resin to be described later and cures the silicone resin by hydrosilylation. It is a catalyst. The catalyst contains a transition metal, and examples of the transition metal include white metal elements such as platinum, palladium and rhodium, preferably platinum. Specifically, as the catalyst, when the catalyst contains platinum, for example, platinum black, platinum chloride, inorganic platinum such as chloroplatinic acid, for example, platinum-olefin complex, platinum-carbonyl complex, platinum-acetyl Examples include platinum complexes such as acetate, and preferably platinum complexes. More specifically, examples of the platinum complex include a platinum-vinylsiloxane complex, a platinum-tetramethyldivinyldisiloxane complex, a platinum-carbonylcyclovinylmethylsiloxane complex, a platinum-divinyltetramethyldisiloxane complex, and a platinum-cyclovinyl. Examples thereof include a methylsiloxane complex and a platinum-octal / octanol complex. In addition, the said catalyst has the aspect mixed with the silicone resin mentioned later, and the aspect contained in a silicone resin as a component which comprises a silicone resin.
上記触媒中の遷移金属の含有割合(濃度)は、シリコーン樹脂全体に対して、質量基準で、好ましくは0.1~500ppm、より好ましくは0.15~100ppm、さらに好ましくは0.2~50ppm、特に好ましくは0.3~10ppmである。
The content (concentration) of the transition metal in the catalyst is preferably 0.1 to 500 ppm, more preferably 0.15 to 100 ppm, and still more preferably 0.2 to 50 ppm, based on the weight of the whole silicone resin. Particularly preferred is 0.3 to 10 ppm.
上記シリコーン樹脂は、触媒によって反応が促進されて硬化する硬化性シリコーン樹脂であって、例えば、1段階硬化型シリコーン樹脂、2段階硬化型シリコーン樹脂等の熱硬化性シリコーン樹脂等があげられる。
The above-mentioned silicone resin is a curable silicone resin that is cured by a reaction accelerated by a catalyst, and examples thereof include a thermosetting silicone resin such as a one-step curable silicone resin and a two-step curable silicone resin.
上記2段階硬化型シリコーン樹脂は、2段階の反応機構を有しており、1段階目の反応でBステージ化(半硬化)し、2段階目の反応でCステージ化(完全硬化)する熱硬化性シリコーン樹脂である。なお、上記Bステージとは、熱硬化性シリコーン樹脂が、溶剤に可溶なAステージと、完全硬化したCステージとの間の状態であって、硬化およびゲル化がわずかに進行し、溶剤に膨潤するが完全に溶解せず、加熱によって軟化するが溶融しない状態である。
The above-mentioned two-stage curable silicone resin has a two-stage reaction mechanism, and heats B-staged (semi-cured) by the first-stage reaction and C-stage (completely cured) by the second-stage reaction. It is a curable silicone resin. The B stage is a state between the A stage in which the thermosetting silicone resin is soluble in the solvent and the fully cured C stage, and the curing and gelation progresses slightly, Although it swells but does not completely dissolve, it softens by heating but does not melt.
上記1段階硬化型シリコーン樹脂は、1段階の反応機構を有しており、1段階目の反応で完全硬化する熱硬化性シリコーン樹脂である。上記1段階硬化型シリコーン樹脂としては、例えば、特開2012-124428号公報に開示された付加反応硬化型ポリオルガノポリシロキサンがあげられる。具体的には、付加反応硬化型ポリオルガノポリシロキサンは、例えば、エチレン系不飽和炭化水素基含有ケイ素化合物およびヒドロシリル基含有ケイ素化合物を含有する。
The one-step curable silicone resin has a one-step reaction mechanism and is a thermosetting silicone resin that is completely cured by the first-step reaction. Examples of the one-step curable silicone resin include addition reaction curable polyorganopolysiloxane disclosed in JP2012-124428A. Specifically, the addition reaction curable polyorganopolysiloxane contains, for example, an ethylenically unsaturated hydrocarbon group-containing silicon compound and a hydrosilyl group-containing silicon compound.
上記エチレン系不飽和炭化水素基含有ケイ素化合物として、例えば、分子内に2個以上のビニル基を有するビニル基含有ポリオルガノシロキサン、好ましくは、両末端ビニルポリジメチルシロキサンがあげられる。
Examples of the ethylenically unsaturated hydrocarbon group-containing silicon compound include vinyl group-containing polyorganosiloxane having two or more vinyl groups in the molecule, preferably vinyl polydimethylsiloxane at both ends.
上記ヒドロシリル基含有ケイ素化合物として、例えば、分子内に2個以上のヒドロシリル基を有するヒドロシリル基含有ポリオルガノシロキサン、好ましくは、両末端ヒドロシリルポリジメチルシロキサン、両末端トリメチルシリル封鎖メチルヒドロシロキサン-ジメチルシロキサンコポリマー等があげられる。
Examples of the hydrosilyl group-containing silicon compound include, for example, a hydrosilyl group-containing polyorganosiloxane having two or more hydrosilyl groups in the molecule, preferably both-end hydrosilyl polydimethylsiloxane, both-end trimethylsilyl-blocked methylhydrosiloxane-dimethylsiloxane copolymer, etc. Is given.
上記2段階硬化型シリコーン樹脂としては、例えば、縮合反応と付加反応との2つの反応系を有する縮合反応・付加反応硬化型シリコーン樹脂等があげられる。このような縮合反応・付加反応硬化型シリコーン樹脂は、触媒を含有しており、例えば、シラノール両末端ポリシロキサン、アルケニル基含有トリアルコキシシラン、オルガノハイドロジェンポリシロキサン、縮合触媒およびヒドロシリル化触媒を含有する第1の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、シラノール基両末端ポリシロキサン、エチレン系不飽和炭化水素基含有ケイ素化合物、エチレン系不飽和炭化水素基含有ケイ素化合物、オルガノハイドロジェンポリシロキサン、縮合触媒およびヒドロシリル化触媒を含有する第2の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、両末端シラノール型シリコーンオイル、アルケニル基含有ジアルコキシアルキルシラン、オルガノハイドロジェンポリシロキサン、縮合触媒およびヒドロシリル化触媒を含有する第3の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、1分子中に少なくとも2個のアルケニルシリル基を有するオルガノポリシロキサン、1分子中に少なくとも2個のヒドロシリル基を有するオルガノポリシロキサン、ヒドロシリル化触媒および硬化遅延剤を含有する第4の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、少なくとも2つのエチレン系不飽和炭化水素基と少なくとも2つのヒドロシリル基とを1分子中に併有する第1オルガノポリシロキサン、エチレン系不飽和炭化水素基を含まず、少なくとも2つのヒドロシリル基を1分子中に有する第2オルガノポリシロキサン、ヒドロシリル化触媒およびヒドロシリル化抑制剤を含有する第5の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、少なくとも2つのエチレン系不飽和炭化水素基と少なくとも2つのシラノール基とを1分子中に併有する第1オルガノポリシロキサン、エチレン系不飽和炭化水素基を含まず、少なくとも2つのヒドロシリル基を1分子中に有する第2オルガノポリシロキサン、ヒドロシリル化抑制剤、および、ヒドロシリル化触媒を含有する第6の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、ケイ素化合物、および、ホウ素化合物またはアルミニウム化合物を含有する第7の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、ポリアルミノシロキサンおよびシランカップリング剤を含有する第8の縮合反応・付加反応硬化型シリコーン樹脂等があげられる。
これら縮合反応・付加反応硬化型シリコーン樹脂は、単独でもしくは2種以上併せて用いられる。 Examples of the two-stage curable silicone resin include a condensation reaction / addition reaction curable silicone resin having two reaction systems of a condensation reaction and an addition reaction. Such condensation reaction / addition reaction curable silicone resin contains a catalyst, for example, silanol-terminated polysiloxane, alkenyl group-containing trialkoxysilane, organohydrogenpolysiloxane, condensation catalyst and hydrosilylation catalyst. A first condensation reaction / addition reaction curable silicone resin,
For example, a second condensation containing a silanol group-terminated polysiloxane, an ethylenically unsaturated hydrocarbon group-containing silicon compound, an ethylenically unsaturated hydrocarbon group-containing silicon compound, an organohydrogenpolysiloxane, a condensation catalyst, and a hydrosilylation catalyst Reaction / addition reaction curable silicone resin,
For example, a third condensation reaction / addition reaction curable silicone resin containing a silanol type silicone oil at both ends, an alkenyl group-containing dialkoxyalkylsilane, an organohydrogenpolysiloxane, a condensation catalyst and a hydrosilylation catalyst,
For example, a fourth condensation reaction containing an organopolysiloxane having at least two alkenylsilyl groups in one molecule, an organopolysiloxane having at least two hydrosilyl groups in one molecule, a hydrosilylation catalyst and a cure retarder・ Addition reaction curable silicone resin,
For example, a first organopolysiloxane having at least two ethylenically unsaturated hydrocarbon groups and at least two hydrosilyl groups in one molecule, no ethylenically unsaturated hydrocarbon groups, and at least two hydrosilyl groups A fifth condensation reaction / addition reaction curable silicone resin containing a second organopolysiloxane in the molecule, a hydrosilylation catalyst and a hydrosilylation inhibitor;
For example, a first organopolysiloxane having at least two ethylenically unsaturated hydrocarbon groups and at least two silanol groups in one molecule, no ethylenically unsaturated hydrocarbon group, and at least two hydrosilyl groups A sixth condensation reaction / addition reaction curable silicone resin containing a second organopolysiloxane in the molecule, a hydrosilylation inhibitor, and a hydrosilylation catalyst;
For example, a seventh condensation reaction / addition reaction curable silicone resin containing a silicon compound and a boron compound or an aluminum compound,
For example, an eighth condensation reaction / addition reaction curable silicone resin containing polyaluminosiloxane and a silane coupling agent can be used.
