[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015045975A1 - 基板処理方法および基板処理装置 - Google Patents

基板処理方法および基板処理装置 Download PDF

Info

Publication number
WO2015045975A1
WO2015045975A1 PCT/JP2014/074481 JP2014074481W WO2015045975A1 WO 2015045975 A1 WO2015045975 A1 WO 2015045975A1 JP 2014074481 W JP2014074481 W JP 2014074481W WO 2015045975 A1 WO2015045975 A1 WO 2015045975A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
processing
hydrogen
liquid
inert gas
Prior art date
Application number
PCT/JP2014/074481
Other languages
English (en)
French (fr)
Inventor
矢野 大作
山下 幸福
雅美 村山
山中 弘次
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013206447A external-priority patent/JP6100664B2/ja
Priority claimed from JP2014097459A external-priority patent/JP6415100B2/ja
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Priority to CN201480052961.5A priority Critical patent/CN105593976B/zh
Priority to KR1020167006545A priority patent/KR101914843B1/ko
Priority to US15/023,161 priority patent/US11004674B2/en
Priority to SG11201602220TA priority patent/SG11201602220TA/en
Publication of WO2015045975A1 publication Critical patent/WO2015045975A1/ja
Priority to US17/241,522 priority patent/US11901174B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/24Cleaning or pickling metallic material with solutions or molten salts with neutral solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • H01L21/02071Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers the processing being a delineation, e.g. RIE, of conductive layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/6708Apparatus for fluid treatment for etching for wet etching using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/67086Apparatus for fluid treatment for etching for wet etching with the semiconductor substrates being dipped in baths or vessels
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases

