WO2015056433A1 - In-mold transfer foil, method for manufacturing same, decorative molded article, and method for manufacturing same - Google Patents
In-mold transfer foil, method for manufacturing same, decorative molded article, and method for manufacturing same Download PDFInfo
- Publication number
- WO2015056433A1 WO2015056433A1 PCT/JP2014/005180 JP2014005180W WO2015056433A1 WO 2015056433 A1 WO2015056433 A1 WO 2015056433A1 JP 2014005180 W JP2014005180 W JP 2014005180W WO 2015056433 A1 WO2015056433 A1 WO 2015056433A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- transfer foil
- mold transfer
- ultraviolet
- base film
- Prior art date
Links
- 238000012546 transfer Methods 0.000 title claims abstract description 107
- 239000011888 foil Substances 0.000 title claims abstract description 97
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title abstract description 101
- 239000010410 layer Substances 0.000 claims abstract description 308
- 229920005989 resin Polymers 0.000 claims abstract description 91
- 239000011347 resin Substances 0.000 claims abstract description 91
- 239000012790 adhesive layer Substances 0.000 claims abstract description 41
- 230000000903 blocking effect Effects 0.000 claims description 44
- -1 isocyanate compound Chemical class 0.000 claims description 30
- 238000001746 injection moulding Methods 0.000 claims description 27
- 238000004132 cross linking Methods 0.000 claims description 9
- 239000012948 isocyanate Substances 0.000 claims description 8
- 125000000524 functional group Chemical group 0.000 claims description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 5
- 229920000058 polyacrylate Polymers 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 abstract description 23
- 239000011247 coating layer Substances 0.000 abstract 2
- 238000000926 separation method Methods 0.000 abstract 1
- 238000007639 printing Methods 0.000 description 45
- 239000000463 material Substances 0.000 description 35
- 238000000465 moulding Methods 0.000 description 23
- 238000007646 gravure printing Methods 0.000 description 21
- 239000006096 absorbing agent Substances 0.000 description 20
- 238000002347 injection Methods 0.000 description 19
- 239000007924 injection Substances 0.000 description 19
- 238000007650 screen-printing Methods 0.000 description 14
- 238000001723 curing Methods 0.000 description 12
- 239000004925 Acrylic resin Substances 0.000 description 11
- 229920000178 Acrylic resin Polymers 0.000 description 11
- 229920000139 polyethylene terephthalate Polymers 0.000 description 10
- 239000005020 polyethylene terephthalate Substances 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 9
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 8
- 239000007788 liquid Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229920001187 thermosetting polymer Polymers 0.000 description 7
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 7
- 239000004640 Melamine resin Substances 0.000 description 6
- 229920000877 Melamine resin Polymers 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229910044991 metal oxide Inorganic materials 0.000 description 6
- 150000004706 metal oxides Chemical class 0.000 description 6
- 239000000049 pigment Substances 0.000 description 6
- 229920001225 polyester resin Polymers 0.000 description 6
- 239000004645 polyester resin Substances 0.000 description 6
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 5
- 239000012964 benzotriazole Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000001678 irradiating effect Effects 0.000 description 5
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 5
- 229910052753 mercury Inorganic materials 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- FKTHNVSLHLHISI-UHFFFAOYSA-N 1,2-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC=C1CN=C=O FKTHNVSLHLHISI-UHFFFAOYSA-N 0.000 description 4
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 4
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000005034 decoration Methods 0.000 description 4
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000004417 polycarbonate Substances 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 4
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 3
- 239000012965 benzophenone Substances 0.000 description 3
- KOPBYBDAPCDYFK-UHFFFAOYSA-N caesium oxide Chemical compound [O-2].[Cs+].[Cs+] KOPBYBDAPCDYFK-UHFFFAOYSA-N 0.000 description 3
- 229910001942 caesium oxide Inorganic materials 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 239000012461 cellulose resin Substances 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- FTWUXYZHDFCGSV-UHFFFAOYSA-N n,n'-diphenyloxamide Chemical compound C=1C=CC=CC=1NC(=O)C(=O)NC1=CC=CC=C1 FTWUXYZHDFCGSV-UHFFFAOYSA-N 0.000 description 3
- 238000007645 offset printing Methods 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 3
- 229920006122 polyamide resin Polymers 0.000 description 3
- 239000011112 polyethylene naphthalate Substances 0.000 description 3
- 229920005672 polyolefin resin Polymers 0.000 description 3
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 3
- 229960001860 salicylate Drugs 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 2
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/06—Interconnection of layers permitting easy separation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/14—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
- B29C45/1418—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the inserts being deformed or preformed, e.g. by the injection pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/14—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
- B29C45/14827—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using a transfer foil detachable from the insert
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/308—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/26—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
- B32B3/28—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer comprising a deformed thin sheet, i.e. the layer having its entire thickness deformed out of the plane, e.g. corrugated, crumpled
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/71—Resistive to light or to UV
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/748—Releasability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/75—Printability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2439/00—Containers; Receptacles
- B32B2439/70—Food packaging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2451/00—Decorative or ornamental articles
Definitions
- the present invention relates to an in-mold transfer foil and a method for producing the same, and a decorative molded product and a method for producing the same. And a manufacturing method thereof.
- the in-mold transfer foil is a transfer foil for plastic decorative molding in which, for example, a release layer, a print layer, and an adhesive layer are formed on a base film serving as a base material. Further, in-mold injection molding is performed by supplying an in-mold transfer foil between a pair of injection molding dies, filling a cavity formed by the injection molding dies with heat-pressed molding resin, and then forming a base film. And a mold release method in which the release layer is peeled off and the printed layer is transferred to a molding resin for decoration.
- the print layer is generally called a decorative print layer.
- an in-mold transfer foil for obtaining molded products with high surface strength a hard coat layer made of an ultraviolet curable resin is formed on the release layer, and a printed layer, an adhesive layer, etc. are further formed thereon There is.
- formability may be impaired if the hard coat layer is cured by irradiating ultraviolet rays before decorative molding. For this reason, it is desirable to irradiate the surface of the molded product with ultraviolet rays after the decorative molding to cure the hard coat layer. Since the printing layer in the conventional in-mold transfer foil has a structure in which characters, designs, etc.
- a release layer, a printing layer, and an adhesive layer for adhering the printed layer to the surface of the molded product are provided on one surface of the base film.
- an unevenness formation layer by printing is provided on the other surface (see, for example, Patent Document 1).
- An in-mold transfer foil is also proposed in which this unevenness forming layer is formed of a thermosetting resin and has a hard coat layer containing an ultraviolet curable resin as a transfer layer (see, for example, Patent Document 2).
- the in-mold transfer foil used for decorating the industrial product is required to have a high surface strength of the molded product after the transfer. Therefore, it is desirable to use an in-mold transfer foil in which a hard coat layer is formed on a release layer and a printed layer, an adhesive layer and the like are further formed thereon for decorating industrial products.
- most of the hard coat layers used in the in-mold transfer foil are made of an ultraviolet curable resin. For this reason, when an unevenness forming layer is provided on the surface opposite to the release layer of the base film, if an ultraviolet curable resin is used as the resin for forming the unevenness forming layer, the unevenness forming layer is cured.
- the in-mold transfer foil Before the decorative molding, the in-mold transfer foil must be irradiated with ultraviolet rays. At that time, the hard coat layer made of an ultraviolet curable resin itself is also cured, so that the moldability of the in-mold transfer foil is impaired, and there is a problem that defective products such as cracks are likely to occur.
- thermosetting resin used for the concavo-convex formation layer as in Patent Document 2
- the deformation of the concavo-convex shape due to heat during curing and the time required for curing from several hours to several days There was a problem that the shape was deformed.
- the thermosetting resin is less usable than a UV curable resin without a solvent, and is often used after being diluted with a solvent. For this reason, when a thermosetting resin is used, there is a problem that thickening is difficult and the three-dimensional effect is poor.
- This invention is made
- One embodiment of the present invention includes a release layer, a hard coat layer containing an ultraviolet curable resin, and an adhesive layer in this order on one surface of a base film, and an uneven surface on the other surface of the base film.
- the unevenness forming layer includes an ultraviolet curable resin, and an ultraviolet blocking layer is provided between the hard coat layer and the unevenness forming layer.
- Another embodiment of the present invention is the in-mold transfer foil, wherein the base film is the ultraviolet blocking layer.
- Another embodiment of the present invention is an in-mold transfer foil in which the ultraviolet blocking layer is provided between the base film and the unevenness forming layer.
- One embodiment of the present invention is an in-mold transfer foil, wherein the ultraviolet blocking layer is provided between the base film and the release layer.
- Another embodiment of the present invention is the in-mold transfer foil, wherein the ultraviolet blocking layer is a cured product of an acrylic polymer having a hydroxyl group and an ultraviolet absorbing functional group and an isocyanate compound.
- the in-mold transfer foil further including a printing layer having a predetermined pattern pattern between the hard coat layer and the adhesive layer.
- Another embodiment of the present invention is a manufacturing method for manufacturing the in-mold transfer foil, wherein the unevenness forming layer of the base film is formed by irradiation with ultraviolet rays for crosslinking and curing the unevenness forming layer. It is the manufacturing method of the in-mold transfer foil characterized by performing from the surface side.
- Another embodiment of the present invention is a decorative molded product manufactured by an in-mold injection molding method using the in-mold transfer foil. Moreover, one aspect of the present invention is characterized in that, using the in-mold transfer foil, the surface of a decorative molded product produced by an in-mold injection molding method is irradiated with ultraviolet rays to completely cure the hard coat layer. It is a manufacturing method of the decorative molded product.
- the ultraviolet ray irradiated when forming the concavo-convex forming layer made of an ultraviolet curable resin is blocked by the ultraviolet blocking layer, so that the hard coat layer is crosslinked and cured. There is no progress. Therefore, it is possible to maintain excellent moldability (for example, crack resistance, etc.), and at the time of transfer, the uneven shape according to the uneven pattern is formed on the surface of the molded product according to the thickness of the resin constituting the uneven formation layer. Can be formed.
- the uneven shape can be formed on the surface of the molded product without imparting the uneven shape to the surface of the injection mold, It is economical because it is not necessary to produce a mold having a pattern.
- a hard coat layer containing an ultraviolet curable resin can be provided as a transfer layer on the opposite surface of the base film provided with an unevenness forming layer made of an ultraviolet curable resin without cross-linking and curing. Have. Furthermore, it is possible to produce a molded product having high surface strength and excellent three-dimensional effect by irradiating the surface of the molded product with ultraviolet rays after transfer.
- the in-mold injection molding method includes (1) a step of preparing an in-mold transfer foil, (2) a step of inserting the in-mold transfer foil into an injection mold, and (3) to an injection mold. A step of transferring the transfer layer of the in-mold transfer foil onto the surface of the injected resin by injecting and intimately bonding the resin; and (4) opening the injection molding die after cooling the injected resin.
- This is an injection molding method having at least four steps of peeling a film and a release layer and taking out a molded product.
- ultraviolet rays and UV have the same meaning.
- the in-mold transfer foil according to the first embodiment shown in FIG. 1 includes a base film 2 having an ultraviolet blocking ability, a release layer 3 on one surface of the base film 2, and a hard coat layer containing an ultraviolet curable resin. 4 and the adhesive layer 6 are provided in this order, and the concave-convex forming layer 1 containing an ultraviolet curable resin is provided on the other surface of the base film 2.
- an anchor layer, a decoration layer by color ink, a metal vapor deposition layer, etc. may be formed between the hard-coat layer 4 and the contact bonding layer 6, and the printing layer 5 is formed in FIG. The case is illustrated.
- the detail of each said layer is demonstrated.
- the base film 2 having the ultraviolet blocking ability various materials can be used depending on the application as long as it has the ultraviolet blocking ability and has heat resistance, mechanical strength, solvent resistance, etc. required in the manufacturing and molding processes. Can be applied.
- the base film 2 can be made of a material obtained by mixing or synthesizing a material having ultraviolet blocking ability and various polymers.
- the ultraviolet blocking ability means the ability to block or reduce the transmission of ultraviolet rays by absorbing or reflecting light within the range of 200 nm to 380 nm as the wavelength of light.
- As a standard of ultraviolet blocking ability it is desirable that the transmittance of i-line (wavelength 365 nm) is less than 10%.
- Examples of materials having an ultraviolet blocking ability include metal fillers typified by aluminum, metal oxides such as titanium oxide, zinc oxide, and cesium oxide, benzotriazole ultraviolet absorbers, benzophenone ultraviolet absorbers, and cyanoacrylate ultraviolet rays.
- An organic ultraviolet absorber such as an absorbent, a salicylate ultraviolet absorber, an oxanilide ultraviolet absorber, or a colored pigment such as carbon black can be used.
- a metal oxide or an organic ultraviolet absorber having transparency in the visible light region, or these ultraviolet absorbers are used.
- a covalently bonded resin is preferably used.
- Examples of the material for forming the base film 2 include polyester resins, polyamide resins, polyolefin resins, vinyl resins, acrylic resins, and cellulose resins, from the viewpoint of heat resistance and mechanical strength.
- polyester resins such as polyethylene terephthalate and polyethylene naphthalate.
- polyethylene terephthalate is particularly preferably used from the viewpoint of cost.
- the material of the release layer 3 is not particularly limited as long as it is a resin having necessary release properties.
- an olefin-modified acrylic melamine resin or acrylic urethane resin is preferably used.
- a well-known printing method and coating method can be used, for example.
- Hard coat layer 4 The hard coat layer 4 is a layer that becomes the outermost surface layer of the molded product when the base film 2 is peeled off after transfer.
- an ultraviolet curable resin that is cured by ultraviolet rays can be used, and examples thereof include a resin containing at least an acryloyl group or a methacryloyl group.
- the surface of the molded product can be immediately cured by ultraviolet irradiation, and the production efficiency of the molded product can be improved.
- the in-mold transfer foil according to the first embodiment since the hard coat layer 4 is molded in an uncured state and is completely cured after molding, it is possible to achieve both moldability improvement and surface physical property improvement. It is.
- a well-known printing method and the coating method can be used, for example.
- Print layer 5 As a material of the printing layer 5, for example, a colored ink containing a pigment or dye of an appropriate color as a colorant can be used. Moreover, as a formation method of the printing layer 5, well-known printing methods, such as an offset printing method, a gravure printing method, a screen printing method, an inkjet method, can be used, for example. Among these, it is preferable to print by a gravure printing method from the viewpoints that multicolor printing and gradation expression are possible and that it is suitable for mass production. An anchor layer (not shown) may be provided between the print layer 5 and the hard coat layer 4 in order to improve the adhesion with the hard coat layer 4.
- An anchor layer (not shown) may be provided between the print layer 5 and the hard coat layer 4 in order to improve the adhesion with the hard coat layer 4.
- a printing method such as a gravure printing method or a screen printing method can be used, but it is desirable to print by a gravure printing method from the viewpoint of film thickness or productivity.
- Adhesive layer 6 The adhesive layer 6 adheres each of the above layers to the surface of the molded product.
- a heat-sensitive or pressure-sensitive resin suitable for the molding resin 7 can be appropriately used.
- a printing method such as a gravure printing method or a screen printing method can be used, but it is desirable to print by a gravure printing method from the viewpoint of film thickness or productivity.
- the adhesive layer 6 may not be provided.
- the unevenness forming layer 1 provided on the surface opposite to the surface on which the release layer 3 of the base film 2 is formed contains an ultraviolet curable resin, and can be formed by various forming methods.
- the concavo-convex forming layer 1 is, for example, a screen printing method using a UV thick ink, a UV inkjet method, or a liquid ultraviolet curable resin sandwiched between a releasable concavo-convex film and a base film, and UV irradiation from the releasable concavo-convex film side.
- the liquid ultraviolet curable resin can be cured, and then the release-type uneven film can be peeled off to form the unevenness forming layer 1 on the base film 2.
- the ultraviolet curable resin similar to the hard-coat layer 4 can be used, for example, resin etc. which contain an acryloyl group or a methacryloyl group at least can be used. According to the concavo-convex forming method using these ultraviolet curable resins, the reproducibility of the concavo-convex shape is improved as compared with the case where a thermosetting resin is used, and the manufacturing time can be shortened.
- the in-mold transfer foil according to the second embodiment shown in FIG. 2 includes a base film 9, a release layer 3 on one surface of the base film 9, a hard coat layer 4 containing an ultraviolet curable resin, and an adhesive layer. 6 in this order, and the other surface of the base film 9 has an ultraviolet blocking layer 10 and an unevenness forming layer 1 made of an ultraviolet curable resin.
- an anchor layer, a decorative layer with color ink, a metal vapor deposition layer, or the like may be formed.
- the printed layer 5 is formed in FIG. 2. Is illustrated. Hereinafter, the detail of each said layer is demonstrated.
- Base film 9 As the base film 9, various materials can be applied depending on the use as long as the base film 9 has heat resistance, mechanical strength, solvent resistance, and the like necessary in the manufacturing and molding processes.
- the material for forming the base film 9 include polyester resins, polyamide resins, polyolefin resins, vinyl resins, acrylic resins, and cellulose resins, from the viewpoint of heat resistance and mechanical strength.
- polyester resins such as polyethylene terephthalate and polyethylene naphthalate.
- polyethylene terephthalate is particularly preferably used from the viewpoint of cost.
- the material of the release layer 3 is not particularly limited as long as it is a resin having necessary release properties.
- an olefin-modified acrylic melamine resin or acrylic urethane resin is preferably used.
- a well-known printing method and coating method can be used, for example.
- Hard coat layer 4 The hard coat layer 4 is a layer that becomes the outermost surface layer of the molded product when the base film 9 is peeled off after the transfer.
- an ultraviolet curable resin that is cured by ultraviolet rays can be used, and examples thereof include a resin containing at least an acryloyl group or a methacryloyl group.
- the surface of the molded product can be immediately cured by ultraviolet irradiation, and the production efficiency of the molded product can be improved.
- the hard coat layer 4 is molded in an uncured state and undergoes a process of complete curing after the molding, so that both moldability improvement and surface physical property improvement are possible. It is.
- a formation method of the hard-coat layer 4 a well-known printing method and the coating method can be used, for example.
- Print layer 5 As a material of the printing layer 5, for example, a colored ink containing a pigment or dye of an appropriate color as a colorant can be used. Moreover, as a formation method of the printing layer 5, well-known printing methods, such as an offset printing method, a gravure printing method, a screen printing method, an inkjet method, can be used, for example. Among these, it is preferable to print by a gravure printing method from the viewpoints that multicolor printing and gradation expression are possible and that it is suitable for mass production. An anchor layer (not shown) may be provided between the printing layer 5 and the hard coat layer 4 in order to improve the adhesion with the hard coat layer 4.
- An anchor layer (not shown) may be provided between the printing layer 5 and the hard coat layer 4 in order to improve the adhesion with the hard coat layer 4.
- a printing method such as a gravure printing method or a screen printing method can be used, but it is desirable to print by a gravure printing method from the viewpoint of film thickness or productivity.
- Adhesive layer 6 The adhesive layer 6 adheres each of the above layers to the surface of the molded product.
- a heat-sensitive or pressure-sensitive resin suitable for the molding resin 7 can be appropriately used.
- a printing method such as a gravure printing method or a screen printing method can be used, but it is desirable to print by a gravure printing method from the viewpoint of film thickness or productivity.
- the adhesive layer 6 may not be provided.
- the ultraviolet blocking layer 10 provided on the surface opposite to the surface on which the release layer 3 of the base film 9 is formed is a material having adhesiveness with the base film 9 and the concavo-convex forming layer 1, and the wavelength of light By absorbing or reflecting light in the range of 200 nm or more and 380 nm or less, a material having the performance of blocking or reducing the transmission of ultraviolet rays can be used.
- materials having ultraviolet blocking ability include metal fillers typified by aluminum, metal oxides such as titanium oxide, zinc oxide, and cesium oxide, benzotriazole ultraviolet absorbers, benzophenone ultraviolet absorbers, and cyano.
- Organic ultraviolet absorbers such as acrylate ultraviolet absorbers, salicylate ultraviolet absorbers, and oxanilide ultraviolet absorbers, and colored pigments such as carbon black can be used.
- a metal oxide or an organic ultraviolet absorber having transparency in the visible light region, or these ultraviolet absorbers are used.
- a covalently bonded resin is preferably used.
- UV absorbers are generally low molecular in many cases, and there is a concern about migration to the unevenness forming layer 1.
- the ultraviolet absorber is transferred, UV curing at the time of forming the unevenness becomes insufficient, and for example, the unevenness of the unevenness forming layer 1 may be poorly blocked or the uneven shape may be deformed by heat at the time of injection molding. Therefore, as the resin used for the ultraviolet blocking layer 10, it is preferable to use a polymer (ultraviolet absorbing polymer) having an ultraviolet absorbing functional group in the molecule.
- a benzotriazole type acrylic ultraviolet absorbing polymer or the like can be used.
- the material of the ultraviolet blocking layer 10 is a cured product of an acrylic polymer having a hydroxyl group and an ultraviolet absorbing functional group and an isocyanate compound. Is preferred.
- the isocyanate compound refers to, for example, toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), xylylene diisocyanate (XDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), and prepolymers thereof.
- TDI toluene diisocyanate
- MDI diphenylmethane diisocyanate
- XDI xylylene diisocyanate
- HDI hexamethylene diisocyanate
- IPDI isophorone diisocyanate
- the unevenness forming layer 1 includes an ultraviolet curable resin, and can be formed by various forming methods.
- the concavo-convex forming layer 1 is, for example, a screen printing method using UV thick ink, a UV inkjet method, or a liquid UV curable resin sandwiched between a releasable concavo-convex film and a base film 9, and UV from the releasable concavoconvex film side
- the liquid ultraviolet curable resin can be cured by irradiation, and then formed by a forming method such as a method of providing the concavo-convex forming layer 1 on the base film 9 by peeling the releasable concavo-convex film.
