[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014030671A1 - エンジンの制御装置 - Google Patents

エンジンの制御装置 Download PDF

Info

Publication number
WO2014030671A1
WO2014030671A1 PCT/JP2013/072304 JP2013072304W WO2014030671A1 WO 2014030671 A1 WO2014030671 A1 WO 2014030671A1 JP 2013072304 W JP2013072304 W JP 2013072304W WO 2014030671 A1 WO2014030671 A1 WO 2014030671A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression ratio
variable
variable valve
limit value
phase
Prior art date
Application number
PCT/JP2013/072304
Other languages
English (en)
French (fr)
Inventor
清水 博和
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to DE112013001353.3T priority Critical patent/DE112013001353T5/de
Priority to US14/384,926 priority patent/US20150034052A1/en
Publication of WO2014030671A1 publication Critical patent/WO2014030671A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/02Varying compression ratio by alteration or displacement of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0226Variable control of the intake valves only changing valve lift or valve lift and timing
    • F02D13/023Variable control of the intake valves only changing valve lift or valve lift and timing the change of valve timing is caused by the change in valve lift, i.e. both valve lift and timing are functionally related
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a control device of an engine provided with a variable valve mechanism and a variable compression ratio mechanism.
  • a control device of an engine disclosed in Patent Document 1 an operation position of an actuator of a variable valve mechanism which makes an opening characteristic of an intake valve variable and an actuator of a compression ratio variable mechanism which changes a top dead center position of a piston.
  • the operating position is detected, and the distance between the piston and the intake valve at the top dead center is predicted based on the detected operating position. Then, when the predicted distance between the piston and the intake valve is shorter than a threshold, the control device stops the operation of the actuator operating in the direction to shorten the distance, or reduces the operation speed, or By reversing the operation direction, the interference between the intake valve and the piston is prevented.
  • the present invention has been made in view of the above problems, and in an engine provided with a variable valve mechanism and a variable compression ratio mechanism, it is possible to suppress the decrease in controllability while preventing the interference between the intake valve and the piston. It aims at providing a control device.
  • the present invention relates to an engine provided with a variable valve mechanism that changes the opening characteristics of at least one of the intake valve and the exhaust valve, and a compression ratio variable mechanism that changes the top dead center position of the piston.
  • the operating range of the other mechanism is changed according to the control amount of one of the variable valve mechanism and the variable compression ratio mechanism.
  • FIG. 6 is a block diagram illustrating a process of limiting a target compression ratio in an embodiment of the present invention. It is a block diagram which shows the process which limits the target operating angle in embodiment of this invention. It is a block diagram which shows the process which limits the target phase in embodiment of this invention. It is a block diagram which shows the process which changes the upper limit of the compression ratio in embodiment of this invention.
  • FIG. 1 shows an example of an engine to which a control device according to the present invention is applied.
  • the engine 1 is an internal combustion engine, and a cylinder block 2, a piston 4 provided in a cylinder bore 3 formed in the cylinder block 2, a cylinder head 10 in which an intake port 5 and an exhaust port 6 are formed, an intake port 5, an exhaust port A pair of intake valves 7 and 7 and exhaust valves 8 and 8 are provided for each cylinder that opens and closes the open end of 6.
  • the piston 4 is connected to the crankshaft 9 via a connecting rod 13 composed of a lower link 11 and an upper link 12.
  • the combustion chamber 14 is formed between the crown 4 a of the piston 4 and the lower surface of the cylinder head 10.
  • An ignition plug 15 is provided substantially at the center of the cylinder head 10 forming the combustion chamber 14.
  • the engine 1 has a variable valve lift mechanism 21 that makes variable the valve lift amount and operation angle of the intake valves 7, 7, and variable valve timing that makes the phase of the open period of the intake valves 7, 7 to the crankshaft 9 variable.
  • a mechanism 22 and a compression ratio variable mechanism 23 that changes the compression ratio by changing the top dead center position of the piston 4 are provided.
  • the variable valve lift mechanism 21 and the variable valve timing mechanism 22 are variable valve mechanisms that change the opening characteristics of the intake valves 7, 7.
