[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014157905A1 - 발광소자 패키지 - Google Patents

발광소자 패키지 Download PDF

Info

Publication number
WO2014157905A1
WO2014157905A1 PCT/KR2014/002485 KR2014002485W WO2014157905A1 WO 2014157905 A1 WO2014157905 A1 WO 2014157905A1 KR 2014002485 W KR2014002485 W KR 2014002485W WO 2014157905 A1 WO2014157905 A1 WO 2014157905A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
region
emitting device
disposed
micrometers
Prior art date
Application number
PCT/KR2014/002485
Other languages
English (en)
French (fr)
Inventor
박인용
이건교
이종우
이주영
조윤민
Original Assignee
엘지이노텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍(주) filed Critical 엘지이노텍(주)
Priority to EP14773611.0A priority Critical patent/EP2980866B1/en
Priority to US14/779,896 priority patent/US10177286B2/en
Priority to JP2016504260A priority patent/JP6359632B2/ja
Priority to CN201480018475.1A priority patent/CN105103313B/zh
Publication of WO2014157905A1 publication Critical patent/WO2014157905A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/13Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
    • F21S43/14Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/19Attachment of light sources or lamp holders
    • F21S43/195Details of lamp holders, terminals or connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0756Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/642Heat extraction or cooling elements characterized by the shape