- the ultraviolet curable resin similar to the hard-coat layer 4 can be used, for example, resin etc. which contain an acryloyl group or a methacryloyl group at least can be used. According to the concavo-convex forming method using these ultraviolet curable resins, the reproducibility of the concavo-convex shape is improved as compared with the case where a thermosetting resin is used, and the manufacturing time can be shortened.
- the in-mold transfer foil according to the third embodiment shown in FIG. 3 includes a base film 9, a hard coat containing an ultraviolet blocking layer 11, a release layer 3, and an ultraviolet curable resin on one surface of the base film 9.
- the layer 4 and the adhesive layer 6 are provided in this order, and the concave-convex forming layer 1 made of an ultraviolet curable resin is provided on the other surface of the base film 9.
- an anchor layer, a decoration layer with color ink, a metal vapor deposition layer, or the like may be formed between the hard coat layer 4 and the adhesive layer 6, an anchor layer, a decoration layer with color ink, a metal vapor deposition layer, or the like may be formed.
- the print layer 5 is formed in FIG. 3. Is illustrated. Hereinafter, the detail of each said layer is demonstrated.
- Base film 9 As the base film 9, various materials can be applied depending on the use as long as the base film 9 has heat resistance, mechanical strength, solvent resistance, and the like necessary in the manufacturing and molding processes.
- the material for forming the base film 9 include polyester resins, polyamide resins, polyolefin resins, vinyl resins, acrylic resins, and cellulose resins, from the viewpoint of heat resistance and mechanical strength.
- Polyester resins such as polyethylene terephthalate and polyethylene naphthalate are preferably used. Among these, polyethylene terephthalate is particularly preferably used from the viewpoint of cost.
- the ultraviolet blocking layer 11 is a material having adhesiveness with the base film 9 and the release layer 3 and absorbs or reflects light having a light wavelength in the range of 200 nm to 380 nm, thereby transmitting ultraviolet light.
- Materials with the ability to block or reduce can be used.
- Examples of such materials having ultraviolet blocking ability include metal fillers typified by aluminum, metal oxides such as titanium oxide, zinc oxide, and cesium oxide, benzotriazole ultraviolet absorbers, benzophenone ultraviolet absorbers, and cyano.
- Organic ultraviolet absorbers such as acrylate ultraviolet absorbers, salicylate ultraviolet absorbers, and oxanilide ultraviolet absorbers, and colored pigments such as carbon black can be used.
- a metal oxide or an organic ultraviolet absorber having transparency in the visible light region, or these ultraviolet absorbers are used.
- a covalently bonded resin is preferably used.
- ultraviolet absorbers are generally low molecular in many cases, and the ultraviolet absorbers may migrate to other layers during the production process of the in-mold transfer foil, causing problems. For example, when the hard coat layer 4 is transferred, curing failure may occur. Further, when the adhesive layer 6 is moved to and bleed out to the surface, adhesion failure with the molding resin may occur. In addition, since it becomes liquid in the resin temperature range (200 ° C. to 300 ° C.) at the time of injection molding, it may cause a print pattern flow (washout) near the gate. Therefore, as the resin used for the ultraviolet blocking layer 11, it is preferable to use a polymer (ultraviolet absorbing polymer) having an ultraviolet absorbing functional group in the molecule.
- the material of the ultraviolet blocking layer 11 is a cured product of an acrylic polymer having a hydroxyl group and an ultraviolet absorbing functional group and an isocyanate compound. Is preferred.
- the ultraviolet blocking layer 11 By using a two-component curable acrylic resin as the material of the ultraviolet blocking layer 11, not only can it withstand thermal deformation during injection molding, but also has a high affinity with the release layer 3 (acrylic resin). Adhesion increases. Furthermore, since the isocyanate compound reacts with the hydroxyl group contained in the surface of the base film 9 and the release layer 3 to form a covalent bond, adhesion with each layer can be secured.
- the isocyanate compound refers to, for example, toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), xylylene diisocyanate (XDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), and prepolymers thereof.
- TDI toluene diisocyanate
- MDI diphenylmethane diisocyanate
- XDI xylylene diisocyanate
- HDI hexamethylene diisocyanate
- IPDI isophorone diisocyanate
- the material of the release layer 3 is not particularly limited as long as it is a resin having necessary release properties.
- an olefin-modified acrylic melamine resin or acrylic urethane resin is preferably used.
- a well-known printing method and coating method can be used, for example.
- Hard coat layer 4 The hard coat layer 4 is a layer that becomes the outermost surface layer of the molded product when the base film 9 is peeled off after the transfer.
- an ultraviolet curable resin that is cured by ultraviolet rays can be used, and examples thereof include a resin containing at least an acryloyl group or a methacryloyl group.
- the surface of the molded product can be immediately cured by ultraviolet irradiation, and the production efficiency of the molded product can be improved.
- the hard coat layer 4 is molded in an uncured state and is subjected to a process of complete curing after the molding, so that it is possible to improve both moldability and surface physical properties. It is.
- a formation method of the hard-coat layer 4 a well-known printing method and the coating method can be used, for example.
- Print layer 5 As a material of the printing layer 5, for example, a colored ink containing an appropriate color pigment or dye as a colorant can be used. Moreover, as a formation method of the printing layer 5, well-known printing methods, such as an offset printing method, a gravure printing method, a screen printing method, an inkjet method, can be used, for example. Among these, it is preferable to print by a gravure printing method from the viewpoints that multicolor printing and gradation expression are possible and that it is suitable for mass production. An anchor layer (not shown) may be provided between the printing layer 5 and the hard coat layer 4 in order to improve the adhesion with the hard coat layer 4.
- An anchor layer (not shown) may be provided between the printing layer 5 and the hard coat layer 4 in order to improve the adhesion with the hard coat layer 4.
- a printing method such as a gravure printing method or a screen printing method can be used, but it is desirable to print by a gravure printing method from the viewpoint of film thickness or productivity.
- Adhesive layer 6 The adhesive layer 6 adheres each of the above layers to the surface of the molded product.
- a heat-sensitive or pressure-sensitive resin suitable for the molding resin 7 can be appropriately used.
- a printing method such as a gravure printing method or a screen printing method can be used, but it is desirable to print by a gravure printing method from the viewpoint of film thickness or productivity.
- the adhesive layer 6 may not be provided.
- the concavo-convex forming layer 1 provided on the surface opposite to the surface on which the release layer 3 is formed of the base film 9 contains an ultraviolet curable resin and can be formed by various forming methods.
- the concavo-convex forming layer 1 is, for example, a screen printing method using UV thick ink, a UV inkjet method, or a liquid UV curable resin sandwiched between a releasable concavo-convex film and a base film 9, and UV from the releasable concavoconvex film side
- the liquid ultraviolet curable resin can be cured by irradiation, and then formed by a forming method such as a method of providing the concavo-convex forming layer 1 on the base film 9 by peeling the releasable concavo-convex film.
- the ultraviolet curable resin similar to the hard-coat layer 4 can be used, for example, resin etc. which contain an acryloyl group or a methacryloyl group at least can be used. According to the concavo-convex forming method using these ultraviolet curable resins, the reproducibility of the concavo-convex shape is improved as compared with the case where a thermosetting resin is used, and the manufacturing time can be shortened.
- ultraviolet irradiation for crosslinking and curing the unevenness forming layer 1 is performed from the surface side of the base films 2 and 9 on which the unevenness forming layer 1 is formed.
- the ultraviolet irradiation may be performed from the side of the base films 2 and 9 on which the unevenness forming layer 1 is formed. Absent.
- the in-mold according to each embodiment is performed by irradiating ultraviolet rays for crosslinking and curing the concavo-convex forming layer 1 from the side of the base films 2 and 9 on which the concavo-convex forming layer 1 is formed.
- a transfer foil may be manufactured.
- the release layer 3, the hard coat layer 4, the printing layer 5, and adhesion may be manufactured by laminating the layer 6.
- each layer is laminated as described above to prepare in-mold transfer foils according to the first to third embodiments.
- in-mold transfer foils By using these in-mold transfer foils and performing in-mold injection molding, a molded product having an uneven shape on the surface can be produced.
- the print layer 5 having a predetermined pattern pattern is present between the hard coat layer 4 and the adhesive layer 6 is shown.
- metal deposited layers such as aluminum, tin, indium and chromium, transparent reflective layers such as titanium oxide and zinc sulfide, multilayer reflective films, or embossed layers such as holograms provided by hot-pressure embossing, etc. Good.
- the in-mold injection molding process using the in-mold transfer foil will be described in detail with reference to FIGS. 4 and 5.
- the in-mold transfer foil according to the first embodiment will be described as an example.
- mold injection molding first, an in-mold transfer foil is inserted into an injection mold 8 and a molding resin 7 is injection-molded into the cavity of the injection mold 8 from the printed layer 5 side of the in-mold transfer foil. As a result, the in-mold transfer foil is transferred to the surface of the molding resin 7. Next, after cooling the injected molding resin 7, the injection mold 8 is opened, the base film 2 and the release layer 3 of the in-mold transfer foil are peeled off, and the molded product is taken out in a known order. Do.
- Example 1 Using a polyethylene terephthalate resin film (HB manufactured by Teijin DuPont Films) that absorbs ultraviolet rays as a base film having ultraviolet blocking ability, a melamine resin release layer and an ultraviolet curable acrylic resin hard coat on the base film A layer was formed. Thereafter, each layer was formed by a gravure printing method using urethane-based ink as a printing layer and acrylic resin as an adhesive layer.
- HB polyethylene terephthalate resin film
- a melamine resin release layer an ultraviolet curable acrylic resin hard coat on the base film
- each layer was formed by a gravure printing method using urethane-based ink as a printing layer and acrylic resin as an adhesive layer.
- unevenness was formed by screen printing on the side opposite to the release layer forming surface of the base film using an ultraviolet curable resin (UVFIX screen ink) made by Teikoku ink as an unevenness forming layer. Thereafter, ultraviolet rays were irradiated from the surface side on which the concavo-convex forming layer was formed (high pressure mercury lamp integrated light amount 800 mJ / cm 2 ) to crosslink and cure the concavo-convex forming layer, whereby the in-mold transfer foil of Example 1 was obtained.
- This in-mold transfer foil was inserted into an injection mold and clamped to injection-mold a PC (polycarbonate) / ABS (acrylonitrile butadiene styrene) resin.
- the injection mold was opened, and the base film of the in-mold transfer foil was peeled from the molded product together with the release layer. Thereafter, the surface of the molded product was irradiated with ultraviolet rays having an integrated light quantity of 1000 mJ / cm 2 using a high-pressure mercury lamp, and the hard coat layer was crosslinked and cured. Thereby, the molded article of Example 1 having high surface strength was obtained while forming irregularities on the molded article surface.
- Example 2 A polyethylene terephthalate resin film was used as the base film, and a release layer, a hard coat layer, a print layer, and an adhesive layer were formed on the base film in the same manner as in Example 1.
- a two-component curable UV absorbing polymer (Shin Nakamura Chemical Vana Resin UVA-55MHB) is used as the UV blocking layer, and Nippon Polyurethane Coronate L is used as the curing agent.
- an ultraviolet blocking layer was formed.
- an unevenness was formed on the ultraviolet blocking layer by screen printing using an ultraviolet curable resin (UVFIX screen ink) manufactured by Teikoku ink as an unevenness forming layer.
- Example 3 A polyethylene terephthalate resin film was used as the base film, and an ultraviolet blocking layer, a melamine resin release layer, and an ultraviolet curable acrylic resin hard coat layer were formed on the base film.
- a two-pack curable UV absorbing polymer (Vanaresin UVA-55MHB manufactured by Shin-Nakamura Chemical Co., Ltd.) was used as the UV blocking layer, and Coronate L manufactured by Nippon Polyurethane was used as the curing agent.
- the release layer and the hard coat layer were formed in the same manner as in Example 1. Thereafter, a printing layer and an adhesive layer were formed by the gravure printing method as in Example 1.
- unevenness was formed on the side opposite to the release layer forming surface of the base film by using the UV inkjet method as the unevenness forming layer.
- the UV light source of the UV inkjet device used was an LED, and the concavo-convex forming layer was crosslinked and cured by irradiating the ultraviolet ray from the surface side on which the concavo-convex forming layer was formed.
- an in-mold transfer foil of Example 3 was obtained. This in-mold transfer foil was inserted into an injection mold and clamped to inject PC / ABS resin. Then, after cooling, the injection mold was opened, and the base film of the in-mold transfer foil was peeled from the molded product together with the release layer.
- the surface of the molded product was irradiated with ultraviolet rays having an integrated light quantity of 1000 mJ / cm 2 using a high-pressure mercury lamp, and the hard coat layer was crosslinked and cured. Thereby, the molded product of Example 3 having high surface strength was obtained while forming irregularities on the molded product surface.
- ⁇ Comparative Example 1> A polyethylene terephthalate resin film (50T60 manufactured by Toray Industries, Inc.) was used as a base film, and a melamine resin release layer and an ultraviolet curable acrylic resin hard coat layer were formed on the base film. Thereafter, each layer was formed by a gravure printing method using urethane-based ink as a printing layer and acrylic resin as an adhesive layer. Next, the uneven
- the in-mold transfer foil according to the present invention can be used for surface protection and decoration of panel members used for home appliances, housing equipment, office equipment, automobile parts and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Decoration By Transfer Pictures (AREA)
- Laminated Bodies (AREA)
Abstract
Provided are an in-mold transfer foil and a method for manufacturing the in-mold transfer foil capable of providing a molded article having a high surface strength while forming concave/convex features on the surface of the molded article, and a decorative molded article and a method for manufacturing the decorative molded article. This in-mold transfer foil has a mold separation layer (3), a hard coating layer (4) containing a UV-curable resin, and an adhesive layer (6) provided in the sequence listed on one surface of a base film (2); and a convex/concave feature formation layer (1) provided on the other surface of the base film (2); the convex/concave feature formation layer (1) containing a UV-curable resin, and a UV-shielding layer being provided between the hard coating layer (4) and the convex/concave feature formation layer (1).
Description
本発明は、インモールド転写箔及びその製造方法、並びに加飾成形品及びその製造方法に関し、さらに詳しくは、工業製品の加飾に適したインモールド転写箔及びその製造方法、並びに加飾成形品及びその製造方法に関する。
The present invention relates to an in-mold transfer foil and a method for producing the same, and a decorative molded product and a method for producing the same. And a manufacturing method thereof.
インモールド転写箔を用いた成形品は、日用品や生活用品等の機器本体、食品や各種物品の容器類、電子機器や事務用品等の筐体類等に用いられる。
インモールド転写箔とは、基材となるベースフィルム上に、例えば、離型層、印刷層、接着層を形成したプラスチック加飾成形用の転写箔である。また、インモールド射出成形は、一対の射出成形用金型間にインモールド転写箔を供給し、その射出成形用金型によって形成されるキャビティに加熱加圧した成形樹脂を充填した後、ベースフィルム及び離型層を剥離して、成形樹脂に印刷層を転写して装飾を行う成形方法である。なお、上記印刷層は、一般に加飾印刷層とも呼ばれるものである。 Molded products using the in-mold transfer foil are used in equipment bodies such as daily necessities and daily necessities, containers for food and various articles, housings for electronic equipment and office supplies, and the like.
The in-mold transfer foil is a transfer foil for plastic decorative molding in which, for example, a release layer, a print layer, and an adhesive layer are formed on a base film serving as a base material. Further, in-mold injection molding is performed by supplying an in-mold transfer foil between a pair of injection molding dies, filling a cavity formed by the injection molding dies with heat-pressed molding resin, and then forming a base film. And a mold release method in which the release layer is peeled off and the printed layer is transferred to a molding resin for decoration. The print layer is generally called a decorative print layer.
インモールド転写箔とは、基材となるベースフィルム上に、例えば、離型層、印刷層、接着層を形成したプラスチック加飾成形用の転写箔である。また、インモールド射出成形は、一対の射出成形用金型間にインモールド転写箔を供給し、その射出成形用金型によって形成されるキャビティに加熱加圧した成形樹脂を充填した後、ベースフィルム及び離型層を剥離して、成形樹脂に印刷層を転写して装飾を行う成形方法である。なお、上記印刷層は、一般に加飾印刷層とも呼ばれるものである。 Molded products using the in-mold transfer foil are used in equipment bodies such as daily necessities and daily necessities, containers for food and various articles, housings for electronic equipment and office supplies, and the like.
The in-mold transfer foil is a transfer foil for plastic decorative molding in which, for example, a release layer, a print layer, and an adhesive layer are formed on a base film serving as a base material. Further, in-mold injection molding is performed by supplying an in-mold transfer foil between a pair of injection molding dies, filling a cavity formed by the injection molding dies with heat-pressed molding resin, and then forming a base film. And a mold release method in which the release layer is peeled off and the printed layer is transferred to a molding resin for decoration. The print layer is generally called a decorative print layer.
表面強度の高い成形品を得るためのインモールド転写箔としては、離型層上に紫外線硬化性樹脂からなるハードコート層を形成し、その上に、印刷層、接着層等をさらに形成したものがある。このインモールド転写箔の場合、加飾成形前に紫外線を照射し、ハードコート層を硬化させてしまうと、成形性が損なわれることがある。このため、加飾成形後に成形品の表面に紫外線を照射し、ハードコート層を硬化させることが望ましい。
従来のインモールド転写箔における印刷層は、文字や絵柄等をベースフィルム上に平面的に印刷しただけの構造であるため、成形品表面の立体感が乏しいという問題があった。成形品表面に立体感を持たせる方法の一つとして、成形時にキャビティを構成する一対の射出成形用金型の内側であってベースフィルムが対接する側に、予め凹凸模様を設けておく方法がある。 As an in-mold transfer foil for obtaining molded products with high surface strength, a hard coat layer made of an ultraviolet curable resin is formed on the release layer, and a printed layer, an adhesive layer, etc. are further formed thereon There is. In the case of this in-mold transfer foil, formability may be impaired if the hard coat layer is cured by irradiating ultraviolet rays before decorative molding. For this reason, it is desirable to irradiate the surface of the molded product with ultraviolet rays after the decorative molding to cure the hard coat layer.
Since the printing layer in the conventional in-mold transfer foil has a structure in which characters, designs, etc. are simply printed on a base film in a flat manner, there is a problem that the three-dimensional effect on the surface of the molded product is poor. As a method of giving a three-dimensional feeling to the surface of the molded product, there is a method of providing a concavo-convex pattern in advance on the side where the base film comes into contact with the inside of a pair of injection molds that constitute a cavity during molding. is there.
従来のインモールド転写箔における印刷層は、文字や絵柄等をベースフィルム上に平面的に印刷しただけの構造であるため、成形品表面の立体感が乏しいという問題があった。成形品表面に立体感を持たせる方法の一つとして、成形時にキャビティを構成する一対の射出成形用金型の内側であってベースフィルムが対接する側に、予め凹凸模様を設けておく方法がある。 As an in-mold transfer foil for obtaining molded products with high surface strength, a hard coat layer made of an ultraviolet curable resin is formed on the release layer, and a printed layer, an adhesive layer, etc. are further formed thereon There is. In the case of this in-mold transfer foil, formability may be impaired if the hard coat layer is cured by irradiating ultraviolet rays before decorative molding. For this reason, it is desirable to irradiate the surface of the molded product with ultraviolet rays after the decorative molding to cure the hard coat layer.
Since the printing layer in the conventional in-mold transfer foil has a structure in which characters, designs, etc. are simply printed on a base film in a flat manner, there is a problem that the three-dimensional effect on the surface of the molded product is poor. As a method of giving a three-dimensional feeling to the surface of the molded product, there is a method of providing a concavo-convex pattern in advance on the side where the base film comes into contact with the inside of a pair of injection molds that constitute a cavity during molding. is there.
しかしながら、このような凹凸形成方法では、1つの射出成形用金型に対して1つの凹凸模様にしか対応できず、多様な凹凸模様に対応するには多数の射出成形用金型を用意する必要がある。このため、上記凹凸形成方法では、コストが高くなるといった問題が生じる。また、インモールド転写箔の供給位置によって凹凸模様の位置が決まるので、上記凹凸形成方法では、インモールド転写箔の絵柄と凹凸模様とを対応させることが難しい。
そこで、成形品表面に凹凸を形成する方法として、ベースフィルムの一方の面に、離型層、印刷層、該印刷層を成形品の表面に接着させるための接着層を備えると共に、上記ベースフィルムの他方の面に、印刷による凹凸形成層を設けるといった方法が提案されている(例えば、特許文献1参照)。また、この凹凸形成層を熱硬化性樹脂により形成し、紫外線硬化性樹脂を含むハードコート層を転写層として有するインモールド転写箔も提案されている(例えば、特許文献2参照)。 However, with such a method for forming irregularities, only one irregularity pattern can be supported for one injection mold, and a large number of injection molds must be prepared to accommodate various irregularities. There is. For this reason, the said uneven | corrugated formation method raises the problem that cost becomes high. In addition, since the position of the concavo-convex pattern is determined by the supply position of the in-mold transfer foil, it is difficult to associate the pattern of the in-mold transfer foil with the concavo-convex pattern in the above-described concavo-convex formation method.
Therefore, as a method of forming irregularities on the surface of the molded product, a release layer, a printing layer, and an adhesive layer for adhering the printed layer to the surface of the molded product are provided on one surface of the base film. There has been proposed a method in which an unevenness formation layer by printing is provided on the other surface (see, for example, Patent Document 1). An in-mold transfer foil is also proposed in which this unevenness forming layer is formed of a thermosetting resin and has a hard coat layer containing an ultraviolet curable resin as a transfer layer (see, for example, Patent Document 2).