Definitions

  • the present invention relates to a substrate processing method and a substrate processing apparatus for processing a substrate.
  • the present invention relates to a substrate processing method and a substrate processing apparatus used for circuit board cleaning processing, chemical processing, or immersion processing.
  • substrates to be processed include semiconductor wafers, liquid crystal display substrates, plasma display substrates, field emission display substrates, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, photomask substrates, A ceramic substrate is included.
  • cleaning is performed for the purpose of removing fine particles, organic substances, metals, natural oxide films, etc. adhering to the surface of an object to be processed such as a wafer or a substrate, and a high degree of cleanliness is achieved. Achieving and maintaining this is important for maintaining product quality and improving yield.
  • This cleaning is performed, for example, using a chemical solution such as a sulfuric acid / hydrogen peroxide solution mixed solution or a hydrofluoric acid solution, and rinsing with ultrapure water is performed after the cleaning.
  • a chemical solution such as a sulfuric acid / hydrogen peroxide solution mixed solution or a hydrofluoric acid solution
  • a metal wiring serving as a first wiring layer is formed on a substrate, the metal wiring is filled with an insulating material, and the surface of the insulating material covering the metal wiring is planarized by CMP. Then, a procedure is repeated in which a metal wiring serving as a second wiring layer is formed on the surface, the metal wiring is filled with an insulating material, and the surface of the insulating material is flattened by CMP. In such a process, the substrate is cleaned every time the polishing step is completed.
  • an ultrapure water production apparatus including a pretreatment system, a primary pure water system, and a secondary pure water system (hereinafter referred to as a subsystem) is used for the production of ultrapure water.
  • the role of each system in the ultrapure water production system is as follows.
  • the pretreatment system is a process for removing suspended substances and colloidal substances contained in raw water by, for example, coagulation sedimentation or sand filtration.
  • the primary pure water system uses, for example, an ion exchange resin or a reverse osmosis (RO) membrane to remove the ionic components and organic components of the raw water from which the suspended substances have been removed by the pretreatment system. This is a process for obtaining water. As shown in FIG.
  • the subsystem includes an ultraviolet oxidizer (UV), a membrane deaerator (MD), a non-regenerative ion exchanger (eg, cartridge polisher (CP)), and a membrane separator (eg, ultrafiltration).
  • UV ultraviolet oxidizer
  • MD membrane deaerator
  • CP non-regenerative ion exchanger
  • a membrane separator eg, ultrafiltration
  • the concentration of dissolved oxygen contained in the cleaning water is high, a natural oxide film is formed on the wafer surface by the cleaning water, thereby preventing precise control of the film thickness and film quality of the gate oxide film, contact holes, vias, and plugs.
  • the contact resistance such as may increase.
  • the wiring metal is exposed on the surface of the substrate after the polishing process in the multilayer wiring forming process. Since wiring metals such as tungsten (W) and copper (Cu) are easily corroded by oxygen dissolved in water, the thickness of the wiring may be reduced during the cleaning of the substrate with the ultrapure water.
  • the polymer removal liquid touches the air in the processing chamber, and oxygen dissolves in the polymer removal liquid, so that the polymer removal liquid with a high oxygen concentration. Is supplied to the substrate. Even in this case, the metal film (copper film, tungsten film, etc.) on the substrate is oxidized by the dissolved oxygen in the polymer removing solution, and there is a possibility that the performance of the integrated circuit element formed from the substrate is deteriorated.
  • Patent Document 1 As a countermeasure against these problems, the above-described subsystem performs degassing using a membrane deaerator to reduce the amount of gas dissolved in water, but it is described in Patent Document 1 and Patent Document 2 as well.
  • Patent Document 1 In order to reduce dissolved oxygen in water, an inert gas or hydrogen gas is dissolved in degassed ultrapure water.
  • Patent Document 1 also employs a method of replacing the atmosphere near the surface of the substrate to be processed with an inert gas.
  • water is also decomposed and removed by irradiating water with ultraviolet rays using an ultraviolet oxidizer, so that water molecules are also oxidized by this ultraviolet irradiation, producing hydrogen peroxide, an oxidizing substance. Is done. That is, the ultrapure water contains hydrogen peroxide.
  • a semiconductor device having a gate electrode containing a refractory metal such as tungsten is cleaned using a cleaning solution containing hydrogen peroxide, a chemical reaction between the tungsten and the hydrogen peroxide proceeds catalytically. There is a risk of dissolution.
  • Patent Document 3 As a method of removing hydrogen peroxide in water, a method of removing hydrogen peroxide in water using a platinum group metal catalyst such as palladium (Pd) is known as in Patent Document 3. Furthermore, as described in Patent Document 4, a catalyst formed by supporting a platinum group metal on a monolithic organic porous anion exchanger and a water to be treated containing hydrogen peroxide are brought into contact with each other. There is also a method for efficiently decomposing and removing hydrogen peroxide from water. Patent Document 5 discloses a method in which hydrogen is dissolved in oxygen-dissolved water and then the hydrogen-dissolved water is brought into contact with a catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger. In the method described in Patent Document 5, treated water from which dissolved hydrogen peroxide and oxygen are removed with high efficiency can be produced.
  • a platinum group metal catalyst such as palladium (Pd)
  • Patent Document 5 discloses a method in which hydrogen is dissolved in oxygen-dissolved water and then the hydrogen-
  • the thickness of the wiring is further reduced, and there is a concern that slight corrosion of the wiring may deteriorate the performance of the integrated circuit element.
  • hydrofluoric acid is often used as a chemical solution that exhibits not only oxide film removal but also various cleanliness and functionality such as suppression of particulate adhesion and flatness of the wafer surface.
  • hydrofluoric acid may be used for cleaning apparatus members that require extremely high cleanliness. This is because hydrofluoric acid (HF) has the property of removing surface oxides from a substrate such as silicon or silicon-germanium and making the surface hydrophobic.
  • hydrofluoric acid is not used as a stock solution
  • dilute hydrofluoric acid (DHF) obtained by diluting hydrofluoric acid with ultrapure water is used as a cleaning chemical for a semiconductor substrate.
  • the ultrapure water is produced by the above-described ultrapure water production apparatus, and oxygen or hydrogen peroxide in the ultrapure water can be removed or reduced by the techniques described in Patent Documents 1, 2, 4, 5, and the like.
  • the present invention provides a substrate processing method and a substrate processing apparatus that can further suppress corrosion of metal wiring exposed on the substrate surface.
  • One embodiment of the present invention relates to a substrate processing method in which a substrate is disposed in a processing chamber of a substrate processing apparatus and the substrate is processed.
  • a platinum group metal catalyst is installed in the vicinity of the processing chamber or in the processing chamber, an inert gas is filled in the processing chamber in which the substrate is disposed, and hydrogen is added to the liquid to be processed.
  • a hydrogen-dissolved processing solution obtained by passing the solution through a platinum group metal catalyst is supplied into a processing chamber filled with the inert gas, and the substrate is processed with the hydrogen-dissolving processing solution.
  • a substrate processing apparatus having a processing chamber in which a substrate is disposed and a substrate processing liquid for processing the substrate is supplied.
  • This apparatus includes an inert gas filling mechanism for filling an inert gas into a processing chamber in which a substrate is disposed, and a hydrogen that is installed in the vicinity of the processing chamber or in the processing chamber and adds hydrogen to the liquid to be processed.
  • a catalyst unit filled with a platinum group metal catalyst for passing the solution, and the hydrogen solution obtained by passing the hydrogen solution through the platinum group metal catalyst is used as a substrate treatment solution in the processing chamber. It is characterized by supplying.
  • the inert gas is filled in the processing chamber so that the oxygen gas concentration in the processing chamber is 2% or less, and the dissolved hydrogen concentration in the hydrogen solution is adjusted to 8 ⁇ g / L or more.
  • Hydrogen is added to the treatment liquid, and by passing the hydrogen solution through a platinum group metal catalyst, the dissolved oxygen concentration in the hydrogen solution is 2 ⁇ g / L or less, and the hydrogen peroxide concentration in the hydrogen solution is It is desirable to be 2 ⁇ g / L or less.
  • a hydrogen-dissolved treatment solution obtained by passing a hydrogen-dissolved solution (dissolved hydrogen concentration of 8 ⁇ g / L or more) through a platinum group metal catalyst disposed in the vicinity of or in the treatment chamber is treated.
  • a method of filling the processing chamber with an inert gas while supplying the chamber is employed.
  • oxygen and hydrogen peroxide are less than a predetermined value (dissolved oxygen concentration is 2 ⁇ g / L or less, hydrogen peroxide
  • the substrate to be processed can be processed using a hydrogen-dissolved processing solution whose concentration is reduced to 2 ⁇ g / L or less. For this reason, corrosion (metal oxidation and elution) of the wiring exposed on the surface of the substrate to be processed can be further suppressed as compared with the conventional substrate processing apparatus.
  • the diluted chemical solution may be prepared by mixing the hydrogen-dissolving treatment solution and the chemical solution in a pipe or a dilution tank.
  • the diluted chemical prepared in the pipe or in the dilution tank is suppressed or prevented from increasing in oxygen concentration due to contact with air.
  • the hydrogen-dissolving processing solution or the diluting chemical solution can be applied to the substrate. It is possible to suppress or prevent an increase in oxygen concentration in the chemical solution by touching the air. That is, it is possible to apply the hydrogen dissolution treatment liquid or the diluted chemical liquid to the substrate while maintaining the state in which the oxygen concentration is reduced.
  • the atmosphere on the substrate surface can be blocked from the surrounding atmosphere.
  • a blocking member having a surface facing the substrate, the atmosphere on the substrate surface can be blocked from the surrounding atmosphere.
  • an increase in the oxygen concentration of the atmosphere on the substrate surface can be more reliably suppressed or prevented.
  • the amount of inert gas used can be suppressed.
  • Examples of chemicals include hydrofluoric acid (HF), hydrochloric acid (HCl), IPA (isopropyl alcohol), a mixture of hydrofluoric acid and IPA (isopropyl alcohol), ammonium fluoride (NH 4 F), ammonia ( NH 3 ) can be exemplified.
  • hydrofluoric acid hydrochloric acid
  • IPA isopropyl alcohol
  • NH 4 F ammonium fluoride
  • NH 3 ammonia
  • DHF dilute hydrofluoric acid
  • DHF dilute hydrofluoric acid
  • the substrate may have a metal pattern exposed on the surface, and the metal pattern may be a metal wiring.
  • the metal pattern may be a single film of copper, tungsten, or other metal, or may be a multilayer film in which a plurality of metal films are stacked.
  • a laminated film in which a barrier metal film for preventing diffusion is formed on the surface of a copper film can be cited.
  • inert gas is nitrogen gas, but an inert gas such as argon gas or helium gas can also be used.
  • the pipe connected to the processing chamber is structured to include an inner pipe through which the liquid flows and an outer pipe surrounding the inner pipe, and by supplying an inert gas between the inner pipe and the outer pipe, It can be surrounded by an inert gas. Therefore, even when the inner pipe is made of an oxygen permeable material such as a fluororesin, the amount of oxygen that enters the inner pipe through the inner pipe can be reduced. Thereby, it can suppress or prevent that oxygen melt
  • the outer pipe for example, a pipe made of PVC or a fluororesin can be used.
  • the corrosion of the wiring exposed on the substrate surface by the substrate processing liquid can be further suppressed than in the prior art. Therefore, it is possible to provide a substrate processing that hardly degrades the performance of the manufactured integrated circuit element.
  • FIG. 1 It is a schematic diagram which shows the general aspect of the manufacturing apparatus of ultrapure water. It is the figure which showed the typical structure of the substrate processing apparatus which concerns on 1st embodiment.
  • treatment liquid supply pipe 28 ... treatment liquid valve 31 ... ⁇ Spindle 32 ... Peripheral wall 33 ⁇ .... Flat plate part 34 ... Substrate facing surface 39 ... Gas supply pipe 41 ... Gas flow rate adjusting valve 51 ... Chemical solution preparation unit 52 ... Mixing part 53 ... First chemical solution supply pipe 54 ... Chemical liquid valve 55 ... Chemical liquid flow rate adjustment valve 56 ... Chemical liquid tank 57 ... Pump 75 ... Second chemical liquid supply pipe 76 ... Chemical liquid valve 77 ...
  • FIG. 2 shows a schematic configuration of the substrate processing apparatus according to the first embodiment.
  • the substrate processing apparatus 1 according to the first embodiment is a single wafer processing apparatus that processes substrates W one by one.
  • the substrate W is a circular substrate such as a semiconductor wafer.
  • the substrate processing apparatus 1 has one or a plurality of processing chambers 2 partitioned by a partition wall.
  • a spin chuck 3 substrate holding mechanism, substrate holding and rotating mechanism
  • a processing liquid on the upper surface of the substrate W held by the spin chuck 3 and a treatment liquid nozzle 4 for supplying the liquid.
  • the spin chuck 3 includes a disc-shaped spin base 8 (holding base) that is horizontally attached to an upper end of a rotating shaft extending in a vertical direction, a plurality of clamping members 6 disposed on the spin base 8, And a chuck rotation driving mechanism 7 coupled to the rotation shaft.
  • the spin base 8 is a disk-shaped member having a diameter larger than that of the substrate W, for example.
  • the upper surface of the spin base 8 (the surface of the holding base) is a circular plane having a diameter larger than that of the substrate W.
  • the plurality of holding members 6 can hold (hold) one substrate W in a horizontal posture in cooperation with each other on the upper surface of the spin base 8.
  • the substrate W held by the clamping member 6 is rotated around a vertical rotation axis passing through the center by the driving force of the chuck rotation driving mechanism 7.
  • the processing liquid nozzle 4 can discharge a target processing liquid such as a cleaning process or etching onto the upper surface of the substrate W held by the spin chuck 3.
  • the treatment liquid nozzle 4 is attached to the tip of a nozzle arm 19 that extends horizontally.
  • the treatment liquid nozzle 4 is disposed above the spin chuck 3 with its discharge port directed downward.
  • a support shaft 20 extending along the vertical direction is coupled to the nozzle arm 19.
  • the support shaft 20 can swing around its central axis.
  • the support shaft 20 is coupled to a nozzle swing driving mechanism configured by, for example, a motor.
  • the treatment liquid nozzle 4 and the nozzle arm 19 are horizontally moved integrally around the central axis of the support shaft 20 by the driving force of the nozzle swing drive mechanism. Thereby, the processing liquid nozzle 4 can be disposed above the substrate W held by the spin chuck 3, and the processing liquid nozzle 4 can be retracted from above the spin chuck 3.
  • the processing liquid nozzle 4 is swung in a predetermined angle range while supplying the processing liquid droplets from the processing liquid nozzle 4 to the upper surface of the substrate W.
  • the processing liquid supply position on the upper surface of the substrate W can be moved.
  • a treatment liquid supply pipe 27 is connected to the treatment liquid nozzle 4 through a hollow nozzle arm 19 and a support shaft 20.
  • the processing liquid supply pipe 27 is provided with a processing liquid valve 28 for switching between supply and stop of the processing liquid to the processing liquid nozzle 4.
  • a gas supply pipe 39 is inserted into the processing chamber 2.
  • Nitrogen gas which is an example of an inert gas, is supplied into the processing chamber 2 from the gas supply pipe 39.
  • the inert gas is preferably supplied around the substrate W held by the spin chuck 3, particularly in the space between the processing liquid nozzle 4 and the spin chuck 3.
  • the gas supply pipe 39 is provided with a gas valve 18 for switching between supply and stop of supply of the inert gas to the gap, and a gas flow rate adjustment valve 41 for adjusting the supply flow rate of the inert gas to the gap. ing.
  • the opening / closing operations of the processing liquid valve 28, the gas valve 18 and the gas flow rate adjusting valve 41 are controlled by the control unit 5.
  • a valve capable of simultaneously opening and closing and adjusting the flow rate may be used.
  • ultrapure water (liquid to be processed) from the subsystem 9 (see FIG. 1 for details) of the ultrapure water production apparatus is supplied to each processing chamber 2 ( To the cleaning mechanism).
  • the outlet 9b from the ultrapure water (liquid to be processed) circulation pipe 9a of the subsystem 9 and the ultrapure water (liquid to be processed) inlet 1a of each substrate processing apparatus 1 are PVC or PFA mainly used in the semiconductor manufacturing line.
  • a main pipe 10 made of a fluororesin such as PTFE.
  • Each main pipe 10 extends in each substrate processing apparatus 1 and branches, and is connected to a processing liquid supply pipe 27 that communicates with the processing liquid nozzle 4 of each processing chamber 2 in the substrate processing apparatus 1.
  • the processing liquid supply pipe 27 is also made of a fluororesin such as PVC, PFA, or PTFE.
  • a catalyst unit 21 (see FIG. 2) is installed near the ultrapure water inlet 1a of the substrate processing apparatus 1 in the main pipe 10, and further, a membrane separation unit 22 (see FIG. 2) is placed downstream of the catalyst unit 21 in the main pipe 10. ) Is installed.
  • the ultrapure water (treatment liquid) supplied from the main pipe 10 to the catalyst unit 21 is a hydrogen-dissolved treatment liquid having a dissolved hydrogen concentration of 8 ⁇ g / L or more (preferably 15 ⁇ g / L or more, more preferably 66 ⁇ g / L or more). It has been adjusted.
  • the ultrapure water (liquid to be treated) discharged from the subsystem 9 to the main pipe 10 is treated by a hydrogen dissolution treatment apparatus (see FIG. 1) of the subsystem 9 and has a predetermined dissolved hydrogen concentration. It is.
  • the dissolved hydrogen concentration of the hydrogen-dissolved water is not more than 8 ⁇ g / L (preferably 15 ⁇ g / L or more, more preferably 66 ⁇ g / L or more) at the position immediately before the catalyst unit 21 in FIG.
  • Hydrogen is added to the hydrogen-dissolved water so that the dissolved hydrogen concentration of the hydrogen-dissolved water is adjusted to 8 ⁇ g / L or more (preferably 15 ⁇ g / L or more, more preferably 66 ⁇ g / L or more).
  • a hydrogen gas introducing device (not shown) is provided in the piping portion immediately before the catalyst unit 21.
  • the catalyst unit 21 is a platinum group metal catalyst that reduces the dissolved oxygen concentration to 2 ⁇ g / L or less and the hydrogen peroxide concentration to 2 ⁇ g / L or less in the hydrogen-dissolved treatment liquid obtained by passing hydrogen-dissolved water through the catalyst unit 21. It has a filled aspect.
  • a catalyst unit filled with a palladium catalyst or a catalyst unit in which a palladium catalyst is supported on a monolithic organic porous anion exchanger can be mentioned, and more specific examples of the platinum group metal catalyst will be described later. (Refer to the third embodiment).
  • the catalyst unit 21 is located near the ultrapure water inlet 1a (FIG. 3) of the substrate processing apparatus 1 in the main pipe 10, but is not limited to this position. What is necessary is just to be arrange
  • the vicinity of the processing chamber specifically includes the following several positions (first to fifth examples).
  • a catalyst unit 21 is installed on the road.
  • the catalyst unit 21 is installed in the ultrapure water supply path from the outlet 9 b from the ultrapure water circulation pipe 9 a of the subsystem 9 to the ultrapure water inlet 1 a of the substrate processing apparatus 1. .
  • the catalyst unit 21 is installed in the ultrapure water supply path within 10 m (more preferably within 5 m) upstream from the ultrapure water inlet 1 a of the substrate processing apparatus 1.
  • the catalyst unit 21 is installed in the ultrapure water supply path from the ultrapure water inlet 1 a of the substrate processing apparatus 1 to the first branch point 10 a of the main pipe 10 that goes to each processing chamber 2.
  • the catalyst unit 21 is installed in the processing liquid supply pipe 27 connected to each processing chamber 2.
  • the catalyst unit 21 may be located not only in the vicinity of the processing chamber 2 but also in the processing chamber 2.
  • the “inside of the processing chamber” includes the following several positions. . That is, the catalyst unit 21 may be disposed in any one of the hollow support shaft 20, the nozzle arm 19, or the treatment liquid nozzle 4, which is an ultrapure water supply path in the treatment chamber 2 shown in FIG. 2. .
  • the membrane separation unit 22 is arranged in the piping portion from the catalyst unit 21 to the first branch point 10a as shown in FIG. .
  • a microfiltration membrane (MF), an ultrafiltration membrane (UF), or a nanofilter (NF) can be used as the membrane separation unit 22 .
  • a mechanism in which the catalyst unit 21 is provided in the vicinity of the processing chamber 2 or in the processing chamber 2 as described above and the processing chamber 2 is filled with an inert gas.
  • the processing chamber 2 in which the oxygen gas concentration on the surface of the substrate to be processed is reduced to a predetermined value or less by providing the gas valve 18 or the like, a hydrogen-dissolved processing solution in which oxygen and hydrogen peroxide are reduced to a predetermined value or less is provided. It is possible to process the substrate to be processed. For this reason, corrosion of the wiring exposed on the surface of the substrate to be processed can be further suppressed as compared with the conventional substrate processing apparatus.
  • vacuum deaeration As a method for removing oxygen from ultrapure water, there is a method using vacuum deaeration (including membrane deaeration).
  • vacuum deaeration removes all gas components including oxygen (such as nitrogen) from ultrapure water. Therefore, there is a problem that the gas partial pressure becomes low and it becomes easy to draw outside air into the ultrapure water. Since only dissolved oxygen is removed by deoxidation by catalytic reduction, there is an effect that fluctuation of the partial pressure of gas contained in ultrapure water is suppressed and water quality is easily maintained.
  • the catalyst unit 21 is installed in the vicinity of the processing chamber 2 or in the processing chamber 2, and “the vicinity of the processing chamber” or “the inside of the processing chamber” physically includes the place as described above. explained. This place is described in terms of a functional expression. “Near the processing chamber” or “the inside of the processing chamber” means that the dissolved oxygen concentration is 2 ⁇ g / L or less in the processing liquid discharge portion of the processing chamber 2 and the hydrogen peroxide concentration. Is a position where 2 ⁇ g / L or less.
  • the above-described problems can be solved even if the “membrane separation unit (22)” is not installed.
  • the membrane separation unit 22 is installed at the subsequent stage of the catalyst unit 21, the treatment is performed. It is preferable because fine particles can be removed from the substrate processing liquid supplied to the room. Therefore, in this specification, the membrane separation unit 22 is illustrated in the subsequent stage of the catalyst unit 21.
  • ⁇ Deformation mode 1> In the embodiment of FIG. 2 described above, after the dissolved oxygen and hydrogen peroxide are removed from the hydrogen-dissolved water using the means including the catalyst unit 21 and the membrane separation unit 22, the hydrogen-dissolved treatment liquid from which they are removed is respectively Is sent to the processing chamber 2.
  • the embodiment of FIG. 4 can also be adopted in the present invention.
  • means including a catalyst unit 21 and a membrane separation unit 22 is installed for each processing liquid supply pipe 27 disposed in each processing chamber 2. According to this aspect, the means including the catalyst unit 21 and the membrane separation unit 22 can be disposed closer to the processing chamber 2 than in the aspect of FIG.
  • a drain pipe 23 is connected to a pipe portion from the membrane separation unit 22 to the treatment liquid valve 28.
  • a drainage valve 24 for switching between drainage and drainage stop is interposed in the drainage pipe 23.
  • the opening / closing operation of the drain valve 24 is also controlled by the control unit 5.
  • the hydrogen-dissolved processing liquid in the processing liquid supply pipe 27 is drained (blowed) from the drain pipe 23 and then a new hydrogen-dissolving processing liquid is supplied to the substrate W. It is made to supply.
  • the processing liquid nozzle 28 is opened with the position of the processing liquid nozzle 4 being removed from the upper part of the substrate W, and the process liquid supply pipe 27 stays in the processing liquid supply pipe 27.
  • a method for discharging the hydrogen-dissolving treatment liquid can also be used. In this case, the drain pipe 23 and the drain valve 24 are unnecessary.
  • ⁇ Deformation mode 2> In the embodiment of FIG. 2 described above, after removing dissolved oxygen and hydrogen peroxide from the hydrogen-dissolved water using the means including the catalyst unit 21 and the membrane separation unit 22, the hydrogen-dissolved treatment liquid from which they are removed is respectively It is sent to the processing chamber 2.
  • the embodiment of FIG. 5 can also be adopted in the present invention. That is, in this embodiment, a chemical solution is mixed with the hydrogen-dissolved processing solution from which dissolved oxygen and hydrogen peroxide have been removed to prepare a diluted chemical solution, which is supplied to the processing solution nozzle 4. This is effective when a chemical solution that cannot be passed through the catalyst unit 21 is used.
  • a chemical liquid preparation unit 51 is added to the processing liquid supply pipe 27 in the mode shown in FIG.
  • the chemical solution preparation unit 51 is a pipe capable of mixing the hydrogen-dissolved treatment solution from which dissolved oxygen and hydrogen peroxide have been removed using means including the catalyst unit 21 and the membrane separation unit 22 and the chemical solution therein.
  • a mixing section 52 (manifold).
  • the mixing part 52 is connected with a first chemical supply pipe 53 for supplying a chemical.
  • a chemical liquid valve 54 and a chemical liquid flow rate adjustment valve 55 are interposed in the first chemical liquid supply pipe 53.
  • the “chemical solution” means a chemical solution before mixing with the inert gas-dissolved water.
  • chemical solutions include hydrofluoric acid (HF), hydrochloric acid (HCl), IPA (isopropyl alcohol), a mixture of hydrofluoric acid and IPA (isopropyl alcohol), ammonium fluoride (NH 4 F), ammonia ( NH 3 ) can be exemplified.
  • hydrofluoric acid is used as the chemical solution for the purpose of etching
  • hydrofluoric acid and hydrogen-dissolved treatment liquid are mixed (prepared) at a predetermined ratio in the mixing unit 52, and dilute hydrofluoric acid (DHF) is generated. Is done.
  • the chemical liquid valve 54 By opening the chemical liquid valve 54, the chemical liquid having a predetermined flow rate adjusted by the chemical liquid flow rate adjusting valve 55 can be supplied to the mixing unit 52.
  • the chemical liquid valve 54 with the processing liquid valve 28 open the chemical liquid is injected (injected) into the hydrogen-dissolving processing liquid circulating in the mixing section 52 to mix the chemical liquid and the hydrogen-dissolving processing liquid. Can be made. Therefore, a chemical solution diluted to a predetermined ratio can be prepared by adjusting the supply amount of the chemical solution to the mixing unit 52 and the supply amount of the hydrogen dissolution treatment liquid.
  • the hydrogen-dissolved treatment liquid can be supplied as it is to the treatment liquid nozzle 4 as a rinse liquid without mixing the chemical solution with the hydrogen-dissolved treatment liquid.
  • the end of the first chemical solution supply pipe 53 is inserted into a chemical solution tank 56 that stores the chemical solution.
  • the chemical liquid tank 56 is a sealed container, and the internal space of the chemical liquid tank 56 is blocked from the external space.
  • a pump 57 is interposed between the chemical solution valve 54 and the chemical solution tank 56 in the first chemical solution supply pipe 53. Furthermore, it is preferable that a filter and a deaeration unit (not shown) are interposed in the first chemical solution supply pipe 53 on the downstream side of the pump 57.
  • the first chemical liquid supply pipe 53 is divided into two branches downstream of the pump 57: a path toward the chemical liquid valve 54 and the mixing unit 52 and a path toward another processing chamber.
  • a second chemical solution supply pipe 75 is connected to the chemical solution tank 56.
  • a chemical solution from a chemical solution supply source (not shown) is supplied to the chemical solution tank 56 via a chemical solution supply pipe 75.
  • the second chemical liquid supply pipe 75 is provided with a chemical liquid valve 76 for switching supply and stop of supply of the chemical liquid to the chemical liquid tank 56.
  • an unused chemical solution is supplied to the chemical solution tank 56 when the amount of the liquid in the chemical solution tank 56 becomes a predetermined amount or less. Thereby, the chemical tank 56 can be replenished with unused chemical liquid.
  • an inert gas supply pipe 77 is connected to the chemical tank 56.
  • the chemical liquid tank 56 is supplied with an inert gas from an inert gas supply source (not shown) via an inert gas supply pipe 77.
  • the inert gas supply pipe 77 is provided with an inert gas valve 78 for switching between supply and stop of supply of the inert gas to the chemical tank 56.
  • an inert gas is constantly supplied to the chemical tank 56.
  • an inert gas supply means is constituted by the inert gas supply pipe 77 and the inert gas valve 78.
  • the chemical solution in the chemical solution tank 56 is pumped out of the chemical solution tank 56 by the pressure of the inert gas or the suction force of the pump 57 and sent to the first chemical solution supply pipe 53.
  • a filter and a deaeration unit are provided immediately downstream of the pump 57, the chemical liquid pumped out by the pump 57 passes through the filter to remove foreign substances in the liquid.
  • the chemical solution that has passed through the filter is degassed by the degassing unit, and the amount of dissolved oxygen is reduced.
  • a chemical solution with a reduced dissolved oxygen amount can be supplied to the mixing unit 52, and the effects of the present invention can be further enhanced.
  • the installation of the filter and the deaeration unit they may be installed downstream of the pump 57 in the order of the deaeration unit and the filter. Even in this case, the same effect can be obtained.
  • the chemical solution preparation unit 51 is configured in a pipe portion between the catalyst unit 21 and the membrane separation unit 22 in the modification 1.
  • the chemical liquid is injected into the hydrogen-dissolved processing liquid flowing in the mixing unit 52 that is a part of the processing liquid supply pipe 27, and the chemical liquid and the hydrogen-dissolving processing liquid are mixed.
  • the present invention can also take the form of FIG. In other words, a hydrogen-dissolving treatment liquid that circulates in the treatment liquid supply pipe 27 and a chemical solution are introduced into the tank, and the chemical solution is diluted with the hydrogen-dissolving treatment solution and supplied to the treatment liquid nozzle 4. This is effective when a chemical solution that cannot be passed through the catalyst unit 21 is used and when it is difficult to achieve the target dilution rate in the embodiment of FIG. 5 (mixing unit 52 in the pipe).
  • a chemical liquid preparation unit 81 is added to the processing liquid supply pipe 27 in the embodiment shown in FIG.
  • the chemical solution preparation unit 81 receives a hydrogen-dissolved treatment solution from which dissolved oxygen and hydrogen peroxide have been removed using means including the catalyst unit 21 and the membrane separation unit 22 and a chemical solution to prepare a diluted chemical solution.
  • a dilution tank 82 is provided.
  • the chemical solution dilution tank 82 is a closed container, and the internal space of the chemical solution dilution tank 82 is blocked from the external space.
  • a diluted chemical solution supply pipe 83 for supplying the diluted chemical solution is inserted.
  • the other end of the diluted chemical supply pipe 83 is connected to a portion of the processing liquid supply pipe 27 that is downstream from the processing liquid valve 28.
  • the diluted chemical solution supply pipe 83 is provided with a diluted chemical solution valve 84 for switching between supply and stop of supply of the diluted chemical solution to the treatment liquid supply tube 27.
  • a pump 57 is interposed between the diluted chemical solution valve 84 and the chemical solution dilution tank 82 in the diluted chemical solution supply pipe 83. It is preferable that a filter and a deaeration unit (not shown) are interposed in the portion of the diluent supply pipe 83 on the downstream side of the pump 57.
  • the diluting chemical liquid supply pipe 83 is branched into two paths downstream of the pump 57: a path toward the diluting chemical liquid valve 84 and a path toward another processing chamber.
  • a second processing liquid supply pipe 85 for supplying a hydrogen-dissolving processing liquid is inserted into the chemical liquid dilution tank 82.
  • the other end of the second processing liquid supply pipe 85 is connected to a portion of the processing liquid supply pipe 27 that is upstream of the processing liquid valve 28.
  • the second treatment liquid supply pipe 85 is supplied with a treatment liquid valve 86 for switching between supply and stop of supply of the hydrogen dissolution treatment liquid to the chemical dilution tank 82 and a hydrogen dissolution treatment liquid supplied to the chemical dilution tank 82.
  • a processing liquid flow rate adjustment valve 87 for adjusting the flow rate of the liquid.
  • a chemical solution supply pipe 75 is connected to the chemical solution dilution tank 82.
  • a chemical solution from a chemical solution supply source (not shown) is supplied into the chemical solution dilution tank 82 via a chemical solution supply pipe 75.
  • the chemical solution supply pipe 75 includes a chemical solution valve 76 for switching supply and stop of supply of the chemical solution to the chemical solution dilution tank 82, and a chemical solution flow rate adjusting valve 79 for adjusting the chemical solution supplied to the chemical solution dilution tank 82 to a predetermined flow rate. , Is intervening.
  • an inert gas supply pipe 77 is connected to the chemical dilution tank 82.
  • An inert gas from an inert gas supply source (not shown) is supplied to the chemical solution dilution tank 82 via an inert gas supply pipe 77.
  • the inert gas supply pipe 77 is provided with an inert gas valve 78 for switching between supply and stop of supply of the inert gas to the chemical solution dilution tank 82.
  • an inert gas is constantly supplied to the chemical dilution tank 82.
  • the inert gas supply pipe 77 and the inert gas valve 78 constitute an inert gas supply means.
  • a predetermined flow rate of hydrogen-dissolved processing liquid adjusted by the processing liquid flow rate adjustment valve 87 is supplied to the chemical dilution tank 82.
  • the chemical liquid valve 76 without opening the processing liquid valve 28 the chemical liquid having a predetermined flow rate adjusted by the chemical liquid flow rate adjusting valve 79 can be supplied to the chemical liquid dilution tank 82.
  • the chemical solution diluted to a predetermined ratio is adjusted by adjusting the supply amount of the chemical solution and the supply amount of the hydrogen-dissolving treatment liquid by using the treatment liquid flow rate adjustment valve 87 and the chemical solution flow rate adjustment valve 79.
  • the hydrogen-dissolved treatment liquid can be supplied as it is to the treatment liquid nozzle 4 as a rinse liquid without mixing the chemical solution with the hydrogen-dissolved treatment liquid.
  • the diluted chemical solution in the chemical solution dilution tank 82 is pumped out of the chemical solution dilution tank 82 by the pressure of the inert gas or the suction force of the pump 57 and is sent to the diluted chemical solution supply pipe 83.
  • a filter and a deaeration unit are provided immediately downstream of the pump 57, the diluted chemical liquid pumped out by the pump 57 passes through the filter to remove foreign substances in the liquid.
  • the diluted chemical solution that has passed through the filter is degassed by the degassing unit, and the amount of dissolved oxygen is reduced.
  • the filter and the deaeration unit may be installed downstream of the pump 57 in the order of the deaeration unit and the filter. Even in this case, the same effect can be obtained.
  • the other process liquid supply pipe 90 that supplies another process liquid (for example, process water that does not require hydrogen addition, such as ozone water) to the process liquid nozzle 4 is provided.
  • the processing liquid supply pipe 27 may be connected to the downstream side of the processing liquid valve 28.
  • the processing liquid supply pipe 90 is provided with a processing liquid valve 91 for switching between supply and stop of supply of other processing liquids to the processing liquid nozzle 4. By switching the opening / closing operation of each of the processing liquid valve 28, the processing liquid valve 91, and the diluting chemical liquid valve 84 by the control unit 5, the processing liquid can be selected.
  • the blocking plate 11 is a disk-shaped member having a substantially constant thickness.
  • the diameter of the blocking plate 11 is larger than that of the substrate W.
  • the blocking plate 11 is disposed horizontally above the spin chuck 3 so that the central axis thereof is located on the same axis as the rotation axis of the spin chuck 3.
  • the blocking plate 11 has a flat plate portion 33 having a disk shape.
  • the lower surface of the flat plate portion 33 is formed in a plane and is parallel to the upper surface of the substrate W held by the spin chuck 3.
  • the lower surface of the flat plate portion 33 is a substrate facing surface 34 that faces the substrate W held by the spin chuck 3.
  • the substrate facing surface 34 faces the substrate W held by the spin chuck 3 and faces the upper surface of the spin base 8.
  • the outer peripheral portion of the blocking plate 11 is bent downward over the entire circumference to form a cylindrical peripheral wall portion 32.
  • the peripheral wall portion 32 protruding from the periphery of the substrate facing surface 34 toward the spin chuck 3 may be formed.
  • the central portion of the shield plate 11 has a hollow support shaft 31 that supports the shield plate 11, and a treatment liquid supply pipe 27 is inserted into the support shaft 31.
  • a treatment liquid supply pipe 27 is inserted into the support shaft 31.
  • One or more discharge ports are formed in the blocking plate 11 and communicate with the internal space of the support shaft 31.
  • the processing liquid is supplied to the internal space of the support shaft 31 through the processing liquid supply pipe 27. Thereby, the processing liquid can be discharged from the discharge port formed in the blocking plate 11 toward the upper surface portion of the substrate W held by the spin chuck 3.
  • a gas supply pipe 39 is inserted into the support shaft 31.
  • Nitrogen gas which is an example of an inert gas, is supplied from the gas supply pipe 39 to the internal space of the support shaft 31.
  • the inert gas supplied to the internal space of the support shaft 31 is discharged downward from a discharge port (not shown) formed in the blocking plate 11. For this reason, an inert gas can be supplied to the space (gap) between the shielding plate 11 and the substrate W held by the spin chuck 3.
  • the gas supply pipe 39 is provided with a gas valve 18 for switching between supply and stop of supply of the inert gas to the gap, and a gas flow rate adjustment valve 41 for adjusting the supply flow rate of the inert gas to the gap. ing.
  • the support shaft 31 is coupled with a shield plate lifting / lowering drive mechanism (a shield member moving mechanism) and a shield plate rotation drive mechanism.
  • the support shaft 31 and the blocking plate 11 are moved away from the upper surface of the spin base 8 by a processing position where the substrate facing surface 34 approaches the upper surface of the spin base 8 by the driving force of the blocking plate lifting / lowering drive mechanism. Can be moved up and down integrally with the retracted position.
  • the support shaft 31 and the blocking plate 11 can be rotated integrally around the common axis with the substrate W by the driving force of the blocking plate rotation drive mechanism. Thereby, for example, the support shaft 31 and the blocking plate 11 can be rotated almost in synchronization with the rotation of the substrate W by the spin chuck 3 (or with slightly different rotational speeds).
  • the blocking plate 11 is positioned at the processing position while the substrate W is held on the spin chuck 3. Further, when the inert gas is discharged from the discharge port located on the substrate facing surface 34, the inert gas moves outside the space between the upper surface of the substrate W held by the spin chuck 3 and the substrate facing surface 34. It spreads toward. Therefore, the air existing in the space between the upper surface of the substrate W and the substrate facing surface 34 is pushed outward by the inert gas, and is formed between the tip edge of the peripheral wall portion 32 and the upper surface of the spin base 8. It is discharged from the gap. Thereby, the atmosphere between the upper surface of the substrate W and the substrate facing surface 34 can be replaced with an inert gas.
  • the space between the upper surface of the substrate W and the substrate facing surface 34 can be surrounded by the peripheral wall portion 32. It is possible to suppress or prevent the surrounding air from entering the outer peripheral portion of the space. Thereby, after the atmosphere between the upper surface of the substrate W and the substrate facing surface 34 is replaced with an inert gas atmosphere, air enters the space between the upper surface of the substrate W and the substrate facing surface 34, and An increase in the oxygen concentration in the space can be suppressed or prevented.
  • ⁇ Deformation mode 5> The various modes described so far include a mode (nozzle mode) in which the processing liquid nozzle 4 is disposed above the spin check 3 holding the substrate W, or a blocking plate 11 in which a processing liquid discharge port is formed. It was one of the modes (blocking plate mode) arranged above the spin check 3. However, the present invention may include both a nozzle mode and a blocking plate mode as shown in FIG.
  • processing liquid nozzles is not limited to one, and may be provided for each purpose of processing such as cleaning and etching, or for each type of processing liquid.
  • a processing liquid nozzle 4 a for cleaning the peripheral edge of the substrate W may be installed in the processing chamber 2.
  • a treatment liquid nozzle (not shown) for cleaning the blocking plate 11, particularly the substrate facing surface 34, may be provided.
  • a mode in which the processing liquid is supplied to the lower surface of the substrate W through the processing liquid supply pipe 27 inside the spin chuck 3 that is the substrate holding mechanism can also be adopted.
  • the treatment liquid nozzle may be, for example, a two-fluid nozzle that mixes the treatment liquid supplied into the nozzle and an inert gas to generate droplets of the treatment liquid.
  • FIG. 9 is a view showing a preferred mode of piping used in the substrate processing apparatus 1 according to the present invention.
  • the pipe 100 has a double structure, and has an inner pipe 101 through which the processing liquid flows and an outer pipe 102 surrounding the inner pipe 101.
  • the inner pipe 101 is supported inside the outer pipe 102 by a support member (not shown) interposed between the inner pipe 101 and the outer pipe 102.
  • the inner pipe 101 is supported in a non-contact state with respect to the outer pipe 102.
  • a space is formed in a cylindrical shape between the inner pipe 101 and the outer pipe 102.
  • the inner pipe 101 is made of, for example, a fluororesin such as PFA or PTFE having excellent chemical resistance and heat resistance.
  • the fluororesin can transmit oxygen.
  • As the outer pipe for example, a pipe made of PVC or a fluororesin can be used.
  • the outer pipe 102 is connected to an inert gas supply pipe 104 provided with an inert gas valve 103 and an exhaust pipe 106 provided with an exhaust valve 105.
  • an inert gas from an inert gas supply source (not shown) (for example, nitrogen gas) can be supplied into the outer pipe 102 through the inert gas supply pipe 104.
  • an inert gas supply source for example, nitrogen gas
  • the inert gas valve 103 and the inert gas supply pipe 104 constitute an inert gas filling means.
  • gas can be exhausted from between the inner pipe 101 and the outer pipe 102.
  • the inert gas valve 103 When the inert gas valve 103 is opened while the exhaust valve 105 is opened, air can be expelled from between the inner pipe 101 and the outer pipe 102, and the atmosphere during this time can be replaced with an inert gas atmosphere. Thereby, the inner side piping 101 can be surrounded by an inert gas. Then, after the atmosphere between the inner pipe 101 and the outer pipe 102 is replaced with an inert gas atmosphere, the inner pipe 101 is surrounded by the inert gas by closing the inert gas valve 103 and the exhaust valve 105. Can be maintained.
  • the amount of oxygen entering the inner pipe 101 through the pipe wall of the inner pipe 101 can be reduced. Thereby, it can suppress or prevent that oxygen melt
  • the processing chamber 2 of the first embodiment described above has a single wafer cleaning mechanism
  • the processing chamber included in the present invention is not limited to this, and is a processing chamber having a batch cleaning mechanism. May be.
  • FIG. 10 shows an example in which the processing chamber in the mode (modification mode 2) in FIG. 5 is replaced with a processing chamber having a batch type cleaning mechanism.