These condensation reaction / addition reaction curable silicone resins may be used alone or in combination of two or more.
例えば、シラノール基両末端ポリシロキサン、エチレン系不飽和炭化水素基含有ケイ素化合物、エチレン系不飽和炭化水素基含有ケイ素化合物、オルガノハイドロジェンポリシロキサン、縮合触媒およびヒドロシリル化触媒を含有する第2の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、両末端シラノール型シリコーンオイル、アルケニル基含有ジアルコキシアルキルシラン、オルガノハイドロジェンポリシロキサン、縮合触媒およびヒドロシリル化触媒を含有する第3の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、1分子中に少なくとも2個のアルケニルシリル基を有するオルガノポリシロキサン、1分子中に少なくとも2個のヒドロシリル基を有するオルガノポリシロキサン、ヒドロシリル化触媒および硬化遅延剤を含有する第4の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、少なくとも2つのエチレン系不飽和炭化水素基と少なくとも2つのヒドロシリル基とを1分子中に併有する第1オルガノポリシロキサン、エチレン系不飽和炭化水素基を含まず、少なくとも2つのヒドロシリル基を1分子中に有する第2オルガノポリシロキサン、ヒドロシリル化触媒およびヒドロシリル化抑制剤を含有する第5の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、少なくとも2つのエチレン系不飽和炭化水素基と少なくとも2つのシラノール基とを1分子中に併有する第1オルガノポリシロキサン、エチレン系不飽和炭化水素基を含まず、少なくとも2つのヒドロシリル基を1分子中に有する第2オルガノポリシロキサン、ヒドロシリル化抑制剤、および、ヒドロシリル化触媒を含有する第6の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、ケイ素化合物、および、ホウ素化合物またはアルミニウム化合物を含有する第7の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、ポリアルミノシロキサンおよびシランカップリング剤を含有する第8の縮合反応・付加反応硬化型シリコーン樹脂等があげられる。
これら縮合反応・付加反応硬化型シリコーン樹脂は、単独でもしくは2種以上併せて用いられる。 Examples of the two-stage curable silicone resin include a condensation reaction / addition reaction curable silicone resin having two reaction systems of a condensation reaction and an addition reaction. Such condensation reaction / addition reaction curable silicone resin contains a catalyst, for example, silanol-terminated polysiloxane, alkenyl group-containing trialkoxysilane, organohydrogenpolysiloxane, condensation catalyst and hydrosilylation catalyst. A first condensation reaction / addition reaction curable silicone resin,
For example, a second condensation containing a silanol group-terminated polysiloxane, an ethylenically unsaturated hydrocarbon group-containing silicon compound, an ethylenically unsaturated hydrocarbon group-containing silicon compound, an organohydrogenpolysiloxane, a condensation catalyst, and a hydrosilylation catalyst Reaction / addition reaction curable silicone resin,
For example, a third condensation reaction / addition reaction curable silicone resin containing a silanol type silicone oil at both ends, an alkenyl group-containing dialkoxyalkylsilane, an organohydrogenpolysiloxane, a condensation catalyst and a hydrosilylation catalyst,
For example, a fourth condensation reaction containing an organopolysiloxane having at least two alkenylsilyl groups in one molecule, an organopolysiloxane having at least two hydrosilyl groups in one molecule, a hydrosilylation catalyst and a cure retarder・ Addition reaction curable silicone resin,
For example, a first organopolysiloxane having at least two ethylenically unsaturated hydrocarbon groups and at least two hydrosilyl groups in one molecule, no ethylenically unsaturated hydrocarbon groups, and at least two hydrosilyl groups A fifth condensation reaction / addition reaction curable silicone resin containing a second organopolysiloxane in the molecule, a hydrosilylation catalyst and a hydrosilylation inhibitor;
For example, a first organopolysiloxane having at least two ethylenically unsaturated hydrocarbon groups and at least two silanol groups in one molecule, no ethylenically unsaturated hydrocarbon group, and at least two hydrosilyl groups A sixth condensation reaction / addition reaction curable silicone resin containing a second organopolysiloxane in the molecule, a hydrosilylation inhibitor, and a hydrosilylation catalyst;
For example, a seventh condensation reaction / addition reaction curable silicone resin containing a silicon compound and a boron compound or an aluminum compound,
For example, an eighth condensation reaction / addition reaction curable silicone resin containing polyaluminosiloxane and a silane coupling agent can be used.
These condensation reaction / addition reaction curable silicone resins may be used alone or in combination of two or more.
上記縮合反応・付加反応硬化型シリコーン樹脂としては、好ましくは、上記第2の縮合反応・付加反応硬化型シリコーン樹脂があげられ、具体的には、特開2010-265436号公報等に詳細に記載されており、例えば、シラノール基両末端ポリジメチルシロキサン、ビニルトリメトキシシラン、(3-グリシドキシプロピル)トリメトキシシラン、ジメチルポリシロキサン-co-メチルハイドロジェンポリシロキサン、水酸化テトラメチルアンモニウムおよび白金-カルボニル錯体を含有する。具体的には、上記第2の縮合反応・付加反応硬化型シリコーン樹脂を調製するには、例えば、まず、縮合原料であるエチレン系不飽和炭化水素基含有ケイ素化合物およびエチレン系不飽和炭化水素基含有ケイ素化合物と、縮合触媒とを一度に加え、ついで、付加原料であるオルガノハイドロジェンポリシロキサンを加え、その後、ヒドロシリル化触媒(付加触媒)を加えることにより調製することができる。
The condensation reaction / addition reaction curable silicone resin is preferably the second condensation reaction / addition reaction curable silicone resin, and specifically described in, for example, JP-A-2010-265436. For example, silanol-terminated polydimethylsiloxane, vinyltrimethoxysilane, (3-glycidoxypropyl) trimethoxysilane, dimethylpolysiloxane-co-methylhydrogenpolysiloxane, tetramethylammonium hydroxide and platinum -Contains a carbonyl complex. Specifically, in order to prepare the second condensation reaction / addition reaction curable silicone resin, for example, first, an ethylenically unsaturated hydrocarbon group-containing silicon compound and an ethylenically unsaturated hydrocarbon group which are condensation raw materials are used. It can be prepared by adding the silicon compound and the condensation catalyst all at once, then adding the organohydrogenpolysiloxane as an addition raw material, and then adding a hydrosilylation catalyst (addition catalyst).
〈B:特定の白色顔料〉
本発明においては、白色顔料が、酸化ジルコニウム(ZrO2)のみからなることを特徴とする。すなわち、本発明では、白色顔料としては、実質的に酸化ジルコニウムのみから構成されるものであり、従来のように、有機系リフレクタ材料に使用される酸化チタンや酸化亜鉛等の他の白色顔料を使用しないことを特徴とする。上記酸化ジルコニウムとしては、流動性等の観点から、平均粒径が0.01~50μmのものを用いることが好ましく、特に好ましくは0.1~20μmである。なお、上記平均粒径は、例えば、レーザー回折散乱式粒度分布計を用いて測定することができる。 <B: Specific white pigment>
In the present invention, the white pigment is characterized by comprising only zirconium oxide (ZrO 2 ). That is, in the present invention, the white pigment is substantially composed only of zirconium oxide, and other white pigments such as titanium oxide and zinc oxide used for organic reflector materials as in the past are used. It is not used. As the zirconium oxide, one having an average particle diameter of 0.01 to 50 μm is preferably used from the viewpoint of fluidity and the like, and particularly preferably 0.1 to 20 μm. In addition, the said average particle diameter can be measured using a laser diffraction scattering type particle size distribution analyzer, for example.
本発明においては、白色顔料が、酸化ジルコニウム(ZrO2)のみからなることを特徴とする。すなわち、本発明では、白色顔料としては、実質的に酸化ジルコニウムのみから構成されるものであり、従来のように、有機系リフレクタ材料に使用される酸化チタンや酸化亜鉛等の他の白色顔料を使用しないことを特徴とする。上記酸化ジルコニウムとしては、流動性等の観点から、平均粒径が0.01~50μmのものを用いることが好ましく、特に好ましくは0.1~20μmである。なお、上記平均粒径は、例えば、レーザー回折散乱式粒度分布計を用いて測定することができる。 <B: Specific white pigment>
In the present invention, the white pigment is characterized by comprising only zirconium oxide (ZrO 2 ). That is, in the present invention, the white pigment is substantially composed only of zirconium oxide, and other white pigments such as titanium oxide and zinc oxide used for organic reflector materials as in the past are used. It is not used. As the zirconium oxide, one having an average particle diameter of 0.01 to 50 μm is preferably used from the viewpoint of fluidity and the like, and particularly preferably 0.1 to 20 μm. In addition, the said average particle diameter can be measured using a laser diffraction scattering type particle size distribution analyzer, for example.