そこで、成形品表面に凹凸を形成する方法として、ベースフィルムの一方の面に、離型層、印刷層、該印刷層を成形品の表面に接着させるための接着層を備えると共に、上記ベースフィルムの他方の面に、印刷による凹凸形成層を設けるといった方法が提案されている(例えば、特許文献1参照)。また、この凹凸形成層を熱硬化性樹脂により形成し、紫外線硬化性樹脂を含むハードコート層を転写層として有するインモールド転写箔も提案されている(例えば、特許文献2参照)。 However, with such a method for forming irregularities, only one irregularity pattern can be supported for one injection mold, and a large number of injection molds must be prepared to accommodate various irregularities. There is. For this reason, the said uneven | corrugated formation method raises the problem that cost becomes high. In addition, since the position of the concavo-convex pattern is determined by the supply position of the in-mold transfer foil, it is difficult to associate the pattern of the in-mold transfer foil with the concavo-convex pattern in the above-described concavo-convex formation method.
Therefore, as a method of forming irregularities on the surface of the molded product, a release layer, a printing layer, and an adhesive layer for adhering the printed layer to the surface of the molded product are provided on one surface of the base film. There has been proposed a method in which an unevenness formation layer by printing is provided on the other surface (see, for example, Patent Document 1). An in-mold transfer foil is also proposed in which this unevenness forming layer is formed of a thermosetting resin and has a hard coat layer containing an ultraviolet curable resin as a transfer layer (see, for example, Patent Document 2).
ところで、工業製品は長期にわたる使用や過酷な環境での使用が予想されるため、工業製品の加飾に用いるインモールド転写箔としては、転写後の成形品の表面強度が高いことが求められる。そこで、離型層の上にハードコート層を形成し、その上に印刷層、接着層等をさらに形成したインモールド転写箔を工業製品の加飾に用いることが望ましい。
しかしながら、インモールド転写箔で用いられるハードコート層の多くは、紫外線硬化性樹脂から形成されている。このため、ベースフィルムの離型層とは反対の面に凹凸形成層を設ける際に、その凹凸形成層を形成する樹脂として紫外線硬化性樹脂を用いていると、凹凸形成層を硬化させるために加飾成形前にインモールド転写箔に紫外線を照射しなければならなくなる。その際、紫外線硬化性樹脂からなるハードコート層自体も硬化させてしまうため、インモールド転写箔の成形性が損なわれ、クラック等の不良品が発生しやすいといった問題が生じる。 By the way, since an industrial product is expected to be used for a long time or in a harsh environment, the in-mold transfer foil used for decorating the industrial product is required to have a high surface strength of the molded product after the transfer. Therefore, it is desirable to use an in-mold transfer foil in which a hard coat layer is formed on a release layer and a printed layer, an adhesive layer and the like are further formed thereon for decorating industrial products.
However, most of the hard coat layers used in the in-mold transfer foil are made of an ultraviolet curable resin. For this reason, when an unevenness forming layer is provided on the surface opposite to the release layer of the base film, if an ultraviolet curable resin is used as the resin for forming the unevenness forming layer, the unevenness forming layer is cured. Before the decorative molding, the in-mold transfer foil must be irradiated with ultraviolet rays. At that time, the hard coat layer made of an ultraviolet curable resin itself is also cured, so that the moldability of the in-mold transfer foil is impaired, and there is a problem that defective products such as cracks are likely to occur.
しかしながら、インモールド転写箔で用いられるハードコート層の多くは、紫外線硬化性樹脂から形成されている。このため、ベースフィルムの離型層とは反対の面に凹凸形成層を設ける際に、その凹凸形成層を形成する樹脂として紫外線硬化性樹脂を用いていると、凹凸形成層を硬化させるために加飾成形前にインモールド転写箔に紫外線を照射しなければならなくなる。その際、紫外線硬化性樹脂からなるハードコート層自体も硬化させてしまうため、インモールド転写箔の成形性が損なわれ、クラック等の不良品が発生しやすいといった問題が生じる。 By the way, since an industrial product is expected to be used for a long time or in a harsh environment, the in-mold transfer foil used for decorating the industrial product is required to have a high surface strength of the molded product after the transfer. Therefore, it is desirable to use an in-mold transfer foil in which a hard coat layer is formed on a release layer and a printed layer, an adhesive layer and the like are further formed thereon for decorating industrial products.
However, most of the hard coat layers used in the in-mold transfer foil are made of an ultraviolet curable resin. For this reason, when an unevenness forming layer is provided on the surface opposite to the release layer of the base film, if an ultraviolet curable resin is used as the resin for forming the unevenness forming layer, the unevenness forming layer is cured. Before the decorative molding, the in-mold transfer foil must be irradiated with ultraviolet rays. At that time, the hard coat layer made of an ultraviolet curable resin itself is also cured, so that the moldability of the in-mold transfer foil is impaired, and there is a problem that defective products such as cracks are likely to occur.
また、特許文献2のように凹凸形成層に熱硬化性樹脂を使用する場合、硬化時の熱による凹凸形状の変形や、硬化に数時間から数日かかることで、硬化時の熱及び経時で形状が変形するといった問題があった。また、熱硬化性樹脂は、紫外線硬化性樹脂に比べて無溶剤で使用できるものが少なく、溶剤で希釈して使用するものが多い。このため、熱硬化性樹脂を用いた場合には、厚盛が困難であり、立体感が乏しいといった問題があった。
一方、予め凹凸形成層を設けておいたベースフィルムに対して、離型層、ハードコート層、印刷層、接着層等をこの順に形成する方法もあるが、この方法では、凹凸形成層の凹凸によってシワや印刷不良が発生してしまうため、インモールド転写箔を製造すること自体が困難である。
本発明は、このような状況を鑑みてなされたものであって、その課題とするところは、成形品表面に凹凸を形成しつつ、且つ、高い表面強度を有する成形品を提供することのできるインモールド転写箔及びその製造方法、並びに加飾成形品及びその製造方法を提供することである。 In addition, when a thermosetting resin is used for the concavo-convex formation layer as inPatent Document 2, the deformation of the concavo-convex shape due to heat during curing and the time required for curing from several hours to several days, There was a problem that the shape was deformed. Further, the thermosetting resin is less usable than a UV curable resin without a solvent, and is often used after being diluted with a solvent. For this reason, when a thermosetting resin is used, there is a problem that thickening is difficult and the three-dimensional effect is poor.
On the other hand, there is also a method of forming a release layer, a hard coat layer, a printing layer, an adhesive layer, etc. in this order on a base film having a concavo-convex forming layer in advance. As a result, wrinkles and printing defects occur, and it is difficult to manufacture an in-mold transfer foil.
This invention is made | formed in view of such a condition, The place made into the subject can provide the molded article which has high surface strength, forming an unevenness | corrugation in the molded article surface. It is to provide an in-mold transfer foil and a manufacturing method thereof, and a decorative molded product and a manufacturing method thereof.
一方、予め凹凸形成層を設けておいたベースフィルムに対して、離型層、ハードコート層、印刷層、接着層等をこの順に形成する方法もあるが、この方法では、凹凸形成層の凹凸によってシワや印刷不良が発生してしまうため、インモールド転写箔を製造すること自体が困難である。
本発明は、このような状況を鑑みてなされたものであって、その課題とするところは、成形品表面に凹凸を形成しつつ、且つ、高い表面強度を有する成形品を提供することのできるインモールド転写箔及びその製造方法、並びに加飾成形品及びその製造方法を提供することである。 In addition, when a thermosetting resin is used for the concavo-convex formation layer as in
On the other hand, there is also a method of forming a release layer, a hard coat layer, a printing layer, an adhesive layer, etc. in this order on a base film having a concavo-convex forming layer in advance. As a result, wrinkles and printing defects occur, and it is difficult to manufacture an in-mold transfer foil.
This invention is made | formed in view of such a condition, The place made into the subject can provide the molded article which has high surface strength, forming an unevenness | corrugation in the molded article surface. It is to provide an in-mold transfer foil and a manufacturing method thereof, and a decorative molded product and a manufacturing method thereof.
本発明は、上述の課題を達成するために、以下の様な手段を講じる。
本発明の一態様は、ベースフィルムの一方の面に、離型層と、紫外線硬化性樹脂を含むハードコート層と、接着層とをこの順序で備え、前記ベースフィルムの他方の面に、凹凸形成層を備えたインモールド転写箔において、前記凹凸形成層は、紫外線硬化性樹脂を含んでおり、前記ハードコート層と前記凹凸形成層との間に、紫外線遮断層を備えたことを特徴とするインモールド転写箔である。
また、本発明の一態様は、前記ベースフィルムが前記紫外線遮断層であることを特徴とするインモールド転写箔である。
また、本発明の一態様は、前記紫外線遮断層を、前記ベースフィルムと前記凹凸形成層との間に備えたことを特徴とするインモールド転写箔である。
また、本発明の一態様は、前記紫外線遮断層を、前記ベースフィルムと前記離型層との間に備えたことを特徴とするインモールド転写箔である。 In order to achieve the above-mentioned problems, the present invention takes the following measures.
One embodiment of the present invention includes a release layer, a hard coat layer containing an ultraviolet curable resin, and an adhesive layer in this order on one surface of a base film, and an uneven surface on the other surface of the base film. In the in-mold transfer foil provided with a forming layer, the unevenness forming layer includes an ultraviolet curable resin, and an ultraviolet blocking layer is provided between the hard coat layer and the unevenness forming layer. This is an in-mold transfer foil.
Another embodiment of the present invention is the in-mold transfer foil, wherein the base film is the ultraviolet blocking layer.
Another embodiment of the present invention is an in-mold transfer foil in which the ultraviolet blocking layer is provided between the base film and the unevenness forming layer.
One embodiment of the present invention is an in-mold transfer foil, wherein the ultraviolet blocking layer is provided between the base film and the release layer.
本発明の一態様は、ベースフィルムの一方の面に、離型層と、紫外線硬化性樹脂を含むハードコート層と、接着層とをこの順序で備え、前記ベースフィルムの他方の面に、凹凸形成層を備えたインモールド転写箔において、前記凹凸形成層は、紫外線硬化性樹脂を含んでおり、前記ハードコート層と前記凹凸形成層との間に、紫外線遮断層を備えたことを特徴とするインモールド転写箔である。
また、本発明の一態様は、前記ベースフィルムが前記紫外線遮断層であることを特徴とするインモールド転写箔である。
また、本発明の一態様は、前記紫外線遮断層を、前記ベースフィルムと前記凹凸形成層との間に備えたことを特徴とするインモールド転写箔である。
また、本発明の一態様は、前記紫外線遮断層を、前記ベースフィルムと前記離型層との間に備えたことを特徴とするインモールド転写箔である。 In order to achieve the above-mentioned problems, the present invention takes the following measures.
One embodiment of the present invention includes a release layer, a hard coat layer containing an ultraviolet curable resin, and an adhesive layer in this order on one surface of a base film, and an uneven surface on the other surface of the base film. In the in-mold transfer foil provided with a forming layer, the unevenness forming layer includes an ultraviolet curable resin, and an ultraviolet blocking layer is provided between the hard coat layer and the unevenness forming layer. This is an in-mold transfer foil.
Another embodiment of the present invention is the in-mold transfer foil, wherein the base film is the ultraviolet blocking layer.
Another embodiment of the present invention is an in-mold transfer foil in which the ultraviolet blocking layer is provided between the base film and the unevenness forming layer.
One embodiment of the present invention is an in-mold transfer foil, wherein the ultraviolet blocking layer is provided between the base film and the release layer.
また、本発明の一態様は、前記紫外線遮断層は、水酸基及び紫外線吸収性の官能基を有するアクリルポリマーと、イソシアネート化合物との硬化物であることを特徴とするインモールド転写箔である。
また、本発明の一態様は、前記ハードコート層と前記接着層との間に、所定の絵柄パターンを有する印刷層をさらに備えたことを特徴とするインモールド転写箔である。
また、本発明の一態様は、前記インモールド転写箔を製造するための製造方法であって、前記凹凸形成層を架橋硬化させるための紫外線照射を、前記ベースフィルムの前記凹凸形成層を形成する面側から行なうことを特徴とするインモールド転写箔の製造方法である。
また、本発明の一態様は、前記インモールド転写箔を用いて、インモールド射出成形法で製造したことを特徴とする加飾成形品である。
また、本発明の一態様は、前記インモールド転写箔を用いて、インモールド射出成形法で製造した加飾成形品の表面に紫外線を照射して、前記ハードコート層を完全硬化させることを特徴とする加飾成形品の製造方法である。 Another embodiment of the present invention is the in-mold transfer foil, wherein the ultraviolet blocking layer is a cured product of an acrylic polymer having a hydroxyl group and an ultraviolet absorbing functional group and an isocyanate compound.
One embodiment of the present invention is the in-mold transfer foil further including a printing layer having a predetermined pattern pattern between the hard coat layer and the adhesive layer.
Another embodiment of the present invention is a manufacturing method for manufacturing the in-mold transfer foil, wherein the unevenness forming layer of the base film is formed by irradiation with ultraviolet rays for crosslinking and curing the unevenness forming layer. It is the manufacturing method of the in-mold transfer foil characterized by performing from the surface side.
Another embodiment of the present invention is a decorative molded product manufactured by an in-mold injection molding method using the in-mold transfer foil.
Moreover, one aspect of the present invention is characterized in that, using the in-mold transfer foil, the surface of a decorative molded product produced by an in-mold injection molding method is irradiated with ultraviolet rays to completely cure the hard coat layer. It is a manufacturing method of the decorative molded product.
また、本発明の一態様は、前記ハードコート層と前記接着層との間に、所定の絵柄パターンを有する印刷層をさらに備えたことを特徴とするインモールド転写箔である。
また、本発明の一態様は、前記インモールド転写箔を製造するための製造方法であって、前記凹凸形成層を架橋硬化させるための紫外線照射を、前記ベースフィルムの前記凹凸形成層を形成する面側から行なうことを特徴とするインモールド転写箔の製造方法である。
また、本発明の一態様は、前記インモールド転写箔を用いて、インモールド射出成形法で製造したことを特徴とする加飾成形品である。
また、本発明の一態様は、前記インモールド転写箔を用いて、インモールド射出成形法で製造した加飾成形品の表面に紫外線を照射して、前記ハードコート層を完全硬化させることを特徴とする加飾成形品の製造方法である。 Another embodiment of the present invention is the in-mold transfer foil, wherein the ultraviolet blocking layer is a cured product of an acrylic polymer having a hydroxyl group and an ultraviolet absorbing functional group and an isocyanate compound.
One embodiment of the present invention is the in-mold transfer foil further including a printing layer having a predetermined pattern pattern between the hard coat layer and the adhesive layer.
Another embodiment of the present invention is a manufacturing method for manufacturing the in-mold transfer foil, wherein the unevenness forming layer of the base film is formed by irradiation with ultraviolet rays for crosslinking and curing the unevenness forming layer. It is the manufacturing method of the in-mold transfer foil characterized by performing from the surface side.
Another embodiment of the present invention is a decorative molded product manufactured by an in-mold injection molding method using the in-mold transfer foil.
Moreover, one aspect of the present invention is characterized in that, using the in-mold transfer foil, the surface of a decorative molded product produced by an in-mold injection molding method is irradiated with ultraviolet rays to completely cure the hard coat layer. It is a manufacturing method of the decorative molded product.
本発明の一態様に係るインモールド転写箔によれば、紫外線硬化性樹脂からなる凹凸形成層を形成する際に照射する紫外線は、紫外線遮断層によって遮断されるため、ハードコート層の架橋硬化を進行させることがない。従って、優れた成形性(例えば、耐クラック性等)を保持することができるとともに、転写時において、凹凸形成層を構成する樹脂の厚みにより、その凹凸パターンに従った凹凸形状を成形品の表面に形成することができる。
また、本発明の一態様に係るインモールド転写箔によれば、射出成形用金型の表面に凹凸形状を付与することなく、成形品表面に凹凸形状を形成することができるため、種々の凹凸パターンを有する金型を作製する必要がなく経済的である。
さらに、紫外線硬化性樹脂からなる凹凸形成層を設けたベースフィルムの反対面に、転写層として紫外線硬化性樹脂を含むハードコート層を架橋硬化させることなく設けることができるので、優れた成形性を有する。さらに、転写後に成形品表面に紫外線を照射することで高い表面強度を付与し、かつ、立体感に優れた成形品を製造することができる。 According to the in-mold transfer foil according to one aspect of the present invention, the ultraviolet ray irradiated when forming the concavo-convex forming layer made of an ultraviolet curable resin is blocked by the ultraviolet blocking layer, so that the hard coat layer is crosslinked and cured. There is no progress. Therefore, it is possible to maintain excellent moldability (for example, crack resistance, etc.), and at the time of transfer, the uneven shape according to the uneven pattern is formed on the surface of the molded product according to the thickness of the resin constituting the uneven formation layer. Can be formed.
In addition, according to the in-mold transfer foil according to one aspect of the present invention, since the uneven shape can be formed on the surface of the molded product without imparting the uneven shape to the surface of the injection mold, It is economical because it is not necessary to produce a mold having a pattern.
In addition, a hard coat layer containing an ultraviolet curable resin can be provided as a transfer layer on the opposite surface of the base film provided with an unevenness forming layer made of an ultraviolet curable resin without cross-linking and curing. Have. Furthermore, it is possible to produce a molded product having high surface strength and excellent three-dimensional effect by irradiating the surface of the molded product with ultraviolet rays after transfer.
また、本発明の一態様に係るインモールド転写箔によれば、射出成形用金型の表面に凹凸形状を付与することなく、成形品表面に凹凸形状を形成することができるため、種々の凹凸パターンを有する金型を作製する必要がなく経済的である。
さらに、紫外線硬化性樹脂からなる凹凸形成層を設けたベースフィルムの反対面に、転写層として紫外線硬化性樹脂を含むハードコート層を架橋硬化させることなく設けることができるので、優れた成形性を有する。さらに、転写後に成形品表面に紫外線を照射することで高い表面強度を付与し、かつ、立体感に優れた成形品を製造することができる。 According to the in-mold transfer foil according to one aspect of the present invention, the ultraviolet ray irradiated when forming the concavo-convex forming layer made of an ultraviolet curable resin is blocked by the ultraviolet blocking layer, so that the hard coat layer is crosslinked and cured. There is no progress. Therefore, it is possible to maintain excellent moldability (for example, crack resistance, etc.), and at the time of transfer, the uneven shape according to the uneven pattern is formed on the surface of the molded product according to the thickness of the resin constituting the uneven formation layer. Can be formed.
In addition, according to the in-mold transfer foil according to one aspect of the present invention, since the uneven shape can be formed on the surface of the molded product without imparting the uneven shape to the surface of the injection mold, It is economical because it is not necessary to produce a mold having a pattern.
In addition, a hard coat layer containing an ultraviolet curable resin can be provided as a transfer layer on the opposite surface of the base film provided with an unevenness forming layer made of an ultraviolet curable resin without cross-linking and curing. Have. Furthermore, it is possible to produce a molded product having high surface strength and excellent three-dimensional effect by irradiating the surface of the molded product with ultraviolet rays after transfer.
まず、インモールド転写箔を用いたインモールド射出成形法について簡単に説明し、次に、本発明の第一実施形態から第三実施形態に係るインモールド転写箔の詳細について図面を用いて順次説明する。
(インモールド射出成形法)
インモールド射出成形法とは、(1)インモールド転写箔を準備する工程と、(2)インモールド転写箔を射出成形用金型内へ挿入する工程と、(3)射出成形用金型へ樹脂を射出成形して密着させることで、射出した樹脂の表面にインモールド転写箔の転写層を転写する工程と、(4)射出した樹脂を冷却した後に射出成形用金型を開放し、ベースフィルム及び離型層を剥離して成形品を取り出す工程の少なくとも4つの工程を有する射出成形法である。なお、本発明において、紫外線とUVは同じ意味である。 First, an in-mold injection molding method using an in-mold transfer foil will be briefly described, and then details of the in-mold transfer foil according to the first to third embodiments of the present invention will be sequentially described with reference to the drawings. To do.
(In-mold injection molding method)
The in-mold injection molding method includes (1) a step of preparing an in-mold transfer foil, (2) a step of inserting the in-mold transfer foil into an injection mold, and (3) to an injection mold. A step of transferring the transfer layer of the in-mold transfer foil onto the surface of the injected resin by injecting and intimately bonding the resin; and (4) opening the injection molding die after cooling the injected resin. This is an injection molding method having at least four steps of peeling a film and a release layer and taking out a molded product. In the present invention, ultraviolet rays and UV have the same meaning.
(インモールド射出成形法)
インモールド射出成形法とは、(1)インモールド転写箔を準備する工程と、(2)インモールド転写箔を射出成形用金型内へ挿入する工程と、(3)射出成形用金型へ樹脂を射出成形して密着させることで、射出した樹脂の表面にインモールド転写箔の転写層を転写する工程と、(4)射出した樹脂を冷却した後に射出成形用金型を開放し、ベースフィルム及び離型層を剥離して成形品を取り出す工程の少なくとも4つの工程を有する射出成形法である。なお、本発明において、紫外線とUVは同じ意味である。 First, an in-mold injection molding method using an in-mold transfer foil will be briefly described, and then details of the in-mold transfer foil according to the first to third embodiments of the present invention will be sequentially described with reference to the drawings. To do.
(In-mold injection molding method)
The in-mold injection molding method includes (1) a step of preparing an in-mold transfer foil, (2) a step of inserting the in-mold transfer foil into an injection mold, and (3) to an injection mold. A step of transferring the transfer layer of the in-mold transfer foil onto the surface of the injected resin by injecting and intimately bonding the resin; and (4) opening the injection molding die after cooling the injected resin. This is an injection molding method having at least four steps of peeling a film and a release layer and taking out a molded product. In the present invention, ultraviolet rays and UV have the same meaning.
(第一実施形態)
以下、本発明の第一実施形態に係るインモールド転写箔の全体構造について、図面を参照しつつ説明する。
図1に示した第一実施形態に係るインモールド転写箔は、紫外線遮断能を有するベースフィルム2と、ベースフィルム2の一方の面に離型層3と、紫外線硬化性樹脂を含むハードコート層4と、接着層6とをこの順に備え、ベースフィルム2の他方の面に紫外線硬化性樹脂を含む凹凸形成層1を備えた構成をしている。なお、ハードコート層4と接着層6との間には、アンカー層や色インキによる加飾層、金属蒸着層等が形成されていても良く、図1には印刷層5が形成されている場合が例示されている。以下、上記各層の詳細について説明する。 (First embodiment)
Hereinafter, the overall structure of the in-mold transfer foil according to the first embodiment of the present invention will be described with reference to the drawings.