  • this figure is an example, and not only the above-described modification 2 but also each or all of the above-described other modifications 1 to 6 are applied to the processing chamber 2 equipped with the batch type cleaning mechanism. Can do.
  • symbol is attached
  • the processing chamber 2 of the substrate processing apparatus 1 of the second embodiment has a processing tank 201 for storing a processing liquid and cleaning the substrate W with the processing liquid.
  • a processing tank 201 for storing a processing liquid and cleaning the substrate W with the processing liquid.
  • an overflow unit 202 that receives the processing liquid overflowing from the processing tank 201 is provided.
  • a substrate transport mechanism (not shown) for transporting the substrate W into the processing tank 201 is also provided.
  • a lifter and a chuck are used as the substrate transport mechanism.
  • the chuck conveys a plurality of substrates W from outside the processing chamber 2 to above the processing bath 201 in a state where the plurality of substrates W are collectively held.
  • the lifter receives a plurality of substrates W from the chuck above the processing tank 201, descends in a state where the plurality of substrates W are collectively supported, and is immersed in the processing liquid stored in the processing tank 201. To do.
  • a processing liquid nozzle 203 that supplies a processing liquid into the processing tank 201 is disposed at the bottom of the processing tank 201.
  • a pipe branched from the treatment liquid supply pipe 27 is connected to each treatment liquid nozzle 203.
  • Each treatment liquid nozzle 203 is formed with a large number of ejection openings for ejecting the treatment liquid toward the substrate W.
  • the processing solution is a hydrogen-dissolving processing solution from which dissolved oxygen and hydrogen peroxide have been removed using means including the catalyst unit 21 and the membrane separation unit 22.
  • the ejected processing liquid is stored in the processing tank 201 and overflows from the upper end of the processing tank 201.
  • the substrate W is uniformly washed by the upward flow of the processing liquid at this time.
  • the processing liquid that has been subjected to the cleaning process of the substrate W and overflowed from the upper end of the processing tank 201 is temporarily stored in an overflow section 202 formed on the outer periphery of the processing tank 201.
  • a drain pipe 206 having a resistivity meter 205 is connected to the bottom of the overflow part 202. For this reason, the pure water temporarily stored in the overflow unit 202 passes through the specific resistance meter 205 and is then discharged out of the substrate processing apparatus 1.
  • the specific resistance meter 205 measures the cleanliness of the processing liquid by measuring the specific resistance value of the processing liquid used for cleaning the substrate W, and determines the cleaning degree of the substrate W based on the measured value. Used for purposes.
  • a discharge port 204 having a relatively large diameter is formed at the bottom of the processing tank 201.
  • a drain pipe 207 for discharging the processing liquid to the outside of the substrate processing apparatus 1 is connected to the discharge port 204.
  • a drain valve 208 that is opened and closed by the control unit 5 is interposed in the drain pipe 207.
  • a pair of lid members 209 that operate to open and close the opening of the processing tank 201 are disposed above the processing tank 201.
  • Each lid member 209 has a discharge opening, and a pipe branched from the gas supply pipe 39 is connected to the discharge opening.
  • the inert gas can be supplied into the processing tank 201 covered with the lid member 209 and the space above the processing liquid in the processing tank 201 can be purged with the inert gas.
  • the inert gas discharge port is formed in the lid member 209 without providing the nozzle for supplying the inert gas in the treatment tank 201, so that the space in the vertical direction composed of the processing tank 201 and the lid member 209 is formed. It is possible to prevent the substrate processing apparatus 1 from becoming large. Further, since the distance between the liquid level of the processing liquid stored in the processing tank 201 and the lower surface of the lid member 209 can be reduced, the amount of inert gas supplied into the processing tank 201 can be reduced. Is possible.
  • FIG. 11 is a schematic diagram showing a schematic configuration of a substrate processing apparatus according to the third embodiment of the present invention.
  • hydrofluoric acid HF
  • ultrapure water are mixed to prepare dilute hydrofluoric acid and supply it to the processing chamber 2 of the substrate processing apparatus 1 for the purpose of cleaning or etching the semiconductor wafer.
  • hydrofluoric acid may be abbreviated as “hydrofluoric acid”.
  • buffered hydrofluoric acid (BHF) mainly used for cleaning and etching of the insulating film may be used instead of hydrofluoric acid (HF) as the processing solution stock solution.
  • Buffered hydrofluoric acid is a mixed solution of hydrofluoric acid (HF) and an ammonium fluoride solution.
  • the substrate processing apparatus 1 includes a mixed water storage tank 300 that mixes HF and ultrapure water in a tank to prepare and store dilute hydrofluoric acid (DHF), and an HF in a chemical tank (not shown).
  • HF supply line 301 hydrofluoric acid supply means
  • ultrapure water supply line 302 ultrapure water supply means
  • processing liquid supply line 303 for sending DHF to the processing chamber 2 as a substrate processing liquid.
  • the HF purification unit 304 includes a hydrogen addition device 305 for adding hydrogen to HF, and an oxidant removal device 306 for removing dissolved oxygen and hydrogen peroxide in the HF to which the hydrogen has been added.
  • the concentration of hydrogen to be added is desirably 8 ⁇ g / L or more (preferably 15 ⁇ g / L or more, more preferably 66 ⁇ g / L or more).
  • the oxidizing agent removing device 306 has a mode in which a platinum group metal catalyst is filled.
  • a catalyst unit filled with a palladium catalyst and a catalyst unit in which a palladium catalyst is supported on a monolith can be mentioned. More specific examples of the platinum group metal catalyst will be described later (Fifth Implementation). See form).
  • the HF stock solution is sequentially passed through the hydrogenation device 305 and the oxidant removal device 306, so that the HF is refined into a liquid having a dissolved oxygen concentration of 2 ⁇ g / L or less and a hydrogen peroxide concentration of 2 ⁇ g / L or less.
  • the This is based on the evaluation results shown in the examples described later.
  • the mixed water storage tank 300 is located after the oxidant removing device 306 and the ultrapure water supply line 302, and includes HF purified by the HF purification unit 304 and ultrapure water supplied from the ultrapure water supply line 302. Are mixed in a tank to prepare and store DHF. By adjusting the supply amount of purified HF and the supply amount of ultrapure water to the mixed water storage tank 300, DHF diluted to a predetermined concentration can be produced.
  • the ultrapure water supply line 302 is, for example, a pipe that supplies ultrapure water from a subsystem (see FIG. 1) of the ultrapure water production apparatus as described in the background art section to the mixed water storage tank 300.
  • the ultrapure water supplied from the ultrapure water supply line 302 needs to use ultrapure water in which the dissolved oxygen concentration is reduced to 2 ⁇ g / L or less and the hydrogen peroxide concentration is reduced to 2 ⁇ g / L or less in advance.
  • the mixed water storage tank 300 is formed of a sealed container, and includes an inert gas supply line 307 for supplying an inert gas such as nitrogen gas into the mixed water storage tank 300.
  • an inert gas supply line 307 for supplying an inert gas such as nitrogen gas into the mixed water storage tank 300.
  • the processing chamber 2 holds a substrate to be processed, and a single-wafer processing mechanism that discharges DHF from the nozzle to the substrate to be processed, or a substrate to be processed is accommodated in a processing tank. Any of batch processing mechanisms for supplying DHF and immersing the substrate to be processed can be provided. Further, from the viewpoint of suppressing corrosion and oxidation of the metal on the surface of the object to be processed, an inert gas is filled in the processing chamber 2 during the substrate processing step so that the oxygen gas concentration in the processing chamber 2 is 2% or less. It is desirable to keep it.
  • FIG. 12 is a schematic diagram showing a schematic configuration of a substrate processing apparatus according to the fourth embodiment of the present invention.
  • the same components as those of the third embodiment described above are denoted by the same reference numerals, and the description thereof is omitted.
  • the HF purification unit 304 described above is installed on the processing liquid supply line 303. That is, in the third embodiment, an embodiment in which dissolved oxygen and dissolved hydrogen peroxide are removed from the HF stock solution is shown, but in the fourth embodiment, DHF (diluted fluoride) obtained by diluting the HF stock solution with ultrapure water. An embodiment of removing oxygen and dissolved hydrogen peroxide from (acid) is shown.
  • an HF supply line 301 that supplies a HF stock solution and an ultrapure water supply line 302 that supplies ultrapure water to the mixed water storage tank 300 are directly connected to the mixed water storage tank 300.
  • a HF supply line 301 that supplies a HF stock solution and an ultrapure water supply line 302 that supplies ultrapure water to the mixed water storage tank 300 are directly connected to the mixed water storage tank 300.
  • DHF diluted to a predetermined concentration can be produced.
  • the oxidizing agent removing device 306 is installed on a processing liquid supply line 303 that supplies DHF prepared in the mixed water storage tank 300 to the processing chamber 2. Further, the hydrogen addition device 305 is connected to a treatment liquid supply line between the mixed water storage tank 300 and the oxidant removal device 306.
  • the hydrogenation device 305 By adding hydrogen to DHF with the hydrogenation device 305, hydrogen reacts with dissolved oxygen in the DHF to generate water, so that the dissolved oxygen concentration in the DHF can be reduced. It is desirable for removal of dissolved oxygen that the concentration of hydrogen to be added is 10 ⁇ g / L or more.
  • DHF with reduced dissolved oxygen sequentially passes through the oxidant removing device 306, so that the DHF is purified into a liquid having a dissolved oxygen concentration of 2 ⁇ g / L or less and a hydrogen peroxide concentration of 2 ⁇ g / L or less. . This is based on the evaluation result shown in Example 5 described later.
  • the ultrapure water supplied from the ultrapure water supply line 302 may be ultrapure water in which the dissolved oxygen concentration is not reduced to 2 ⁇ g / L or less and the hydrogen peroxide concentration is not reduced to 2 ⁇ g / L or less. .
  • the oxidant removing device 306 includes a catalyst unit filled with a palladium catalyst and a catalyst unit carrying a palladium catalyst on a monolith.
  • This fourth embodiment has the same effect as the third embodiment.
  • the HF purification unit 304 is disposed near the processing chamber 2 as compared with the third embodiment described above, clean DHF can be supplied into the processing chamber 2.
  • the platinum group metal catalyst examples include a granular ion exchange resin on which a platinum group metal is supported, a metal ion type granular cation exchange resin, a non-particulate organic porous material on which a platinum group metal is supported, or a platinum group.
  • Examples thereof include a non-particulate organic porous ion exchanger carrying a metal.
  • Platinum group metal-supported non-particulate organic porous body platinum group metal-supported non-particulate organic porous ion exchanger
  • As the platinum group metal-supported non-particulate organic porous material fine particles of platinum group metal having an average particle diameter of 1 to 1000 nm are supported on the non-particulate organic porous material.
  • the continuous skeleton has a thickness of 1 to 100 ⁇ m, the average diameter of the continuous pores is 1 to 1000 ⁇ m, the total pore volume is 0.5 to 50 ml / g, and the supported amount of platinum group metal is Examples thereof include a platinum group metal-supported non-particulate organic porous material having a dry state of 0.004 to 20% by weight.
  • platinum group metal-supported non-particulate organic porous ion exchanger platinum group metal fine particles having an average particle diameter of 1 to 1000 nm are supported on the non-particulate organic porous ion exchanger, and the non-particulate organic porous ion exchanger is supported.
  • the ion exchanger is composed of a continuous skeleton phase and a continuous pore phase.
  • the thickness of the continuous skeleton is 1 to 100 ⁇ m
  • the average diameter of the continuous pores is 1 to 1000 ⁇ m
  • the total pore volume is 0.5 to 50 ml / g.
  • the ion exchange capacity per weight in the dry state is 1 to 6 mg equivalent / g, the ion exchange groups are uniformly distributed in the organic porous ion exchanger, and the supported amount of the platinum group metal is in the dry state. And a platinum group metal-supported non-particulate organic porous ion exchanger of 0.004 to 20% by weight.
  • the average diameter of the opening of a non-particulate organic porous body or a non-particulate organic porous ion exchanger is measured by a mercury intrusion method, and indicates the maximum value of a pore distribution curve obtained by the mercury intrusion method. Further, the structure of the non-particulate organic porous body or the non-particulate organic porous ion exchanger and the thickness of the continuous skeleton are determined by SEM observation. The particle diameter of the platinum group metal nanoparticles supported on the non-granular organic porous material or the non-granular organic porous ion exchanger is determined by TEM observation.
  • the platinum group metal-supported non-particulate organic porous body or the platinum group metal-supported non-particulate organic porous ion exchanger has an average particle diameter of 1 to 100 nm compared to the non-particulate organic porous body or non-particulate organic porous ion exchanger. Since the platinum group metal is supported, it shows high hydrogen peroxide decomposition catalytic activity and allows the water to be treated to flow at a space velocity (SV) of 200 to 20000 h ⁇ 1, preferably 2000 to 20000 h ⁇ 1. Can do.
  • SV space velocity
  • the carrier on which the platinum group metal is supported is a non-particulate organic porous body.
  • This non-particulate organic porous exchanger is a monolithic organic porous exchange. Is the body.
  • the carrier on which the platinum group metal is supported is a non-particulate organic porous ion exchanger.
  • the monolithic organic porous body is a porous body having a skeleton formed of an organic polymer and a large number of communication holes serving as a flow path for the reaction solution between the skeletons.
  • the monolithic organic porous ion exchanger is a porous body introduced so that ion exchange groups are uniformly distributed in the skeleton of the monolithic organic porous body.
  • “monolithic organic porous material” is also simply referred to as “monolith”
  • “monolithic organic porous ion exchanger” is also simply referred to as “monolith ion exchanger”, and is also an intermediate in the production of monoliths.
  • the “monolithic organic porous intermediate” that is the body (precursor) is also simply referred to as “monolith intermediate”.
  • Examples of the structure of such a monolith or monolith ion exchanger are disclosed in Japanese Unexamined Patent Application Publication No. 2002-306976 and Japanese Unexamined Patent Application Publication No. 2009-62512, and Japanese Unexamined Patent Application Publication No. 2009-66792.
  • monoliths serving as carriers for the above monolith that is, platinum group metal particles (hereinafter also referred to as monolith (1)) and monolith ion exchangers, that is, monolith ion exchangers serving as the carrier for platinum group metal particles
  • monolith ion exchanger (1) examples include monoliths and monolith ion exchangers having a co-continuous structure disclosed in JP-A-2009-67982.
  • the monolith (1) is a monolith before an ion exchange group is introduced, and has an average thickness composed of an aromatic vinyl polymer containing 0.1 to 5.0 mol% of a crosslinked structural unit among all the structural units.
  • the monolith ion exchanger (1) is a three-dimensional one having an average thickness of 1 to 100 ⁇ m in the dry state made of an aromatic vinyl polymer containing 0.1 to 5.0 mol% of a cross-linking structural unit among all the structural units.
  • a co-continuous structure consisting of a continuous skeleton and three-dimensionally continuous pores having an average diameter of 1 to 1000 ⁇ m in the dry state between the skeletons, and the total pore volume in the dry state is 0 5 to 50 ml / g, having an ion exchange group, an ion exchange capacity per weight in a dry state of 1 to 6 mg equivalent / g, and the ion exchange group in the organic porous ion exchanger It is a monolith ion exchanger that is a monolith ion exchanger that is uniformly distributed.
  • the monolith (1) or monolith ion exchanger (1) has a three-dimensional continuous skeleton having an average thickness of 1 to 100 ⁇ m, preferably 3 to 58 ⁇ m in a dry state, and an average diameter between the skeletons in a dry state.
  • a co-continuous structure consisting of three-dimensionally continuous pores of 1 to 1000 ⁇ m, preferably 15 to 180 ⁇ m, particularly preferably 20 to 150 ⁇ m.
  • the co-continuous structure is a structure in which a continuous skeleton phase and a continuous vacancy phase are intertwined, and both are three-dimensionally continuous.
  • the continuous pores have higher continuity of the pores than the conventional open-cell type monolith and the particle aggregation type monolith, and the size thereof is not biased.
  • the skeleton since the skeleton is thick, the mechanical strength is high.
  • the average diameter of the three-dimensionally continuous pores is less than 1 ⁇ m in the dry state, it is not preferable because the pressure loss at the time of passing the liquid increases, and if it exceeds 1000 ⁇ m, the reaction solution and the monolith or monolith ion exchanger are not preferred. As a result, the contact with the catalyst becomes insufficient, resulting in insufficient catalytic activity. Moreover, when the average thickness of the skeleton is less than 1 ⁇ m in a dry state, the monolith or the monolith ion exchanger is greatly deformed when the liquid is passed at a high flow rate. Furthermore, the contact efficiency between the reaction liquid and the monolith or monolith ion exchanger is lowered, and the catalytic effect is lowered, which is not preferable. On the other hand, if the thickness of the skeleton exceeds 100 ⁇ m, the skeleton becomes too thick, and the pressure loss during liquid passage increases, which is not preferable.
  • the average diameter of the opening of the monolith (1) in the dry state, the average diameter of the opening of the monolith ion exchanger (1) and the opening of the monolith intermediate (1) in the dry state obtained by the I treatment in the production of the monolith described below The average diameter is measured by the mercury intrusion method and refers to the maximum value of the pore distribution curve obtained by the mercury intrusion method.
  • the average thickness of the skeleton of the monolith (1) or the monolith ion exchanger (1) in the dry state is determined by SEM observation of the dry monolith (1) or the monolith ion exchanger (1).
  • the SEM observation of the dried monolith (1) or monolith ion exchanger (1) is performed at least three times, the thickness of the skeleton in the obtained image is measured, and the average value thereof is calculated as the average thickness.
  • the skeleton has a rod-like shape and a circular cross-sectional shape, but may have a cross-section with a different diameter such as an elliptical cross-sectional shape.
  • the thickness in this case is the average of the minor axis and the major axis.
  • the total pore volume per weight of the monolith (1) or the monolith ion exchanger (1) in a dry state is 0.5 to 50 ml / g. If the total pore volume is less than 0.5 ml / g, the pressure loss at the time of liquid passing is increased, which is not preferable. Further, the permeation amount per unit cross-sectional area is decreased, and the processing amount is decreased. Therefore, it is not preferable. On the other hand, if the total pore volume exceeds 50 ml / g, the mechanical strength is lowered, and the monolith or the monolith ion exchanger is greatly deformed particularly when the liquid is passed at a high flow rate.
  • the catalyst efficiency is also lowered, which is not preferable. If the three-dimensionally continuous pore size and total pore volume are within the above ranges, the contact with the reaction solution is extremely uniform, the contact area is large, and the solution can be passed under a low pressure loss. .
  • the material constituting the skeleton comprises 0.1 to 5 mol%, preferably 0.5 to 3.0 mol% of a crosslinked structural unit in all the structural units. It is an aromatic vinyl polymer containing and is hydrophobic. If the cross-linking structural unit is less than 0.1 mol%, the mechanical strength is insufficient, which is not preferable. On the other hand, if it exceeds 5 mol%, the structure of the porous body tends to deviate from the bicontinuous structure.
  • aromatic vinyl polymer For example, a polystyrene, poly ((alpha) -methylstyrene), polyvinyl toluene, polyvinyl benzyl chloride, polyvinyl biphenyl, polyvinyl naphthalene etc. are mentioned.
  • the polymer may be a polymer obtained by copolymerizing a single vinyl monomer and a crosslinking agent, a polymer obtained by polymerizing a plurality of vinyl monomers and a crosslinking agent, or a blend of two or more types of polymers. It may be what was done.
  • the styrene-divinylbenzene copolymer has the advantage of being easy to form a co-continuous structure, easy to introduce ion-exchange groups, high mechanical strength, and high stability to acid or alkali.
  • a polymer or a vinylbenzyl chloride-divinylbenzene copolymer is preferred.
  • the introduced ion exchange groups are uniformly distributed not only on the surface of the monolith but also within the skeleton of the monolith.
  • “ion exchange groups are uniformly distributed” means that the distribution of ion exchange groups is uniformly distributed on the surface and inside the skeleton in the order of at least ⁇ m. The distribution status of the ion exchange groups can be easily confirmed by using EPMA.
  • the ion exchange groups are uniformly distributed not only on the surface of the monolith but also within the skeleton of the monolith, the physical and chemical properties of the surface and the interior can be made uniform, so that they are resistant to swelling and shrinkage. Improves.
  • the ion exchange group introduced into the monolith ion exchanger (1) is a cation exchange group or an anion exchange group.
  • the cation exchange group include a carboxylic acid group, an iminodiacetic acid group, a sulfonic acid group, a phosphoric acid group, and a phosphoric ester group.
  • anion exchange groups include trimethylammonium group, triethylammonium group, tributylammonium group, dimethylhydroxyethylammonium group, dimethylhydroxypropylammonium group, methyldihydroxyethylammonium group, quaternary ammonium group, tertiary sulfonium group, phosphonium group. Etc.
  • the monolith ion exchanger (1) has an ion exchange capacity of 1 to 6 mg equivalent / g of ion exchange capacity per weight in a dry state. Since the monolith ion exchanger (1) has high continuity and uniformity of three-dimensionally continuous pores, the pressure loss does not increase so much even if the total pore volume is reduced. Therefore, it is possible to dramatically increase the ion exchange capacity per volume while keeping the pressure loss low. When the ion exchange capacity per weight is in the above range, the environment around the catalyst active point such as the pH inside the catalyst can be changed, and thereby the catalyst activity is increased.
  • the monolith ion exchanger (1) is a monolith anion exchanger
  • an anion exchange group is introduced into the monolith anion exchanger (1), and the anion exchange capacity per weight in the dry state is 1 to 6 mg. Equivalent / g.
  • a cation exchange group is introduced into the monolith cation exchanger (1), and the cation exchange capacity per weight in a dry state is 1 ⁇ 6 mg equivalent / g.
  • Monolith (1) can be obtained by carrying out the method for producing a monolithic organic porous material disclosed in Japanese Patent Application Laid-Open No. 2009-67982. That is, the production method prepares a water-in-oil emulsion by stirring a mixture of an oil-soluble monomer that does not contain an ion-exchange group, a surfactant, and water, and then polymerizes the water-in-oil emulsion to form all pores.
  • monolith intermediate (1) a monolithic organic porous intermediate having a continuous macropore structure having a volume of more than 16 ml / g and 30 ml / g or less, an aromatic vinyl monomer, one In all oil-soluble monomers having at least two vinyl groups in the molecule, 0.3 to 5 mol% of the crosslinking agent, aromatic vinyl monomer and crosslinking agent are dissolved, but the aromatic vinyl monomer is polymerized to form.
  • a monolith intermediate obtained by standing the mixture obtained by the II treatment and by the I treatment Polymerization was conducted in the presence of 1), including III treatment, to obtain a monolith (1) is an organic porous material is a co-continuous structure.
  • a platinum group metal is supported on the platinum group metal-supported non-particulate organic porous body or the platinum group metal-supported non-particulate organic porous ion exchanger.
  • the platinum group metal is ruthenium, rhodium, palladium, osmium, iridium, or platinum. These platinum group metals may be used alone or in combination of two or more metals, and more than one metal may be used as an alloy. Among these, platinum, palladium, and platinum / palladium alloys have high catalytic activity and are preferably used.
  • the average particle size of the platinum group metal supported non-particulate organic porous material or platinum group metal supported non-particulate organic porous ion exchanger is 1 to 1000 nm, preferably 1 to 200 nm, More preferably, it is 1 to 20 nm. If the average particle diameter is less than 1 nm, the possibility that the platinum group metal particles will be detached from the carrier increases, which is not preferable. On the other hand, if the average particle diameter exceeds 1000 nm, the surface area per unit mass of the metal decreases. This is not preferable because the catalytic effect cannot be obtained efficiently. In addition, the average particle diameter of a platinum group metal particle is calculated
  • TEM transmission electron microscope
  • Platinum group metal-supported non-particulate organic porous material or platinum group metal-supported non-particulate organic porous ion exchanger supported amount of platinum group metal particles ((platinum group metal particles / platinum group metal-supported catalyst in dry state) ⁇ 100 ) Is 0.004 to 20% by weight, preferably 0.005 to 15% by weight. If the supported amount of platinum group metal particles is less than 0.004% by weight, the catalytic activity becomes insufficient, such being undesirable. On the other hand, when the amount of platinum group metal particles is more than 20% by weight, metal elution into water is observed, which is not preferable.
  • a platinum group metal-supported catalyst can be obtained by supporting fine particles of a platinum group metal on a monolith or a monolith ion exchanger by a known method.
  • Examples of the method for supporting the platinum group metal on the non-particulate organic porous body or the non-particulate organic porous ion exchanger include the method disclosed in JP 2010-240641 A.
  • a dried monolith ion exchanger is immersed in a methanol solution of a platinum group metal compound such as palladium acetate, and palladium ions are adsorbed on the monolith ion exchanger by ion exchange, and then contacted with a reducing agent to form palladium metal fine particles.
  • the monolith ion exchanger is immersed in an aqueous solution of a platinum group metal compound such as a tetraammine palladium complex, and the palladium ions are adsorbed on the monolith ion exchanger by ion exchange, and then the reducing agent and
  • palladium metal fine particles are supported on a monolith ion exchanger by contact.
  • the granular ion exchange resin carrying a platinum group metal is a granular ion exchange resin carrying a platinum group metal.
  • the particulate ion exchange resin that serves as the platinum group metal carrier is not particularly limited, and examples thereof include strongly basic anion exchange resins. Then, the granular ion exchange resin is loaded with a platinum group metal by a known method to obtain a granular ion exchange resin loaded with the platinum group metal.
  • the metal ion-type granular cation exchange resin carrying a metal is one in which a metal such as iron ion, copper ion, nickel ion, chromium ion or cobalt ion is carried on a granular cation exchange resin.
  • the granular cation exchange resin to be a carrier is not particularly limited, and examples thereof include strongly acidic cation exchange resins.
  • metal, such as an iron ion, copper ion, nickel ion, chromium ion, and cobalt ion, is carry
  • the styrene / divinylbenzene / SMO / 2,2′-azobis (isobutyronitrile) mixture was added to 180 g of pure water, and a vacuum stirring defoaming mixer (manufactured by EM Co.) as a planetary stirring device.
  • EM Co. vacuum stirring defoaming mixer
  • This emulsion was quickly transferred to a reaction vessel and allowed to polymerize at 60 ° C. for 24 hours in a static state after sealing.
  • the content was taken out, extracted with methanol, and then dried under reduced pressure to produce a monolith intermediate having a continuous macropore structure.
  • the internal structure of the monolith intermediate (dry body) thus obtained was observed by SEM. From the SEM image, although the wall section that divides two adjacent macropores is very thin and rod-shaped, it has an open cell structure, and the average of the openings (mesopores) where the macropores and macropores overlap measured by the mercury intrusion method The diameter was 40 ⁇ m and the total pore volume was 18.2 ml / g.
  • the internal structure of a monolith (dry body) containing 1.2 mol% of a crosslinking component composed of the styrene / divinylbenzene copolymer thus obtained was observed by SEM. From the SEM observation, the monolith has a co-continuous structure in which the skeleton and the vacancies are three-dimensionally continuous, and both phases are intertwined. Moreover, the average thickness of the skeleton measured from the SEM image was 20 ⁇ m. Further, the average diameter of the three-dimensionally continuous pores of the monolith measured by mercury porosimetry was 70 ⁇ m, and the total pore volume was 4.4 ml / g. The average diameter of the pores was determined from the maximum value of the pore distribution curve obtained by the mercury intrusion method.
  • the monolith produced by the above method is put into a column reactor, and a solution consisting of 1600 g of chlorosulfonic acid, 400 g of tin tetrachloride and 2500 ml of dimethoxymethane is circulated and passed through, and reacted at 30 ° C. for 5 hours to give a chloromethyl group.
  • a solution consisting of 1600 g of chlorosulfonic acid, 400 g of tin tetrachloride and 2500 ml of dimethoxymethane is circulated and passed through, and reacted at 30 ° C. for 5 hours to give a chloromethyl group.
  • 1600 ml of THF and 1400 ml of 30% aqueous solution of trimethylamine were added and reacted at 60 ° C. for 6 hours.
  • the product was was
  • the anion exchange capacity of the obtained monolith anion exchanger was 4.2 mg equivalent / g in a dry state, and it was confirmed that quaternary ammonium groups were introduced quantitatively. Further, the thickness of the skeleton in the dry state measured from the SEM image is 20 ⁇ m, and the average diameter in the dry state of the three-dimensional continuous pores of the monolith anion exchanger determined from the measurement by the mercury intrusion method. was 70 ⁇ m and the total pore volume in the dry state was 4.4 ml / g.
  • the monolith anion exchanger was treated with an aqueous hydrochloric acid solution to form a chloride form, and then the distribution state of chloride ions was observed by EPMA. .
  • the chloride ions were uniformly distributed not only on the skeleton surface of the monolith anion exchanger but also inside the skeleton, and the quaternary ammonium groups were uniformly introduced into the monolith anion exchanger. It was.
  • the monolith anion exchanger was ion-exchanged into Cl form, cut into a cylindrical shape in a dry state, and dried under reduced pressure. The weight of the monolith anion exchanger after drying was 1.2 g. This dried monolith anion exchanger was immersed in dilute hydrochloric acid in which 100 mg of palladium chloride was dissolved for 24 hours, and ion-exchanged to the palladium chloride acid form. After completion of the immersion, the monolith anion exchanger was washed several times with pure water, and immersed in an aqueous hydrazine solution for 24 hours for reduction treatment.
  • the chloropalladium acid form monolith anion exchanger was brown, whereas the monolith anion exchanger after the reduction treatment was colored black, suggesting the formation of palladium fine particles.
  • the sample after the reduction was washed several times with pure water and then dried by drying under reduced pressure.
  • the amount of palladium supported was determined by ICP emission spectrometry, and the amount of palladium supported was 3.9% by weight.
  • the distribution state of palladium was observed by EPMA. It was confirmed that palladium was distributed not only on the skeleton surface of the monolith anion exchanger but also inside the skeleton, and the inside was relatively uniformly distributed although the concentration was slightly higher.
  • observation with a transmission electron microscope (TEM) was performed. The average particle diameter of the palladium fine particles was 8 nm.
  • test wafer A test wafer was used in which copper, molybdenum, and tungsten were formed on a 4-inch silicon wafer by sputtering to a thickness of 200 nm. In addition, about copper and tungsten, it forms into a film after forming titanium into a film beforehand by 50 nm sputtering as a base. In recent years, molybdenum has been used as a wiring material for MOS type elements in addition to tungsten and copper.
  • the substrate processing apparatus As the substrate processing apparatus (cleaning equipment), the single wafer type substrate processing apparatus 1 shown in FIG. 2 was used. 99.999% nitrogen gas was used as the inert gas, the wafer rotation speed was kept constant at 500 rpm, and the test wafer was cleaned by supplying process water from the process liquid nozzle for 60 minutes.
  • the hydrogen peroxide-removed water was obtained by passing the above ultrapure water through a palladium-supported monolith. At this time, the hydrogen peroxide concentration was 2 ⁇ g / L or less.
  • the hydrogen-dissolved water was obtained by adding hydrogen to the above ultrapure water through a hollow fiber membrane.
  • the dissolved hydrogen concentration was measured with a dissolved hydrogen meter (DHDI-1, manufactured by Toa DKK Corporation).
  • the hydrogen concentration was controlled by a mass flow controller for the amount of hydrogen gas supplied to the hollow fiber membrane.
  • the water from which oxygen and hydrogen peroxide were removed was obtained by passing the hydrogen-dissolved water through a palladium-supported monolith.
  • the palladium-supporting monolith is located between the outlet 9b from the ultrapure water circulation pipe 9a of the subsystem 9 shown in FIG.
  • the ultrapure water (liquid to be treated) was placed in an ultrapure water supply path within 5 m upstream from the inlet 1.
  • the dissolved oxygen concentration was measured using an Orbis Fair model 410 type.
  • Example 1 In the state where the oxygen gas concentration in the processing chamber of the single wafer cleaning apparatus was 2% or less, the test wafers were processed by changing the type of processing water. The results (increase in sheet resistance) are shown in Table 2 below.
  • the treated copper water has a dissolved oxygen concentration of 2 ⁇ g / L or less, a hydrogen peroxide concentration of 2 ⁇ g / L or less, and a dissolved hydrogen concentration of 8 ⁇ g / L or more, preferably 15 ⁇ g / L or more, more preferably 66 ⁇ g / L. It can be seen from Table 2 that it is most effective when adjusted to L or more.
  • the treated water of molybdenum has at least a hydrogen peroxide concentration of 2 ⁇ g / L or less, a dissolved oxygen concentration of 2 ⁇ g / L or less, and a hydrogen peroxide concentration of 2 ⁇ g / L or less. It can be seen from Table 2 that the most effective results are obtained when the dissolved hydrogen concentration is adjusted to 8 ⁇ g / L or more, preferably 15 ⁇ g / L or more, more preferably 66 ⁇ g / L or more.
  • Example 2 The oxygen gas concentration in the processing chamber of the single wafer cleaning apparatus was adjusted, and water from which oxygen and hydrogen peroxide had been removed was used. Under the adjusted oxygen gas concentration, the test wafer was processed. Table 4 shows.
  • a treatment that removes oxygen and hydrogen peroxide from the above ultrapure water uses the treated water obtained by adding hydrogen to the ultrapure water from which oxygen and hydrogen peroxide have been removed, and then performs substrate treatment with the treated water.
  • the oxygen gas concentration in the room is 2% or less, elution of copper and molybdenum exposed on the substrate surface can be completely suppressed.
  • the provision of the catalyst unit 21 and the separation membrane unit 22 as in the substrate processing apparatus 1 of various aspects described above has an effect of completely suppressing elution of copper and molybdenum.
  • Example 3 As a test wafer, the molybdenum exposed substrate described above is prepared, the gas component in the cleaning chamber of the single wafer cleaning apparatus is adjusted, and water from which hydrogen peroxide has been removed is used. The results of measuring the contact angle on the substrate surface after processing the test wafer are shown in Table 5 below.
  • a substrate treated with ultrapure water from which hydrogen peroxide has been removed has a larger contact angle than a substrate treated with ultrapure water containing hydrogen peroxide. That is, the surface becomes more hydrophobic. This is considered to be an effect in which oxidation of the substrate surface by hydrogen peroxide is suppressed.
  • a substrate treated in a nitrogen atmosphere has a larger contact angle than a substrate treated in an air atmosphere. That is, the surface becomes more hydrophobic. This is considered to be an effect in which oxidation of the substrate surface by oxygen contained in the air is suppressed.
  • a substrate treated with ultrapure water from which hydrogen peroxide has been removed has a larger contact angle than a substrate treated with ultrapure water containing hydrogen peroxide. That is, the surface becomes more hydrophobic. This is considered to be an effect in which oxidation of the substrate surface by hydrogen peroxide is suppressed.
  • a substrate treated in a nitrogen atmosphere has a larger contact angle than a substrate treated in an air atmosphere. That is, the surface becomes more hydrophobic. This is considered to be an effect in which oxidation of the substrate surface by oxygen contained in the air is suppressed.
  • Example 4 Next, an evaluation result in the case where the substrate is processed with a diluted chemical solution is shown.
  • the substrate processing apparatus 1 having the mode shown in FIG. 13 was used. This apparatus is almost the same as the substrate processing apparatus of the aspect shown in FIG. 5, and the same components as those in FIG.
  • An exhaust gas pipe 212 having an exhaust gas valve 211 is connected to the upper part of the chemical liquid tank 56.
  • Two level sensors 210 for monitoring the upper limit and lower limit of the liquid level are disposed on the side wall of the chemical liquid tank 56.
  • a processing liquid supply pipe 27 extending between the membrane separation unit 22 and the mixing unit 52 is provided with a processing liquid valve 213 and a flow meter 214. Further, three measurement pipes 215, 216, and 217 are connected to the processing liquid supply pipe 27 extending from the processing liquid valve 28 to the inside of the support shaft 20 of the processing chamber 2.
  • a pH meter 218 is interposed in the measurement pipe 215, a conductivity meter 219 is interposed in the measurement pipe 216, and a dissolved oxygen concentration meter 220 is interposed in the measurement pipe 217.
  • the processing liquid valve 28, the chemical liquid valve 54, the pump 57, the processing liquid valve 213, and the flow meter 214 are controlled by the control unit 5.
  • piping processing liquid supply pipe 27, some main piping 10, chemical liquid supply pipes 53 and 75, exhaust gas pipe 212, measurement pipes 215, 216, and 217, which are directly or indirectly connected to the processing chamber 2 and the chemical liquid tank 56. , Etc.
  • An inert gas introduction port 222 and an inert gas discharge port 223 are provided on the peripheral wall of the inert gas seal chamber 221.
  • the inert gas seal chamber 221 is hermetically sealed except for these ports.
  • a branch pipe of an inert gas supply pipe 77 is connected to the inert gas inlet 222.
  • the inert gas is introduced into the inert gas seal chamber 221 by bubbling through the liquid in the transparent tank 224 while the inert gas is discharged from the inert gas discharge port 223 to the exhaust port. It has come to understand that.
  • the substrate processing apparatus 1 is prepared, and a 1 L volume chemical liquid tank made of PP is filled with ammonia water (25% NH 3 ) as a chemical liquid, and the inert gas supply pipe 77 stores the chemical liquid tank 56. Nitrogen gas (purity 99.999%) was supplied to the gas phase as an inert gas. Prior to the filling of the chemical liquid tank 56 with ammonia water, the air in the empty chemical liquid tank 56 was previously replaced with nitrogen by using the nitrogen gas in order to eliminate the influence of the air and the like existing in the chemical liquid tank 56.
  • the exhaust gas valve 211 of the exhaust gas pipe 212 connected to the upper part of the chemical tank 56 was opened, and the supply of nitrogen gas was continued for 4 minutes at a flow rate of 5 L / min. After 4 minutes, the exhaust gas from the exhaust port of the exhaust gas pipe 212 was collected in a plastic bag in which an oxygen monitor sensor had been inserted in advance, and the oxygen concentration was measured to be 0.02% to 0.03%. Met. As this oxygen monitor, a low concentration oxygen monitor JKO-02LJD3 (manufactured by Zico Corporation) was used.
  • the gas supply pressure was controlled and the pressure was adjusted to 5 kPa. This pressure may be a level that does not hinder the operation of drawing the chemical solution from the chemical solution tank 56 by the pump 53.
  • the catalyst unit 21, the mixing unit 52, the chemical liquid tank 56, the piping and piping components for connecting them are accommodated in the inert gas seal chamber 221, and the piping between the inert gas seal chamber 221 and the processing chamber 2 is treated.
  • a double structure having an inner pipe through which the liquid flows and an outer pipe surrounding the inner pipe was adopted.
  • Nitrogen gas was supplied at 5 kPa from the branch pipe of the inert gas supply pipe 77 into the space between the inner pipe and the outer pipe and the inside of the inert gas seal chamber 221.
  • an inert gas supply pipe 77 connected to the chemical liquid tank 56 is used for supplying nitrogen gas to the inert gas seal chamber 221.
  • another inert gas supply pipe may be prepared for supplying nitrogen gas to the inert gas seal chamber 221.
  • the supply pressure of nitrogen gas may be different between the chamber 221 and the chemical liquid tank 56. Since the purpose of supplying nitrogen gas to the inert gas seal chamber 221 and the chemical liquid tank 56 is to prevent oxygen and the like from diffusing into the processing liquid, the gas may be managed not by the gas supply pressure but by the gas supply flow rate.
  • the ultrapure water described in the item [Raw Water] and the excess water described in the item [Processed Water to be Evaluated] are described. Hydrogen oxide-removed water, hydrogen-dissolved water, and water from which oxygen and hydrogen peroxide were removed were used.
  • Diluted ammonia water obtained by mixing so that the concentration of ammonia water after mixing is 0.19 mg NH 3 / L (25% NH 3 is diluted approximately 1366 times) has a conductivity of 2.0 ⁇ S / cm and a pH of This water quality is preferably 8.9, since an antistatic effect can be obtained without adding carbonic acid to the dilution water.
  • the flow rate of the diluted ammonia water passing through the mixing unit 52 is controlled to 2.1 L / min. Among them, 200 mL / min of diluted ammonia water is continuously added to the dissolved oxygen concentration meter 220, the conductivity meter 219, and the pH meter 218. Then, 1.5 L / min of diluted ammonia water was supplied to the processing chamber 2.
  • Table 7 shows the following.
  • the dilution water is hydrogen-dissolved water, corrosion of copper and molybdenum cannot be completely suppressed. Corrosion is not suppressed only by removing dissolved oxygen from ultrapure water.
  • a mixed water storage tank 300 filled with 99.999% nitrogen gas as an inert gas was charged with a 50% hydrofluoric acid solution and ultrapure water at a volume ratio of 1: 100, and diluted hydrofluoric acid solution was added. Prepared. After hydrogen gas is added to the diluted hydrofluoric acid solution through a hollow fiber membrane, the solution is passed through a palladium-supported monolith prepared as an oxidant removing device 306 to remove oxygen and hydrogen peroxide. % was introduced into the processing chamber 2 of the substrate processing apparatus, and the test wafer was cleaned.
  • a single wafer cleaning apparatus manufactured by Zenkyo Kasei Kogyo
  • a test wafer a 4-inch silicon wafer with a copper film formed to a thickness of 200 nm was used.
  • test was also conducted when no hydrogen was added and when the liquid was not passed through the palladium-supported monolith.
  • the sheet resistance of the test wafer was measured before and after cleaning, and the increment was calculated.
  • the dissolved oxygen concentration and dissolved hydrogen concentration are measured immediately before the treatment chamber. The results are shown in Table 8. The measuring instrument for each measurement is as described at the beginning of the column of Examples.
  • Corrosion of copper occurs only when hydrogen is added or only when the oxidant removing device is passed through without adding hydrogen.
  • 8 ⁇ g / L or more of hydrogen to the above diluted hydrofluoric acid, and treating with diluted hydrofluoric acid with a dissolved oxygen concentration of 2 ⁇ g / L or less and a hydrogen peroxide concentration of 2 ⁇ g / L or less, corrosion of copper is substantially suppressed. Obviously it will be done. Further, when the dissolved hydrogen concentration was 5 ⁇ g / L, copper corrosion was completely suppressed.
  • Example 6 The same test as in Example 5 was performed by adjusting the oxygen gas concentration in the processing chamber 2 of the single wafer cleaning apparatus. The results are shown in Table 9.
  • the oxygen gas concentration in the processing chamber 2 was 2% or less, copper corrosion could be completely suppressed. From this evaluation result, the following can be understood.
  • the oxygen gas concentration in the processing chamber is set to 2% or less. It was found that elution of copper exposed on the substrate surface can be completely suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Nanotechnology (AREA)