Definitions

  • An embodiment relates to a light emitting device package.
  • Group 3-5 compound semiconductors such as GaN and AlGaN, are widely used for optoelectronics and electronic devices due to many advantages, such as having a wide and easy to adjust band gap energy.
  • light emitting devices such as light emitting diodes or laser diodes using semiconductors of Group 3-5 or 2-6 compound semiconductor materials of semiconductors have been developed through the development of thin film growth technology and device materials such as red, green, blue and ultraviolet light.
  • Various colors can be realized, and efficient white light can be realized by using fluorescent materials or combining colors.
  • Low power consumption, semi-permanent life, fast response speed, safety and environment compared to conventional light sources such as fluorescent and incandescent lamps can be realized. Has the advantage of affinity.
  • a white light emitting device that can replace a fluorescent light bulb or an incandescent bulb that replaces a Cold Cathode Fluorescence Lamp (CCFL) constituting a backlight of a transmission module of an optical communication means and a liquid crystal display (LCD) display device.
  • CCFL Cold Cathode Fluorescence Lamp
  • LCD liquid crystal display
  • a light emitting device package in which a plurality of light emitting device packages are disposed in one unit may be used for a lighting device or an automobile head lamp, and each light emitting device may be supplied with current by a method such as wire bonding.
  • 1 is a view showing an arrangement of a light emitting device package.
  • a plurality of light emitting devices 100 are arranged horizontally and two vertically, and each light emitting device 100 is bonded with wires 110 and 115. Adjacent light emitting devices 100 are spaced apart from each other by d 1 and d 2 in the horizontal and vertical directions, respectively, when the above-mentioned distance between adjacent light emitting devices 100 is greater than d 1 and d 2 , a dark portion may occur.
  • FIG. 2 is a view showing the dark portion of the light emitting device package of three rows.
  • a plurality of light emitting devices 100 and 100 ' are arranged in four horizontally and three vertically, and each of the light emitting devices 100 and 100' is bonded by wires 110 and 115.
  • the adjacent light emitting devices 100 are arranged to be spaced apart from each other by d 1 and d 2 in the horizontal and vertical directions, respectively, it is difficult to secure a space required for wire bonding of the light emitting devices 100 ′ disposed therein. .
  • a space for wire bonding of the light emitting devices disposed so as not to be adjacent to an external area is required, and the above-described space may appear as a dark portion in the entire light emitting device package.
  • the embodiment is intended to implement a surface light source without appearing a dark portion in a light emitting device package used as a light source such as an automobile head lamp.
  • the embodiment includes a first area and a second area having a height higher than that of the first area, wherein the second area includes a second-first area and a second-second area facing each other with the first area therebetween.
  • a circuit board comprising; At least one light emitting element disposed in each of the first region and the second region; And a phosphor layer disposed on each light emitting device, wherein each light emitting device provides a light emitting device package disposed at a distance within 100 micrometers in a horizontal direction.
  • the circuit board may be disposed while the second circuit board of the first region and the second circuit board of the second region are in contact with each other.
  • the height of the second area may be higher than the height of the first area.
  • Two rows of light emitting devices may be disposed in the first area, and the two rows of light emitting devices may be spaced apart from each other by 50 micrometers to 100 micrometers.
  • the light emitting device in the first region and the light emitting device in the second region that are adjacent to each other may be disposed with a distance greater than 0 and less than 100 micrometers in a horizontal direction.
  • Light emitting devices of one to two columns may be disposed in the first region, and one light emitting device may be disposed in the second-1 and second-2 regions, respectively.
  • the height difference between the bottom surface of the first region and the bottom surface of the second region may be 160 micrometers to 5 millimeters.
  • each light emitting device may be 90 micrometers to 100 micrometers, and the height of the phosphor layer may be 50 micrometers to 60 micrometers.
  • the output of the light emitting element disposed in the first region may be greater than the output of the light emitting element disposed in the second region.
  • the circuit board further includes a third region disposed higher than the second region, and the third region includes a 3-1 region and a 3-2 region facing each other with the second region therebetween. At least one light emitting device may be disposed in each of the 3-1 and 3-2 regions.
  • the light emitting device of the third region may be disposed at a distance within 100 micrometers in a horizontal direction with the light emitting device of the second region.
  • the light emitting element in the second region and the light emitting element in the third region that are adjacent to each other may be disposed with a horizontal distance greater than 0 and smaller than 100 micrometers.
  • the height difference between the bottom surface of the second region and the bottom surface of the third region may be 160 micrometers to 5 millimeters.
  • the output of the light emitting device disposed in the second region may be greater than the output of the light emitting device disposed in the third region.
  • Another embodiment includes a circuit board including at least two regions different in height from each other; At least one light emitting element disposed in each of the at least two regions; And a phosphor layer disposed on each of the light emitting devices, wherein each of the light emitting devices may be disposed at a distance within 100 micrometers in the horizontal direction.
  • the circuit board includes a first region, a second region having a height higher than the first region, and a third region having a height higher than the second region, respectively, in the first region, the second region, and the third region.
  • the light emitting element can be arranged.
  • the height difference between the first area and the second area may be equal to the height difference between the second area and the third area.
  • the second region may be disposed to face each other with the first region interposed therebetween and in a pair.
  • the light emitting devices disposed on the pair of second regions may be arranged symmetrically with the first region therebetween.
  • the third region is disposed to face each other with the first region interposed therebetween, and the pair is arranged symmetrically, and the light emitting devices disposed on the pair of third regions are arranged symmetrically with the first region interposed therebetween. Can be.
  • a light emitting device array may be disposed adjacent to each other to implement a surface light source.
  • each light emitting device is connected in parallel, current is supplied only to some light emitting devices in one light emitting device package. It is also possible to implement local dimming.
  • the surface light source may be implemented and only a part of the area of the head lamp may be turned on to implement various signals.
  • 1 is a view showing an arrangement of a light emitting device package
  • 2 is a view showing the dark portion of the light emitting device package of three rows
  • FIG. 3 is a view showing an embodiment of a light emitting device
  • 4A and 4B are cross-sectional views of a first embodiment and a second embodiment of a light emitting device package
  • 5A and 5B are views illustrating an arrangement of light emitting devices in the light emitting device package of FIG. 4A.
  • FIG. 6 is a view illustrating an arrangement of light emitting devices in the light emitting device package of FIG. 4B;
  • FIG. 7A and 7B are cross-sectional views of a third embodiment and a fourth embodiment of a light emitting device package
  • 8A to 8E are views showing darkening in the light emitting device package of FIGS. 5A to 7B.
  • 9A to 9C are exploded views illustrating a vehicle lamp unit according to an embodiment.
  • FIG. 10 is a view showing a tail light for a vehicle including a lamp unit according to the embodiment.
  • the above (on) or below (on) or under) when described as being formed on the "on or under” of each element, the above (on) or below (on) or under) includes both two elements being directly contacted with each other or one or more other elements are formed indirectly between the two elements.
  • the above (on) or below when expressed as “on” or “under”, it may include the meaning of the downward direction as well as the upward direction based on one element.
  • FIG 3 is a view illustrating an embodiment of a light emitting device.
  • the light emitting device 100 may be applied to all light emitting devices in the light emitting device package below, and a horizontal type light emitting device may be applied in addition to the vertical type light emitting device shown.
  • the light emitting structure 20 in the light emitting device 100 includes a first conductive semiconductor layer 22, an active layer 24, and a second conductive semiconductor layer 26.
  • the first conductive semiconductor layer 22 may be implemented with compound semiconductors such as group III-V and group II-VI, and may be doped with the first conductive dopant.
  • the first conductivity type semiconductor layer 22 has a composition formula of Al x In y Ga (1-xy) N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1). It may be formed of any one or more of a semiconductor material, AlGaN, GaN, InAlGaN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP.
  • the first conductivity type dopant may include an n type dopant such as Si, Ge, Sn, Se, Te, or the like.
  • the first conductivity type semiconductor layer 22 may be formed as a single layer or a multilayer, but is not limited thereto.
  • the first conductive semiconductor layer 22 may include at least one of InAlGaN and AlGaN.
  • the active layer 24 is disposed between the first conductive semiconductor layer 22 and the second conductive semiconductor layer 26, and has a single well structure, a multi well structure, a single quantum well structure, and a multi quantum well.
  • a multi-quantum well (MQW) structure, a quantum dot structure or a quantum line structure may be included.
  • the active layer 24 is formed of a well layer and a barrier layer, for example, AlGaN / AlGaN, InGaN / GaN, InGaN / InGaN, GaN / AlGaN, InAlGaN / GaN, GaAs (InGaAs) using a compound semiconductor material of group III-V elements.
  • a barrier layer for example, AlGaN / AlGaN, InGaN / GaN, InGaN / InGaN, GaN / AlGaN, InAlGaN / GaN, GaAs (InGaAs) using a compound semiconductor material of group III-V elements.
  • / AlGaAs, GaP (InGaP) / AlGaP may be formed of any one or more pair structure, but is not limited thereto.
  • the well layer may be formed of a material having an energy band gap smaller than the energy band gap of the barrier layer.
  • the second conductive semiconductor layer 26 may be formed of a semiconductor compound.
  • the second conductive semiconductor layer 26 may be formed of a compound semiconductor such as a group III-V group or a group II-VI, and may be doped with a second conductive dopant.
  • the second conductivity-type semiconductor layer 26 is, for example, a semiconductor material having a compositional formula of In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1), AlGaN , GaN AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP may be formed of any one or more.
  • the second conductive dopant may be a p-type dopant such as Mg, Zn, Ca, Sr, or Ba.
  • the second conductive semiconductor layer 26 may be formed as a single layer or a multilayer, but is not limited thereto. If the light emitting device 100 is an ultraviolet (UV) light, deep ultraviolet light, or a non-polarization light emitting device, the second conductive semiconductor layer 26 may include at least one of InAlGaN and AlGaN.
  • the first electrode 70 on the first conductive semiconductor layer 22 Can be arranged.
  • the first electrode 70 may be formed of a conductive material, for example, metal, and more specifically, Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf and their selection It can be made in a combination and can be formed in a single layer or a multi-layer structure.
  • the light emitting structure 20, in particular, the second conductivity-type semiconductor layer 26 may be disposed on the ohmic layer 30, the reflective layer 40, the bonding layer 50, and the conductive support substrate 60. 30, the reflective layer 40, the bonding layer 50, and the conductive support substrate 60 may serve as the second electrode.
  • the ohmic layer 30 may be about 200 angstroms thick.
  • the ohmic layer 30 may include indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), indium aluminum zinc oxide (IAZO), indium gallium zinc oxide (IGZO), and indium gallium tin oxide (IGTO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • IZTO indium zinc tin oxide
  • IAZO indium aluminum zinc oxide
  • IGZO indium gallium zinc oxide
  • IGTO indium gallium tin oxide
  • the reflective layer 40 may be made of a metal layer including aluminum (Al), silver (Ag), nickel (Ni), platinum (Pt), rhodium (Rh), or an alloy containing Al, Ag, Pt, or Rh. .
  • Aluminum or silver may effectively reflect light generated from the active layer 24, thereby greatly improving the light extraction efficiency of the light emitting device.
  • the conductive support substrate (metal support) 60 may use a metal having excellent electrical conductivity, and a metal having high thermal conductivity may be used because it must be able to sufficiently dissipate heat generated when the light emitting device is operated.
  • the conductive support substrate 60 may be formed of a metal or a semiconductor material. It may also be formed of a material having high electrical conductivity and thermal conductivity. For example, it may be made of a material selected from the group consisting of molybdenum (Mo), silicon (Si), tungsten (W), copper (Cu), and aluminum (Al) or alloys thereof, and also gold (Au). ), Copper alloy (Cu Alloy), nickel (Ni), copper-tungsten (Cu-W), carrier wafers (e.g. GaN, Si, Ge, GaAs, ZnO, SiGe, SiC, SiGe, Ga 2 O 3, etc.) And the like may optionally be included.
  • the conductive support substrate 60 may have a mechanical strength enough to be separated into a separate chip through a scribing process and a breaking process without bringing warpage to the entire nitride semiconductor.
  • the bonding layer 50 combines the reflective layer 40 and the conductive support substrate 60, and includes gold (Au), tin (Sn), indium (In), aluminum (Al), silicon (Si), and silver (Ag). , Nickel (Ni) and copper (Cu) can be formed of a material selected from the group consisting of or alloys thereof.
  • the ohmic layer 30 and the reflective layer 40 may be formed by a sputtering method or an electron beam deposition method, and the conductive support substrate 60 may be formed by an electrochemical metal deposition method or a bonding method using an eutectic metal, or the like. , An additional bonding layer 50 can be formed.
  • the passivation layer 80 may be disposed around the light emitting structure 20.
  • the passivation layer 80 may be made of an insulating material, and the insulating material may be made of an oxide or nitride which is non-conductive.
  • the passivation layer 80 may be formed of a silicon oxide (SiO 2 ) layer, an oxynitride layer, and an aluminum oxide layer.
  • 4A and 4B are cross-sectional views of a first embodiment and a second embodiment of a light emitting device package.
  • the light emitting device package 200a illustrated in FIG. 4A includes a first region a and a second region b 1 and b 2 having different heights from each other, and include a first region a and a second region.
  • Arrays of light emitting devices 100a and 100b are arranged at different heights in (b 1 and b 2 ), respectively.
  • the first region a may be a surface of the first circuit board 210
  • the second regions b 1 and b 2 may be a surface of the second circuit board 215.
  • the first circuit board 210 is brought into contact with the second circuit board 215 through the bonding layer 212, and is coupled to each other. A portion of the first circuit board 210 forms a cavity, and a bottom surface of the cavity is formed in the first circuit board 210. Region (a).
  • two arrays of the light emitting devices 100a in the first area a and two arrays of the light emitting devices 100b in the second areas b 1 and b 2 are raised to each other. Since they are arranged differently, in particular, a space in which the two arrays of the light emitting devices 100a in the first region a are wire-bonded is secured, so that the distance between the arrays of the light emitting devices 100a and 100b can be reduced, thereby reducing the occurrence of dark areas. You can stop it.
  • an array of four light emitting devices 100a and 100b is illustrated, but a plurality of light emitting devices may be arranged in other directions (for example, a vertical direction) as described later in FIG. 8A. Since it is made only in the direction shown in (for example, the horizontal direction), the wire bonding region may not be separately secured in other directions.
  • the light emitting device package 200b shown in FIG. 4B is similar to the structure shown in FIG. 4A, but only one light emitting device 100a is shown in the first region a. That is, the light emitting device package 200b according to the present embodiment is different from the embodiment shown in FIG. 4A in that three arrays of the light emitting devices 100a and 100b are shown in one direction (for example, in the horizontal direction).
  • 5A and 5B are views illustrating arrangement of light emitting devices in the light emitting device package of FIG. 4A.
  • a first circuit board 210 and a second circuit board 215 are coupled through a bonding layer 212, and the first circuit board 210 and the second circuit board ( 215 may be a printed circuit board (PCB), a metal PCB, a flexible PCB, or the like, and the bonding layer 212 may be a conductive or nonconductive adhesive.
  • PCB printed circuit board
  • metal PCB metal PCB
  • flexible PCB flexible PCB
  • a cavity is formed in the first circuit board 210, and a bottom surface of the cavity forms a first region a, and two arrays of light emitting devices 100a are disposed in the first region a.
  • 5A is a cross-sectional view, and the arrangement of the actual light emitting device 100a may be two horizontally, four vertically or more as shown in FIG. 8A.
  • An array of light emitting devices 100a is disposed on the bottom surface of the cavity, that is, the first region a, and a phosphor layer 150a is disposed on each light emitting device 100a by a conformal coating method.
  • the light emitting device 100a is bonded to the wire 160a, and the first-first bonding pad 190a on the light emitting device 100a is connected to the second-first bonding pad on the first circuit board 210. 210a and the wire 160a are connected.
  • a portion of the phosphor layer 150a is opened to secure a space in which the first-first bonding pad 190a is disposed and the wire 160a is bonded, and the phosphor layer 150a is formed on the side surface of the light emitting device 100a. Can be arranged.
  • the second circuit board 215 may be disposed to face each other with the above-described cavity interposed therebetween.
  • the surface of the pair of second circuit boards 215 facing each other may be referred to as a second area.
  • the 2-1 region b 1 and the 2-2 region b 2 are disposed to face each other.
  • the height of the second region including the 2-1 region b 1 and the 2-2 region b 2 is higher than the height of the first region a.
  • the structure of the array of light emitting devices 100b disposed in the second- first area b 1 and the second-second area b 2 is the same as that of the array of the light emitting devices 100a shown in the first area a. Do. That is, the array of light emitting devices 100b is disposed on the surface of the second circuit board 215, that is, the 2-1 area b 1 and the 2-2 area b 2 , and each light emitting device 100b is disposed. On the phosphor layer 150b is disposed in the manner of conformal coating. The 1-2 bonding pad 190b on the light emitting device 100b is connected to the second-2 bonding pad 215a on the second circuit board 215 by a wire 160b.
  • a portion of the phosphor layer 150b is opened to secure a space in which the 1-2 bonding pad 190b is disposed and the wire 160b is bonded, and the phosphor layer 150b is formed on the side surface of the light emitting device 100b. Can be arranged.
  • the array of light emitting devices 100b disposed in the second- first region b 1 and the second-second region b 2 , respectively, may have wires in opposite directions to the first region a, that is, in an outward direction in FIG. 5A. 160b) and may be disposed adjacent to the array of light emitting devices 100a on the first area a in the horizontal direction.
  • the structure shown in FIG. 5A may form a cavity in the first circuit board 210, arrange the array of the light emitting devices 100a, and arrange the second circuit board 215 after the wire 160a bonding process. .
  • the height h 1 of the light emitting devices 100a and 100b may be 90 micrometers to 100 micrometers
  • the height h 2 of the phosphor layer 150a may be 50 micrometers to 60 micrometers
  • the heights h 1 , h 2 , h 3 are all the heights from the bottom surface of the cavity of the first circuit board 210.
  • the depth h 4 of the cavity may be a difference between the heights of the light emitting device 100a on the first area a and the light emitting device 100b on the second area, which may be 160 micrometers to 5 millimeters. If the depth h 4 of the cavity is too small, the wire 160a may be damaged in the formation process of the upper second circuit board 215, and if the depth h 4 of the cavity is too large, the first region a The luminance unevenness of the lighting device or the head lamp according to the luminance or the directivity of the light emitting device 100a and the light emitting device 100b on the second region may occur.
  • Each of the light emitting devices 100a and 100b may be disposed at a distance within 100 micrometers from each other in the horizontal direction to prevent the occurrence of dark parts.
  • the pair of light emitting devices 100a disposed in the first area a may be spaced apart from each other by a distance d 3 of 50 micrometers to 100 micrometers.
  • d 3 When the separation distance d 3 between the pair of light emitting devices 100a disposed in the first region a is less than 50 micrometers, it may be difficult to mount the pair of light emitting devices 100a in a manufacturing process. If greater than 100 micrometers, a dark portion may occur between the pair of light emitting devices 100a and 100b.
  • the array of light emitting devices 100a disposed in the first area a is wire bonded in an outward direction in FIG. 5A. That is, the pair of light emitting devices 100a arranged in the first area a is wire-bonded in the direction of the light emitting devices 100b arranged in the adjacent second area.
  • the separation distance d 4 between the light emitting device 100a of the first area a and the light emitting device 100b of the 2-1 area b 1 or the 2-2 area b 2 disposed adjacent to each other. ) May be disposed at a distance of 50 micrometers to 100 micrometers from each other in the horizontal direction. If the separation distance d 4 is smaller than 50 micrometers, the space for bonding the wire 160a may be insufficient. If the separation distance d 4 is larger than 100 micrometers, a dark portion may occur between the pair of light emitting devices 100a and 100b.