The in-mold transfer foil according to the first embodiment shown in FIG. 1 includes abase film 2 having an ultraviolet blocking ability, a release layer 3 on one surface of the base film 2, and a hard coat layer containing an ultraviolet curable resin. 4 and the adhesive layer 6 are provided in this order, and the concave-convex forming layer 1 containing an ultraviolet curable resin is provided on the other surface of the base film 2. In addition, an anchor layer, a decoration layer by color ink, a metal vapor deposition layer, etc. may be formed between the hard-coat layer 4 and the contact bonding layer 6, and the printing layer 5 is formed in FIG. The case is illustrated. Hereinafter, the detail of each said layer is demonstrated.
以下、本発明の第一実施形態に係るインモールド転写箔の全体構造について、図面を参照しつつ説明する。
図1に示した第一実施形態に係るインモールド転写箔は、紫外線遮断能を有するベースフィルム2と、ベースフィルム2の一方の面に離型層3と、紫外線硬化性樹脂を含むハードコート層4と、接着層6とをこの順に備え、ベースフィルム2の他方の面に紫外線硬化性樹脂を含む凹凸形成層1を備えた構成をしている。なお、ハードコート層4と接着層6との間には、アンカー層や色インキによる加飾層、金属蒸着層等が形成されていても良く、図1には印刷層5が形成されている場合が例示されている。以下、上記各層の詳細について説明する。 (First embodiment)
Hereinafter, the overall structure of the in-mold transfer foil according to the first embodiment of the present invention will be described with reference to the drawings.
The in-mold transfer foil according to the first embodiment shown in FIG. 1 includes a
(ベースフィルム2)
紫外線遮断能を有するベースフィルム2としては、紫外線遮断能を有し、且つ製造及び成形工程で必要な耐熱性、機械的強度、耐溶剤性等を備えていれば、用途に応じて種々の材料を適用できる。例えば、ベースフィルム2は、紫外線遮断能を有する材料と種々のポリマーとの混合又は合成した材料によって作製可能である。ここで、紫外線遮断能とは、光の波長として200nm以上380nm以下の範囲内の光を吸収若しくは反射することで、紫外線の透過を遮断若しくは減少させる性能を意味する。
紫外線遮断能の目安としては、i線(波長365nm)の透過率が10%未満であることが望ましい。なぜなら、紫外線硬化性樹脂により凹凸形成する際には、凹凸形成層1に対して500mJ/cm2以上1000mJ/cm2以下の範囲内にある光量の紫外線を照射する必要があり、この時、形成されているハードコート層4に対して、射出成形前に凡そ100mJ/cm2以上の紫外線が照射されてしまうと、架橋反応の進行により射出成形時の延伸に追従できず、ハードコート層4にクラックが発生してしまうからである。 (Base film 2)
As thebase film 2 having the ultraviolet blocking ability, various materials can be used depending on the application as long as it has the ultraviolet blocking ability and has heat resistance, mechanical strength, solvent resistance, etc. required in the manufacturing and molding processes. Can be applied. For example, the base film 2 can be made of a material obtained by mixing or synthesizing a material having ultraviolet blocking ability and various polymers. Here, the ultraviolet blocking ability means the ability to block or reduce the transmission of ultraviolet rays by absorbing or reflecting light within the range of 200 nm to 380 nm as the wavelength of light.
As a standard of ultraviolet blocking ability, it is desirable that the transmittance of i-line (wavelength 365 nm) is less than 10%. This is because when forming irregularities with an ultraviolet curable resin, it is necessary to irradiate the irregularity-forminglayer 1 with ultraviolet rays having a light amount in the range of 500 mJ / cm 2 or more and 1000 mJ / cm 2 or less. If the hard coat layer 4 is irradiated with ultraviolet rays of about 100 mJ / cm 2 or more before the injection molding, the hard coat layer 4 cannot follow the stretching during the injection molding due to the progress of the crosslinking reaction. This is because cracks are generated.
紫外線遮断能を有するベースフィルム2としては、紫外線遮断能を有し、且つ製造及び成形工程で必要な耐熱性、機械的強度、耐溶剤性等を備えていれば、用途に応じて種々の材料を適用できる。例えば、ベースフィルム2は、紫外線遮断能を有する材料と種々のポリマーとの混合又は合成した材料によって作製可能である。ここで、紫外線遮断能とは、光の波長として200nm以上380nm以下の範囲内の光を吸収若しくは反射することで、紫外線の透過を遮断若しくは減少させる性能を意味する。
紫外線遮断能の目安としては、i線(波長365nm)の透過率が10%未満であることが望ましい。なぜなら、紫外線硬化性樹脂により凹凸形成する際には、凹凸形成層1に対して500mJ/cm2以上1000mJ/cm2以下の範囲内にある光量の紫外線を照射する必要があり、この時、形成されているハードコート層4に対して、射出成形前に凡そ100mJ/cm2以上の紫外線が照射されてしまうと、架橋反応の進行により射出成形時の延伸に追従できず、ハードコート層4にクラックが発生してしまうからである。 (Base film 2)
As the
As a standard of ultraviolet blocking ability, it is desirable that the transmittance of i-line (wavelength 365 nm) is less than 10%. This is because when forming irregularities with an ultraviolet curable resin, it is necessary to irradiate the irregularity-forming
紫外線遮断能を有する材料としては、例えば、アルミニウムに代表される金属フィラーや酸化チタン、酸化亜鉛、酸化セシウム等の金属酸化物、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、サリシレート系紫外線吸収剤、オギザニリド系紫外線吸収剤等の有機系紫外線吸収剤、カーボンブラック等の有色顔料を使用できる。ここで、凹凸形成層1の凹凸パターンと印刷層5との位置合わせが必要な場合においては、可視光域で透明性を有する金属酸化物や有機系紫外線吸収剤、又はこれらの紫外線吸収剤を共有結合させた樹脂が好適に用いられる。
ベースフィルム2を形成する材料としては、例えば、ポリエステル系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂、ビニル系樹脂、アクリル系樹脂、セルロース系樹脂等が挙げられるが、耐熱性や機械的強度の観点から、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂を使用することが好ましい。その中でも、特に、ポリエチレンテレフタレートがコストの面から見ても好適に用いられる。 Examples of materials having an ultraviolet blocking ability include metal fillers typified by aluminum, metal oxides such as titanium oxide, zinc oxide, and cesium oxide, benzotriazole ultraviolet absorbers, benzophenone ultraviolet absorbers, and cyanoacrylate ultraviolet rays. An organic ultraviolet absorber such as an absorbent, a salicylate ultraviolet absorber, an oxanilide ultraviolet absorber, or a colored pigment such as carbon black can be used. Here, when it is necessary to align the concavo-convex pattern of the concavo-convex forminglayer 1 with the printing layer 5, a metal oxide or an organic ultraviolet absorber having transparency in the visible light region, or these ultraviolet absorbers are used. A covalently bonded resin is preferably used.
Examples of the material for forming thebase film 2 include polyester resins, polyamide resins, polyolefin resins, vinyl resins, acrylic resins, and cellulose resins, from the viewpoint of heat resistance and mechanical strength. For example, it is preferable to use polyester resins such as polyethylene terephthalate and polyethylene naphthalate. Among these, polyethylene terephthalate is particularly preferably used from the viewpoint of cost.
ベースフィルム2を形成する材料としては、例えば、ポリエステル系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂、ビニル系樹脂、アクリル系樹脂、セルロース系樹脂等が挙げられるが、耐熱性や機械的強度の観点から、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂を使用することが好ましい。その中でも、特に、ポリエチレンテレフタレートがコストの面から見ても好適に用いられる。 Examples of materials having an ultraviolet blocking ability include metal fillers typified by aluminum, metal oxides such as titanium oxide, zinc oxide, and cesium oxide, benzotriazole ultraviolet absorbers, benzophenone ultraviolet absorbers, and cyanoacrylate ultraviolet rays. An organic ultraviolet absorber such as an absorbent, a salicylate ultraviolet absorber, an oxanilide ultraviolet absorber, or a colored pigment such as carbon black can be used. Here, when it is necessary to align the concavo-convex pattern of the concavo-convex forming
Examples of the material for forming the
(離型層3)
離型層3の材料としては、必要な離型性を備えた樹脂であれば特に限定されない。第一実施形態に係るインモールド転写箔では、例えば、オレフィン変成したアクリルメラミン樹脂やアクリルウレタン樹脂を用いることが好ましい。また、離型層3の形成方法としては、例えば、周知の印刷法や塗工法を用いることができる。
(ハードコート層4)
ハードコート層4は、転写後にベースフィルム2を剥離した際に、成形品の最表面層となる層である。ハードコート層4の材料としては、紫外線で硬化する紫外線硬化性樹脂を用いることができ、例えば、アクリロイル基またはメタクリロイル基を少なくとも含有する樹脂等が挙げられる。このような紫外線硬化性のハードコート層4であれば、紫外線照射によって直ちに成形品表面を硬化させることができ、成形品の生産効率を向上させることができる。また、第一実施形態に係るインモールド転写箔によれば、ハードコート層4が未硬化の状態で成形し、成形後に完全硬化させる工程を経るため、成形性向上と表面物性向上の両立が可能である。また、ハードコート層4の形成方法としては、例えば、周知の印刷法や塗工法を用いることができる。 (Release layer 3)
The material of therelease layer 3 is not particularly limited as long as it is a resin having necessary release properties. In the in-mold transfer foil according to the first embodiment, for example, an olefin-modified acrylic melamine resin or acrylic urethane resin is preferably used. Moreover, as a formation method of the mold release layer 3, a well-known printing method and coating method can be used, for example.
(Hard coat layer 4)
Thehard coat layer 4 is a layer that becomes the outermost surface layer of the molded product when the base film 2 is peeled off after transfer. As a material of the hard coat layer 4, an ultraviolet curable resin that is cured by ultraviolet rays can be used, and examples thereof include a resin containing at least an acryloyl group or a methacryloyl group. With such an ultraviolet curable hard coat layer 4, the surface of the molded product can be immediately cured by ultraviolet irradiation, and the production efficiency of the molded product can be improved. In addition, according to the in-mold transfer foil according to the first embodiment, since the hard coat layer 4 is molded in an uncured state and is completely cured after molding, it is possible to achieve both moldability improvement and surface physical property improvement. It is. Moreover, as a formation method of the hard-coat layer 4, a well-known printing method and the coating method can be used, for example.
離型層3の材料としては、必要な離型性を備えた樹脂であれば特に限定されない。第一実施形態に係るインモールド転写箔では、例えば、オレフィン変成したアクリルメラミン樹脂やアクリルウレタン樹脂を用いることが好ましい。また、離型層3の形成方法としては、例えば、周知の印刷法や塗工法を用いることができる。
(ハードコート層4)
ハードコート層4は、転写後にベースフィルム2を剥離した際に、成形品の最表面層となる層である。ハードコート層4の材料としては、紫外線で硬化する紫外線硬化性樹脂を用いることができ、例えば、アクリロイル基またはメタクリロイル基を少なくとも含有する樹脂等が挙げられる。このような紫外線硬化性のハードコート層4であれば、紫外線照射によって直ちに成形品表面を硬化させることができ、成形品の生産効率を向上させることができる。また、第一実施形態に係るインモールド転写箔によれば、ハードコート層4が未硬化の状態で成形し、成形後に完全硬化させる工程を経るため、成形性向上と表面物性向上の両立が可能である。また、ハードコート層4の形成方法としては、例えば、周知の印刷法や塗工法を用いることができる。 (Release layer 3)
The material of the
(Hard coat layer 4)
The
(印刷層5)
印刷層5の材料としては、例えば、適切な色の顔料または染料を着色剤として含有する着色インキを用いることができる。また、印刷層5の形成方法としては、例えば、オフセット印刷法、グラビア印刷法、スクリーン印刷法、インクジェット法等の周知の印刷法を用いることができる。この中でも、多色刷りや階調表現が可能で、且つ、大量生産に適しているという点から、グラビア印刷法で印刷するのが好ましい。また、ハードコート層4との密着性を向上させるために、印刷層5とハードコート層4との間に、アンカー層(図示せず)を設けても良い。アンカー層の形成方法としては、例えば、グラビア印刷法、スクリーン印刷法等の印刷法を用いることができるが、膜厚や生産性の点から、グラビア印刷法で印刷するのが望ましい。
(接着層6)
接着層6は、成形品の表面に上述の各層を接着するものである。接着層6の材料としては、成形樹脂7に適した感熱性あるいは感圧性の樹脂を適宜使用することができる。接着層6の形成方法としては、例えば、グラビア印刷法、スクリーン印刷法等の印刷法を用いることができるが、膜厚や生産性の点から、グラビア印刷法で印刷するのが望ましい。なお、印刷層5が成形品に対して充分接着性を有しており、接着層としての効果も備えている場合には、接着層6を設けなくても良い。 (Print layer 5)
As a material of theprinting layer 5, for example, a colored ink containing a pigment or dye of an appropriate color as a colorant can be used. Moreover, as a formation method of the printing layer 5, well-known printing methods, such as an offset printing method, a gravure printing method, a screen printing method, an inkjet method, can be used, for example. Among these, it is preferable to print by a gravure printing method from the viewpoints that multicolor printing and gradation expression are possible and that it is suitable for mass production. An anchor layer (not shown) may be provided between the print layer 5 and the hard coat layer 4 in order to improve the adhesion with the hard coat layer 4. As a method for forming the anchor layer, for example, a printing method such as a gravure printing method or a screen printing method can be used, but it is desirable to print by a gravure printing method from the viewpoint of film thickness or productivity.
(Adhesive layer 6)
Theadhesive layer 6 adheres each of the above layers to the surface of the molded product. As a material for the adhesive layer 6, a heat-sensitive or pressure-sensitive resin suitable for the molding resin 7 can be appropriately used. As a method for forming the adhesive layer 6, for example, a printing method such as a gravure printing method or a screen printing method can be used, but it is desirable to print by a gravure printing method from the viewpoint of film thickness or productivity. In addition, when the printing layer 5 has sufficient adhesiveness with respect to a molded article and also has an effect as an adhesive layer, the adhesive layer 6 may not be provided.
印刷層5の材料としては、例えば、適切な色の顔料または染料を着色剤として含有する着色インキを用いることができる。また、印刷層5の形成方法としては、例えば、オフセット印刷法、グラビア印刷法、スクリーン印刷法、インクジェット法等の周知の印刷法を用いることができる。この中でも、多色刷りや階調表現が可能で、且つ、大量生産に適しているという点から、グラビア印刷法で印刷するのが好ましい。また、ハードコート層4との密着性を向上させるために、印刷層5とハードコート層4との間に、アンカー層(図示せず)を設けても良い。アンカー層の形成方法としては、例えば、グラビア印刷法、スクリーン印刷法等の印刷法を用いることができるが、膜厚や生産性の点から、グラビア印刷法で印刷するのが望ましい。
(接着層6)
接着層6は、成形品の表面に上述の各層を接着するものである。接着層6の材料としては、成形樹脂7に適した感熱性あるいは感圧性の樹脂を適宜使用することができる。接着層6の形成方法としては、例えば、グラビア印刷法、スクリーン印刷法等の印刷法を用いることができるが、膜厚や生産性の点から、グラビア印刷法で印刷するのが望ましい。なお、印刷層5が成形品に対して充分接着性を有しており、接着層としての効果も備えている場合には、接着層6を設けなくても良い。 (Print layer 5)
As a material of the
(Adhesive layer 6)
The
(凹凸形成層1)
ベースフィルム2の離型層3を形成した面とは反対側の面に設けられる凹凸形成層1は、紫外線硬化性樹脂を含んだものであって、各種形成方法により形成可能である。凹凸形成層1は、例えば、UV厚盛インキによるスクリーン印刷法やUVインクジェット法、あるいは、離型性凹凸フィルムとベースフィルムとで液状紫外線硬化性樹脂を挟み、離型性凹凸フィルム側からUV照射することで該液状紫外線硬化性樹脂を硬化させ、その後離型性凹凸フィルムを剥離することによってベースフィルム2上に凹凸形成層1を設ける方法、といった形成方法により形成可能である。
また、凹凸形成層1の材料としては、ハードコート層4と同様の紫外線硬化性樹脂を用いることができ、例えば、アクリロイル基またはメタクリロイル基を少なくとも含有する樹脂等を使用することができる。
これらの紫外線硬化性樹脂を使用した凹凸形成方法によれば、熱硬化性樹脂を使用した場合と比較して凹凸形状の再現性が良好となり、また製造時間の短縮が可能となる。 (Unevenness forming layer 1)
Theunevenness forming layer 1 provided on the surface opposite to the surface on which the release layer 3 of the base film 2 is formed contains an ultraviolet curable resin, and can be formed by various forming methods. The concavo-convex forming layer 1 is, for example, a screen printing method using a UV thick ink, a UV inkjet method, or a liquid ultraviolet curable resin sandwiched between a releasable concavo-convex film and a base film, and UV irradiation from the releasable concavo-convex film side. Thus, the liquid ultraviolet curable resin can be cured, and then the release-type uneven film can be peeled off to form the unevenness forming layer 1 on the base film 2.
Moreover, as a material of the uneven |corrugated formation layer 1, the ultraviolet curable resin similar to the hard-coat layer 4 can be used, For example, resin etc. which contain an acryloyl group or a methacryloyl group at least can be used.
According to the concavo-convex forming method using these ultraviolet curable resins, the reproducibility of the concavo-convex shape is improved as compared with the case where a thermosetting resin is used, and the manufacturing time can be shortened.
ベースフィルム2の離型層3を形成した面とは反対側の面に設けられる凹凸形成層1は、紫外線硬化性樹脂を含んだものであって、各種形成方法により形成可能である。凹凸形成層1は、例えば、UV厚盛インキによるスクリーン印刷法やUVインクジェット法、あるいは、離型性凹凸フィルムとベースフィルムとで液状紫外線硬化性樹脂を挟み、離型性凹凸フィルム側からUV照射することで該液状紫外線硬化性樹脂を硬化させ、その後離型性凹凸フィルムを剥離することによってベースフィルム2上に凹凸形成層1を設ける方法、といった形成方法により形成可能である。
また、凹凸形成層1の材料としては、ハードコート層4と同様の紫外線硬化性樹脂を用いることができ、例えば、アクリロイル基またはメタクリロイル基を少なくとも含有する樹脂等を使用することができる。
これらの紫外線硬化性樹脂を使用した凹凸形成方法によれば、熱硬化性樹脂を使用した場合と比較して凹凸形状の再現性が良好となり、また製造時間の短縮が可能となる。 (Unevenness forming layer 1)
The
Moreover, as a material of the uneven |
According to the concavo-convex forming method using these ultraviolet curable resins, the reproducibility of the concavo-convex shape is improved as compared with the case where a thermosetting resin is used, and the manufacturing time can be shortened.
(第二実施形態)
以下、第二実施形態に係るインモールド転写箔の全体構造について、図面を参照しつつ説明する。
図2に示した第二実施形態に係るインモールド転写箔は、ベースフィルム9と、ベースフィルム9の一方の面に離型層3と、紫外線硬化性樹脂を含むハードコート層4と、接着層6とをこの順に備え、ベースフィルム9の他方の面に紫外線遮断層10と、紫外線硬化性樹脂からなる凹凸形成層1を備えた構成をしている。なお、ハードコート層4と接着層6の間には、アンカー層や色インキによる加飾層、金属蒸着層等が形成されていても良く、図2には印刷層5が形成されている場合が例示されている。以下、上記各層の詳細について説明する。 (Second embodiment)
Hereinafter, the overall structure of the in-mold transfer foil according to the second embodiment will be described with reference to the drawings.
The in-mold transfer foil according to the second embodiment shown in FIG. 2 includes abase film 9, a release layer 3 on one surface of the base film 9, a hard coat layer 4 containing an ultraviolet curable resin, and an adhesive layer. 6 in this order, and the other surface of the base film 9 has an ultraviolet blocking layer 10 and an unevenness forming layer 1 made of an ultraviolet curable resin. In addition, between the hard coat layer 4 and the adhesive layer 6, an anchor layer, a decorative layer with color ink, a metal vapor deposition layer, or the like may be formed. In the case where the printed layer 5 is formed in FIG. 2. Is illustrated. Hereinafter, the detail of each said layer is demonstrated.
以下、第二実施形態に係るインモールド転写箔の全体構造について、図面を参照しつつ説明する。
図2に示した第二実施形態に係るインモールド転写箔は、ベースフィルム9と、ベースフィルム9の一方の面に離型層3と、紫外線硬化性樹脂を含むハードコート層4と、接着層6とをこの順に備え、ベースフィルム9の他方の面に紫外線遮断層10と、紫外線硬化性樹脂からなる凹凸形成層1を備えた構成をしている。なお、ハードコート層4と接着層6の間には、アンカー層や色インキによる加飾層、金属蒸着層等が形成されていても良く、図2には印刷層5が形成されている場合が例示されている。以下、上記各層の詳細について説明する。 (Second embodiment)
Hereinafter, the overall structure of the in-mold transfer foil according to the second embodiment will be described with reference to the drawings.
The in-mold transfer foil according to the second embodiment shown in FIG. 2 includes a
(ベースフィルム9)
ベースフィルム9としては、製造及び成形工程で必要な耐熱性、機械的強度、耐溶剤性等があれば、用途に応じて種々の材料を適用できる。ベースフィルム9を形成する材料としては、例えば、ポリエステル系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂、ビニル系樹脂、アクリル系樹脂、セルロース系樹脂等が挙げられるが、耐熱性や機械的強度の観点から、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂を使用することが好ましい。その中でも、特に、ポリエチレンテレフタレートがコストの面から見ても好適に用いられる。 (Base film 9)
As thebase film 9, various materials can be applied depending on the use as long as the base film 9 has heat resistance, mechanical strength, solvent resistance, and the like necessary in the manufacturing and molding processes. Examples of the material for forming the base film 9 include polyester resins, polyamide resins, polyolefin resins, vinyl resins, acrylic resins, and cellulose resins, from the viewpoint of heat resistance and mechanical strength. For example, it is preferable to use polyester resins such as polyethylene terephthalate and polyethylene naphthalate. Among these, polyethylene terephthalate is particularly preferably used from the viewpoint of cost.