Abstract

 基板表面に露出した金属配線の腐食や酸化を、より一層抑制できる、基板処理方法及び基板処理装置を提供する。本発明は、基板(W)が配置され、基板Wを処理する基板処理液が供給される処理室(2)を有する基板処理装置(1)に係る。この装置は、基板Wが配置された処理室(2)の中に不活性ガスを充填する不活性ガス充填機構(18,39,41)と、処理室(2)の近傍または内部に超純水に水素を添加してなる水素溶解水を通液する白金族系金属触媒が充填された触媒ユニット(21)と、を備え、該水素溶解水を白金族系金属触媒に通液して得た水素溶解処理液を前記基板処理液として処理室(2)内に供給するものである。

Description

基板処理方法および基板処理装置
 本発明は、基板を処理する基板処理方法および基板処理装置に関する。特に、回路基板の洗浄処理、化学処理又は浸漬処理に用いられる基板処理方法および基板処理装置に関する。処理対象となる基板には、例えば、半導体ウエハ、液晶表示装置用基板、プラズマディスプレイ用基板、電界放出ディスプレイ用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板などが含まれる。
 半導体集積回路素子の高集積化および高速度化は、市場の要求である。この要求に応えるために、従来から用いられてきたアルミニウム配線に代えて、より低抵抗の銅配線が用いられるようになってきた。銅配線を、低誘電率絶縁膜(いわゆるLow-k膜。比誘電率が酸化シリコンよりも小さな材料からなる絶縁膜をいう。)と組み合わせて多層配線を形成すれば、極めて高速で動作する集積回路素子を実現できる。
 このような集積回路素子の製造工程では、ウエハや基板等の被処理体の表面に付着している微粒子、有機物、金属、自然酸化膜等の除去を目的とした洗浄を行い、高度な清浄度を達成、維持することは製品の品質保持や歩留まり向上にとって重要である。この洗浄は、例えば、硫酸・過酸化水素水混合溶液、フッ化水素酸溶液等の薬液を用いて行われ、該洗浄後に超純水を用いたすすぎが行われる。また、近年では、半導体デバイスの微細化、材料の多様化、プロセスの複雑化により、洗浄回数が多くなっている。例えば、上記多層配線の形成では、基板上に第1の配線層となる金属配線を形成し該金属配線を絶縁材で埋め、該金属配線を覆った絶縁材料の表面をCMP研磨して平坦にし、次いで、該表面上に第2の配線層となる金属配線を形成し該金属配線を絶縁材で埋め、該絶縁材料の表面をCMP研磨して平坦にする、といった手順が繰り返される。こうしたプロセスにおいては研磨工程終了の度に基板の洗浄が行われる。
 超純水の製造には一般に、前処理システム、一次純水システム、および二次純水システム(以下、サブシステムと呼ぶ。)で構成される超純水製造装置が用いられている。超純水製造装置における各システムの役割は次の通りである。前処理システムは、例えば凝集沈殿や砂ろ過により、原水中に含まれる懸濁物質やコロイド物質の除去を行う工程である。一次純水システムは、例えばイオン交換樹脂や逆浸透(RO)膜等を使用して、前記前処理システムで懸濁物質等が除去された原水のイオン成分や有機成分の除去を行い、一次純水を得る工程である。サブシステムは、図1に示すように、紫外線酸化装置(UV)、膜式脱気装置(MD)、非再生型イオン交換装置(例えばカートリッジポリッシャー(CP))、膜分離装置(例えば限外ろ過装置(UF))などを連続させた通水ラインを使用して、一次純水システムで得られた一次純水の純度をさらに高めて、超純水を製造する工程である。
 このようにして得られた超純水を半導体基板に使用する場合は、次のような種々の問題があり、それぞれの問題に対して対策方法が提案されている。
 洗浄水中に含まれる溶存酸素濃度が高いと、該洗浄水によってウエハ表面に自然酸化膜が形成され、これによってゲート酸化膜の膜厚および膜質の精密制御が妨げられたり、コンタクトホール、ビア、プラグ等のコンタクト抵抗が増加したりするおそれがある。また、多層配線の形成プロセスで研磨工程後の基板の表面には配線金属が露出する。タングステン(W),銅(Cu)等の配線金属は水中に溶存する酸素により腐食を受けやすい金属のため、上記超純水での基板洗浄中に配線の膜厚が減少するおそれがある。その他には、研磨によって生じる基板表面のレジスト残渣をポリマー除去液により除去する際に、ポリマー除去液が処理室内の空気に触れ、このポリマー除去液中に酸素が溶け込み、酸素濃度の高いポリマー除去液が基板に供給されるという問題がある。この場合においても、ポリマー除去液中の溶存酸素により基板上の金属膜(銅膜、タングステン膜など)が酸化され、この基板から作成される集積回路素子の性能を劣化させるおそれがある。
 これらの対策として、前述したサブシステムでは膜式脱気装置を用いて脱ガス処理を行い、水中に溶存するガス量を減少させているが、それだけでなく、特許文献1や特許文献2に記載されるように、脱ガスした超純水に不活性ガスや水素ガスを溶解して水中の溶存酸素を低減する方法も採られている。特許文献1では処理すべき基板の表面付近の雰囲気を不活性ガスで置換する方法も採られている。
 また、前述したサブシステムでは紫外線酸化装置により水に紫外線を照射して水中の有機物を分解・除去しているため、この紫外線照射で水分子も酸化され、酸化性物質である過酸化水素が生成される。即ち、超純水は過酸化水素を含有することになる。過酸化水素を含む洗浄液を用いて、タングステン等の高融点金属を含むゲート電極を有する半導体デバイスを洗浄すると、タングステン等と過酸化水素との間で化学反応が触媒的に進むため、タングステン等が溶解してしまうおそれがある。
 水中の過酸化水素を取り除く方法としては、特許文献3のように、パラジウム(Pd)等の白金族系金属触媒を用いて水中の過酸化水素を除去する方法が知られている。さらに、特許文献4に記載されるように、モノリス状有機多孔質アニオン交換体に白金族系金属が担持されてなる触媒と、過酸化水素を含む被処理水とを接触させることで、被処理水から過酸化水素を高効率で分解除去する方法もある。また特許文献5には、酸素溶存水に水素を溶解した後、その水素溶解水を、モノリス状有機多孔質アニオン交換体に白金族系金属が担持されてなる触媒と接触させる方法が開示されており、特許文献5記載の方法では、溶存過酸化水素と酸素とが高効率に除去された処理水を製造することができる。
特開2010-56218号公報 特開2003-136077号公報 特開2010-17633号公報 特開2010-240641号公報 特許2010-240642号公報
 ところで、集積回路素子のパターン寸法の更なる微細化により配線の厚みも益々薄化しており、したがってわずかな配線の腐食が集積回路素子の性能を低下させることが懸念される。
 半導体製造ラインのレイアウトに起因して、基板処理装置とサブシステムとを隣接する位置に置ける場合は少ないため、サブシステムから基板処理装置の処理室へ超純水を供給するための配管が長い距離で延びている。半導体製造ラインでは一般に、その配管には、薬剤に耐性を有するポリ塩化ビニル(PVC)やPFA、PTFEなどのフッ素樹脂を用いたものが使用される。
 しかし、配管の継ぎ手部分やフランジから空気(酸素)が配管内に浸入することがある。またPFA、PTFEなどのフッ素樹脂製配管は高い酸素透過性を有する。このため、上述したように超純水を製造する際にサブシステムにおいて水中の溶存酸素を所定の量より減少させても、基板処理室への給水過程において配管の外から配管内へ酸素が侵入するおそれがある。酸素が配管内へ侵入すると、基板に付与する水の溶存酸素が所定量以上になって、基板表面に露出するCu等の金属配線が腐食する問題が再発する(課題1)。つまり、サブシステムにおいて超純水から酸素を除去する提案のみでは、被処理物の表面に露出するCu等の金属配線の腐食を完全には抑制できないことがある。
 また、集積回路素子のパターン寸法の微細化に伴い、熱工程でかかる力による断線や電流増加による断線が問題視されている。このため、各素子間を配線するにはアルミニウムや銅などが使用され、MOS型素子のゲート電極用の高融点金属としてはモリブデン,タングステン等が基板上に使われている。
 銅、モリブデン、タングステン等は溶存酸素により腐食を受けやすい金属であるため、洗浄やエッチングの目的で基板に付与する処理液中の溶存酸素は、前述したような特許文献1~5等の技術を用いることで、可能な限り低減されると考えられる。
 しかし、溶存酸素を除去した水素溶解水を使い、銅、モリブデン、タングステン等が表面に露出した基板を処理したとき、モリブデンの腐食が抑制されていないことに発明者らは気付いた。
 そこで、本明細書の実施例の欄に示すように発明者らが解析した結果、モリブデンは処理液中の酸素だけでなく、過酸化水素(10~50μg/Lレベル)でも腐食を受け、溶出することを見出した。前述した図1の超純水製造装置(サブシステム)では紫外線酸化装置により水中に過酸化水素が生成されており、これが腐食の原因となっていることを初めて突き止めた。さらに、処理液中に酸素が含まれていると、その酸素とモリブデンが接触すると、腐食の原因物質である過酸化水素が生成されることも本発明者らは見出した。
 つまり、紫外線照射が行われた超純水で基板を処理する場合に水中の溶存酸素を除去するだけでは、被処理物の表面に露出するモリブデンおよびモリブデン化合物の腐食を完全には抑制できないことがある(課題2)。
 また、半導体装置を製造するための様々な加工プロセスのなかで半導体シリコン基板の洗浄の重要性が非常に高くなっている。このため、酸化膜除去だけでなく、微粒子付着の抑制、ウエハ表面の平坦性などといった様々な清浄性や機能性を発揮する薬液として、フッ化水素酸がよく用いられている。また、極めて高いクリーン度が要求される装置部材の洗浄にフッ化水素酸が用いられることもある。フッ化水素酸(HF)は、シリコンやシリコン-ゲルマニウムなどの基板から表面酸化物を除去し、表面を疎水性状態にする特質を持つからである。
 一般にフッ化水素酸は原液のまま使用されず、半導体基板の洗浄薬液としては、フッ化水素酸を超純水で希釈した希フッ酸(DHF)が用いられている。当該超純水は上述した超純水製造装置で製造され、超純水中の酸素または過酸化水素は上記特許文献1,2,4,5等に記載の技術で除去もしくは低減し得る。
 しかしながら、薬液タンク内のフッ化水素酸を被処理体へ供給する過程では、現在のところ、当該フッ化水素酸中の酸素濃度や過酸化水素濃度は管理されていない。したがって、半導体デバイスの高度化、微細化、高密度化が進むにつれて、フッ化水素酸中の溶存酸素や溶存過酸化水素が、希フッ酸を用いた基板処理時に予期せぬ酸化や腐食(例えば基板表面に露出したCu、タングステン、モリブデン等の溶出)を起こし、歩留りを低下させるおそれがある。したがって、フッ化水素酸中の溶存酸素濃度や過酸化水素濃度をできるだけ低減したい要求が生じている(課題3)。
 本発明は、上記の課題1~3に鑑み、基板表面に露出した金属配線の腐食を、より一層抑制できる、基板処理方法及び基板処理装置を提供する。
 本発明の一態様は、基板処理装置の処理室内に基板を配置し、該基板を処理する基板処理方法に係る。この方法では、処理室の近傍または該処理室内に白金族系金属触媒を設置し、基板が配置された処理室の中に不活性ガスを充填し、被処理液に水素を添加してなる水素溶解液を白金族系金属触媒に通液して得た水素溶解処理液を、該不活性ガスが充填された処理室内に供給し、水素溶解処理液によって基板を処理する。
 また本発明の他の態様は、基板が配置され、該基板を処理する基板処理液が供給される処理室を有する基板処理装置に係る。この装置は、基板が配置された処理室の中に不活性ガスを充填する不活性ガス充填機構と、処理室の近傍または該処理室内に設置され、被処理液に水素を添加してなる水素溶解液を通液する白金族系金属触媒が充填された触媒ユニットとを備え、該水素溶解液を白金族系金属触媒に通液して得た水素溶解処理液を基板処理液として処理室内に供給することを特徴とする。
 上記の方法および装置の態様では、処理室内における酸素ガス濃度を2%以下にするように処理室内に不活性ガスが充填され、水素溶解液における溶存水素濃度を8μg/L以上にするように被処理液に水素が添加されており、水素溶解液を白金族系金属触媒に通液することにより、水素溶解処理液における溶存酸素濃度が2μg/L以下、水素溶解処理液における過酸化水素濃度が2μg/L以下にされていることが望ましい。
 この発明によれば、処理室の近傍または該処理室内に配置された白金族系金属触媒に水素溶解液(溶存水素濃度を8μg/L以上)を通液して得た水素溶解処理液を処理室内に供給するとともに、処理室内に不活性ガスを充填する方法が採られている。この事により、被処理基板の表面における酸素ガス濃度が所定値(2%)以下に低減した処理室内において、酸素および過酸化水素が所定値以下(溶存酸素濃度が2μg/L以下、過酸化水素濃度が2μg/L以下)に低減された水素溶解処理液を用いて被処理基板を処理することができる。このため、被処理基板の表面に露出した配線の腐食(金属の酸化や溶出)を従来の基板処理装置に比べて一層抑制することができる。
 その他の態様によれば、水素溶解処理液と薬液を配管内または希釈用タンク内で混合することにより希釈薬液を調製してもよい。配管内または希釈用タンクにおいて調製された希釈薬液は、空気に触れて酸素濃度が上昇することが抑制または防止される。
 被処理基板の表面における酸素ガス濃度が所定値(2%)以下に低減した処理室内において、水素溶解処理液または希釈薬液を基板に付与できるため、その水素溶解処理液または希釈薬液が、処理室内の空気に触れて、当該薬液中の酸素濃度が上昇することを抑制または防止することができる。つまり、酸素濃度が低減された状態を維持しつつ、水素溶解処理液または希釈薬液を基板に付与することができる。
 さらに、他の態様によれば、基板に対向する面を有する遮断部材を備えることにより、基板表面の雰囲気をその周囲の雰囲気から遮断することができる。これにより、基板表面の雰囲気の酸素濃度の上昇を一層確実に抑制または防止することができる。この場合、不活性ガスの使用量も抑制することが可能となる。
 薬液の例としては、フッ化水素酸(HF)、塩酸(HCl)、IPA(イソプロピルアルコール)、フッ化水素酸とIPA(イソプロピルアルコール)の混合液、フッ化アンモニウム(NHF)、アンモニア(NH)を例示できる。フッ化水素酸を用いる場合には、フッ化水素酸原液と触媒処理水とを所定の割合で混合(調合)することによって、希フッ酸(DHF)が生成される。
 前記基板は、表面に金属パターンが露出したものであって、金属パターンは金属配線であってもよい。金属パターンは、銅やタングステンその他の金属の単膜であってもよいし、複数の金属膜を積層した多層膜であってもよい。多層膜の一例としては、銅膜の表面に拡散防止のためのバリアメタル膜を形成した積層膜を挙げることができる。
 前記不活性ガスの典型例は、窒素ガスであるが、その他にも、アルゴンガス、ヘリウムガスなどの不活性ガスを用いることもできる。
 また、他の態様として、薬液を貯留するタンクや上記の希釈用タンクに不活性ガスを供給することにより、タンク内の液中の酸素濃度が上昇することを抑制または防止することができる。したがって、酸素濃度が上昇した希釈薬液が処理室内へ供給されることを抑制または防止することができる。
 さらに、処理室へ繋がる配管を、液が流通する内側配管と該内側配管を取り囲む外側配管とを含む構造にし、内側配管と外側配管との間に不活性ガスを供給することにより、内側配管を不活性ガスによって包囲することができる。したがって、内側配管が例えばフッ素樹脂などの酸素透過性の材料で形成されている場合であっても、内側配管を介して内側配管の内部に進入する酸素の量を低減することができる。これにより、内側配管内を流通する液中に酸素が溶け込んで、当該液中の酸素濃度が上昇することを抑制または防止することができる。外側配管は、例えば、PVC製やフッ素樹脂製の管を用いることができる。
 以上説明したように、本発明の各態様によれば、基板表面に露出した配線が基板処理液で腐食することを従来技術よりも一層抑制することができる。したがって、製造した集積回路素子の性能を低下させにくい基板の処理を提供することができる。
超純水の製造装置の一般的な態様を示す模式図である。 第一実施形態に係る基板処理装置の模式的な構成を示した図である。 図1に示したサブシステムから本発明の基板処理装置へ処理液を供給する配管ラインを示す図。 第一実施形態に係る基板処理装置の変形態様1を示す図。 第一実施形態に係る基板処理装置の変形態様2を示す図。 第一実施形態に係る基板処理装置の変形態様3を示す図。 第一実施形態に係る基板処理装置の変形態様4を示す図。 第一実施形態に係る基板処理装置の変形態様5を示す図。 本発明に係る基板処理装置に用いられる配管の好ましい態様を示す図。 第二実施形態に係る基板処理装置の模式的な構成図である。 第三実施形態に係る基板処理装置の概略構成を示す模式図である。 第四実施形態に係る基板処理装置の概略構成を示す模式図である。 図5の態様に基づいた実施例3の基板処理装置を示す図である。
 [符号の説明]
W・・・基板    1・・・基板処理装置
1a・・・基板処理装置1の処理液入口   2・・・処理室
3・・・スピンチャック    4、4a・・・処理液ノズル
5・・・制御ユニット    6・・・挟持部材
7・・・チャック回転駆動機構   8・・・スピンベース
9・・・超純水製造装置のサブシステム
9a・・・サブシステム9の超純水(被処理液)循環配管
9b・・・サブシステム9の超純水(被処理液)循環配管からの出口
10・・・メイン配管   10a・・・分岐点
11・・・遮断板    18・・・ガスバルブ
19・・・ノズルアーム   20・・・支持軸
21・・・触媒ユニット    22・・・膜分離ユニット
23・・・排水管    24・・・排水バルブ
27・・・処理液供給管   28・・・処理液バルブ
31・・・支軸    32・・・周壁部
33・・・平板部    34・・・基板対向面
39・・・ガス供給管   41・・・ガス流量調整バルブ
51・・・薬液調製ユニット    52・・・混合部
53・・・第一の薬液供給管    54・・・薬液バルブ
55・・・薬液流量調整バルブ   56・・・薬液タンク
57・・・ポンプ    75・・・第二の薬液供給管
76・・・薬液バルブ    77・・・不活性ガス供給管
78・・・不活性ガスバルブ   79・・・薬液流量調整バルブ
81・・・薬液調製ユニット   82・・・薬液希釈タンク
83・・・希釈薬液供給管   84・・・希釈薬液バルブ
85・・・第二の処理液供給管  86・・・処理液バルブ
87・・・処理液流量調整バルブ  90・・・処理液供給管
91・・・処理液バルブ   100・・・配管
101・・・内側配管    102・・・外側配管
103・・・不活性ガスバルブ  104・・・不活性ガス供給管
105・・・排気バルブ   106・・・不活性ガス排気管
201・・・処理槽   202・・・オーバフロー部
203・・・処理液ノズル   204・・・排出口
205・・・比抵抗計   206、207・・・排水管
208・・・排水バルブ   209・・・蓋部材
210・・・レベルセンサ   211・・・排ガスバルブ
212・・・排ガス管   213・・・処理液バルブ
214・・・流量計   215,216,217・・・測定用配管
218・・・pH計   219・・・導電率計
220・・・溶存酸素濃度計   221・・・不活性ガスシール室
222・・・不活性ガス導入口   223・・・不活性ガス排出口
224・・・透明なタンク    300・・・混合水貯留槽
301・・・HF供給ライン  302・・・超純水供給ライン
303・・・処理液供給ライン  304・・・HF精製ユニット
305・・・水素添加装置   306・・・酸化剤除去装置
307・・・不活性ガス供給ライン
 以下、本発明の実施の形態について図面を参照して説明する。
 [第一実施形態]
 図2は第一実施形態に係る基板処理装置の模式的な構成を示している。第一の実施形態の基板処理装置1は、基板Wを1枚ずつ処理する枚葉式の装置である。基板Wは、第一の実施形態では、半導体ウエハのような円形基板である。
 図2を参照すると、基板処理装置1は、隔壁で区画された1つ又は複数の処理室2を有する。各処理室2内には、1枚の基板Wを水平に保持して回転させるスピンチャック3(基板保持機構、基板保持回転機構)と、スピンチャック3に保持された基板Wの上面に処理液を供給するための処理液ノズル4と、を備えている。
 スピンチャック3は、鉛直な方向に延びる回転軸の上端に水平に取り付けられた円盤状のスピンベース8(保持ベース)と、このスピンベース8上に配置された複数個の挟持部材6と、前記回転軸に結合されたチャック回転駆動機構7とを備えている。スピンベース8は、例えば、基板Wよりも直径が大きな円盤状の部材である。スピンベース8の上面(保持ベースの表面)は、基板Wよりも直径が大きな円形の平面にされている。
 複数個の挟持部材6は、スピンベース8の上面において互いに協働して1枚の基板Wを水平な姿勢で挟持(保持)することができる。チャック回転駆動機構7の駆動力により、挟持部材6で保持された基板Wがその中心を通る鉛直な回転軸線まわりに回転される。
 処理液ノズル4は、洗浄処理あるいはエッチング等の目的の処理液をスピンチャック3に保持された基板Wの上面に吐出することができる。処理液ノズル4は、水平に延びるノズルアーム19の先端部に取り付けられている。処理液ノズル4は、その吐出口が下方に向けられた状態で、スピンチャック3よりも上側に配置されている。
 ノズルアーム19には、鉛直方向に沿って延びる支持軸20が結合されている。支持軸20は、その中心軸線まわりに揺動可能とされている。支持軸20には、例えばモータ等で構成されたノズル揺動駆動機構が結合されている。ノズル揺動駆動機構の駆動力により、処理液ノズル4およびノズルアーム19が、支持軸20の中心軸線まわりに一体的に水平移動させられる。これにより、スピンチャック3に保持された基板Wの上方に処理液ノズル4を配置したり、スピンチャック3の上方から処理液ノズル4を退避させたりすることができる。また、スピンチャック3によって基板Wを回転させた状態で、処理液ノズル4からの処理液の液滴を基板Wの上面に供給しつつ、当該処理液ノズル4を所定の角度範囲で揺動させることにより、基板Wの上面における処理液の供給位置を移動させることができる。
 処理液ノズル4には、中空構造のノズルアーム19および支持軸20の中を通って処理液供給管27が接続されている。
 処理液供給管27には、処理液ノズル4への処理液の供給および供給停止を切り換えるための処理液バルブ28が介装されている。
 さらに、ガス供給管39が処理室2内に挿通されている。不活性ガスの一例である窒素ガスがガス供給管39から処理室2内に供給される。これにより、基板Wの上の空間に存在する空気を不活性ガスで置換することができる。このため、該不活性ガスは、スピンチャック3に保持された基板Wの周囲、特に、処理液ノズル4とスピンチャック3の間の空間に供給されることが好ましい。
 ガス供給管39には、当該隙間への不活性ガスの供給および供給停止を切り換えるためのガスバルブ18と、当該隙間への不活性ガスの供給流量を調整するガス流量調整バルブ41とが介装されている。
 前述した処理液バルブ28とガスバルブ18とガス流量調整バルブ41の各々の開閉動作は制御ユニット5によって制御されるようになっている。なお、ガスバルブ18とガス流量調整バルブ41に替えて、開閉と流量調整を同時に行えるバルブを使用してもよい。
 さらに本願発明では、図3に示すように、超純水製造装置のサブシステム9(詳しくは図1参照)からの超純水(被処理液)が、基板処理装置1の各処理室2(洗浄機構)に供給される。サブシステム9の超純水(被処理液)循環配管9aからの出口9bと各基板処理装置1の超純水(被処理液)入口1aとは、半導体製造ラインに主に使われるPVCやPFA、PTFEなどのフッ素樹脂からなるメイン配管10を介して接続されている。各メイン配管10は、各基板処理装置1内を延び、かつ分岐されて、当該基板処理装置1内の各処理室2の処理液ノズル4に連通する処理液供給管27と接続されている。処理液供給管27もまた、PVCやPFA、PTFEなどのフッ素樹脂からなる。
 メイン配管10における基板処理装置1の超純水入口1a付近には、触媒ユニット21(図2参照)が設置され、さらに、メイン配管10における触媒ユニット21の後段に膜分離ユニット22(図2参照)が設置されている。
 メイン配管10から触媒ユニット21へ供給する超純水(被処理液)は、溶存水素濃度が8μg/L以上(好ましくは15μg/L以上、より好ましくは66μg/L以上)有る水素溶解処理液に調整されている。サブシステム9からメイン配管10へ出水される超純水(被処理液)は、サブシステム9が有する水素溶解処理装置(図1参照)によって処理された、所定の溶存水素濃度を有する水素溶解水である。しかし、図2の触媒ユニット21の直前の位置で、当該水素溶解水の溶存水素濃度が8μg/L以上(好ましくは15μg/L以上、より好ましくは66μg/L以上)に満たない場合は、当該水素溶解水に水素を添加して当該水素溶解水の溶存水素濃度が8μg/L以上(好ましくは15μg/L以上、より好ましくは66μg/L以上)に調整されている。この場合、触媒ユニット21の直前の配管部分に水素ガス導入装置(不図示)が設けられる。
 触媒ユニット21は、水素溶解水を触媒ユニット21に通液して得た水素溶解処理液における溶存酸素濃度を2μg/L以下、過酸化水素濃度を2μg/L以下に減じる白金族系金属触媒を充填した態様を有する。例えば、パラジウム触媒を充填した触媒ユニットや、パラジウム触媒をモノリス状有機多孔質アニオン交換体に担持した触媒ユニットが挙げられるが、当該白金族系金属触媒のより詳細な具体例については後で記載することにする(第三実施形態を参照)。
 本実施形態では、触媒ユニット21はメイン配管10における基板処理装置1の超純水入口1a(図3)付近に位置するが、この位置に限られず、触媒ユニット21は処理室2の近傍または処理室2の内部に配置されていればよい。
 なお、「処理室の近傍」とは、具体的には、次のような幾つかの位置(第一から第五の例)を含むものとする。第一の例として、図3に示したサブシステム9の超純水循環配管9aからの出口(分岐口)9bから任意の処理室2の入口までの間の超純水(被処理液)供給路に触媒ユニット21が設置されている。第二の例としては、サブシステム9の超純水循環配管9aからの出口9bから基板処理装置1の超純水入口1aまでの間の超純水供給路に触媒ユニット21が設置されている。第三の例として、基板処理装置1の超純水入口1aから上流側の10m以内(より好ましくは5m以内)の超純水供給路に触媒ユニット21が設置されている。第四の例として、基板処理装置1の超純水入口1aから各処理室2へ向かうメイン配管10の最初の分岐点10aまでの間の超純水供給路に触媒ユニット21が設置されている。第五の例として、処理室2毎に接続された処理液供給管27に触媒ユニット21が設置されている。
 さらに、触媒ユニット21は処理室2の近傍だけでなく処理室2の内部にあってもよく、「処理室の内部」とは、具体的には、次のような幾つかの位置を含むものとする。すなわち、触媒ユニット21は、図2に示す処理室2内の超純水供給路である、中空構造の支持軸20やノズルアーム19、または処理液ノズル4のいずれかに配置されていてもよい。
 また本実施形態では、膜分離ユニット22は、図2に示すように触媒ユニット21から最初の分岐点10aまでの配管部分に配置されているが、触媒ユニット21の後段であればどの場所でもよい。この膜分離ユニット22としては、精密濾過膜(MF)、限外濾過膜(UF)、またはナノフィルター(NF)を使用することができる。
 本発明の態様によれば、次のような課題を解決できる。
 サブシステム9によって溶存酸素が減少した超純水が製造されても、その超純水がサブシステム9から長い配管を介して基板処理装置1へ送液される過程で空気が配管の継ぎ手部分やフランジから配管内に浸入、または配管を透過して、該配管内の超純水における溶存酸素量が増えてしまう。この超純水を基板処理液として使用すると、被処理基板の表面に露出した配線が腐食(すなわち金属の溶出や酸化)するという問題が生じる。近年のパターン寸法の微細化により、銅、タングステン、モリブデン等からなる配線の膜厚も薄膜化しているため、わずかな腐食でも半導体回路素子の性能に多大な影響を及ぼすことが想定される。
 こうした問題に鑑み、本発明の態様では、前述したような処理室2の近傍または処理室2内に触媒ユニット21を設け、かつ処理室2内に不活性ガスを充填する機構(ガス供給管39、ガスバルブ18等)を設けることにより、被処理基板の表面における酸素ガス濃度が所定値以下に低減した処理室2内において、酸素および過酸化水素が所定値以下に低減された水素溶解処理液を用いて被処理基板を処理することができる。このため、被処理基板の表面に露出した配線の腐食を従来の基板処理装置に比べて一層抑制することができる。
 超純水から酸素を除去する方法としては真空脱気(膜脱気を含む)を用いる方法があるが、真空脱気は酸素を含む全てのガス成分(窒素など)が超純水から除去されるため、ガス分圧が低くなり、超純水中に外気を引き込みやすくなるという問題がある。触媒還元による脱酸素では溶存酸素のみが除去されるため、超純水中に含まれるガス分圧の変動が抑制され、水質を維持しやすい、という効果がある。
 なお、処理室2の近傍または処理室2内に触媒ユニット21を設置しており、「処理室の近傍」または「処理室の内部」は、物理的には前述したような場所を含むことを説明した。この場所を機能的な表現で説明すると、「処理室の近傍」または「処理室の内部」とは、処理室2の処理液吐出部において溶存酸素濃度が2μg/L以下で、過酸化水素濃度が2μg/L以下になる位置である。
 また、本発明では「膜分離ユニット(22)」が設置されていなくても、上記のような課題を解決することができるが、触媒ユニット21の後段に膜分離ユニット22を設置すれば、処理室内に供給する基板処理液から微粒子を取り除くことができるので好ましい。したがって、本明細書においては、触媒ユニット21の後段に膜分離ユニット22を設置した態様で例示している。
  <変形態様1>
 上述した、図2の態様は、触媒ユニット21と膜分離ユニット22とを含む手段を用いて水素溶解水から溶存酸素と過酸化水素を除去した後、それらが除去された水素溶解処理液を各々の処理室2へ送るようになっている。しかし本発明では図4の態様を採ることもできる。図4の態様では、触媒ユニット21と膜分離ユニット22とを含む手段が、各処理室2に配設される処理液供給管27ごとに設置されている。この態様によると、触媒ユニット21と膜分離ユニット22とを含む手段を、図2の態様に比べて処理室2の近くに配置できる。このため、当該手段の膜分離ユニット22から処理室2の処理液ノズル4までの配管も短くなり、したがって、処理室2内の基板に吐出させる処理液に酸素が含まれてしまう確率をより下げることができる。
 さらに、図4の態様では、膜分離ユニット22から処理液バルブ28までの配管部分に排水管23が接続されている。排水管23には、排水および排水停止を切り換えるための排水バルブ24が介装されている。排水バルブ24の開閉動作もまた、制御ユニット5により制御されるようになっている。図4の態様のように処理室2の処理液ノズル4から触媒ユニット21までの距離が短くなると、処理室2での基板処理を停止している間触媒ユニット21に水素溶解処理液が停滞することがあり、その場合不純物が処理液供給管27に溶出するおそれがある。このため、処理室2での基板処理が一定時間停止した場合は、処理液供給管27内の水素溶解処理液を排水管23より排水(ブロー)してから基板Wへ新しい水素溶解処理液を供給するようにされている。
 処理液供給管27に溶出した不純物を排出する他の方法としては、処理液ノズル4の位置を基板Wの上部から外した状態で処理液バルブ28を開き、処理液供給管27内に滞留した水素溶解処理液を排出する方法を用いることもできる。この場合、排水管23および排水バルブ24は不要である。
  <変形態様2>
 上述した、図2の態様では、触媒ユニット21と膜分離ユニット22とを含む手段を用いて水素溶解水から溶存酸素と過酸化水素を除去した後、それらが除去された水素溶解処理液を各々の処理室2へ送っている。しかし本発明では図5の態様を採ることもできる。すなわち、溶存酸素と過酸化水素が除去された水素溶解処理液に薬液を混合して希釈薬液を調製し、処理液ノズル4に供給する態様である。これは触媒ユニット21に通せない薬液を用いる場合に有効である。
 図5を参照すると、薬液調製ユニット51が、図2に示した態様における処理液供給配管27に追加されている。
 薬液調製ユニット51は、触媒ユニット21と膜分離ユニット22とを含む手段を用いて溶存酸素と過酸化水素が除去された水素溶解処理液と、薬液と、をその内部で混合することができる配管としての混合部52(マニホールド)を具備する。
 混合部52には、薬液を供給する第一の薬液供給管53が接続されている。第一の薬液供給管53には、薬液バルブ54と薬液流量調整バルブ55が介装されている。
 “薬液”とは、不活性ガス溶存水との混合前の薬液を意味する。薬液の例としては、フッ化水素酸(HF)、塩酸(HCl)、IPA(イソプロピルアルコール)、フッ化水素酸とIPA(イソプロピルアルコール)の混合液、フッ化アンモニウム(NH4F)、アンモニア(NH)を例示できる。エッチング目的の薬液としてフッ化水素酸を用いた場合には、混合部52において、フッ化水素酸と水素溶解処理液とが所定の割合で混合(調合)され、希フッ酸(DHF)が生成される。
 薬液バルブ54を開くことにより、薬液流量調整バルブ55で調整された所定流量の薬液を混合部52に供給することができる。処理液バルブ28を開いた状態で、薬液バルブ54を開くことにより、混合部52内を流通している水素溶解処理液に薬液を注入(インジェクション)して、薬液と水素溶解処理液とを混合させることができる。したがって、混合部52に対する薬液の供給量と水素溶解処理液の供給量とを調整することにより、所定の割合に希釈された薬液を調製することができる。
 また、薬液バルブ54を開かずに、処理液バルブ28のみを開くことにより、混合部52に対して水素溶解処理液のみを供給することができる。これにより、水素溶解処理液に薬液を混合させることなく、当該水素溶解処理液をリンス液としてそのまま処理液ノズル4に供給することができる。
 第一の薬液供給管53の端部は、薬液を貯留する薬液タンク56の内部に挿入されている。薬液タンク56は密閉容器からなるものであり、薬液タンク56の内部空間は、その外部空間から遮断されている。第一の薬液供給管53には、薬液バルブ54と薬液タンク56の間にポンプ57が介装されている。さらに第一の薬液供給管53にはポンプ57の下流側に、図示しないフィルタと脱気ユニットが介装されていることが好ましい。なお、第一の薬液供給管53はポンプ57の下流で、薬液バルブ54や混合部52へ向かう経路と他の処理室へ向かう経路とに2分岐している。
 また、薬液タンク56には、第二の薬液供給管75が接続されている。薬液タンク56には、薬液供給管75を介して、図示しない薬液供給源からの薬液が供給される。第二の薬液供給管75には、薬液タンク56への薬液の供給および供給停止を切り換えるための薬液バルブ76が介装されている。薬液タンク56には、例えば、薬液タンク56内の液量が所定量以下になった場合に未使用の薬液が供給されるようになっている。これにより、薬液タンク56に未使用の薬液を補充することができる。
 さらに、薬液タンク56には、不活性ガス供給管77が接続されている。薬液タンク56には、不活性ガス供給管77を介して、図示しない不活性ガス供給源からの不活性ガスが供給される。不活性ガス供給管77には、薬液タンク56への不活性ガスの供給および供給停止を切り換えるための不活性ガスバルブ78が介装されている。薬液タンク56には、例えば常時、不活性ガスが供給されるようになっている。この変形態様では、不活性ガス供給管77および不活性ガスバルブ78により不活性ガス供給手段が構成されている。
 薬液タンク56に不活性ガスを供給することにより、薬液タンク56内から空気を追い出すことができる。したがって、薬液タンク56内の空気に含まれる酸素が、薬液タンク56内に貯留された薬液に溶け込んで、当該薬液中の溶存酸素量が増加することを抑制または防止することができる。また、不活性ガスによって薬液タンク56内を加圧することにより、薬液タンク56内に貯留された薬液を第一の薬液供給管53に圧送することも可能である。
 薬液タンク56内の薬液は、不活性ガスによる圧力や、ポンプ57による吸引力により、薬液タンク56から汲み出されて、第一の薬液供給管53に送られる。このとき、ポンプ57のすぐ下流にフィルタと脱気ユニットが設けられていると、ポンプ57で汲み出された薬液はフィルタを通過して液中の異物が除去される。さらに、該フィルタを通過した薬液は、脱気ユニットによって脱気され、溶存酸素量が低減される。この結果、混合部52に、溶存酸素量が低減された薬液を供給することができ、本発明の効果をより高められる。フィルタと脱気ユニットの設置に関して、ポンプ57の下流に脱気ユニットとフィルタという順番で設置しても構わない。この場合でも、同様の効果が得られる。
 なお、この変形態様2を、図4に示した変形態様1に適用してもよい。この場合は、当該変形態様1における触媒ユニット21と膜分離ユニット22の間の配管部分に、薬液調製ユニット51が構成されることが好ましい。
  <変形態様3>
 前述した図5の態様では、処理液供給管27の一部である混合部52内を流通している水素溶解処理液に薬液を注入して、薬液と水素溶解処理液とを混合させているが、本発明は図6の態様を採ることもできる。すなわち、処理液供給管27を流通させる水素溶解処理液と、薬液とをタンク内に導入して、その薬液を水素溶解処理液で希釈し、処理液ノズル4に供給する態様である。これは、触媒ユニット21に通せない薬液を用いる場合であって、かつ、図5の態様(配管内の混合部52)では目標の希釈倍率を実現しにくい場合に有効である。
 図6を参照すると、薬液調製ユニット81が、図2に示した態様における処理液供給配管27に追加されている。
 薬液調製ユニット81は、触媒ユニット21と膜分離ユニット22とを含む手段を用いて溶存酸素と過酸化水素が除去された水素溶解処理液と、薬液と、を受容して希釈薬液を調製する薬液希釈タンク82を具備する。薬液希釈タンク82は密閉容器からなるものであり、薬液希釈タンク82の内部空間は、その外部空間から遮断されている。
 薬液希釈タンク82内には希釈薬液を供給する希釈薬液供給管83の一端が挿入されている。希釈薬液供給管83の他端は、処理液バルブ28より下流側にある処理液供給管27の部分に接続されている。希釈薬液供給管83には、処理液供給管27への希釈薬液の供給および供給停止を切り換えるための希釈薬液バルブ84が介装されている。
 さらに希釈薬液供給管83には、希釈薬液バルブ84と薬液希釈タンク82の間にポンプ57が介装されている。ポンプ57の下流側にある希釈薬液供給管83の部分には、図示しないフィルタと脱気ユニットが介装されていることが好ましい。なお、希釈薬液供給管83はポンプ57の下流で、希釈薬液バルブ84へ向かう経路と他の処理室へ向かう経路とに2分岐している。
 また、薬液希釈タンク82内には、水素溶解処理液を供給する第二の処理液供給管85の一端が挿入されている。第二の処理液供給管85の他端は、処理液バルブ28より上流側にある処理液供給管27の部分に接続されている。第二の処理液供給管85には、薬液希釈タンク82への水素溶解処理液の供給および供給停止を切り換えるための処理液バルブ86と、薬液希釈タンク82へ供給される水素溶解処理液を所定の流量に調整する処理液流量調整バルブ87と、が介装されている。
 薬液希釈タンク82には薬液供給管75が接続されている。薬液希釈タンク82内に、薬液供給管75を介して、図示しない薬液供給源からの薬液が供給される。薬液供給管75には、薬液希釈タンク82への薬液の供給および供給停止を切り換えるための薬液バルブ76と、薬液希釈タンク82へ供給される薬液を所定の流量に調整する薬液流量調整バルブ79と、が介装されている。
 さらに、薬液希釈タンク82には、不活性ガス供給管77が接続されている。薬液希釈タンク82には、不活性ガス供給管77を介して、図示しない不活性ガス供給源からの不活性ガスが供給される。不活性ガス供給管77には、薬液希釈タンク82への不活性ガスの供給および供給停止を切り換えるための不活性ガスバルブ78が介装されている。薬液希釈タンク82には、例えば常時、不活性ガスが供給されるようになっている。不活性ガス供給管77および不活性ガスバルブ78により不活性ガス供給手段が構成されている。
 この態様では、処理液バルブ28を開かずに、別の処理液バルブ86を開くことにより、処理液流量調整バルブ87で調整された所定流量の水素溶解処理液を薬液希釈タンク82に供給することができる。また、処理液バルブ28を開かずに、薬液バルブ76を開くことにより、薬液流量調整バルブ79で調整された所定流量の薬液を薬液希釈タンク82に供給することができる。これらの操作により、薬液希釈タンク82内において薬液と水素溶解処理液とを混合させることができる。したがって、処理液流量調整バルブ87と薬液流量調整バルブ79とを用いて薬液の供給量と水素溶解処理液の供給量とを調整することにより、所定の割合に希釈された薬液を薬液希釈タンク82内で調製することができる。そして、処理液バルブ28を開かずに、希釈薬液バルブ84のみを開くことにより、処理液ノズル4に希釈薬液を供給することができる。
 他方、希釈薬液バルブ84を開かずに、処理液バルブ28のみを開くことにより、処理室2に対して水素溶解処理液のみを供給することができる。これにより、水素溶解処理液に薬液を混合させることなく、当該水素溶解処理液をリンス液としてそのまま処理液ノズル4に供給することができる。
 また、不活性ガス供給管77を用いて薬液希釈タンク82に不活性ガスを供給することにより、薬液希釈タンク82内から空気を追い出すことができる。したがって、薬液希釈タンク82内の空気に含まれる酸素が、薬液希釈タンク82内に貯留された希釈薬液に溶け込んで、当該希釈薬液中の溶存酸素量が増加することを抑制または防止することができる。また、不活性ガスによって薬液希釈タンク82内を加圧することにより、薬液希釈タンク82内の希釈薬液を希釈薬液供給管83に圧送することも可能である。
 薬液希釈タンク82内の希釈薬液は、不活性ガスによる圧力や、ポンプ57による吸引力により、薬液希釈タンク82から汲み出されて、希釈薬液供給管83に送られる。このとき、ポンプ57のすぐ下流にフィルタと脱気ユニットが設けられていると、ポンプ57で汲み出された希釈薬液はフィルタを通過して液中の異物が除去される。さらに、該フィルタを通過した希釈薬液は、脱気ユニットによって脱気され、溶存酸素量が低減される。この結果、処理液供給管27に、溶存酸素量が低減された希釈薬液を供給することができ、本発明の効果をより高められる。フィルタと脱気ユニットの設置に関して、ポンプ57の下流に脱気ユニットとフィルタという順番で設置しても構わない。この場合でも、同様の効果が得られる。