  • the engine 1 can be provided with one of the variable valve lift mechanism 21 and the variable valve timing mechanism 22 as a variable valve mechanism that changes the opening characteristics of the intake valves 7, 7.
  • variable valve lift mechanism 21 changes the angle of the control shaft with an actuator such as an electric motor, thereby allowing the maximum valve lift amount of the intake valves 7 and 7 And a mechanism that changes the operating angle in conjunction with the change in the maximum valve lift amount.
  • variable valve timing mechanism 22 is a mechanism that changes the phase of the intake camshaft 24 with respect to the crankshaft 9 to change the central phase of the actuation angle while keeping the actuation angle of the intake valves 7 constant.
  • Examples of the variable valve timing mechanism 22 include a hydraulic vane type mechanism disclosed in Japanese Patent Application Laid-Open No. 2012-132473 and a mechanism for relatively rotating the intake camshaft 24 with respect to the crankshaft 9 using gears.
  • a mechanism that uses a motor, an electromagnetic brake, or the like as an actuator can be used as appropriate.
  • the compression ratio variable mechanism 23 is a mechanism that makes the compression ratio of the engine 1 variable by changing the top dead center position of the piston 4 according to the structure disclosed in, for example, Japanese Patent Application Laid-Open No. 2002-276446. Below, an example of the structure of the compression ratio variable mechanism 23 is demonstrated.
  • the crankshaft 9 includes a plurality of journal portions 9 a and a crank pin portion 9 b, and the journal portion 9 a is rotatably supported by the main bearing of the cylinder block 2.
  • the crank pin portion 9b is eccentric from the journal portion 9a, and the lower link 11 is rotatably connected here.
  • the lower link 11 is divided into two parts, and the crankpin portion 9b is fitted in a connecting hole provided substantially at the center.
  • the upper link 12 is pivotably connected to one end of the lower link 11 by the connection pin 25 at the lower end side, and is pivotably connected to the piston 4 by the piston pin 26 at the upper end side.
  • the control link 27 is rotatably connected at the upper end side to the other end of the lower link 11 by the connection pin 28, and the lower end side is rotatably connected to the lower portion of the cylinder block 2 via the control shaft 29.
  • the control shaft 29 is rotatably supported by the cylinder block 2 and has an eccentric cam portion 29a eccentrically from the rotation center, and the lower end portion of the control link 27 is rotated by the eccentric cam portion 29a. Mates possible.
  • the control shaft 29 is controlled in angle by a compression ratio control actuator 30 using an electric motor.
  • the compression ratio control actuator 30 when the control shaft 29 is rotated by the compression ratio control actuator 30, the central position of the eccentric cam portion 29a, that is, the cylinder block 2 of the eccentric cam portion 29a. The relative position to is changed. Thereby, the swing support position of the lower end of the control link 27 changes, and when the swing support position of the control link 27 changes, the stroke of the piston 4 changes, and the position of the piston 4 at the piston top dead center TDC increases.
  • the compression ratio of the engine 1 is changed by lowering it.
  • the variable valve lift mechanism 21, the variable valve timing mechanism 22, and the variable compression ratio mechanism 23 operate according to the amount of operation sent from the controller 31, and the center of the maximum valve lift of the intake valves 7, 7, the operating angle, and the open period The open characteristics such as phase and the compression ratio of the engine 1 change.
  • the controller 31 compares the control amount of each of the variable valve lift mechanism 21, the variable valve timing mechanism 22, and the compression ratio variable mechanism 23 with the target value of the control amount of each mechanism 21, 22 calculated according to the engine operating conditions.
  • the operation amount is determined, and the determined operation amount is output to the actuators of the variable valve lift mechanism 21, the variable valve timing mechanism 22, and the variable compression ratio mechanism 23.
  • the controller 31 calculates the target value of the control amount of each mechanism 21, 22 based on, for example, the engine rotational speed, the engine load, the engine temperature, and the like.
  • the control amount in the variable valve lift mechanism 21 is the operating angle or the maximum valve lift amount of the intake valves 7, 7, or a state amount correlated with these. Further, the control amount in the variable valve timing mechanism 22 is a state amount correlated with the phase or phase of the open period of the intake valves 7, 7. Further, the control amount in the variable compression ratio mechanism 23 is a state amount correlated with the top dead center position or the top dead center position of the piston 4.