ベースフィルム9としては、製造及び成形工程で必要な耐熱性、機械的強度、耐溶剤性等があれば、用途に応じて種々の材料を適用できる。ベースフィルム9を形成する材料としては、例えば、ポリエステル系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂、ビニル系樹脂、アクリル系樹脂、セルロース系樹脂等が挙げられるが、耐熱性や機械的強度の観点から、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂を使用することが好ましい。その中でも、特に、ポリエチレンテレフタレートがコストの面から見ても好適に用いられる。 (Base film 9)
As the
(離型層3)
離型層3の材料としては、必要な離型性を備えた樹脂であれば特に限定されない。第二実施形態に係るインモールド転写箔では、例えば、オレフィン変成したアクリルメラミン樹脂やアクリルウレタン樹脂を用いることが好ましい。また、離型層3の形成方法としては、例えば、周知の印刷法や塗工法を用いることができる。
(ハードコート層4)
ハードコート層4は、転写後にベースフィルム9を剥離した際に、成形品の最表面層となる層である。ハードコート層4の材料としては、紫外線で硬化する紫外線硬化性樹脂を用いることができ、例えば、アクリロイル基またはメタクリロイル基を少なくとも含有する樹脂等が挙げられる。このような紫外線硬化性のハードコート層4であれば、紫外線照射によって直ちに成形品表面を硬化させることができ、成形品の生産効率を向上させることができる。また、第二実施形態に係るインモールド転写箔によれば、ハードコート層4が未硬化の状態で成形し、成形後に完全硬化させる工程を経るため、成形性向上と表面物性向上の両立が可能である。また、ハードコート層4の形成方法としては、例えば、周知の印刷法や塗工法を用いることができる。 (Release layer 3)
The material of therelease layer 3 is not particularly limited as long as it is a resin having necessary release properties. In the in-mold transfer foil according to the second embodiment, for example, an olefin-modified acrylic melamine resin or acrylic urethane resin is preferably used. Moreover, as a formation method of the mold release layer 3, a well-known printing method and coating method can be used, for example.
(Hard coat layer 4)
Thehard coat layer 4 is a layer that becomes the outermost surface layer of the molded product when the base film 9 is peeled off after the transfer. As a material of the hard coat layer 4, an ultraviolet curable resin that is cured by ultraviolet rays can be used, and examples thereof include a resin containing at least an acryloyl group or a methacryloyl group. With such an ultraviolet curable hard coat layer 4, the surface of the molded product can be immediately cured by ultraviolet irradiation, and the production efficiency of the molded product can be improved. In addition, according to the in-mold transfer foil according to the second embodiment, the hard coat layer 4 is molded in an uncured state and undergoes a process of complete curing after the molding, so that both moldability improvement and surface physical property improvement are possible. It is. Moreover, as a formation method of the hard-coat layer 4, a well-known printing method and the coating method can be used, for example.
離型層3の材料としては、必要な離型性を備えた樹脂であれば特に限定されない。第二実施形態に係るインモールド転写箔では、例えば、オレフィン変成したアクリルメラミン樹脂やアクリルウレタン樹脂を用いることが好ましい。また、離型層3の形成方法としては、例えば、周知の印刷法や塗工法を用いることができる。
(ハードコート層4)
ハードコート層4は、転写後にベースフィルム9を剥離した際に、成形品の最表面層となる層である。ハードコート層4の材料としては、紫外線で硬化する紫外線硬化性樹脂を用いることができ、例えば、アクリロイル基またはメタクリロイル基を少なくとも含有する樹脂等が挙げられる。このような紫外線硬化性のハードコート層4であれば、紫外線照射によって直ちに成形品表面を硬化させることができ、成形品の生産効率を向上させることができる。また、第二実施形態に係るインモールド転写箔によれば、ハードコート層4が未硬化の状態で成形し、成形後に完全硬化させる工程を経るため、成形性向上と表面物性向上の両立が可能である。また、ハードコート層4の形成方法としては、例えば、周知の印刷法や塗工法を用いることができる。 (Release layer 3)
The material of the
(Hard coat layer 4)
The
(印刷層5)
印刷層5の材料としては、例えば、適切な色の顔料または染料を着色剤として含有する着色インキを用いることができる。また、印刷層5の形成方法としては、例えば、オフセット印刷法、グラビア印刷法、スクリーン印刷法、インクジェット法等の周知の印刷法を用いることができる。この中でも、多色刷りや階調表現が可能で、且つ、大量生産に適しているという点から、グラビア印刷法で印刷するのが好ましい。また、ハードコート層4との密着性を向上させるために、印刷層5とハードコート層4との間にアンカー層(図示せず)を設けても良い。アンカー層の形成方法としては、例えば、グラビア印刷法、スクリーン印刷法等の印刷法を用いることができるが、膜厚や生産性の点から、グラビア印刷法で印刷するのが望ましい。
(接着層6)
接着層6は、成形品の表面に上述の各層を接着するものである。接着層6の材料としては、成形樹脂7に適した感熱性あるいは感圧性の樹脂を適宜使用することができる。接着層6の形成方法としては、例えば、グラビア印刷法、スクリーン印刷法等の印刷法を用いることができるが、膜厚や生産性の点から、グラビア印刷法で印刷するのが望ましい。なお、印刷層5が成形品に対して充分接着性を有しており、接着層としての効果も備えている場合には、接着層6を設けなくても良い。 (Print layer 5)
As a material of theprinting layer 5, for example, a colored ink containing a pigment or dye of an appropriate color as a colorant can be used. Moreover, as a formation method of the printing layer 5, well-known printing methods, such as an offset printing method, a gravure printing method, a screen printing method, an inkjet method, can be used, for example. Among these, it is preferable to print by a gravure printing method from the viewpoints that multicolor printing and gradation expression are possible and that it is suitable for mass production. An anchor layer (not shown) may be provided between the printing layer 5 and the hard coat layer 4 in order to improve the adhesion with the hard coat layer 4. As a method for forming the anchor layer, for example, a printing method such as a gravure printing method or a screen printing method can be used, but it is desirable to print by a gravure printing method from the viewpoint of film thickness or productivity.
(Adhesive layer 6)
Theadhesive layer 6 adheres each of the above layers to the surface of the molded product. As a material for the adhesive layer 6, a heat-sensitive or pressure-sensitive resin suitable for the molding resin 7 can be appropriately used. As a method for forming the adhesive layer 6, for example, a printing method such as a gravure printing method or a screen printing method can be used, but it is desirable to print by a gravure printing method from the viewpoint of film thickness or productivity. In addition, when the printing layer 5 has sufficient adhesiveness with respect to a molded article and also has an effect as an adhesive layer, the adhesive layer 6 may not be provided.
印刷層5の材料としては、例えば、適切な色の顔料または染料を着色剤として含有する着色インキを用いることができる。また、印刷層5の形成方法としては、例えば、オフセット印刷法、グラビア印刷法、スクリーン印刷法、インクジェット法等の周知の印刷法を用いることができる。この中でも、多色刷りや階調表現が可能で、且つ、大量生産に適しているという点から、グラビア印刷法で印刷するのが好ましい。また、ハードコート層4との密着性を向上させるために、印刷層5とハードコート層4との間にアンカー層(図示せず)を設けても良い。アンカー層の形成方法としては、例えば、グラビア印刷法、スクリーン印刷法等の印刷法を用いることができるが、膜厚や生産性の点から、グラビア印刷法で印刷するのが望ましい。
(接着層6)
接着層6は、成形品の表面に上述の各層を接着するものである。接着層6の材料としては、成形樹脂7に適した感熱性あるいは感圧性の樹脂を適宜使用することができる。接着層6の形成方法としては、例えば、グラビア印刷法、スクリーン印刷法等の印刷法を用いることができるが、膜厚や生産性の点から、グラビア印刷法で印刷するのが望ましい。なお、印刷層5が成形品に対して充分接着性を有しており、接着層としての効果も備えている場合には、接着層6を設けなくても良い。 (Print layer 5)
As a material of the
(Adhesive layer 6)
The
(紫外線遮断層10)
ベースフィルム9の離型層3を形成した面とは反対側の面に設けられる紫外線遮断層10としては、ベースフィルム9及び凹凸形成層1と密着性を有する材料であって、光の波長として200nm以上380nm以下の範囲内の光を吸収若しくは反射することで、紫外線の透過を遮断若しくは減少させる性能を持つ材料を使用できる。
このような紫外線遮断能を有する材料としては、例えば、アルミニウムに代表される金属フィラーや酸化チタン、酸化亜鉛、酸化セシウム等の金属酸化物、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、サリシレート系紫外線吸収剤、オギザニリド系紫外線吸収剤等の有機系紫外線吸収剤、カーボンブラック等の有色顔料を使用できる。ここで、凹凸形成層1の凹凸パターンと印刷層5との位置合わせが必要な場合においては、可視光域で透明性を有する金属酸化物や有機系紫外線吸収剤、又はこれらの紫外線吸収剤を共有結合させた樹脂が好適に用いられる。 (UV blocking layer 10)
Theultraviolet blocking layer 10 provided on the surface opposite to the surface on which the release layer 3 of the base film 9 is formed is a material having adhesiveness with the base film 9 and the concavo-convex forming layer 1, and the wavelength of light By absorbing or reflecting light in the range of 200 nm or more and 380 nm or less, a material having the performance of blocking or reducing the transmission of ultraviolet rays can be used.
Examples of such materials having ultraviolet blocking ability include metal fillers typified by aluminum, metal oxides such as titanium oxide, zinc oxide, and cesium oxide, benzotriazole ultraviolet absorbers, benzophenone ultraviolet absorbers, and cyano. Organic ultraviolet absorbers such as acrylate ultraviolet absorbers, salicylate ultraviolet absorbers, and oxanilide ultraviolet absorbers, and colored pigments such as carbon black can be used. Here, when it is necessary to align the concavo-convex pattern of the concavo-convex forminglayer 1 with the printing layer 5, a metal oxide or an organic ultraviolet absorber having transparency in the visible light region, or these ultraviolet absorbers are used. A covalently bonded resin is preferably used.
ベースフィルム9の離型層3を形成した面とは反対側の面に設けられる紫外線遮断層10としては、ベースフィルム9及び凹凸形成層1と密着性を有する材料であって、光の波長として200nm以上380nm以下の範囲内の光を吸収若しくは反射することで、紫外線の透過を遮断若しくは減少させる性能を持つ材料を使用できる。
このような紫外線遮断能を有する材料としては、例えば、アルミニウムに代表される金属フィラーや酸化チタン、酸化亜鉛、酸化セシウム等の金属酸化物、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、サリシレート系紫外線吸収剤、オギザニリド系紫外線吸収剤等の有機系紫外線吸収剤、カーボンブラック等の有色顔料を使用できる。ここで、凹凸形成層1の凹凸パターンと印刷層5との位置合わせが必要な場合においては、可視光域で透明性を有する金属酸化物や有機系紫外線吸収剤、又はこれらの紫外線吸収剤を共有結合させた樹脂が好適に用いられる。 (UV blocking layer 10)
The
Examples of such materials having ultraviolet blocking ability include metal fillers typified by aluminum, metal oxides such as titanium oxide, zinc oxide, and cesium oxide, benzotriazole ultraviolet absorbers, benzophenone ultraviolet absorbers, and cyano. Organic ultraviolet absorbers such as acrylate ultraviolet absorbers, salicylate ultraviolet absorbers, and oxanilide ultraviolet absorbers, and colored pigments such as carbon black can be used. Here, when it is necessary to align the concavo-convex pattern of the concavo-convex forming
しかしながら、紫外線吸収剤は、一般的に低分子である場合が多く、凹凸形成層1への移行が懸念される。紫外線吸収剤の移行が起こると、凹凸形成時のUV硬化が不十分となり、例えば、凹凸形成層1の密着不良やブロッキング、射出成形時の熱による凹凸形状の変形を引き起こすことがある。
そのため、紫外線遮断層10に使用する樹脂としては、分子内に紫外線吸収性の官能基を有するポリマー(紫外線吸収性ポリマー)の使用が好ましい。具体的には、ベンゾトリアゾール型アクリル系紫外線吸収ポリマー等を使用できる。さらに、ベースフィルム9及び凹凸形成層1との密着性の観点から、紫外線遮断層10の材料としては、水酸基及び紫外線吸収性の官能基を有するアクリルポリマーと、イソシアネート化合物との硬化物とすることが好ましい。 However, UV absorbers are generally low molecular in many cases, and there is a concern about migration to theunevenness forming layer 1. When the ultraviolet absorber is transferred, UV curing at the time of forming the unevenness becomes insufficient, and for example, the unevenness of the unevenness forming layer 1 may be poorly blocked or the uneven shape may be deformed by heat at the time of injection molding.
Therefore, as the resin used for theultraviolet blocking layer 10, it is preferable to use a polymer (ultraviolet absorbing polymer) having an ultraviolet absorbing functional group in the molecule. Specifically, a benzotriazole type acrylic ultraviolet absorbing polymer or the like can be used. Furthermore, from the viewpoint of adhesion between the base film 9 and the unevenness forming layer 1, the material of the ultraviolet blocking layer 10 is a cured product of an acrylic polymer having a hydroxyl group and an ultraviolet absorbing functional group and an isocyanate compound. Is preferred.
そのため、紫外線遮断層10に使用する樹脂としては、分子内に紫外線吸収性の官能基を有するポリマー(紫外線吸収性ポリマー)の使用が好ましい。具体的には、ベンゾトリアゾール型アクリル系紫外線吸収ポリマー等を使用できる。さらに、ベースフィルム9及び凹凸形成層1との密着性の観点から、紫外線遮断層10の材料としては、水酸基及び紫外線吸収性の官能基を有するアクリルポリマーと、イソシアネート化合物との硬化物とすることが好ましい。 However, UV absorbers are generally low molecular in many cases, and there is a concern about migration to the
Therefore, as the resin used for the
このように、紫外線遮断層10の材料を2液硬化系アクリル樹脂とすることで、射出成形時の熱変形に耐えるだけでなく、凹凸形成層1との親和性の高さから密着性が高まる。さらには、イソシアネート化合物は、ベースフィルム9の表面でも反応して共有結合を形成するため、ベースフィルム9との密着性も確保できる。
ここで、イソシアネート化合物とは、例えば、トルエンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、キシリレンジイソシアネート(XDI)、ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)及びこれらのプレポリマーを指す。
紫外線遮断能の目安としては、i線(波長365nm)の透過率が10%未満であることが望ましい。なぜなら、紫外線硬化性樹脂により凹凸形成する際には、凹凸形成層1に対して500mJ/cm2以上1000mJ/cm2以下の範囲内にある光量の紫外線を照射する必要があり、この時、形成されているハードコート層4に対して、射出成形前に凡そ100mJ/cm2以上の紫外線が照射されてしまうと、架橋反応の進行により射出成形時の延伸に追従できず、ハードコート層4にクラックが発生してしまうからである。 Thus, by using a two-component curable acrylic resin as the material of theultraviolet blocking layer 10, not only can it withstand thermal deformation during injection molding, but also the adhesion is enhanced due to its high affinity with the concavo-convex forming layer 1. . Furthermore, since an isocyanate compound reacts also on the surface of the base film 9 to form a covalent bond, adhesion with the base film 9 can be ensured.
Here, the isocyanate compound refers to, for example, toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), xylylene diisocyanate (XDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), and prepolymers thereof.
As a standard of ultraviolet blocking ability, it is desirable that the transmittance of i-line (wavelength 365 nm) is less than 10%. This is because when forming irregularities with an ultraviolet curable resin, it is necessary to irradiate the irregularity-forminglayer 1 with ultraviolet rays having a light amount in the range of 500 mJ / cm 2 or more and 1000 mJ / cm 2 or less. If the hard coat layer 4 is irradiated with ultraviolet rays of about 100 mJ / cm 2 or more before the injection molding, the hard coat layer 4 cannot follow the stretching during the injection molding due to the progress of the crosslinking reaction. This is because cracks are generated.
ここで、イソシアネート化合物とは、例えば、トルエンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、キシリレンジイソシアネート(XDI)、ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)及びこれらのプレポリマーを指す。
紫外線遮断能の目安としては、i線(波長365nm)の透過率が10%未満であることが望ましい。なぜなら、紫外線硬化性樹脂により凹凸形成する際には、凹凸形成層1に対して500mJ/cm2以上1000mJ/cm2以下の範囲内にある光量の紫外線を照射する必要があり、この時、形成されているハードコート層4に対して、射出成形前に凡そ100mJ/cm2以上の紫外線が照射されてしまうと、架橋反応の進行により射出成形時の延伸に追従できず、ハードコート層4にクラックが発生してしまうからである。 Thus, by using a two-component curable acrylic resin as the material of the
Here, the isocyanate compound refers to, for example, toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), xylylene diisocyanate (XDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), and prepolymers thereof.
As a standard of ultraviolet blocking ability, it is desirable that the transmittance of i-line (wavelength 365 nm) is less than 10%. This is because when forming irregularities with an ultraviolet curable resin, it is necessary to irradiate the irregularity-forming
(凹凸形成層1)
凹凸形成層1は、紫外線硬化性樹脂を含んだものであって、各種形成方法により形成可能である。凹凸形成層1は、例えば、UV厚盛インキによるスクリーン印刷法やUVインクジェット法、あるいは、離型性凹凸フィルムとベースフィルム9とで液状紫外線硬化性樹脂を挟み、離型性凹凸フィルム側からUV照射することで該液状紫外線硬化性樹脂を硬化させ、その後離型性凹凸フィルムを剥離することによってベースフィルム9上に凹凸形成層1を設ける方法、といった形成方法により形成可能である。
また、凹凸形成層1の材料としては、ハードコート層4と同様の紫外線硬化性樹脂を用いることができ、例えば、アクリロイル基またはメタクリロイル基を少なくとも含有する樹脂等を使用することができる。
これらの紫外線硬化性樹脂を使用した凹凸形成方法によれば、熱硬化性樹脂を使用した場合と比較して凹凸形状の再現性が良好となり、また製造時間の短縮が可能となる。 (Unevenness forming layer 1)
Theunevenness forming layer 1 includes an ultraviolet curable resin, and can be formed by various forming methods. The concavo-convex forming layer 1 is, for example, a screen printing method using UV thick ink, a UV inkjet method, or a liquid UV curable resin sandwiched between a releasable concavo-convex film and a base film 9, and UV from the releasable concavoconvex film side The liquid ultraviolet curable resin can be cured by irradiation, and then formed by a forming method such as a method of providing the concavo-convex forming layer 1 on the base film 9 by peeling the releasable concavo-convex film.
Moreover, as a material of the uneven |corrugated formation layer 1, the ultraviolet curable resin similar to the hard-coat layer 4 can be used, For example, resin etc. which contain an acryloyl group or a methacryloyl group at least can be used.
According to the concavo-convex forming method using these ultraviolet curable resins, the reproducibility of the concavo-convex shape is improved as compared with the case where a thermosetting resin is used, and the manufacturing time can be shortened.
凹凸形成層1は、紫外線硬化性樹脂を含んだものであって、各種形成方法により形成可能である。凹凸形成層1は、例えば、UV厚盛インキによるスクリーン印刷法やUVインクジェット法、あるいは、離型性凹凸フィルムとベースフィルム9とで液状紫外線硬化性樹脂を挟み、離型性凹凸フィルム側からUV照射することで該液状紫外線硬化性樹脂を硬化させ、その後離型性凹凸フィルムを剥離することによってベースフィルム9上に凹凸形成層1を設ける方法、といった形成方法により形成可能である。
また、凹凸形成層1の材料としては、ハードコート層4と同様の紫外線硬化性樹脂を用いることができ、例えば、アクリロイル基またはメタクリロイル基を少なくとも含有する樹脂等を使用することができる。
これらの紫外線硬化性樹脂を使用した凹凸形成方法によれば、熱硬化性樹脂を使用した場合と比較して凹凸形状の再現性が良好となり、また製造時間の短縮が可能となる。 (Unevenness forming layer 1)
The
Moreover, as a material of the uneven |
According to the concavo-convex forming method using these ultraviolet curable resins, the reproducibility of the concavo-convex shape is improved as compared with the case where a thermosetting resin is used, and the manufacturing time can be shortened.
(第三実施形態)
以下、第三実施形態に係るインモールド転写箔の全体構造について、図面を参照しつつ説明する。
図3に示した第三実施形態に係るインモールド転写箔は、ベースフィルム9と、ベースフィルム9の一方の面に紫外線遮断層11と、離型層3と、紫外線硬化性樹脂を含むハードコート層4と、接着層6とをこの順に備え、ベースフィルム9の他方の面に紫外線硬化性樹脂からなる凹凸形成層1を備えた構成をしている。なお、ハードコート層4と接着層6の間には、アンカー層や色インキによる加飾層、金属蒸着層等が形成されていても良く、図3には印刷層5が形成されている場合が例示されている。以下、上記各層の詳細について説明する。 (Third embodiment)
Hereinafter, the entire structure of the in-mold transfer foil according to the third embodiment will be described with reference to the drawings.
The in-mold transfer foil according to the third embodiment shown in FIG. 3 includes abase film 9, a hard coat containing an ultraviolet blocking layer 11, a release layer 3, and an ultraviolet curable resin on one surface of the base film 9. The layer 4 and the adhesive layer 6 are provided in this order, and the concave-convex forming layer 1 made of an ultraviolet curable resin is provided on the other surface of the base film 9. In addition, between the hard coat layer 4 and the adhesive layer 6, an anchor layer, a decoration layer with color ink, a metal vapor deposition layer, or the like may be formed. In the case where the print layer 5 is formed in FIG. 3. Is illustrated. Hereinafter, the detail of each said layer is demonstrated.