  • the above-described separation distance d 3 or d 4 refers to the separation distance in the horizontal direction, that is, d 4 refers to the distance spaced in the horizontal direction when the light emitting devices 100a and 100b are disposed on the same plane.
  • the light emitting device package 200a shown in FIG. 5B is similar to the light emitting device package 200a of FIG. 5A, but is disposed in the second area, that is, the second- first area b 1 and the second-second area b 2 .
  • a portion of the array of light emitting devices 100b is disposed to face the bottom surface of the first region a. That is, a pair of light emitting devices 100b are partially protruded into the cavity on the first circuit board 210 as compared to FIG. 5A, and the second circuit board 215 is also the cavity on the first circuit board 210. Since a part of the light emitting device 100b is disposed to protrude into the inside, the pair of light emitting devices 100b may not be disposed directly facing the bottom surface of the first region a.
  • the light emitting device 100a of the first area region a and the light emitting device 100b of the 2-1 area b 1 or the 2-2 area b 2 are provided.
  • the horizontal separation distance between them is not only within 100 micrometers, but may also be zero as shown.
  • the edges of the light emitting device 100a of the first area region a and the light emitting device 100b of the 2-1 area b 1 or the 2-2 area b 2 coincide with each other.
  • the edges of each active layer may coincide.
  • FIG. 6 is a view illustrating an arrangement of light emitting devices in the light emitting device package of FIG. 4B.
  • the light emitting device package 200b according to the present embodiment is similar to the embodiment shown in FIG. 5B, except that only one light emitting device 100a is disposed on the first region a. Accordingly, the pair of light emitting devices 100b partially protrude into the cavity on the first circuit board 210, and the second circuit board 215 also partially protrudes into the cavity on the first circuit board 210. The pair of light emitting devices 100b may not be disposed directly facing the bottom surface of the first region a.
  • the light emitting device package 200a In the light emitting device package 200a according to the present structure, light is emitted from both edges of the light emitting device 100a of the first area region a, the 2-1 area b 1 , and the 2-2 area b 2 .
  • the horizontal separation distance between the elements 100b may be zero as illustrated.
  • the first region region a when the light emitting devices 100b of the second- first region b 1 and the second-second region b 2 do not protrude in the cavity direction, the first region region a
  • the horizontal separation distance between both edges of the light emitting device 100a and the light emitting device 100b of the 2-1 area b 1 and the 2-2 area b 2 may be within 100 micrometers. have.
  • the horizontal separation distance between the light emitting device 100a, the second-first region b1, and the second-second region b2 may be the same as the distance d4 shown in FIG. 5A.
  • the output of the light emitting devices arranged in the first area may be greater than that of the light emitting devices arranged in the second area.
  • the light emitting device disposed in a region having a lower height may have a larger output.
  • the pair of second regions that is, the second-first region b1 and the second-second region b2 are symmetrically facing each other with the first region a interposed therebetween.
  • the light emitting devices 160b disposed on the 2-1 region b1 and the 2-2 region b2 are symmetrically disposed with the first region a interposed therebetween.
  • the pair of third regions that is, the 3-1 region c1 and the 3-2 region bc face each other with the first region a interposed therebetween, and are symmetrical to each other.
  • the light emitting devices 160c disposed on the third-first region c1 and the third-second region c2 are arranged symmetrically with the first region a interposed therebetween.
  • FIG. 7A and 7B are cross-sectional views of a third embodiment and a fourth embodiment of a light emitting device package, in which a circuit board is disposed in three regions having different heights from each other.
  • the circuit board includes a third circuit board 225 in addition to the first circuit board 210 and the second circuit board 215, and the first circuit board 210.
  • the second circuit board 215 may be coupled to the coupling layer 212, and the second circuit board 215 and the third circuit board 225 may also be coupled through the coupling layer 222.
  • a cavity is formed in the first circuit board 210, a bottom surface of the cavity forms a first area a, and a pair of light emitting devices 100a are disposed on the first area a.
  • the configuration, arrangement, and the like of the device 100a are the same as those of the embodiment shown in FIG. 5A.
  • the pair of second circuit boards 215 is disposed with the cavity in the first circuit board 210 interposed therebetween, and each of the second circuit boards 215 has a stepped structure.
  • the height of the first region a is lower than the height of the edge, and the array of light emitting devices 100b is disposed in the region having the low height.
  • Regions on the second circuit board 215 on which the array of light emitting devices 100b are disposed may be referred to as 2-1 region b 1 and 2-2 region b 2 , respectively.
  • the configuration, arrangement, and the like of the pair of light emitting devices 100b disposed on the second- first region b 1 and the second-second region b 2 are the same as those of the embodiment shown in FIG. 5A.
  • the difference h4 between the heights of the third-first region C1 and the second-first region B1 is shown in FIG. 5A as the light emitting device 100a on the first region a and the light emitting device 100b on the second region. Can be 160 micrometers to 5 millimeters, equal to the difference in height h4). If the height h 4 of the second circuit board is too small, the wire 160b may be damaged in the process of forming the third circuit board 225, etc., and the height h 4 of the second circuit board is too large.
  • the luminance of the lighting device or the headlamp according to the luminance or the directivity of the light emitting device 100b on the second- first area b 1 and the second-second area b 2 and the light-emitting device 100c on the third area. Unevenness may occur.
  • the third circuit board 225 may be disposed to face each other with the 2-1 region b 1 and the 2-2 region b 2 interposed therebetween, and a pair of third circuits facing each other.
  • the surface of the substrate 225 may be referred to as a third region, in which the 3-1 region c 1 and the 3-2 region c 2 face each other.
  • the height of the third region including the 3-1 region (c 1 ) and the 3-2 region (c 2 ) is the first region (a) and the 2-1 region (b 1 ) and the 2-2 region. It is higher than the height of (b 2 ).
  • the structure of the array of light emitting devices 100c disposed in the 3-1 area (c 1 ) and the 3-2 area (c 2 ) is the same as that of the array of the light emitting device 100a shown in the first area (a) or the like. Do. That is, the array of light emitting devices 100c is disposed on the surface of the third circuit board 225, that is, the 3-1 area c 1 and the 3-2 area c 2 , and each of the light emitting devices 100c. On the phosphor layer 150c is disposed in the manner of conformal coating. The 1-3 bonding pad 190c on the light emitting device 100c is connected to the 2-3 bonding pad 225a on the third circuit board 225 by a wire 160c.
  • a portion of the phosphor layer 150c is opened to secure a space in which the 1-3 bonding pad 190c is disposed and the wire 160c is bonded, and the phosphor layer 150c is formed on the side surface of the light emitting device 100c in addition to the upper surface thereof. Can be arranged.
  • the array of light emitting devices 100c disposed in the 3-1 th region (c 1 ) and the 3-2 th region (c 2 ) is respectively divided into the 2-1 region (b 1 ) and the 2-2 region (b 2 ). Since the wire 160c is bonded in the opposite direction, that is, in the outward direction in FIG. 7A, the light emitting device 100b is disposed adjacent to the array of light emitting devices 100b on the 2-1 region (b 1 ) and the 2-2 region (b 2 ). Can be.
  • the horizontal distances d 5 in the horizontal direction between the light emitting devices 100c disposed in the region c 2 may be disposed at a distance of 50 micrometers to 100 micrometers from each other. If the separation distance d 5 is smaller than 50 micrometers, the space for bonding the wire 160b may be insufficient. If the separation distance d 5 is larger than 100 micrometers, a dark portion may occur between the pair of light emitting devices 100b and 100b.
  • the light emitting device 100b is wire-bonded to the 2-1 region b 1 or the 2-2 region b 2 in which the above-described horizontal separation distance d 5 is 50 to 100 micrometers. have.
  • the array of light emitting devices 100c disposed in the 3-1 region (c 1 ) and the 3-2 region (c 2 ) may be different from the 2-1 region (b 1 ) or the 2-2 region (b 2 ), respectively. Since the wire 160c is bonded in the opposite direction, that is, in the outward direction in FIG. 7A, the wire 160c is adjacent to the array of the light emitting devices 100b on the second- first region b 1 or the second-second region b 2 . Can be arranged.
  • the light emitting device package 200a illustrated in FIG. 7B is similar to the light emitting device package 200a of FIG. 7A, but one light emitting device 100a is disposed in the first region a, and the second region, that is, the second region 2-2.
  • a part of the array of light emitting devices 100b disposed in the first region b 1 and the second-2 region b 2 is disposed to face the bottom surface of the first region a, and the third region, that is, the third region.
  • a portion of the array of light emitting devices 100c disposed in the first region c 1 and the third- 2 region c 2 is the bottom surface of the second- 1 region b 1 and the second-2 region b 2 . It is placed facing each other.
  • a pair of light emitting devices 100b are partially protruded into the cavity on the first circuit board 210 as compared to FIG. 7A, and the second circuit board 215 is also a cavity on the first circuit board 210. Since a part of the light emitting device 100b is disposed to protrude into the inside, the pair of light emitting devices 100b may not be disposed directly facing the bottom surface of the first region a.
  • a pair of light emitting devices 100c are partially protruded into the cavity on the second circuit board 215 as compared to FIG. 7A, and the third circuit board 215 is also a cavity on the second circuit board 215. Since a part of the light emitting device 100c is disposed to protrude to the inside, the pair of light emitting devices 100c may not be disposed directly facing the bottom surfaces of the 2-1 region b 1 and the 2-2 region b 2 .
  • the light emitting device 100a of the first area region a and the light emitting device 100b of the 2-1 area b 1 or the 2-2 area b 2 are provided.
  • the horizontal separation distance between them is not only within 100 micrometers, but may also be zero as shown.
  • the light emitting device 100b in the 2-1 region b 1 or the 2-2 region b 2 and the light emitting element in the 3-1 region c 1 or the 3-2 region c 2 .
  • the horizontal separation distance between 100c is not only within 100 micrometers, but may also be zero as shown.
  • only one light emitting device 100a is disposed on the first area a, and both edges of the light emitting device 100a of the first area area a and the second-first area ( The horizontal separation distance between the light emitting device 100b in the b 1 ) and the second-2 region b 2 may be zero as illustrated.
  • the light emitting devices are disposed in three different height regions, and when the structures of the third circuit board and the light emitting device 100c are added above, the light emitting device packages are disposed at four or more different heights. You can also implement
  • 8A to 8E are views showing darkening in the light emitting device package of FIGS. 5A to 7B.
  • the light emitting device package shown in FIG. 8A is a plan view of FIG. 5A and schematically shows only light emitting elements and their spacing.
  • the horizontal distance between the light emitting devices 100a on the first area is 50 micrometers to 100 micrometers, and the horizontal distance between the light emitting devices 100a on the first area and the light emitting devices 100b on the adjacent second area. 50 micrometers to 100 micrometers.
  • the distance between the respective light emitting devices 100a and 100b in the other direction, that is, the vertical direction in FIG. 8A, is not limited because the wire bonding is made in the above-described horizontal direction.
  • the light emitting device package shown in FIG. 8B is a plan view of FIG. 5B and schematically shows only light emitting elements and their spacings.
  • the horizontal distance between the light emitting devices 100a on the first area is 50 micrometers to 100 micrometers, and the horizontal distance between the light emitting devices 100a on the first area and the light emitting devices 100b on the adjacent second area. Is also zero.
  • the distance between each of the light emitting devices 100a and 100b in the other direction, that is, the vertical direction in FIG. 8B, is not limited because the wire bonding is made in the above-described horizontal direction.
  • the light emitting device package illustrated in FIG. 8C is a plan view of FIG. 6 and schematically shows only light emitting elements and their spacings.
  • One light emitting device 100a is disposed on the first area, and the horizontal distance between the light emitting device 100a on the first area and the light emitting device 100b on the adjacent second area is zero.
  • the distance between the respective light emitting devices 100a and 100b in the other direction, that is, the vertical direction in FIG. 8C, is not limited because the wire bonding is made in the above-described horizontal direction.
  • the light emitting device package illustrated in FIG. 8D is a plan view of FIG. 7A and schematically shows only light emitting elements and their spacing.
  • the horizontal distance between the light emitting devices 100a on the first area is 50 micrometers to 100 micrometers
  • the horizontal distance between the light emitting devices 100a on the first area and the light emitting devices 100b on the adjacent second area is 50 micrometers to 100 micrometers
  • the horizontal distance between the light emitting device 100b on the second region and the light emitting device 100c on the adjacent third region is also 50 micrometers to 100 micrometers.
  • the distance between the respective light emitting devices 100a, 100b, and 100c in the other direction, that is, the vertical direction in FIG. 8A, is not limited since the wire bonding is made in the above-described horizontal direction.
  • the light emitting device package illustrated in FIG. 8E is a plan view of FIG. 7B and schematically shows only light emitting elements and their spacing.
  • One light emitting device 100a is disposed on the first area, and the horizontal distance between the light emitting device 100a on the first area and the light emitting device 100b on the second area adjacent to the first area is zero, and the light emission on the second area is zero.
  • the horizontal distance between the device 100b and the light emitting device 100c on the adjacent third region is also zero.
  • two light emitting devices may be disposed adjacent to each other in the horizontal direction, such that surface light sources may be disposed.
  • the light emitting device arrays may be disposed adjacent to each other in the above-described light emitting device package to implement a surface light source, and when each light emitting device is connected in parallel, local dimming in which a current is supplied to only some light emitting devices in one light emitting device package (local dimming).
  • the surface light source when the light emitting device package is provided in the head lamp, the surface light source may be implemented and only a part of the area of the head lamp may be turned on to implement various signals.
  • 9A to 9C are exploded views illustrating a vehicle lamp unit according to an embodiment.
  • a base plate 400, a spacer 700, and an optical member 600, on which a plurality of light emitting devices 100 are disposed may be disposed. It may include.
  • the light emitting device 100 may be disposed on the base plate 400, and the base plate 400 may include an electrode pattern for electrically connecting the light emitting devices 100.
  • the light emitting device 100 may be a light emitting device disposed in the above-described light emitting device package, and in some regions, a plurality of light emitting devices are adjacent to each other.
  • the base plate 400 may be manufactured to have flexibility, from polyethylene terephthalate (PET), glass, polycarbonate (PC), silicon (Si), polyimide, epoxy, and the like. It may be a printed circuit board (PCB) substrate made of any one selected material, or may be formed in a film form.
  • PET polyethylene terephthalate
  • PC polycarbonate
  • Si silicon
  • PCB printed circuit board
  • the base plate 400 may selectively use a single layer PCB, a multilayer PCB, a ceramic substrate, a metal core PCB, or the like.
  • the base plate 400 may be bent by applying a soft material, but may be bent by structural deformation.
  • the base plate 400 may include a curved surface having one or more curvatures.
  • a hole may be formed in the region of the base plate 400 corresponding to the connection protrusion of the lens 200.
  • the lens 200 may be fastened to the base plate 400 through the hole of the base plate 400.
  • the base plate 400 may include a fixing projection 420 protruding in a lower direction opposite to the upper surface facing the light emitting devices 100.
  • the base plate 400 may be fixed to the mounting object having a curvature through the fixing protrusion 420.
  • any one of a reflective coating film and a reflective coating material layer may be formed in the base plate 400, and may reflect light generated from a light source toward the optical member 600.
  • the reflective coating film or the reflective coating material layer may include a metal or metal oxide having high reflectance such as aluminum (Al), silver (Ag), gold (Au), titanium dioxide (TiO 2 ), or the like. .
  • the base plate 400 may include a plurality of heat dissipation pins for dissipating heat generated from the light source.
  • the light emitting devices 100 may be light emitting diode chips, and may include red LED chips, blue LED chips, or ultraviolet LED chips, or red LED chips, green LED chips, blue LED chips, and yellow greens. It may be configured in a package form combining at least one or more of the LED chip, the white LED chip.
  • the light emitting device 100 may be a vertical light emitting chip, for example, a red light emitting chip, but embodiments are not limited thereto.
  • the spacer 700 may be disposed between the base plate 400 and the optical member 600 and may support an edge of the optical member 600.
  • the spacer 700 may include a bottom surface facing the base plate 400 and a side surface extending in the direction of the optical member 600 from the edge of the bottom surface.
  • the bottom surface of the spacer 700 may be spaced apart from the base plate 400 by a predetermined interval.
  • the bottom surface of the spacer 700 may contact the base plate 400.
  • the bottom surface of the spacer 700 may be a curved surface having one or more curvatures.
  • the side surface of the spacer 700 may be inclined with respect to the bottom surface of the spacer 700.
  • any one of a reflective coating film and a reflective coating material layer may be formed in the spacer 700, and may reflect light generated by the light source 100 in the direction of the optical member 600.
  • the reflective coating film or the reflective coating material layer may include a metal or metal oxide having high reflectance such as aluminum (Al), silver (Ag), gold (Au), titanium dioxide (TiO 2 ), or the like. .
  • the optical member 600 may be disposed at a predetermined interval from the base plate 400, and a light mixing area is formed in the space between the base plate 400 and the optical member 600. Can be formed.
  • the optical member 600 may be disposed away from the base plate 400 by a predetermined interval, and the interval may be about 10 mm or more.
  • the lamp unit does not exhibit uniform luminance, and a hot spot in which strong luminance appears in an area where the light source 100 is located.
  • the phenomenon or vice versa, dark spots may appear, in which relatively weak luminance appears.
  • the optical member 600 may include at least one sheet, and may selectively include a diffusion sheet, a prism sheet, a brightness enhancement sheet, and the like.
  • the diffusion sheet diffuses the light emitted from the light emitting device 100
  • the prism sheet guides the diffused light to the light emitting region
  • the brightness diffusion sheet enhances the brightness.
  • the diffusion sheet may be generally formed of an acrylic resin, but is not limited thereto.
  • PS polystyrene
  • PMMA polymethyl methacrylate
  • COC cyclic olefin copoly
  • PET polyethylene terephthalate
  • PS polystyrene
  • PMMA polymethyl methacrylate
  • COC cyclic olefin copoly
  • PET polyethylene terephthalate
  • PS polystyrene
  • PMMA polymethyl methacrylate
  • COC cyclic olefin copoly
  • PET polyethylene terephthalate
  • It may be made of a material capable of performing a light diffusing function such as a high permeability plastic such as resin.
  • the optical member 600 may include a curved surface having one or more curvatures.
  • the optical member 600 may have a surface having at least one of a concave curved surface, a convex curved surface, and a flat plane, depending on the outer shape of the cover member or the mounting object.
  • the embodiment forms a light mixing region in the empty space between the lens 200 covering the light source and the base plate 400 and the optical member 600, thereby reducing the surface area with a small number of light sources.
  • the light source can be implemented.
  • the surface light source refers to a light source whose light emitting part has a diffused shape in a plane shape, and in an embodiment, a lamp capable of realizing the surface light source with a small number of light sources disposed adjacent to each other. Units may be provided.
  • the light emitting devices may be connected in parallel to each other so that only some of the light emitting devices are turned on in the lamp unit, thereby implementing a plurality of signals in one lamp unit.
  • FIG. 10 is a view showing a tail light for a vehicle including a lamp unit according to the embodiment.
  • the vehicle taillight 800 may include a first lamp unit 812, a second lamp unit 814, a third lamp unit 816, and a housing 810.
  • the first lamp unit 812 may be a light source for the role of a turn signal
  • the second lamp unit 814 may be a light source for the role of a traffic light
  • the third lamp unit 816 may serve as a stop light. It may be a light source for, but is not limited to this, the role may be interchanged.
  • the housing 810 may accommodate the first to third lamp units 812, 814, and 816 and may be made of a light transmitting material.
  • the housing 810 may have a curvature according to the design of the vehicle body, and the first to third lamp units 812, 814, and 816 may implement a surface light source that can be bent, depending on the shape of the housing 810. Can be.
  • the light emitting device package according to the embodiment may implement a surface light source in a vehicle lamp unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

