WO2015045739A1 - Composition de résine sensible aux rayonnements, procédé de formation d'un motif de réserve, polymère, et composé - Google Patents
Composition de résine sensible aux rayonnements, procédé de formation d'un motif de réserve, polymère, et composé Download PDFInfo
- Publication number
- WO2015045739A1 WO2015045739A1 PCT/JP2014/072838 JP2014072838W WO2015045739A1 WO 2015045739 A1 WO2015045739 A1 WO 2015045739A1 JP 2014072838 W JP2014072838 W JP 2014072838W WO 2015045739 A1 WO2015045739 A1 WO 2015045739A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- carbon atoms
- hydrogen atom
- formula
- resin composition
- Prior art date
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 108
- 230000005855 radiation Effects 0.000 title claims abstract description 94
- 239000011342 resin composition Substances 0.000 title claims abstract description 89
- 150000001875 compounds Chemical class 0.000 title claims description 56
- 238000000034 method Methods 0.000 title claims description 44
- 239000002253 acid Substances 0.000 claims abstract description 69
- 125000002723 alicyclic group Chemical group 0.000 claims abstract description 39
- 125000000962 organic group Chemical group 0.000 claims abstract description 23
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 20
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 15
- 125000001183 hydrocarbyl group Chemical group 0.000 claims abstract 5
- 125000004432 carbon atom Chemical group C* 0.000 claims description 104
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 72
- 229910052731 fluorine Inorganic materials 0.000 claims description 51
- 125000001153 fluoro group Chemical group F* 0.000 claims description 50
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 41
- 125000000217 alkyl group Chemical group 0.000 claims description 28
- 229910052799 carbon Inorganic materials 0.000 claims description 18
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 16
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 15
- 229910052717 sulfur Inorganic materials 0.000 claims description 15
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 14
- 125000005843 halogen group Chemical group 0.000 claims description 13
- 125000005647 linker group Chemical group 0.000 claims description 13
- 150000001721 carbon Chemical group 0.000 claims description 11
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 9
- 239000011203 carbon fibre reinforced carbon Substances 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 125000000732 arylene group Chemical group 0.000 claims description 6
- 238000010494 dissociation reaction Methods 0.000 claims description 6
- 230000005593 dissociations Effects 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 2
- 239000001257 hydrogen Substances 0.000 abstract description 2
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 2
- -1 methoxycarbonylmethyl group Chemical group 0.000 description 82
- 150000002430 hydrocarbons Chemical group 0.000 description 60
- 230000007547 defect Effects 0.000 description 32
- 239000002904 solvent Substances 0.000 description 29
- 239000000178 monomer Substances 0.000 description 27
- 239000000243 solution Substances 0.000 description 24
- 238000011161 development Methods 0.000 description 22
- 230000018109 developmental process Effects 0.000 description 22
- 238000006116 polymerization reaction Methods 0.000 description 22
- 238000009792 diffusion process Methods 0.000 description 20
- 230000001629 suppression Effects 0.000 description 17
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- 239000000758 substrate Substances 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical group C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 13
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 13
- 238000007654 immersion Methods 0.000 description 13
- 0 C*(C)CCC1(*)C=CCCC1 Chemical compound C*(C)CCC1(*)C=CCCC1 0.000 description 12
- 239000003513 alkali Substances 0.000 description 11
- 125000003118 aryl group Chemical group 0.000 description 11
- 150000002596 lactones Chemical group 0.000 description 11
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 10
- 238000009826 distribution Methods 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 239000003960 organic solvent Substances 0.000 description 10
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 10
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 150000005676 cyclic carbonates Chemical group 0.000 description 8
- 239000007870 radical polymerization initiator Substances 0.000 description 8
- 150000008053 sultones Chemical group 0.000 description 8
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 7
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 7
- YFSUTJLHUFNCNZ-UHFFFAOYSA-N perfluorooctane-1-sulfonic acid Chemical compound OS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F YFSUTJLHUFNCNZ-UHFFFAOYSA-N 0.000 description 7
- 239000004094 surface-active agent Substances 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical group O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 6
- 239000007810 chemical reaction solvent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- FWFSEYBSWVRWGL-UHFFFAOYSA-N cyclohex-2-enone Chemical compound O=C1CCCC=C1 FWFSEYBSWVRWGL-UHFFFAOYSA-N 0.000 description 6
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 6
- 239000003759 ester based solvent Substances 0.000 description 6
- 238000005227 gel permeation chromatography Methods 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 230000002401 inhibitory effect Effects 0.000 description 6
- 239000005453 ketone based solvent Substances 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 230000007261 regionalization Effects 0.000 description 6
- 150000005846 sugar alcohols Polymers 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 5
- 239000005456 alcohol based solvent Substances 0.000 description 5
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 5
- 125000003710 aryl alkyl group Chemical group 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 239000004210 ether based solvent Substances 0.000 description 5
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 5
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 5
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- WLOQLWBIJZDHET-UHFFFAOYSA-N triphenylsulfonium Chemical compound C1=CC=CC=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 WLOQLWBIJZDHET-UHFFFAOYSA-N 0.000 description 5
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 4
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- BZKFMUIJRXWWQK-UHFFFAOYSA-N Cyclopentenone Chemical compound O=C1CCC=C1 BZKFMUIJRXWWQK-UHFFFAOYSA-N 0.000 description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 4
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 4
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 4
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 4
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical group C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- ORILYTVJVMAKLC-UHFFFAOYSA-N adamantane Chemical group C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 4
- 125000003545 alkoxy group Chemical group 0.000 description 4
- 125000003368 amide group Chemical group 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 125000001309 chloro group Chemical group Cl* 0.000 description 4
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 4
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 4
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 4
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 4
- 125000002950 monocyclic group Chemical group 0.000 description 4
- UMRZSTCPUPJPOJ-KNVOCYPGSA-N norbornane Chemical group C1C[C@H]2CC[C@@H]1C2 UMRZSTCPUPJPOJ-KNVOCYPGSA-N 0.000 description 4
- 125000002868 norbornyl group Chemical group C12(CCC(CC1)C2)* 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 238000001226 reprecipitation Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- RAOIDOHSFRTOEL-UHFFFAOYSA-N tetrahydrothiophene Chemical group C1CCSC1 RAOIDOHSFRTOEL-UHFFFAOYSA-N 0.000 description 4
- 239000012953 triphenylsulfonium Substances 0.000 description 4
- GRCVHLCFMAVQCF-UHFFFAOYSA-M 2-(1-adamantyl)-1,1-difluoroethanesulfonate;triphenylsulfanium Chemical compound C1C(C2)CC3CC2CC1(CC(F)(F)S(=O)(=O)[O-])C3.C1=CC=CC=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 GRCVHLCFMAVQCF-UHFFFAOYSA-M 0.000 description 3
- QQZOPKMRPOGIEB-UHFFFAOYSA-N 2-Oxohexane Chemical compound CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 description 3
- CETWDUZRCINIHU-UHFFFAOYSA-N 2-heptanol Chemical compound CCCCCC(C)O CETWDUZRCINIHU-UHFFFAOYSA-N 0.000 description 3
- LFJJGHGXHXXDFT-UHFFFAOYSA-N 3-bromooxolan-2-one Chemical compound BrC1CCOC1=O LFJJGHGXHXXDFT-UHFFFAOYSA-N 0.000 description 3
- OZJPLYNZGCXSJM-UHFFFAOYSA-N 5-valerolactone Chemical group O=C1CCCCO1 OZJPLYNZGCXSJM-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical group [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- SMEROWZSTRWXGI-UHFFFAOYSA-N Lithocholsaeure Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)CC2 SMEROWZSTRWXGI-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 150000003973 alkyl amines Chemical class 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 238000004440 column chromatography Methods 0.000 description 3
- 238000007334 copolymerization reaction Methods 0.000 description 3
- DMEGYFMYUHOHGS-UHFFFAOYSA-N cycloheptane Chemical compound C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 3
- 229960003964 deoxycholic acid Drugs 0.000 description 3
- KXGVEGMKQFWNSR-UHFFFAOYSA-N deoxycholic acid Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 KXGVEGMKQFWNSR-UHFFFAOYSA-N 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- QNVRIHYSUZMSGM-UHFFFAOYSA-N hexan-2-ol Chemical compound CCCCC(C)O QNVRIHYSUZMSGM-UHFFFAOYSA-N 0.000 description 3
- GJRQTCIYDGXPES-UHFFFAOYSA-N isobutyl acetate Chemical compound CC(C)COC(C)=O GJRQTCIYDGXPES-UHFFFAOYSA-N 0.000 description 3
- 238000001459 lithography Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 125000001624 naphthyl group Chemical group 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- PGMYKACGEOXYJE-UHFFFAOYSA-N pentyl acetate Chemical compound CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 125000003367 polycyclic group Chemical group 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 3
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 3
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical group O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 3
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- FJALTVCJBKZXKY-UHFFFAOYSA-M (7,7-dimethyl-3-oxo-4-bicyclo[2.2.1]heptanyl)methanesulfonate;triphenylsulfanium Chemical compound C1CC2(CS([O-])(=O)=O)C(=O)CC1C2(C)C.C1=CC=CC=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 FJALTVCJBKZXKY-UHFFFAOYSA-M 0.000 description 2
- FYGHSUNMUKGBRK-UHFFFAOYSA-N 1,2,3-trimethylbenzene Chemical compound CC1=CC=CC(C)=C1C FYGHSUNMUKGBRK-UHFFFAOYSA-N 0.000 description 2
- KVNYFPKFSJIPBJ-UHFFFAOYSA-N 1,2-diethylbenzene Chemical compound CCC1=CC=CC=C1CC KVNYFPKFSJIPBJ-UHFFFAOYSA-N 0.000 description 2
- GWEHVDNNLFDJLR-UHFFFAOYSA-N 1,3-diphenylurea Chemical compound C=1C=CC=CC=1NC(=O)NC1=CC=CC=C1 GWEHVDNNLFDJLR-UHFFFAOYSA-N 0.000 description 2
- RXYPXQSKLGGKOL-UHFFFAOYSA-N 1,4-dimethylpiperazine Chemical compound CN1CCN(C)CC1 RXYPXQSKLGGKOL-UHFFFAOYSA-N 0.000 description 2
- CEZIJESLKIMKNL-UHFFFAOYSA-N 1-(4-butoxynaphthalen-1-yl)thiolan-1-ium Chemical compound C12=CC=CC=C2C(OCCCC)=CC=C1[S+]1CCCC1 CEZIJESLKIMKNL-UHFFFAOYSA-N 0.000 description 2
- OJVAMHKKJGICOG-UHFFFAOYSA-N 2,5-hexanedione Chemical compound CC(=O)CCC(C)=O OJVAMHKKJGICOG-UHFFFAOYSA-N 0.000 description 2
- WKBALTUBRZPIPZ-UHFFFAOYSA-N 2,6-di(propan-2-yl)aniline Chemical compound CC(C)C1=CC=CC(C(C)C)=C1N WKBALTUBRZPIPZ-UHFFFAOYSA-N 0.000 description 2
- KKLIEUWPBXKNFS-UHFFFAOYSA-M 2-carboxyphenolate;triphenylsulfanium Chemical compound OC1=CC=CC=C1C([O-])=O.C1=CC=CC=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 KKLIEUWPBXKNFS-UHFFFAOYSA-M 0.000 description 2
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 2
- QPRQEDXDYOZYLA-UHFFFAOYSA-N 2-methylbutan-1-ol Chemical compound CCC(C)CO QPRQEDXDYOZYLA-UHFFFAOYSA-N 0.000 description 2
- VWYMQCMKEVZSFW-UHFFFAOYSA-N 2-methylbutan-2-yl 4-hydroxypiperidine-1-carboxylate Chemical compound CCC(C)(C)OC(=O)N1CCC(O)CC1 VWYMQCMKEVZSFW-UHFFFAOYSA-N 0.000 description 2
- GXDHCNNESPLIKD-UHFFFAOYSA-N 2-methylhexane Natural products CCCCC(C)C GXDHCNNESPLIKD-UHFFFAOYSA-N 0.000 description 2
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 2
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 2
- JYVXNLLUYHCIIH-UHFFFAOYSA-N 4-hydroxy-4-methyl-2-oxanone Chemical compound CC1(O)CCOC(=O)C1 JYVXNLLUYHCIIH-UHFFFAOYSA-N 0.000 description 2
- WVYWICLMDOOCFB-UHFFFAOYSA-N 4-methyl-2-pentanol Chemical compound CC(C)CC(C)O WVYWICLMDOOCFB-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- 101100215341 Arabidopsis thaliana ACT12 gene Proteins 0.000 description 2
- KXDAEFPNCMNJSK-UHFFFAOYSA-N Benzamide Chemical compound NC(=O)C1=CC=CC=C1 KXDAEFPNCMNJSK-UHFFFAOYSA-N 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- NIQCNGHVCWTJSM-UHFFFAOYSA-N Dimethyl phthalate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OC NIQCNGHVCWTJSM-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- RZKSECIXORKHQS-UHFFFAOYSA-N Heptan-3-ol Chemical compound CCCCC(O)CC RZKSECIXORKHQS-UHFFFAOYSA-N 0.000 description 2
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 2
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 2
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 235000002597 Solanum melongena Nutrition 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- YENIOYBTCIZCBJ-UHFFFAOYSA-N acetic acid;1-methoxypropan-2-ol Chemical compound CC(O)=O.COCC(C)O YENIOYBTCIZCBJ-UHFFFAOYSA-N 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 125000000304 alkynyl group Chemical group 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- QUKGYYKBILRGFE-UHFFFAOYSA-N benzyl acetate Chemical compound CC(=O)OCC1=CC=CC=C1 QUKGYYKBILRGFE-UHFFFAOYSA-N 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N caprylic alcohol Natural products CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 125000005708 carbonyloxy group Chemical group [*:2]OC([*:1])=O 0.000 description 2
- 150000001733 carboxylic acid esters Chemical class 0.000 description 2
- 239000012295 chemical reaction liquid Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000003997 cyclic ketones Chemical class 0.000 description 2
- 150000001924 cycloalkanes Chemical group 0.000 description 2
- 125000000392 cycloalkenyl group Chemical group 0.000 description 2
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 2
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 2
- 125000000298 cyclopropenyl group Chemical group [H]C1=C([H])C1([H])* 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 2