以下、第三実施形態に係るインモールド転写箔の全体構造について、図面を参照しつつ説明する。
図3に示した第三実施形態に係るインモールド転写箔は、ベースフィルム9と、ベースフィルム9の一方の面に紫外線遮断層11と、離型層3と、紫外線硬化性樹脂を含むハードコート層4と、接着層6とをこの順に備え、ベースフィルム9の他方の面に紫外線硬化性樹脂からなる凹凸形成層1を備えた構成をしている。なお、ハードコート層4と接着層6の間には、アンカー層や色インキによる加飾層、金属蒸着層等が形成されていても良く、図3には印刷層5が形成されている場合が例示されている。以下、上記各層の詳細について説明する。 (Third embodiment)
Hereinafter, the entire structure of the in-mold transfer foil according to the third embodiment will be described with reference to the drawings.
The in-mold transfer foil according to the third embodiment shown in FIG. 3 includes a
(ベースフィルム9)
ベースフィルム9としては、製造及び成形工程で必要な耐熱性、機械的強度、耐溶剤性等があれば、用途に応じて種々の材料を適用できる。ベースフィルム9を形成する材料としては、例えば、ポリエステル系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂、ビニル系樹脂、アクリル系樹脂、セルロース系樹脂等が挙げられるが、耐熱性や機械的強度の観点から、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂を使用することが好ましい。その中でも、特に、ポリエチレンテレフタレートがコストの面から見ても好適に用いられる。 (Base film 9)
As thebase film 9, various materials can be applied depending on the use as long as the base film 9 has heat resistance, mechanical strength, solvent resistance, and the like necessary in the manufacturing and molding processes. Examples of the material for forming the base film 9 include polyester resins, polyamide resins, polyolefin resins, vinyl resins, acrylic resins, and cellulose resins, from the viewpoint of heat resistance and mechanical strength. Polyester resins such as polyethylene terephthalate and polyethylene naphthalate are preferably used. Among these, polyethylene terephthalate is particularly preferably used from the viewpoint of cost.
ベースフィルム9としては、製造及び成形工程で必要な耐熱性、機械的強度、耐溶剤性等があれば、用途に応じて種々の材料を適用できる。ベースフィルム9を形成する材料としては、例えば、ポリエステル系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂、ビニル系樹脂、アクリル系樹脂、セルロース系樹脂等が挙げられるが、耐熱性や機械的強度の観点から、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂を使用することが好ましい。その中でも、特に、ポリエチレンテレフタレートがコストの面から見ても好適に用いられる。 (Base film 9)
As the
(紫外線遮断層11)
紫外線遮断層11としては、ベースフィルム9及び離型層3と密着性を有する材料であって、光の波長として200nm以上380nm以下の範囲内の光を吸収若しくは反射することで、紫外線の透過を遮断若しくは減少させる性能を持つ材料を使用できる。
このような紫外線遮断能を有する材料としては、例えば、アルミニウムに代表される金属フィラーや酸化チタン、酸化亜鉛、酸化セシウム等の金属酸化物、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、サリシレート系紫外線吸収剤、オギザニリド系紫外線吸収剤等の有機系紫外線吸収剤、カーボンブラック等の有色顔料を使用できる。ここで、凹凸形成層1の凹凸パターンと印刷層5との位置合わせが必要な場合においては、可視光域で透明性を有する金属酸化物や有機系紫外線吸収剤、又はこれらの紫外線吸収剤を共有結合させた樹脂が好適に用いられる。 (UV blocking layer 11)
The ultraviolet blocking layer 11 is a material having adhesiveness with thebase film 9 and the release layer 3 and absorbs or reflects light having a light wavelength in the range of 200 nm to 380 nm, thereby transmitting ultraviolet light. Materials with the ability to block or reduce can be used.
Examples of such materials having ultraviolet blocking ability include metal fillers typified by aluminum, metal oxides such as titanium oxide, zinc oxide, and cesium oxide, benzotriazole ultraviolet absorbers, benzophenone ultraviolet absorbers, and cyano. Organic ultraviolet absorbers such as acrylate ultraviolet absorbers, salicylate ultraviolet absorbers, and oxanilide ultraviolet absorbers, and colored pigments such as carbon black can be used. Here, when it is necessary to align the concavo-convex pattern of the concavo-convex forminglayer 1 with the printing layer 5, a metal oxide or an organic ultraviolet absorber having transparency in the visible light region, or these ultraviolet absorbers are used. A covalently bonded resin is preferably used.
紫外線遮断層11としては、ベースフィルム9及び離型層3と密着性を有する材料であって、光の波長として200nm以上380nm以下の範囲内の光を吸収若しくは反射することで、紫外線の透過を遮断若しくは減少させる性能を持つ材料を使用できる。
このような紫外線遮断能を有する材料としては、例えば、アルミニウムに代表される金属フィラーや酸化チタン、酸化亜鉛、酸化セシウム等の金属酸化物、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、サリシレート系紫外線吸収剤、オギザニリド系紫外線吸収剤等の有機系紫外線吸収剤、カーボンブラック等の有色顔料を使用できる。ここで、凹凸形成層1の凹凸パターンと印刷層5との位置合わせが必要な場合においては、可視光域で透明性を有する金属酸化物や有機系紫外線吸収剤、又はこれらの紫外線吸収剤を共有結合させた樹脂が好適に用いられる。 (UV blocking layer 11)
The ultraviolet blocking layer 11 is a material having adhesiveness with the
Examples of such materials having ultraviolet blocking ability include metal fillers typified by aluminum, metal oxides such as titanium oxide, zinc oxide, and cesium oxide, benzotriazole ultraviolet absorbers, benzophenone ultraviolet absorbers, and cyano. Organic ultraviolet absorbers such as acrylate ultraviolet absorbers, salicylate ultraviolet absorbers, and oxanilide ultraviolet absorbers, and colored pigments such as carbon black can be used. Here, when it is necessary to align the concavo-convex pattern of the concavo-convex forming
しかしながら、紫外線吸収剤は、一般的に低分子である場合が多く、インモールド転写箔の製造工程中に紫外線吸収剤が他の層へ移行し、不具合を起こすことがある。例えば、ハードコート層4に移行すると硬化不良となり得る。また、接着層6まで移行して表面にブリードアウトすることで成形樹脂との密着不良が発生し得る。また、射出成形時の樹脂温度領域(200℃~300℃)では液状となってしまうため、ゲート付近での印刷柄流れ(ウォッシュアウト)の原因になり得る。
そのため、紫外線遮断層11に使用する樹脂としては、分子内に紫外線吸収性の官能基を有するポリマー(紫外線吸収性ポリマー)の使用が好ましい。具体的には、ベンゾトリアゾール型アクリル系紫外線吸収ポリマー等を使用できる。さらに、ベースフィルム9及び離型層3との密着性の観点から、紫外線遮断層11の材料としては、水酸基及び紫外線吸収性の官能基を有するアクリルポリマーと、イソシアネート化合物との硬化物とすることが好ましい。 However, ultraviolet absorbers are generally low molecular in many cases, and the ultraviolet absorbers may migrate to other layers during the production process of the in-mold transfer foil, causing problems. For example, when thehard coat layer 4 is transferred, curing failure may occur. Further, when the adhesive layer 6 is moved to and bleed out to the surface, adhesion failure with the molding resin may occur. In addition, since it becomes liquid in the resin temperature range (200 ° C. to 300 ° C.) at the time of injection molding, it may cause a print pattern flow (washout) near the gate.
Therefore, as the resin used for the ultraviolet blocking layer 11, it is preferable to use a polymer (ultraviolet absorbing polymer) having an ultraviolet absorbing functional group in the molecule. Specifically, a benzotriazole type acrylic ultraviolet absorbing polymer or the like can be used. Furthermore, from the viewpoint of adhesion between thebase film 9 and the release layer 3, the material of the ultraviolet blocking layer 11 is a cured product of an acrylic polymer having a hydroxyl group and an ultraviolet absorbing functional group and an isocyanate compound. Is preferred.
そのため、紫外線遮断層11に使用する樹脂としては、分子内に紫外線吸収性の官能基を有するポリマー(紫外線吸収性ポリマー)の使用が好ましい。具体的には、ベンゾトリアゾール型アクリル系紫外線吸収ポリマー等を使用できる。さらに、ベースフィルム9及び離型層3との密着性の観点から、紫外線遮断層11の材料としては、水酸基及び紫外線吸収性の官能基を有するアクリルポリマーと、イソシアネート化合物との硬化物とすることが好ましい。 However, ultraviolet absorbers are generally low molecular in many cases, and the ultraviolet absorbers may migrate to other layers during the production process of the in-mold transfer foil, causing problems. For example, when the
Therefore, as the resin used for the ultraviolet blocking layer 11, it is preferable to use a polymer (ultraviolet absorbing polymer) having an ultraviolet absorbing functional group in the molecule. Specifically, a benzotriazole type acrylic ultraviolet absorbing polymer or the like can be used. Furthermore, from the viewpoint of adhesion between the
このように、紫外線遮断層11の材料を2液硬化系アクリル樹脂とすることで、射出成形時の熱変形に耐えるだけでなく、離型層3(アクリル系樹脂)との親和性の高さから密着性が高まる。さらには、イソシアネート化合物は、ベースフィルム9の表面及び離型層3に含まれる水酸基と反応して共有結合を形成するため、各層との密着性も確保できる。
ここで、イソシアネート化合物とは、例えば、トルエンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、キシリレンジイソシアネート(XDI)、ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)及びこれらのプレポリマーを指す。
紫外線遮断能の目安としては、i線(波長365nm)の透過率が10%未満であることが望ましい。なぜなら、紫外線硬化性樹脂により凹凸形成する際には、凹凸形成層1に対して500mJ/cm2以上1000mJ/cm2以下の範囲内にある積算光量の紫外線を照射する必要があり、この時、形成されているハードコート層4に対して、射出成形前に凡そ100mJ/cm2以上の紫外線が照射されてしまうと、架橋反応の進行により射出成形時の延伸に追従できず、ハードコート層4にクラックが発生してしまうからである。 Thus, by using a two-component curable acrylic resin as the material of the ultraviolet blocking layer 11, not only can it withstand thermal deformation during injection molding, but also has a high affinity with the release layer 3 (acrylic resin). Adhesion increases. Furthermore, since the isocyanate compound reacts with the hydroxyl group contained in the surface of thebase film 9 and the release layer 3 to form a covalent bond, adhesion with each layer can be secured.
Here, the isocyanate compound refers to, for example, toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), xylylene diisocyanate (XDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), and prepolymers thereof.
As a standard of ultraviolet blocking ability, it is desirable that the transmittance of i-line (wavelength 365 nm) is less than 10%. This is because, when forming irregularities with an ultraviolet curable resin, it is necessary to irradiate the irregularity-forminglayer 1 with ultraviolet rays having an integrated light amount in the range of 500 mJ / cm 2 or more and 1000 mJ / cm 2 or less. If the hard coat layer 4 formed is irradiated with ultraviolet rays of about 100 mJ / cm 2 or more before injection molding, the hard coat layer 4 cannot follow stretching during injection molding due to the progress of the crosslinking reaction. This is because cracks are generated.
ここで、イソシアネート化合物とは、例えば、トルエンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、キシリレンジイソシアネート(XDI)、ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)及びこれらのプレポリマーを指す。
紫外線遮断能の目安としては、i線(波長365nm)の透過率が10%未満であることが望ましい。なぜなら、紫外線硬化性樹脂により凹凸形成する際には、凹凸形成層1に対して500mJ/cm2以上1000mJ/cm2以下の範囲内にある積算光量の紫外線を照射する必要があり、この時、形成されているハードコート層4に対して、射出成形前に凡そ100mJ/cm2以上の紫外線が照射されてしまうと、架橋反応の進行により射出成形時の延伸に追従できず、ハードコート層4にクラックが発生してしまうからである。 Thus, by using a two-component curable acrylic resin as the material of the ultraviolet blocking layer 11, not only can it withstand thermal deformation during injection molding, but also has a high affinity with the release layer 3 (acrylic resin). Adhesion increases. Furthermore, since the isocyanate compound reacts with the hydroxyl group contained in the surface of the
Here, the isocyanate compound refers to, for example, toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), xylylene diisocyanate (XDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), and prepolymers thereof.
As a standard of ultraviolet blocking ability, it is desirable that the transmittance of i-line (wavelength 365 nm) is less than 10%. This is because, when forming irregularities with an ultraviolet curable resin, it is necessary to irradiate the irregularity-forming
(離型層3)
離型層3の材料としては、必要な離型性を備えた樹脂であれば特に限定されない。第三実施形態に係るインモールド転写箔では、例えば、オレフィン変成したアクリルメラミン樹脂やアクリルウレタン樹脂を用いることが好ましい。また、離型層3の形成方法としては、例えば、周知の印刷法や塗工法を用いることができる。
(ハードコート層4)
ハードコート層4は、転写後にベースフィルム9を剥離した際に、成形品の最表面層となる層である。ハードコート層4の材料としては、紫外線で硬化する紫外線硬化性樹脂を用いることができ、例えば、アクリロイル基又はメタクリロイル基を少なくとも含有する樹脂等が挙げられる。このような紫外線硬化性のハードコート層4であれば、紫外線照射によって直ちに成形品表面を硬化させることができ、成形品の生産効率を向上させることができる。また、第三実施形態に係るインモールド転写箔によれば、ハードコート層4が未硬化の状態で成形し、成形後に完全硬化させる工程を経るため、成形性向上と表面物性向上の両立が可能である。また、ハードコート層4の形成方法としては、例えば、周知の印刷法や塗工法を用いることができる。 (Release layer 3)
The material of therelease layer 3 is not particularly limited as long as it is a resin having necessary release properties. In the in-mold transfer foil according to the third embodiment, for example, an olefin-modified acrylic melamine resin or acrylic urethane resin is preferably used. Moreover, as a formation method of the mold release layer 3, a well-known printing method and coating method can be used, for example.
(Hard coat layer 4)
Thehard coat layer 4 is a layer that becomes the outermost surface layer of the molded product when the base film 9 is peeled off after the transfer. As a material of the hard coat layer 4, an ultraviolet curable resin that is cured by ultraviolet rays can be used, and examples thereof include a resin containing at least an acryloyl group or a methacryloyl group. With such an ultraviolet curable hard coat layer 4, the surface of the molded product can be immediately cured by ultraviolet irradiation, and the production efficiency of the molded product can be improved. In addition, according to the in-mold transfer foil according to the third embodiment, the hard coat layer 4 is molded in an uncured state and is subjected to a process of complete curing after the molding, so that it is possible to improve both moldability and surface physical properties. It is. Moreover, as a formation method of the hard-coat layer 4, a well-known printing method and the coating method can be used, for example.
離型層3の材料としては、必要な離型性を備えた樹脂であれば特に限定されない。第三実施形態に係るインモールド転写箔では、例えば、オレフィン変成したアクリルメラミン樹脂やアクリルウレタン樹脂を用いることが好ましい。また、離型層3の形成方法としては、例えば、周知の印刷法や塗工法を用いることができる。
(ハードコート層4)
ハードコート層4は、転写後にベースフィルム9を剥離した際に、成形品の最表面層となる層である。ハードコート層4の材料としては、紫外線で硬化する紫外線硬化性樹脂を用いることができ、例えば、アクリロイル基又はメタクリロイル基を少なくとも含有する樹脂等が挙げられる。このような紫外線硬化性のハードコート層4であれば、紫外線照射によって直ちに成形品表面を硬化させることができ、成形品の生産効率を向上させることができる。また、第三実施形態に係るインモールド転写箔によれば、ハードコート層4が未硬化の状態で成形し、成形後に完全硬化させる工程を経るため、成形性向上と表面物性向上の両立が可能である。また、ハードコート層4の形成方法としては、例えば、周知の印刷法や塗工法を用いることができる。 (Release layer 3)
The material of the
(Hard coat layer 4)
The
(印刷層5)
印刷層5の材料としては、例えば、適切な色の顔料又は染料を着色剤として含有する着色インキを用いることができる。また、印刷層5の形成方法としては、例えば、オフセット印刷法、グラビア印刷法、スクリーン印刷法、インクジェット法等の周知の印刷法を用いることができる。この中でも、多色刷りや階調表現が可能で、且つ、大量生産に適しているという点から、グラビア印刷法で印刷するのが好ましい。また、ハードコート層4との密着性を向上させるために、印刷層5とハードコート層4との間にアンカー層(図示せず)を設けても良い。アンカー層の形成方法としては、例えば、グラビア印刷法、スクリーン印刷法等の印刷法を用いることができるが、膜厚や生産性の点から、グラビア印刷法で印刷するのが望ましい。
(接着層6)
接着層6は、成形品の表面に上述の各層を接着するものである。接着層6の材料としては、成形樹脂7に適した感熱性あるいは感圧性の樹脂を適宜使用することができる。接着層6の形成方法としては、例えば、グラビア印刷法、スクリーン印刷法等の印刷法を用いることができるが、膜厚や生産性の点から、グラビア印刷法で印刷するのが望ましい。なお、印刷層5が成形品に対して充分接着性を有しており、接着層としての効果も備えている場合には、接着層6を設けなくても良い。 (Print layer 5)
As a material of theprinting layer 5, for example, a colored ink containing an appropriate color pigment or dye as a colorant can be used. Moreover, as a formation method of the printing layer 5, well-known printing methods, such as an offset printing method, a gravure printing method, a screen printing method, an inkjet method, can be used, for example. Among these, it is preferable to print by a gravure printing method from the viewpoints that multicolor printing and gradation expression are possible and that it is suitable for mass production. An anchor layer (not shown) may be provided between the printing layer 5 and the hard coat layer 4 in order to improve the adhesion with the hard coat layer 4. As a method for forming the anchor layer, for example, a printing method such as a gravure printing method or a screen printing method can be used, but it is desirable to print by a gravure printing method from the viewpoint of film thickness or productivity.
(Adhesive layer 6)
Theadhesive layer 6 adheres each of the above layers to the surface of the molded product. As a material for the adhesive layer 6, a heat-sensitive or pressure-sensitive resin suitable for the molding resin 7 can be appropriately used. As a method for forming the adhesive layer 6, for example, a printing method such as a gravure printing method or a screen printing method can be used, but it is desirable to print by a gravure printing method from the viewpoint of film thickness or productivity. In addition, when the printing layer 5 has sufficient adhesiveness with respect to a molded article and also has an effect as an adhesive layer, the adhesive layer 6 may not be provided.
印刷層5の材料としては、例えば、適切な色の顔料又は染料を着色剤として含有する着色インキを用いることができる。また、印刷層5の形成方法としては、例えば、オフセット印刷法、グラビア印刷法、スクリーン印刷法、インクジェット法等の周知の印刷法を用いることができる。この中でも、多色刷りや階調表現が可能で、且つ、大量生産に適しているという点から、グラビア印刷法で印刷するのが好ましい。また、ハードコート層4との密着性を向上させるために、印刷層5とハードコート層4との間にアンカー層(図示せず)を設けても良い。アンカー層の形成方法としては、例えば、グラビア印刷法、スクリーン印刷法等の印刷法を用いることができるが、膜厚や生産性の点から、グラビア印刷法で印刷するのが望ましい。
(接着層6)
接着層6は、成形品の表面に上述の各層を接着するものである。接着層6の材料としては、成形樹脂7に適した感熱性あるいは感圧性の樹脂を適宜使用することができる。接着層6の形成方法としては、例えば、グラビア印刷法、スクリーン印刷法等の印刷法を用いることができるが、膜厚や生産性の点から、グラビア印刷法で印刷するのが望ましい。なお、印刷層5が成形品に対して充分接着性を有しており、接着層としての効果も備えている場合には、接着層6を設けなくても良い。 (Print layer 5)
As a material of the
(Adhesive layer 6)
The
(凹凸形成層1)
ベースフィルム9の離型層3を形成した面とは反対側の面に設けられる凹凸形成層1は、紫外線硬化性樹脂を含んだものであって、各種形成方法により形成可能である。凹凸形成層1は、例えば、UV厚盛インキによるスクリーン印刷法やUVインクジェット法、あるいは、離型性凹凸フィルムとベースフィルム9とで液状紫外線硬化性樹脂を挟み、離型性凹凸フィルム側からUV照射することで該液状紫外線硬化性樹脂を硬化させ、その後離型性凹凸フィルムを剥離することによってベースフィルム9上に凹凸形成層1を設ける方法、といった形成方法により形成可能である。
また、凹凸形成層1の材料としては、ハードコート層4と同様の紫外線硬化性樹脂を用いることができ、例えば、アクリロイル基又はメタクリロイル基を少なくとも含有する樹脂等を使用することができる。
これらの紫外線硬化性樹脂を使用した凹凸形成方法によれば、熱硬化性樹脂を使用した場合と比較して凹凸形状の再現性が良好となり、また製造時間の短縮が可能となる。 (Unevenness forming layer 1)
The concavo-convex forminglayer 1 provided on the surface opposite to the surface on which the release layer 3 is formed of the base film 9 contains an ultraviolet curable resin and can be formed by various forming methods. The concavo-convex forming layer 1 is, for example, a screen printing method using UV thick ink, a UV inkjet method, or a liquid UV curable resin sandwiched between a releasable concavo-convex film and a base film 9, and UV from the releasable concavoconvex film side The liquid ultraviolet curable resin can be cured by irradiation, and then formed by a forming method such as a method of providing the concavo-convex forming layer 1 on the base film 9 by peeling the releasable concavo-convex film.
Moreover, as a material of the uneven |corrugated formation layer 1, the ultraviolet curable resin similar to the hard-coat layer 4 can be used, For example, resin etc. which contain an acryloyl group or a methacryloyl group at least can be used.