실시예는 서로 높이가 다른 제1 영역과 제2 영역을 포함하는 회로 기판; 상기 제1 영역과 제2 영역에 각각 배치된 발광소자; 및 상기 각각의 발광소자 상에 배치된 형광체층을 포함하고, 상기 각각의 발광소자는 수평 방향으로 100 마이크로 미터 이내의 거리에 배치되는 발광소자 패키지를 제공한다.

Description

발광소자 패키지
실시예는 발광소자 패키지에 관한 것이다.
GaN, AlGaN 등의 3-5 족 화합물 반도체는 넓고 조정이 용이한 밴드 갭 에너지를 가지는 등의 많은 장점으로 인해 광 전자 공학 분야(optoelectronics)와 전자 소자를 위해 등에 널리 사용된다.
특히, 반도체의 3-5족 또는 2-6족 화합물 반도체 물질을 이용한 발광 다이오드(Light Emitting Diode)나 레이저 다이오드와 같은 발광소자는 박막 성장 기술 및 소자 재료의 개발로 적색, 녹색, 청색 및 자외선 등 다양한 색을 구현할 수 있으며, 형광 물질을 이용하거나 색을 조합함으로써 효율이 좋은 백색 광선도 구현이 가능하며, 형광등, 백열등 등 기존의 광원에 비해 저소비전력, 반영구적인 수명, 빠른 응답속도, 안전성, 환경친화성의 장점을 가진다.
따라서, 광 통신 수단의 송신 모듈, LCD(Liquid Crystal Display) 표시 장치의 백라이트를 구성하는 냉음극관(CCFL: Cold Cathode Fluorescence Lamp)을 대체하는 발광 다이오드 백라이트, 형광등이나 백열 전구를 대체할 수 있는 백색 발광 다이오드 조명 장치, 자동차 헤드 램프 및 신호등에까지 응용이 확대되고 있다.
조명 장치나 자동차 헤드 램프에는 하나의 유닛 내에 복수 개의 발광소자 패키지가 배치된 발광소자 패키지가 사용될 수 있고, 각각의 발광소자는 와이어 본딩 등의 방법으로 전류를 공급받을 수 있다.
도 1은 발광소자 패키지의 배열을 나타낸 도면이다.
복수 개의 발광소자(100)가 가로로 4개와 세로로 2개가 배열되고 있고, 각각의 발광소자(100)은 와이어(110, 115)로 본딩되고 있다. 인접한 발광소자(100)는 가로와 세로 방향으로 각각 d1과 d2만큼 이격되어 있는데, 상술한 인접한 발광소자(100) 간의 이격 거리가 d1과 d2보다 커지면 암부가 발생할 수 있다.
도 2는 3열의 발광소자 패키지의 암부 형성을 나타낸 도면이다.
복수 개의 발광소자(100, 100')가 가로로 4개와 세로로 3개가 배열되고 있고, 각각의 발광소자(100, 100')은 와이어(110, 115)로 본딩되고 있다. 인접한 발광소자(100)를 가로와 세로 방향으로 각각 d1과 d2만큼 이격시켜서 암부가 발생하지 않게 배열할 때, 내부에 배치된 발광소자(100') 들의 와이어 본딩에 필요한 공간의 확보가 어렵다.
즉, 발광소자를 3열 이상으로 배치할 때, 외부의 영역과 인접하지 않게 배치된 발광소자의 와이어 본딩을 위한 공간이 필요하며, 상술한 공간은 발광소자 패키지 전체에서 암부로 나타날 수 있다.
실시예는 자동차 헤드 램프 등의 광원으로 사용되는 발광소자 패키지에서 암부가 나타나지 않고 면광원을 구현하고자 한다.
실시예는 제1 영역과 상기 제1 영역보다 높이가 높은 제2 영역을 포함하고, 상기 제2 영역은 상기 제1 영역을 사이에 두고 서로 마주보는 제2-1 영역과 제2-2 영역을 포함하는 회로 기판; 상기 제1 영역과 제2 영역에 각각 적어도 하나씩 배치된 발광소자; 및 상기 각각의 발광소자 상에 배치된 형광체층을 포함하고, 상기 각각의 발광소자는 수평 방향으로 100 마이크로 미터 이내의 거리에 배치되는 발광소자 패키지를 제공한다.
회로 기판은 상기 제1 영역의 제2 회로 기판과 상기 제2 영역의 제2 회로 기판이 접촉하며 배치될 수 있다.
제2 영역의 높이가 상기 제1 영역의 높이보다 높을 수 있다.제1 영역 내에 2열의 발광소자가 배치되고, 상기 2열의 발광소자는 서로 50 마이크로 미터 내지 100 마이크로 미터 이격될 수 있다.
인접하여 배치되는 상기 제1 영역 내의 발광소자와 상기 제2 영역 내의 발광소자는 수평 방향으로 0 보다 크고 내지 100 마이크로 미터보다 작은 거리를 사이에 두고 배치될 수 있다.
제1 영역에 1열 내지 2열의 발광소자가 배치되고, 상기 제2-1 영역과 제2-2 영역에 각각 1열의 발광소자가 배치될 수 있다.
제1 영역의 바닥면과 상기 제2 영역의 바닥면의 높이차는 160 마이크로 미터 내지 5 밀리미터일 수 있다.
각각의 발광소자의 높이는 90 마이크로 미터 내지 100 마이크로 미터이고, 상기 형광체층의 높이는 50 마이크로 미터 내지 60 마이크로 미터일 수 있다.
제1 영역에 배치된 발광소자의 출력은 상기 제2 영역에 배치된 발광소자의 출력보다 클 수 있다.
회로 기판은 상기 제2 영역보다 더 높게 배치된 제3 영역을 더 포함하고, 상기 제3 영역은 상기 제2 영역을 사이에 두고 서로 마주보는 제3-1 영역과 제3-2 영역을 포함하며, 상기 제3-1 영역과 제3-2 영역에 각각 적어도 하나의 발광소자가 배치될 수 있다.
제3 영역의 발광소자는 상기 제2 영역의 발광소자와 수평 방향으로 100 마이크로 미터 이내의 거리에 배치될 수 있다.
인접하여 배치되는 상기 제2 영역 내의 발광소자와 상기 제3 영역 내의 발광소자는 0 보다 크고 100 마이크로 미터 보다 작은 수평 방향의 거리를 사이에 두고 배치될 수 있다.
제2 영역의 바닥면과 상기 제3 영역의 바닥면의 높이차는 160 마이크로 미터 내지 5 밀리미터일 수 있다.
제2 영역에 배치된 발광소자의 출력은 상기 제3 영역에 배치된 발광소자의 출력보다 클 수 있다.
다른 실시예는 서로 높이가 다른 적어도 2개의 영역을 포함하는 회로 기판; 상기 적어도 2개의 영역에 각각 적어도 하나가 배치된 발광소자; 및 상기 각각의 발광소자 상에 배치된 형광체층을 포함하고, 상기 각각의 발광소자는 수평 방향으로 100 마이크로 미터 이내의 거리에 배치될 수 있다.
회로 기판은 제1 영역과, 상기 제1 영역보다 높이가 높은 제2 영역과, 상기 제2 영역보다 높이가 높은 제3 영역을 포함하고, 상기 제1 영역과 제2 영역 및 제3 영역에 각각 발광소자가 배치도리 수 있다.
제1 영역과 제2 영역의 높이차는, 상기 제2 영역과 상기 제3 영역의 높이차와 동일할 수 있다.
제2 영역은 상기 제1 영역을 사이에 두고 서로 마주 보며 한 쌍이 대칭을 이루며 배치될 수 있다.
한 쌍의 제2 영역 상에 각각 배치된 발광소자들은, 상기 제1 영역을 사이에 두고 대칭을 이루며 배치될 수 있다.
제3 영역은 상기 제1 영역을 사이에 두고 서로 마주 보며 한 쌍이 대칭을 이루며 배치되고, 상기 한 쌍의 제3 영역 상에 각각 배치된 발광소자들은 상기 제1 영역을 사이에 두고 대칭을 이루며 배치될 수 있다.
본 실시예에 따른 발광소자 패키지는 내부에서 발광소자 어레이가 서로 인접하여 배치되어 면광원을 구현할 수 있고, 각각의 발광소자들이 병렬로 연결되면 하나의 발광소자 패키지 내에서 일부 발광소자에만 전류가 공급되는 로컬 디밍(local dimming)을 구현할 수도 있다. 이러한 배치는 발광소자 패키지가 헤드 램프에 구비될 때, 면광원이 구현될 수 있고 헤드 램프에서 일부 영역만이 점등되어 다양한 신호를 구현할 수 있다.
도 1은 발광소자 패키지의 배열을 나타낸 도면이고,
도 2는 3열의 발광소자 패키지의 암부 형성을 나타낸 도면이고,
도 3은 발광소자의 일실시의 도면이고,
도 4a 및 도 4b는 발광소자 패키지의 제1 실시예와 제2 실시예의 단면도이고,
도 5a 및 도 5b는 도 4a의 발광소자 패키지 내의 발광소자들의 배치를 나타낸 도면이고,
도 6은 도 4b의 발광소자 패키지 내의 발광소자들의 배치를 나타낸 도면이고,
도 7a 및 도 7b는 발광소자 패키지의 제3 실시예와 제4 실시예의 단면도이고,
도 8a 내지 도 8e는 도 5a 내지 도 7b의 발광소자 패키지 내의 암부 감소를 나타낸 도면이고,
도 9a 내지 도 9c는 실시예에 따른 차량용 램프 유닛을 보여주는 분해 구성도
도 10은 실시예에 따른 램프 유닛을 포함하는 차량용 후미등을 보여주는 도면이다.
이하 상기의 목적을 구체적으로 실현할 수 있는 본 발명의 실시예를 첨부한 도면을 참조하여 설명한다.
본 발명에 따른 실시예의 설명에 있어서, 각 element의 " 상(위) 또는 하(아래)(on or under)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)(on or under)는 두개의 element가 서로 직접(directly)접촉되거나 하나 이상의 다른 element가 상기 두 element사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다. 또한 “상(위) 또는 하(아래)(on or under)”으로 표현되는 경우 하나의 element를 기준으로 위쪽 방향 뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
도 3은 발광소자의 일실시의 도면이다.
본 실시예에 따른 발광소자(100)는 아래의 발광소자 패키지 내의 모든 발광소자에 적용될 수 있고, 도시된 수직형 타입의 발광소자 외에 수평형 타입의 발광소자가 적용될 수도 있다.
발광소자(100) 내의 발광 구조물(20)은 제1 도전형 반도체층(22)과 활성층(24) 및 제2 도전형 반도체층(26)을 포함하여 이루어진다.
제1 도전형 반도체층(22)은 Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제1 도전형 도펀트가 도핑될 수 있다. 예를 들어, 제1 도전형 반도체층(22)은 AlxInyGa(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질, AlGaN, GaN, InAlGaN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP 중 어느 하나 이상으로 형성될 수 있다.
제1 도전형 반도체층(22)이 n형 반도체층인 경우, 제1 도전형 도펀트는 Si, Ge, Sn, Se, Te 등과 같은 n형 도펀트를 포함할 수 있다. 제1 도전형 반도체층(22)은 단층 또는 다층으로 형성될 수 있으며, 이에 대해 한정하지는 않는다.
발광 소자(100)가 자외선(UV), 심자외선(Deep UV) 또는 무분극 발광 소자일 경우, 제1 도전형 반도체층(22)은 InAlGaN 및 AlGaN 중 적어도 하나를 포함할 수 있다.
활성층(24)은 제1 도전형 반도체층(22)과 제2 도전형 반도체층(26) 사이에 배치되며, 단일 우물 구조(Double Hetero Structure), 다중 우물 구조, 단일 양자 우물 구조, 다중 양자 우물(MQW:Multi Quantum Well) 구조, 양자점 구조 또는 양자선 구조 중 어느 하나를 포함할 수 있다.
활성층(24)은 Ⅲ-Ⅴ족 원소의 화합물 반도체 재료를 이용하여 우물층과 장벽층, 예를 들면 AlGaN/AlGaN, InGaN/GaN, InGaN/InGaN, GaN/AlGaN, InAlGaN/GaN, GaAs(InGaAs)/AlGaAs, GaP(InGaP)/AlGaP 중 어느 하나 이상의 페어 구조로 형성될 수 있으나 이에 한정되지는 않는다. 우물층은 장벽층의 에너지 밴드 갭보다 작은 에너지 밴드 갭을 갖는 물질로 형성될 수 있다.
제2 도전형 반도체층(26)은 반도체 화합물로 형성될 수 있다. 제2 도전형 반도체층(26)은 Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제2 도전형 도펀트가 도핑될 수 있다. 제2 도전형 반도체층(26)은 예컨대, InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질, AlGaN, GaN AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP 중 어느 하나 이상으로 형성될 수 있다.
제2 도전형 반도체층(26)이 p형 반도체층인 경우, 제2 도전형 도펀트는 Mg, Zn, Ca, Sr, Ba 등과 같은 p형 도펀트일 수 있다. 제2 도전형 반도체층(26)은 단층 또는 다층으로 형성될 수 있으며, 이에 대해 한정하지는 않는다. 만일, 발광 소자(100)가 자외선(UV), 심자외선(Deep UV) 또는 무분극 발광 소자일 경우, 제2 도전형 반도체층(26)은 InAlGaN 및 AlGaN 중 적어도 하나를 포함할 수 있다.
제1 도전형 반도체층(22)의 표면에 요철 구조가 형성되어 발광소자(100)의 광추출 효율을 향상시킬 수 있고, 제1 도전형 반도체층(22) 상에 제1 전극(70)이 배치될 수 있다. 제1 전극(70)은 도전성 물질 예를 들면 금속으로 형성될 수 있으며, 보다 상세하게는 Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf 및 이들의 선택적인 조합으로 이루어질 수 있고, 단층 또는 다층 구조로 형성될 수 있다.
발광 구조물(20) 특히, 제2 도전형 반도체층(26)은 오믹층(30)과 반사층(40)과 접합층(50) 및 도전성 지지 기판(60) 상에 배치될 수 있는데, 오믹층(30)과 반사층(40)과 접합층(50) 및 도전성 지지기판(60)이 제2 전극으로 작용할 수 있다.
오믹층(30)은 약 200 옹스트롱의 두께일 수 있다. 오믹층(30)은 ITO(indium tin oxide), IZO(indium zinc oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), IZON(IZO Nitride), AGZO(Al-Ga ZnO), IGZO(In-Ga ZnO), ZnO, IrOx, RuOx, NiO, RuOx/ITO, Ni/IrOx/Au, 및 Ni/IrOx/Au/ITO, Ag, Ni, Cr, Ti, Al, Rh, Pd, Ir, Sn, In, Ru, Mg, Zn, Pt, Au, Hf 중 적어도 하나를 포함하여 형성될 수 있으며, 이러한 재료에 한정되는 않는다.
반사층(40)은 알루미늄(Al), 은(Ag), 니켈(Ni), 백금(Pt), 로듐(Rh), 혹은 Al이나 Ag이나 Pt나 Rh를 포함하는 합금을 포함하는 금속층으로 이루어질 수 있다. 알루미늄이나 은 등은 활성층(24)에서 발생된 빛을 효과적으로 반사하여 발광소자의 광추출 효율을 크게 개선할 수 있다.
도전성 지지기판(metal support, 60)은 전기 전도도가 우수한 금속을 사용할 수 있고, 발광소자 작동시 발생하는 열을 충분히 발산시킬 수 있어야 하므로 열전도도가 높은 금속을 사용할 수 있다.
도전성 지지기판(60)은 금속 또는 반도체 물질등으로 형성될 수 있다. 또한 전기전도성과 열 전도성이 높은 물질로 형성될 수 있다. 예를 들어, 몰리브덴(Mo), 실리콘(Si), 텅스텐(W), 구리(Cu) 및 알루미늄(Al)로 구성되는 군으로부터 선택되는 물질 또는 이들의 합금으로 이루어질 수 있으며, 또한, 금(Au), 구리합금(Cu Alloy), 니켈(Ni), 구리-텅스텐(Cu-W), 캐리어 웨이퍼(예: GaN, Si, Ge, GaAs, ZnO, SiGe, SiC, SiGe, Ga2O3 등) 등을 선택적으로 포함할 수 있다.
상기 도전성 지지기판(60)은 전체 질화물 반도체에 휨을 가져오지 않으면서, 스크라이빙(scribing) 공정 및 브레이킹(breaking) 공정을 통하여 별개의 칩으로 잘 분리시키기 위한 정도의 기계적 강도를 가질 수 있다.
접합층(50)은 반사층(40)과 도전성 지지기판(60)을 결합하는데, 금(Au), 주석(Sn), 인듐(In), 알루미늄(Al), 실리콘(Si), 은(Ag), 니켈(Ni) 및 구리(Cu)로 구성되는 군으로부터 선택되는 물질 또는 이들의 합금으로 형성할 수 있다.
오믹층(30)과 반사층(40)은 스퍼터링법이나 전자빔 증착법에 의하여 형성될 수 있고 도전성 지지기판(60)은 전기화학적인 금속증착방법이나 유테틱(Eutetic) 메탈을 이용한 본딩 방법 등으로 형성하거나, 별도의 접합층(50)을 형성할 수 있다.