 なお、この変形態様3を、図4に示した変形態様1に適用してもよい。この場合は、当該変形態様1における触媒ユニット21と膜分離ユニット22の間の配管部分に、薬液調製ユニット81を配置することが好ましい。
 さらに、この変形態様3では、水素溶解処理液の他の処理液(例えばオゾン水などの、水素添加を必要としない処理水)を処理液ノズル4に供給する他の処理液供給管90が、処理液バルブ28より下流側にある処理液供給管27の部分に接続されていてもよい。処理液供給管90には、処理液ノズル4への他の処理液の供給および供給停止を切り換えるための処理液バルブ91が介装されている。制御ユニット5によって、処理液バルブ28、処理液バルブ91、および希釈薬液バルブ84の各々の開閉動作を切り替えることにより、処理液を選択することができる。
  <変形態様4>
 上述した各種態様の処理液ノズル4はノズルアーム19および支持軸20に保持されているが、図7に示す態様であってもよい。ノズルアーム19および支持軸20に保持された処理液ノズル4に替わって、図7の態様は遮断板11を備えている。
 図7を参照すると、遮断板11は、厚みがほぼ一定の円板状の部材である。遮断板11の直径は、基板Wより大きくされている。遮断板11は、遮断板11は、その中心軸線がスピンチャック3の回転軸線と共通の軸線上に位置するように、スピンチャック3の上方で水平に配置されている。
 遮断板11は、円盤形をなす平板部33を有する。平板部33の下面は、平面に形成されており、スピンチャック3に保持された基板Wの上面に平行となっている。この平板部33の下面が、スピンチャック3に保持された基板Wに対向する基板対向面34となっている。基板対向面34は、スピンチャック3に保持された基板Wに対向するとともに、スピンベース8の上面に対向している。なお、好ましくは、図7に示すように遮断板11の外周部が全周にわたって下方に折り曲げられて、筒状の周壁部32が形成されていると良い。つまり、基板対向面34の周囲からスピンチャック3に向かって突出している周壁部32が形成されていても良い。
 遮断板11の中央部は、その遮断板11を支持する中空構造の支軸31を有し、支軸31内に処理液供給管27が挿通されている。遮断板11には1つ又は複数の吐出口(不図示)が形成されて、支軸31の内部空間に連通している。支軸31の内部空間に処理液供給管27を介して処理液が供給される。これにより、遮断板11に形成された吐出口から、スピンチャック3に保持された基板Wの上面部に向けて処理液を吐出させることができる。
 さらに、ガス供給管39が支軸31内に挿通されている。不活性ガスの一例である窒素ガスがガス供給管39から支軸31の内部空間に供給される。支軸31の内部空間に供給された不活性ガスは、遮断板11に形成された吐出口(不図示)から下方に向けて吐出される。このため、遮断板11と、スピンチャック3に保持された基板Wとの間の空間(隙間)に、不活性ガスを供給することができる。
 ガス供給管39には、当該隙間への不活性ガスの供給および供給停止を切り換えるためのガスバルブ18と、当該隙間への不活性ガスの供給流量を調整するガス流量調整バルブ41とが介装されている。
 また、支軸31には、遮断板昇降駆動機構(遮断部材移動機構)および遮断板回転駆動機構が結合されている。その遮断板昇降駆動機構の駆動力により、支軸31および遮断板11を、基板対向面34がスピンベース8の上面に接近した位置である処理位置と、スピンベース8の上面から大きく離反した位置である退避位置との間で一体的に昇降させることができる。さらに、その遮断板回転駆動機構の駆動力により、支軸31および遮断板11を、基板Wと共通の軸線まわりに一体的に回転させることができる。これにより、例えば、スピンチャック3による基板Wの回転にほぼ同期させて(あるいは若干回転速度を異ならせて)支軸31および遮断板11を回転させることができる。
 図7の態様では、スピンチャック3に基板Wが保持された状態で遮断板11を処理位置に位置させる。さらに、基板対向面34に位置する吐出口から不活性ガスを吐出させると、当該不活性ガスは、スピンチャック3に保持された基板Wの上面と基板対向面34との間の空間を外方に向かって広がっていく。したがって、基板Wの上面と基板対向面34との間の空間に存在する空気は、不活性ガスによって外方に押し出され、周壁部32の先端縁とスピンベース8の上面との間に形成された隙間から排出される。これにより、基板Wの上面と基板対向面34との間の雰囲気を不活性ガスで置換することができる。
 さらに、スピンチャック3に基板Wが保持された状態で遮断板11を処理位置に位置させると、基板Wの上面と基板対向面34との間の空間を周壁部32によって取り囲むことができるので、当該空間の外周部にその周囲の空気が進入することを抑制または防止することができる。これにより、基板Wの上面と基板対向面34との間の雰囲気が不活性ガス雰囲気に置換された後に、基板Wの上面と基板対向面34との間の空間に空気が進入して、当該空間の酸素濃度が上昇することを抑制または防止することができる。
  <変形態様5>
 これまで説明してきた各種態様は、基板Wを保持したスピンチェック3の上方に処理液ノズル4が配置される態様(ノズル態様)か、あるいは、処理液の吐出口が形成された遮断板11がスピンチェック3の上方に配置される態様(遮断板態様)のいずれかであった。しかし本発明は、図8に示す態様のようにノズル態様と遮断板態様の両方を備えていてもよい。
 また、処理液ノズルは1つだけでなく、洗浄やエッチング等の処理の目的ごと、または処理液の種類ごとに設けられていてもよい。例えば図8に示すように、基板Wの周端部を洗浄するための処理液ノズル4aが処理室2内に設置されてもよい。遮断板11、特に基板対向面34を洗浄するための処理液ノズル(不図示)が設けられていてもよい。あるいは、基板保持機構であるスピンチャック3の内部に処理液供給管27を通して、基板Wの下面に処理液を供給するといった態様も採ることができる。
 また、処理液ノズルは、例えば、ノズル内に供給された処理液と不活性ガスを混合させて処理液の液滴を生成する二流体ノズルであってもよい。
  <変形態様6>
 図9は、本発明に係る基板処理装置1に用いられる配管の好ましい態様を示す図である。
 上述した、触媒ユニット21から処理液ノズル4または遮断板11に形成された吐出口へ至る配管、触媒ユニット21から薬液希釈タンク82へ至る配管、薬液希釈タンク82から処理液ノズル4または遮断板11に形成された吐出口へ至る配管のいずれか、またはすべてが、図9に示す態様にされていることが好ましい。ここでの説明では、全ての配管を総称して「配管100」とする。
 図9を参照すると、配管100は、2重構造にされており、処理液が流通する内側配管101と、この内側配管101を取り囲む外側配管102とを有している。内側配管101は、外側配管102の内部において、内側配管101と外側配管102との間に介在する支持部材(図示せず)によって支持されている。内側配管101は、外側配管102に対して非接触状態で支持されている。内側配管101と外側配管102との間には空間が筒状に形成されている。内側配管101は、例えば耐薬液性および耐熱性に優れたPFA、PTFEなどのフッ素樹脂製である。フッ素樹脂は、酸素を透過させることができる。外側配管は、例えば、PVC製やフッ素樹脂製の管を用いることができる。
 また、外側配管102には、不活性ガスバルブ103が介装された不活性ガス供給管104と、排気バルブ105が介装された排気配管106とが接続されている。不活性ガスバルブ103を開くことにより、不活性ガス供給管104を介して、図示しない不活性ガス供給源(例えば、窒素ガス)からの不活性ガスを外側配管102の内部に供給することができる。これにより、内側配管101と外側配管102との間に不活性ガスを充填することができる。不活性ガスバルブ103と不活性ガス供給管104により不活性ガス充填手段が構成されている。また、排気バルブ105を開くことにより、内側配管101と外側配管102との間から気体を排気させることができる。
 排気バルブ105を開いた状態で、不活性ガスバルブ103を開くことにより、内側配管101と外側配管102との間から空気を追い出して、この間の雰囲気を不活性ガス雰囲気に置換することができる。これにより、内側配管101を不活性ガスにより包囲することができる。そして、内側配管101と外側配管102との間の雰囲気が不活性ガス雰囲気に置換された後、不活性ガスバルブ103と排気バルブ105を閉じることにより、内側配管101が不活性ガスによって包囲された状態を維持することができる。
 内側配管101を不活性ガスにより包囲することにより、内側配管101の管壁を介して内側配管101の内部に進入する酸素の量を低減することができる。これにより、内側配管101内を流通する処理液に酸素が溶け込んで、当該処理液中の酸素濃度が上昇することを抑制または防止することができる。
 [第二実施形態]
 上述した第一実施形態の処理室2は枚葉式の洗浄機構を備えるものであったが、本発明に含まれる処理室はこれに限らず、バッチ式の洗浄機構を備えた処理室であってもよい。
 図10に、図5の態様(変形態様2)の処理室を、バッチ式の洗浄機構を備えた処理室に替えた例を示す。しかし、この図は一例であり、当該バッチ式の洗浄機構を備えた処理室2には、上述した変形態様2だけでなく、上述した他の変形態様1~6の各々又はすべてを適用することができる。なお、第一実施形態と同じ構成要素には同一符号を付して、その構成要素の説明は第一実施形態と同じなので割愛する。
 図10を参照すると、第二実施形態の基板処理装置1の処理室2は、処理液を貯留していて当該処理液で基板Wを洗浄処理するための処理槽201を有する。処理槽201の外周には、処理槽201から溢れた処理液を受容するオーバフロー部202が設けられている。
 処理室2内には、基板Wを処理槽201内に搬送するための基板搬送機構(不図示)も備えられている。基板搬送機構としてはリフタとチャックが用いられる。チャックは、複数枚の基板Wを一括して保持した状態で、処理室2の外から処理槽201の上方まで搬送するものである。リフタは、処理槽201の上方において該チャックから複数枚の基板Wを受け取り、これらの複数枚の基板Wを一括して支持した状態で下降し、処理槽201に貯留された処理液中に浸漬するものである。
 処理槽201の底部には、処理槽201内に処理液を供給する処理液ノズル203が配設されている。各々の処理液ノズル203には、処理液供給管27から分岐した配管が接続されている。各処理液ノズル203には、処理液を基板Wに向けて噴出する多数の噴出口が形成されている。
 処理液は、第一実施形態で説明したように、触媒ユニット21と膜分離ユニット22とを含む手段を用いて溶存酸素と過酸化水素とが除去された水素溶解処理液である。
 噴出した処理液が処理槽201内に貯留されていき、処理槽201の上端部よりオーバフローする。基板Wは、このときの処理液の上昇流によって均一に洗浄される。
 基板Wの洗浄処理に供され、処理槽201の上端部からオーバフローした処理液は、処理槽201の外周に形成されたオーバフロー部202に一時的に貯留される。オーバフロー部202の底部には、比抵抗計205を有する排水管206が接続されている。このため、オーバフロー部202に一時的に貯留された純水は、比抵抗計205を通過した後、基板処理装置1の外へ排出される。
 この比抵抗計205は、基板Wの洗浄に供された処理液の比抵抗値を測定することにより、処理液の清浄度を測定し、この測定値に基づいて基板Wの洗浄度を判断する目的で使用される。
 また、処理槽201内に貯留された処理液を急速に排出するために、処理槽201の底部には比較的大径の排出口204が形成されている。排出口204には、処理液を基板処理装置1の外へ排出する排水管207が接続されている。排水管207には、制御ユニット5によって開閉動作される排水バルブ208が介装されている。
 処理槽201の上方に、処理槽201の開口を開閉可能に作動する一対の蓋部材209が配設されている。各蓋部材209には吐出口が開口しており、該吐出口に、ガス供給管39から分岐した配管が接続されている。これにより、蓋部材209で蓋をされた処理槽201内に不活性ガスを供給して、処理槽201内における処理液の上方の空間を不活性ガスでパージすることができる。
 このように、処理槽201内に不活性ガスを供給するノズルを設けることなく、蓋部材209に不活性ガスの吐出口を形成することにより、処理槽201と蓋部材209からなる上下方向のスペースを小さくすることができ、基板処理装置1全体が大型化することを防止することが可能となる。また、処理槽201に貯留される処理液の液面と蓋部材209の下面との距離を小さくすることが可能となるので、処理槽201内に供給する不活性ガスの量をより少なくすることが可能となる。
 [第三実施形態]
 図11は、本発明の第三実施形態に係る基板処理装置の概略構成を示す模式図である。
 本実施形態では、半導体ウエハの洗浄やエッチング等の目的で、フッ化水素酸(HF)と超純水とを混合して希フッ酸を調製し、基板処理装置1の処理室2に供給する。本明細書では「フッ化水素酸」を「フッ酸」と略称することがある。また本発明では、処理液原液のフッ化水素酸(HF)に替えて、主に絶縁膜の洗浄やエッチングに用いられるバッファードフッ酸(BHF)を使用してもよい。バッファードフッ酸は、フッ化水素酸(HF)とフッ化アンモニウム溶液の混合溶液である。
 本実施形態の基板処理装置1は、槽内でHFと超純水とを混合して希フッ酸(DHF)を調製し貯留する混合水貯留槽300と、薬液タンク(不図示)内のHFを混合水貯留槽300に供給するHF供給ライン301(フッ化水素酸供給手段)と、混合水貯留槽300に超純水を供給する超純水供給ライン302(超純水供給手段)と、DHFを基板処理液として処理室2に送る処理液供給ライン303と、を有している。
 HF供給ライン301上には、本発明によるフッ化水素酸溶液の精製方法を実施するHF精製ユニット304が設置されている。HF精製ユニット304は、HFに水素を添加する水素添加装置305と、当該水素が添加されたHF中の溶存酸素および過酸化水素を除去するための酸化剤除去装置306とを備えている。
 水素添加装置305により水素を添加したHFの原液を酸化剤除去装置306に通液させることによって、該HF中の溶存酸素濃度および過酸化水素濃度を低減することができる。添加する水素の濃度は8μg/L以上(好ましくは15μg/L以上、より好ましくは66μg/L以上)であることが望ましい。
 酸化剤除去装置306は白金族系金属触媒を充填した態様を有する。例えば、パラジウム触媒を充填した触媒ユニットや、パラジウム触媒をモノリスに担持した触媒ユニットが挙げられるが、当該白金族系金属触媒のより詳細な具体例については後で記載することにする(第五実施形態を参照)。
 なお、HFの原液が水素添加装置305および酸化剤除去装置306を順次通水することにより、当該HFは溶存酸素濃度が2μg/L以下、過酸化水素濃度が2μg/L以下の液体に精製される。この事は、後述する実施例中に示した評価結果に基づく。
 混合水貯留槽300は酸化剤除去装置306及び超純水供給ライン302の後段に位置しており、HF精製ユニット304で精製されたHFと超純水供給ライン302から供給された超純水とを槽内で混合してDHFを調製し貯留する。混合水貯留槽300に対する精製HFの供給量と超純水の供給量とを調整することにより、所定の濃度に希釈されたDHFを作ることができる。
 超純水供給ライン302は、例えば、背景技術の欄で述べたような超純水製造装置のサブシステム(図1参照)からの超純水を混合水貯留槽300へ供給する配管である。超純水供給ライン302から供給される超純水はあらかじめ、溶存酸素濃度が2μg/L以下、過酸化水素濃度が2μg/L以下に低減された超純水を用いる必要がある。
 混合水貯留槽300は、密閉容器からなるものであり、混合水貯留槽300内に窒素ガス等の不活性ガスを供給する不活性ガス供給ライン307を備えている。混合水貯留槽300に不活性ガスを供給することにより、混合水貯留槽300内から空気を追い出すことができる。したがって、混合水貯留槽300内の空気に含まれる酸素が、混合水貯留槽300に貯留されたDHFに溶け込んで、当該DHF中の溶存酸素量が増加することを抑制または防止することができる。また、不活性ガスによって混合水貯留槽300内を加圧することにより、混合水貯留槽300内に貯留されたDHFを処理液供給ライン303に圧送することができる。
 なお、HF精製ユニット304で精製されたHF原液を、混合水貯留槽300を経由させないで処理室2へ直接供給するラインを設けてもよい。
 また、処理室2は、被処理基板を保持して該被処理基板にノズルよりDHFを吐出する枚葉式の処理機構、あるいは、被処理基板を処理槽内に収容し、該処理槽内にDHFを供給して被処理基板を浸漬させるバッチ式の処理機構のいずれかを備えることができる。さらに、被処理体表面の金属の腐食抑制および酸化抑制の観点で、基板処理の工程中は処理室2内に不活性ガスを充填して、処理室2内における酸素ガス濃度を2%以下にしておくことが望ましい。
 [第四実施形態]
 図12は、本発明の第四実施形態に係る基板処理装置の概略構成を示す模式図である。この図では上述した第三実施形態の構成要素と同じものには同一符号を付してあり、その説明は割愛する。
 本実施形態の基板処理装置1では、前述したHF精製ユニット304が処理液供給ライン303上に設置されている。つまり、第三実施形態では、HFの原液から溶存酸素および溶存過酸化水素を除去する態様を示したが、第四実施形態では、HFの原液を超純水で希釈してなるDHF(希フッ酸)から酸素および溶存過酸化水素を除去する態様を示す。
 図12を参照すると、混合水貯留槽300には、HFの原液を供給するHF供給ライン301と、混合水貯留槽300に超純水を供給する超純水供給ライン302とがそれぞれ直接、接続されている。混合水貯留槽300に対するHF原液の供給量と超純水の供給量とを調整することにより、所定の濃度に希釈されたDHFを作ることができる。
 酸化剤除去装置306は、混合水貯留槽300内で調製されたDHFを処理室2へ供給する処理液供給ライン303上に設置されている。さらに、水素添加装置305は、混合水貯留槽300から酸化剤除去装置306の間の処理液供給ラインに接続されている。
 水素添加装置305により、DHFに水素を添加することによって、水素が該DHF中の溶存酸素と反応して水を生成するため、該DHF中の溶存酸素濃度を低減することができる。添加する水素の濃度は10μg/L以上であることが、溶存酸素の除去にとって望ましい。
 さらに、溶存酸素が低減されたDHFが酸化剤除去装置306を順次通水することにより、当該DHFは溶存酸素濃度が2μg/L以下、過酸化水素濃度が2μg/L以下の液体に精製される。この事は、後述する実施例5中に示した評価結果に基づく。
 この形態では、超純水供給ライン302から供給される超純水は、溶存酸素濃度が2μg/L以下、過酸化水素濃度が2μg/L以下に低減されていない超純水を用いてもよい。
 第三実施形態と同様、酸化剤除去装置306には、パラジウム触媒を充填した触媒ユニットや、パラジウム触媒をモノリスに担持した触媒ユニットが挙げられる。
 この第四実施形態は第三実施形態と同様の効果を奏する。その上、第四実施形態では、前述した第三実施形態と比べてHF精製ユニット304が処理室2の近くに配置されるため、処理室2内により清浄なDHFを供給できる。
 [第五実施形態]
 上述した触媒ユニット21または酸化剤除去装置306に使用される、溶存酸素除去と過酸化水素除去のための触媒の具体例について詳述する。
  <溶存酸素除去と過酸化水素除去のための触媒>
 当該白金族系金属触媒としては、白金族金属が担持された粒状のイオン交換樹脂、金属イオン型の粒状の陽イオン交換樹脂、白金族金属が担持された非粒状の有機多孔質体又は白金族金属が担持された非粒状の有機多孔質イオン交換体が挙げられる。
  <白金族金属担持非粒状有機多孔質体、白金族金属担持非粒状有機多孔質イオン交換体>
 白金族金属担持非粒状有機多孔質体としては、非粒状有機多孔質体に、平均粒子径1~1000nmの白金族金属の微粒子が担持されており、非粒状有機多孔質体が、連続骨格相と連続空孔相からなり、連続骨格の厚みは1~100μm、連続空孔の平均直径は1~1000μm、全細孔容積は0.5~50ml/gであり、白金族金属の担持量が、乾燥状態で0.004~20重量%である白金族金属担持非粒状有機多孔質体が挙げられる。
 また、白金族金属担持非粒状有機多孔質イオン交換体としては、非粒状有機多孔質イオン交換体に、平均粒子径1~1000nmの白金族金属の微粒子が担持されており、非粒状有機多孔質イオン交換体は、連続骨格相と連続空孔相からなり、連続骨格の厚みは1~100μm、連続空孔の平均直径は1~1000μm、全細孔容積は0.5~50ml/gであり、乾燥状態での重量当りのイオン交換容量は1~6mg当量/gであり、イオン交換基が有機多孔質イオン交換体中に均一に分布しており、白金族金属の担持量が、乾燥状態で0.004~20重量%である白金族金属担持非粒状有機多孔質イオン交換体が挙げられる。
 なお、非粒状有機多孔質体又は非粒状有機多孔質イオン交換体の開口の平均直径は、水銀圧入法により測定され、水銀圧入法により得られた細孔分布曲線の極大値を指す。また、非粒状有機多孔質体又は非粒状有機多孔質イオン交換体の構造、及び連続骨格の厚みは、SEM観察により求められる。非粒有機多孔質体又は非粒状有機多孔質イオン交換体に担持されている白金族金属のナノ粒子の粒子径は、TEM観察により求められる。
 上記の白金族金属担持非粒状有機多孔質体又は白金族金属担持非粒状有機多孔質イオン交換体は、非粒状有機多孔質体又は非粒状有機多孔質イオン交換体に、平均粒子径1~100nmの白金族金属が担持されているので、高い過酸化水素分解触媒活性を示し、且つ、200~20000h-1好ましくは2000~20000h-1の空間速度(SV)で被処理水を通水させることができる。
 白金族金属担持非粒状有機多孔質体において、白金族金属が担持されている担体は、非粒状有機多孔質体であるが、この非粒状有機多孔質交換体とは、モノリス状有機多孔質交換体である。また、白金族金属担持非粒状有機多孔質イオン交換体において、白金族金属が担持されている担体は、非粒状有機多孔質イオン交換体であるが、この非粒状有機多孔質イオン交換体とは、モノリス状有機多孔質イオン交換体であり、モノリス状有機多孔質体にイオン交換基が導入されたものである。
 モノリス状有機多孔質体は、骨格が有機ポリマーにより形成されており、骨格間に反応液の流路となる連通孔を多数有する多孔質体である。そして、モノリス状有機多孔質イオン交換体は、このモノリス状有機多孔質体の骨格中にイオン交換基が均一に分布するように導入されている多孔質体である。なお、本明細書中、「モノリス状有機多孔質体」を単に「モノリス」と、「モノリス状有機多孔質イオン交換体」を単に「モノリスイオン交換体」とも言い、また、モノリスの製造における中間体(前駆体)である「モノリス状有機多孔質中間体」を単に「モノリス中間体」とも言う。
 このようなモノリス又はモノリスイオン交換体の構造例としては、特開2002-306976号公報や特開2009-62512号公報に開示されている連続気泡構造や、特開2009-67982号公報に開示されている共連続構造や、特開2009-7550号公報に開示されている粒子凝集型構造や、特開2009-108294号公報に開示されている粒子複合型構造等が挙げられる。
 上記モノリス、すなわち、白金族金属粒子の担体となるモノリスの形態例(以下、モノリス(1)とも記載する。)及び上記モノリスイオン交換体、すなわち、白金族金属粒子の担体となるモノリスイオン交換体の形態例(以下、モノリスイオン交換体(1)とも記載する。)としては、特開2009-67982号公報に開示されている共連続構造を有するモノリス及びモノリスイオン交換体が挙げられる。
 つまり、モノリス(1)は、イオン交換基が導入される前のモノリスであり、全構成単位中、架橋構造単位を0.1~5.0モル%含有する芳香族ビニルポリマーからなる平均太さが乾燥状態で1~100μmの三次元的に連続した骨格と、その骨格間に平均直径が乾燥状態で1~1000μmの三次元的に連続した空孔とからなる共連続構造体であって、乾燥状態での全細孔容積が0.5~50ml/gである有機多孔質体であるモノリスである。
 また、モノリスイオン交換体(1)は、全構成単位中、架橋構造単位を0.1~5.0モル%含有する芳香族ビニルポリマーからなる平均太さが乾燥状態で1~100μmの三次元的に連続した骨格と、その骨格間に平均直径が乾燥状態で1~1000μmの三次元的に連続した空孔とからなる共連続構造体であって、乾燥状態での全細孔容積が0.5~50ml/gであり、イオン交換基を有しており、乾燥状態での重量当りのイオン交換容量が1~6mg当量/gであり、イオン交換基が有機多孔質イオン交換体中に均一に分布しているモノリスイオン交換体であるモノリスイオン交換体である。
 モノリス(1)又はモノリスイオン交換体(1)は、平均太さが乾燥状態で1~100μm、好ましくは3~58μmの三次元的に連続した骨格と、その骨格間に平均直径が乾燥状態で1~1000μm、好ましくは15~180μm、特に好ましくは20~150μmの三次元的に連続した空孔とからなる共連続構造体である。共連続構造とは、連続する骨格相と連続する空孔相とが絡み合ってそれぞれが共に3次元的に連続する構造である。この連続した空孔は、従来の連続気泡型モノリスや粒子凝集型モノリスに比べて空孔の連続性が高くてその大きさに偏りがない。また、骨格が太いため機械的強度が高い。
 三次元的に連続した空孔の平均直径が乾燥状態で1μm未満であると、通液時の圧力損失が大きくなってしまうため好ましくなく、1000μmを超えると、反応液とモノリス又はモノリスイオン交換体との接触が不十分となり、その結果、触媒活性が不十分となるため好ましくない。また、骨格の平均太さが乾燥状態で1μm未満であると、高流速で通液した際にモノリス又はモノリスイオン交換体が大きく変形してしまうため好ましくない。更に、反応液とモノリス又はモノリスイオン交換体との接触効率が低下し、触媒効果が低下するため好ましくない。一方、骨格の太さが100μmを越えると、骨格が太くなり過ぎ、通液時の圧力損失が増大するため好ましくない。
 乾燥状態のモノリス(1)の開口の平均直径、モノリスイオン交換体(1)の開口の平均直径及び以下に述べるモノリスの製造のI処理で得られる、乾燥状態のモノリス中間体(1)の開口の平均直径は、水銀圧入法により測定され、水銀圧入法により得られた細孔分布曲線の極大値を指す。また、モノリス(1)又はモノリスイオン交換体(1)の骨格の乾燥状態での平均太さは、乾燥状態のモノリス(1)又はモノリスイオン交換体(1)のSEM観察により求められる。具体的には、乾燥状態のモノリス(1)又はモノリスイオン交換体(1)のSEM観察を少なくとも3回行い、得られた画像中の骨格の太さを測定し、それらの平均値を平均太さとする。なお、骨格は棒状であり円形断面形状であるが、楕円断面形状等異径断面のものが含まれていてもよい。この場合の太さは短径と長径の平均である。
 また、モノリス(1)又はモノリスイオン交換体(1)の乾燥状態での重量当りの全細孔容積は、0.5~50ml/gである。全細孔容積が0.5ml/g未満であると、通液時の圧力損失が大きくなってしまうため好ましくなく、更に、単位断面積当りの透過量が小さくなり、処理量が低下してしまうため好ましくない。一方、全細孔容積が50ml/gを超えると、機械的強度が低下して、特に高流速で通液した際にモノリス又はモノリスイオン交換体が大きく変形してしまうため好ましくない。更に、反応液とモノリス(1)又はモノリスイオン交換体(1)との接触効率が低下するため、触媒効率も低下してしまうため好ましくない。三次元的に連続した空孔の大きさ及び全細孔容積が上記範囲にあれば、反応液との接触が極めて均一で接触面積も大きく、かつ低圧力損失下での通液が可能となる。
 モノリス(1)又はモノリスイオン交換体(1)において、骨格を構成する材料は、全構成単位中、0.1~5モル%、好ましくは0.5~3.0モル%の架橋構造単位を含んでいる芳香族ビニルポリマーであり疎水性である。架橋構造単位が0.1モル%未満であると、機械的強度が不足するため好ましくなく、一方、5モル%を越えると、多孔質体の構造が共連続構造から逸脱しやすくなる。芳香族ビニルポリマーの種類に特に制限はなく、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルトルエン、ポリビニルベンジルクロライド、ポリビニルビフェニル、ポリビニルナフタレン等が挙げられる。上記ポリマーは、単独のビニルモノマーと架橋剤を共重合させて得られるポリマーでも、複数のビニルモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、共連続構造形成の容易さ、イオン交換基導入の容易性と機械的強度の高さ、および、酸又はアルカリに対する安定性の高さから、スチレン-ジビニルベンゼン共重合体やビニルベンジルクロライド-ジビニルベンゼン共重合体が好ましい。
 モノリスイオン交換体(1)において、導入されているイオン交換基は、モノリスの表面のみならず、モノリスの骨格内部にまで均一に分布している。ここで言う「イオン交換基が均一に分布している」とは、イオン交換基の分布が少なくともμmオーダーで表面および骨格内部に均一に分布していることを指す。イオン交換基の分布状況は、EPMAを用いることで簡単に確認される。また、イオン交換基が、モノリスの表面のみならず、モノリスの骨格内部にまで均一に分布していると、表面と内部の物理的性質及び化学的性質を均一にできるため、膨潤及び収縮に対する耐久性が向上する。
 モノリスイオン交換体(1)に導入されているイオン交換基は、カチオン交換基又はアニオン交換基である。カチオン交換基としては、カルボン酸基、イミノ二酢酸基、スルホン酸基、リン酸基、リン酸エステル基等が挙げられる。アニオン交換基としては、トリメチルアンモニウム基、トリエチルアンモニウム基、トリブチルアンモニウム基、ジメチルヒドロキシエチルアンモニウム基、ジメチルヒドロキシプロピルアンモニウム基、メチルジヒドロキシエチルアンモニウム基等の四級アンモニウム基や、第三スルホニウム基、ホスホニウム基等が挙げられる。
 モノリスイオン交換体(1)は、乾燥状態での重量当りのイオン交換容量が1~6mg当量/gのイオン交換容量を有する。モノリスイオン交換体(1)は、三次元的に連続した空孔の連続性や均一性が高いため、全細孔容積を低下させても圧力損失はさほど増加しない。そのため、圧力損失を低く押さえたままで体積当りのイオン交換容量を飛躍的に大きくすることができる。重量当りのイオン交換容量が上記範囲にあることにより、触媒内部のpHなど触媒活性点の周りの環境を変えることができ、これにより触媒活性が高くなる。モノリスイオン交換体(1)がモノリスアニオン交換体の場合は、モノリスアニオン交換体(1)には、アニオン交換基が導入されており、乾燥状態での重量当りのアニオン交換容量は、1~6mg当量/gである。また、モノリスイオン交換体(1)がモノリスカチオン交換体の場合は、モノリスカチオン交換体(1)には、カチオン交換基が導入されており、乾燥状態での重量当りのカチオン交換容量は、1~6mg当量/gである。
 モノリス(1)は、特開2009-67982号公報に開示されているモノリス状有機多孔質体の製造方法を行うことにより得られる。つまり、当該製法は、イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が16ml/gを超え、30ml/g以下の連続マクロポア構造のモノリス状の有機多孔質中間体(以下、モノリス中間体(1)とも記載する。)を得るI処理、芳香族ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する全油溶性モノマー中、0.3~5モル%の架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII処理、II処理で得られた混合物を静置下、且つI処理で得られたモノリス中間体(1)の存在下に重合を行い、共連続構造体である有機多孔質体であるモノリス(1)を得るIII処理、を含む。
 白金族金属担持非粒状有機多孔質体又は白金族金属担持非粒状有機多孔質イオン交換体には、白金族金属が担持されている。白金族金属とは、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金である。これらの白金族金属は、一種類を単独で用いても、二種類以上の金属を組み合わせて用いても良く、更に、二種類以上の金属を合金として用いても良い。これらの中で、白金、パラジウム、白金/パラジウム合金は触媒活性が高く、好適に用いられる。
 白金族金属担持非粒状有機多孔質体又は白金族金属担持非粒状有機多孔質イオン交換体に担持されている白金族金属粒子の平均粒子径は、1~1000nmであり、好ましくは1~200nm、更に好ましくは1~20nmである。平均粒子径が1nm未満であると、白金族金属粒子が担体から脱離する可能性が高くなるため好ましくなく、一方、平均粒子径が1000nmを超えると、金属の単位質量当たりの表面積が少なくなり触媒効果が効率的に得られなくなるため好ましくない。なお、白金族金属粒子の平均粒子径は、透過型電子顕微鏡(TEM)分析により得られるTEM画像を、画像解析することにより求められる。
 白金族金属担持非粒状有機多孔質体又は白金族金属担持非粒状有機多孔質イオン交換体中の白金族金属粒子の担持量((白金族金属粒子/乾燥状態の白金族金属担持触媒)×100)は、0.004~20重量%、好ましくは0.005~15重量%である。白金族金属粒子の担持量が0.004重量%未満であると、触媒活性が不十分になるため好ましくない。一方、白金族金属粒子の担時量が20重量%を超えると、水中への金属溶出が認められるようになるため好ましくない。
 白金族金属担持非粒状有機多孔質体又は白金族金属担持非粒状有機多孔質イオン交換体の製造方法には特に制約はない。公知の方法により、モノリス又はモノリスイオン交換体に、白金族金属の微粒子を担持させることにより、白金族金属担持触媒が得られる。非粒状有機多孔質体又は非粒状有機多孔質イオン交換体に白金族金属を担持する方法としては、例えば、特開2010-240641号公報に開示されている方法が挙げられる。例えば、乾燥状態のモノリスイオン交換体を酢酸パラジウム等の白金族金属化合物のメタノール溶液に浸漬し、パラジウムイオンをイオン交換によりモノリスイオン交換体に吸着させ、次いで、還元剤と接触させてパラジウム金属微粒子をモノリスイオン交換体に担持する方法や、モノリスイオン交換体をテトラアンミンパラジウム錯体等の白金族金属化合物の水溶液に浸漬し、パラジウムイオンをイオン交換によりモノリスイオン交換体に吸着させ、次いで、還元剤と接触させてパラジウム金属微粒子をモノリスイオン交換体に担持する方法である。
 白金族金属が担持された粒状のイオン交換樹脂は、粒状のイオン交換樹脂に、白金族金属が担持されたものである。白金族金属の担体となる粒状のイオン交換樹脂としては、特に制限されず、例えば、強塩基性アニオン交換樹脂等が挙げられる。そして、粒状のイオン交換樹脂に、公知の方法により白金族金属が担持されて、白金族金属が担持された粒状のイオン交換樹脂が得られる。
 金属が担持された金属イオン型の粒状の陽イオン交換樹脂は、粒状の陽イオン交換樹脂に、鉄イオン、銅イオン、ニッケルイオン、クロムイオン、コバルトイオンなどの金属が担持されたものである。担体となる粒状の陽イオン交換樹脂としては、特に制限されず、例えば、強酸性陽イオン交換樹脂等が挙げられる。そして、粒状の陽イオン交換樹脂に、公知の方法により鉄イオン、銅イオン、ニッケルイオン、クロムイオン、コバルトイオンなどの金属が担持されて、金属イオン型の粒状の陽イオン交換樹脂が得られる。
 以下に、本発明に使用される触媒ユニット21の触媒を、より具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
  <白金族金属担持非粒状有機多孔質イオン交換体の製造>
 (モノリス中間体の製造(I処理))
 スチレン9.28g、ジビニルベンゼン0.19g、ソルビタンモノオレエート(以下SMOと略す)0.50gおよび2,2’-アゾビス(イソブチロニトリル)0.25gを混合し、均一に溶解させた。次に、当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物を180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを速やかに反応容器に移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、メタノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリス中間体を製造した。このようにして得られたモノリス中間体(乾燥体)の内部構造をSEMにより観察した。SEM画像から、隣接する2つのマクロポアを区画する壁部は極めて細く棒状であるものの、連続気泡構造を有しており、水銀圧入法により測定したマクロポアとマクロポアが重なる部分の開口(メソポア)の平均直径は40μm、全細孔容積は18.2ml/gであった。
 (モノリスの製造)
 次いで、スチレン216.6g、ジビニルベンゼン4.4g、1-デカノール220g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.8gを混合し、均一に溶解させた(II処理)。次に上記モノリス中間体を反応容器に入れ、当該スチレン/ジビニルベンゼン/1-デカノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物に浸漬させ、減圧チャンバー中で脱泡した後、反応容器を密封し、静置下50℃で24時間重合させた。重合終了後内容物を取り出し、アセトンでソックスレー抽出した後、減圧乾燥した(III処理)。
 このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を1.2モル%含有したモノリス(乾燥体)の内部構造を、SEMにより観察した。SEM観察から、当該モノリスは骨格及び空孔はそれぞれ3次元的に連続し、両相が絡み合った共連続構造であった。また、SEM画像から測定した骨格の平均太さは20μmであった。また、水銀圧入法により測定した、当該モノリスの三次元的に連続した空孔の平均直径は70μm、全細孔容積は4.4ml/gであった。なお、空孔の平均直径は、水銀圧入法により得られた細孔分布曲線の極大値から求めた。
 (モノリスアニオン交換体の製造)
 上記の方法で製造したモノリスをカラム状反応器に入れ、クロロスルホン酸1600gと四塩化スズ400g、ジメトキシメタン2500mlからなる溶液を循環・通液して、30℃、5時間反応させ、クロロメチル基を導入した。反応終了後、クロロメチル化モノリスをTHF/水=2/1の混合溶媒で洗浄し、更にTHFで洗浄した。このクロロメチル化モノリスにTHF1600mlとトリメチルアミン30%水溶液1400mlを加え、60℃、6時間反応させた。反応終了後、生成物をメタノールで洗浄し、次いで純水で洗浄してモノリスアニオン交換体を得た。
 得られたモノリスアニオン交換体のアニオン交換容量は、乾燥状態で4.2mg当量/gであり、四級アンモニウム基が定量的に導入されていることを確認した。また、SEM画像から測定した乾燥状態での骨格の太さは20μmであり、水銀圧入法による測定から求めた、当該モノリスアニオン交換体の三次元的に連続した空孔の乾燥状態での平均直径は70μm、乾燥状態での全細孔容積は4.4ml/gであった。
 次に、モノリスアニオン交換体中の四級アンモニウム基の分布状態を確認するため、モノリスアニオン交換体を塩酸水溶液で処理して塩化物型とした後、EPMAにより塩化物イオンの分布状態を観察した。その結果、塩化物イオンはモノリスアニオン交換体の骨格表面のみならず、骨格内部にも均一に分布しており、四級アンモニウム基がモノリスアニオン交換体中に均一に導入されていることが確認できた。
 (白金族金属の担持)
 上記モノリスアニオン交換体をCl形にイオン交換した後、乾燥状態で円柱状に切り出し、減圧乾燥した。乾燥後のモノリスアニオン交換体の重量は、1.2gであった。この乾燥状態のモノリスアニオン交換体を、塩化パラジウム100mgを溶解した希塩酸に24時間浸漬し、塩化パラジウム酸形にイオン交換した。浸漬終了後、モノリスアニオン交換体を純水で数回洗浄し、ヒドラジン水溶液中に24時間浸漬して還元処理を行った。塩化パラジウム酸形モノリスアニオン交換体が茶色であったのに対し、還元処理終了後のモノリスアニオン交換体は黒色に着色しており、パラジウム微粒子の生成が示唆された。還元後の試料は、数回純水で洗浄した後、減圧乾燥により乾燥させた。
 パラジウムの担持量をICP発光分光分析法で求めたところ、パラジウム担持量は3.9重量%であった。モノリスアニオン交換体に担持されたパラジウムの分布状態を確認するため、EPMAによりパラジウムの分布状態を観察した。パラジウムはモノリスアニオン交換体の骨格表面のみならず、骨格内部にも分布しており、内部の方が濃度が若干高いものの、比較的均一に分布していることが確認できた。また、担持されたパラジウム粒子の平均粒子径を測定するため、透過型電子顕微鏡(TEM)観察を行った。パラジウム微粒子の平均粒子径は、8nmであった。
 以下では、基板処理装置1により基板Wを処理することにより得られた測定結果について説明する。
 [処理される基板(サンプル)]
 4インチのシリコンウエハに銅、モリブデン、タングステンをそれぞれ200nmの厚みとなるようにスパッタリングで成膜した試験ウエハを使用した。なお、銅およびタングステンについては、下地としてチタンを予め50nmスパッタリングで成膜した上に成膜している。近年、MOS型素子の配線材料には、タングステンや銅の他にモリブデンも使用されており、これも評価した。
 [評価方法]
 4探針シート抵抗測定器(Σ-5+、エヌピイエス社製)を用いて洗浄処理前後のシート抵抗を測定し、その差を記録した。金属が溶出し膜厚が減少するとシート抵抗は増加する。
 [基板処理装置(洗浄装置)]
 基板処理装置(洗浄装置)としては、図2に示される枚葉式の基板処理装置1を使用した。不活性ガスとしては99.999%の窒素ガスを用い、ウエハの回転数は500rpmで一定とし、処理液ノズルから処理水を60分間供給し試験ウエハを洗浄処理した。
 [原水(超純水)]
 超純水については、オルガノ株式会社開発センター内に設置されている超純水製造装置の二次純水を使用した。超純水製造装置の出口での水質は次の表1のとおりである。なお、超純水製造装置の出口は例えば図3に示したサブシステム9の超純水循環配管9aからの出口9bに相当し、この出口9bから基板処理装置1の超純水入口1aまでの間は約50mの配管(PFAで作られた配管および継手)で接続されており、超純水入口1aでの溶存酸素濃度は8μg/Lであった。
Figure JPOXMLDOC01-appb-T000001
 