  • the controller 31 receives signals from various sensors that detect the operating conditions of the engine 1.
  • a crank angle sensor 32 that outputs a pulse signal POS at a frequency proportional to the rotational speed of the engine 1 and an air flow sensor 33 that outputs a signal QA indicating the intake air flow rate of the engine 1 as various sensors that detect operating conditions of the engine 1
  • An accelerator opening sensor 34 outputting a signal ACC indicating an opening of the accelerator pedal, a vehicle speed sensor 35 outputting a signal VSP indicating a traveling speed of a vehicle on which the engine 1 is mounted, a gear position of a transmission combined with the engine 1
  • a gear position sensor 36 for outputting a signal GP indicating the temperature, a water temperature sensor 37 for outputting a signal TW indicating the temperature of the cooling water of the engine 1, and the like are provided.
  • an angle sensor 41 for detecting the angle of the control axis is provided, and a signal CA indicating the angle of the control axis output by the angle sensor 41 is variable.
  • the signal is input to the controller 31 as a signal indicating the control amount in the valve lift mechanism 21.
  • the controller 31 determines information on the rotational position of the crankshaft 9 and the rotational position of the intake camshaft 24. Based on the information, the phase PH of the intake camshaft 24 with respect to the crankshaft 9 is detected.
  • the signal POS of the crank angle sensor 32 is input to the controller 31 as information on the rotational position of the crankshaft 9. Further, as information on the rotational position of the intake camshaft 24, a pulse signal CRP output by the cam angle sensor 42 for each predetermined cam angle is input to the controller 31. Then, the controller 31 detects the phase PH of the open period of the intake valves 7, 7 changed by the variable valve timing mechanism 22 based on the signal POS of the crank angle sensor 32 and the signal CRP of the cam angle sensor 42. Further, in the variable compression ratio mechanism 23, the compression ratio changes according to the rotation of the control shaft 29, so the angle of the control shaft 29 output by the angle sensor 43 is a signal indicating the control amount by the variable compression ratio mechanism 23. A signal CVP shown is input to the controller 31.
  • FIG. 2 shows how the variable valve lift mechanism 21 changes the maximum valve lift amount and operating angle of the intake valves 7, 7, and the variable valve lift mechanism 21 changes the phase of the open period of the intake valves 7, 7. Together with the operation of the piston 4.
  • the maximum valve lift amount and operation angle of the intake valves 7, 7 are increased by the variable valve lift mechanism 21, the opening timing IVO of the intake valves 7, 7 advances, and the piston top dead center The valve lift amount of the intake valves 7, 7 at TDC increases.
  • the opening characteristics of the intake valves 7 shown in FIG. 2 are characteristics when the variable valve lift mechanism 21 sets the phase of the open period to the most retarded position, which is the initial position, and the variable valve lift mechanism 21 opens it.
  • the valve lift amount of the intake valves 7, 7 at the piston top dead center TDC is increased.
  • the target values of the control amounts of the variable valve lift mechanism 21, the variable valve timing mechanism 22, and the compression ratio variable mechanism 23 are the piston 4 and the intake valve 7, with the respective control amounts converging to the target values.
  • the controller 31 calculates in accordance with the operating conditions of the engine 1 so that interference with 7 does not occur.
  • FIG. 3A shows an example of the target value of the piston top dead center and the target value of the opening characteristic of the intake valves 7, 7 in a low load state before acceleration of the engine 1.
  • 3B shows the target value and the intake pressure of the piston top dead center when the accelerator pedal is depressed from the low load state of the engine 1 shown in FIG. 3A to shift to the high load state of the engine 1.
  • An example of a target value of an open characteristic of valves 7 and 7 is shown. Interference with the piston 4 and the intake valves 7, 7 does not occur under any of the operating conditions shown in FIGS. 3 (A) and 3 (B). In the example shown in FIG.
  • the compression ratio is decreased with the change of the engine load from low load to high load, and the operating angle (maximum valve lift amount) of the intake valves 7 and 7 is increased. , 7 are changed in phase by retardation.