발광 구조물(20)의 둘레에는 패시베이션층(80)이 배치될 수 있는데, 패시베이션층(80)은 절연물질로 이루어질 수 있으며, 절연물질은 비전도성인 산화물이나 질화물로 이루어질 수 있다. 일 예로서, 패시베이션층(80)은 실리콘 산화물(SiO2)층, 산화 질화물층, 산화 알루미늄층으로 이루어질 수 있다.
도 4a 및 도 4b는 발광소자 패키지의 제1 실시예와 제2 실시예의 단면도이다.
도 4a에 도시된 발광소자 패키지(200a)는 회로 기판이 서로 높이가 다른 제1 영역(a)과 제2 영역(b1, b2)을 포함하고, 제1 영역(a)과 제2 영역(b1, b2)에 각각 발광소자(100a, 100b) 어레이가 서로 다른 높이에 배치되고 있다. 제1 영역(a)은 제1 회로기판(210)의 표면이고, 제2 영역(b1, b2)은 제2 회로 기판(215)의 표면일 수 있다.
제1 회로기판(210)은 결합층(212)을 통하여 제2 회로기판(215)과 접촉하며 결합되고, 제1 회로기판(210)의 일부가 캐비티를 이루고, 상기 캐비티의 바닥면이 제1 영역(a)일 수 있다.
도시된 구조의 발광소자 패키지(200a)는 제1 영역(a)의 2개의 발광소자(100a) 어레이와 제2 영역(b1, b2)의 2개의 발광소자(100b) 어레이가 서로 높이를 달리하여 배치되므로, 특히 제1 영역(a)의 2개의 발광소자(100a) 어레이가 와이어 본딩될 공간이 확보되어, 각각의 발광소자(100a, 100b) 어레이 간의 거리를 줄일 수 있어서 암부의 발생을 막을 수 있다.
본 단면도에서는 4개의 발광소자(100a, 100b) 어레이가 도시되고 있으나, 도 8a에서 후술하는 바와 같이 다른 방향(예를 들면 세로 방향)으로도 복수 개의 발광소자가 배치될 수 있는데 와이어 본딩이 도 4a에 도시된 방향(예를 들면 가로 방향)에서만 이루어지므로, 다른 방향에서는 와이어 본딩 영역을 별도로 확보하지 않을 수 있다.
도 4b에 도시된 발광소자 패키지(200b)는 도 4a에 도시된 구조와 유사하나, 제1 영역(a)에 하나의 발광소자(100a) 만이 도시되고 있다. 즉, 본 실시예에 따른 발광소자 패키지(200b)는 3개의 발광소자(100a, 100b) 어레이가 한 방향(예를 들면 가로 방향)에 도시된 점에서 도 4a에 도시된 실시예와 상이하다.
도 5a 및 도 5b는 도 4a의 발광소자 패키지 내의 발광소자들의 배치를 나타낸 도면이다.
도 5a에서 발광소자 패키지(200a)는 제1 회로기판(210)과 제2 회로기판(215)이 결합층(212)을 통하여 결합되고 있고, 제1 회로기판(210)과 제2 회로기판(215)은 인쇄회로기판(PCB, Printed circuit board)이나 메탈 PCB 또는 플렉서블 PCB 등일 수 있으며, 결합층(212)은 도전성이거나 비도전성 접착제일 수 있다.
제1 회로기판(210)에는 캐비티가 형성되고 있는데, 캐비티의 바닥면이 제1 영역(a)을 이루고, 제1 영역(a)에 발광소자(100a) 어레이가 2개 배치되고 있다. 도 5a는 단면도이고, 실제 발광소자(100a) 어레이의 배치는 도 8a에 도시된 바와 같이 가로로 2개, 세로로 4개 또는 그 이상일 수 있다.
발광소자(100a) 어레이는 상술한 캐비티의 바닥면 즉 제1 영역(a)에 한 쌍이 배치되고, 각각의 발광소자(100a) 상에는 형광체층(150a)이 컨포멀 코팅의 방식으로 배치되고 있다. 본 실시예에서 발광소자(100a)가 와이어(160a)로 본딩되고 있는데, 발광소자(100a) 상의 제1-1 본딩 패드(190a)가 제1 회로기판(210) 상의 제2-1 본딩 패드(210a)와 와이어(160a)로 연결되고 있다.
형광체층(150a)의 일부는 오픈되어 제1-1 본딩 패드(190a)가 배치되고 와이어(160a)가 본딩될 공간을 확보하며, 형광체층(150a)은 발광소자(100a)의 상면 외에 측면에도 배치될 수 있다.
제2 회로기판(215)은 상술한 캐비티를 사이에 두고 서로 마주보고 한 쌍이 배치될 수 있는데, 서로 마주보는 한 쌍의 제2 회로기판(215)의 표면을 제2 영역이라 할 수 있는데, 제2 영역은 제2-1 영역(b1)과 제2-2 영역(b2)이 서로 마주보며 배치되고 있다. 제2-1 영역(b1)과 제2-2 영역(b2)을 포함하는 제2 영역의 높이는, 제1 영역(a)의 높이보다 높다.
제2-1 영역(b1)과 제2-2 영역(b2)에 배치된 발광소자(100b) 어레이의 구조는 제1 영역(a)에 도시된 발광소자(100a) 어레이의 구조와 동일하다. 즉, 발광소자(100b) 어레이는 제2 회로기판(215)의 표면 즉, 제2-1 영역(b1)과 제2-2 영역(b2)에 배치되고, 각각의 발광소자(100b) 상에는 형광체층(150b)이 컨포멀 코팅의 방식으로 배치되고 있다. 발광소자(100b) 상의 제1-2 본딩 패드(190b)가 제2 회로기판(215) 상의 제2-2 본딩 패드(215a)와 와이어(160b)로 연결되고 있다.
형광체층(150b)의 일부는 오픈되어 제1-2 본딩 패드(190b)가 배치되고 와이어(160b)가 본딩될 공간을 확보하며, 형광체층(150b)은 발광소자(100b)의 상면 외에 측면에도 배치될 수 있다.
제2-1 영역(b1)과 제2-2 영역(b2)에 배치된 발광소자(100b) 어레이는 각각 제1 영역(a)과 반대 방향, 즉 도 5a에서 바깥쪽 방향으로 와이어(160b) 본딩되므로 제1 영역(a) 상의 발광소자(100a) 어레이와 수평 방향으로 인접하여 배치될 수 있다.
제1 회로기판(210)과 제2 회로기판(215)이 서로 높이를 달리하지 않고 배치되면, 제1 영역(a)의 발광소자(100a)가 와이어(160a) 본딩되는 제2-1 본딩 패드(210a)가 인접한 발광소자(100b)와 너무 근접하여 배치되어, 제조 공정 중 와이어 본딩이 어려울 수 있다. 그러나, 도 5a에 도시된 구조는 제1 회로기판(210)에 캐비티를 형성하고 발광소자(100a) 어레이를 배치하고 와이어(160a) 본딩 공정 후에, 제2 회로기판(215)을 배치할 수 있다.
발광소자(100a, 100b)의 높이(h1)는 90 마이크로 미터 내지 100 마이크로 미터일 수 있고, 형광체층(150a)의 높이(h2)는 50 마이크로 미터 내지 60 마이크로 미터일 수 있고, 와이어(160a)의 높이(h3)는 160 마이크로 미터 내외일 수 있는데 상술한 발광소자(100a, 100b)의 높이(h1)와 형광체층(150a)의 높이(h2)와 비슷할 수 있으며, 상술한 높이(h1, h2, h3)들은 모두 제1 회로기판(210)의 캐비티의 바닥면으로부터의 높이이다.
캐비티의 깊이(h4)는 제1 영역(a) 상의 발광소자(100a)와 제2 영역 상의 발광소자(100b)의 높이의 차이일 수 있는데, 160 마이크로 미터 내지 5 밀리미터일 수 있다. 캐비티의 깊이(h4)가 너무 작으면 와이어(160a)가 상부의 제2 회로기판(215) 등의 형성공정에서 손상될 수 있고, 캐비티의 깊이(h4)가 너무 크면 제1 영역(a) 상의 발광소자(100a)와 제2 영역 상의 발광소자(100b)의 휘도나 지향각에 따른 조명 장치나 헤드 램프의 휘도 불균일이 발생할 수 있다.
각각의 발광소자(100a, 100b)는 수평 방향으로 서로 100 마이크로 미터 이내의 거리에 배치되어야 암부 발생을 방지할 수 있다. 제1 영역(a) 내에 배치된 한 쌍의 발광소자(100a)는 서로 50 마이크로 미터 내지 100 마이크로 미터의 거리(d3)만큼 이격되어 배치될 수 있다. 제1 영역(a) 내에 배치된 한 쌍의 발광소자(100a) 사이의 이격 거리(d3)가 50 마이크로 미터보다 작으면 제조 공정에서 한 쌍의 발광소자(100a)의 실장 등이 어려울 수 있고, 100 마이크로 미터보다 크면 한 쌍의 발광소자(100a, 100b) 사이에서 암부가 발생할 수 있다.
상술한 이격 거리의 확보를 위하여 제1 영역(a)에 배치된 발광소자(100a) 어레이는 도 5a에서 바깥 방향으로 와이어 본딩되고 있다. 즉, 제1 영역(a)에 배치된 발광소자(100a) 어레이 한 쌍은 각각 인접한 제2 영역에 배치된 발광소자(100b) 어레이 방향으로 와이어 본딩되고 있다.
서로 인접하여 배치되는 제1 영역(a)의 발광소자(100a)와 제2-1 영역(b1) 또는 제2-2 영역(b2)의 발광소자(100b) 사이의 이격 거리(d4)는 수평 방향으로 서로 50 마이크로 미터 내지 100 마이크로 미터 이내의 거리에 배치될 수 있다. 이격 거리(d4)가 50 마이크로 미터보다 작으면 와이어(160a)를 본딩할 공간이 부족할 수 있고, 100 마이크로 미터보다 크면 한 쌍의 발광소자(100a, 100b) 사이에서 암부가 발생할 수 있다. 상술한 이격 거리 d3 또는 d4는 수평 방향의 이격 거리를 뜻하는데, 즉 d4는 발광소자(100a, 100b)가 서로 동일 평면 상에 배치된 경우 수평 방향에서 이격된 거리를 뜻한다.
도 5b에 도시된 발광소자 패키지(200a)는 도 5a의 발광소자 패키지(200a)와 유사하나, 제2 영역 즉 제2-1 영역(b1)과 제2-2 영역(b2)에 배치된 발광소자(100b) 어레이의 일부가 제1 영역(a)의 바닥면과 마주보며 배치되고 있다. 즉, 한 쌍의 발광소자(100b)가 도 5a에 비하여 제1 회로기판(210) 상의 캐비티 내부로 일부 돌출되어 배치되고 있으며, 제2 회로기판(215) 역시 제1 회로기판(210) 상의 캐비티 내부로 일부 돌출되어 배치되므로 한 쌍의 발광소자(100b)는 제1 영역(a)의 바닥면과 직접 마주보며 배치되지는 않을 수 있다.
본 구조에 따른 발광소자 패키지(200a)에서 제1 영역 영역(a)의 발광소자(100a)와 제2-1 영역(b1) 또는 제2-2 영역(b2)의 발광소자(100b) 사이의 수평 방향의 이격 거리는 100 마이크로 미터 이내일 뿐만 아니라, 도시된 것과 같이 제로(zero)를 이룰 수도 있다. 도 5b에서 제1 영역 영역(a)의 발광소자(100a)와 제2-1 영역(b1) 또는 제2-2 영역(b2)의 발광소자(100b)의 가장 자리가 일치하는 것은, 각각의 활성층의 가장 자리가 일치할 수 있다.
도 6은 도 4b의 발광소자 패키지 내의 발광소자들의 배치를 나타낸 도면이다.
본 실시예에 따른 발광소자 패키지(200b)는 도 5b에 도시된 실시예와 유사하나, 제1 영역(a) 상에 하나의 발광소자(100a) 만이 배치된 점에서 상이하다. 따라서, 한 쌍의 발광소자(100b)가 제1 회로기판(210) 상의 캐비티 내부로 일부 돌출되어 배치되고 있으며, 제2 회로기판(215) 역시 제1 회로기판(210) 상의 캐비티 내부로 일부 돌출되어 배치되므로 한 쌍의 발광소자(100b)는 제1 영역(a)의 바닥면과 직접 마주보며 배치되지는 않을 수 있다.
본 구조에 따른 발광소자 패키지(200a)에서 제1 영역 영역(a)의 발광소자(100a)의 양쪽 가장 자리와 제2-1 영역(b1) 및 제2-2 영역(b2)의 발광소자(100b) 사이의 수평 방향의 이격 거리는, 도시된 것과 같이 제로(zero)를 이룰 수 있다. 그리고, 도 6에 도시된 실시예에서 제2-1 영역(b1) 및 제2-2 영역(b2)의 발광소자(100b)가 캐비티 방향으로 돌출되지 않을 경우, 제1 영역 영역(a)의 발광소자(100a)의 양쪽 가장 자리와 제2-1 영역(b1) 및 제2-2 영역(b2)의 발광소자(100b) 사이의 수평 방향의 이격 거리는 100 마이크로 미터 이내일 수 있다.
도시하지는 않았으나, 발광소자(100a)와 제2-1 영역(b1) 및 제2-2 영역(b2) 사이의 수평 방향의 이격 거리는 도 5a 등에 도시된 거리(d4)와 동일할 수 있다.
상술한 실시예들과 후술하는 실시예들에서, 발광소자들이 서로 높이를 달리하여 배치되므로 제1 영역에 배치된 발광소자의 출력은 제2 영역에 배치된 발광소자의 출력보다 클 수 있으며, 3개 이상의 높이를 서로 달리하는 영역을 포함하는 경우 높이가 낮은 영역에 배치된 발광소자일수록 출력이 더 클 수 있다.
상술한 실시예들에서 한 쌍의 제2 영역 즉, 제2-1 영역(b1)과 제2-2 영역(b2)는 제1 영역(a)을 사이에 두고 서로 마주 보며 대칭을 이루고, 제2-1 영역(b1)과 제2-2 영역(b2) 상에 배치된 발광소자(160b)들은 제1 영역(a)을 사이에 두고 대칭을 이루며 배치되고 있다.
후술하는 실시예들에서는, 한 쌍의 제3 영역 즉, 제3-1 영역(c1)과 제3-2 영역(bc)는 제1 영역(a)을 사이에 두고 서로 마주 보며 대칭을 이루고, 제3-1 영역(c1)과 제3-2 영역(c2) 상에 배치된 발광소자(160c)들은 제1 영역(a)을 사이에 두고 대칭을 이루며 배치되고 있다.
도 7a 및 도 7b는 발광소자 패키지의 제3 실시예와 제4 실시예의 단면도이고, 회로 기판이 서로 높이를 달리하는 3개의 영역으로 배치되는 실시예이다.
도 7a에 도시된 발광소자 패키지(200c)는 회로기판이 제1 회로기판(210)과 제2 회로기판(215) 외에 제3 회로기판(225)를 포함하며, 제1 회로기판(210)과 제2 회로기판(215)은 결합층(212)로 결합되고 제2 회로기판(215)과 제3 회로기판(225)도 결합층(222)을 통하여 결합될 수 있다.
제1 회로기판(210)의 내부에는 캐비티가 형성되고, 캐비티의 바닥면이 제1 영역(a)을 이루며, 제1 영역(a) 상에 한 쌍의 발광소자(100a)가 배치되는데, 발광소자(100a)의 구성과 배치 등은 도 5a에 도시된 실시예와 동일하다.
제2 회로기판(215)은 제1 회로기판(210) 내의 캐비티를 사이에 두고 한 쌍이 배치되고, 각각의 제2 회로기판(215)은 단차 구조를 가진다. 상기 단차 구조는 제1 영역(a) 방향의 높이가 가장 자리 방향의 높이보다 낮고, 상술한 높이가 낮은 영역에 발광소자(100b) 어레이가 배치되고 있다. 발광소자(100b) 어레이가 배치되는 제2 회로기판(215) 상의 영역을 제2-1 영역(b1)과 제2-2 영역(b2)이라고 각각 칭할 수 있다. 제2-1 영역(b1)과 제2-2 영역(b2) 상에 배치된 한 쌍의 발광소자(100b)의 구성과 배치 등은 도 5a에 도시된 실시예와 동일하다.
제3-1 영역(C1)과 제2-1 영역(B1)의 높이의 차이(h4)는, 도 5a에서 제1 ㅇ영(a) 상의 발광소자(100a)와 제2 영역 상의 발광소자(100b)의 높이의 차이(h4)와 동일하게 160 마이크로 미터 내지 5 밀리미터일 수 있다. 제2 회로기판의 높이(h4)가 너무 작으면 와이어(160b)가 상부의 제3 회로기판(225) 등의 형성공정에서 손상될 수 있고, 제2 회로기판의 높이(h4)가 너무 크면 제2-1 영역(b1)과 제2-2 영역(b2) 상의 발광소자(100b)와 제3 영역 상의 발광소자(100c)의 휘도나 지향각에 따른 조명 장치나 헤드 램프의 휘도 불균일이 발생할 수 있다.
제3 회로기판(225)은 제2-1 영역(b1)과 제2-2 영역(b2)을 사이에 두고 서로 마주보며 한 쌍이 배치될 수 있는데, 서로 마주보는 한 쌍의 제3 회로기판(225)의 표면을 제3 영역이라 할 수 있는데, 제3 영역은 제3-1 영역(c1)과 제3-2 영역(c2)이 서로 마주보며 배치되고 있다. 제3-1 영역(c1)과 제3-2 영역(c2)을 포함하는 제3 영역의 높이는, 제1 영역(a) 및 제2-1 영역(b1)과 제2-2 영역(b2)의 높이보다 높다.
제3-1 영역(c1)과 제3-2 영역(c2)에 배치된 발광소자(100c) 어레이의 구조는 제1 영역(a) 등에 도시된 발광소자(100a) 어레이의 구조와 동일하다. 즉, 발광소자(100c) 어레이는 제3 회로기판(225)의 표면 즉, 제3-1 영역(c1)과 제3-2 영역(c2)에 배치되고, 각각의 발광소자(100c) 상에는 형광체층(150c)이 컨포멀 코팅의 방식으로 배치되고 있다. 발광소자(100c) 상의 제1-3 본딩 패드(190c)가 제3 회로기판(225) 상의 제2-3 본딩 패드(225a)와 와이어(160c)로 연결되고 있다.
형광체층(150c)의 일부는 오픈되어 제1-3 본딩 패드(190c)가 배치되고 와이어(160c)가 본딩될 공간을 확보하며, 형광체층(150c)은 발광소자(100c)의 상면 외에 측면에도 배치될 수 있다.