上記酸化ジルコニウム(B成分)の含有割合は、熱硬化性樹脂組成物全体に対して、好ましくは2~30体積%であり、より好ましくは5~30体積%である。すなわち、B成分の含有割合が少なすぎると、充分な光反射性が得られ難くなる傾向がみられる。B成分の含有割合が多すぎると、著しい増粘により混練等での熱硬化性樹脂組成物の作製に関して困難が生じる可能性がみられるからである。
The content ratio of the zirconium oxide (component B) is preferably 2 to 30% by volume, more preferably 5 to 30% by volume, based on the entire thermosetting resin composition. That is, when the content ratio of the component B is too small, there is a tendency that sufficient light reflectivity is hardly obtained. This is because when the content ratio of the component B is too large, there may be a difficulty in producing a thermosetting resin composition by kneading or the like due to remarkable thickening.
〈C:無機質充填剤〉
さらに、本発明においては、上記AおよびB成分とともに無機質充填剤(C成分)を用いることができる。上記無機質充填剤(C成分)としては、例えば、石英ガラス粉末、タルク、溶融シリカ粉末や結晶性シリカ粉末等のシリカ粉末、アルミナ粉末、窒化アルミニウム粉末、窒化ケイ素粉末等があげられる。中でも、線膨張係数の低減等の観点から、溶融シリカ粉末を用いることが好ましく、特に高充填性および高流動性という観点から、溶融球状シリカ粉末を用いることが好ましい。なお、無機質充填剤(C成分)は、上記特定の白色顔料(B成分)を除く。上記無機質充填剤(C成分)の粒径およびその分布に関しては、上記特定の白色顔料(B成分)の粒径およびその分布との組み合わせを、熱硬化性樹脂組成物をトランスファー成形等により成形する際のバリ等が最も低減するように配慮することが好ましい。具体的には、無機質充填剤(C成分)の平均粒径は、5~100μmであることが好ましく、特に好ましくは10~80μmである。なお、上記平均粒径は、前述と同様、例えば、レーザー回折散乱式粒度分布計を用いて測定することができる。 <C: Inorganic filler>
Furthermore, in this invention, an inorganic filler (C component) can be used with the said A and B components. Examples of the inorganic filler (C component) include silica glass powder, talc, silica powder such as fused silica powder and crystalline silica powder, alumina powder, aluminum nitride powder, and silicon nitride powder. Among them, it is preferable to use a fused silica powder from the viewpoint of reducing the linear expansion coefficient, and it is particularly preferable to use a fused spherical silica powder from the viewpoints of high filling property and high fluidity. The inorganic filler (C component) excludes the specific white pigment (B component). Regarding the particle size of the inorganic filler (component C) and its distribution, a combination of the particle size of the specific white pigment (component B) and its distribution is formed by transfer molding or the like of the thermosetting resin composition. It is preferable to consider so that the burr at the time is reduced most. Specifically, the average particle size of the inorganic filler (component C) is preferably 5 to 100 μm, particularly preferably 10 to 80 μm. In addition, the said average particle diameter can be measured using a laser diffraction scattering type particle size distribution meter similarly to the above-mentioned.
さらに、本発明においては、上記AおよびB成分とともに無機質充填剤(C成分)を用いることができる。上記無機質充填剤(C成分)としては、例えば、石英ガラス粉末、タルク、溶融シリカ粉末や結晶性シリカ粉末等のシリカ粉末、アルミナ粉末、窒化アルミニウム粉末、窒化ケイ素粉末等があげられる。中でも、線膨張係数の低減等の観点から、溶融シリカ粉末を用いることが好ましく、特に高充填性および高流動性という観点から、溶融球状シリカ粉末を用いることが好ましい。なお、無機質充填剤(C成分)は、上記特定の白色顔料(B成分)を除く。上記無機質充填剤(C成分)の粒径およびその分布に関しては、上記特定の白色顔料(B成分)の粒径およびその分布との組み合わせを、熱硬化性樹脂組成物をトランスファー成形等により成形する際のバリ等が最も低減するように配慮することが好ましい。具体的には、無機質充填剤(C成分)の平均粒径は、5~100μmであることが好ましく、特に好ましくは10~80μmである。なお、上記平均粒径は、前述と同様、例えば、レーザー回折散乱式粒度分布計を用いて測定することができる。 <C: Inorganic filler>
Furthermore, in this invention, an inorganic filler (C component) can be used with the said A and B components. Examples of the inorganic filler (C component) include silica glass powder, talc, silica powder such as fused silica powder and crystalline silica powder, alumina powder, aluminum nitride powder, and silicon nitride powder. Among them, it is preferable to use a fused silica powder from the viewpoint of reducing the linear expansion coefficient, and it is particularly preferable to use a fused spherical silica powder from the viewpoints of high filling property and high fluidity. The inorganic filler (C component) excludes the specific white pigment (B component). Regarding the particle size of the inorganic filler (component C) and its distribution, a combination of the particle size of the specific white pigment (component B) and its distribution is formed by transfer molding or the like of the thermosetting resin composition. It is preferable to consider so that the burr at the time is reduced most. Specifically, the average particle size of the inorganic filler (component C) is preferably 5 to 100 μm, particularly preferably 10 to 80 μm. In addition, the said average particle diameter can be measured using a laser diffraction scattering type particle size distribution meter similarly to the above-mentioned.
そして、上記無機質充填剤(C成分)の含有割合においては、上記特定の白色顔料(B成分)と無機質充填剤(C成分)の合計の含有割合が、熱硬化性樹脂組成物全体の75~90体積%となるように設定することが好ましい。特に好ましくは75~85体積%である。すなわち、上記合計の含有割合が少なすぎると、成形時に反りが発生する等の問題が生じる傾向がみられる。また、合計の含有割合が多すぎると、配合成分を混練する際、混練機に多大な負荷がかかり、混練が不可能となる傾向がみられ、結果、成形材料である熱硬化性樹脂組成物を作製することが困難となる傾向がみられる。
In the content ratio of the inorganic filler (component C), the total content ratio of the specific white pigment (component B) and the inorganic filler (component C) is 75 to 75% of the entire thermosetting resin composition. It is preferable to set so that it may become 90 volume%. Particularly preferred is 75 to 85% by volume. That is, if the total content is too small, there is a tendency for problems such as warpage to occur during molding. In addition, if the total content is too large, when kneading the compounding components, a great load is applied to the kneader, and the kneading tends to be impossible. As a result, the thermosetting resin composition that is a molding material It tends to be difficult to fabricate.
さらに、上記特定の白色顔料(B成分)と無機質充填剤(C成分)を併用する場合の両者の混合割合は、初期光反射率の観点から、体積比で、(B成分)/(C成分)=0.028~1.0であることが好ましく、特に好ましくは0.033~0.50である。すなわち、B成分とC成分の混合割合が、上記範囲を外れ、体積比が小さすぎると、エポキシ樹脂組成物の初期光反射率が低下する傾向がみられ、体積比が大きすぎると、エポキシ樹脂組成物の溶融粘度が上昇して混練が困難になる傾向がみられる。
Furthermore, when the specific white pigment (B component) and the inorganic filler (C component) are used in combination, the mixing ratio of both is (B component) / (C component) from the viewpoint of initial light reflectance. ) = 0.028 to 1.0, particularly preferably 0.033 to 0.50. That is, when the mixing ratio of the B component and the C component is out of the above range and the volume ratio is too small, the initial light reflectance of the epoxy resin composition tends to decrease, and when the volume ratio is too large, the epoxy resin There is a tendency that the melt viscosity of the composition rises and kneading becomes difficult.
〈他の添加剤〉
そして、本発明の熱硬化性樹脂組成物には、上記AおよびB成分、およびC成分以外に、必要に応じて、硬化促進剤、離型剤、シラン化合物を配合することができる。さらには、変性剤(可塑剤)、酸化防止剤、難燃剤、消泡剤、レベリング剤、紫外線吸収剤等の各種添加剤を適宜配合することができる。 <Other additives>
And the thermosetting resin composition of this invention can mix | blend a hardening accelerator, a mold release agent, and a silane compound other than the said A and B component and C component as needed. Furthermore, various additives such as a modifier (plasticizer), an antioxidant, a flame retardant, an antifoaming agent, a leveling agent, and an ultraviolet absorber can be appropriately blended.
そして、本発明の熱硬化性樹脂組成物には、上記AおよびB成分、およびC成分以外に、必要に応じて、硬化促進剤、離型剤、シラン化合物を配合することができる。さらには、変性剤(可塑剤)、酸化防止剤、難燃剤、消泡剤、レベリング剤、紫外線吸収剤等の各種添加剤を適宜配合することができる。 <Other additives>
And the thermosetting resin composition of this invention can mix | blend a hardening accelerator, a mold release agent, and a silane compound other than the said A and B component and C component as needed. Furthermore, various additives such as a modifier (plasticizer), an antioxidant, a flame retardant, an antifoaming agent, a leveling agent, and an ultraviolet absorber can be appropriately blended.