According to the concavo-convex forming method using these ultraviolet curable resins, the reproducibility of the concavo-convex shape is improved as compared with the case where a thermosetting resin is used, and the manufacturing time can be shortened.
ベースフィルム9の離型層3を形成した面とは反対側の面に設けられる凹凸形成層1は、紫外線硬化性樹脂を含んだものであって、各種形成方法により形成可能である。凹凸形成層1は、例えば、UV厚盛インキによるスクリーン印刷法やUVインクジェット法、あるいは、離型性凹凸フィルムとベースフィルム9とで液状紫外線硬化性樹脂を挟み、離型性凹凸フィルム側からUV照射することで該液状紫外線硬化性樹脂を硬化させ、その後離型性凹凸フィルムを剥離することによってベースフィルム9上に凹凸形成層1を設ける方法、といった形成方法により形成可能である。
また、凹凸形成層1の材料としては、ハードコート層4と同様の紫外線硬化性樹脂を用いることができ、例えば、アクリロイル基又はメタクリロイル基を少なくとも含有する樹脂等を使用することができる。
これらの紫外線硬化性樹脂を使用した凹凸形成方法によれば、熱硬化性樹脂を使用した場合と比較して凹凸形状の再現性が良好となり、また製造時間の短縮が可能となる。 (Unevenness forming layer 1)
The concavo-convex forming
Moreover, as a material of the uneven |
According to the concavo-convex forming method using these ultraviolet curable resins, the reproducibility of the concavo-convex shape is improved as compared with the case where a thermosetting resin is used, and the manufacturing time can be shortened.
(各実施形態に係るインモールド転写箔の製造方法)
第一から第三までの各実施形態に係るインモールド転写箔は、凹凸形成層1を架橋硬化させるための紫外線照射を、ベースフィルム2、9の凹凸形成層1を形成する面側から行なうことにより製造される。ここで、各実施形態に係るインモールド転写箔の製造方法では、上記紫外線照射を、ベースフィルム2、9の凹凸形成層1を形成する面側から実施していればよく、実施の順序は問わない。つまり、上述の各層を全て積層した後に、ベースフィルム2、9の凹凸形成層1を形成する面側から凹凸形成層1を架橋硬化させるための紫外線照射を行って、各実施形態に係るインモールド転写箔を製造してもよい。あるいは、ベースフィルム2、9の凹凸形成層1を形成する面側から凹凸形成層1を架橋硬化させるための紫外線照射を行った後に、離型層3、ハードコート層4、印刷層5、接着層6を積層して、各実施形態に係るインモールド転写箔を製造してもよい。 (In-mold transfer foil manufacturing method according to each embodiment)
In the in-mold transfer foil according to each of the first to third embodiments, ultraviolet irradiation for crosslinking and curing theunevenness forming layer 1 is performed from the surface side of the base films 2 and 9 on which the unevenness forming layer 1 is formed. Manufactured by. Here, in the manufacturing method of the in-mold transfer foil according to each embodiment, the ultraviolet irradiation may be performed from the side of the base films 2 and 9 on which the unevenness forming layer 1 is formed. Absent. That is, after laminating all the above-described layers, the in-mold according to each embodiment is performed by irradiating ultraviolet rays for crosslinking and curing the concavo-convex forming layer 1 from the side of the base films 2 and 9 on which the concavo-convex forming layer 1 is formed. A transfer foil may be manufactured. Alternatively, after performing ultraviolet irradiation for crosslinking and curing the unevenness forming layer 1 from the side of the base films 2 and 9 on which the unevenness forming layer 1 is formed, the release layer 3, the hard coat layer 4, the printing layer 5, and adhesion The in-mold transfer foil according to each embodiment may be manufactured by laminating the layer 6.
第一から第三までの各実施形態に係るインモールド転写箔は、凹凸形成層1を架橋硬化させるための紫外線照射を、ベースフィルム2、9の凹凸形成層1を形成する面側から行なうことにより製造される。ここで、各実施形態に係るインモールド転写箔の製造方法では、上記紫外線照射を、ベースフィルム2、9の凹凸形成層1を形成する面側から実施していればよく、実施の順序は問わない。つまり、上述の各層を全て積層した後に、ベースフィルム2、9の凹凸形成層1を形成する面側から凹凸形成層1を架橋硬化させるための紫外線照射を行って、各実施形態に係るインモールド転写箔を製造してもよい。あるいは、ベースフィルム2、9の凹凸形成層1を形成する面側から凹凸形成層1を架橋硬化させるための紫外線照射を行った後に、離型層3、ハードコート層4、印刷層5、接着層6を積層して、各実施形態に係るインモールド転写箔を製造してもよい。 (In-mold transfer foil manufacturing method according to each embodiment)
In the in-mold transfer foil according to each of the first to third embodiments, ultraviolet irradiation for crosslinking and curing the
(加飾成形品及びその製造方法)
各層を上述のように積層して、第一から第三までの各実施形態に係るインモールド転写箔を準備する。これらのインモールド転写箔を用いて、インモールド射出成形することにより、表面に凹凸形状を有する成形品を製造することができる。
なお、第一から第三までの各実施形態においては、ハードコート層4と接着層6との間に、所定の絵柄パターンを有する印刷層5がある場合を示したが、印刷層5の他に、例えば、アルミニウム、スズ、インジウム、クロム等の金属蒸着層や、酸化チタン、硫化亜鉛等の透明反射層、多層反射膜、又は熱圧エンボス等によって設けられるホログラム等のエンボス層があってもよい。 (Decorated molded product and its manufacturing method)
Each layer is laminated as described above to prepare in-mold transfer foils according to the first to third embodiments. By using these in-mold transfer foils and performing in-mold injection molding, a molded product having an uneven shape on the surface can be produced.
In each of the first to third embodiments, the case where theprint layer 5 having a predetermined pattern pattern is present between the hard coat layer 4 and the adhesive layer 6 is shown. In addition, for example, there are metal deposited layers such as aluminum, tin, indium and chromium, transparent reflective layers such as titanium oxide and zinc sulfide, multilayer reflective films, or embossed layers such as holograms provided by hot-pressure embossing, etc. Good.
各層を上述のように積層して、第一から第三までの各実施形態に係るインモールド転写箔を準備する。これらのインモールド転写箔を用いて、インモールド射出成形することにより、表面に凹凸形状を有する成形品を製造することができる。
なお、第一から第三までの各実施形態においては、ハードコート層4と接着層6との間に、所定の絵柄パターンを有する印刷層5がある場合を示したが、印刷層5の他に、例えば、アルミニウム、スズ、インジウム、クロム等の金属蒸着層や、酸化チタン、硫化亜鉛等の透明反射層、多層反射膜、又は熱圧エンボス等によって設けられるホログラム等のエンボス層があってもよい。 (Decorated molded product and its manufacturing method)
Each layer is laminated as described above to prepare in-mold transfer foils according to the first to third embodiments. By using these in-mold transfer foils and performing in-mold injection molding, a molded product having an uneven shape on the surface can be produced.
In each of the first to third embodiments, the case where the
以下、インモールド転写箔を用いたインモールド射出成形の工程について、図4及び図5を参照しつつ詳細に説明する。なお、ここでは、第一実施形態に係るインモールド転写箔を例に挙げて説明する。
インモールド射出成形は、まず、インモールド転写箔を射出成形用金型8内へ挿入し、インモールド転写箔の印刷層5側から射出成形用金型8のキャビティ内へ成形樹脂7を射出成形することで、成形樹脂7の表面にインモールド転写箔を転写する。次に、射出した成形樹脂7を冷却した後、射出成形用金型8を開放し、インモールド転写箔のベースフィルム2及び離型層3を剥離して、成形品を取り出すという公知の順序で行なう。 Hereinafter, the in-mold injection molding process using the in-mold transfer foil will be described in detail with reference to FIGS. 4 and 5. Here, the in-mold transfer foil according to the first embodiment will be described as an example.
In mold injection molding, first, an in-mold transfer foil is inserted into an injection mold 8 and amolding resin 7 is injection-molded into the cavity of the injection mold 8 from the printed layer 5 side of the in-mold transfer foil. As a result, the in-mold transfer foil is transferred to the surface of the molding resin 7. Next, after cooling the injected molding resin 7, the injection mold 8 is opened, the base film 2 and the release layer 3 of the in-mold transfer foil are peeled off, and the molded product is taken out in a known order. Do.
インモールド射出成形は、まず、インモールド転写箔を射出成形用金型8内へ挿入し、インモールド転写箔の印刷層5側から射出成形用金型8のキャビティ内へ成形樹脂7を射出成形することで、成形樹脂7の表面にインモールド転写箔を転写する。次に、射出した成形樹脂7を冷却した後、射出成形用金型8を開放し、インモールド転写箔のベースフィルム2及び離型層3を剥離して、成形品を取り出すという公知の順序で行なう。 Hereinafter, the in-mold injection molding process using the in-mold transfer foil will be described in detail with reference to FIGS. 4 and 5. Here, the in-mold transfer foil according to the first embodiment will be described as an example.
In mold injection molding, first, an in-mold transfer foil is inserted into an injection mold 8 and a
射出成形用金型8のキャビティ内へ成形樹脂7を射出した際、射出成形用金型8内に挿入されたインモールド転写箔に圧力がかかることで、そのインモールド転写箔に設けられた凹凸形成層1の形状に対応した変形がベースフィルム2及び転写層(例えば、離型層3、ハードコート層4、印刷層5、接着層6)に生じる(図4参照)。その結果、射出成形用金型8を開放して成形品を取り出した際に、成形品の加飾層(例えば、印刷層5)側の表面に凹凸形成層1のパターンに対応した凹凸形状が付与されることになる(図5参照)。こうして、凹凸形状が付与された成形品を製造する。
最後に、その成形品の表面に紫外線を照射して、ハードコート層4を完全硬化させる。
以上の工程を経て、上述した各実施形態に係るインモールド転写箔を用いた、加飾成形品を製造する。 When themolding resin 7 is injected into the cavity of the injection mold 8, pressure is applied to the in-mold transfer foil inserted into the injection mold 8, and the unevenness provided on the in-mold transfer foil Deformation corresponding to the shape of the formation layer 1 occurs in the base film 2 and the transfer layer (for example, the release layer 3, the hard coat layer 4, the print layer 5, and the adhesive layer 6) (see FIG. 4). As a result, when the injection mold 8 is opened and the molded product is taken out, the concave / convex shape corresponding to the pattern of the concave / convex forming layer 1 is formed on the surface of the molded product on the decorative layer (for example, printing layer 5) side. (See FIG. 5). In this way, a molded article having a concavo-convex shape is produced.
Finally, thehard coat layer 4 is completely cured by irradiating the surface of the molded product with ultraviolet rays.
Through the above steps, a decorative molded product using the in-mold transfer foil according to each embodiment described above is manufactured.
最後に、その成形品の表面に紫外線を照射して、ハードコート層4を完全硬化させる。
以上の工程を経て、上述した各実施形態に係るインモールド転写箔を用いた、加飾成形品を製造する。 When the
Finally, the
Through the above steps, a decorative molded product using the in-mold transfer foil according to each embodiment described above is manufactured.
以下、実施例に基づいて本発明について詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。
<実施例1>
紫外線遮断能を有するベースフィルムとして紫外線吸収性を有するポリエチレンテレフタレート樹脂フィルム(帝人デュポンフィルム製HB)を用い、そのベースフィルムの上に、メラミン樹脂系離型層、紫外線硬化性のアクリル樹脂系ハードコート層を形成した。その後、印刷層としてウレタン系インキ、接着層としてアクリル系樹脂を用いて、グラビア印刷法にて各層を形成した。
次に、ベースフィルムの離型層形成面とは反対側に、凹凸形成層として帝国インキ製紫外線硬化性樹脂(UVFIXスクリーンインキ)を用いて、スクリーン印刷法により凹凸を形成した。その後、凹凸形成層を形成した面側から紫外線を照射(高圧水銀灯 積算光量800mJ/cm2)して凹凸形成層を架橋硬化して、実施例1のインモールド転写箔を得た。
このインモールド転写箔を射出成形用金型内に挿入し、型締めしてPC(ポリカーボネート)/ABS(アクリロニトリル・ブタジエン・スチレン)樹脂を射出成形した。そして、冷却後、射出成形用金型を開放し、インモールド転写箔のベースフィルムを離型層とともに成形品から剥離した。その後、成形品表面に、高圧水銀灯を用いて積算光量1000mJ/cm2の紫外線を照射し、ハードコート層を架橋硬化させた。これにより、成形品表面に凹凸を形成しつつ、高い表面強度を有する実施例1の成形品を得た。 EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited only to a following example.
<Example 1>
Using a polyethylene terephthalate resin film (HB manufactured by Teijin DuPont Films) that absorbs ultraviolet rays as a base film having ultraviolet blocking ability, a melamine resin release layer and an ultraviolet curable acrylic resin hard coat on the base film A layer was formed. Thereafter, each layer was formed by a gravure printing method using urethane-based ink as a printing layer and acrylic resin as an adhesive layer.
Next, unevenness was formed by screen printing on the side opposite to the release layer forming surface of the base film using an ultraviolet curable resin (UVFIX screen ink) made by Teikoku ink as an unevenness forming layer. Thereafter, ultraviolet rays were irradiated from the surface side on which the concavo-convex forming layer was formed (high pressure mercury lamp integrated light amount 800 mJ / cm 2 ) to crosslink and cure the concavo-convex forming layer, whereby the in-mold transfer foil of Example 1 was obtained.
This in-mold transfer foil was inserted into an injection mold and clamped to injection-mold a PC (polycarbonate) / ABS (acrylonitrile butadiene styrene) resin. Then, after cooling, the injection mold was opened, and the base film of the in-mold transfer foil was peeled from the molded product together with the release layer. Thereafter, the surface of the molded product was irradiated with ultraviolet rays having an integrated light quantity of 1000 mJ / cm 2 using a high-pressure mercury lamp, and the hard coat layer was crosslinked and cured. Thereby, the molded article of Example 1 having high surface strength was obtained while forming irregularities on the molded article surface.
<実施例1>
紫外線遮断能を有するベースフィルムとして紫外線吸収性を有するポリエチレンテレフタレート樹脂フィルム(帝人デュポンフィルム製HB)を用い、そのベースフィルムの上に、メラミン樹脂系離型層、紫外線硬化性のアクリル樹脂系ハードコート層を形成した。その後、印刷層としてウレタン系インキ、接着層としてアクリル系樹脂を用いて、グラビア印刷法にて各層を形成した。
次に、ベースフィルムの離型層形成面とは反対側に、凹凸形成層として帝国インキ製紫外線硬化性樹脂(UVFIXスクリーンインキ)を用いて、スクリーン印刷法により凹凸を形成した。その後、凹凸形成層を形成した面側から紫外線を照射(高圧水銀灯 積算光量800mJ/cm2)して凹凸形成層を架橋硬化して、実施例1のインモールド転写箔を得た。
このインモールド転写箔を射出成形用金型内に挿入し、型締めしてPC(ポリカーボネート)/ABS(アクリロニトリル・ブタジエン・スチレン)樹脂を射出成形した。そして、冷却後、射出成形用金型を開放し、インモールド転写箔のベースフィルムを離型層とともに成形品から剥離した。その後、成形品表面に、高圧水銀灯を用いて積算光量1000mJ/cm2の紫外線を照射し、ハードコート層を架橋硬化させた。これにより、成形品表面に凹凸を形成しつつ、高い表面強度を有する実施例1の成形品を得た。 EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited only to a following example.
<Example 1>
Using a polyethylene terephthalate resin film (HB manufactured by Teijin DuPont Films) that absorbs ultraviolet rays as a base film having ultraviolet blocking ability, a melamine resin release layer and an ultraviolet curable acrylic resin hard coat on the base film A layer was formed. Thereafter, each layer was formed by a gravure printing method using urethane-based ink as a printing layer and acrylic resin as an adhesive layer.
Next, unevenness was formed by screen printing on the side opposite to the release layer forming surface of the base film using an ultraviolet curable resin (UVFIX screen ink) made by Teikoku ink as an unevenness forming layer. Thereafter, ultraviolet rays were irradiated from the surface side on which the concavo-convex forming layer was formed (high pressure mercury lamp integrated light amount 800 mJ / cm 2 ) to crosslink and cure the concavo-convex forming layer, whereby the in-mold transfer foil of Example 1 was obtained.
This in-mold transfer foil was inserted into an injection mold and clamped to injection-mold a PC (polycarbonate) / ABS (acrylonitrile butadiene styrene) resin. Then, after cooling, the injection mold was opened, and the base film of the in-mold transfer foil was peeled from the molded product together with the release layer. Thereafter, the surface of the molded product was irradiated with ultraviolet rays having an integrated light quantity of 1000 mJ / cm 2 using a high-pressure mercury lamp, and the hard coat layer was crosslinked and cured. Thereby, the molded article of Example 1 having high surface strength was obtained while forming irregularities on the molded article surface.
<実施例2>
ベースフィルムとしてポリエチレンテレフタレート樹脂フィルムを用い、実施例1と同様にして、ベースフィルム上に離型層、ハードコート層、印刷層、接着層を形成した。
次に、ベースフィルムの離型層形成面とは反対側に、紫外線遮断層として、2液硬化型紫外線吸収ポリマー(新中村化学製バナレジンUVA-55MHB)、硬化剤として日本ポリウレタン製コロネートLを用いて、紫外線遮断層を形成した。
次に、この紫外線遮断層上に、凹凸形成層として帝国インキ製紫外線硬化性樹脂(UVFIXスクリーンインキ)を用いて、スクリーン印刷法により凹凸を形成した。その後、凹凸形成層を形成した面側から紫外線を照射(高圧水銀灯 積算光量800mJ/cm2)して凹凸形成層を架橋硬化して、実施例2のインモールド転写箔を得た。
このインモールド転写箔を射出成形用金型内に挿入し、型締めしてPC/ABS樹脂を射出成形した。そして、冷却後、射出成形用金型を開放し、インモールド転写箔のベースフィルムを離型層とともに成形品から剥離した。その後、成形品表面に、高圧水銀灯を用いて積算光量1000mJ/cm2の紫外線を照射し、ハードコート層を架橋硬化させた。これにより、成形品表面に凹凸を形成しつつ、高い表面強度を有する実施例2の成形品を得た。 <Example 2>
A polyethylene terephthalate resin film was used as the base film, and a release layer, a hard coat layer, a print layer, and an adhesive layer were formed on the base film in the same manner as in Example 1.
Next, on the side opposite to the release layer forming surface of the base film, a two-component curable UV absorbing polymer (Shin Nakamura Chemical Vana Resin UVA-55MHB) is used as the UV blocking layer, and Nippon Polyurethane Coronate L is used as the curing agent. Thus, an ultraviolet blocking layer was formed.
Next, an unevenness was formed on the ultraviolet blocking layer by screen printing using an ultraviolet curable resin (UVFIX screen ink) manufactured by Teikoku ink as an unevenness forming layer. Thereafter, ultraviolet rays were irradiated from the surface side on which the unevenness forming layer was formed (high pressure mercury lamp integrated light amount 800 mJ / cm 2 ), and the unevenness forming layer was crosslinked and cured to obtain an in-mold transfer foil of Example 2.
This in-mold transfer foil was inserted into an injection mold and clamped to inject PC / ABS resin. Then, after cooling, the injection mold was opened, and the base film of the in-mold transfer foil was peeled from the molded product together with the release layer. Thereafter, the surface of the molded product was irradiated with ultraviolet rays having an integrated light quantity of 1000 mJ / cm 2 using a high-pressure mercury lamp, and the hard coat layer was crosslinked and cured. Thereby, the molded product of Example 2 having high surface strength was obtained while forming irregularities on the molded product surface.
ベースフィルムとしてポリエチレンテレフタレート樹脂フィルムを用い、実施例1と同様にして、ベースフィルム上に離型層、ハードコート層、印刷層、接着層を形成した。
次に、ベースフィルムの離型層形成面とは反対側に、紫外線遮断層として、2液硬化型紫外線吸収ポリマー(新中村化学製バナレジンUVA-55MHB)、硬化剤として日本ポリウレタン製コロネートLを用いて、紫外線遮断層を形成した。
次に、この紫外線遮断層上に、凹凸形成層として帝国インキ製紫外線硬化性樹脂(UVFIXスクリーンインキ)を用いて、スクリーン印刷法により凹凸を形成した。その後、凹凸形成層を形成した面側から紫外線を照射(高圧水銀灯 積算光量800mJ/cm2)して凹凸形成層を架橋硬化して、実施例2のインモールド転写箔を得た。
このインモールド転写箔を射出成形用金型内に挿入し、型締めしてPC/ABS樹脂を射出成形した。そして、冷却後、射出成形用金型を開放し、インモールド転写箔のベースフィルムを離型層とともに成形品から剥離した。その後、成形品表面に、高圧水銀灯を用いて積算光量1000mJ/cm2の紫外線を照射し、ハードコート層を架橋硬化させた。これにより、成形品表面に凹凸を形成しつつ、高い表面強度を有する実施例2の成形品を得た。 <Example 2>
A polyethylene terephthalate resin film was used as the base film, and a release layer, a hard coat layer, a print layer, and an adhesive layer were formed on the base film in the same manner as in Example 1.
Next, on the side opposite to the release layer forming surface of the base film, a two-component curable UV absorbing polymer (Shin Nakamura Chemical Vana Resin UVA-55MHB) is used as the UV blocking layer, and Nippon Polyurethane Coronate L is used as the curing agent. Thus, an ultraviolet blocking layer was formed.
Next, an unevenness was formed on the ultraviolet blocking layer by screen printing using an ultraviolet curable resin (UVFIX screen ink) manufactured by Teikoku ink as an unevenness forming layer. Thereafter, ultraviolet rays were irradiated from the surface side on which the unevenness forming layer was formed (high pressure mercury lamp integrated light amount 800 mJ / cm 2 ), and the unevenness forming layer was crosslinked and cured to obtain an in-mold transfer foil of Example 2.