제3-1 영역(c1)과 제3-2 영역(c2)에 배치된 발광소자(100c) 어레이는 각각 제2-1 영역(b1)과 제2-2 영역(b2)과 반대 방향, 즉 도 7a에서 바깥쪽 방향으로 와이어(160c) 본딩되므로 제2-1 영역(b1)과 제2-2 영역(b2) 상의 발광소자(100b) 어레이와 수평 방향으로 인접하여 배치될 수 있다.
도 7a에서 서로 인접하여 배치되는 제2-1 영역(b1) 또는 제2-2 영역(b2)의 발광소자(100b)와, 각각 제3-1 영역(c1)과 제3-2 영역(c2)에 배치된 발광소자(100c) 사이의 수평 방향의 이격 거리(d5)는 서로 50 마이크로 미터 내지 100 마이크로 미터 이내의 거리에 배치될 수 있다. 이격 거리(d5)가 50 마이크로 미터보다 작으면 와이어(160b)를 본딩할 공간이 부족할 수 있고, 100 마이크로 미터보다 크면 한 쌍의 발광소자(100b, 100b) 사이에서 암부가 발생할 수 있다.
상술한 수평 방향의 이격 거리(d5)가 50 마이크로 미터 내지 100 마이크로 미터 확보된 제2-1 영역(b1) 또는 제2-2 영역(b2)에 발광소자(100b)가 와이어 본딩되고 있다.
제3-1 영역(c1)과 제3-2 영역(c2)에 배치된 발광소자(100c) 어레이는 각각 제2-1 영역(b1) 또는 제2-2 영역(b2)과 반대 방향, 즉 도 7a에서 바깥쪽 방향으로 와이어(160c) 본딩되므로, 제2-1 영역(b1) 또는 제2-2 영역(b2) 상의 발광소자(100b) 어레이와 수평 방향으로 인접하여 배치될 수 있다.
도 7b에 도시된 발광소자 패키지(200a)는 도 7a의 발광소자 패키지(200a)와 유사하나, 제1 영역(a)에 하나의 발광소자(100a)가 배치되고, 제2 영역 즉 제2-1 영역(b1)과 제2-2 영역(b2)에 배치된 발광소자(100b) 어레이의 일부가 제1 영역(a)의 바닥면과 마주보며 배치되며, 제3 영역 즉 제3-1 영역(c1)과 제3-2 영역(c2)에 배치된 발광소자(100c) 어레이의 일부가 제2-1 영역(b1)과 제2-2 영역(b2)의 바닥면과 마주보며 배치되고 있다.
즉, 한 쌍의 발광소자(100b)가 도 7a에 비하여 제1 회로기판(210) 상의 캐비티 내부로 일부 돌출되어 배치되고 있으며, 제2 회로기판(215) 역시 제1 회로기판(210) 상의 캐비티 내부로 일부 돌출되어 배치되므로 한 쌍의 발광소자(100b)는 제1 영역(a)의 바닥면과 직접 마주보며 배치되지는 않을 수 있다. 또한, 한 쌍의 발광소자(100c)가 도 7a에 비하여 제2 회로기판(215) 상의 캐비티 내부로 일부 돌출되어 배치되고 있으며, 제3 회로기판(215) 역시 제2 회로기판(215) 상의 캐비티 내부로 일부 돌출되어 배치되므로 한 쌍의 발광소자(100c)는 제2-1 영역(b1)과 제2-2 영역(b2)의 바닥면과 직접 마주보며 배치되지는 않을 수 있다
본 구조에 따른 발광소자 패키지(200d)에서 제1 영역 영역(a)의 발광소자(100a)와 제2-1 영역(b1) 또는 제2-2 영역(b2)의 발광소자(100b) 사이의 수평 방향의 이격 거리는 100 마이크로 미터 이내일 뿐만 아니라, 도시된 것과 같이 제로(zero)를 이룰 수도 있다. 또한, 제2-1 영역(b1) 또는 제2-2 영역(b2)의 발광소자(100b)와 제3-1 영역(c1) 또는 제3-2 영역(c2)의 발광소자(100c) 사이의 수평 방향의 이격 거리는 100 마이크로 미터 이내일 뿐만 아니라, 도시된 것과 같이 제로(zero)를 이룰 수도 있다.
또한, 본 실시예에서 제1 영역(a) 상에 하나의 발광소자(100a) 만이 배치되고 있고, 제1 영역 영역(a)의 발광소자(100a)의 양쪽 가장 자리와 제2-1 영역(b1) 및 제2-2 영역(b2)의 발광소자(100b) 사이의 수평 방향의 이격 거리는, 도시된 것과 같이 제로(zero)를 이룰 수 있다.
도 7a 및 도 7b에서 발광소자들이 3개의 서로 높이가 다른 영역에 배치되고 있으며, 제3 회로기판과 발광소자(100c)의 구조를 보다 위에 추가하면 4개 이상의 서로 다른 높이에 배치되는 발광소자 패키지를 구현할 수도 있다.
도 8a 내지 도 8e는 도 5a 내지 도 7b의 발광소자 패키지 내의 암부 감소를 나타낸 도면이다.
도 8a에 도시된 발광소자 패키지는 도 5a의 평면도이고, 발광소자들과 그 간격만을 개략적으로 도시하고 있다. 제1 영역 상의 발광소자(100a) 사이의 가로 방향의 거리는 50 마이크로 미터 내지 100 마이크로 미터이고, 제1 영역 상의 발광소자(100a)와 인접한 제2 영역 상의 발광소자(100b) 사이의 가로 방향의 거리도 50 마이크로 미터 내지 100 마이크로 미터이다. 다른 방향, 즉 도 8a에서 세로 방향 사이의 각각의 발광소자(100a, 100b) 사이의 거리는, 와이어 본딩이 상술한 가로 방향에서 이루어지므로, 별도의 제한을 받지 않을 수 있다.
도 8b에 도시된 발광소자 패키지는 도 5b의 평면도이고, 발광소자들과 그 간격만을 개략적으로 도시하고 있다. 제1 영역 상의 발광소자(100a) 사이의 가로 방향의 거리는 50 마이크로 미터 내지 100 마이크로 미터이고, 제1 영역 상의 발광소자(100a)와 인접한 제2 영역 상의 발광소자(100b) 사이의 가로 방향의 거리도 제로이다. 다른 방향, 즉 도 8b에서 세로 방향 사이의 각각의 발광소자(100a, 100b) 사이의 거리는, 와이어 본딩이 상술한 가로 방향에서 이루어지므로, 별도의 제한을 받지 않을 수 있다.
도 8c에 도시된 발광소자 패키지는 도 6의 평면도이고, 발광소자들과 그 간격만을 개략적으로 도시하고 있다. 제1 영역 상에 하나의 발광소자(100a)가 배치되고, 제1 영역 상의 발광소자(100a)와 인접한 제2 영역 상의 발광소자(100b) 사이의 가로 방향의 거리는 제로이다. 다른 방향, 즉 도 8c에서 세로 방향 사이의 각각의 발광소자(100a, 100b) 사이의 거리는, 와이어 본딩이 상술한 가로 방향에서 이루어지므로, 별도의 제한을 받지 않을 수 있다.
도 8d에 도시된 발광소자 패키지는 도 7a의 평면도이고, 발광소자들과 그 간격만을 개략적으로 도시하고 있다. 제1 영역 상의 발광소자(100a) 사이의 가로 방향의 거리는 50 마이크로 미터 내지 100 마이크로 미터이고, 제1 영역 상의 발광소자(100a)와 인접한 제2 영역 상의 발광소자(100b) 사이의 가로 방향의 거리도 50 마이크로 미터 내지 100 마이크로 미터이며, 제2 영역 상의 발광소자(100b)와 인접한 제3 영역 상의 발광소자(100c) 사이의 가로 방향의 거리도 50 마이크로 미터 내지 100 마이크로 미터이다. 다른 방향, 즉 도 8a에서 세로 방향 사이의 각각의 발광소자(100a, 100b, 100c) 사이의 거리는, 와이어 본딩이 상술한 가로 방향에서 이루어지므로, 별도의 제한을 받지 않을 수 있다.
도 8e에 도시된 발광소자 패키지는 도 7b의 평면도이고, 발광소자들과 그 간격만을 개략적으로 도시하고 있다. 제1 영역 상에 하나의 발광소자(100a)가 배치되고, 제1 영역 상의 발광소자(100a)와 인접한 제2 영역 상의 발광소자(100b) 사이의 가로 방향의 거리는 제로이며, 제2 영역 상의 발광소자(100b)와 인접한 제3 영역 상의 발광소자(100c) 사이의 가로 방향의 거리도 제로이다.
도 8b와 도 8c와 도 8e에서 가로 방향에서 2개의 발광소자, 3개의 발광소자 또는 5개의 발광소자가 서로 인접하여 배치되어 면광원이 배치된 것과 같은 효과를 구현할 수 있다.
상술한 발광소자 패키지 내에서 발광소자 어레이가 서로 인접하여 배치되어 면광원을 구현할 수 있고, 각각의 발광소자들이 병렬로 연결되면 하나의 발광소자 패키지 내에서 일부 발광소자에만 전류가 공급되는 로컬 디밍(local dimming)을 구현할 수도 있다. 이러한 배치는 발광소자 패키지가 헤드 램프에 구비될 때, 면광원이 구현될 수 있고 헤드 램프에서 일부 영역만이 점등되어 다양한 신호를 구현할 수 있다.
도 9a 내지 도 9c는 실시예에 따른 차량용 램프 유닛을 보여주는 분해 구성도이다.
도 9a 내지 도 9c에 도시된 바와 같이, 복수 개의 발광소자(100)가 배치된 베이스 플레이트(base plate)(400), 스페이서(spacer)(700), 그리고 광학 부재(optical member)(600)를 포함할 수 있다.
여기서, 발광소자(100)는 베이스 플레이트(400) 위에 배치될 수 있는데, 베이스 플레이트(400)는, 발광소자(100)들을 전기적으로 연결하는 전극 패턴을 포함할 수 있다. 발광소자(100)는 상술한 발광소자 패키지 내에 배치된 발광소자일 수 있으며, 일부 영역에서는 복수 개의 발광소자들이 인접하여 배치되고 있다.
그리고, 베이스 플레이트(400)는, 유연성을 가지도록 제작될 수 있는데, 폴리에틸렌테레프탈레이트(PET), 유리, 폴리카보네이트(PC), 실리콘(Si), 폴리이미드(polyimide), 에폭시(epoxy) 등으로부터 선택된 어느 한 물질로 이루어진 PCB(Printed Circuit Board) 기판일 수도 있고, 필름 형태로 형성될 수도 있다.
또한, 베이스 플레이트(400)는, 단층 PCB, 다층 PCB, 세라믹 기판, 메탈 코아 PCB 등을 선택적으로 사용할 수 있다.
이와 같이, 베이스 플레이트(400)는 연성 재질을 적용함으로써, 휠 수도 있지만, 구조적 변형에 의해서도 휠 수 있다.
따라서, 베이스 플레이트(400)는, 하나 이상의 곡률을 가지는 곡면을 포함할 수 있다.
이어, 베이스 플레이트(400)는, 렌즈(200)의 연결 돌기에 대응하는 영역에 홀(hole)이 형성될 수 있다.
여기서, 베이스 플레이트(400)의 홀을 통해, 렌즈(200)는 베이스 플레이트(400)에 체결될 수 있다.
또한, 베이스 플레이트(400)는, 발광소자(100)들을 마주하는 상부면과 반대되는 하부 방향으로 돌출되는 고정 돌기(fixing projection)(420)를 포함할 수도 있다.
여기서, 베이스 플레이트(400)는, 고정 돌기(420)를 통해, 곡률을 갖는 장착 대상물에 고정될 수 있다.
그리고, 베이스 플레이트(400)는, 반사 코팅 필름 및 반사 코팅 물질층 중 어느 하나가 형성될 수도 있고, 광원에서 생성된 광을 광학 부재(600) 방향으로 반사시킬 수 있다.
여기서, 반사 코팅 필름 또는 반사 코팅 물질층은, 알루미늄(Al), 은(Ag), 금(Au), 이산화 티타늄(TiO2) 등과 같이 높은 반사율을 가지는 금속 또는 금속 산화물을 포함하여 구성될 수 있다.
경우에 따라, 베이스 플레이트(400)는, 광원에서 발생되는 열을 방출하기 위한 다수의 방열 핀(pin)들이 배치될 수도 있다.
발광소자(100)들은 발광 다이오드 칩(LED chip)일 수 있으며, 레드 LED 칩, 블루 LED 칩 또는 자외선 LED 칩으로 구성되거나 또는 레드 LED 칩, 그린 LED 칩, 블루 LED 칩, 엘로우 그린(Yellow green) LED 칩, 화이트 LED 칩 중에서 적어도 하나 또는 그 이상을 조합한 패키지 형태로 구성될 수도 있다.
램프 유닛을 차량의 후미등에 적용할 경우, 발광소자(100)는, 수직형 발광 칩, 예컨대, 적색 발광 칩일 수 있으나, 실시예가 이에 한정되는 것은 아니다.
스페이서(700)는, 베이스 플레이트(400)와 광학 부재(600) 사이에 배치되고, 광학 부재(600)의 가장 자리를 지지할 수 있다.
여기서, 스페이서(700)는, 베이스 플레이트(400)를 마주하는 바닥면과, 바닥면의 가장 자리로부터 광학 부재(600) 방향으로 연장되는 측면을 포함할 수 있다.
또한, 스페이서(700)의 바닥면은, 베이스 플레이트(400)로부터 일정 간격만큼 떨어져 배치될 수 있다.
하지만, 경우에 따라서는, 스페이서(700)의 바닥면은, 베이스 플레이트(400)에 접촉될 수도 있다.
이어, 스페이서(700)의 바닥면은, 하나 이상의 곡률을 가지는 곡면일 수도 있다.
또한, 스페이서(700)의 측면은, 스페이서(700)의 바닥면에 대해 경사질 수 있다.
그리고, 스페이서(700)는, 반사 코팅 필름 및 반사 코팅 물질층 중 어느 하나가 형성될 수도 있고, 광원(100)에서 생성된 광을 광학 부재(600) 방향으로 반사시킬 수 있다.
여기서, 반사 코팅 필름 또는 반사 코팅 물질층은, 알루미늄(Al), 은(Ag), 금(Au), 이산화 티타늄(TiO2) 등과 같이 높은 반사율을 가지는 금속 또는 금속 산화물을 포함하여 구성될 수 있다.
다음, 광학 부재(600)는, 베이스 플레이트(400)로부터 일정 간격으로 공간을 두고 배치될 수 있는데, 베이스 플레이트(400)와 광학 부재(600) 사이의 공간에는 광 혼합 영역(light mixing area)이 형성될 수 있다.
여기서, 광학 부재(600)는, 베이스 플레이트(400)로부터 일정 간격만큼 떨어져 배치될 수 있는데, 그 간격은 약 10mm 이상일 수 있다.
만일, 광학 부재(600)와 베이스 플레이트(400) 사이의 거리가 약 10mm 이하일 경우, 램프 유닛은 균일한 휘도가 나타나지 않고, 광원(100)이 위치한 영역에서 강한 휘도가 나타나는 핫 스팟(hot spot) 현상 또는 이와 반대로 상대적으로 약한 휘도가 나타나는 다크 스팟(dark spot)이 나타날 수 있다.
그리고, 광학 부재(600)는, 적어도 하나의 시트로 이루어지는데, 확산 시트, 프리즘 시트, 휘도 강화 시트 등을 선택적으로 포함할 수 있다.
여기서, 확산 시트는 발광소자(100)에서 출사된 광을 확산시켜 주고, 프리즘 시트는 확산된 광을 발광 영역으로 가이드하며, 휘도 확산 시트는 휘도를 강화시켜 준다.
예로서, 확산 시트는 일반적으로 아크릴 수지로 형성될 수 있으나, 이에 한정되는 것은 아니며 이외에도 폴리스티렌(PS), 폴리메틸 메타크릴레이트(PMMA), 환상 올레핀 코폴리(COC), 폴리에틸렌 테레프탈레이트(PET), 레진(resin)과 같은 고투과성 플라스틱 등 광 확산 기능을 수행할 수 있는 재질로 이루어질 수 있다.
또한, 광학 부재(600)는, 하나 이상의 곡률을 갖는 곡면을 포함할 수 있다.
여기서, 광학 부재(600)는, 커버 부재 또는 장착 대상물의 외형에 따라, 오목한 곡면, 볼록한 곡면, 편평한 평면 중 적어도 어느 하나를 갖는 표면을 가질 수 있다.
이와 같이, 실시예는 광원을 커버하는 렌즈(200)와, 베이스 플레이트(400)와 광학 부재(600) 사이의 빈 공간에 광 혼합(light mixing) 영역을 형성함으로써, 적은 수의 광원들로 면광원을 구현할 수 있다.
여기서, 면광원(surface light source)이란, 빛을 발하는 부분이 면 모양으로 확산을 갖는 광원을 의미하는 것으로, 실시예에서는, 서로 인접하여 배치된 적은 수의 광원들로 면광원을 구현할 수 있는 램프 유닛을 제공할 수 있다. 또한, 발광소자들이 서로 병렬로 연결되어 램프 유닛 내에서 일부 발광소자만이 점등되어, 하나의 램프 유닛 내에서 여러 개의 신호를 구현할 수 있다.
도 10은 실시예에 따른 램프 유닛을 포함하는 차량용 후미등을 보여주는 도면이다.
도시된 바와 같이, 차량용 후미등(800)은 제 1 램프 유닛(812), 제 2 램프 유닛(814), 제 3 램프 유닛(816), 및 하우징(810)을 포함할 수 있다.
여기서, 제 1 램프 유닛(812)은 방향 지시등 역할을 위한 광원일 수 있고, 제 2 램프 유닛(814)은 차폭등의 역할을 위한 광원일 수 있고, 제 3 램프 유닛(816)은 정지등 역할을 위한 광원일 수 있으나, 이에 한정되는 것은 아니며, 그 역할이 서로 바뀔 수 있다.
그리고, 하우징(810)은 제 1 내지 제 3 램프 유닛(812, 814, 816)들을 수납하며, 투광성 재질로 이루어질 수 있다.
이때, 하우징(810)은 차량 몸체의 디자인에 따라 굴곡을 가질 수 있고, 제 1 내지 제 3 램프 유닛(812, 814, 816)은 하우징(810)의 형상에 따라, 휠 수 있는 면광원을 구현할 수 있다.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
실시예에 따른 발광소자 패키지는 차량용 램프 유닛 등에서 면광원을 구현할 수 있다.