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 208000018459 dissociative disease Diseases 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- NGAZZOYFWWSOGK-UHFFFAOYSA-N heptan-3-one Chemical compound CCCCC(=O)CC NGAZZOYFWWSOGK-UHFFFAOYSA-N 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical class I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- 150000002440 hydroxy compounds Chemical class 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- XAOGXQMKWQFZEM-UHFFFAOYSA-N isoamyl propanoate Chemical compound CCC(=O)OCCC(C)C XAOGXQMKWQFZEM-UHFFFAOYSA-N 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- 229960004592 isopropanol Drugs 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- ZWRUINPWMLAQRD-UHFFFAOYSA-N nonan-1-ol Chemical compound CCCCCCCCCO ZWRUINPWMLAQRD-UHFFFAOYSA-N 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- GJQIMXVRFNLMTB-UHFFFAOYSA-N nonyl acetate Chemical compound CCCCCCCCCOC(C)=O GJQIMXVRFNLMTB-UHFFFAOYSA-N 0.000 description 2
- 125000003518 norbornenyl group Chemical group C12(C=CC(CC1)C2)* 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- XNLICIUVMPYHGG-UHFFFAOYSA-N pentan-2-one Chemical compound CCCC(C)=O XNLICIUVMPYHGG-UHFFFAOYSA-N 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- 125000005004 perfluoroethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- YKYONYBAUNKHLG-UHFFFAOYSA-N propyl acetate Chemical compound CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- ODLMAHJVESYWTB-UHFFFAOYSA-N propylbenzene Chemical compound CCCC1=CC=CC=C1 ODLMAHJVESYWTB-UHFFFAOYSA-N 0.000 description 2
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 125000003944 tolyl group Chemical group 0.000 description 2
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 2
- 150000003672 ureas Chemical class 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- IYLGZMTXKJYONK-ACLXAEORSA-N (12s,15r)-15-hydroxy-11,16-dioxo-15,20-dihydrosenecionan-12-yl acetate Chemical compound O1C(=O)[C@](CC)(O)C[C@@H](C)[C@](C)(OC(C)=O)C(=O)OCC2=CCN3[C@H]2[C@H]1CC3 IYLGZMTXKJYONK-ACLXAEORSA-N 0.000 description 1
- XNUYPROIFFCXAE-UHFFFAOYSA-N (4-cyclohexylphenyl)-diphenylsulfanium Chemical compound C1CCCCC1C1=CC=C([S+](C=2C=CC=CC=2)C=2C=CC=CC=2)C=C1 XNUYPROIFFCXAE-UHFFFAOYSA-N 0.000 description 1
- QEYKXSMQZGHJSX-UHFFFAOYSA-M (4-cyclohexylphenyl)-diphenylsulfanium;trifluoromethanesulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)F.C1CCCCC1C1=CC=C([S+](C=2C=CC=CC=2)C=2C=CC=CC=2)C=C1 QEYKXSMQZGHJSX-UHFFFAOYSA-M 0.000 description 1
- VKOHBZXAXOVWQU-UHFFFAOYSA-M (4-methylsulfonylphenyl)-diphenylsulfanium;1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F.C1=CC(S(=O)(=O)C)=CC=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 VKOHBZXAXOVWQU-UHFFFAOYSA-M 0.000 description 1
- CFRRWRASBDSKBI-UHFFFAOYSA-M (4-methylsulfonylphenyl)-diphenylsulfanium;trifluoromethanesulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)F.C1=CC(S(=O)(=O)C)=CC=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 CFRRWRASBDSKBI-UHFFFAOYSA-M 0.000 description 1
- FFJCNSLCJOQHKM-CLFAGFIQSA-N (z)-1-[(z)-octadec-9-enoxy]octadec-9-ene Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCCCCCCC\C=C/CCCCCCCC FFJCNSLCJOQHKM-CLFAGFIQSA-N 0.000 description 1
- VLLPVDKADBYKLM-UHFFFAOYSA-M 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate;triphenylsulfanium Chemical compound [O-]S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F.C1=CC=CC=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 VLLPVDKADBYKLM-UHFFFAOYSA-M 0.000 description 1
- AVQQQNCBBIEMEU-UHFFFAOYSA-N 1,1,3,3-tetramethylurea Chemical compound CN(C)C(=O)N(C)C AVQQQNCBBIEMEU-UHFFFAOYSA-N 0.000 description 1
- UDYXMTORTDACTG-UHFFFAOYSA-N 1,1,3-tributylthiourea Chemical compound CCCCNC(=S)N(CCCC)CCCC UDYXMTORTDACTG-UHFFFAOYSA-N 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical class CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical class CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- YBBLOADPFWKNGS-UHFFFAOYSA-N 1,1-dimethylurea Chemical compound CN(C)C(N)=O YBBLOADPFWKNGS-UHFFFAOYSA-N 0.000 description 1
- VIDOPANCAUPXNH-UHFFFAOYSA-N 1,2,3-triethylbenzene Chemical compound CCC1=CC=CC(CC)=C1CC VIDOPANCAUPXNH-UHFFFAOYSA-N 0.000 description 1
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- OKIRBHVFJGXOIS-UHFFFAOYSA-N 1,2-di(propan-2-yl)benzene Chemical compound CC(C)C1=CC=CC=C1C(C)C OKIRBHVFJGXOIS-UHFFFAOYSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- 229940057054 1,3-dimethylurea Drugs 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- SGUVLZREKBPKCE-UHFFFAOYSA-N 1,5-diazabicyclo[4.3.0]-non-5-ene Chemical compound C1CCN=C2CCCN21 SGUVLZREKBPKCE-UHFFFAOYSA-N 0.000 description 1
- SGRHVVLXEBNBDV-UHFFFAOYSA-N 1,6-dibromohexane Chemical compound BrCCCCCCBr SGRHVVLXEBNBDV-UHFFFAOYSA-N 0.000 description 1
- QWOZZTWBWQMEPD-UHFFFAOYSA-N 1-(2-ethoxypropoxy)propan-2-ol Chemical compound CCOC(C)COCC(C)O QWOZZTWBWQMEPD-UHFFFAOYSA-N 0.000 description 1
- HBAIZGPCSAAFSU-UHFFFAOYSA-N 1-(2-hydroxyethyl)imidazolidin-2-one Chemical compound OCCN1CCNC1=O HBAIZGPCSAAFSU-UHFFFAOYSA-N 0.000 description 1
- JQIQJUCEFIYYOJ-UHFFFAOYSA-M 1-(4-butoxynaphthalen-1-yl)thiolan-1-ium;trifluoromethanesulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)F.C12=CC=CC=C2C(OCCCC)=CC=C1[S+]1CCCC1 JQIQJUCEFIYYOJ-UHFFFAOYSA-M 0.000 description 1
- WXWSNMWMJAFDLG-UHFFFAOYSA-N 1-(6-butoxynaphthalen-2-yl)thiolan-1-ium Chemical compound C1=CC2=CC(OCCCC)=CC=C2C=C1[S+]1CCCC1 WXWSNMWMJAFDLG-UHFFFAOYSA-N 0.000 description 1
- WFZZYWQSLJQVOT-UHFFFAOYSA-M 1-(6-butoxynaphthalen-2-yl)thiolan-1-ium;trifluoromethanesulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)F.C1=CC2=CC(OCCCC)=CC=C2C=C1[S+]1CCCC1 WFZZYWQSLJQVOT-UHFFFAOYSA-M 0.000 description 1
- MNDIARAMWBIKFW-UHFFFAOYSA-N 1-bromohexane Chemical class CCCCCCBr MNDIARAMWBIKFW-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- RWNUSVWFHDHRCJ-UHFFFAOYSA-N 1-butoxypropan-2-ol Chemical compound CCCCOCC(C)O RWNUSVWFHDHRCJ-UHFFFAOYSA-N 0.000 description 1
- FUWDFGKRNIDKAE-UHFFFAOYSA-N 1-butoxypropan-2-yl acetate Chemical compound CCCCOCC(C)OC(C)=O FUWDFGKRNIDKAE-UHFFFAOYSA-N 0.000 description 1
- VFWCMGCRMGJXDK-UHFFFAOYSA-N 1-chlorobutane Chemical class CCCCCl VFWCMGCRMGJXDK-UHFFFAOYSA-N 0.000 description 1
- JOLQKTGDSGKSKJ-UHFFFAOYSA-N 1-ethoxypropan-2-ol Chemical compound CCOCC(C)O JOLQKTGDSGKSKJ-UHFFFAOYSA-N 0.000 description 1
- HYFLWBNQFMXCPA-UHFFFAOYSA-N 1-ethyl-2-methylbenzene Chemical compound CCC1=CC=CC=C1C HYFLWBNQFMXCPA-UHFFFAOYSA-N 0.000 description 1
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- DZCBKUAAGVVLOX-UHFFFAOYSA-N 1-morpholin-4-ylethanol Chemical compound CC(O)N1CCOCC1 DZCBKUAAGVVLOX-UHFFFAOYSA-N 0.000 description 1
- KYWXRBNOYGGPIZ-UHFFFAOYSA-N 1-morpholin-4-ylethanone Chemical compound CC(=O)N1CCOCC1 KYWXRBNOYGGPIZ-UHFFFAOYSA-N 0.000 description 1
- YUODWXRYZLKSMJ-UHFFFAOYSA-N 2,2,2-trifluoroethyl bicyclo[2.2.1]heptane-1-carboxylate Chemical compound FC(COC(=O)C12CCC(CC1)C2)(F)F YUODWXRYZLKSMJ-UHFFFAOYSA-N 0.000 description 1
- 125000004206 2,2,2-trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- LTMRRSWNXVJMBA-UHFFFAOYSA-L 2,2-diethylpropanedioate Chemical compound CCC(CC)(C([O-])=O)C([O-])=O LTMRRSWNXVJMBA-UHFFFAOYSA-L 0.000 description 1
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 1
- WFQNMENFJSZTGD-UHFFFAOYSA-O 2,6-dimethyl-4-(thiolan-1-ium-1-yl)phenol Chemical compound CC1=C(O)C(C)=CC([S+]2CCCC2)=C1 WFQNMENFJSZTGD-UHFFFAOYSA-O 0.000 description 1
- GNZYDSUXCMLOMM-UHFFFAOYSA-N 2,6-dimethyl-4-(thiolan-1-ium-1-yl)phenol;1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate Chemical compound CC1=C(O)C(C)=CC([S+]2CCCC2)=C1.[O-]S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F GNZYDSUXCMLOMM-UHFFFAOYSA-N 0.000 description 1
- VAOHUAFTTHSCRT-UHFFFAOYSA-N 2,6-dimethyl-4-(thiolan-1-ium-1-yl)phenol;trifluoromethanesulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)F.CC1=C(O)C(C)=CC([S+]2CCCC2)=C1 VAOHUAFTTHSCRT-UHFFFAOYSA-N 0.000 description 1
- WHFKEVZKDPZNAJ-UHFFFAOYSA-M 2-(1-adamantyloxy)-1,1-difluoro-2-oxoethanesulfonate triphenylsulfanium Chemical compound c1ccc(cc1)[S+](c1ccccc1)c1ccccc1.[O-]S(=O)(=O)C(F)(F)C(=O)OC12CC3CC(CC(C3)C1)C2 WHFKEVZKDPZNAJ-UHFFFAOYSA-M 0.000 description 1
- CKCGJBFTCUCBAJ-UHFFFAOYSA-N 2-(2-ethoxypropoxy)propyl acetate Chemical compound CCOC(C)COC(C)COC(C)=O CKCGJBFTCUCBAJ-UHFFFAOYSA-N 0.000 description 1
- ZKCAGDPACLOVBN-UHFFFAOYSA-N 2-(2-ethylbutoxy)ethanol Chemical compound CCC(CC)COCCO ZKCAGDPACLOVBN-UHFFFAOYSA-N 0.000 description 1
- GZMAAYIALGURDQ-UHFFFAOYSA-N 2-(2-hexoxyethoxy)ethanol Chemical compound CCCCCCOCCOCCO GZMAAYIALGURDQ-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- DRLRGHZJOQGQEC-UHFFFAOYSA-N 2-(2-methoxypropoxy)propyl acetate Chemical compound COC(C)COC(C)COC(C)=O DRLRGHZJOQGQEC-UHFFFAOYSA-N 0.000 description 1
- DJCYDDALXPHSHR-UHFFFAOYSA-N 2-(2-propoxyethoxy)ethanol Chemical compound CCCOCCOCCO DJCYDDALXPHSHR-UHFFFAOYSA-N 0.000 description 1
- XYVAYAJYLWYJJN-UHFFFAOYSA-N 2-(2-propoxypropoxy)propan-1-ol Chemical compound CCCOC(C)COC(C)CO XYVAYAJYLWYJJN-UHFFFAOYSA-N 0.000 description 1
- CIEPNGYYAZJVPI-UHFFFAOYSA-M 2-(3-bicyclo[2.2.1]heptanyl)-1,1,2,2-tetrafluoroethanesulfonate;(4-methylsulfonylphenyl)-diphenylsulfanium Chemical compound C1CC2C(C(F)(F)C(F)(F)S(=O)(=O)[O-])CC1C2.C1=CC(S(=O)(=O)C)=CC=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 CIEPNGYYAZJVPI-UHFFFAOYSA-M 0.000 description 1
- COAPLGOCHZYBCI-UHFFFAOYSA-M 2-(3-bicyclo[2.2.1]heptanyl)-1,1,2,2-tetrafluoroethanesulfonate;1-(6-butoxynaphthalen-2-yl)thiolan-1-ium Chemical compound C1CC2C(C(F)(F)C(F)(F)S(=O)(=O)[O-])CC1C2.C1=CC2=CC(OCCCC)=CC=C2C=C1[S+]1CCCC1 COAPLGOCHZYBCI-UHFFFAOYSA-M 0.000 description 1
- JDUWLFYXEJGUET-UHFFFAOYSA-N 2-(3-bicyclo[2.2.1]heptanyl)-1,1,2,2-tetrafluoroethanesulfonate;2,6-dimethyl-4-(thiolan-1-ium-1-yl)phenol Chemical compound CC1=C(O)C(C)=CC([S+]2CCCC2)=C1.C1CC2C(C(F)(F)C(F)(F)S(=O)(=O)[O-])CC1C2 JDUWLFYXEJGUET-UHFFFAOYSA-N 0.000 description 1
- NIKOMHHZILSBRS-UHFFFAOYSA-M 2-(3-bicyclo[2.2.1]heptanyl)-1,1,2,2-tetrafluoroethanesulfonate;bis(4-tert-butylphenyl)iodanium Chemical compound C1CC2C(C(F)(F)C(F)(F)S(=O)(=O)[O-])CC1C2.C1=CC(C(C)(C)C)=CC=C1[I+]C1=CC=C(C(C)(C)C)C=C1 NIKOMHHZILSBRS-UHFFFAOYSA-M 0.000 description 1
- NXDMSYSWZQIBOX-UHFFFAOYSA-M 2-(3-bicyclo[2.2.1]heptanyl)-1,1-difluoroethanesulfonate;triphenylsulfanium Chemical compound C1CC2C(CC(F)(F)S(=O)(=O)[O-])CC1C2.C1=CC=CC=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 NXDMSYSWZQIBOX-UHFFFAOYSA-M 0.000 description 1
- KZTWONRVIPPDKH-UHFFFAOYSA-N 2-(piperidin-1-yl)ethanol Chemical compound OCCN1CCCCC1 KZTWONRVIPPDKH-UHFFFAOYSA-N 0.000 description 1
- QNVRIHYSUZMSGM-LURJTMIESA-N 2-Hexanol Natural products CCCC[C@H](C)O QNVRIHYSUZMSGM-LURJTMIESA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical group CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 1
- GQKZRWSUJHVIPE-UHFFFAOYSA-N 2-Pentanol acetate Chemical compound CCCC(C)OC(C)=O GQKZRWSUJHVIPE-UHFFFAOYSA-N 0.000 description 1
- PFHOSZAOXCYAGJ-UHFFFAOYSA-N 2-[(2-cyano-4-methoxy-4-methylpentan-2-yl)diazenyl]-4-methoxy-2,4-dimethylpentanenitrile Chemical compound COC(C)(C)CC(C)(C#N)N=NC(C)(C#N)CC(C)(C)OC PFHOSZAOXCYAGJ-UHFFFAOYSA-N 0.000 description 1
- WYGWHHGCAGTUCH-UHFFFAOYSA-N 2-[(2-cyano-4-methylpentan-2-yl)diazenyl]-2,4-dimethylpentanenitrile Chemical compound CC(C)CC(C)(C#N)N=NC(C)(C#N)CC(C)C WYGWHHGCAGTUCH-UHFFFAOYSA-N 0.000 description 1
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 1
- SDHQGBWMLCBNSM-UHFFFAOYSA-N 2-[2-(2-methoxyethoxy)ethoxy]ethyl acetate Chemical compound COCCOCCOCCOC(C)=O SDHQGBWMLCBNSM-UHFFFAOYSA-N 0.000 description 1
- MELCWEWUZODSIS-UHFFFAOYSA-N 2-[2-(diethylamino)ethoxy]-n,n-diethylethanamine Chemical compound CCN(CC)CCOCCN(CC)CC MELCWEWUZODSIS-UHFFFAOYSA-N 0.000 description 1
- GTEXIOINCJRBIO-UHFFFAOYSA-N 2-[2-(dimethylamino)ethoxy]-n,n-dimethylethanamine Chemical compound CN(C)CCOCCN(C)C GTEXIOINCJRBIO-UHFFFAOYSA-N 0.000 description 1
- JTXMVXSTHSMVQF-UHFFFAOYSA-N 2-acetyloxyethyl acetate Chemical compound CC(=O)OCCOC(C)=O JTXMVXSTHSMVQF-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- CDMIQAIIIBPTRK-UHFFFAOYSA-N 2-butoxynaphthalene Chemical compound C1=CC=CC2=CC(OCCCC)=CC=C21 CDMIQAIIIBPTRK-UHFFFAOYSA-N 0.000 description 1
- ZVUNTIMPQCQCAQ-UHFFFAOYSA-N 2-dodecanoyloxyethyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OCCOC(=O)CCCCCCCCCCC ZVUNTIMPQCQCAQ-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- TZYRSLHNPKPEFV-UHFFFAOYSA-N 2-ethyl-1-butanol Chemical compound CCC(CC)CO TZYRSLHNPKPEFV-UHFFFAOYSA-N 0.000 description 1
- WOYWLLHHWAMFCB-UHFFFAOYSA-N 2-ethylhexyl acetate Chemical compound CCCCC(CC)COC(C)=O WOYWLLHHWAMFCB-UHFFFAOYSA-N 0.000 description 1
- UPGSWASWQBLSKZ-UHFFFAOYSA-N 2-hexoxyethanol Chemical compound CCCCCCOCCO UPGSWASWQBLSKZ-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- PFNHSEQQEPMLNI-UHFFFAOYSA-N 2-methyl-1-pentanol Chemical compound CCCC(C)CO PFNHSEQQEPMLNI-UHFFFAOYSA-N 0.000 description 1
- MSXVEPNJUHWQHW-UHFFFAOYSA-N 2-methylbutan-2-ol Chemical compound CCC(C)(C)O MSXVEPNJUHWQHW-UHFFFAOYSA-N 0.000 description 1
- SXEHNUFAMUORRF-UHFFFAOYSA-N 2-morpholin-4-ylethyl cyclohexanecarboxylate Chemical compound C1CCCCC1C(=O)OCCN1CCOCC1 SXEHNUFAMUORRF-UHFFFAOYSA-N 0.000 description 1
- ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 2-octanone Chemical compound CCCCCCC(C)=O ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- YEYKMVJDLWJFOA-UHFFFAOYSA-N 2-propoxyethanol Chemical compound CCCOCCO YEYKMVJDLWJFOA-UHFFFAOYSA-N 0.000 description 1
- BRRVXFOKWJKTGG-UHFFFAOYSA-N 3,3,5-trimethylcyclohexanol Chemical compound CC1CC(O)CC(C)(C)C1 BRRVXFOKWJKTGG-UHFFFAOYSA-N 0.000 description 1
- PKNKULBDCRZSBT-UHFFFAOYSA-N 3,4,5-trimethylnonan-2-one Chemical compound CCCCC(C)C(C)C(C)C(C)=O PKNKULBDCRZSBT-UHFFFAOYSA-N 0.000 description 1
- QCAHUFWKIQLBNB-UHFFFAOYSA-N 3-(3-methoxypropoxy)propan-1-ol Chemical compound COCCCOCCCO QCAHUFWKIQLBNB-UHFFFAOYSA-N 0.000 description 1
- HIYRIYOUSQLJHP-UHFFFAOYSA-N 3-[2-(4-aminophenyl)propan-2-yl]aniline Chemical compound C=1C=CC(N)=CC=1C(C)(C)C1=CC=C(N)C=C1 HIYRIYOUSQLJHP-UHFFFAOYSA-N 0.000 description 1
- COPUOMGHQGSBQO-UHFFFAOYSA-N 3-[2-(4-aminophenyl)propan-2-yl]phenol Chemical compound C=1C=CC(O)=CC=1C(C)(C)C1=CC=C(N)C=C1 COPUOMGHQGSBQO-UHFFFAOYSA-N 0.000 description 1
- JSGVZVOGOQILFM-UHFFFAOYSA-N 3-methoxy-1-butanol Chemical compound COC(C)CCO JSGVZVOGOQILFM-UHFFFAOYSA-N 0.000 description 1
- QMYGFTJCQFEDST-UHFFFAOYSA-N 3-methoxybutyl acetate Chemical compound COC(C)CCOC(C)=O QMYGFTJCQFEDST-UHFFFAOYSA-N 0.000 description 1
- MECNWXGGNCJFQJ-UHFFFAOYSA-N 3-piperidin-1-ylpropane-1,2-diol Chemical compound OCC(O)CN1CCCCC1 MECNWXGGNCJFQJ-UHFFFAOYSA-N 0.000 description 1
- LDMRLRNXHLPZJN-UHFFFAOYSA-N 3-propoxypropan-1-ol Chemical compound CCCOCCCO LDMRLRNXHLPZJN-UHFFFAOYSA-N 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- IICCLYANAQEHCI-UHFFFAOYSA-N 4,5,6,7-tetrachloro-3',6'-dihydroxy-2',4',5',7'-tetraiodospiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C(C(=C(Cl)C(Cl)=C2Cl)Cl)=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 IICCLYANAQEHCI-UHFFFAOYSA-N 0.000 description 1
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 1
- ZYEDGEXYGKWJPB-UHFFFAOYSA-N 4-[2-(4-aminophenyl)propan-2-yl]aniline Chemical compound C=1C=C(N)C=CC=1C(C)(C)C1=CC=C(N)C=C1 ZYEDGEXYGKWJPB-UHFFFAOYSA-N 0.000 description 1
- NFGPNZVXBBBZNF-UHFFFAOYSA-N 4-[2-(4-aminophenyl)propan-2-yl]phenol Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(N)C=C1 NFGPNZVXBBBZNF-UHFFFAOYSA-N 0.000 description 1