 [評価する処理水]
 過酸化水素除去水については、上記の超純水をパラジウム担持モノリスに通水して得た。このとき、過酸化水素濃度は2μg/L以下であった。
 水素溶解水については、上記の超純水に中空糸膜を介して水素を添加して得た。溶存水素濃度について、溶存水素計(DHDI-1、東亜ディーケーケー社製)で測定した。水素濃度は中空糸膜へ供給する水素ガス量をマスフローコントローラーで制御した。
 酸素および過酸化水素が除去された水については、上記の水素溶解水をパラジウム担持モノリスに通水して得た。このとき、該パラジウム担持モノリスを、図3に示したサブシステム9の超純水循環配管9aからの出口9bから基板処理装置1の超純水入口1aまでの間であって、基板処理装置1の超純水(被処理液)入口1から上流側の5m以内の超純水供給路に配置した。溶存酸素濃度については、オービスフェア製model410型を用いて測定した。
 [実施例1]
 上記枚葉式洗浄装置の処理室内の酸素ガス濃度を2%以下とした状態にて、処理水の種類を変えて上記の各試験ウエハを処理した。この結果(シート抵抗増分)を次の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 
 上記の超純水や過酸化水素除去水では銅の腐食が起きている。上記の水素溶解水では、銅の腐食は完全には抑制されていない。超純水から溶存酸素と過酸化水素を除去しただけでも腐食の抑制は未だ完全でない。
 しかし、上記の超純水から溶存酸素および過酸化水素を除去し、水素を所定濃度以上添加することにより得た水を、低酸素雰囲気で基板の洗浄に使用すると、完全に銅の腐食を抑制できた。この事は、タングステンが表面に成膜された試験ウエハについても同じであった(表2には示していない。)。
 このような表2の評価結果から、次の事が分かる。銅が表面に露出したウエハを超純水で洗浄すると、当該超純水中に含まれる酸素および過酸化水素で銅が腐食および溶出する。
 そこで当該超純水から酸素および過酸化水素を除去すると、銅の溶出(膜厚の減少)が抑制され、さらに、酸素と過酸化水素とが除去された超純水に水素を添加すると、銅の溶出はさらに抑制されることが分かった。
 なお、銅の処理水として、溶存酸素濃度が2μg/L以下、過酸化水素濃度が2μg/L以下で、かつ溶存水素濃度が8μg/L以上、好ましくは15μg/L以上、より好ましくは66μg/L以上、に調整されていると最も効果があることが表2から分かる。
 また、モリブデンが表面に成膜された試験ウエハを処理する場合には、上記の超純水から過酸化水素を除去することでモリブデンの腐食を大幅に抑制できることも表2から分かる。このときのシート抵抗増分は上記の水素溶解水の場合とほぼ同じである。さらに、過酸化水素除去水に水素を所定濃度以上添加することにより得た水を、低酸素雰囲気でモリブデン露出基板の処理に使用すると、シート抵抗を検出限界以下とすることができた。
 表2の評価結果から、モリブデンの処理水は、少なくとも過酸化水素濃度が2μg/L以下であることが好ましく、さらに、溶存酸素濃度が2μg/L以下、過酸化水素濃度が2μg/L以下で、かつ溶存水素濃度が8μg/L以上、好ましくは15μg/L以上、より好ましくは66μg/L以上、に調整されていると最も効果があることが表2から分かる。
 [参考例1]
 上記モリブデンを成膜した試験ウエハを上記の超純水に24時間浸漬させた後、当該超純水中の過酸化水素濃度を測定した。この結果を示したのが次の表3である。モリブデンは酸素と接触すると過酸化水素を生成することを見出した。したがって、上記の超純水から過酸化水素を除去した液をモリブデンの処理液とすることの意義は大きい。
Figure JPOXMLDOC01-appb-T000003
 