Claims (20)

  1. 제1 영역과 상기 제1 영역보다 높이가 높은 제2 영역을 포함하고, 상기 제2 영역은 상기 제1 영역을 사이에 두고 서로 마주보는 제2-1 영역과 제2-2 영역을 포함하는 회로 기판;
    상기 제1 영역과 제2 영역에 각각 적어도 하나씩 배치된 발광소자; 및
    상기 각각의 발광소자 상에 배치된 형광체층을 포함하고,
    상기 각각의 발광소자는 수평 방향으로 100 마이크로 미터 이내의 거리에 배치되는 발광소자 패키지.
  2. 제1 항에 있어서,
    상기 회로 기판은 상기 제1 영역의 제2 회로 기판과 상기 제2 영역의 제2 회로 기판이 접촉하며 배치되는 발광소자 패키지.
  3. 제1 항에 있어서,
    상기 제2 영역의 높이가 상기 제1 영역의 높이보다 높은 발광소자 패키지.
  4. 제1 항 내지 제3 항 중 어느 한 항에 있어서,
    상기 제1 영역 내에 2열의 발광소자가 배치되고, 상기 2열의 발광소자는 서로 50 마이크로 미터 내지 100 마이크로 미터 이격되는 발광소자 패키지.
  5. 제1 항 내지 제3 항 중 어느 한 항에 있어서,
    인접하여 배치되는 상기 제1 영역 내의 발광소자와 상기 제2 영역 내의 발광소자는 0 보다 크고 100 마이크로 미터 보다 작은 수평 방향의 거리를 사이에 두고 배치되는 발광소자 패키지.
  6. 제1 항 내지 제3 항 중 어느 한 항에 있어서,
    상기 제1 영역에 1열 내지 2열의 발광소자가 배치되고, 상기 제2-1 영역과 제2-2 영역에 각각 1열의 발광소자가 배치되는 발광소자 패키지.
  7. 제1 항 내지 제3 항 중 어느 한 항에 있어서,
    상기 제1 영역의 바닥면과 상기 제2 영역의 바닥면의 높이차는 160 마이크로 미터 내지 5 밀리미터인 발광소자 패키지.
  8. 제1 항 내지 제3 항 중 어느 한 항에 있어서,
    상기 각각의 발광소자의 높이는 90 마이크로 미터 내지 100 마이크로 미터이고, 상기 형광체층의 높이는 50 마이크로 미터 내지 60 마이크로 미터인 발광소자 패키지.
  9. 제1 항 내지 제3항 중 어느 한 항에 있어서,
    상기 제1 영역에 배치된 발광소자의 출력은 상기 제2 영역에 배치된 발광소자의 출력보다 큰 발광소자 패키지.
  10. 제1 항 내지 제3 항 중 어느 한 항에 있어서,
    상기 회로 기판은 상기 제2 영역보다 더 높게 배치된 제3 영역을 더 포함하고, 상기 제3 영역은 상기 제2 영역을 사이에 두고 서로 마주보는 제3-1 영역과 제3-2 영역을 포함하며, 상기 제3-1 영역과 제3-2 영역에 각각 적어도 하나의 발광소자가 배치된 발광소자 패키지.
  11. 제10 항에 있어서,
    상기 제3 영역의 발광소자는 상기 제2 영역의 발광소자와 수평 방향으로 100 마이크로 미터 이내의 거리에 배치되는 발광소자 패키지.
  12. 제10 항에 있어서,
    인접하여 배치되는 상기 제2 영역 내의 발광소자와 상기 제3 영역 내의 발광소자는 0 보다 크고 100 마이크로 미터 보다 작은 수평 방향의 거리를 사이에 두고 배치되는 발광소자 패키지.
  13. 제10 항에 있어서,
    상기 제2 영역의 바닥면과 상기 제3 영역의 바닥면의 높이차는 160 마이크로 미터 내지 5 밀리미터인 발광소자 패키지.
  14. 제10 항에 있어서,
    상기 제2 영역에 배치된 발광소자의 출력은 상기 제3 영역에 배치된 발광소자의 출력보다 큰 발광소자 패키지.
  15. 서로 높이가 다른 적어도 2개의 영역을 포함하는 회로 기판;
    상기 적어도 2개의 영역에 각각 적어도 하나가 배치된 발광소자; 및
    상기 각각의 발광소자 상에 배치된 형광체층을 포함하고,
    상기 각각의 발광소자는 수평 방향으로 100 마이크로 미터 이내의 거리에 배치되는 발광소자 패키지.
  16. 제15 항에 있어서,
    상기 회로 기판은 제1 영역과, 상기 제1 영역보다 높이가 높은 제2 영역과, 상기 제2 영역보다 높이가 높은 제3 영역을 포함하고, 상기 제1 영역과 제2 영역 및 제3 영역에 각각 발광소자가 배치된 발광소자 패키지.
  17. 제16 항에 있어서,
    상기 제1 영역과 제2 영역의 높이차는, 상기 제2 영역과 상기 제3 영역의 높이차와 동일한 발광소자 패키지.
  18. 제15 항에 있어서,
    상기 제2 영역은 상기 제1 영역을 사이에 두고 서로 마주 보며 한 쌍이 대칭을 이루며 배치되는 발광소자 패키지.
  19. 제18 항에 있어서,
    상기 한 쌍의 제2 영역 상에 각각 배치된 발광소자들은, 상기 제1 영역을 사이에 두고 대칭을 이루며 배치되는 발광소자 패키지.
  20. 제16 항 내지 제19 항에 있어서,
    상기 제3 영역은 상기 제1 영역을 사이에 두고 서로 마주 보며 한 쌍이 대칭을 이루며 배치되고, 상기 한 쌍의 제3 영역 상에 각각 배치된 발광소자들은 상기 제1 영역을 사이에 두고 대칭을 이루며 배치되는 발광소자 패키지.
PCT/KR2014/002485 2013-03-25 2014-03-25 발광소자 패키지 WO2014157905A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14773611.0A EP2980866B1 (en) 2013-03-25 2014-03-25 Light-emitting element package
US14/779,896 US10177286B2 (en) 2013-03-25 2014-03-25 Light emitting element package having three regions
JP2016504260A JP6359632B2 (ja) 2013-03-25 2014-03-25 発光素子パッケージ
CN201480018475.1A CN105103313B (zh) 2013-03-25 2014-03-25 发光元件封装