  • the variable valve lift mechanism 21, the variable valve timing mechanism 22, and the compression ratio variable mechanism 23 operate in parallel, as shown in FIG. 3C, the process of changing the engine load from low load to high load Also, no interference between the piston 4 and the intake valves 7, 7 occurs.
  • the variable valve timing mechanism 22 and the compression ratio variable mechanism 23 operate. Instead, assuming that only the variable valve lift mechanism 21 operates in the direction to increase the operating angle, the intake valve 7, while the compression ratio is high and the phase of the open period of the intake valves 7, 7 is advanced. When the operating angle of 7 is increased, the piston 4 and the intake valves 7, 7 may interfere with each other. Therefore, in order to prevent the occurrence of piston interference in such a transient state, the controller 31 determines the operation range of each mechanism from the control amounts at the current time in the variable valve lift mechanism 21, the variable valve timing mechanism 22 and the compression ratio variable mechanism 23. Perform processing to change.
  • the controller 31 sets the target value of the operation angle to the upper limit at which valve interference does not occur based on the high compression ratio and the phase of the open period of the intake valves 7 and 7 advanced.
  • the increase control of the operating angle is performed within the operating range where valve interference does not occur.
  • the process of changing the operation range of each mechanism 21, 22, 23 by the controller 31 is an operation in a direction to reduce the distance between the intake valves 7, 7 and the piston 4 at the top dead center. , Increase of the maximum valve lift amount of the intake valves 7, 7, and limiting the advance angle of the phase of the open period of the intake valves 7, 7.
  • FIG. 4 is a functional block diagram showing a process of limiting the target value of the control amount of the compression ratio variable mechanism 23 in the controller 31.
  • a basic target compression ratio calculation unit 231 inputs a signal indicating an engine operating condition such as an engine load and an engine rotational speed, and calculates a basic target compression ratio according to the engine operating condition.
  • the compression ratio upper limit value calculation unit 232 is a signal of the operating angle of the intake valves 7, 7 which is a control amount of the variable valve lift mechanism 21 and of the intake valves 7, 7 which is a control amount of the variable valve timing mechanism 22. Input the open phase signal.
  • the compression ratio upper limit value calculation unit 232 is provided with a map for storing the upper limit value of the compression ratio in accordance with the operating angle of the intake valves 7 and the phase of the open period.
  • the map of the upper limit value of the compression ratio is the maximum compression ratio at which the crown surface of the piston 4 at top dead center TDC faces the intake valves 7, 7 with a predetermined gap, the operating angle of the intake valves 7, 7 and It is stored according to the phase of the open period.
  • the compression ratio upper limit value is set to a smaller value as the operating angle of the intake valves 7, 7 increases, and the compression ratio upper limit value increases as the phase of the open period of the intake valves 7, 7 advances. It is set to a small value.
  • the predetermined gap takes into consideration the measurement errors of the operating angles of the intake valves 7 and 7 and the phase of the open period of the intake valves 7 and 7, and further, the dispersion of the control accuracy of the compression ratio etc. Even in this case, it is previously adapted as a value that can prevent interference between the piston 4 and the intake valves 7 and 7. Then, in the compression ratio upper limit value calculation unit 232, the signal of the compression ratio upper limit value corresponding to the operation angle of the intake valves 7, 7 and the phase of the open period of the intake valves 7, 7 at that time is retrieved from the map and output Do.
  • the comparison unit 233 receives the signal of the basic target compression ratio output by the basic target compression ratio calculation unit 231 and the signal of the compression ratio upper limit value output by the compression ratio upper limit value calculation unit 232, and is lower than both. Output the compression ratio as the final target compression ratio. And the compression ratio variable mechanism 23 is controlled according to this final target compression ratio. That is, when the basic target compression ratio calculated by the basic target compression ratio calculation unit 231 based on the operating conditions of the engine 1 exceeds the compression ratio upper limit value, the compression ratio upper limit value is output as the final target compression ratio. Thus, the final target compression ratio is limited to the compression ratio upper limit value or less.