上記硬化促進剤としては、例えば、1,8-ジアザ-ビシクロ[5.4.0]ウンデセン-7、トリエチレンジアミン、トリ-2,4,6-ジメチルアミノメチルフェノール、N,N-ジメチルベンジルアミン、N,N-ジメチルアミノベンゼン、N,N-ジメチルアミノシクロヘキサン等の3級アミン類、2-エチル-4-メチルイミダゾール、2-メチルイミダゾール等のイミダゾール類、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフルオロボレート、テトラフェニルホスホニウムテトラフェニルボレート、テトラ-n-ブチルホスホニウムブロマイド、テトラフェニルホスホニウムブロマイド、メチルトリブチルホスホニウムジメチルホスホエート、テトラフェニルホスホニウム-o,o-ジエチルホスホロジチオエート、テトラ-n-ブチルホスホニウム-o,o-ジエチルホスホロジチオエート等のリン化合物、1,8-ジアザ-ビシクロ[5.4.0]ウンデセン-7、トリエチレンジアンモニウム・オクチルカルボキシレート等の4級アンモニウム塩、有機金属塩類、およびこれらの誘導体等があげられる。これらは単独でもしくは2種以上併せて用いられる。これら硬化促進剤の中では、3級アミン類、イミダゾール類、リン化合物を用いることが好ましい。その中でも、着色度が少なく、透明で強靱な硬化物を得るためには、リン化合物を用いることが特に好ましい。
Examples of the curing accelerator include 1,8-diaza-bicyclo [5.4.0] undecene-7, triethylenediamine, tri-2,4,6-dimethylaminomethylphenol, N, N-dimethylbenzylamine. , Tertiary amines such as N, N-dimethylaminobenzene and N, N-dimethylaminocyclohexane, imidazoles such as 2-ethyl-4-methylimidazole and 2-methylimidazole, triphenylphosphine, tetraphenylphosphonium tetrafluoro Borate, tetraphenylphosphonium tetraphenylborate, tetra-n-butylphosphonium bromide, tetraphenylphosphonium bromide, methyltributylphosphonium dimethylphosphoate, tetraphenylphosphonium-o, o-diethylphosphorologici Phosphorus compounds such as tetra-n-butylphosphonium-o, o-diethyl phosphorodithioate, 1,8-diaza-bicyclo [5.4.0] undecene-7, triethylenediammonium octylcarboxylate, etc. And quaternary ammonium salts, organometallic salts, and derivatives thereof. These may be used alone or in combination of two or more. Among these curing accelerators, it is preferable to use tertiary amines, imidazoles, and phosphorus compounds. Among them, it is particularly preferable to use a phosphorus compound in order to obtain a transparent and tough cured product with a low degree of coloring.
上記硬化促進剤の含有量は、上記特定の熱硬化性樹脂(A成分)に対して0.001~8.0重量%に設定することが好ましく、より好ましくは0.01~5重量%である。すなわち、硬化促進剤の含有量が少なすぎると、充分な硬化促進効果を得られない場合があり、また硬化促進剤の含有量が多すぎると、得られる硬化物に変色が生じる傾向がみられるからである。
The content of the curing accelerator is preferably set to 0.001 to 8.0% by weight, more preferably 0.01 to 5% by weight with respect to the specific thermosetting resin (component A). is there. That is, if the content of the curing accelerator is too small, a sufficient curing acceleration effect may not be obtained, and if the content of the curing accelerator is too large, the resulting cured product tends to be discolored. Because.
上記離型剤としては、各種離型剤が用いられるが、中でもエーテル結合を有する離型剤を用いることが好ましく、例えば、下記の一般式(1)で表される構造式を備えた離型剤があげられる。
Various release agents are used as the release agent. Among them, it is preferable to use a release agent having an ether bond. For example, a release agent having a structural formula represented by the following general formula (1) Agent.
CH3・(CH3)k・CH2O(CHRm・CHRn・O)x・H ・・・(1)
[式(1)中、Rm,Rnは水素原子または一価のアルキル基であり、両者は互いに同じであっても異なっていてもよい。また、kは1~100の正数であり、xは1~100の正数である。] CH 3 · (CH 3 ) k · CH 2 O (CHRm · CHRn · O) x · H (1)
[In Formula (1), Rm and Rn are a hydrogen atom or a monovalent alkyl group, and both may be the same or different. Further, k is a positive number from 1 to 100, and x is a positive number from 1 to 100. ]
[式(1)中、Rm,Rnは水素原子または一価のアルキル基であり、両者は互いに同じであっても異なっていてもよい。また、kは1~100の正数であり、xは1~100の正数である。] CH 3 · (CH 3 ) k · CH 2 O (CHRm · CHRn · O) x · H (1)
[In Formula (1), Rm and Rn are a hydrogen atom or a monovalent alkyl group, and both may be the same or different. Further, k is a positive number from 1 to 100, and x is a positive number from 1 to 100. ]
上記式(1)において、Rm,Rnは水素原子または一価のアルキル基であり、好ましくはkは10~50の正数、xは3~30の正数である。より好ましくはRmおよびRnは水素原子であり、kは28~48の正数、xは5~20の正数である。すなわち、繰り返し数kの値が小さすぎると、離型性が低下し、また繰り返し数xの値が小さすぎると、分散性が低下するため、安定した強度と離型性が得られなくなる傾向がみられる。一方、繰り返し数kの値が大きすぎると、融点が高くなるため混練が困難となり、熱硬化性樹脂組成物の製造工程において困難を生じる傾向がみられ、繰り返し数xの値が大きすぎると、離型性が低下する傾向がみられるからである。
In the above formula (1), Rm and Rn are hydrogen atoms or monovalent alkyl groups, preferably k is a positive number from 10 to 50, and x is a positive number from 3 to 30. More preferably, Rm and Rn are hydrogen atoms, k is a positive number of 28 to 48, and x is a positive number of 5 to 20. That is, when the value of the number of repetitions k is too small, the releasability is lowered, and when the value of the number of repetitions x is too small, the dispersibility is lowered, so that stable strength and releasability tend not to be obtained. Be looked at. On the other hand, if the value of the number of repetitions k is too large, kneading becomes difficult because the melting point becomes high, and there is a tendency to cause difficulty in the production process of the thermosetting resin composition, and if the value of the number of repetitions x is too large, This is because the mold release property tends to be lowered.
上記離型剤の含有量は、熱硬化性樹脂組成物体全体の0.001~3重量%の範囲に設定することが好ましく、0.01~1重量%の範囲に設定することがより好ましい。すなわち、離型剤の含有量が少なすぎたり、多すぎたりすると、硬化体の強度不足を招いたり、離型性の低下を引き起こす傾向がみられるからである。
The content of the release agent is preferably set in the range of 0.001 to 3% by weight, more preferably in the range of 0.01 to 1% by weight of the entire thermosetting resin composition object. That is, if the content of the release agent is too little or too much, the strength of the cured product tends to be insufficient or the release property tends to be lowered.
上記シラン化合物としては、シランカップリング剤やシランがあげられる。上記シランカップリング剤としては、例えば、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン等があげられる。また、上記シランとしては、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエチルシラン、フェニルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デジルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、ヘキサメチルジシラザン、加水分解性基を含むシロキサン等があげられる。これらは単独でもしくは2種以上併せて用いられる。
Examples of the silane compound include a silane coupling agent and silane. Examples of the silane coupling agent include 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropylmethylethoxysilane. 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane and the like. Examples of the silane include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethylsilane, phenyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, and dezyltrimethoxy. Examples thereof include silane, trifluoropropyltrimethoxysilane, hexamethyldisilazane, and siloxane containing a hydrolyzable group. These may be used alone or in combination of two or more.
上記変性剤(可塑剤)としては、例えば、グリコール類、シリコーン類、アルコール類等があげられる。
Examples of the modifier (plasticizer) include glycols, silicones, alcohols and the like.
上記酸化防止剤としては、例えば、フェノール系化合物、アミン系化合物、有機硫黄系化合物、ホスフィン系化合物等があげられる。
Examples of the antioxidant include phenol compounds, amine compounds, organic sulfur compounds, phosphine compounds, and the like.
上記難燃剤としては、例えば、水酸化マグネシウム等の金属水酸化物、臭素系難燃剤、窒素系難燃剤、リン系難燃剤等があげられ、さらに三酸化アンチモン等の難燃助剤を用いることもできる。
Examples of the flame retardant include metal hydroxides such as magnesium hydroxide, bromine-based flame retardants, nitrogen-based flame retardants, phosphorus-based flame retardants and the like, and further use a flame retardant aid such as antimony trioxide. You can also.
上記消泡剤としては、例えば、シリコーン系等の従来公知の脱泡剤があげられる。
Examples of the antifoaming agent include conventionally known defoaming agents such as silicone.
〈熱硬化性樹脂組成物〉
本発明の熱硬化性樹脂組成物は、例えば、つぎのようにして製造することができる。すなわち、上記A~C成分、さらには硬化促進剤および離型剤、ならびに必要に応じて用いられる各種添加剤を適宜配合した後、混練機等を用いて混練して溶融混合し、ついで、これを冷却し固化して粉砕することにより粉末状の熱硬化性樹脂組成物を製造することができる。 <Thermosetting resin composition>
The thermosetting resin composition of the present invention can be produced, for example, as follows. That is, the above-mentioned components A to C, further a curing accelerator and a release agent, and various additives used as necessary are appropriately blended, then kneaded using a kneader or the like, melt-mixed, and then mixed. By cooling, solidifying and pulverizing, a powdery thermosetting resin composition can be produced.