 [実施例2]
 上記枚葉式洗浄装置の処理室内の酸素ガス濃度を調整し、酸素および過酸化水素が除去された水を用い、その調整した酸素ガス濃度の下で、試験ウエハを処理した結果を、次の表4に示す。
Figure JPOXMLDOC01-appb-T000004
 
 上記実施例2の処理を行う処理室内の酸素ガス濃度を2%以下とすれば、完全に銅の腐食を抑制できた。この事は、表面にモリブデンが成膜された試験ウエハについても同じであった。
 この評価結果から、次の事が分かる。上記の超純水から酸素および過酸化水素を除去し、酸素と過酸化水素とが除去された超純水に水素を添加して得た処理水を用い、その処理水で基板処理を行う処理室内の酸素ガス濃度は2%以下にすると、基板表面に露出した銅やモリブデンの溶出を完全に抑制できる。
 したがって、上述した各種の態様の基板処理装置1のように触媒ユニット21および分離膜ユニット22を備えることは、銅やモリブデンの溶出を完全に抑制する効果があると言える。
 [実施例3]
 試験ウエハとして、前述したモリブデン露出基板を用意し、上記枚葉式洗浄装置の洗浄室内のガス成分を調整し、過酸化水素が除去された水を用い、その成分調整されたガス雰囲気下で、試験ウエハを処理した後、基板表面の接触角を測定した結果を、次の表5に示す。
Figure JPOXMLDOC01-appb-T000005
 
 この評価結果から、次の事が分かる。過酸化水素を除去した超純水で処理した基板は、過酸化水素を含む超純水で処理した基板に比べ、接触角が大きくなる。すなわち、より疎水性の表面となる。これは、過酸化水素による基板表面の酸化が抑制された効果であると考えられる。また、窒素雰囲気下で処理した基板は、空気雰囲気下で処理した基板に比べ、接触角が大きくなる。すなわち、より疎水性の表面となる。これは、空気中に含まれる酸素による基板表面の酸化が抑制された効果であると考えられる。
 超純水からの過酸化水素の除去および/または酸素濃度を減じた雰囲気下での処理は、モリブデン露出基板の予期せぬ酸化反応を抑止する効果があるといえる。
 [参考例2]
 試験ウエハとしてn型シリコンウエハを用意し、上記の実施例3とは処理水の条件を変えて、接触角を測定した。すなわち、上記枚葉式洗浄装置の洗浄室内のガス成分を調整し、その成分調整されたガス雰囲気下で、過酸化水素が除去された水、および過酸化水素を50μg/L添加した水のそれぞれで試験ウエハを処理した後、基板表面の接触角を測定した結果を、次の表6に示す。
Figure JPOXMLDOC01-appb-T000006
 
 この評価結果から、次の事が分かる。過酸化水素を除去した超純水で処理した基板は、過酸化水素を含む超純水で処理した基板に比べ、接触角が大きくなる。すなわち、より疎水性の表面となる。これは、過酸化水素による基板表面の酸化が抑制された効果であると考えられる。また、窒素雰囲気下で処理した基板は、空気雰囲気下で処理した基板に比べ、接触角が大きくなる。すなわち、より疎水性の表面となる。これは、空気中に含まれる酸素による基板表面の酸化が抑制された効果であると考えられる。
 超純水からの過酸化水素の除去および/または酸素濃度を減じた雰囲気下での処理は、シリコン基板の濡れ性、すなわち酸化状態に影響があることが分かる。
 [実施例4]
 次に、希釈薬液で基板を処理する場合の評価結果を示す。本実施例では、図13に示される態様を有する基板処理装置1を使用した。この装置は図5に示した態様の基板処理装置と殆ど同じであり、図5中の構成要素と同じものには同じ符号を付してある。
 図5に示した態様に対し変更または追加した構成については次のとおりである。薬液タンク56の上部に、排ガスバルブ211を持つ排ガス管212が接続されている。薬液タンク56の側壁には液位の上限と下限を監視する2つのレベルセンサ210が配設されている。膜分離ユニット22と混合部52の間を延びる処理液供給管27には、処理液バルブ213および流量計214が介装されている。さらに、処理液バルブ28から処理室2の支持軸20内部へと延びる処理液供給管27には、3本の測定用配管215,216,217が接続されている。測定用配管215にはpH計218が介装され、測定用配管216には導電率計219が介装され、測定用配管217には溶存酸素濃度計220が介装されている。処理液バルブ28、薬液バルブ54、ポンプ57、処理液バルブ213および流量計214は制御部5によって制御される。
 さらに、処理室2および薬液タンク56に直接または間接的に繋がる配管(処理液供給管27、一部のメイン配管10、薬液供給管53,75、排ガス管212、測定用配管215,216,217、など)は、図13に示すように不活性ガスシール室221内において配設されている。不活性ガスシール室221の周囲壁に不活性ガス導入口222と不活性ガス排出口223が設けられており、これらの出入口を除いて不活性ガスシール室221は気密封止されている。不活性ガス導入口222には不活性ガス供給管77の分岐配管が接続されている。なお、不活性ガスを不活性ガス排出口223から排気口へ排出する途中で透明なタンク224内の液体に通して泡にすることで、不活性ガスシール室221に不活性ガスを導入していることが分かるようになっている。
 上述した実施態様の基板処理装置1を用意し、容積1LのPP製の薬液タンク56に薬液としてのアンモニア水(25% NH)を充填し、不活性ガス供給管77により薬液タンク56内の気相部に不活性ガスとして窒素ガス(純度99.999%)を供給した。薬液タンク56へのアンモニア水充填に先立ち、薬液タンク56内に存在する大気等の影響を排除するため、当該窒素ガスを用いて、あらかじめ、空の薬液タンク56内の空気を窒素に置換した。
 薬液タンク56の上部に接続された排ガス管212の排ガスバルブ211を開け、5L/分の流量で4分間窒素ガスの供給を継続した。4分を経過した後、排ガス管212の排気口からの排ガスを、あらかじめ酸素モニターセンサーを挿入しておいたビニール袋に採取して、酸素濃度を測定したところ0.02%~0.03%であった。この酸素モニタとしては低濃度酸素モニタ JKO-02LJD3(ジコー社製)を使用した。
 薬液タンク56内へアンモニア水充填後に窒素ガスを供給する際、ガス供給圧力で制御を行い、その圧力を5kPaに調整した。この圧力は、ポンプ53で薬液タンク56から薬液を引き揚げる操作を妨げない程度であればよい。
 触媒ユニット21と混合部52と薬液タンク56とこれらを接続する配管および配管部品類は不活性ガスシール室221に収納され、不活性ガスシール室221と処理室2の間の配管については、処理液が流通する内側配管と、この内側配管を取り囲む外側配管とを有する二重構造とした。
 内側配管と外側配管の間の空間、および不活性ガスシール室221の内部に、不活性ガス供給管77の分岐配管から窒素ガスを5kPaで供給した。また、不活性ガスシール室221への窒素ガス供給には、薬液タンク56に繋がる不活性ガス供給管77を使用したが、別の不活性ガス供給管を用意してもよく、不活性ガスシール室221と薬液タンク56とで窒素ガスの供給圧力を異なる値にしてもよい。不活性ガスシール室221や薬液タンク56等に窒素ガスを供給する目的は酸素などが処理液へ拡散することを防ぐことであるので、ガス供給圧力ではなくガス供給流量で管理してもよい。
 混合部52にて前記アンモニア水と混合する液体(希釈用水)としては、上記[原水]の項目に記載されている超純水と、上記[評価する処理水]の項目に記載されている過酸化水素除去水、水素溶解水、酸素および過酸化水素が除去された水、を用いた。
 混合後のアンモニア水の濃度が0.19mg NH/Lとなるように混合して得た希釈アンモニア水(25%NHをおよそ1366倍希釈)は導電率が2.0μS/cm、pHが8.9であり、この水質であれば、希釈用水に炭酸を添加することなく帯電防止効果をも得ることができるので好ましい。
 混合部52を経た希釈アンモニア水の流量は2.1L/分に制御されており、そのうち溶存酸素濃度計220、導電率計219、pH計218にそれぞれ200mL/分の希釈アンモニア水を連続して供給し、処理室2へは1.5L/分の希釈アンモニア水を供給した。
 この結果(シート抵抗の増分)を次の表7に示す。
 表7から次の事が分かる。希釈用水が水素溶解水の場合、銅やモリブデンの腐食は完全には抑制できない。超純水から溶存酸素を除去しただけでは腐食は抑制されない。
 しかし、上記の超純水から溶存酸素および過酸化水素を除去し、水素を所定濃度以上添加することにより得た水で希釈したアンモニア水を、低酸素雰囲気で基板の処理に使用すると、銅およびモリブデンの腐食を完全に抑制できた。
Figure JPOXMLDOC01-appb-T000007
 