- KWOIWTRRPFHBSI-UHFFFAOYSA-N 4-[2-[3-[2-(4-aminophenyl)propan-2-yl]phenyl]propan-2-yl]aniline Chemical compound C=1C=CC(C(C)(C)C=2C=CC(N)=CC=2)=CC=1C(C)(C)C1=CC=C(N)C=C1 KWOIWTRRPFHBSI-UHFFFAOYSA-N 0.000 description 1
- HESXPOICBNWMPI-UHFFFAOYSA-N 4-[2-[4-[2-(4-aminophenyl)propan-2-yl]phenyl]propan-2-yl]aniline Chemical compound C=1C=C(C(C)(C)C=2C=CC(N)=CC=2)C=CC=1C(C)(C)C1=CC=C(N)C=C1 HESXPOICBNWMPI-UHFFFAOYSA-N 0.000 description 1
- MQWCXKGKQLNYQG-UHFFFAOYSA-N 4-methylcyclohexan-1-ol Chemical compound CC1CCC(O)CC1 MQWCXKGKQLNYQG-UHFFFAOYSA-N 0.000 description 1
- VGVHNLRUAMRIEW-UHFFFAOYSA-N 4-methylcyclohexan-1-one Chemical compound CC1CCC(=O)CC1 VGVHNLRUAMRIEW-UHFFFAOYSA-N 0.000 description 1
- QZHXKQKKEBXYRG-UHFFFAOYSA-N 4-n-(4-aminophenyl)benzene-1,4-diamine Chemical compound C1=CC(N)=CC=C1NC1=CC=C(N)C=C1 QZHXKQKKEBXYRG-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- LPEKGGXMPWTOCB-UHFFFAOYSA-N 8beta-(2,3-epoxy-2-methylbutyryloxy)-14-acetoxytithifolin Natural products COC(=O)C(C)O LPEKGGXMPWTOCB-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 241000605059 Bacteroidetes Species 0.000 description 1
- MRABAEUHTLLEML-UHFFFAOYSA-N Butyl lactate Chemical compound CCCCOC(=O)C(C)O MRABAEUHTLLEML-UHFFFAOYSA-N 0.000 description 1
- WXYPLNSAXQUEGN-UHFFFAOYSA-L C1(CCCCC1)C1=CC=C(C=C1)[S+](C1=CC=CC=C1)C1=CC=CC=C1.FC(C(C(C(S(=O)(=O)[O-])(F)F)(F)F)(F)F)(F)F.C1(CCCCC1)C1=CC=C(C=C1)[S+](C1=CC=CC=C1)C1=CC=CC=C1.FC(C(C(C(S(=O)(=O)[O-])(F)F)(F)F)(F)F)(F)F Chemical compound C1(CCCCC1)C1=CC=C(C=C1)[S+](C1=CC=CC=C1)C1=CC=CC=C1.FC(C(C(C(S(=O)(=O)[O-])(F)F)(F)F)(F)F)(F)F.C1(CCCCC1)C1=CC=C(C=C1)[S+](C1=CC=CC=C1)C1=CC=CC=C1.FC(C(C(C(S(=O)(=O)[O-])(F)F)(F)F)(F)F)(F)F WXYPLNSAXQUEGN-UHFFFAOYSA-L 0.000 description 1
- DPWZPTOHZTVVDP-UHFFFAOYSA-N C12C(CC(CC1)C2)C(C(S(=O)(=O)[O-])(F)F)(F)F.[SH+]2CCCC2 Chemical compound C12C(CC(CC1)C2)C(C(S(=O)(=O)[O-])(F)F)(F)F.[SH+]2CCCC2 DPWZPTOHZTVVDP-UHFFFAOYSA-N 0.000 description 1
- SZZCAIFFTWMNTK-UHFFFAOYSA-N C1CC[SH+]C1.[O-]S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F Chemical compound C1CC[SH+]C1.[O-]S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F SZZCAIFFTWMNTK-UHFFFAOYSA-N 0.000 description 1
- KSTZFQICXIFYDQ-UHFFFAOYSA-N CC(C(OC1(C(C(OC)=O)C(OC)=O)C=CCCC1)=O)=C Chemical compound CC(C(OC1(C(C(OC)=O)C(OC)=O)C=CCCC1)=O)=C KSTZFQICXIFYDQ-UHFFFAOYSA-N 0.000 description 1
- NVWIGAPCHGGZBS-UHFFFAOYSA-N CC(C(OC1(C(CCC2C3CC2)C3=O)C=CCCC1)=O)=C Chemical compound CC(C(OC1(C(CCC2C3CC2)C3=O)C=CCCC1)=O)=C NVWIGAPCHGGZBS-UHFFFAOYSA-N 0.000 description 1
- XEFSZEVADNSCAP-UHFFFAOYSA-N CCOC(CCC1(C(C)=C(C)CCC1)N)=O Chemical compound CCOC(CCC1(C(C)=C(C)CCC1)N)=O XEFSZEVADNSCAP-UHFFFAOYSA-N 0.000 description 1
- YHOPGMANNAAVDC-UHFFFAOYSA-N COCC1(C=CCC1)N Chemical compound COCC1(C=CCC1)N YHOPGMANNAAVDC-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- YYLLIJHXUHJATK-UHFFFAOYSA-N Cyclohexyl acetate Chemical compound CC(=O)OC1CCCCC1 YYLLIJHXUHJATK-UHFFFAOYSA-N 0.000 description 1
- QSJXEFYPDANLFS-UHFFFAOYSA-N Diacetyl Chemical group CC(=O)C(C)=O QSJXEFYPDANLFS-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- HXQPUEQDBSPXTE-UHFFFAOYSA-N Diisobutylcarbinol Chemical compound CC(C)CC(O)CC(C)C HXQPUEQDBSPXTE-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical class COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- HILDMOKFUNKANO-UHFFFAOYSA-N FC(COC(=O)COC=CC1=CC=CC2=CC=CC=C12)(F)F Chemical compound FC(COC(=O)COC=CC1=CC=CC2=CC=CC=C12)(F)F HILDMOKFUNKANO-UHFFFAOYSA-N 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- WRQNANDWMGAFTP-UHFFFAOYSA-N Methylacetoacetic acid Chemical compound COC(=O)CC(C)=O WRQNANDWMGAFTP-UHFFFAOYSA-N 0.000 description 1
- MGJKQDOBUOMPEZ-UHFFFAOYSA-N N,N'-dimethylurea Chemical compound CNC(=O)NC MGJKQDOBUOMPEZ-UHFFFAOYSA-N 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- SUAKHGWARZSWIH-UHFFFAOYSA-N N,N‐diethylformamide Chemical compound CCN(CC)C=O SUAKHGWARZSWIH-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- XGEGHDBEHXKFPX-UHFFFAOYSA-N N-methylthiourea Natural products CNC(N)=O XGEGHDBEHXKFPX-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- JKRZOJADNVOXPM-UHFFFAOYSA-N Oxalic acid dibutyl ester Chemical compound CCCCOC(=O)C(=O)OCCCC JKRZOJADNVOXPM-UHFFFAOYSA-N 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical class C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- NSOXQYCFHDMMGV-UHFFFAOYSA-N Tetrakis(2-hydroxypropyl)ethylenediamine Chemical compound CC(O)CN(CC(C)O)CCN(CC(C)O)CC(C)O NSOXQYCFHDMMGV-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- FLRQOWAOMJMSTP-JJTRIOAGSA-N [(2s)-2-[(2r)-3,4-dihydroxy-5-oxo-2h-furan-2-yl]-2-hydroxyethyl] (6z,9z,12z)-octadeca-6,9,12-trienoate Chemical compound CCCCC\C=C/C\C=C/C\C=C/CCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O FLRQOWAOMJMSTP-JJTRIOAGSA-N 0.000 description 1
- NVJPBZCLWGTJKD-UHFFFAOYSA-N [bis(4-tert-butylphenyl)-lambda3-iodanyl] trifluoromethanesulfonate Chemical compound CC(C)(C)c1ccc(cc1)[I](OS(=O)(=O)C(F)(F)F)c1ccc(cc1)C(C)(C)C NVJPBZCLWGTJKD-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- JTMHCLKNFXDYMG-UHFFFAOYSA-N acetic acid;1-ethoxypropan-2-ol Chemical compound CC(O)=O.CCOCC(C)O JTMHCLKNFXDYMG-UHFFFAOYSA-N 0.000 description 1
- FUECIDVNGAUMGJ-UHFFFAOYSA-N acetic acid;2-(2-butoxyethoxy)ethanol Chemical compound CC(O)=O.CCCCOCCOCCO FUECIDVNGAUMGJ-UHFFFAOYSA-N 0.000 description 1
- GTYLEVMOSBBKCQ-UHFFFAOYSA-N acetic acid;2-(2-ethoxyethoxy)ethanol Chemical compound CC(O)=O.CCOCCOCCO GTYLEVMOSBBKCQ-UHFFFAOYSA-N 0.000 description 1
- JQICEOPIRHDDER-UHFFFAOYSA-N acetic acid;2-(2-methoxyethoxy)ethanol Chemical compound CC(O)=O.COCCOCCO JQICEOPIRHDDER-UHFFFAOYSA-N 0.000 description 1
- LTOATULEBMBWSO-UHFFFAOYSA-N acetic acid;2-ethoxyethanol Chemical compound CC(O)=O.CCOCCO LTOATULEBMBWSO-UHFFFAOYSA-N 0.000 description 1
- STWHDNSRIOHYPG-UHFFFAOYSA-N acetic acid;2-methoxyethanol Chemical compound CC(O)=O.COCCO STWHDNSRIOHYPG-UHFFFAOYSA-N 0.000 description 1
- 150000008062 acetophenones Chemical class 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- JIMXXGFJRDUSRO-UHFFFAOYSA-N adamantane-1-carboxylic acid Chemical compound C1C(C2)CC3CC2CC1(C(=O)O)C3 JIMXXGFJRDUSRO-UHFFFAOYSA-N 0.000 description 1
- IYKFYARMMIESOX-UHFFFAOYSA-N adamantanone Chemical compound C1C(C2)CC3CC1C(=O)C2C3 IYKFYARMMIESOX-UHFFFAOYSA-N 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 125000004448 alkyl carbonyl group Chemical group 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 150000001454 anthracenes Chemical class 0.000 description 1
- 125000005427 anthranyl group Chemical group 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- 229940007550 benzyl acetate Drugs 0.000 description 1
- ZLSMCQSGRWNEGX-UHFFFAOYSA-N bis(4-aminophenyl)methanone Chemical compound C1=CC(N)=CC=C1C(=O)C1=CC=C(N)C=C1 ZLSMCQSGRWNEGX-UHFFFAOYSA-N 0.000 description 1
- DNFSNYQTQMVTOK-UHFFFAOYSA-N bis(4-tert-butylphenyl)iodanium Chemical compound C1=CC(C(C)(C)C)=CC=C1[I+]C1=CC=C(C(C)(C)C)C=C1 DNFSNYQTQMVTOK-UHFFFAOYSA-N 0.000 description 1
- DJBAOXYQCAKLPH-UHFFFAOYSA-M bis(4-tert-butylphenyl)iodanium;1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F.C1=CC(C(C)(C)C)=CC=C1[I+]C1=CC=C(C(C)(C)C)C=C1 DJBAOXYQCAKLPH-UHFFFAOYSA-M 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001716 carbazoles Chemical class 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000003950 cyclic amides Chemical class 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000001047 cyclobutenyl group Chemical group C1(=CCC1)* 0.000 description 1
- CGZZMOTZOONQIA-UHFFFAOYSA-N cycloheptanone Chemical compound O=C1CCCCCC1 CGZZMOTZOONQIA-UHFFFAOYSA-N 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- WJTCGQSWYFHTAC-UHFFFAOYSA-N cyclooctane Chemical compound C1CCCCCCC1 WJTCGQSWYFHTAC-UHFFFAOYSA-N 0.000 description 1
- 239000004914 cyclooctane Substances 0.000 description 1
- IIRFCWANHMSDCG-UHFFFAOYSA-N cyclooctanone Chemical compound O=C1CCCCCCC1 IIRFCWANHMSDCG-UHFFFAOYSA-N 0.000 description 1
- 125000000522 cyclooctenyl group Chemical group C1(=CCCCCCC1)* 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- KXGVEGMKQFWNSR-LLQZFEROSA-N deoxycholic acid Chemical class C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 125000004386 diacrylate group Chemical group 0.000 description 1
- XXTZHYXQVWRADW-UHFFFAOYSA-N diazomethanone Chemical class [N]N=C=O XXTZHYXQVWRADW-UHFFFAOYSA-N 0.000 description 1
- 239000012954 diazonium Substances 0.000 description 1
- 150000001989 diazonium salts Chemical class 0.000 description 1
- WYACBZDAHNBPPB-UHFFFAOYSA-N diethyl oxalate Chemical compound CCOC(=O)C(=O)OCC WYACBZDAHNBPPB-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 1
- 125000006001 difluoroethyl group Chemical group 0.000 description 1
- 125000001028 difluoromethyl group Chemical group [H]C(F)(F)* 0.000 description 1
- 125000005594 diketone group Chemical group 0.000 description 1
- NEMOJKROKMMQBQ-UHFFFAOYSA-N dimethyl 2-bromopropanedioate Chemical compound COC(=O)C(Br)C(=O)OC NEMOJKROKMMQBQ-UHFFFAOYSA-N 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- FBSAITBEAPNWJG-UHFFFAOYSA-N dimethyl phthalate Natural products CC(=O)OC1=CC=CC=C1OC(C)=O FBSAITBEAPNWJG-UHFFFAOYSA-N 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- 229960001826 dimethylphthalate Drugs 0.000 description 1
- OZLBDYMWFAHSOQ-UHFFFAOYSA-N diphenyliodanium Chemical compound C=1C=CC=CC=1[I+]C1=CC=CC=C1 OZLBDYMWFAHSOQ-UHFFFAOYSA-N 0.000 description 1
- ORPDKMPYOLFUBA-UHFFFAOYSA-M diphenyliodanium;1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate Chemical compound C=1C=CC=CC=1[I+]C1=CC=CC=C1.[O-]S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F ORPDKMPYOLFUBA-UHFFFAOYSA-M 0.000 description 1
- SBQIJPBUMNWUKN-UHFFFAOYSA-M diphenyliodanium;trifluoromethanesulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)F.C=1C=CC=CC=1[I+]C1=CC=CC=C1 SBQIJPBUMNWUKN-UHFFFAOYSA-M 0.000 description 1
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 1
- WEHWNAOGRSTTBQ-UHFFFAOYSA-N dipropylamine Chemical compound CCCNCCC WEHWNAOGRSTTBQ-UHFFFAOYSA-N 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 229940052761 dopaminergic adamantane derivative Drugs 0.000 description 1
- ODQWQRRAPPTVAG-GZTJUZNOSA-N doxepin Chemical compound C1OC2=CC=CC=C2C(=C/CCN(C)C)/C2=CC=CC=C21 ODQWQRRAPPTVAG-GZTJUZNOSA-N 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 239000012156 elution solvent Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical group O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 description 1
- 229940116333 ethyl lactate Drugs 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 125000006419 fluorocyclopropyl group Chemical group 0.000 description 1
- 125000004216 fluoromethyl group Chemical group [H]C([H])(F)* 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- JFCFIXGDCBSLRW-UHFFFAOYSA-N heptan-2-yl 1,1,2,2-tetrafluoroethanesulfonate Chemical compound CC(CCCCC)OS(=O)(=O)C(C(F)F)(F)F JFCFIXGDCBSLRW-UHFFFAOYSA-N 0.000 description 1
- XVEOUOTUJBYHNL-UHFFFAOYSA-N heptane-2,4-diol Chemical compound CCCC(O)CC(C)O XVEOUOTUJBYHNL-UHFFFAOYSA-N 0.000 description 1
- OHMBHFSEKCCCBW-UHFFFAOYSA-N hexane-2,5-diol Chemical compound CC(O)CCC(C)O OHMBHFSEKCCCBW-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 1
- KXUHSQYYJYAXGZ-UHFFFAOYSA-N isobutylbenzene Chemical compound CC(C)CC1=CC=CC=C1 KXUHSQYYJYAXGZ-UHFFFAOYSA-N 0.000 description 1
- FGKJLKRYENPLQH-UHFFFAOYSA-M isocaproate Chemical compound CC(C)CCC([O-])=O FGKJLKRYENPLQH-UHFFFAOYSA-M 0.000 description 1
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 1
- 229940011051 isopropyl acetate Drugs 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-M isovalerate Chemical compound CC(C)CC([O-])=O GWYFCOCPABKNJV-UHFFFAOYSA-M 0.000 description 1
- OQAGVSWESNCJJT-UHFFFAOYSA-N isovaleric acid methyl ester Natural products COC(=O)CC(C)C OQAGVSWESNCJJT-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 150000003951 lactams Chemical group 0.000 description 1
- 125000000686 lactone group Chemical group 0.000 description 1
- SMEROWZSTRWXGI-HVATVPOCSA-N lithocholic acid Chemical class C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)CC1 SMEROWZSTRWXGI-HVATVPOCSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- VHRYZQNGTZXDNX-UHFFFAOYSA-N methacryloyl chloride Chemical compound CC(=C)C(Cl)=O VHRYZQNGTZXDNX-UHFFFAOYSA-N 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- YDCHPLOFQATIDS-UHFFFAOYSA-N methyl 2-bromoacetate Chemical compound COC(=O)CBr YDCHPLOFQATIDS-UHFFFAOYSA-N 0.000 description 1
- IMXBRVLCKXGWSS-UHFFFAOYSA-N methyl 2-cyclohexylacetate Chemical compound COC(=O)CC1CCCCC1 IMXBRVLCKXGWSS-UHFFFAOYSA-N 0.000 description 1
- GFVQBVDJRHZKPO-UHFFFAOYSA-N methyl 2-hydroxy-5-oxo-4-oxatricyclo[4.2.1.03,7]nonane-9-carboxylate Chemical compound O1C(=O)C2C(C(=O)OC)C3C(O)C1C2C3 GFVQBVDJRHZKPO-UHFFFAOYSA-N 0.000 description 1
- 229940043265 methyl isobutyl ketone Drugs 0.000 description 1
- 229940057867 methyl lactate Drugs 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- PQIOSYKVBBWRRI-UHFFFAOYSA-N methylphosphonyl difluoride Chemical group CP(F)(F)=O PQIOSYKVBBWRRI-UHFFFAOYSA-N 0.000 description 1
- XGEGHDBEHXKFPX-NJFSPNSNSA-N methylurea Chemical compound [14CH3]NC(N)=O XGEGHDBEHXKFPX-NJFSPNSNSA-N 0.000 description 1
- 150000002780 morpholines Chemical class 0.000 description 1
- DAZXVJBJRMWXJP-UHFFFAOYSA-N n,n-dimethylethylamine Chemical compound CCN(C)C DAZXVJBJRMWXJP-UHFFFAOYSA-N 0.000 description 1
- BCVXYGJCDZPKGV-UHFFFAOYSA-N n-(1-adamantyl)acetamide Chemical compound C1C(C2)CC3CC2CC1(NC(=O)C)C3 BCVXYGJCDZPKGV-UHFFFAOYSA-N 0.000 description 1
- QYZFTMMPKCOTAN-UHFFFAOYSA-N n-[2-(2-hydroxyethylamino)ethyl]-2-[[1-[2-(2-hydroxyethylamino)ethylamino]-2-methyl-1-oxopropan-2-yl]diazenyl]-2-methylpropanamide Chemical compound OCCNCCNC(=O)C(C)(C)N=NC(C)(C)C(=O)NCCNCCO QYZFTMMPKCOTAN-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229940017144 n-butyl lactate Drugs 0.000 description 1
- GNVRJGIVDSQCOP-UHFFFAOYSA-N n-ethyl-n-methylethanamine Chemical compound CCN(C)CC GNVRJGIVDSQCOP-UHFFFAOYSA-N 0.000 description 1
- QJQAMHYHNCADNR-UHFFFAOYSA-N n-methylpropanamide Chemical compound CCC(=O)NC QJQAMHYHNCADNR-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- SJWFXCIHNDVPSH-UHFFFAOYSA-N octan-2-ol Chemical compound CCCCCCC(C)O SJWFXCIHNDVPSH-UHFFFAOYSA-N 0.000 description 1
- WYNVIVRXHYGNRT-UHFFFAOYSA-N octane-3,5-diol Chemical compound CCCC(O)CC(O)CC WYNVIVRXHYGNRT-UHFFFAOYSA-N 0.000 description 1
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 1
- 125000005740 oxycarbonyl group Chemical group [*:1]OC([*:2])=O 0.000 description 1
- JYVLIDXNZAXMDK-UHFFFAOYSA-N pentan-2-ol Chemical compound CCCC(C)O JYVLIDXNZAXMDK-UHFFFAOYSA-N 0.000 description 1
- GTCCGKPBSJZVRZ-UHFFFAOYSA-N pentane-2,4-diol Chemical compound CC(O)CC(C)O GTCCGKPBSJZVRZ-UHFFFAOYSA-N 0.000 description 1
- GXOHBWLPQHTYPF-UHFFFAOYSA-N pentyl 2-hydroxypropanoate Chemical compound CCCCCOC(=O)C(C)O GXOHBWLPQHTYPF-UHFFFAOYSA-N 0.000 description 1
- NRGQZFDWLWTMMR-UHFFFAOYSA-N pentyl 4-hydroxypiperidine-1-carboxylate Chemical compound CCCCCOC(=O)N1CCC(O)CC1 NRGQZFDWLWTMMR-UHFFFAOYSA-N 0.000 description 1
- 125000005459 perfluorocyclohexyl group Chemical group 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 125000001484 phenothiazinyl group Chemical class C1(=CC=CC=2SC3=CC=CC=C3NC12)* 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 125000000286 phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004344 phenylpropyl group Chemical group 0.000 description 1