本発明の熱硬化性樹脂組成物は、例えば、つぎのようにして製造することができる。すなわち、上記A~C成分、さらには硬化促進剤および離型剤、ならびに必要に応じて用いられる各種添加剤を適宜配合した後、混練機等を用いて混練して溶融混合し、ついで、これを冷却し固化して粉砕することにより粉末状の熱硬化性樹脂組成物を製造することができる。 <Thermosetting resin composition>
The thermosetting resin composition of the present invention can be produced, for example, as follows. That is, the above-mentioned components A to C, further a curing accelerator and a release agent, and various additives used as necessary are appropriately blended, then kneaded using a kneader or the like, melt-mixed, and then mixed. By cooling, solidifying and pulverizing, a powdery thermosetting resin composition can be produced.
そして、上記得られた熱硬化性樹脂組成物の硬化物としては、その光反射率が、波長350~410nmの光に対して80%以上であることが好ましく、より好ましくは83%以上である。なお、上限は、通常100%である。上記光反射率は、例えば、つぎのようにして測定される。すなわち、厚み1mmの熱硬化性樹脂組成物の硬化物を、所定の硬化条件、例えば、175℃×2分間の成形後、175℃×3時間の後硬化にて作製し、室温(25±10℃)にて上記範囲内の波長での上記硬化物の光反射率を分光光度計(例えば、日本分光社製の分光光度計V-670)を用いることにより測定することができる。
The cured product of the obtained thermosetting resin composition preferably has a light reflectance of 80% or more, more preferably 83% or more, with respect to light having a wavelength of 350 to 410 nm. . The upper limit is usually 100%. The light reflectance is measured as follows, for example. That is, a cured product of a thermosetting resin composition having a thickness of 1 mm is prepared by predetermined curing conditions, for example, by molding at 175 ° C. × 2 minutes, and post-curing at 175 ° C. × 3 hours, and at room temperature (25 ± 10 The light reflectance of the cured product at a wavelength within the above range can be measured by using a spectrophotometer (for example, a spectrophotometer V-670 manufactured by JASCO Corporation) at a wavelength within the above range.
本発明の熱硬化性樹脂組成物を用いてなる光半導体装置は、例えば、つぎのようにして製造される。すなわち、金属リードフレームをトランスファー成形機の金型内に設置して上記熱硬化性樹脂組成物を用いてトランスファー成形によりリフレクタを形成する。このようにして、光半導体素子搭載領域の周囲を囲うように環状のリフレクタが形成されてなる光半導体装置用の金属リードフレームを作製する。ついで、上記リフレクタの内部の、金属リードフレーム上の光半導体素子搭載領域に光半導体素子を搭載し、光半導体素子と金属リードフレームとをボンディングワイヤーを用いて電気的に接続する。そして、上記光半導体素子を含むリフレクタの内側領域を、シリコーン樹脂等を用いて樹脂封止することにより封止樹脂層が形成される。このようにして、例えば、図1に示す立体状(カップ型)の光半導体装置が作製される。この光半導体装置は、第1のプレート部1と第2のプレート部2とからなる金属リードフレームの第2のプレート部2上に光半導体素子3が搭載され、上記光半導体素子3の周囲を囲むように、本発明の熱硬化性樹脂組成物からなる光反射用のリフレクタ4が形成されているという構成をとる。そして、上記金属リードフレームとリフレクタ4の内周面とで形成される凹部5には、光半導体素子3を封止する透明性を有する封止樹脂層6が形成されている。この封止樹脂層6には必要に応じて蛍光体が含有されている。図1において、7,8は金属リードフレーム上に形成された電極回路(図示せず)と光半導体素子3とを電気的に接続するボンディングワイヤーである。
An optical semiconductor device using the thermosetting resin composition of the present invention is manufactured as follows, for example. That is, a metal lead frame is placed in a mold of a transfer molding machine, and a reflector is formed by transfer molding using the thermosetting resin composition. In this manner, a metal lead frame for an optical semiconductor device in which an annular reflector is formed so as to surround the periphery of the optical semiconductor element mounting region is manufactured. Next, an optical semiconductor element is mounted in the optical semiconductor element mounting region on the metal lead frame inside the reflector, and the optical semiconductor element and the metal lead frame are electrically connected using a bonding wire. And the sealing resin layer is formed by resin-sealing the inner area | region of the reflector containing the said optical semiconductor element using a silicone resin etc. FIG. In this way, for example, the three-dimensional (cup type) optical semiconductor device shown in FIG. 1 is manufactured. In this optical semiconductor device, an optical semiconductor element 3 is mounted on a second plate portion 2 of a metal lead frame composed of a first plate portion 1 and a second plate portion 2, and the periphery of the optical semiconductor element 3 is The light reflection reflector 4 made of the thermosetting resin composition of the present invention is formed so as to enclose it. In the recess 5 formed by the metal lead frame and the inner peripheral surface of the reflector 4, a transparent sealing resin layer 6 for sealing the optical semiconductor element 3 is formed. The sealing resin layer 6 contains a phosphor as necessary. In FIG. 1, 7 and 8 are bonding wires for electrically connecting an electrode circuit (not shown) formed on the metal lead frame and the optical semiconductor element 3.
なお、本発明において、上記図1の金属リードフレームに代えて各種基板を用いてもよい。上記各種基板としては、例えば、有機基板、無機基板、フレキシブルプリント基板等があげられる。また、上記トランスファー成形に変えて、射出成形によりリフレクタを形成してもよい。
In the present invention, various substrates may be used in place of the metal lead frame shown in FIG. Examples of the various substrates include organic substrates, inorganic substrates, and flexible printed substrates. Further, instead of the transfer molding, the reflector may be formed by injection molding.
また、上記構成と異なる光半導体装置として、板状の光半導体装置用リードフレームを用いた、例えば、図2および図3(図2のX-X′矢視断面図)に示す光半導体装置があげられる。すなわち、この光半導体装置は、互いに間隔を設けて配置された金属リードフレーム10の厚み方向の片面の所定位置に光半導体素子3がそれぞれ搭載され、上記金属リードフレーム10間の隙間に本発明の熱硬化性樹脂組成物からなる光反射用のリフレクタ11が形成されているという構成をとる。また、図3に示すように、金属リードフレーム10の光半導体素子3搭載面とは反対面に本発明の熱硬化性樹脂組成物を充填し硬化してなるリフレクタ11が複数箇所形成されている。なお、図2および図3において、12は、上記光半導体素子3と金属リードフレーム10とを電気的に接続するボンディングワイヤーである。このような光半導体装置は、上記金属リードフレーム10をトランスファー成形機の金型内に設置してトランスファー成形により、間隔を設けて配置された金属リードフレーム10の隙間および金属リードフレーム10の光半導体素子3搭載面とは反対面に形成された凹部に、熱硬化性樹脂組成物を充填し、硬化させることによりリフレクタ11をそれぞれ形成する。ついで、上記金属リードフレーム10の所定位置となる光半導体素子搭載領域に光半導体素子3を搭載した後、光半導体素子3と金属リードフレーム10とをボンディングワイヤー12を用いて電気的に接続する。このようにして、図2および図3に示す光半導体装置が作製される。
Further, as an optical semiconductor device different from the above configuration, for example, an optical semiconductor device shown in FIG. 2 and FIG. can give. That is, in this optical semiconductor device, the optical semiconductor elements 3 are respectively mounted at predetermined positions on one surface in the thickness direction of the metal lead frames 10 arranged at intervals, and the gap between the metal lead frames 10 is in accordance with the present invention. The light reflection reflector 11 made of a thermosetting resin composition is formed. Further, as shown in FIG. 3, a plurality of reflectors 11 are formed on the surface opposite to the surface of the metal lead frame 10 on which the optical semiconductor element 3 is mounted by filling and curing the thermosetting resin composition of the present invention. . 2 and 3, reference numeral 12 denotes a bonding wire for electrically connecting the optical semiconductor element 3 and the metal lead frame 10. In such an optical semiconductor device, the metal lead frame 10 is placed in a mold of a transfer molding machine, and the gap between the metal lead frames 10 arranged at intervals and the optical semiconductor of the metal lead frame 10 are formed by transfer molding. The reflectors 11 are respectively formed by filling the concave portions formed on the surface opposite to the element 3 mounting surface with a thermosetting resin composition and curing. Next, after the optical semiconductor element 3 is mounted in the optical semiconductor element mounting region at a predetermined position of the metal lead frame 10, the optical semiconductor element 3 and the metal lead frame 10 are electrically connected using the bonding wire 12. In this manner, the optical semiconductor device shown in FIGS. 2 and 3 is manufactured.
つぎに、実施例について比較例と併せて説明する。ただし、本発明は、これら実施例に限定されるものではない。
Next, examples will be described together with comparative examples. However, the present invention is not limited to these examples.
まず、熱硬化性樹脂組成物の作製に先立って下記に示す各成分を準備した。
First, each component shown below was prepared prior to preparation of the thermosetting resin composition.