 [実施例5]
 以下では、第四実施形態の基板処理装置(図12)により得られた測定結果について説明する。
 99.999%の窒素ガスを不活性ガスとして充填した混合水貯留槽300に50%フッ化水素酸溶液と超純水を容積比で1:100となるように投入し、希フッ酸溶液を調製した。この希フッ酸溶液に中空糸膜を介して水素ガスを添加した後、酸化剤除去装置306として準備したパラジウム担持モノリスに通液して酸素および過酸化水素を除去した後、酸素ガス濃度を2%以下に保った基板処理装置の処理室2に導入し、試験ウエハの洗浄を行った。
 基板処理装置の処理室2としては、枚葉式洗浄装置(全協化成工業製)を用いた。試験ウエハとして、4インチのシリコンウエハに銅を200nmの厚みに成膜したものを使用した。
 また、水素を添加しない場合、およびパラジウム担持モノリスに通液しない場合についても試験を行った。洗浄前後で試験ウエハのシート抵抗を測定し、その増分を算出した。なお、溶存酸素濃度、溶存水素濃度は処理室直前にて測定を行っている。結果を表8に示す。各測定の測定器は、実施例の欄の冒頭で説明したとおりである。
Figure JPOXMLDOC01-appb-T000008
 
 水素を添加したのみ、あるいは水素を添加せず酸化剤除去装置を通液したのみでは銅の腐食が起きている。しかし、上記希フッ酸に水素を8μg/L以上添加し、溶存酸素濃度を2μg/L以下、かつ過酸化水素濃度を2μg/L以下とした希フッ酸で処理すると、銅の腐食はほぼ抑制されることは明らかである。また、さらに溶存水素濃度を5μg/Lとすると、銅の腐食は完全に抑制された。
 [実施例6]
 上記枚葉式洗浄装置の処理室2内の酸素ガス濃度を調整し、実施例5と同じ試験を行った。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 
 処理室2内の酸素ガス濃度を2%以下とすれば、完全に銅の腐食を抑制できた。この評価結果から、次の事が分かる。上記の希フッ酸に水素を添加し、酸化剤除去装置を通液して酸素および過酸化水素を除去した処理液を用い基板処理を行う際、処理室内の酸素ガス濃度は2%以下にすると、基板表面に露出した銅の溶出を完全に抑制できることが分かった。
 以上のように、本発明について幾つかの実施例を示して説明したが、本発明はこれらの実施例に限定されるものではなく、その技術思想を逸脱しない範囲で種々変更して実施することが可能であることは言うまでもない。
 この出願は、2013年9月25日に出願された日本出願特願2013-198535、2013年9月25日に出願された日本出願特願2013-198549、2013年10月1日に出願された日本出願特願2013-206447、2014年5月9日に出願された日本出願特願2014-097459 を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (32)

  1.  基板処理装置の処理室内に基板を配置し、該基板を処理する基板処理方法であって、
     前記処理室の近傍または前記処理室の内部に白金族系金属触媒を設置し、
     前記基板が配置された前記処理室の中に不活性ガスを充填し、
     被処理液に水素を添加してなる水素溶解液を前記白金族系金属触媒に通液して得た水素溶解処理液を、前記不活性ガスが充填された前記処理室内に供給し、該水素溶解処理液によって前記基板を処理することを特徴とする基板処理方法。
  2.  前記処理室内における酸素ガス濃度を2%以下にするように前記処理室内に前記不活性ガスを充填し、
     前記水素溶解液における溶存水素濃度を8μg/L以上にするように前記被処理液に前記水素を添加し、
     前記水素溶解液を前記白金族系金属触媒に通液して、前記水素溶解処理液における溶存酸素濃度を2μg/L以下、過酸化水素濃度を2μg/L以下にする、請求項1に記載の基板処理方法。
  3.  前記水素溶解処理液を前記処理室内に供給し、前記処理室内に配置された前記基板に向けて吐出する、請求項1または請求項2に記載の基板処理方法。
  4.  前記処理室内に前記基板に対向する基板対向面を有する遮断部材を設け、前記基板が配置された前記処理室の中に不活性ガスを充填するとき、前記処理室内において前記基板の表面に前記遮断部材の基板対向面を対向させ、前記遮断部材と前記基板との間の空間に該不活性ガスを供給する、請求項3に記載の基板処理方法。
  5.  前記処理室内に処理槽を設置し、該処理槽内に前記水素溶解処理液を供給し、該処理槽内に前記基板を配置することにより、前記基板を処理する、請求項1または請求項2に記載の基板処理方法。
  6.  前記水素溶解処理液を前記処理室内へ供給する配管の外側を不活性ガスで包囲する、請求項1から5のいずれか1項に記載の基板処理方法。
  7.  前記水素溶解処理液を薬液と混合して希釈薬液を調製し、該希釈薬液を、前記不活性ガスが充填された前記処理室内に供給し、該希釈薬液によって前記基板を処理することを含む、請求項1から6のいずれか1項に記載の基板処理方法。
  8.  前記水素溶解処理液と前記薬液との混合を、前記水素溶解処理液を前記処理室内へ供給する配管内で行う、請求項7に記載の基板処理方法。
  9.  前記薬液をタンクに供給し、該タンク内に不活性ガスを供給し、該タンクから前記薬液を汲み出して前記配管内の前記水素溶解処理液に注入して、前記水素溶解処理液と前記薬液との混合を行う、請求項8に記載の基板処理方法。
  10.  薬液および前記水素溶解処理液をタンクに供給して混合し、前記水素溶解処理液を当該薬液で希釈してなる希釈薬液を該タンクから汲み出して前記処理室内に供給する、請求項1から6のいずれか1項に記載の基板処理方法。
  11.  前記タンク内に不活性ガスを供給することを含む、請求項10に記載の基板処理方法。
  12.  前記希釈薬液を前記処理室内へ供給する配管の外側を不活性ガスで包囲する、請求項8から11のいずれか1項に記載の基板処理方法。
  13.  前記白金族系金属触媒がパラジウム触媒である、請求項1から12のいずれか1項に記載の基板処理方法。
  14.  前記白金族系金属触媒が、パラジウム触媒をモノリス状有機多孔質アニオン交換体に担持したものである、請求項1から12のいずれか1項に記載の基板処理方法。
  15.  前記水素溶解処理液によって処理される前記基板が、少なくとも銅、モリブデン、タングステンのいずれかの元素の単体または化合物が表面に露出した基板である、請求項1から14のいずれか1項に記載の基板処理方法。
  16.  前記被処理液が超純水である、請求項1から15のいずれか1項に記載の基板処理方法。
  17.  基板が配置され、該基板を処理する基板処理液が供給される処理室と、
     前記基板が配置された前記処理室の中に不活性ガスを充填する不活性ガス充填機構と、
     前記処理室の近傍または前記処理室の内部に設置され、被処理液に水素を添加してなる水素溶解液を通液する白金族系金属触媒が充填された触媒ユニットと、を備え、
     前記水素溶解液を前記白金族系金属触媒に通液して得た水素溶解処理液を前記基板処理液として前記処理室内に供給することを特徴とする基板処理装置。
  18.  前記水素溶解液の溶存水素濃度は8μg/L以上であり、
     前記不活性ガス充填機構は、前記処理室内における酸素ガス濃度を2%以下にするように前記処理室の中に前記不活性ガスを充填し、
     前記触媒ユニットは、前記水素溶解処理液における溶存酸素濃度を2μg/L以下、過酸化水素濃度を2μg/L以下にする、請求項17に記載の基板処理装置。
  19.  前記処理室には、少なくとも前記基板を保持する基板保持機構と、該基板保持機構に保持された前記基板に前記基板処理液を供給する処理液ノズルとが設置されている、請求項17または請求項18に記載の基板処理装置。
  20.  前記基板保持機構に保持された前記基板に対向する基板対向面を有する遮断部材を備え、
     前記処理液ノズルおよび前記不活性ガス充填機構が前記遮断部材に設けられて、前記基板処理液および前記不活性ガスを前記基板保持機構に保持された前記基板と前記遮断部材の前記基板対向面との間に供給可能にされている、請求項19に記載の基板処理装置。
  21.  前記処理室には、少なくとも前記基板が配置される処理槽と、該処理槽内に前記基板処理液を供給する処理液ノズルとが設置されている、請求項17または請求項18に記載の基板処理装置。
  22.  前記基板処理液を前記処理室内へ供給する配管が、前記基板処理液が流通する内側配管と、該内側配管を取り囲む外側配管とを含み、
     前記内側配管と前記外側配管との間に不活性ガスを供給する手段をさらに備えた、請求項17から21のいずれか1項に記載の基板処理装置。
  23.  前記基板処理液を前記処理室内へ供給する配管に薬液を注入して、該配管内で該薬液と前記基板処理液とを混合して希釈薬液を調製する薬液調製ユニットをさらに備えた、請求項17から22のいずれか1項に記載の基板処理装置。
  24.  前記薬液を貯留する薬液タンクを有し、該薬液タンク内に不活性ガスを供給する手段をさらに備えた、請求項23に記載の基板処理装置。
  25.  薬液と前記基板処理液とが供給されることで前記基板処理液を当該薬液で希釈するための薬液希釈タンクを有し、前記基板処理液を当該薬液で希釈してなる希釈薬液を前記処理室内へ供給する、請求項17から22のいずれか1項に記載の基板処理装置。
  26.  前記薬液希釈タンク内に不活性ガスを供給する手段をさらに備えた、請求項25に記載の基板処理装置。
  27.  前記希釈薬液を前記処理室内へ供給する配管が、前記希釈薬液が流通する内側配管と、該内側配管を取り囲む外側配管とを含み、
     前記内側配管と前記外側配管との間に不活性ガスを供給する手段をさらに備えた、請求項25または請求項26に記載の基板処理装置。
  28.  前記白金族系金属触媒がパラジウム触媒である、請求項17から27のいずれか1項に記載の基板処理装置。
  29.  前記白金族系金属触媒が、パラジウム触媒をモノリス状有機多孔質アニオン交換体に担持したものである、請求項17から27のいずれか1項に記載の基板処理装置。
  30.  前記基板処理液で処理される前記基板が、少なくとも銅、モリブデン、タングステンのいずれかの元素の単体または化合物が表面に露出した基板である、請求項17から29のいずれか1項に記載の基板処理装置。
  31.  前記被処理液が超純水である、請求項17から30のいずれか1項に記載の基板処理装置。
  32.  請求項17から31のいずれか1項に記載の基板処理装置の処理室の近傍または該処理室の内部に設置され、白金族系金属触媒が充填された触媒ユニットであって、水素溶解液を前記白金族系金属触媒に通液して得た水素溶解処理液を基板処理液として前記処理室内に供給する、触媒ユニット。
PCT/JP2014/074481 2013-09-25 2014-09-17 基板処理方法および基板処理装置 WO2015045975A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480052961.5A CN105593976B (zh) 2013-09-25 2014-09-17 基板处理方法和基板处理装置
KR1020167006545A KR101914843B1 (ko) 2013-09-25 2014-09-17 기판처리방법 및 기판처리장치
US15/023,161 US11004674B2 (en) 2013-09-25 2014-09-17 Substrate treatment method and substrate treatment equipment
SG11201602220TA SG11201602220TA (en) 2013-09-25 2014-09-17 Substrate treatment method and substrate treatment device
US17/241,522 US11901174B2 (en) 2013-09-25 2021-04-27 Substrate treatment method and substrate treatment equipment

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2013198549 2013-09-25
JP2013-198549 2013-09-25
JP2013198535 2013-09-25
JP2013-198535 2013-09-25
JP2013-206447 2013-10-01
JP2013206447A JP6100664B2 (ja) 2013-10-01 2013-10-01 フッ化水素酸水溶液の精製方法、基板処理方法および基板処理装置
JP2014-097459 2014-05-09
JP2014097459A JP6415100B2 (ja) 2013-09-25 2014-05-09 モリブデン露出基板の処理方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/023,161 A-371-Of-International US11004674B2 (en) 2013-09-25 2014-09-17 Substrate treatment method and substrate treatment equipment
US17/241,522 Continuation US11901174B2 (en) 2013-09-25 2021-04-27 Substrate treatment method and substrate treatment equipment

Publications (1)

Publication Number Publication Date
WO2015045975A1 true WO2015045975A1 (ja) 2015-04-02

Family

ID=52743116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074481 WO2015045975A1 (ja) 2013-09-25 2014-09-17 基板処理方法および基板処理装置

Country Status (6)

Country Link
US (2) US11004674B2 (ja)
KR (1) KR101914843B1 (ja)
CN (1) CN105593976B (ja)
SG (1) SG11201602220TA (ja)
TW (1) TWI623031B (ja)
WO (1) WO2015045975A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6299912B1 (ja) * 2017-03-30 2018-03-28 栗田工業株式会社 pH及び酸化還元電位を制御可能な希釈薬液の製造装置
JP6299913B1 (ja) * 2017-03-30 2018-03-28 栗田工業株式会社 pH・酸化還元電位調整水の製造装置
JP2018049872A (ja) * 2016-09-20 2018-03-29 栗田工業株式会社 希釈薬液製造装置及び希釈薬液製造方法
JP2018171610A (ja) * 2018-02-14 2018-11-08 栗田工業株式会社 pH・酸化還元電位調整水の製造装置
US10647648B2 (en) 2015-12-28 2020-05-12 Organo Corporation Method for purifying organic solvent
WO2021261144A1 (ja) * 2020-06-23 2021-12-30 オルガノ株式会社 水処理装置、超純水製造装置及び水処理方法
WO2022102252A1 (ja) * 2020-11-13 2022-05-19 栗田工業株式会社 pH・酸化還元電位調整水の製造装置
KR20230043159A (ko) 2020-09-15 2023-03-30 오르가노 코포레이션 초순수 공급 시스템, 제어장치 및 프로그램

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6391524B2 (ja) * 2015-03-31 2018-09-19 株式会社Screenホールディングス 脱酸素装置および基板処理装置
JP6704778B2 (ja) * 2016-04-15 2020-06-03 株式会社Screenホールディングス 基板処理装置および基板処理方法
US10935896B2 (en) 2016-07-25 2021-03-02 Applied Materials, Inc. Cleaning solution mixing system with ultra-dilute cleaning solution and method of operation thereof
JP2018056469A (ja) * 2016-09-30 2018-04-05 株式会社Screenホールディングス 基板処理装置
JP6815873B2 (ja) 2017-01-18 2021-01-20 株式会社Screenホールディングス 基板処理装置
JP6350706B1 (ja) * 2017-03-30 2018-07-04 栗田工業株式会社 水質調整水製造装置
CN110520965B (zh) * 2017-04-06 2023-06-02 东京毅力科创株式会社 供液装置和供液方法
KR20190015666A (ko) * 2017-08-04 2019-02-14 세메스 주식회사 기판 처리 장치 및 기판 처리 방법
JP6982434B2 (ja) * 2017-08-24 2021-12-17 株式会社Screenホールディングス 基板処理装置および基板処理方法
JP6993885B2 (ja) * 2018-01-15 2022-01-14 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP7089902B2 (ja) * 2018-02-28 2022-06-23 株式会社Screenホールディングス 基板処理装置、基板処理装置における処理液排出方法、基板処理装置における処理液交換方法、基板処理装置における基板処理方法
JP7267015B2 (ja) * 2019-01-09 2023-05-01 東京エレクトロン株式会社 基板処理方法および基板処理装置
KR20200117199A (ko) * 2019-04-03 2020-10-14 캡시스템(주) 디스플레이 제조용 잉크젯 프린터에 이용되는 약액을 공급하는 약액 공급 장치
JP6900975B2 (ja) * 2019-06-12 2021-07-14 栗田工業株式会社 pH調整水製造装置
KR102616131B1 (ko) * 2020-08-24 2023-12-21 세메스 주식회사 기판 처리 장치, 이온 주입 처리 장치 및 이온 주입 처리 방법
CN112053973B (zh) * 2020-08-25 2024-08-09 南方科技大学 一种用于功率器件封装的夹具系统
US12094734B2 (en) * 2020-09-10 2024-09-17 Changxin Memory Technologies, Inc. Wet etching control system, wet etching machine and wet etching control method
GB202101428D0 (en) * 2021-02-02 2021-03-17 Lam Res Ag Apparatus for dispensing a liquid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0451521A (ja) * 1990-06-19 1992-02-20 Toshiba Corp 表面処理方法および表面処理装置
JP2003136077A (ja) * 2001-10-31 2003-05-13 Nec Corp 半導体製造に用いる洗浄水又は浸漬水の製造装置
JP2010056218A (ja) * 2008-08-27 2010-03-11 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
JP2010214321A (ja) * 2009-03-18 2010-09-30 Japan Organo Co Ltd 白金族金属担持触媒、過酸化水素の分解処理水の製造方法、溶存酸素の除去処理水の製造方法及び電子部品の洗浄方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126886A (ja) * 1994-10-28 1996-05-21 Japan Organo Co Ltd 超純水の製造方法及び装置
JP3415549B2 (ja) 1999-03-15 2003-06-09 松下電器産業株式会社 電子デバイスの洗浄方法及びその製造方法
JP2010135810A (ja) 1999-08-31 2010-06-17 Tadahiro Omi 水溶液のpH及び酸化還元電位の制御方法及びその装置
JP2008066351A (ja) * 2006-09-05 2008-03-21 Dainippon Screen Mfg Co Ltd 基板処理装置
JP2010017633A (ja) 2008-07-09 2010-01-28 Japan Organo Co Ltd 水素溶解水の製造装置及びこれを用いた製造方法ならびに電子部品又は電子部品の製造器具用の洗浄装置
JP5329463B2 (ja) 2009-03-18 2013-10-30 オルガノ株式会社 過酸化水素分解処理水の製造方法、過酸化水素分解処理水の製造装置、処理槽、超純水の製造方法、超純水の製造装置、水素溶解水の製造方法、水素溶解水の製造装置、オゾン溶解水の製造方法、オゾン溶解水の製造装置および電子部品の洗浄方法
JP5604143B2 (ja) 2009-03-18 2014-10-08 オルガノ株式会社 溶存酸素除去水の製造方法、溶存酸素除去水の製造装置、溶存酸素処理槽、超純水の製造方法、水素溶解水の製造方法、水素溶解水の製造装置および電子部品の洗浄方法
US8501025B2 (en) * 2010-03-31 2013-08-06 Dainippon Screen Mfg. Co., Ltd. Substrate treatment apparatus and substrate treatment method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0451521A (ja) * 1990-06-19 1992-02-20 Toshiba Corp 表面処理方法および表面処理装置
JP2003136077A (ja) * 2001-10-31 2003-05-13 Nec Corp 半導体製造に用いる洗浄水又は浸漬水の製造装置
JP2010056218A (ja) * 2008-08-27 2010-03-11 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
JP2010214321A (ja) * 2009-03-18 2010-09-30 Japan Organo Co Ltd 白金族金属担持触媒、過酸化水素の分解処理水の製造方法、溶存酸素の除去処理水の製造方法及び電子部品の洗浄方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10647648B2 (en) 2015-12-28 2020-05-12 Organo Corporation Method for purifying organic solvent
JP2018049872A (ja) * 2016-09-20 2018-03-29 栗田工業株式会社 希釈薬液製造装置及び希釈薬液製造方法
US11325851B2 (en) 2017-03-30 2022-05-10 Kurita Water Industries Ltd. Diluted chemical liquid production apparatus capable of controlling pH and oxidation-reduction potential
JP6299913B1 (ja) * 2017-03-30 2018-03-28 栗田工業株式会社 pH・酸化還元電位調整水の製造装置
WO2018179492A1 (ja) * 2017-03-30 2018-10-04 栗田工業株式会社 pH及び酸化還元電位を制御可能な希釈薬液の製造装置
WO2018179493A1 (ja) * 2017-03-30 2018-10-04 栗田工業株式会社 pH・酸化還元電位調整水の製造装置
JP2018167230A (ja) * 2017-03-30 2018-11-01 栗田工業株式会社 pH及び酸化還元電位を制御可能な希釈薬液の製造装置
JP2018167245A (ja) * 2017-03-30 2018-11-01 栗田工業株式会社 pH・酸化還元電位調整水の製造装置
US11339065B2 (en) 2017-03-30 2022-05-24 Kurita Water Industries Ltd. Apparatus for producing aqueous pH- and redox potential-adjusting solution
JP6299912B1 (ja) * 2017-03-30 2018-03-28 栗田工業株式会社 pH及び酸化還元電位を制御可能な希釈薬液の製造装置
JP2018171610A (ja) * 2018-02-14 2018-11-08 栗田工業株式会社 pH・酸化還元電位調整水の製造装置
JP7012196B1 (ja) * 2020-06-23 2022-01-27 オルガノ株式会社 水処理装置、超純水製造装置、水処理方法及び再生型イオン交換塔
JP2022036290A (ja) * 2020-06-23 2022-03-04 オルガノ株式会社 水処理装置、純水製造装置、超純水製造装置及び水処理方法
WO2021261144A1 (ja) * 2020-06-23 2021-12-30 オルガノ株式会社 水処理装置、超純水製造装置及び水処理方法
JP7109691B2 (ja) 2020-06-23 2022-07-29 オルガノ株式会社 水処理装置、純水製造装置、超純水製造装置及び水処理方法
KR20230043159A (ko) 2020-09-15 2023-03-30 오르가노 코포레이션 초순수 공급 시스템, 제어장치 및 프로그램
JP7577179B2 (ja) 2020-09-15 2024-11-01 オルガノ株式会社 超純水供給システムに用いるプログラム
WO2022102252A1 (ja) * 2020-11-13 2022-05-19 栗田工業株式会社 pH・酸化還元電位調整水の製造装置
JP2022078489A (ja) * 2020-11-13 2022-05-25 栗田工業株式会社 pH・酸化還元電位調整水の製造装置
JP7088266B2 (ja) 2020-11-13 2022-06-21 栗田工業株式会社 pH・酸化還元電位調整水の製造装置

Also Published As

Publication number Publication date
US20210249259A1 (en) 2021-08-12
KR20160043043A (ko) 2016-04-20
CN105593976B (zh) 2018-04-03
KR101914843B1 (ko) 2018-11-02
TW201530640A (zh) 2015-08-01
CN105593976A (zh) 2016-05-18
TWI623031B (zh) 2018-05-01
US11901174B2 (en) 2024-02-13
US11004674B2 (en) 2021-05-11
SG11201602220TA (en) 2016-04-28
US20160233082A1 (en) 2016-08-11

Similar Documents

Publication Publication Date Title
US11901174B2 (en) Substrate treatment method and substrate treatment equipment
JP6117348B2 (ja) 銅露出基板の洗浄方法および洗浄システム
JP6423211B2 (ja) 基板処理方法および基板処理装置
JP6819175B2 (ja) 希釈薬液製造装置及び希釈薬液製造方法
JP5329463B2 (ja) 過酸化水素分解処理水の製造方法、過酸化水素分解処理水の製造装置、処理槽、超純水の製造方法、超純水の製造装置、水素溶解水の製造方法、水素溶解水の製造装置、オゾン溶解水の製造方法、オゾン溶解水の製造装置および電子部品の洗浄方法
JP5604143B2 (ja) 溶存酸素除去水の製造方法、溶存酸素除去水の製造装置、溶存酸素処理槽、超純水の製造方法、水素溶解水の製造方法、水素溶解水の製造装置および電子部品の洗浄方法
KR101668132B1 (ko) 백금족 금속 담지 촉매, 과산화수소의 분해 처리수의 제조 방법, 용존 산소의 제거 처리수의 제조 방법 및 전자 부품의 세정 방법
TWI635198B (zh) 用以減少電鍍系統中之瑕疵的隔膜設計
WO1998008248A1 (fr) Procede et dispositif pour laver des composants electroniques ou similaires
JP2010214320A (ja) 白金族金属担持触媒、過酸化水素の分解処理水の製造方法、溶存酸素の除去処理水の製造方法及び電子部品の洗浄方法
JP5320665B2 (ja) 超純水製造装置および方法
JP5525754B2 (ja) 白金族金属担持触媒、過酸化水素の分解処理水の製造方法、溶存酸素の除去処理水の製造方法及び電子部品の洗浄方法
JP6415100B2 (ja) モリブデン露出基板の処理方法
WO2017164362A1 (ja) ウェット洗浄装置及びウェット洗浄方法
JP6100664B2 (ja) フッ化水素酸水溶液の精製方法、基板処理方法および基板処理装置
JP2014079722A (ja) オゾン水製造方法
JP2016143872A (ja) 基板処理装置
JP5358910B2 (ja) 炭酸水の製造装置及び製造方法
JPH1199382A (ja) 純水供給システム及び洗浄装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849899

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167006545

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15023161

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14849899

Country of ref document: EP

Kind code of ref document: A1