- 150000004714 phosphonium salts Chemical class 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 150000004885 piperazines Chemical class 0.000 description 1
- XUWHAWMETYGRKB-UHFFFAOYSA-N piperidin-2-one Chemical group O=C1CCCCN1 XUWHAWMETYGRKB-UHFFFAOYSA-N 0.000 description 1
- 238000001955 polymer synthesis method Methods 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920000259 polyoxyethylene lauryl ether Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- MKPHNILWOMCVTH-UHFFFAOYSA-N prop-1-en-2-ylcyclopropane Chemical group CC(=C)C1CC1 MKPHNILWOMCVTH-UHFFFAOYSA-N 0.000 description 1
- QLNJFJADRCOGBJ-UHFFFAOYSA-N propionamide Chemical compound CCC(N)=O QLNJFJADRCOGBJ-UHFFFAOYSA-N 0.000 description 1
- 229940080818 propionamide Drugs 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 150000003220 pyrenes Chemical class 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- FFRYUAVNPBUEIC-UHFFFAOYSA-N quinoxalin-2-ol Chemical compound C1=CC=CC2=NC(O)=CN=C21 FFRYUAVNPBUEIC-UHFFFAOYSA-N 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229940081623 rose bengal Drugs 0.000 description 1
- 229930187593 rose bengal Natural products 0.000 description 1
- STRXNPAVPKGJQR-UHFFFAOYSA-N rose bengal A Natural products O1C(=O)C(C(=CC=C2Cl)Cl)=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 STRXNPAVPKGJQR-UHFFFAOYSA-N 0.000 description 1
- IYLGZMTXKJYONK-UHFFFAOYSA-N ruwenine Natural products O1C(=O)C(CC)(O)CC(C)C(C)(OC(C)=O)C(=O)OCC2=CCN3C2C1CC3 IYLGZMTXKJYONK-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- DCKVNWZUADLDEH-UHFFFAOYSA-N sec-butyl acetate Chemical compound CCC(C)OC(C)=O DCKVNWZUADLDEH-UHFFFAOYSA-N 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000019795 sodium metasilicate Nutrition 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- IAHFWCOBPZCAEA-UHFFFAOYSA-N succinonitrile Chemical compound N#CCCC#N IAHFWCOBPZCAEA-UHFFFAOYSA-N 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 125000000565 sulfonamide group Chemical group 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 125000005463 sulfonylimide group Chemical group 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- PWQLFIKTGRINFF-UHFFFAOYSA-N tert-butyl 4-hydroxypiperidine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCC(O)CC1 PWQLFIKTGRINFF-UHFFFAOYSA-N 0.000 description 1
- BRGJIIMZXMWMCC-UHFFFAOYSA-N tetradecan-2-ol Chemical compound CCCCCCCCCCCCC(C)O BRGJIIMZXMWMCC-UHFFFAOYSA-N 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 125000004205 trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- FAYMLNNRGCYLSR-UHFFFAOYSA-M triphenylsulfonium triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F.C1=CC=CC=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 FAYMLNNRGCYLSR-UHFFFAOYSA-M 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- XMUJIPOFTAHSOK-UHFFFAOYSA-N undecan-2-ol Chemical compound CCCCCCCCCC(C)O XMUJIPOFTAHSOK-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical group O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/66—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
- C07C69/73—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F12/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F12/02—Monomers containing only one unsaturated aliphatic radical
- C08F12/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F12/14—Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
- C08F12/22—Oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F12/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F12/02—Monomers containing only one unsaturated aliphatic radical
- C08F12/32—Monomers containing only one unsaturated aliphatic radical containing two or more rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/46—Polymerisation initiated by wave energy or particle radiation
- C08F2/48—Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
- C08F2/50—Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F20/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F20/02—Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
- C08F20/10—Esters
- C08F20/26—Esters containing oxygen in addition to the carboxy oxygen
- C08F20/28—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1804—C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1806—C6-(meth)acrylate, e.g. (cyclo)hexyl (meth)acrylate or phenyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1807—C7-(meth)acrylate, e.g. heptyl (meth)acrylate or benzyl (meth)acrylate
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/0045—Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/0046—Photosensitive materials with perfluoro compounds, e.g. for dry lithography
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/039—Macromolecular compounds which are photodegradable, e.g. positive electron resists
- G03F7/0392—Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
- G03F7/0397—Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/09—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
- G03F7/11—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
- G03F7/2041—Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/06—Systems containing only non-condensed rings with a five-membered ring
- C07C2601/10—Systems containing only non-condensed rings with a five-membered ring the ring being unsaturated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/16—Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/26—Esters containing oxygen in addition to the carboxy oxygen
- C08F220/28—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
- C08F220/281—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing only one oxygen, e.g. furfuryl (meth)acrylate or 2-methoxyethyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/26—Esters containing oxygen in addition to the carboxy oxygen
- C08F220/28—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
- C08F220/282—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing two or more oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/26—Esters containing oxygen in addition to the carboxy oxygen
- C08F220/28—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
- C08F220/283—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing one or more carboxylic moiety in the chain, e.g. acetoacetoxyethyl(meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/38—Esters containing sulfur
- C08F220/382—Esters containing sulfur and containing oxygen, e.g. 2-sulfoethyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F222/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
- C08F222/10—Esters
- C08F222/1006—Esters of polyhydric alcohols or polyhydric phenols
- C08F222/102—Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
Definitions
- the present invention relates to a radiation sensitive resin composition, a resist pattern forming method, a polymer and a compound.
- Chemically amplified radiation-sensitive resin compositions used for microfabrication by lithography are irradiated with far ultraviolet rays such as ArF excimer laser light, electromagnetic waves such as extreme ultraviolet rays (EUV) and X-rays, and charged particle beams such as electron beams.
- far ultraviolet rays such as ArF excimer laser light
- electromagnetic waves such as extreme ultraviolet rays (EUV) and X-rays
- charged particle beams such as electron beams.
- Such a radiation-sensitive resin composition is required to improve lithography performance such as sensitivity and resolution as processing technology becomes finer.
- various structures of acid-dissociable groups possessed by the polymer contained in the radiation-sensitive resin composition have been studied.
- the acid-dissociable group is a hydrocarbon group containing a carbon-carbon double bond.
- JP 2000-128930 A Japanese Patent Laid-Open No. 10-140018 JP-A-6-289615
- the present invention has been made on the basis of the above circumstances, and an object thereof is to provide a radiation-sensitive resin composition excellent in resolution, LWR performance and defect suppression.
- a polymer having a structural unit (hereinafter also referred to as “structural unit (I)”) containing a group represented by the following formula (1) (hereinafter also referred to as “group (I)”) (hereinafter referred to as “[A]”).
- group (I) a group represented by the following formula (1)
- Polymer a group represented by the following formula (1)
- [B] acid generator hereinafter also referred to as“ [B] acid generator ”).
- R 1 is a monovalent organic group having 2 to 30 carbon atoms including at least one selected from the group consisting of O, N and S.
- R 2 includes a double bond.
- R a and R b are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms, * represents the above structure Indicates the site that binds to the other part of the unit.
- Another invention made to solve the above problems is as follows: Forming a resist film; A step of exposing the resist film, and a step of developing the exposed resist film, It is a resist pattern formation method which forms the said resist film with the said radiation sensitive resin composition.
- R 1 is a monovalent organic group having 2 to 30 carbon atoms including at least one selected from the group consisting of O, N and S.
- R 2 includes a double bond.
- An alicyclic hydrocarbon group having 5 to 20 carbon atoms, R a and R b are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms, and Y is polymerizable.
- It is a monovalent group containing a carbon-carbon double bond.
- the “hydrocarbon group” includes a chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group.
- the “hydrocarbon group” may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
- the “chain hydrocarbon group” refers to a hydrocarbon group that does not include a cyclic structure but includes only a chain structure, and includes both a linear hydrocarbon group and a branched hydrocarbon group.
- alicyclic hydrocarbon group refers to a hydrocarbon group that includes only an alicyclic structure as a ring structure and does not include an aromatic ring structure, and includes a monocyclic alicyclic hydrocarbon group and a polycyclic alicyclic group. Includes both hydrocarbon groups.
- Aromatic hydrocarbon group refers to a hydrocarbon group containing an aromatic ring structure as a ring structure. However, it is not necessary to be composed only of an aromatic ring structure, and a part thereof may include a chain structure or an alicyclic structure.
- Organic group refers to a group containing at least one carbon atom.
- a resist pattern with high resolution, low LWR, and few defects can be formed.
- the polymer of this invention can be used suitably as a polymer component of the said radiation sensitive resin composition.
- the compound of the present invention can be suitably used as a raw material monomer for the polymer. Therefore, these can be suitably used in a semiconductor manufacturing process that is expected to be further miniaturized in the future.
- the radiation-sensitive resin composition contains a [A] polymer and a [B] acid generator.
- the radiation-sensitive resin composition may contain a [C] acid diffusion controller, a [D] fluorine atom-containing polymer, and a [E] solvent as suitable components, as long as the effects of the present invention are not impaired.
- other optional components may be contained.
- each component will be described.
- each component will be described.
- the polymer is a polymer having the structural unit (I).
- the said radiation sensitive resin composition is excellent in resolution, LWR performance, and defect inhibitory property because a [A] polymer has structural unit (I).
- the reason why the radiation-sensitive resin composition exhibits the above-described effect by having the above-described configuration is not necessarily clear, but can be inferred as follows, for example. That is, the group (I) in the structural unit (I) of the polymer [A] has at least one atom selected from the group consisting of O, N and S (hereinafter also referred to as “atom such as O”). R 1 group and R 2 group containing a carbon-carbon double bond.
- the acid generator usually has high polarity.
- the polymer is a structural unit (II) containing at least one structure selected from the group consisting of a lactone structure, a cyclic carbonate structure and a sultone structure in addition to the structural unit (I), It may have a structural unit (III) represented, a structural unit (IV) containing a polar group, and the like. [A] The polymer may have one or more of these structural units. Hereinafter, each structural unit will be described.
- the structural unit (I) is a structural unit containing a group represented by the following formula (1).
- R 1 is a monovalent organic group having 2 to 30 carbon atoms and containing at least one selected from the group consisting of O, N and S.
- R 2 is an alicyclic hydrocarbon group having 5 to 20 carbon atoms containing a double bond.
- R 3 and R 4 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms. * Indicates a site that binds to another part in the structural unit.
- Examples of the monovalent organic group having 2 to 30 carbon atoms including at least one selected from the group consisting of O, N and S represented by R 1 include, for example, carbon of a hydrocarbon group having 2 to 20 carbon atoms.
- Examples of the monovalent hydrocarbon group having 2 to 20 carbon atoms include: A chain hydrocarbon group having 2 to 20 carbon atoms such as an alkyl group such as an ethyl group, a propyl group and a butyl group, an alkenyl group such as an ethenyl group and a propenyl group, and an alkynyl group such as an ethynyl group and a propynyl group; An alicyclic hydrocarbon group having 3 to 20 carbon atoms such as a cycloalkyl group such as a cyclopentyl group, a cyclohexyl group, a norbornyl group and an adamantyl group, and a cycloalkenyl group such as a cyclopentenyl group and a norbornenyl group; Examples thereof include aryl groups such as phenyl group, tolyl group and naphthyl group, and aromatic hydrocarbon groups having 6 to 20 carbon atom
- a chain hydrocarbon group and an alicyclic hydrocarbon group are preferable, an alkyl group and a cycloalkyl group are more preferable, and an ethyl group, a 2-propyl group, and a cyclopropyl group are more preferable.
- Examples of the divalent group having at least one selected from the group consisting of O, N and S include, for example, —COO—, —CONR′—, —SO—, —O—, —S—, —CO—. , —NR′—, —CS—, —SO 2 —, —SO 3 — and the like.
- R ′ is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms. Of these, —COO—, —CONR′— and —SO— are preferable, and —COO— is more preferable.
- Examples of the monovalent group having at least one selected from the group consisting of O, N and S include cyano group, hydroxy group, sulfanyl group (—SH), —NR ′′ 2 and the like. Is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms. Of these, a cyano group and a hydroxy group are preferred.
- R 1 is preferably the above group (A) or the above group (B), and is —COO— or —CONR between the carbon and carbon of the alkyl group having 2 to 20 carbon atoms or the cycloalkyl group having 3 to 20 carbon atoms.