[エポキシ樹脂]
トリグリシジルイソシアヌレート(エポキシ当量100) [Epoxy resin]
Triglycidyl isocyanurate (epoxy equivalent 100)
トリグリシジルイソシアヌレート(エポキシ当量100) [Epoxy resin]
Triglycidyl isocyanurate (epoxy equivalent 100)
[シリコーン樹脂a1]
信越化学工業社製、KER-2500(二液タイプ:A液,B液を混合して使用する)
[シリコーン樹脂a2]
信越化学工業社製、SCR-1012(二液タイプ:A液,B液を混合して使用する) [Silicone resin a1]
KE-2500 manufactured by Shin-Etsu Chemical Co., Ltd. (Two-component type: Mix A and B)
[Silicone resin a2]
SCR-1012 manufactured by Shin-Etsu Chemical Co., Ltd. (two-component type: A and B are mixed)
信越化学工業社製、KER-2500(二液タイプ:A液,B液を混合して使用する)
[シリコーン樹脂a2]
信越化学工業社製、SCR-1012(二液タイプ:A液,B液を混合して使用する) [Silicone resin a1]
KE-2500 manufactured by Shin-Etsu Chemical Co., Ltd. (Two-component type: Mix A and B)
[Silicone resin a2]
SCR-1012 manufactured by Shin-Etsu Chemical Co., Ltd. (two-component type: A and B are mixed)
[硬化剤]
4-メチルヘキサヒドロ無水フタル酸(x)とヘキサヒドロ無水フタル酸(y)の混合物(液体、混合重量比x/y=70/30)(新日本理化社製、リカシッドMH-700) [Curing agent]
Mixture of 4-methylhexahydrophthalic anhydride (x) and hexahydrophthalic anhydride (y) (liquid, mixing weight ratio x / y = 70/30) (manufactured by Shin Nippon Chemical Co., Ltd., Ricacid MH-700)
4-メチルヘキサヒドロ無水フタル酸(x)とヘキサヒドロ無水フタル酸(y)の混合物(液体、混合重量比x/y=70/30)(新日本理化社製、リカシッドMH-700) [Curing agent]
Mixture of 4-methylhexahydrophthalic anhydride (x) and hexahydrophthalic anhydride (y) (liquid, mixing weight ratio x / y = 70/30) (manufactured by Shin Nippon Chemical Co., Ltd., Ricacid MH-700)
[酸化ジルコニウムc1]
第一稀元素化学工業社製、SG酸化ジルコニウム、平均粒径4.3μm
[酸化ジルコニウムc2]
第一稀元素化学工業社製、UEP酸化ジルコニウム、平均粒径0.5μm [Zirconium oxide c1]
1st Rare Element Chemical Industry, SG zirconium oxide, average particle size 4.3 μm
[Zirconium oxide c2]
1st Rare Element Chemical Industries, UEP zirconium oxide, average particle size 0.5μm
第一稀元素化学工業社製、SG酸化ジルコニウム、平均粒径4.3μm
[酸化ジルコニウムc2]
第一稀元素化学工業社製、UEP酸化ジルコニウム、平均粒径0.5μm [Zirconium oxide c1]
1st Rare Element Chemical Industry, SG zirconium oxide, average particle size 4.3 μm
[Zirconium oxide c2]
1st Rare Element Chemical Industries, UEP zirconium oxide, average particle size 0.5μm
[硬化促進剤]
メチルトリブチルホスホニウムジメチルホスフェート(日本化学工業社製、ヒシコーリンPX-4MP) [Curing accelerator]
Methyltributylphosphonium dimethyl phosphate (manufactured by Nippon Chemical Industry Co., Ltd., Hishicolin PX-4MP)
メチルトリブチルホスホニウムジメチルホスフェート(日本化学工業社製、ヒシコーリンPX-4MP) [Curing accelerator]
Methyltributylphosphonium dimethyl phosphate (manufactured by Nippon Chemical Industry Co., Ltd., Hishicolin PX-4MP)
[酸化チタン]
デュポン社製、R706、単一粒子径0.31μm [Titanium oxide]
DuPont R706, single particle size 0.31 μm
デュポン社製、R706、単一粒子径0.31μm [Titanium oxide]
DuPont R706, single particle size 0.31 μm
[酸化亜鉛]
ハクスイテック社製、酸化亜鉛(I種) [Zinc oxide]
Zinc oxide (Type I), manufactured by Hakusui Tech Co., Ltd.
ハクスイテック社製、酸化亜鉛(I種) [Zinc oxide]
Zinc oxide (Type I), manufactured by Hakusui Tech Co., Ltd.
[無機質充填剤]
溶融球状シリカ粉末(平均粒径20μm) [Inorganic filler]
Fused spherical silica powder (average particle size 20μm)
溶融球状シリカ粉末(平均粒径20μm) [Inorganic filler]
Fused spherical silica powder (average particle size 20μm)
[実施例1~10、比較例1~16]
後記の表1~表3に示す各成分を同表に示す割合で配合し、混練機で溶融混練(温度100~130℃)を行ない、熟成した後、室温(25℃)まで冷却して粉砕することにより目的とする粉末状の熱硬化性樹脂組成物を作製した。 [Examples 1 to 10, Comparative Examples 1 to 16]
The components shown in Tables 1 to 3 below are blended in the proportions shown in the same table, melt kneaded (temperature 100 to 130 ° C.) with a kneader, aged, cooled to room temperature (25 ° C.) and pulverized Thus, a target powdery thermosetting resin composition was produced.
後記の表1~表3に示す各成分を同表に示す割合で配合し、混練機で溶融混練(温度100~130℃)を行ない、熟成した後、室温(25℃)まで冷却して粉砕することにより目的とする粉末状の熱硬化性樹脂組成物を作製した。 [Examples 1 to 10, Comparative Examples 1 to 16]
The components shown in Tables 1 to 3 below are blended in the proportions shown in the same table, melt kneaded (temperature 100 to 130 ° C.) with a kneader, aged, cooled to room temperature (25 ° C.) and pulverized Thus, a target powdery thermosetting resin composition was produced.
このようにして得られた実施例および比較例の熱硬化性樹脂組成物を用い、下記の方法に従って光反射率(波長:365nm,405nm,450nm)の測定を行なった。その結果を後記の表1~表3に示す。
Using the thermosetting resin compositions of Examples and Comparative Examples thus obtained, light reflectance (wavelength: 365 nm, 405 nm, 450 nm) was measured according to the following method. The results are shown in Tables 1 to 3 below.
[光反射率]
上記各熱硬化性樹脂組成物を用い、厚み1mmの試験片を所定の硬化条件(条件:175℃×2分間の成形+175℃×3時間キュア)にて作製し、この試験片(硬化物)を用いて、室温(25℃)での各光反射率(365nm,405nm,450nm)を測定した。なお、測定には、日本分光社製の分光光度計V-670を使用し、各波長(365nm,405nm,450nm)の光反射率を室温(25℃)にて測定した。 [Light reflectivity]
Using each of the thermosetting resin compositions described above, a test piece having a thickness of 1 mm was prepared under predetermined curing conditions (conditions: molding at 175 ° C. × 2 minutes + 175 ° C. × 3 hours curing), and this test piece (cured product) Was used to measure each light reflectivity (365 nm, 405 nm, 450 nm) at room temperature (25 ° C.). For measurement, a spectrophotometer V-670 manufactured by JASCO Corporation was used, and the light reflectance at each wavelength (365 nm, 405 nm, 450 nm) was measured at room temperature (25 ° C.).
上記各熱硬化性樹脂組成物を用い、厚み1mmの試験片を所定の硬化条件(条件:175℃×2分間の成形+175℃×3時間キュア)にて作製し、この試験片(硬化物)を用いて、室温(25℃)での各光反射率(365nm,405nm,450nm)を測定した。なお、測定には、日本分光社製の分光光度計V-670を使用し、各波長(365nm,405nm,450nm)の光反射率を室温(25℃)にて測定した。 [Light reflectivity]
Using each of the thermosetting resin compositions described above, a test piece having a thickness of 1 mm was prepared under predetermined curing conditions (conditions: molding at 175 ° C. × 2 minutes + 175 ° C. × 3 hours curing), and this test piece (cured product) Was used to measure each light reflectivity (365 nm, 405 nm, 450 nm) at room temperature (25 ° C.). For measurement, a spectrophotometer V-670 manufactured by JASCO Corporation was used, and the light reflectance at each wavelength (365 nm, 405 nm, 450 nm) was measured at room temperature (25 ° C.).
上記結果から、白色顔料として酸化ジルコニウムのみを用いてなる実施例品は、各波長(365nm,405nm,450nm)の光に対して高い光反射率を有するという優れた結果が得られた。
From the above results, excellent results were obtained that the example products using only zirconium oxide as the white pigment had high light reflectance with respect to light of each wavelength (365 nm, 405 nm, 450 nm).
これに対して、白色顔料として酸化ジルコニウムに加えて酸化チタンあるいは酸化亜鉛を少量でも配合してなる比較例品は、特に波長365nmの光に対する光反射率が著しく低下するという結果が得られた。
On the other hand, a comparative product obtained by adding a small amount of titanium oxide or zinc oxide in addition to zirconium oxide as a white pigment has a result that the light reflectance particularly with respect to light having a wavelength of 365 nm is remarkably lowered.