This in-mold transfer foil was inserted into an injection mold and clamped to inject PC / ABS resin. Then, after cooling, the injection mold was opened, and the base film of the in-mold transfer foil was peeled from the molded product together with the release layer. Thereafter, the surface of the molded product was irradiated with ultraviolet rays having an integrated light quantity of 1000 mJ / cm 2 using a high-pressure mercury lamp, and the hard coat layer was crosslinked and cured. Thereby, the molded product of Example 2 having high surface strength was obtained while forming irregularities on the molded product surface.
<実施例3>
ベースフィルムとしてポリエチレンテレフタレート樹脂フィルムを用い、そのベースフィルム上に、紫外線遮断層、メラミン樹脂系離型層、紫外線硬化性のアクリル樹脂系ハードコート層を形成した。ここで、紫外線遮断層として2液硬化型紫外線吸収ポリマー(新中村化学製バナレジンUVA-55MHB)、硬化剤として日本ポリウレタン製コロネートLを用いた。離型層、ハードコート層については、実施例1と同様にして形成した。また、その後、印刷層、接着層を実施例1と同様にグラビア印刷法にて形成した。
次に、ベースフィルムの離型層形成面とは反対側に、凹凸形成層としてUVインクジェット法を使用して凹凸を形成した。なお、使用したUVインクジェット装置の紫外線の光源はLEDであり、凹凸形成層を形成した面側から紫外線を照射して凹凸形成層を架橋硬化させた。このようにして、実施例3のインモールド転写箔を得た。
このインモールド転写箔を射出成形用金型内に挿入し、型締めしてPC/ABS樹脂を射出成形した。そして、冷却後、射出成形用金型を開放し、インモールド転写箔のベースフィルムを離型層とともに成形品から剥離した。その後、成形品表面に、高圧水銀灯を用いて積算光量1000mJ/cm2の紫外線を照射し、ハードコート層を架橋硬化させた。これにより、成形品表面に凹凸を形成しつつ、高い表面強度を有する実施例3の成形品を得た。 <Example 3>
A polyethylene terephthalate resin film was used as the base film, and an ultraviolet blocking layer, a melamine resin release layer, and an ultraviolet curable acrylic resin hard coat layer were formed on the base film. Here, a two-pack curable UV absorbing polymer (Vanaresin UVA-55MHB manufactured by Shin-Nakamura Chemical Co., Ltd.) was used as the UV blocking layer, and Coronate L manufactured by Nippon Polyurethane was used as the curing agent. The release layer and the hard coat layer were formed in the same manner as in Example 1. Thereafter, a printing layer and an adhesive layer were formed by the gravure printing method as in Example 1.
Next, unevenness was formed on the side opposite to the release layer forming surface of the base film by using the UV inkjet method as the unevenness forming layer. The UV light source of the UV inkjet device used was an LED, and the concavo-convex forming layer was crosslinked and cured by irradiating the ultraviolet ray from the surface side on which the concavo-convex forming layer was formed. In this way, an in-mold transfer foil of Example 3 was obtained.
This in-mold transfer foil was inserted into an injection mold and clamped to inject PC / ABS resin. Then, after cooling, the injection mold was opened, and the base film of the in-mold transfer foil was peeled from the molded product together with the release layer. Thereafter, the surface of the molded product was irradiated with ultraviolet rays having an integrated light quantity of 1000 mJ / cm 2 using a high-pressure mercury lamp, and the hard coat layer was crosslinked and cured. Thereby, the molded product of Example 3 having high surface strength was obtained while forming irregularities on the molded product surface.
ベースフィルムとしてポリエチレンテレフタレート樹脂フィルムを用い、そのベースフィルム上に、紫外線遮断層、メラミン樹脂系離型層、紫外線硬化性のアクリル樹脂系ハードコート層を形成した。ここで、紫外線遮断層として2液硬化型紫外線吸収ポリマー(新中村化学製バナレジンUVA-55MHB)、硬化剤として日本ポリウレタン製コロネートLを用いた。離型層、ハードコート層については、実施例1と同様にして形成した。また、その後、印刷層、接着層を実施例1と同様にグラビア印刷法にて形成した。
次に、ベースフィルムの離型層形成面とは反対側に、凹凸形成層としてUVインクジェット法を使用して凹凸を形成した。なお、使用したUVインクジェット装置の紫外線の光源はLEDであり、凹凸形成層を形成した面側から紫外線を照射して凹凸形成層を架橋硬化させた。このようにして、実施例3のインモールド転写箔を得た。
このインモールド転写箔を射出成形用金型内に挿入し、型締めしてPC/ABS樹脂を射出成形した。そして、冷却後、射出成形用金型を開放し、インモールド転写箔のベースフィルムを離型層とともに成形品から剥離した。その後、成形品表面に、高圧水銀灯を用いて積算光量1000mJ/cm2の紫外線を照射し、ハードコート層を架橋硬化させた。これにより、成形品表面に凹凸を形成しつつ、高い表面強度を有する実施例3の成形品を得た。 <Example 3>
A polyethylene terephthalate resin film was used as the base film, and an ultraviolet blocking layer, a melamine resin release layer, and an ultraviolet curable acrylic resin hard coat layer were formed on the base film. Here, a two-pack curable UV absorbing polymer (Vanaresin UVA-55MHB manufactured by Shin-Nakamura Chemical Co., Ltd.) was used as the UV blocking layer, and Coronate L manufactured by Nippon Polyurethane was used as the curing agent. The release layer and the hard coat layer were formed in the same manner as in Example 1. Thereafter, a printing layer and an adhesive layer were formed by the gravure printing method as in Example 1.
Next, unevenness was formed on the side opposite to the release layer forming surface of the base film by using the UV inkjet method as the unevenness forming layer. The UV light source of the UV inkjet device used was an LED, and the concavo-convex forming layer was crosslinked and cured by irradiating the ultraviolet ray from the surface side on which the concavo-convex forming layer was formed. In this way, an in-mold transfer foil of Example 3 was obtained.
This in-mold transfer foil was inserted into an injection mold and clamped to inject PC / ABS resin. Then, after cooling, the injection mold was opened, and the base film of the in-mold transfer foil was peeled from the molded product together with the release layer. Thereafter, the surface of the molded product was irradiated with ultraviolet rays having an integrated light quantity of 1000 mJ / cm 2 using a high-pressure mercury lamp, and the hard coat layer was crosslinked and cured. Thereby, the molded product of Example 3 having high surface strength was obtained while forming irregularities on the molded product surface.
<比較例1>
ベースフィルムとしてポリエチレンテレフタレート樹脂フィルム(東レ製50T60)を用い、ベースフィルム上にメラミン樹脂系離型層、紫外線硬化性のアクリル樹脂系ハードコート層を形成した。その後、印刷層としてウレタン系インキ、接着層としてアクリル系樹脂を用いて、グラビア印刷法にて各層を形成した。
次に、ベースフィルムの離型層形成面とは反対側に、実施例1と同様にして凹凸形成層を形成し、比較例1のインモールド転写箔を得た。
このインモールド転写箔を用いて、実施例1~3と同様に射出成形及び成形品への紫外線の照射を行ない、比較例1の成形品を得た。 <Comparative Example 1>
A polyethylene terephthalate resin film (50T60 manufactured by Toray Industries, Inc.) was used as a base film, and a melamine resin release layer and an ultraviolet curable acrylic resin hard coat layer were formed on the base film. Thereafter, each layer was formed by a gravure printing method using urethane-based ink as a printing layer and acrylic resin as an adhesive layer.
Next, the uneven | corrugated formation layer was formed like Example 1 on the opposite side to the release layer formation surface of a base film, and the in-mold transfer foil of the comparative example 1 was obtained.
Using this in-mold transfer foil, injection molding and ultraviolet irradiation of the molded product were performed in the same manner as in Examples 1 to 3, and a molded product of Comparative Example 1 was obtained.
ベースフィルムとしてポリエチレンテレフタレート樹脂フィルム(東レ製50T60)を用い、ベースフィルム上にメラミン樹脂系離型層、紫外線硬化性のアクリル樹脂系ハードコート層を形成した。その後、印刷層としてウレタン系インキ、接着層としてアクリル系樹脂を用いて、グラビア印刷法にて各層を形成した。
次に、ベースフィルムの離型層形成面とは反対側に、実施例1と同様にして凹凸形成層を形成し、比較例1のインモールド転写箔を得た。
このインモールド転写箔を用いて、実施例1~3と同様に射出成形及び成形品への紫外線の照射を行ない、比較例1の成形品を得た。 <Comparative Example 1>
A polyethylene terephthalate resin film (50T60 manufactured by Toray Industries, Inc.) was used as a base film, and a melamine resin release layer and an ultraviolet curable acrylic resin hard coat layer were formed on the base film. Thereafter, each layer was formed by a gravure printing method using urethane-based ink as a printing layer and acrylic resin as an adhesive layer.
Next, the uneven | corrugated formation layer was formed like Example 1 on the opposite side to the release layer formation surface of a base film, and the in-mold transfer foil of the comparative example 1 was obtained.
Using this in-mold transfer foil, injection molding and ultraviolet irradiation of the molded product were performed in the same manner as in Examples 1 to 3, and a molded product of Comparative Example 1 was obtained.
(比較結果)
比較例1の成形品の外観を検査したところ、実施例1~3の成形品では観察されなかった成形品コーナー部のクラックが大きく発生していた。また、比較例1の成形品の端部では部分的に転写できていない箇所があり、実施例1~3の成形品と比較して、凹凸の転写性も悪いものであった。
ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく各実施形態の改変は当業者にとって自明なことである。 (Comparison result)
When the appearance of the molded product of Comparative Example 1 was inspected, cracks at the corners of the molded product that were not observed in the molded products of Examples 1 to 3 occurred greatly. Further, at the end of the molded product of Comparative Example 1, there was a portion that was not partially transferred, and as compared with the molded products of Examples 1 to 3, the unevenness transferability was poor.
Although the present invention has been described with reference to a limited number of embodiments, the scope of rights is not limited thereto, and modifications of each embodiment based on the above disclosure are obvious to those skilled in the art.
比較例1の成形品の外観を検査したところ、実施例1~3の成形品では観察されなかった成形品コーナー部のクラックが大きく発生していた。また、比較例1の成形品の端部では部分的に転写できていない箇所があり、実施例1~3の成形品と比較して、凹凸の転写性も悪いものであった。
ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく各実施形態の改変は当業者にとって自明なことである。 (Comparison result)
When the appearance of the molded product of Comparative Example 1 was inspected, cracks at the corners of the molded product that were not observed in the molded products of Examples 1 to 3 occurred greatly. Further, at the end of the molded product of Comparative Example 1, there was a portion that was not partially transferred, and as compared with the molded products of Examples 1 to 3, the unevenness transferability was poor.
Although the present invention has been described with reference to a limited number of embodiments, the scope of rights is not limited thereto, and modifications of each embodiment based on the above disclosure are obvious to those skilled in the art.
本発明に係るインモールド転写箔は、家電製品、住宅機器、事務機器、自動車部品等に利用されるパネル部材等の表面保護とその加飾に用いることが可能である。
The in-mold transfer foil according to the present invention can be used for surface protection and decoration of panel members used for home appliances, housing equipment, office equipment, automobile parts and the like.
1…凹凸形成層
2…紫外線遮断能を有するベースフィルム
3…離型層
4…ハードコート層
5…印刷層
6…接着層
7…成形樹脂
8…射出成形用金型
9…ベースフィルム
10…紫外線遮断層
11…紫外線遮断層 DESCRIPTION OFSYMBOLS 1 ... Concave-forming layer 2 ... Base film having ultraviolet blocking ability 3 ... Release layer 4 ... Hard coat layer 5 ... Printing layer 6 ... Adhesive layer 7 ... Molding resin 8 ... Mold for injection molding 9 ... Base film 10 ... Ultraviolet Blocking layer 11 ... UV blocking layer
2…紫外線遮断能を有するベースフィルム
3…離型層
4…ハードコート層
5…印刷層
6…接着層
7…成形樹脂
8…射出成形用金型
9…ベースフィルム
10…紫外線遮断層
11…紫外線遮断層 DESCRIPTION OF
Claims (9)
- ベースフィルムの一方の面に、離型層と、紫外線硬化性樹脂を含むハードコート層と、接着層とをこの順序で備え、前記ベースフィルムの他方の面に、凹凸形成層を備えたインモールド転写箔において、
前記凹凸形成層は、紫外線硬化性樹脂を含んでおり、
前記ハードコート層と前記凹凸形成層との間に、紫外線遮断層を備えたことを特徴とするインモールド転写箔。 An in-mold having a release layer, a hard coat layer containing an ultraviolet curable resin, and an adhesive layer in this order on one surface of the base film, and an unevenness forming layer on the other surface of the base film In transfer foil,
The unevenness forming layer contains an ultraviolet curable resin,
An in-mold transfer foil comprising an ultraviolet blocking layer between the hard coat layer and the unevenness forming layer. - 前記ベースフィルムが前記紫外線遮断層であることを特徴とする請求項1に記載のインモールド転写箔。 The in-mold transfer foil according to claim 1, wherein the base film is the ultraviolet blocking layer.
- 前記紫外線遮断層を、前記ベースフィルムと前記凹凸形成層との間に備えたことを特徴とする請求項1に記載のインモールド転写箔。 The in-mold transfer foil according to claim 1, wherein the ultraviolet blocking layer is provided between the base film and the unevenness forming layer.
- 前記紫外線遮断層を、前記ベースフィルムと前記離型層との間に備えたことを特徴とする請求項1に記載のインモールド転写箔。 The in-mold transfer foil according to claim 1, wherein the ultraviolet blocking layer is provided between the base film and the release layer.
- 前記紫外線遮断層は、水酸基及び紫外線吸収性の官能基を有するアクリルポリマーと、イソシアネート化合物との硬化物であることを特徴とする請求項3または請求項4に記載のインモールド転写箔。 The in-mold transfer foil according to claim 3 or 4, wherein the ultraviolet blocking layer is a cured product of an acrylic polymer having a hydroxyl group and an ultraviolet absorbing functional group and an isocyanate compound.
- 前記ハードコート層と前記接着層との間に、所定の絵柄パターンを有する印刷層をさらに備えたことを特徴とする請求項1から請求項5のいずれか1項に記載のインモールド転写箔。 The in-mold transfer foil according to any one of claims 1 to 5, further comprising a printed layer having a predetermined pattern pattern between the hard coat layer and the adhesive layer.
- 請求項1から請求項6のいずれか1項に記載のインモールド転写箔を製造するための製造方法であって、
前記凹凸形成層を架橋硬化させるための紫外線照射を、前記ベースフィルムの前記凹凸形成層を形成する面側から行なうことを特徴とするインモールド転写箔の製造方法。 A manufacturing method for manufacturing the in-mold transfer foil according to any one of claims 1 to 6,
A method for producing an in-mold transfer foil, wherein ultraviolet irradiation for crosslinking and curing the unevenness forming layer is performed from a surface side of the base film on which the unevenness forming layer is formed. - 請求項1から請求項6のいずれか1項に記載のインモールド転写箔を用いて、インモールド射出成形法で製造したことを特徴とする加飾成形品。 A decorative molded product manufactured by an in-mold injection molding method using the in-mold transfer foil according to any one of claims 1 to 6.
- 請求項1から請求項6のいずれか1項に記載のインモールド転写箔を用いて、インモールド射出成形法で製造した加飾成形品の表面に紫外線を照射して、前記ハードコート層を完全硬化させることを特徴とする加飾成形品の製造方法。 Using the in-mold transfer foil according to any one of claims 1 to 6, the surface of a decorative molded product produced by an in-mold injection molding method is irradiated with ultraviolet rays to completely form the hard coat layer. A method for producing a decorative molded product, characterized by curing.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-215418 | 2013-10-16 | ||
JP2013215418A JP6206074B2 (en) | 2013-10-16 | 2013-10-16 | In-mold transfer foil and manufacturing method thereof, and decorative molded product and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015056433A1 true WO2015056433A1 (en) | 2015-04-23 |
Family
ID=52827890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/005180 WO2015056433A1 (en) | 2013-10-16 | 2014-10-10 | In-mold transfer foil, method for manufacturing same, decorative molded article, and method for manufacturing same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6206074B2 (en) |
TW (1) | TW201532811A (en) |
WO (1) | WO2015056433A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL424746A1 (en) * | 2018-03-02 | 2019-09-09 | Klanad Spółka Z Ograniczoną Odpowiedzialnością | Decorated convex film and method for producing it |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6451452B2 (en) * | 2015-03-30 | 2019-01-16 | 大日本印刷株式会社 | Transfer sheet and decorative resin molded product using the same |
JP6906981B2 (en) * | 2017-03-01 | 2021-07-21 | 大日本印刷株式会社 | Manufacturing method of transfer sheet for three-dimensional molding and decorative resin molded product |
WO2020203659A1 (en) * | 2019-03-29 | 2020-10-08 | 大日本印刷株式会社 | Transfer sheet and method of manufacturing decorative molded product |
EP4223480A4 (en) * | 2020-09-29 | 2024-10-23 | Dainippon Printing Co Ltd | Transfer sheet and method for producing resin molded article using same |
CN113635689B (en) * | 2021-07-19 | 2023-03-21 | 江西水晶光电有限公司 | UV transfer printing process for Fresnel lens textures |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011011378A (en) * | 2009-06-30 | 2011-01-20 | Nissha Printing Co Ltd | Transfer sheet, method of manufacturing transfer sheet, and transfer article |
JP2012035483A (en) * | 2010-08-05 | 2012-02-23 | Chiyoda Gravure Corp | Transfer material for decoration molding |
JP2012183808A (en) * | 2011-03-08 | 2012-09-27 | Toppan Printing Co Ltd | In-mold transfer foil, and molded article using the same |
JP2013099909A (en) * | 2011-11-10 | 2013-05-23 | Nissha Printing Co Ltd | Transfer sheet and method for producing ornament molded article by vacuum pressure bonding method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01120398A (en) * | 1987-11-04 | 1989-05-12 | Navitas Co Ltd | Transfer film for co-molding transfer printing |
JPH09327843A (en) * | 1996-06-07 | 1997-12-22 | Nissha Printing Co Ltd | Production of molded product having uneven surface |
JP4508491B2 (en) * | 2001-09-07 | 2010-07-21 | 大日本印刷株式会社 | Transfer sheet and manufacturing method thereof |
JP2006305898A (en) * | 2005-04-28 | 2006-11-09 | Yoshida Industry Co Ltd | Method for producing resin molding and resin molding |
-
2013
- 2013-10-16 JP JP2013215418A patent/JP6206074B2/en not_active Expired - Fee Related
-
2014
- 2014-10-10 WO PCT/JP2014/005180 patent/WO2015056433A1/en active Application Filing
- 2014-10-14 TW TW103135447A patent/TW201532811A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011011378A (en) * | 2009-06-30 | 2011-01-20 | Nissha Printing Co Ltd | Transfer sheet, method of manufacturing transfer sheet, and transfer article |
JP2012035483A (en) * | 2010-08-05 | 2012-02-23 | Chiyoda Gravure Corp | Transfer material for decoration molding |
JP2012183808A (en) * | 2011-03-08 | 2012-09-27 | Toppan Printing Co Ltd | In-mold transfer foil, and molded article using the same |
JP2013099909A (en) * | 2011-11-10 | 2013-05-23 | Nissha Printing Co Ltd | Transfer sheet and method for producing ornament molded article by vacuum pressure bonding method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL424746A1 (en) * | 2018-03-02 | 2019-09-09 | Klanad Spółka Z Ograniczoną Odpowiedzialnością | Decorated convex film and method for producing it |
Also Published As
Publication number | Publication date |
---|---|
TW201532811A (en) | 2015-09-01 |
JP2015077713A (en) | 2015-04-23 |
JP6206074B2 (en) | 2017-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015056433A1 (en) | In-mold transfer foil, method for manufacturing same, decorative molded article, and method for manufacturing same | |
JP6225642B2 (en) | In-mold transfer foil | |
CN107074009B (en) | Decorative sheet | |
TW201527070A (en) | Decoration film and manufacturing method thereof and manufacturing method of decorated molding article | |
JP6163925B2 (en) | Matte-like transfer film and molded product using the same | |
JP5903942B2 (en) | Decorative transfer film | |
KR101421183B1 (en) | Method for manufacturing an injection-molded object | |
JP6245178B2 (en) | Transfer film, method for producing molded product, and method for producing transfer film | |
KR102207465B1 (en) | Manufacturing method of plastic vehicle accessory parts | |
CN102686377A (en) | Manufacturing method of decorative molding | |
JP7026692B2 (en) | Manufacturing method of molded plastic parts with decorative surface and molded plastic parts with decorative surface | |
JP5891590B2 (en) | Method for producing transfer foil for in-mold, and method for producing molded product | |
JP2013199001A (en) | In-mold transfer foil, decorative molded article, and method of manufacturing decorative molded article | |
JP6260219B2 (en) | Transfer film for in-mold molding and molded product using the same | |
JP3955599B2 (en) | Transfer sheet for mat hard coat and method for producing mat hard coat molded product | |
CN104203572B (en) | The method of mould in-mold transfer films and the described film of manufacture | |
JP5100608B2 (en) | Injection resin transfer substrate and method for producing resin molded product | |
KR20120055587A (en) | Patterning sheet and manufacturing method therefor | |
JP4338512B2 (en) | Transfer foil and method for producing the same, and method for producing simultaneously decorated decorative molded product | |
JP5630186B2 (en) | Transfer foil and manufacturing method thereof | |
JP3493607B2 (en) | Resin molded product and method for producing the same | |
JP6250693B2 (en) | Improved process for producing decorative elements, in particular emblems | |
JP5794033B2 (en) | In-mold transfer foil | |
JP2010280062A (en) | Sheet material, and manufacturing method therefor | |
JP4459610B2 (en) | Method for producing decorative sheet and method for producing simultaneously decorated decorative molded product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14854868 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14854868 Country of ref document: EP Kind code of ref document: A1 |