- a group (a) containing at least one selected from the group consisting of —COO—, —CONR′— and —SO— between the carbons of the cycloalkyl group is more preferred, and an ethyl group, a 2-propyl group or a cyclopropyl group is more preferable.
- Group carbon A group containing one or two —COO— between the carbon atoms is particularly preferable, and a methoxycarbonylmethyl group, a butyrolactone-yl group, and a di (methoxycarbonyl) methyl group are more particularly preferable.
- R 1 is preferably a group (1-a) represented by the following formula (a).
- R 1 is the group (1-a)
- atoms such as O in the group (I) can be arranged at more appropriate positions.
- the resolution of the radiation-sensitive resin composition can be improved.
- LWR performance and defect suppression can be further improved.
- R 3 and R 4 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms.
- n is 1 or 2.
- the plurality of R 3 and R 4 may be the same or different.
- R 4 and R 5 may be combined with each other to represent a ring structure having 3 to 20 ring members that is composed of L and the carbon atom to which R 4 is bonded.
- L is —COO—, —CONR′— or —SO—.
- R 5 is a monovalent hydrocarbon group having 1 to 20 carbon atoms.
- Examples of the monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 3 and R 4 include, for example, A chain hydrocarbon group such as an alkyl group such as a methyl group, an ethyl group or a propyl group, an alkenyl group such as an ethenyl group or a propenyl group, an alkynyl group such as an ethynyl group or a propynyl group; An alicyclic hydrocarbon group such as a cycloalkyl group such as a cyclopropyl group and a norbornyl group, a cycloalkenyl group such as a cyclopropenyl group and norbornenyl; Examples thereof include aryl groups such as phenyl group, tolyl group and naphthyl group, and aromatic hydrocarbon groups such as aralkyl groups such as benzyl group and phenethyl group.
- a chain hydrocarbon group is preferable, an al
- R 3 and R 4 are preferably a hydrogen atom.
- Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R 5 include the groups exemplified as the monovalent hydrocarbon group having 2 to 20 carbon atoms of R 1 and a methyl group. .
- a chain hydrocarbon group is preferable, an alkyl group is more preferable, a methyl group and an ethyl group are further preferable, and a methyl group is particularly preferable.
- Examples of the ring structure having 3 to 20 ring members constituted by R 4 and R 5 combined with each other and the carbon atom to which R 4 is bonded and L include, for example, Lactone structures such as butyrolactone structure, valerolactone structure, caprolactone structure; Lactam structures such as butyrolactam structure, valerolactam structure, caprolactam structure; Examples thereof include cyclic sulfoxide structures such as an oxothiacyclobutane structure and an oxothiacyclopentane structure. Among these, a lactone structure is preferable and a butyrolactone structure is more preferable.
- L is preferably —COO—.
- N is preferably 1 from the viewpoint of improving the LWR performance and the like of the radiation-sensitive resin composition, and from the viewpoint of the ease of synthesis of the monomer that gives the structural unit (I).
- Examples of the alicyclic hydrocarbon group having 5 to 20 carbon atoms containing a double bond represented by R 2 include a cyclopentenetetrayl group, a cyclohexenetetrayl group, a cycloheptenetetrayl group, and a cyclooctenetetrayl group.
- the number of ring members of the alicyclic hydrocarbon group of R 2 is preferably 5 to 15, more preferably 5 to 10, and still more preferably 5 to 8.
- Examples of the monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R a and R b include those having 1 to 10 carbon atoms among the monovalent hydrocarbon groups represented by R 5 above. Is mentioned. Among these, a chain hydrocarbon group is preferable, an alkyl group is more preferable, and a methyl group is more preferable.
- a hydrogen atom is preferable.
- group (I) examples include groups represented by the following formulas (1-1) to (1-16) (hereinafter also referred to as “groups (I-1) to (I-16)”). Can be mentioned.
- the groups (I-1) to (I-5) are preferable as the group (I).
- the group (I) preferably has acid dissociation properties.
- the group (I) is an acid-dissociable group, the resolution, LWR performance, and defect suppression of the radiation-sensitive resin composition are improved.
- the “acid-dissociable group” refers to a group that replaces a hydrogen atom such as a carboxy group, a phenolic hydroxyl group, or a sulfo group, and that dissociates by the action of an acid.
- R 1 of the group (I) has an atom such as O and has an electron withdrawing property.
- the group (I) since the dissociation property is enhanced by the presence of a carbon-carbon double bond adjacent to the carbon atom that becomes the bonding site of the group (I), the group (I) usually has acid dissociation properties. It becomes.
- the acid dissociable group is considered to have the [B] acid generator closer to each other, so that the dissociability is further enhanced. As a result, the resolution, LWR performance, and defect suppression of the radiation sensitive resin composition are further improved.
- the structural unit (I) is composed of structural units represented by the following formulas (2-1) to (2-3) (hereinafter also referred to as “structural units (I-1) to (I-3)”). At least one selected from the group is preferred.
- Z is a group represented by the above formula (1).
- R 6 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
- R 7 is a hydrogen atom or a methyl group.
- E is a single bond or a divalent linking group.
- Ar 1 is a substituted or unsubstituted arenediyl group having 6 to 30 carbon atoms.
- R 8 is a hydrogen atom or a methyl group.
- R 9 and R 10 are each independently a hydrogen atom, a halogen atom or a monovalent organic group having 1 to 20 carbon atoms.
- R 9 and R 10 may be combined with each other to form a ring structure having 3 to 20 ring members that is configured together with the carbon atom to which they are bonded.
- m is an integer of 1 to 4.
- the plurality of R 9 and R 10 may be the same or different.
- R 11 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
- G is a single bond or a divalent linking group.
- R 11 and G may be combined with each other to form a ring structure with 3 to 20 ring members that is composed of carbon atoms to which they are bonded.
- R 6 is preferably a hydrogen atom or a methyl group, and more preferably a methyl group, from the viewpoint of copolymerization of the monomer that gives the structural unit (I).
- R 7 and R 8 are preferably a hydrogen atom from the viewpoint of the copolymerizability of the monomer that gives the structural unit (I).
- Examples of the divalent linking group represented by E and G include —O—, —COO—, —CONR′—, a divalent organic group, and the like.
- R ′ is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms.
- E is preferably a single bond, —COO— or —CONR′—, and more preferably a single bond.
- G is preferably a single bond or an alkanediyl group, and more preferably a single bond or a methanediyl group.
- Examples of the arenediyl group having 6 to 30 carbon atoms represented by Ar 1 include a benzenediyl group, a naphthalenediyl group, and an anthracenediyl group. Of these, a benzenediyl group is preferred.
- Examples of the substituent for the arenediyl group include a monovalent hydrocarbon group having 1 to 10 carbon atoms, a cyano group, a hydroxy group, and a halogen atom.
- Examples of the halogen atom represented by R 9 and R 10 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
- Examples of the monovalent organic group having 1 to 20 carbon atoms represented by R 9 and R 10 include, for example, a monovalent hydrocarbon group having 1 to 20 carbon atoms and a monovalent oxycarbonated carbon having 1 to 20 carbon atoms. Examples thereof include a hydrogen group, a carbonyloxy hydrocarbon group having 2 to 20 carbon atoms, an acyl group having 2 to 20 carbon atoms, a cyano group, and a carboxy group.
- a monovalent hydrocarbon group having 1 to 20 carbon atoms is preferable, a monovalent chain hydrocarbon group having 1 to 10 carbon atoms is more preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable.
- a methyl group is particularly preferred.
- the ring structure having 3 to 20 ring members constituted by combining two or more of these groups together include, for example, a cyclopropane structure, a cyclobutane structure, a cyclopentane structure, a cyclohexane structure, a norbornane structure, an adamantane structure, and the like. Examples include alicyclic structures.
- R 9 and R 10 a hydrogen atom, preferably a methyl group, and more preferably a hydrogen atom.
- M is preferably 1 or 2, and more preferably 1.
- Examples of the monovalent organic group having 1 to 20 carbon atoms represented by R 11 include the same groups as the monovalent organic groups exemplified as R 9 and R 10 above. Among these, a monovalent hydrocarbon group having 1 to 20 carbon atoms is preferable, a monovalent chain hydrocarbon group having 1 to 10 carbon atoms is more preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable. A methyl group and an ethyl group are particularly preferable.
- R 11 is preferably a hydrogen atom, a methyl group, or an ethyl group, and more preferably a methyl group or an ethyl group.
- Examples of the ring structure having 3 to 20 ring members composed of the carbon atoms to which R 11 and G are combined and bonded to each other include alicyclic rings such as a cyclopropane structure, a cyclobutane structure, a cyclopentane structure, and a cyclohexane structure.
- Structure Aliphatic heterocyclic structures such as an oxacyclopentane structure, an azacyclopentane structure, and a thiacyclopentane structure are exemplified. Among these, an alicyclic structure is preferable, and a cyclopentane structure and a cyclohexane structure are more preferable.
- Examples of the structural unit (I-1) include a structural unit represented by the following formula (2-1-1) or (2-1-2), and the structural unit (I-2)
- the structural units represented by (2-2-1) to (2-2-3) are represented by the following formulas (2-3-1) to (2-3-3) as the structural unit (I-3). ) And the like.
- Z has the same meaning as the above formulas (2-1) to (2-3).
- the structural unit (I) is preferably the structural unit (I-1), more preferably the structural unit represented by the above formula (2-1-1).
- the content rate of structural unit (I) 5 mol% is preferable with respect to all the structural units which comprise a [A] polymer, 30 mol% is more preferable, 50 mol% is further more preferable, 75 mol % Is particularly preferred.
- 100 mol% is preferable, 95 mol% is more preferable, 90 mol% is further more preferable, 85 mol% is especially preferable.
- the content ratio of the structural unit (I) is 100 mol%, and the [A] polymer is a homopolymer having the structural unit (I), so that the polymer has physical properties resulting from having a plurality of types of structural units.
- the deterioration of the performance of the radiation sensitive resin composition due to variation can be eliminated, and the resolution, LWR performance, and defect suppression can be further improved.
- Examples of the monomer that gives the structural unit (I) include a compound represented by the following formula (i) (hereinafter also referred to as “compound (i)”).
- R 1 is a C 2-30 monovalent organic group containing at least one selected from the group consisting of O, N and S.
- R 2 is an alicyclic hydrocarbon group having 5 to 20 carbon atoms containing a double bond.
- R a and R b are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms.
- Y is a monovalent group containing a polymerizable carbon-carbon double bond.
- Examples of Y in the compound (i) include groups represented by the following formulas (y-1) to (y-3).
- * represents a bonding site to the carbon atom to which R 1 in the above formula (i) is bonded.
- R 6 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
- R 7 is a hydrogen atom or a methyl group.
- E is a single bond or a divalent linking group.
- Ar 1 is a substituted or unsubstituted arenediyl group having 6 to 30 carbon atoms.
- R 8 is a hydrogen atom or a methyl group.
- R 9 and R 10 are each independently a hydrogen atom, a halogen atom or a monovalent organic group having 1 to 20 carbon atoms. Two or more of one or more of R 9 and R 10 may be combined with each other to form a ring structure having 3 to 20 ring members that is configured together with the carbon atom to which they are bonded. m is an integer of 1 to 4. When m is 2 or more, the plurality of R 9 and R 10 may be the same or different.
- R 11 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
- G is a single bond or a divalent linking group. R 11 and G may be combined with each other to form a ring structure with 3 to 20 ring members that is composed of carbon atoms to which they are bonded.
- Y is preferably a group represented by the above formula (y-1).
- Examples of the compound (i) include compounds represented by the following formulas (i1) to (i16).
- each R 6 is independently a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
- R 7 is each independently a hydrogen atom or a methyl group.
- R 8 is each independently a hydrogen atom or a methyl group.
- the compound (i) is, for example, a compound (i ′) in which Y in the above formula (i) is Y′COO (Y ′ is a monovalent group containing a polymerizable carbon-carbon double bond).
- Y in the above formula (i) is Y′COO
- Y ′ is a monovalent group containing a polymerizable carbon-carbon double bond.
- R 1 is a monovalent organic group having 2 to 30 carbon atoms and containing at least one selected from the group consisting of O, N and S.
- R 2 is an alicyclic hydrocarbon group having 5 to 20 carbon atoms containing a double bond.
- R a and R b are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms.
- X is a halogen atom.
- G is a halogen atom, a hydroxy group or —OCOR ′′.
- R ′′ is a monovalent hydrocarbon group.
- Y ′ is a monovalent group containing a polymerizable carbon-carbon double bond.
- a hydroxy compound represented by the above formula (ib) is obtained by reacting in a solvent such as This hydroxy compound and a compound represented by Y′COG (G is a halogen atom, a hydroxy group or —OCOR ′′) are mixed with a base such as triethylamine or 1,4-diazabicyclo [2.2.2] octane.
- a solvent such as acetonitrile, etc.
- the compound (i ′) obtained is purified by a method such as column chromatography, recrystallization, distillation, etc. Can be separated.
- the halogen atom represented by X is preferably a chlorine atom or a bromine atom.
- the halogen atom represented by G is preferably a chlorine atom or a bromine atom, and more preferably a chlorine atom.
- the structural unit (II) is a structural unit including at least one structure selected from the group consisting of a lactone structure, a cyclic carbonate structure, and a sultone structure.
- the solubility of the polymer can be appropriately adjusted by having the structural unit (II).
- substrate etc. of the resist pattern formed from the said radiation sensitive resin composition can be improved.
- the LWR performance and EL performance of the radiation sensitive resin composition can be improved.
- the lactone structure refers to a structure having one ring (lactone ring) including a group represented by —O—C (O) —.
- the cyclic carbonate structure refers to a structure having one ring (cyclic carbonate ring) containing a group represented by —O—C (O) —O—.
- the sultone structure refers to a structure having one ring (sultone ring) including a group represented by —O—S (O) 2 —.
- Examples of the structural unit (II) include a structural unit represented by the following formula (3).
- R ⁇ 12 > is a hydrogen atom, a fluorine atom, a methyl group, or a trifluoromethyl group.
- R 13 is a single bond or a divalent linking group.
- R 14 is a monovalent group containing a lactone structure, a monovalent group containing a cyclic carbonate structure, or a monovalent group containing a sultone structure.
- R 12 is preferably a hydrogen atom or a methyl group, and more preferably a methyl group, from the viewpoint of copolymerization of the monomer that gives the structural unit (II).
- Examples of the divalent linking group represented by R 13 include, for example, a divalent linear or branched hydrocarbon group having 1 to 20 carbon atoms, one or more of these hydrocarbon groups, and —CO—, And groups composed of at least one group selected from the group consisting of —O—, —NH—, and —S—.
- Examples of the monovalent group containing a lactone structure represented by R 14 , the monovalent group containing a cyclic carbonate structure, and the monovalent group containing a sultone structure include the following formulas (g-1) to (g- 11) etc. are mentioned.
- R L1 is an oxygen atom or a methylene group.
- R L2 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
- n L1 is 0 or 1.
- n L2 is an integer of 0 to 3.
- n C1 is an integer of 0-2.
- n C2 to n C5 are each independently an integer of 0 to 2.
- R S1 is an oxygen atom or a methylene group.
- R S2 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
- n S1 is 0 or 1.
- n S2 is an integer of 0 to 3.
- * represents a site that binds to R 4 in the above formula (3).
- R 14 is (g-1), (g-3), (g-7) from the viewpoint of improving the resolution, LWR performance and defect suppression of the radiation-sensitive resin composition.
- (g-9) are preferred, groups represented by (g-1) and (g-7) are more preferred, and groups represented by (g-1) are more preferred.
- R ⁇ L1> and R ⁇ S1> a methylene group is preferable.
- R L2 and R S2 a hydrogen atom is preferable.
- nL1 and nS1 0 is preferable.
- As said nL2 and nS2 1 or 2 is preferable and 1 is more preferable.
- the group that replaces the hydrogen atom of the norbornane ring of the groups represented by (g-1) and (g-7) is preferably a cyano group, a trifluoromethyl group, or a methoxycarbonyl group, and more preferably a cyano group.
- Examples of the structural unit (II) include a structural unit represented by the following formula.
- R 12 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
- the content ratio of the structural unit (II) is preferably 0 to 95 mol%, more preferably 0 to 50 mol%, further preferably 0 to 25 mol%, and particularly preferably 0 mol%.
- the structural unit (III) is a structural unit represented by the following formula (4).
- the polymer [A] can further have a structural unit (III) having an acid-dissociable group, thereby adjusting the solubility in the developer to an appropriate level.
- the dissolution contrast by the radiation sensitive resin composition can be improved, and the resolution, LWR performance, and defect suppression can be combined at a higher level.
- R 15 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
- R 16 is a monovalent chain hydrocarbon group having 1 to 10 carbon atoms.
- R 17 and R 18 are each independently a monovalent chain hydrocarbon group having 1 to 10 carbon atoms or a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, or these groups are It represents an alicyclic structure having 3 to 20 ring members that is formed together with the carbon atoms to which they are bonded together.
- R 15 is preferably a hydrogen atom or a methyl group, more preferably a methyl group, from the viewpoint of copolymerization of the monomer that gives the structural unit (III).
- Examples of the monovalent chain hydrocarbon group having 1 to 10 carbon atoms represented by R 16 , R 17 and R 18 include, for example, Saturated hydrocarbon groups such as methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, and t-butyl; Examples thereof include unsaturated hydrocarbon groups such as ethenyl group, propenyl group, butenyl group, ethynyl group and propynyl group.
- Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms represented by the above R 17 and R 18 include: Saturated monocyclic hydrocarbon groups such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cyclopentyl group, cyclooctyl group, cyclodecyl group, cyclododecyl group; Unsaturated monocyclic hydrocarbon groups such as cyclopropenyl group, cyclobutenyl group, cyclopentenyl group, cyclohexenyl group, cyclooctenyl group, cyclodecenyl group; Saturated polycyclic hydrocarbon groups such as bicyclo [2.2.1] heptanyl group, bicyclo [2.2.2] octanyl group, tricyclo [3.3.1.1 3,7 ] decanyl group; And unsaturated polycyclic hydrocarbon groups such as a bicycl
- Examples of the alicyclic structure having 3 to 20 ring members constituted by the carbon atoms to which these groups are combined and bonded to each other include monocyclic rings such as a cyclopropane structure, a cyclobutane structure, a cyclopentane structure, and a cyclohexane structure.
- structural unit (III) examples include structural units represented by the following formulas (4-1) to (4-4) (hereinafter also referred to as “structural units (III-1) to (III-4)”). Etc.
- R 15 , R 16 , R 17 and R 18 are as defined in the above formula (4).
- n p is an integer of 1 to 4.
- np 1, 2 or 4 is preferable and 1 is more preferable.
- Examples of the structural units (III-1) to (III-4) include structural units represented by the following formulas.
- R 15 has the same meaning as the above formula (4).
- the structural unit (III) the structural unit (III-1) and the structural unit (III-2) are preferable from the viewpoint of further improving the resolution, LWR performance, and defect suppression of the radiation-sensitive resin composition.
- the structural unit (III-2) is more preferable, and the structural unit derived from 1-methyl-1-cyclopentyl (meth) acrylate is more preferable.
- the content ratio of the structural unit (III) is preferably 0 mol% to 80 mol%, more preferably 0 mol% to 60 mol%, still more preferably 0 mol% to 30 mol%, and particularly preferably 0 mol%.
- the structural unit (IV) is a structural unit containing a polar group (except for those corresponding to the structural unit (I)). [A] Since the polymer further has the structural unit (IV), the solubility of the [A] polymer can be adjusted appropriately, so that the dissolution contrast can be improved. As a result, the radiation-sensitive resin composition The resolution of the object, the LWR performance, and the defect suppression can be combined at a higher level.
- Examples of the polar group include a hydroxy group, a carboxy group, a cyano group, a carbonyl group, a nitro group, and a sulfonamide group.
- a hydroxy group, a carboxy group, and a carbonyl group are preferable, and a hydroxy group is more preferable.
- Examples of the structural unit (IV) include a structural unit represented by the following formula.
- R 19 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
- a structural unit containing a hydroxy group is preferred, a structural unit having a hydroxy group and an adamantane skeleton is more preferred, and a structural unit derived from 3-hydroxy-1-adamantyl (meth) acrylate is more preferred.
- the content of the structural unit (IV) is preferably 0 mol% to 30 mol%, more preferably 0 mol% to 20 mol%, still more preferably 0 mol% to 15 mol%.
- the polymer may have other structural units other than the structural units (I) to (IV).
- the other structural unit include a structural unit containing a non-acid dissociable alicyclic hydrocarbon group.
- a content rate of the said other structural unit 20 mol% or less is preferable and 10 mol% or less is more preferable.
- the radiation sensitive resin composition may contain one or more [A] polymers.
- [A] The content of the polymer is preferably 70% by mass or more, more preferably 80% by mass or more, and still more preferably 85% by mass or more with respect to the total solid content of the radiation-sensitive resin composition.
- the polymer can be produced, for example, by polymerizing a monomer corresponding to each predetermined structural unit in a suitable polymerization reaction solvent using a polymerization initiator such as a radical polymerization initiator.
- a polymerization initiator such as a radical polymerization initiator.
- a method of dropping a solution containing a monomer and a radical polymerization initiator into a polymerization reaction solvent or a solution containing a monomer to cause a polymerization reaction, a solution containing the monomer, and a radical polymerization initiator A solution containing a polymerization reaction solvent or a monomer-containing solution by dropping each of the contained solutions separately, a plurality of types of solutions containing each monomer, and a solution containing a radical polymerization initiator It is preferable to synthesize
- Examples of the polymerization reaction solvent include alkanes such as n-pentane, n-hexane, n-heptane, n-octane, n-nonane and n-decane; Cycloalkanes such as cyclohexane, cycloheptane, cyclooctane, decalin, norbornane; Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene; Halogenated hydrocarbons such as chlorobutanes, bromohexanes, dichloroethanes, hexamethylene dibromide, chlorobenzene; Saturated carboxylic acid esters such as ethyl acetate, n-butyl acetate, i-butyl acetate and methyl propionate; Ketones such as acetone, 2-butanone, 4-methyl-2-pentan
- the reaction temperature in the polymerization may be appropriately determined according to the type of radical initiator, but is usually 40 ° C to 150 ° C, preferably 50 ° C to 120 ° C.
- the reaction time is usually 1 hour to 48 hours, preferably 1 hour to 24 hours.
- radical polymerization initiator examples include azobisisobutyronitrile (AIBN), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis (2-cyclopropylpropylene). Pionitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2-methylpropionitrile) and the like. These radical polymerization initiators may be used alone or in combination of two or more.
- the polymer obtained by the polymerization reaction is preferably recovered by a reprecipitation method. That is, after completion of the polymerization reaction, the polymer is recovered as a powder by introducing the polymerization solution into a reprecipitation solvent.
- a reprecipitation solvent alcohols, alkanes and the like can be used singly or in combination of two or more.
- the polymer can be recovered by removing low-molecular components such as monomers and oligomers by a liquid separation operation, a column operation, an ultrafiltration operation, or the like.
- the weight average molecular weight (Mw) of the polymer by gel permeation chromatography (GPC) is preferably 1,000 to 100,000, more preferably 1,000 to 30,000, and 2,000 to 20 Is more preferable, and 3,000 to 10,000 is particularly preferable.
- Mw weight average molecular weight
- the ratio (Mw / Mn) between the Mw and the number average molecular weight (Mn) of the polymer is usually 1 to 5, preferably 1 to 3, more preferably 1 to 2, more preferably 1.2 to 1. .7 is more preferred.
- Mw and Mn are GPC columns (two "G2000HXL”, one "G3000HXL”, one "G4000HXL” manufactured by Tosoh Corporation), a flow rate of 1.0 mL / min, an elution solvent: tetrahydrofuran, A value measured by GPC using a differential refractometer as a detector and using a monodisperse polystyrene as a standard under the analysis conditions of sample concentration: 1.0 mass%, sample injection amount: 100 ⁇ L, column temperature: 40 ° C.
- the acid generator is a compound that generates an acid upon irradiation with exposure light.
- the acid-dissociable group in the [A] polymer is dissociated by the action of the acid to generate a polar group such as a carboxy group, and as a result, the solubility of the [A] polymer in the developer changes.
- the acid generator may be contained in the form of a compound as described later (hereinafter also referred to as “[B] acid generator” as appropriate), or in a form incorporated as part of a polymer. Both forms are acceptable.
- Examples of the acid generator include onium salt compounds, N-sulfonyloxyimide compounds, halogen-containing compounds, diazoketone compounds, and the like.
- onium salt compounds examples include sulfonium salts, tetrahydrothiophenium salts, iodonium salts, phosphonium salts, diazonium salts, pyridinium salts, and the like.
- sulfonium salt examples include triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium nonafluoro-n-butanesulfonate, triphenylsulfonium perfluoro-n-octanesulfonate, triphenylsulfonium 2-bicyclo [2.2.
- hept-2-yl-1,1,2,2-tetrafluoroethanesulfonate triphenylsulfonium 2-bicyclo [2.2.1] hept-2-yl-1,1-difluoroethanesulfonate, tri Phenylsulfonium adamantane-1-yloxycarbonyldifluoromethanesulfonate, triphenylsulfonium 2- (adamantan-1-yl) -1,1-difluoroethane-1-sulfonate, triphenylsulfonium 6- (adap N-yl-1-ylcarbonyloxy) -1,1,2,2-tetrafluorohexane-1-sulfonate, 4-cyclohexylphenyldiphenylsulfonium trifluoromethanesulfonate, 4-cyclohexylphenyldiphenylsulfonium nonafluor
- tetrahydrothiophenium salt examples include 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium trifluoromethanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophene.
- iodonium salt examples include diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoro-n-butanesulfonate, diphenyliodonium perfluoro-n-octanesulfonate, and bis (4-t-butylphenyl) iodonium trifluoromethanesulfonate.
- onium salts are preferred, sulfonium salts and tetrahydrothiophenium salts are more preferred, sulfonium salts are more preferred, triphenylsulfonium salts are particularly preferred, and triphenylsulfonium adamantane-1-yloxycarbonyldifluoromethanesulfonate.
- Triphenylsulfonium 2- (adamantan-1-yl) -1,1-difluoroethane-1-sulfonate
- triphenylsulfonium 6- (adamantyl-1-ylcarbonyloxy) -1,1,2,2-tetrafluorohexane -1-Sulphonate is more particularly preferred.
- Acid generators may be used alone or in combination of two or more.
- the content when the acid generator is a [B] acid generator is from the viewpoint of improving the sensitivity and developability of the radiation-sensitive resin composition with respect to 100 parts by mass of the [A] polymer. 0.1 to 30 parts by mass is preferable, 0.5 to 20 parts by mass is more preferable, 1 to 15 parts by mass is further preferable, and 3 to 15 parts by mass is more preferable. Particularly preferred.
- the content of the acid generator is less than 0.1 parts by mass, the sensitivity tends to be insufficient. On the other hand, if it exceeds 30 parts by mass, the transparency of the resist film to the radiation may decrease.
- the acid diffusion controller is a component that controls the diffusion phenomenon of the acid generated from the [B] acid generator upon exposure in the resist film and suppresses an undesirable chemical reaction in the unexposed area.
- the radiation-sensitive resin composition contains a [C] acid diffusion controller, the resolution of the resulting radiation-sensitive resin composition is improved, storage stability is improved, and further, from exposure to development processing.
- a change in the line width of the resist pattern due to fluctuations in the holding time until the time can be suppressed, and a radiation-sensitive resin composition having extremely excellent process stability can be obtained.
- [C] acid diffusion controller in the form of a free compound (hereinafter also referred to as “[C] acid diffusion controller” as appropriate), or in a form incorporated as part of the polymer, Both of these forms may be used.
- Examples of the acid diffusion controller include amine compounds, amide group-containing compounds, urea compounds, nitrogen-containing heterocyclic compounds, and the like.
- Examples of the amine compound include mono (cyclo) alkylamines; di (cyclo) alkylamines; tri (cyclo) alkylamines; substituted alkylanilines such as 2,6-diisopropylaniline or derivatives thereof; ethylenediamine, N, N , N ′, N′-tetramethylethylenediamine, tetramethylenediamine, hexamethylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 4,4′-diaminobenzophenone, 4,4′-diaminodiphenylamine 2,2-bis (4-aminophenyl) propane, 2- (3-aminophenyl) -2- (4-aminophenyl) propane, 2- (4-aminophenyl) -2- (3-hydroxyphenyl) Propane, 2- (4-aminophenyl) -2- (4 Hydroxyphenyl)
- amide group-containing compound examples include Nt-butoxycarbonyl group-containing amino compounds such as t-butyl-4-hydroxy-1-piperidinecarboxylate, and t-amyl-4-hydroxy-1-piperidinecarboxylate.
- Nt-amyloxycarbonyl group-containing amino compound formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, benzamide, pyrrolidone, N-methyl
- Examples include pyrrolidone, N-acetyl-1-adamantylamine, and isocyanuric acid tris (2-hydroxyethyl).
- urea compounds include urea, methylurea, 1,1-dimethylurea, 1,3-dimethylurea, 1,1,3,3-tetramethylurea, 1,3-diphenylurea, tri-n-butylthiourea, etc. Is mentioned.
- nitrogen-containing heterocyclic compound examples include imidazoles; pyridines; piperazines; pyrazine, pyrazole, pyridazine, quinosaline, purine, pyrrolidine, piperidine, 4-hydroxy-N-amyloxycarbonylpiperidine, piperidineethanol, 3-piperidino- 1,2-propanediol; morpholine, 4-methylmorpholine, 1- (4-morpholinyl) ethanol, 4-acetylmorpholine, N- (2-cyclohexylcarbonyloxyethyl) morpholine, 3- (N-morpholino) -1, Morpholines such as 2-propanediol; 1,4-dimethylpiperazine, 1,4-diazabicyclo [2.2.2] octane and the like.
- amine compounds and amide group-containing compounds are preferable, substituted alkylanilines and Nt-amyloxycarbonyl group-containing compounds are more preferable, t-amyl-4-hydroxy-1-piperidinecarboxylate, 2,6 -Diisopropylaniline is more preferred.
- a photodegradable base that generates a weak acid by exposure can also be used.
- the photodegradable base exhibits an acid capturing function by an anion in an unexposed area and functions as a quencher, and captures an acid diffused from the exposed area.
- an acid is generated and the anion disappears, so that the acid capturing function is lost. That is, since it functions as a quencher only in the unexposed area, the contrast of the dissociation reaction of the acid dissociable group is improved, and as a result, the lithography performance such as the resolution of the radiation sensitive resin composition can be further improved.
- Examples of the photodegradable base include an onium salt compound that decomposes upon exposure and loses acid diffusion controllability.
- Examples of the onium salt compound include a sulfonium salt compound represented by the following formula (C1) and an iodonium salt compound represented by the following formula (C2).
- R 20 ⁇ R 24 are each independently a hydrogen atom, an alkyl group, an alkoxy group, hydroxy group, a halogen atom or -SO 2 -R A.
- R A is an alkyl group, a cycloalkyl group, an alkoxy group or an aryl group.
- Q ⁇ and E ⁇ are OH ⁇ , R B —COO ⁇ , R C —SO 2 —N — —R B , R B —SO 3 —, or an anion represented by the following formula (C3).
- R B is a linear or branched alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an aralkyl group having 7 to 30 carbon atoms. Some or all of the hydrogen atoms of the alkyl group, cycloalkyl group, aryl group and aralkyl group may be substituted.
- R C is a linear or branched alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms. Some or all of the hydrogen atoms of the alkyl group and cycloalkyl group may be substituted with fluorine atoms. However, when Q ⁇ is R B —SO 3 — , a fluorine atom is not bonded to a carbon atom to which SO 3 — is bonded.
- R 25 represents a linear or branched alkyl group having 1 to 12 carbon atoms in which part or all of the hydrogen atoms may be substituted with fluorine atoms, or 1 to 12 carbon atoms. These are linear or branched alkoxy groups. u is an integer of 0-2.
- the R 20 ⁇ R 24 in the formula (C1) and (C2), hydrogen atom, -SO 2 -R A is preferred.
- a cycloalkyl group is preferable and a cyclohexyl group is more preferable.
- the alkyl group represented by R B for example a methyl group, an ethyl group, a propyl group, i- propyl group, butyl group, i- butyl group, a t- butyl group and the like, and one hydrogen atom of these groups Examples include groups in which part or all are substituted.
- Examples of the cycloalkyl group represented by R B include, for example, a cyclopentyl group, a cyclohexyl group, a norbornyl group, a tricyclodecanyl group, a tetracyclododecanyl group, an adamantyl group, etc., and a part of hydrogen atoms of these groups or Examples include groups in which all are substituted.
- aryl group represented by R B for example, a phenyl group, a naphthyl group, anthranyl group, and some or all of the hydrogen atoms of these groups and the like groups substituted.
- Examples of the aralkyl group represented by R B include a benzyl group, a phenylethyl group, a phenylpropyl group, and a group in which some or all of the hydrogen atoms of these groups are substituted.
- alkyl group, cycloalkyl group, aryl group, and alkaryl group have include a hydroxy group, a halogen atom, an alkoxy group, a lactone group, and an alkylcarbonyl group.
- Examples of the alkyl group represented by R C include a methyl group, an ethyl group, a propyl group, and a butyl group.
- Examples of the cycloalkyl group represented by R C include a cyclopentyl group, a cyclohexyl group, a norbornyl group, an adamantyl group, and the like.
- Examples of the photodegradable base include compounds represented by the following formulas.
- triphenylsulfonium salicylate and triphenylsulfonium camphorsulfonate are preferable, and triphenylsulfonium camphorsulfonate is more preferable.
- the content of the acid diffusion controller is preferably 10 parts by mass or less with respect to 100 parts by mass of the polymer [A] when the [C] acid diffusion controller is a [C] acid diffusion controller. 0.1 parts by mass to 7 parts by mass is more preferable, and 0.3 parts by mass to 5 parts by mass is even more preferable. [C] If the content of the acid diffusion controller exceeds the above upper limit, the sensitivity of the resulting radiation-sensitive resin composition may decrease. [C] The acid diffusion controller may be used alone or in combination of two or more.
- the radiation-sensitive resin composition may further contain, for example, [D] a fluorine atom-containing polymer (excluding those corresponding to the [A] polymer) when used for immersion exposure. .
- the radiation-sensitive resin composition contains [D] a fluorine atom-containing polymer, so that when the resist film is formed, the distribution of the resist is changed depending on the oil-repellent characteristics of the [D] fluorine atom-containing polymer. Since there is a tendency to be unevenly distributed in the surface layer of the film, elution to the immersion medium such as the [B] acid generator and the [C] acid diffusion controller in the resist film can be suppressed during the immersion exposure. Further, since the radiation sensitive resin composition contains [D] fluorine atom-containing polymer, the receding contact angle of the resist film surface to be formed is increased, so that immersion exposure can be suitably performed, and high-speed scanning is performed. Is possible.
- the fluorine atom content of the fluorine atom-containing polymer is preferably higher than the fluorine atom content of the [A] polymer. [D] Since the fluorine atom-containing polymer has a higher fluorine atom content than the [A] polymer, it can be effectively unevenly distributed in the surface layer of the resist film on which the [D] fluorine atom-containing polymer is formed. As a result, the above-described effects at the time of immersion exposure can be further exhibited. [D] The fluorine atom content of the fluorine atom-containing polymer is preferably 1% by mass or more, more preferably 3% by mass or more, and further preferably 5% by mass or more. The fluorine atom content (% by mass) of the polymer can be calculated from the result of obtaining the structure of the polymer by 13 C-NMR.