[光半導体(発光)装置の作製]
つぎに、上記実施例品である粉末状の熱硬化性樹脂組成物を用いて、図1に示す構成の光半導体(発光)装置を製造した。すなわち、銅(銀メッキ)製の複数の対となった第1のプレート部1と第2のプレート部2を有する金属リードフレームをトランスファー成形機の金型内に設置し、上記熱硬化性樹脂組成物を用いてトランスファー成形(条件:175℃×2分間の成形+175℃×3時間キュア)を行なうことにより、図1に示す、金属リードフレーム面の所定位置にリフレクタ4を形成した。ついで、光半導体(発光)素子(大きさ1mm×1mm、発光波長:395-400nm)3を搭載し、この光半導体素子3と上記金属リードフレームをボンディングワイヤー7,8にて電気的に接続することにより、リフレクタ4と、金属リードフレームと、光半導体素子3とを備えたユニットを製造した。 [Production of optical semiconductor (light emitting) device]
Next, an optical semiconductor (light emitting) device having the configuration shown in FIG. 1 was manufactured using the powdery thermosetting resin composition which is the product of the above example. That is, a metal lead frame having a plurality of pairs of afirst plate portion 1 and a second plate portion 2 made of copper (silver plating) is placed in a mold of a transfer molding machine, and the thermosetting resin By performing transfer molding using the composition (conditions: molding at 175 ° C. × 2 minutes + 175 ° C. × 3 hours), the reflector 4 shown in FIG. 1 was formed at a predetermined position on the metal lead frame surface. Next, an optical semiconductor (light emitting) element (size 1 mm × 1 mm, emission wavelength: 395 to 400 nm) 3 is mounted, and the optical semiconductor element 3 and the metal lead frame are electrically connected by bonding wires 7 and 8. Thus, a unit including the reflector 4, the metal lead frame, and the optical semiconductor element 3 was manufactured.
つぎに、上記実施例品である粉末状の熱硬化性樹脂組成物を用いて、図1に示す構成の光半導体(発光)装置を製造した。すなわち、銅(銀メッキ)製の複数の対となった第1のプレート部1と第2のプレート部2を有する金属リードフレームをトランスファー成形機の金型内に設置し、上記熱硬化性樹脂組成物を用いてトランスファー成形(条件:175℃×2分間の成形+175℃×3時間キュア)を行なうことにより、図1に示す、金属リードフレーム面の所定位置にリフレクタ4を形成した。ついで、光半導体(発光)素子(大きさ1mm×1mm、発光波長:395-400nm)3を搭載し、この光半導体素子3と上記金属リードフレームをボンディングワイヤー7,8にて電気的に接続することにより、リフレクタ4と、金属リードフレームと、光半導体素子3とを備えたユニットを製造した。 [Production of optical semiconductor (light emitting) device]
Next, an optical semiconductor (light emitting) device having the configuration shown in FIG. 1 was manufactured using the powdery thermosetting resin composition which is the product of the above example. That is, a metal lead frame having a plurality of pairs of a
つぎに、上記金属リードフレームとリフレクタ4の内周面とで形成される凹部5に、シリコーン樹脂(信越シリコーン社製、KER-2500)を充填して上記光半導体素子3を樹脂封止(成形条件:150℃×4時間)することにより透明な封止樹脂層6を形成し、リフレクタごとにダイシングにより個片化し、図1に示す光半導体(発光)装置を作製した。得られた光半導体(発光)装置は、高い光反射率を備えており、高信頼性を備えた良好なものが得られた。
Next, a recess 5 formed by the metal lead frame and the inner peripheral surface of the reflector 4 is filled with a silicone resin (manufactured by Shin-Etsu Silicone Co., Ltd., KER-2500), and the optical semiconductor element 3 is resin-sealed (molded). (Condition: 150 ° C. × 4 hours), a transparent sealing resin layer 6 was formed, and each reflector was separated into pieces by dicing to produce the optical semiconductor (light emitting) device shown in FIG. The obtained optical semiconductor (light emitting) device had high light reflectivity, and a good one with high reliability was obtained.
上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。
In the above embodiments, specific forms in the present invention have been described. However, the above embodiments are merely examples and are not construed as limiting. Various modifications apparent to those skilled in the art are contemplated to be within the scope of this invention.
本発明の光半導体装置用熱硬化性樹脂組成物は、光半導体装置に内蔵された光半導体素子から発する波長350~410nmの光を反射させるリフレクタの形成材料として有用である。
The thermosetting resin composition for an optical semiconductor device of the present invention is useful as a reflector forming material that reflects light having a wavelength of 350 to 410 nm emitted from an optical semiconductor element incorporated in the optical semiconductor device.
1 第1のプレート部
2 第2のプレート部
3 光半導体素子
4,11 リフレクタ
5 凹部
6 封止樹脂層
7,8,12 ボンディングワイヤー
10 金属リードフレーム DESCRIPTION OFSYMBOLS 1 1st plate part 2 2nd plate part 3 Optical semiconductor element 4,11 Reflector 5 Recessed part 6 Sealing resin layer 7, 8, 12 Bonding wire 10 Metal lead frame
2 第2のプレート部
3 光半導体素子
4,11 リフレクタ
5 凹部
6 封止樹脂層
7,8,12 ボンディングワイヤー
10 金属リードフレーム DESCRIPTION OF
Claims (11)
- 波長350~410nmの発光素子を備えた光半導体装置のリフレクタ形成材料として用いられる光半導体装置用熱硬化性樹脂組成物であって、下記の(A)および(B)を含有することを特徴とする光半導体装置用熱硬化性樹脂組成物。
(A)熱硬化性樹脂。
(B)酸化ジルコニウムのみからなる白色顔料。 A thermosetting resin composition for an optical semiconductor device used as a reflector forming material of an optical semiconductor device having a light emitting element having a wavelength of 350 to 410 nm, comprising the following (A) and (B): A thermosetting resin composition for optical semiconductor devices.
(A) Thermosetting resin.
(B) A white pigment composed solely of zirconium oxide. - 上記(B)の含有割合が、熱硬化性樹脂組成物全体の2~30体積%である請求項1記載の光半導体装置用熱硬化性樹脂組成物。 The thermosetting resin composition for an optical semiconductor device according to claim 1, wherein the content ratio of (B) is 2 to 30% by volume of the entire thermosetting resin composition.
- 上記(A)および(B)に加えて、無機質充填剤(C)を含有する請求項1または2記載の光半導体装置用熱硬化性樹脂組成物。 The thermosetting resin composition for optical semiconductor devices according to claim 1 or 2, further comprising an inorganic filler (C) in addition to the above (A) and (B).
- 上記(B)および(C)の合計の含有割合が、熱硬化性樹脂組成物全体の75~90体積%である請求項3記載の光半導体装置用熱硬化性樹脂組成物。 4. The thermosetting resin composition for an optical semiconductor device according to claim 3, wherein the total content ratio of (B) and (C) is 75 to 90% by volume of the entire thermosetting resin composition.
- 厚み方向の片面のみに光半導体素子を搭載するための板状の光半導体装置用リードフレームであって、互いに隙間を隔てて配置される複数のプレート部を備えるとともに、上記隙間に、請求項1~4のいずれか一項に記載の光半導体装置用熱硬化性樹脂組成物を用いて充填し、硬化してなるリフレクタが形成されてなることを特徴とする光半導体装置用リードフレーム。 A plate-like lead frame for an optical semiconductor device for mounting an optical semiconductor element only on one surface in the thickness direction, comprising a plurality of plate portions arranged with a gap between each other, and in the gap, A lead frame for an optical semiconductor device, comprising a reflector that is filled with the thermosetting resin composition for an optical semiconductor device according to any one of claims 1 to 4 and cured.
- 光半導体素子搭載領域を備え、それ自体の少なくとも一部で素子搭載領域の周囲を囲んだ状態でリフレクタが形成されてなる立体状の光半導体装置用リードフレームであって、上記リフレクタが、請求項1~4のいずれか一項に記載の光半導体装置用熱硬化性樹脂組成物を用いて形成されてなることを特徴とする光半導体装置用リードフレーム。 A three-dimensional lead frame for an optical semiconductor device comprising an optical semiconductor element mounting region, wherein a reflector is formed in a state where at least a part of the optical semiconductor element mounting region surrounds the periphery of the element mounting region. 5. A lead frame for an optical semiconductor device, characterized by being formed using the thermosetting resin composition for an optical semiconductor device according to any one of 1 to 4.
- 上記リフレクタが、リードフレームの片面にのみ形成されている請求項5または6記載の光半導体装置用リードフレーム。 The lead frame for an optical semiconductor device according to claim 5 or 6, wherein the reflector is formed only on one side of the lead frame.
- 上記リフレクタがトランスファー成形または射出成形により光半導体装置用リードフレームに形成されてなる請求項5~7のいずれか一項に記載の光半導体装置用リードフレーム。 The lead frame for an optical semiconductor device according to any one of claims 5 to 7, wherein the reflector is formed on the lead frame for an optical semiconductor device by transfer molding or injection molding.
- その片面に発光素子を搭載するための素子搭載領域を有するプレート部が、互いに隙間を隔てて配置され、上記素子搭載領域の所定位置に波長350~410nmの発光素子が搭載されてなる光半導体装置であって、上記隙間が、請求項1~4のいずれか一項に記載の光半導体装置用熱硬化性樹脂組成物を用いて充填し、硬化してなるリフレクタに形成されてなることを特徴とする光半導体装置。 An optical semiconductor device in which plate portions having an element mounting area for mounting a light emitting element on one side thereof are arranged with a gap therebetween, and a light emitting element having a wavelength of 350 to 410 nm is mounted at a predetermined position of the element mounting area. The gap is formed in a reflector that is filled and cured using the thermosetting resin composition for optical semiconductor devices according to any one of claims 1 to 4. An optical semiconductor device.