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0031494 2013-03-25
KR1020130031494A KR101998765B1 (ko) 2013-03-25 2013-03-25 발광소자 패키지

Publications (1)

Publication Number Publication Date
WO2014157905A1 true WO2014157905A1 (ko) 2014-10-02

Family

ID=51624787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002485 WO2014157905A1 (ko) 2013-03-25 2014-03-25 발광소자 패키지

Country Status (6)

Country Link
US (1) US10177286B2 (ko)
EP (1) EP2980866B1 (ko)
JP (1) JP6359632B2 (ko)
KR (1) KR101998765B1 (ko)
CN (1) CN105103313B (ko)
WO (1) WO2014157905A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016080768A1 (ko) * 2014-11-18 2016-05-26 서울반도체 주식회사 발광 장치 및 이를 포함하는 차량용 램프
WO2016099169A1 (ko) * 2014-12-17 2016-06-23 주식회사 엘엠에스 반사시트 구조물 및 이를 구비한 백라이트 유닛
JP2017103381A (ja) * 2015-12-03 2017-06-08 シチズン電子株式会社 発光装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016201606A1 (de) * 2016-02-03 2017-08-03 Osram Gmbh Beleuchtungsvorrichtung zur emission von beleuchtungslicht
TWI581417B (zh) * 2016-04-11 2017-05-01 友達光電股份有限公司 發光裝置及其製造方法
JP6940749B2 (ja) * 2016-04-28 2021-09-29 日亜化学工業株式会社 発光装置
US10340308B1 (en) 2017-12-22 2019-07-02 X Development Llc Device with multiple vertically separated terminals and methods for making the same
JP7053329B2 (ja) 2018-03-22 2022-04-12 スタンレー電気株式会社 車両用灯具
EP3597991A1 (en) * 2018-06-21 2020-01-22 Automotive Lighting Italia S.p.A. Automotive light
CN109461380B (zh) * 2018-06-26 2021-11-05 矽照光电(厦门)有限公司 一种柔性有源彩色显示模块
TWI685991B (zh) * 2018-08-01 2020-02-21 宏齊科技股份有限公司 適用於雙面焊接的led光源及其製造方法
US11610868B2 (en) 2019-01-29 2023-03-21 Osram Opto Semiconductors Gmbh μ-LED, μ-LED device, display and method for the same
US11271143B2 (en) 2019-01-29 2022-03-08 Osram Opto Semiconductors Gmbh μ-LED, μ-LED device, display and method for the same
US11156759B2 (en) 2019-01-29 2021-10-26 Osram Opto Semiconductors Gmbh μ-LED, μ-LED device, display and method for the same
US11302248B2 (en) 2019-01-29 2022-04-12 Osram Opto Semiconductors Gmbh U-led, u-led device, display and method for the same
ES2925729T3 (es) * 2019-03-28 2022-10-19 Signify Holding Bv Pila de PCB de múltiples capas para mezclar colores
US11538852B2 (en) 2019-04-23 2022-12-27 Osram Opto Semiconductors Gmbh μ-LED, μ-LED device, display and method for the same
JP7494215B2 (ja) * 2019-05-23 2024-06-03 エイエムエス-オスラム インターナショナル ゲーエムベーハー 照明配置構造体、光誘導配置構造体およびそれらに関する方法
CN113552745A (zh) * 2020-04-23 2021-10-26 华为技术有限公司 一种显示设备及其驱动方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148711A (ja) * 1995-11-20 1997-06-06 Chikaya Yamashita 印刷回路におけるledの取付構造
US20060245188A1 (en) * 2005-04-28 2006-11-02 Sharp Kabushiki Kaisha Semiconductor light emitting device
KR20080027601A (ko) * 2006-09-25 2008-03-28 엘지이노텍 주식회사 발광 장치
JP2008211261A (ja) * 2008-06-09 2008-09-11 Sharp Corp 窒化物半導体発光素子
JP4813309B2 (ja) * 2006-09-26 2011-11-09 株式会社小糸製作所 車両用灯具

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW578280B (en) * 2002-11-21 2004-03-01 United Epitaxy Co Ltd Light emitting diode and package scheme and method thereof
US9793247B2 (en) * 2005-01-10 2017-10-17 Cree, Inc. Solid state lighting component
JP4971672B2 (ja) * 2005-09-09 2012-07-11 パナソニック株式会社 発光装置
JP5122177B2 (ja) 2007-04-27 2013-01-16 株式会社小糸製作所 車両用灯具
JP5158472B2 (ja) 2007-05-24 2013-03-06 スタンレー電気株式会社 半導体発光装置
CN101325193B (zh) * 2007-06-13 2010-06-09 先进开发光电股份有限公司 发光二极管封装体
DE102007041896A1 (de) * 2007-09-04 2009-03-05 Osram Opto Semiconductors Gmbh Halbleiterbauelement und Verfahren zur Herstellung eines Halbleiterbauelements
CN101572012A (zh) * 2008-04-28 2009-11-04 富准精密工业(深圳)有限公司 发光二极管模组及使用该模组的交通指示灯
JP5236070B2 (ja) * 2008-05-13 2013-07-17 シーメンス アクチエンゲゼルシヤフト Ledアレイ
DE102009025564A1 (de) 2008-10-21 2010-05-20 Siemens Aktiengesellschaft Beleuchtungsanordnung mit einem LED-Array
KR101562774B1 (ko) 2009-02-24 2015-10-22 서울반도체 주식회사 발광모듈
US8138509B2 (en) * 2009-02-27 2012-03-20 Visera Technologies Company, Limited Light emitting device having luminescent layer with opening to exposed bond pad on light emitting die for wire bonding pad to substrate
JP2010212508A (ja) * 2009-03-11 2010-09-24 Sony Corp 発光素子実装用パッケージ、発光装置、バックライトおよび液晶表示装置
DE102009015224A1 (de) * 2009-03-31 2010-12-02 Siemens Aktiengesellschaft LED-Lichtquelle mit einer Vielzahl von LED-Chips und LED-Chip zur Verwendung in selbiger
TWI440159B (zh) * 2009-08-03 2014-06-01 Chunghwa Picture Tubes Ltd 發光二極體封裝結構及其支架結構
EP2378576A2 (en) 2010-04-15 2011-10-19 Samsung LED Co., Ltd. Light emitting diode package, lighting apparatus having the same, and method for manufacturing light emitting diode package
DE102010024864B4 (de) 2010-06-24 2021-01-21 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches Halbleiterbauteil
CN102130107B (zh) 2010-12-13 2013-01-09 吉林大学 阶梯阵列式高压发光管及其制备方法
DE102011087887A1 (de) * 2011-12-07 2013-06-13 Osram Gmbh Leuchtdiodenanordnung
JP6097084B2 (ja) * 2013-01-24 2017-03-15 スタンレー電気株式会社 半導体発光装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148711A (ja) * 1995-11-20 1997-06-06 Chikaya Yamashita 印刷回路におけるledの取付構造
US20060245188A1 (en) * 2005-04-28 2006-11-02 Sharp Kabushiki Kaisha Semiconductor light emitting device
KR20080027601A (ko) * 2006-09-25 2008-03-28 엘지이노텍 주식회사 발광 장치
JP4813309B2 (ja) * 2006-09-26 2011-11-09 株式会社小糸製作所 車両用灯具
JP2008211261A (ja) * 2008-06-09 2008-09-11 Sharp Corp 窒化物半導体発光素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2980866A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016080768A1 (ko) * 2014-11-18 2016-05-26 서울반도체 주식회사 발광 장치 및 이를 포함하는 차량용 램프
US10274143B2 (en) 2014-11-18 2019-04-30 Seoul Semiconductor Co., Ltd. Light emitting device and vehicular lamp comprising same
US10323803B2 (en) 2014-11-18 2019-06-18 Seoul Semiconductor Co., Ltd. Light emitting device and vehicular lamp comprising same
US10655801B2 (en) 2014-11-18 2020-05-19 Seoul Semiconductor Co., Ltd. Light emitting device and vehicular lamp comprising same
WO2016099169A1 (ko) * 2014-12-17 2016-06-23 주식회사 엘엠에스 반사시트 구조물 및 이를 구비한 백라이트 유닛
JP2017103381A (ja) * 2015-12-03 2017-06-08 シチズン電子株式会社 発光装置

Also Published As

Publication number Publication date
EP2980866B1 (en) 2021-05-05
JP2016516305A (ja) 2016-06-02
US10177286B2 (en) 2019-01-08
JP6359632B2 (ja) 2018-07-18
EP2980866A4 (en) 2016-12-07
KR20140116654A (ko) 2014-10-06
US20160056345A1 (en) 2016-02-25
EP2980866A1 (en) 2016-02-03
KR101998765B1 (ko) 2019-07-10
CN105103313B (zh) 2018-04-10
CN105103313A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
WO2014157905A1 (ko) 발광소자 패키지
US10559734B2 (en) Light emitting device package and light unit including the same
WO2015194804A1 (ko) 발광 소자 및 이를 포함하는 발광소자 패키지
EP2355193B1 (en) Light emitting diode and package having the same
WO2016089052A1 (ko) 발광 모듈
WO2016153218A1 (ko) 발광 소자, 이를 포함하는 발광 소자 패키지 및 이 패키지를 포함하는 조명 장치
WO2016153213A1 (ko) 발광 소자 패키지 및 조명 장치
WO2019221431A1 (ko) 조명 모듈 및 이를 구비한 조명 장치
WO2016208957A1 (ko) 광학 렌즈, 발광 소자 및 이를 구비한 발광 모듈
WO2017014512A1 (ko) 발광 소자
WO2015190722A1 (ko) 발광 소자 및 조명 장치
WO2013183901A1 (ko) 발광소자, 발광소자 패키지 및 라이트 유닛
WO2016153214A1 (ko) 발광 소자 및 발광 소자 패키지
WO2013162337A1 (en) Light emitting device and light emitting device package
WO2015147518A1 (ko) 렌즈, 이를 포함하는 발광소자 모듈
WO2017014580A1 (ko) 발광 소자 패키지
WO2014010816A1 (en) Light emitting device, and method for fabricating the same
WO2013172606A1 (ko) 발광소자, 발광소자 페키지 및 라이트 유닛
WO2016108437A1 (ko) 발광 소자 및 이를 포함하는 발광 소자 어레이
WO2017034346A1 (ko) 발광소자 및 이를 포함하는 발광소자 패키지
WO2013183878A1 (ko) 발광소자, 발광소자 패키지 및 라이트 유닛
WO2017010851A1 (ko) 발광 소자 패키지
WO2017003095A1 (ko) 발광소자 패키지 이를 포함하는 발광소자 모듈
WO2014021651A1 (ko) 발광 소자
WO2014054891A1 (ko) 발광소자 및 발광소자 패키지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480018475.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773611

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016504260

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14779896

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014773611

Country of ref document: EP