- the fluorine atom-containing polymer can be usually formed by polymerizing a polymerizable compound containing at least one monomer containing a fluorine atom in its structure.
- the fluorine atom-containing polymer preferably has the following structural unit (FI) as the structural unit containing a fluorine atom.
- the structural unit (FI) is a structural unit represented by the following formula (F1).
- R 26 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
- R 27 is an alkyl group having 1 to 6 carbon atoms or a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms having at least one fluorine atom, or a derivative thereof.
- A is a single bond or a divalent linking group.
- Examples of the alkyl group having 1 to 6 carbon atoms and having at least one fluorine atom represented by R 27 include, for example, a fluoromethyl group, a difluoromethyl group, a perfluoromethyl group, a difluoroethyl group, a trifluoroethyl group, Examples thereof include a perfluoroethyl group, a trifluoro-n-propyl group, a pentafluoro-n-propyl group, a hexafluoro-i-propyl group, a difluoro-sec-butyl group, and a trifluoro-sec-butyl group.
- Examples of the monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms and having at least one fluorine atom represented by R 27 include a fluorocyclopropyl group, a fluorocyclobutyl group, a fluorocyclopentyl group, a difluoro Examples include a cyclopentyl group, a tetrafluorocyclopentyl group, a perfluorocyclopentyl group, a difluorocyclohexyl group, a perfluorocyclohexyl group, and the like.
- the hydrogen atom or fluorine atom of the alkyl group or monovalent alicyclic hydrocarbon group is alkali-dissociated. And a group substituted with a group containing a functional group.
- the “alkali dissociable group” is a group that replaces a hydrogen atom of a polar group such as a hydroxy group or a carboxy group, for example, in the presence of an alkali (for example, 2.38 mass% tetramethylammonium hydroxy at 23 ° C. Group that dissociates in aqueous solution).
- Examples of the group containing an alkali dissociable group include —COOR ′ (R ′ is an alkyl group having 1 to 6 carbon atoms).
- Examples of the divalent linking group represented by A include alkanediyl groups such as oxygen atom, sulfur atom, carbonyloxy group, oxycarbonyl group, amide group, sulfonylimide group, urethane group, and methanediyl group, and cyclopentane.
- a divalent alicyclic hydrocarbon group such as a diyl group, a divalent aromatic hydrocarbon group such as a benzenediyl group or a naphthalenediyl group, a divalent group containing a lactone structure such as a norbornanelactone diyl group, or the like And a combination of one or more of the above.
- Preferred monomers that give the structural unit (FI) include trifluoromethyl (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, perfluoroethyl (meth) acrylic.
- the content ratio of the structural unit (FI) is preferably 5 mol% to 100 mol%, more preferably 10 mol% to 80 mol%, based on all the structural units constituting the [D] fluorine atom-containing polymer. It is preferably 15 mol% to 60 mol%, more preferably 20 mol% to 40 mol%.
- the receding contact angle of the resist film surface formed from the radiation-sensitive resin composition may be less than 70 °. May cause inconveniences such as inability to suppress elution of acid generators.
- the fluorine atom-containing polymer may have a structural unit other than the structural unit (FI).
- the fluorine atom-containing compound may have one or more of these structural units.
- a structural unit containing at least one selected from the group consisting of a structural unit having an acid dissociable group, a lactone structure, a cyclic carbonate structure, and a sultone structure in order to control the dissolution rate in a developer for example, a structural unit containing at least one selected from the group consisting of a structural unit having an acid dissociable group, a lactone structure, a cyclic carbonate structure, and a sultone structure in order to control the dissolution rate in a developer.
- One or more kinds of structural units derived from an aromatic compound can be contained in order to suppress scattering of light due to reflection from the substrate, structural units containing polar groups, alicyclic groups, and the like.
- Examples of the structural unit having an acid dissociable group include the same structural unit as the structural unit (III) of the polymer [A].
- Examples of the structural unit containing at least one structure selected from the group consisting of the lactone structure, the cyclic carbonate structure, and the sultone structure include the same structural units as the structural unit (II) of the polymer [A].
- the content ratio of the other structural units is usually 80 mol% or less, preferably 75 mol% or less.
- the content of the fluorine atom-containing polymer is preferably 0.1 to 30 parts by mass, more preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the [A] polymer. 1 to 10 parts by mass is more preferable.
- a fluorine atom containing polymer is compoundable using the method similar to the synthesis method of the above-mentioned [A] polymer.
- the Mw of the fluorine atom-containing polymer is preferably 1,000 to 50,000, more preferably 3,000 to 30,000, and still more preferably 5,000 to 20,000.
- Mw of the fluorine atom-containing polymer is less than the lower limit, the formed resist film surface may not be able to obtain a sufficient advancing contact angle.
- Mw exceeds the above upper limit the developability of the resulting radiation-sensitive resin composition tends to decrease.
- the Mw / Mn ratio of the fluorine atom-containing polymer is usually 1 to 3, preferably 1 to 2.5, and more preferably 1 to 2.
- the radiation-sensitive resin composition usually contains an [E] solvent.
- Solvent is at least [A] polymer, [B] acid generator, [C] acid diffusion controller contained as needed, [D] fluorine atom-containing polymer, and other optional components described later If it can melt
- Examples of the solvent include alcohol solvents, ether solvents, ketone solvents, amide solvents, ester solvents, hydrocarbon solvents, and the like.
- an alcohol solvent for example, Methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol, sec-butanol, tert-butanol, n-pentanol, iso-pentanol, 2-methylbutanol, sec-pentanol, tert- Pentanol, 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, 3-heptanol, n-octanol, 2-ethylhexanol, sec-octanol, n- Nonyl alcohol, 2,6-dimethyl-4-heptanol, n-decanol, sec-undecyl alcohol, trimethylnonyl alcohol, sec-tetradecyl alcohol, sec-heptan
- ether solvent for example, Dialiphatic ether solvents such as diethyl ether, dipropyl ether, dibutyl ether; Aromatic ring ether solvents such as anisole and diphenyl ether; Examples thereof include cyclic ether solvents such as tetrahydrofuran and dioxane.
- ketone solvents include: Acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, methyl-n-amyl ketone, ethyl-n-butyl ketone, methyl-n-hexyl ketone, di-iso-butyl ketone Chain ketone solvents such as trimethylnonanone and acetophenone; Cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, methylcyclohexanone; And diketone solvents such as 2,4-pentanedione and acetonylacetone.
- amide solvent examples include Chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropionamide; And cyclic amide solvents such as N-methylpyrrolidone and N, N′-dimethylimidazolidinone.
- ester solvents include: Methyl acetate, ethyl acetate, n-propyl acetate, iso-propyl acetate, n-butyl acetate, iso-butyl acetate, sec-butyl acetate, n-pentyl acetate, sec-pentyl acetate, 3-methoxybutyl acetate, methyl pentyl acetate 2-ethylbutyl acetate, 2-ethylhexyl acetate, benzyl acetate, cyclohexyl acetate, methyl cyclohexyl acetate, n-nonyl acetate, methyl acetoacetate, ethyl acetoacetate, glycol diacetate, methoxytriglycol acetate, ethyl propionate, n propionate -Butyl, iso-amyl propionate, diethyl o
- Carboxylate solvent Acetic acid ethylene glycol monomethyl ether, acetic acid ethylene glycol monoethyl ether, acetic acid diethylene glycol monomethyl ether, acetic acid diethylene glycol monoethyl ether, acetic acid diethylene glycol mono-n-butyl ether, acetic acid propylene glycol monomethyl ether, acetic acid propylene glycol monoethyl ether, acetic acid propylene glycol monopropyl ether
- Carboxylic acid ester solvents of polyhydric alcohol partial ethers such as ether, propylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate; Examples thereof include carbonate solvents such as diethyl carbonate.
- hydrocarbon solvent examples include Aliphatic carbonization such as n-pentane, iso-pentane, n-hexane, iso-hexane, n-heptane, iso-heptane, 2,2,4-trimethylpentane, n-octane, iso-octane, cyclohexane, methylcyclohexane A hydrogen-based solvent; Fragrances such as benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, iso-propylbenzene, diethylbenzene, iso-butylbenzene, triethylbenzene, di-iso-propylbenzene, n-amylnaphthalene Group hydrocarbon solvents and the like.
- Aliphatic carbonization such as n-p
- ester solvents and ketone solvents are preferable, carboxylic acid ester solvents of polyhydric alcohol partial ethers, cyclic ketone solvents are more preferable, propylene glycol monoalkyl ether acetates and cycloalkanones are more preferable, acetic acid Propylene glycol monomethyl ether and cyclohexanone are particularly preferred.
- a solvent can be used individually by 1 type or in mixture of 2 or more types.
- the radiation-sensitive resin composition contains an uneven distribution accelerator, a surfactant, an alicyclic skeleton-containing compound, a sensitizer and the like as other optional components. it can.
- the said radiation sensitive resin composition may contain another arbitrary component individually by 1 type or in mixture of 2 or more types, respectively.
- the uneven distribution accelerator has an effect of segregating the [D] polymer on the resist film surface more efficiently when the radiation-sensitive resin composition contains the [D] polymer.
- this uneven distribution accelerator in the radiation sensitive resin composition, the amount of the [D] polymer added can be reduced as compared with the conventional case. Therefore, it is possible to further suppress the elution of components from the resist film to the immersion liquid without impairing the resolution, LWR performance, and defect suppression, or to perform immersion exposure at a higher speed by high-speed scanning. As a result, it is possible to improve the hydrophobicity of the resist film surface that suppresses immersion-derived defects such as watermark defects.
- Examples of such an uneven distribution promoter include low molecular compounds having a relative dielectric constant of 30 or more and 200 or less and a boiling point at 1 atm of 100 ° C. or more.
- Specific examples of such compounds include lactone compounds, carbonate compounds, nitrile compounds, and polyhydric alcohols.
- lactone compound examples include ⁇ -butyrolactone, valerolactone, mevalonic lactone, and norbornane lactone.
- carbonate compound examples include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, and the like.
- nitrile compound examples include succinonitrile.
- polyhydric alcohol examples include glycerin.
- the content of the uneven distribution accelerator is preferably 10 parts by weight to 500 parts by weight, more preferably 15 parts by weight to 300 parts by weight with respect to 100 parts by weight of the total amount of the polymer in the radiation sensitive resin composition. 20 parts by mass to 200 parts by mass is more preferable, and 25 parts by mass to 100 parts by mass is particularly preferable.
- the surfactant exhibits the effect of improving the coating property, striation, developability and the like of the radiation sensitive resin composition.
- the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol diacrylate.
- Nonionic surfactants such as stearate, commercially available products such as KP341 (Shin-Etsu Chemical Co., Ltd.), Polyflow No. 75, no.
- the alicyclic skeleton-containing compound has an effect of improving the dry etching resistance, pattern shape, adhesion to the substrate, and the like of the radiation-sensitive resin composition.
- Examples of the alicyclic skeleton-containing compound include adamantane derivatives such as 1-adamantanecarboxylic acid, 2-adamantanone, and 1-adamantanecarboxylic acid t-butyl; Deoxycholic acid esters such as t-butyl deoxycholic acid, t-butoxycarbonylmethyl deoxycholic acid, 2-ethoxyethyl deoxycholic acid; Lithocholic acid esters such as tert-butyl lithocholic acid, tert-butoxycarbonylmethyl lithocholic acid, 2-ethoxyethyl lithocholic acid; 3- [2-hydroxy-2,2-bis (trifluoromethyl) ethyl] tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodecane, 2-hydroxy-9-methoxycarbonyl-5-oxo-4-oxa-tricyclo [4.2.1.0 3,7 ] nonane, and the like.
- sensitizer exhibits the effect
- sensitizer examples include carbazoles, acetophenones, benzophenones, naphthalenes, phenols, biacetyl, eosin, rose bengal, pyrenes, anthracenes, phenothiazines, and the like.
- the radiation sensitive resin composition includes, for example, an [A] polymer, a [B] acid generator, an [C] acid diffusion controller, and [D] a fluorine atom-containing heavy agent in a [E] solvent. It can be prepared by mixing the coalesced and other optional components at a predetermined ratio.
- the prepared radiation-sensitive resin composition is preferably filtered and used, for example, with a filter having a pore diameter of 20 nm.
- the solid content concentration of the radiation-sensitive resin composition is preferably 0.1% by mass to 50% by mass, more preferably 0.5% by mass to 30% by mass, and further preferably 1% by mass to 15% by mass. 1% by mass to 10% by mass is particularly preferable.
- the resist pattern forming method of the present invention comprises: A step of forming a resist film (hereinafter also referred to as a “resist film forming step”), A step of exposing the resist film (hereinafter also referred to as “exposure step”), and a step of developing the exposed resist film (hereinafter also referred to as “development step”). With The resist film is formed from the radiation sensitive resin composition.
- resist film forming step A step of forming a resist film
- exposure step A step of exposing the resist film
- development step a step of developing the exposed resist film
- a resist film is formed from the radiation sensitive resin composition.
- a substrate on which the resist film is formed a conventionally known substrate such as a silicon wafer or a wafer coated with aluminum can be used.
- an organic or inorganic antireflection film disclosed in Japanese Patent Publication No. 6-12452 and Japanese Patent Application Laid-Open No. 59-93448 may be formed on the substrate.
- the film thickness of the formed resist film is preferably 10 nm to 1,000 nm, and more preferably 10 nm to 500 nm.
- the solvent in the coating film may be volatilized by pre-baking (PB) as necessary.
- PB temperature is appropriately selected depending on the composition of the radiation sensitive resin composition, but is usually 30 ° C. to 200 ° C., preferably 50 ° C. to 150 ° C.
- the PB time is usually 5 seconds to 600 seconds, and preferably 10 seconds to 300 seconds.
- a protective film disclosed in, for example, Japanese Patent Laid-Open No. 5-188598 can be provided on the resist film.
- a liquid immersion protective film disclosed in, for example, Japanese Patent Application Laid-Open No. 2005-352384 can be provided on the resist film.
- an isotrench pattern can be formed by performing reduced projection exposure on a desired region through an isoline pattern mask. Moreover, you may perform exposure twice or more with a desired pattern and a mask pattern. When performing exposure twice or more, it is preferable to perform exposure continuously. In the case of performing multiple exposures, for example, a first reduced projection exposure is performed on a desired area via a line and space pattern mask, and then the second is so that the line intersects the exposed portion where the first exposure has been performed. Reduced projection exposure is performed.
- the first exposure part and the second exposure part are preferably orthogonal.
- the immersion liquid used for exposure examples include water and a fluorine-based inert liquid.
- the immersion liquid is preferably a liquid that is transparent to the exposure wavelength and has a refractive index temperature coefficient that is as small as possible so as to minimize distortion of the optical image projected onto the film.
- excimer laser light wavelength 193 nm
- water it is preferable to use water from the viewpoints of availability and easy handling in addition to the above-described viewpoints.
- an additive that decreases the surface tension of water and increases the surface activity may be added in a small proportion. This additive is preferably one that does not dissolve the resist layer on the wafer and can ignore the influence on the optical coating on the lower surface of the lens.
- the water used is preferably distilled water.
- the radiation used for the exposure is appropriately selected according to the type of the [B] acid generator.
- electromagnetic waves such as ultraviolet rays, far ultraviolet rays, visible rays, X rays, ⁇ rays; electron rays, ⁇ rays And charged particle beams.
- far ultraviolet rays are preferable
- ArF excimer laser light and KrF excimer laser light are more preferable
- ArF excimer laser is more preferable.
- the exposure conditions such as the exposure amount are appropriately selected according to the blending composition of the radiation-sensitive resin composition, the type of additive, and the like.
- the exposure process may be performed a plurality of times, and the same light source or different light sources may be used for the plurality of exposures, but ArF excimer laser light is used for the first exposure. Is preferred.
- PEB post-exposure baking
- the PEB temperature is usually 30 ° C. to 200 ° C., preferably 50 ° C. to 170 ° C., and more preferably 70 ° C. to 120 ° C.
- the PEB time is usually 5 seconds to 600 seconds, and preferably 10 seconds to 300 seconds.
- alkali development either alkali development or organic solvent development may be used.
- an exposed portion is removed by alkali development to form a positive resist pattern
- an unexposed portion is removed by organic solvent development to form a negative resist pattern.
- organic solvent development a resist pattern having a smaller LWR can be formed.
- alkali development for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine , Ethyldimethylamine, triethanolamine, tetramethylammonium hydroxide (TMAH), pyrrole, piperidine, choline, 1,8-diazabicyclo- [5.4.0] -7-undecene, and 1,5-diazabicyclo- [ 4.3.0] -5-nonene and an alkaline aqueous solution in which at least one selected from the group consisting of alkaline compounds is dissolved.
- TMAH tetramethylammonium hydroxide
- the concentration of the alkaline aqueous solution is preferably 10% by mass or less. When the concentration of the alkaline aqueous solution exceeds 10% by mass, the unexposed area may be dissolved in the developer.
- An organic solvent can also be added to the alkaline aqueous solution.
- examples of the developer include one or more of the solvents exemplified as the [E] solvent of the above-described radiation-sensitive resin composition. As content of the organic solvent in a developing solution, 80 mass% or more is preferable, 90 mass% or more is more preferable, 95 mass% or more is further more preferable.
- a surfactant can be added to the developer as necessary.
- a surfactant for example, an ionic or nonionic fluorine-based and / or silicon-based surfactant can be used.
- a developing method for example, a method in which a substrate is immersed in a tank filled with a developer for a certain period of time (dip method), a method in which the developer is raised on the surface of the substrate by surface tension and is left stationary for a certain time (paddle method) ), A method of spraying the developer on the substrate surface (spray method), a method of continuously applying the developer while scanning the developer coating nozzle on the substrate rotating at a constant speed (dynamic dispensing method) Etc.