- 発光素子搭載領域を備え、それ自体の少なくとも一部で素子搭載領域の周囲を囲んだ状態でリフレクタが形成されてなる光半導体装置用リードフレームの所定位置に波長350~410nmの発光素子が搭載されてなる光半導体装置であって、上記リフレクタが、請求項1~4のいずれか一項に記載の光半導体装置用熱硬化性樹脂組成物を用いて形成されてなることを特徴とする光半導体装置。 A light emitting element having a wavelength of 350 to 410 nm is mounted at a predetermined position of a lead frame for an optical semiconductor device, which includes a light emitting element mounting area and in which a reflector is formed so as to surround at least a part of the element mounting area. An optical semiconductor device, wherein the reflector is formed using the thermosetting resin composition for an optical semiconductor device according to any one of claims 1 to 4. apparatus.
- リフレクタで囲まれた光半導体素子を含む領域をシリコーン樹脂にて樹脂封止されてなる請求項10記載の光半導体装置。 The optical semiconductor device according to claim 10, wherein a region including the optical semiconductor element surrounded by the reflector is sealed with a silicone resin.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167007958A KR20160094368A (en) | 2013-12-04 | 2014-11-25 | Heat-curable resin composition for optical semiconductor device, lead frame for optical semiconductor device and obtained using same, and optical semiconductor device |
CN201480053135.2A CN105594004A (en) | 2013-12-04 | 2014-11-25 | Heat-curable resin composition for optical semiconductor device, lead frame for optical semiconductor device and obtained using same, and optical semiconductor device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013251258A JP2015109337A (en) | 2013-12-04 | 2013-12-04 | Thermosetting resin composition for optical semiconductor devices, lead frame for optical semiconductor devices obtained by using the same, and optical semiconductor device |
JP2013-251258 | 2013-12-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015083576A1 true WO2015083576A1 (en) | 2015-06-11 |
Family
ID=53273339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/081035 WO2015083576A1 (en) | 2013-12-04 | 2014-11-25 | Heat-curable resin composition for optical semiconductor device, lead frame for optical semiconductor device and obtained using same, and optical semiconductor device |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP2015109337A (en) |
KR (1) | KR20160094368A (en) |
CN (1) | CN105594004A (en) |
TW (1) | TW201527380A (en) |
WO (1) | WO2015083576A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018528882A (en) * | 2015-09-03 | 2018-10-04 | ダウ シリコーンズ コーポレーション | Method for 3D printing using a thermosetting silicone composition |
WO2021233728A1 (en) | 2020-05-19 | 2021-11-25 | Byk-Chemie Gmbh | Thermoset polymer powder |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6566121B2 (en) * | 2016-03-30 | 2019-08-28 | 日立化成株式会社 | Thermosetting resin composition, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device |
JP7053980B2 (en) * | 2016-11-16 | 2022-04-13 | 日亜化学工業株式会社 | Light emitting device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007234637A (en) * | 2006-02-27 | 2007-09-13 | Kyocera Corp | Light emitting device and lighting system using same |
WO2008059856A1 (en) * | 2006-11-15 | 2008-05-22 | Hitachi Chemical Co., Ltd. | Heat curable resin composition for light reflection, process for producing the resin composition, and optical semiconductor element mounting substrate and optical semiconductor device using the resin composition |
JP2013032442A (en) * | 2011-08-02 | 2013-02-14 | Nitto Denko Corp | Epoxy resin composition for optical semiconductor device and lead frame for optical semiconductor device or substrate for optical semiconductor device obtained by using the same, and optical semiconductor device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005306952A (en) * | 2004-04-20 | 2005-11-04 | Japan Epoxy Resin Kk | Epoxy resin composition as sealing material for light-emitting element |
DE102009058006B4 (en) * | 2009-12-11 | 2022-03-31 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Optoelectronic semiconductor component |
JP2011249768A (en) * | 2010-04-27 | 2011-12-08 | Mitsubishi Chemicals Corp | Semiconductor light-emitting element support member and semiconductor light-emitting device |
JP5721969B2 (en) | 2010-06-11 | 2015-05-20 | 日東電工株式会社 | Epoxy resin composition for reflector of optical semiconductor device, lead frame for optical semiconductor device obtained using the same, and optical semiconductor device |
DE102010026344A1 (en) * | 2010-07-07 | 2012-01-12 | Osram Opto Semiconductors Gmbh | led |
JP5670249B2 (en) * | 2011-04-14 | 2015-02-18 | 日東電工株式会社 | Light emitting element transfer sheet manufacturing method, light emitting device manufacturing method, light emitting element transfer sheet, and light emitting device |
-
2013
- 2013-12-04 JP JP2013251258A patent/JP2015109337A/en active Pending
-
2014
- 2014-11-25 CN CN201480053135.2A patent/CN105594004A/en active Pending
- 2014-11-25 KR KR1020167007958A patent/KR20160094368A/en not_active Application Discontinuation
- 2014-11-25 TW TW103140781A patent/TW201527380A/en unknown
- 2014-11-25 WO PCT/JP2014/081035 patent/WO2015083576A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007234637A (en) * | 2006-02-27 | 2007-09-13 | Kyocera Corp | Light emitting device and lighting system using same |
WO2008059856A1 (en) * | 2006-11-15 | 2008-05-22 | Hitachi Chemical Co., Ltd. | Heat curable resin composition for light reflection, process for producing the resin composition, and optical semiconductor element mounting substrate and optical semiconductor device using the resin composition |
JP2013032442A (en) * | 2011-08-02 | 2013-02-14 | Nitto Denko Corp | Epoxy resin composition for optical semiconductor device and lead frame for optical semiconductor device or substrate for optical semiconductor device obtained by using the same, and optical semiconductor device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018528882A (en) * | 2015-09-03 | 2018-10-04 | ダウ シリコーンズ コーポレーション | Method for 3D printing using a thermosetting silicone composition |
JP2020073357A (en) * | 2015-09-03 | 2020-05-14 | ダウ シリコーンズ コーポレーション | Method for 3d printing using thermosetting silicone compositions |
US11192354B2 (en) | 2015-09-03 | 2021-12-07 | Dow Silicones Corporation | 3D printing method utilizing heat-curable silicone composition |
WO2021233728A1 (en) | 2020-05-19 | 2021-11-25 | Byk-Chemie Gmbh | Thermoset polymer powder |
Also Published As
Publication number | Publication date |
---|---|
KR20160094368A (en) | 2016-08-09 |
TW201527380A (en) | 2015-07-16 |
CN105594004A (en) | 2016-05-18 |
JP2015109337A (en) | 2015-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101746890B1 (en) | Curable epoxy resin composition | |
JP5976806B2 (en) | Epoxy resin composition for optical semiconductor device and lead frame for optical semiconductor device, encapsulated optical semiconductor element and optical semiconductor device obtained using the same | |
JP2011074355A (en) | Resin composition for optical semiconductor device, optical semiconductor device lead frame obtained using the same, and optical semiconductor device | |
JP2013032442A (en) | Epoxy resin composition for optical semiconductor device and lead frame for optical semiconductor device or substrate for optical semiconductor device obtained by using the same, and optical semiconductor device | |
KR20120035879A (en) | Epoxy resin composition for optical semiconductor device, lead frame obtained using the same for optical semiconductor device, and optical semiconductor device | |
JP2011168701A (en) | Thermosetting resin composition for optical-semiconductor element encapsulation and cured material thereof, and optical-semiconductor device obtained using the same | |
JPH10158473A (en) | Epoxy resin composition for sealing optical semiconductor element, and optical semiconductor device sealed by using this epoxy resin composition | |
JP5721969B2 (en) | Epoxy resin composition for reflector of optical semiconductor device, lead frame for optical semiconductor device obtained using the same, and optical semiconductor device | |
WO2015083576A1 (en) | Heat-curable resin composition for optical semiconductor device, lead frame for optical semiconductor device and obtained using same, and optical semiconductor device | |
TWI480338B (en) | Resin composition for encapsulating optical semiconductor element | |
JP5825650B2 (en) | Epoxy resin composition for optical semiconductor reflector, thermosetting resin composition for optical semiconductor device, lead frame for optical semiconductor device obtained by using the same, encapsulated optical semiconductor element, and optical semiconductor device | |
JP2008053529A (en) | Sealant for optical semiconductor element, and optical semiconductor device | |
WO2015083532A1 (en) | Epoxy resin composition for optical semiconductor device, lead frame for optical semiconductor device and obtained using same, sealed semiconductor element, and optical semiconductor device | |
JP2017103470A (en) | Board for mounting optical semiconductor element and manufacturing method therefor, and optical semiconductor device | |
TW201247746A (en) | Epoxy silicone resin and hardening resin composition using same | |
WO2015083629A1 (en) | Thermosetting resin composition for optical semiconductor device, lead frame for optical semiconductor device obtained using said composition, and optical semiconductor device | |
JP6883185B2 (en) | Thermosetting resin composition for opto-semiconductor devices and lead frames for opto-semiconductor devices, opto-semiconductor devices, opto-semiconductor devices obtained using the same. | |
KR101405532B1 (en) | Epoxy resin composition, And Photosemiconductor device having the same | |
WO2017051838A1 (en) | Thermosetting resin composition for optical semiconductor devices, lead frame for optical semiconductor devices obtained using same, optical semiconductor device and optical semiconductor element | |
JP5977794B2 (en) | Curable epoxy resin composition | |
JP2015000885A (en) | Epoxy resin composition for optical semiconductor device, lead frame for optical semiconductor device obtained by using the same, and optical semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14868134 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20167007958 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14868134 Country of ref document: EP Kind code of ref document: A1 |