- a rinse solution water is preferable in the case of alkali development, and pure water is more preferable.
- alcohol solvents and ester solvents are preferable, monovalent alcohol solvents having 6 to 8 carbon atoms are more preferable, and 1-hexanol, 2-hexanol, 2-heptanol, 4-methyl-2 -Pentanol is more preferred.
- a cleaning method for example, a method of continuously applying a rinse liquid onto a substrate rotating at a constant speed (rotary coating method), a method of immersing the substrate in a tank filled with the rinse liquid for a predetermined time (dip method) ), A method (spray method) of spraying a rinse liquid on the substrate surface, and the like.
- the polymer of this invention has a structural unit containing group represented by the said Formula (1). Since the said polymer has the said specific structural unit, it can be conveniently used as a polymer component of the said radiation sensitive resin composition mentioned above.
- the compound of the present invention is represented by the above formula (i). Since the said compound has the said specific structure, it can be conveniently used as a monomer which gives the structural unit (I) of the said polymer mentioned above.
- the polymer and the compound are described in the [A] polymer section of the radiation-sensitive resin composition described above.
- Mw and Mn measurement Mw and Mn of the polymer were measured by gel permeation chromatography (GPC) under the following conditions.
- GPC gel permeation chromatography
- Example 1 A 1 L eggplant flask was charged with 17.0 g (260 mmol) of zinc powder and 160 mL of THF, and 1 g (9.1 mmol) of trimethylsilyl chloride was slowly added dropwise. After completion of the addition, the mixture was stirred at room temperature for 30 minutes. This solution was heated to reflux, and a mixed solution of 25.0 g (260 mmol) of 2-cyclohexen-1-one, 42.9 g (260 mmol) of ⁇ -bromo- ⁇ -butyrolactone and 160 mL of THF was slowly added dropwise thereto. After completion of the dropwise addition, the mixture was stirred for 4 hours under reflux conditions.
- Example 2 In Example 1, the same procedure as in Example 1 was carried out except that methyl bromoacetate was used instead of ⁇ -bromo- ⁇ -butyrolactone as a starting material. 15 g of compound was obtained (total yield 25%).
- Example 3 In Example 1, except that 2-cyclopenten-1-one was used instead of 2-cyclohexen-1-one as a starting material, the same operation as in Example 1 was carried out to obtain the following formula (i-3) 14 g of the compound represented was obtained (total yield 22%).
- Example 4 In Example 2, except that 2-cyclopenten-1-one was used instead of 2-cyclohexen-1-one as a starting material, the same operation as in Example 2 was carried out to obtain the following formula (i-4) 16 g of the compound represented was obtained (total yield 28%).
- Example 5 In Example 1, except that dimethyl bromomalonate was used instead of ⁇ -bromo- ⁇ -butyrolactone as a starting material, the same procedure as in Example 1 was performed, and represented by the following formula (i-5) 19 g of compound was obtained (total yield 25%).
- Example 6 A monomer solution was prepared by dissolving 10 g (100 mol%) of compound (i-1) in 20 g of 2-butanone and further dissolving 0.32 g of AIBN as a radical polymerization initiator. Next, a 100 mL three-necked flask containing 10 g of 2-butanone was purged with nitrogen for 30 minutes, and then heated to 80 ° C. with stirring, and the monomer solution prepared above was added dropwise over 3 hours using a dropping funnel. . The dripping start was set as the polymerization reaction start time, and the polymerization reaction was carried out for 6 hours.
- the polymerization reaction solution was cooled with water and cooled to 30 ° C. or lower.
- the cooled polymerization reaction solution was added, and the precipitated white powder was separated by filtration.
- the filtered white powder was washed twice with 40 g of methanol, filtered, and dried at 50 ° C. for 17 hours to obtain a white powdery polymer (A-1) (yield 7.6 g, yield). 76%).
- Mw of the polymer (A-1) was 7,000, and Mw / Mn was 1.5.
- Example 7 to 13 and Synthesis Examples 1 to 3 Polymers (A-2) to (A-8) and (CA-1) to (CA) were operated in the same manner as in Example 6 except that the types and amounts of monomers shown in Table 1 were used. -3) was synthesized. The total mass of the monomers used was 10 g. Table 1 shows the content (mol%), yield (%), Mw and Mw / Mn of structural units derived from the respective monomers of the synthesized polymer.
- the dripping start was set as the polymerization reaction start time, and the polymerization reaction was carried out for 6 hours.
- the polymerization reaction solution was cooled with water and cooled to 30 ° C. or lower.
- the polymerization reaction liquid was uniformly diluted with 150 g of n-hexane, and 600 g of methanol was added and mixed.
- 30 g of distilled water was added, and the mixture was further stirred and allowed to stand for 30 minutes. Thereafter, the lower layer was recovered to obtain a propylene glycol monomethyl ether acetate solution of polymer (D-1) (yield 60%).
- Mw of the polymer (D-1) was 7,200, and Mw / Mn was 2.00.
- the contents of the structural units derived from (M-4) and (M-5) in the polymer (D-1) were 71.1 mol% and 28.9 mol%, respectively. there were.
- B-1 Triphenylsulfonium 2- (adamantan-1-yl) -1,1-difluoroethane-1-sulfonate (compound represented by the following formula (B-1))
- C-1 Triphenylsulfonium salicylate (compound represented by the following formula (C-1))
- [Example 14] [A] 100 parts by mass of (A-1) as a polymer, [B] 8.5 parts by mass of (B-1) as an acid generator, [C] (C-1) 2 as an acid diffusion controller 3 parts by weight, (D-1) 3 parts by weight as a [D] fluorine atom-containing polymer, (E-1) 2,240 parts by weight and (E-2) 960 parts by weight as a solvent [E]
- [F] 30 parts by mass of (F-1) as an uneven distribution promoter was mixed, and the obtained mixed solution was filtered through a 20 nm membrane filter to obtain a radiation-sensitive resin composition (J-1). Prepared.
- Example 14 radiation sensitive resin compositions (J-2) to (J-8) and (J-8) were prepared in the same manner as in Example 14 except that the components having the types and contents shown in Table 2 below were used. (CJ-1) to (CJ-3) were prepared.
- each radiation sensitive resin composition was evaluated by measuring with the following method about the following evaluation item. The evaluation results are shown in Table 3. A scanning electron microscope (Hitachi High-Technologies “S-9380”) was used to measure the resist pattern.
- resolution The minimum resist pattern dimension resolved in the above Eop was defined as resolution (nm). The smaller the value, the better the resolution. The resolution can be evaluated as “good” when it is 36 nm or less, and “bad” when it exceeds 36 nm.
- LWR performance The resist pattern was observed from above the pattern using the scanning electron microscope. A total of 50 line widths were measured at arbitrary points, and a 3-sigma value was obtained from the distribution of the measured values, and this was defined as LWR performance (nm). LWR performance indicates that the smaller the value, the better. The LWR performance can be evaluated as “good” when it is 3.8 nm or less, and “bad” when it exceeds 3.8 nm.
- Each radiation-sensitive resin composition was applied onto a 12-inch silicon wafer on which an underlayer antireflection film was formed with a composition for forming an underlayer antireflection film (“ARC66” from Brewer Science), and PB was applied at 120 ° C. for 60 seconds. By doing so, a resist film having a thickness of 75 nm was formed.
- the film was exposed through a line and space (1L / 1S) mask pattern. After exposure, PEB was performed at 100 ° C.
- KLA-Tencor's “KLA2810”) KLA-Tencor's “KLA2810”
- the measured defects are classified as resist film-derived and externally derived foreign matters.
- the total number of defects determined to be derived from the resist film was calculated and used as an index of defect suppression, which is “A” when less than 1,000 / wafer, In the case of 1,000 / wafer or more, it was evaluated as “B”.
- the radiation-sensitive resin compositions of the examples are excellent in resolution, LWR performance and defect suppression in both cases of alkali development and organic solvent development.
- the radiation sensitive resin composition of the comparative example was insufficient in resolution, LWR performance, and defect suppression.
- a resist pattern with high resolution, low LWR, and few defects can be formed.
- the polymer of this invention can be used suitably as a polymer component of the said radiation sensitive resin composition.
- the compound of the present invention can be suitably used as a raw material monomer for the polymer. Therefore, these can be suitably used in a semiconductor manufacturing process that is expected to be further miniaturized in the future.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Architecture (AREA)
- Emergency Medicine (AREA)
- Materials For Photolithography (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
La présente invention concerne une composition de résine sensible aux rayonnements contenant un polymère ayant une unité de structure qui comprend un groupe représenté par la formule (1), et un générateur d'acide sensible aux rayonnements. Dans la formule (1), R1 est un groupe organique monovalent en C2-30, qui comprend au moins un élément choisi dans le groupe constitué par O et N. R2 est un groupe hydrocarboné alicyclique en C5-20 qui comprend une double liaison. Ra et Rb sont indépendamment un hydrogène ou un groupe hydrocarboné monovalent en C1-10. L'astérisque indique le site de l'unité de structure susmentionnée qui est lié à une autre partie. Les groupes représentés dans la formule (1) sont de préférence dissociables par un acide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015539041A JP6421757B2 (ja) | 2013-09-25 | 2014-08-29 | 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013199055 | 2013-09-25 | ||
JP2013-199055 | 2013-09-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015045739A1 true WO2015045739A1 (fr) | 2015-04-02 |
Family
ID=52742889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/072838 WO2015045739A1 (fr) | 2013-09-25 | 2014-08-29 | Composition de résine sensible aux rayonnements, procédé de formation d'un motif de réserve, polymère, et composé |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6421757B2 (fr) |
WO (1) | WO2015045739A1 (fr) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015064508A (ja) * | 2013-09-25 | 2015-04-09 | Jsr株式会社 | 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物 |
JP2019059713A (ja) * | 2017-09-27 | 2019-04-18 | 住友化学株式会社 | 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法 |
JP2019059714A (ja) * | 2017-09-27 | 2019-04-18 | 住友化学株式会社 | 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法 |
WO2019172054A1 (fr) * | 2018-03-08 | 2019-09-12 | Jsr株式会社 | Composition de résine sensible au rayonnement, procédé de fabrication associé et procédé de formation de motif de réserve |
BE1027107A1 (fr) | 2019-03-25 | 2020-10-05 | Sumitomo Chemical Co | Compose, resine, composition de photoresist et procede de production de motif de photoresist |
WO2023223897A1 (fr) * | 2022-05-17 | 2023-11-23 | 東京応化工業株式会社 | Composition de réserve, procédé de formation de motif de réserve et composé |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10140018A (ja) * | 1996-11-06 | 1998-05-26 | Mitsubishi Electric Corp | 透明性樹脂およびこの樹脂を用いた感光性樹脂組成物並びにこの感光性樹脂組成物を用いた半導体装置の製造方法 |
JP2000159758A (ja) * | 1998-09-25 | 2000-06-13 | Shin Etsu Chem Co Ltd | 新規なラクトン含有化合物、高分子化合物、レジスト材料及びパタ―ン形成方法 |
JP2002003537A (ja) * | 2000-04-20 | 2002-01-09 | Shin Etsu Chem Co Ltd | 新規なエステル化合物、高分子化合物、レジスト材料、及びパターン形成方法 |
WO2013099998A1 (fr) * | 2011-12-28 | 2013-07-04 | Jsr株式会社 | Composition de résine sensible au rayonnement, polymère, composé et procédé de fabrication du composé |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60026407T2 (de) * | 1999-08-23 | 2006-11-09 | F. Hoffmann-La Roche Ag | Verfahren zur Herstellung von Vitamin-D Analogen |
KR101837950B1 (ko) * | 2011-03-30 | 2018-04-26 | 금호석유화학 주식회사 | 신규 아크릴계 모노머를 포함하는 레지스트용 공중합체 및 이를 포함하는 레지스트용 수지 조성물 |
-
2014
- 2014-08-29 JP JP2015539041A patent/JP6421757B2/ja active Active
- 2014-08-29 WO PCT/JP2014/072838 patent/WO2015045739A1/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10140018A (ja) * | 1996-11-06 | 1998-05-26 | Mitsubishi Electric Corp | 透明性樹脂およびこの樹脂を用いた感光性樹脂組成物並びにこの感光性樹脂組成物を用いた半導体装置の製造方法 |
JP2000159758A (ja) * | 1998-09-25 | 2000-06-13 | Shin Etsu Chem Co Ltd | 新規なラクトン含有化合物、高分子化合物、レジスト材料及びパタ―ン形成方法 |
JP2002003537A (ja) * | 2000-04-20 | 2002-01-09 | Shin Etsu Chem Co Ltd | 新規なエステル化合物、高分子化合物、レジスト材料、及びパターン形成方法 |
WO2013099998A1 (fr) * | 2011-12-28 | 2013-07-04 | Jsr株式会社 | Composition de résine sensible au rayonnement, polymère, composé et procédé de fabrication du composé |
Non-Patent Citations (1)
Title |
---|
CHRIS MCFARLAND ET AL.: "Unprecedented Alkene Stereocontrol in the Claisen Rearrangement of Cyclic Bis-Allylic Esters", ORGANIC LETTERS, vol. 7, no. 17, 26 July 2005 (2005-07-26), pages 3641 - 3644 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015064508A (ja) * | 2013-09-25 | 2015-04-09 | Jsr株式会社 | 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物 |
JP2019059713A (ja) * | 2017-09-27 | 2019-04-18 | 住友化学株式会社 | 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法 |
JP2019059714A (ja) * | 2017-09-27 | 2019-04-18 | 住友化学株式会社 | 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法 |
JP7066577B2 (ja) | 2017-09-27 | 2022-05-13 | 住友化学株式会社 | 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法 |
JP7233871B2 (ja) | 2017-09-27 | 2023-03-07 | 住友化学株式会社 | 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法 |
WO2019172054A1 (fr) * | 2018-03-08 | 2019-09-12 | Jsr株式会社 | Composition de résine sensible au rayonnement, procédé de fabrication associé et procédé de formation de motif de réserve |
KR20200130358A (ko) * | 2018-03-08 | 2020-11-18 | 제이에스알 가부시끼가이샤 | 감방사선성 수지 조성물 및 그의 제조 방법 그리고 레지스트 패턴 형성 방법 |
KR102656042B1 (ko) * | 2018-03-08 | 2024-04-11 | 제이에스알 가부시끼가이샤 | 감방사선성 수지 조성물 및 그의 제조 방법 그리고 레지스트 패턴 형성 방법 |
BE1027107A1 (fr) | 2019-03-25 | 2020-10-05 | Sumitomo Chemical Co | Compose, resine, composition de photoresist et procede de production de motif de photoresist |
KR20200115216A (ko) | 2019-03-25 | 2020-10-07 | 스미또모 가가꾸 가부시키가이샤 | 화합물, 수지, 레지스트 조성물 및 레지스트 패턴의 제조방법 |
US11548961B2 (en) | 2019-03-25 | 2023-01-10 | Sumitomo Chemical Company, Limited | Compound, resin, resist composition and method for producing resist pattern |
WO2023223897A1 (fr) * | 2022-05-17 | 2023-11-23 | 東京応化工業株式会社 | Composition de réserve, procédé de formation de motif de réserve et composé |
Also Published As
Publication number | Publication date |
---|---|
JP6421757B2 (ja) | 2018-11-14 |
JPWO2015045739A1 (ja) | 2017-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6323460B2 (ja) | 感放射線性樹脂組成物及びレジストパターン形成方法 | |
JP2015025879A (ja) | 樹脂組成物、重合体及びレジストパターン形成方法 | |
JP6319001B2 (ja) | 感放射線性樹脂組成物及びレジストパターン形成方法 | |
JP2013225094A (ja) | フォトレジスト組成物及びレジストパターン形成方法 | |
JP6421757B2 (ja) | 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物 | |
JP6287466B2 (ja) | レジスト組成物及びレジストパターン形成方法 | |
JPWO2012101942A1 (ja) | レジストパターン形成方法及び感放射線性樹脂組成物 | |
JP2013101371A (ja) | 感放射線性樹脂組成物 | |
JP6398793B2 (ja) | 感放射線性樹脂組成物、レジストパターン形成方法及び重合体 | |
JP6060967B2 (ja) | フォトレジスト組成物及びレジストパターン形成方法 | |
JP6131793B2 (ja) | 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物 | |
JP6171774B2 (ja) | 感放射線性樹脂組成物、レジストパターン形成方法及び感放射線性酸発生剤 | |
JP6273689B2 (ja) | 感放射線性樹脂組成物、レジストパターン形成方法、重合体、化合物及びその製造方法 | |
JP6036619B2 (ja) | 樹脂組成物及びレジストパターン形成方法 | |
JP6319291B2 (ja) | 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物 | |
JP6241226B2 (ja) | フォトレジスト組成物、レジストパターン形成方法、重合体及び化合物 | |
JP5867298B2 (ja) | フォトレジスト組成物及びレジストパターン形成方法 | |
KR102111345B1 (ko) | 포토레지스트 조성물 및 네가티브형 레지스트 패턴 형성 방법 | |
JP6528692B2 (ja) | 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物 | |
JP6036545B2 (ja) | フォトレジスト組成物、レジストパターン形成方法、重合体及び化合物 | |
JP5573730B2 (ja) | 感放射線性樹脂組成物及びこれを用いたパターン形成方法 | |
JP6304347B2 (ja) | 樹脂組成物及びレジストパターン形成方法 | |
JP2014071387A (ja) | フォトレジスト組成物、レジストパターン形成方法、重合体、化合物及び化合物の製造方法 | |
JP6206078B2 (ja) | 感放射線性樹脂組成物及びレジストパターン形成方法 | |
JP2016224123A (ja) | 感放射線性樹脂組成物及びレジストパターン形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14848934 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015539041 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14848934 Country of ref document: EP Kind code of ref document: A1 |