  • the compression ratio variable mechanism 23 When the compression ratio variable mechanism 23 is controlled according to the basic target compression ratio exceeding the compression ratio upper limit value, the top dead center position of the piston 4 is higher than the valve lift amount of the intake valves 7, 7 at the intake top dead center TDC. There is a possibility that the interference between the intake valves 7 and 7 and the piston 4 may occur.
  • the compression ratio upper limit value is, as described above, the interference between the piston 4 and the intake valves 7, 7 in the phase of the operating angle of the intake valves 7, 7 and the open period of the intake valves 7, 7 at that time. Is set as a value that can prevent Therefore, if the compression ratio variable mechanism 23 is controlled with the compression ratio within the range below the compression ratio upper limit value as the final target compression ratio, interference between the intake valves 7 and 7 and the piston 4 can be prevented in advance.
  • variable valve lift mechanism 21 When the variable valve timing mechanism 22 and the variable compression ratio mechanism 23 are operated without operation, the increase ratio of the compression ratio toward the basic target compression ratio is controlled to cause interference between the intake valves 7 and 7 and the piston 4. It may occur.
  • the upper limit of the compression ratio is set based on the operating angle of the intake valves 7, 7 and the phase of the open period of the intake valves 7, 7 at that time. If the compression ratio is limited, even if the operation angle, in other words, the operation to reduce the maximum valve lift amount is delayed, the compression ratio is limited to the maximum compression ratio or less that is acceptable in such a state. And interference between the intake valves 7 and 7 and the piston 4 can be prevented. Then, when the operation for reducing the operating angle proceeds and the valve lift amount at the intake top dead center TDC decreases, the upper limit of the compression ratio is changed to a higher value according to this, and finally the compression ratio upper limit is increased. When the value exceeds the basic target compression ratio, control is performed to set the basic target compression ratio as the final target compression ratio, and the compression ratio converges to a value corresponding to the operating condition at that time. become.
  • FIG. 5 is a functional block diagram showing a process of limiting the target value of the control amount of the variable valve lift mechanism 21 in the controller 31.
  • a basic target operating angle calculation unit 211 inputs a signal indicating an engine operating condition such as an engine load and an engine rotational speed, and calculates a basic target operating angle according to the engine operating condition.
  • the operation angle upper limit value calculation unit 212 outputs a signal of a compression ratio which is a control amount of the compression ratio variable mechanism 23 and a signal of a phase of an open period of the intake valves 7, 7 which is a control amount of the variable valve timing mechanism 22.
  • the operating angle upper limit value calculation unit 212 is provided in advance with a map for storing the upper limit value of the operating angle corresponding to the compression ratio and the phase of the opening period of the intake valves 7, 7.
  • the map of the upper limit value of the operating angle is the condition of the position of the crown surface 4a of the piston 4 at the top dead center TDC and the phase of the opening period of the intake valves 7, 7 at the top dead center TDC. It stores the maximum operating angle at which the crown surface 4a can face the intake valves 7, 7 with a predetermined gap. That is, from the compression ratio, the valve lift amount that faces the piston 4 with a predetermined gap at the intake top dead center TDC is determined, and the operating angle at which the valve lift amount can be realized is the open period of the intake valves 7 and 7. Since it is determined according to the phase, an operating angle at which the crown surface of the piston 4 and the intake valves 7, 7 face each other with a predetermined gap at the intake top dead center TDC is determined from the compression ratio and the phase.
  • the higher the compression ratio the lower the upper limit of the valve lift amount at the intake top dead center TDC.
  • the intake is performed even at the same operating angle.
  • the valve lift amount at the top dead center TDC is higher, so the higher the actual compression ratio and the more the phase of the open period of the intake valves 7 and 7 is, the smaller the operating angle upper limit value is. It is set.
  • the predetermined gap takes into consideration the measurement error of the compression ratio and the phase, and further, the variation in the control accuracy of the operating angle, and even if these errors are accumulated, the interference between the piston 4 and the intake valves 7, 7 It is pre-adapted as a value that can be prevented.
  • the operation angle upper limit value calculation unit 212 searches the map for the signal of the operation angle upper limit value corresponding to the input compression ratio and phase, and outputs it.
  • the comparison unit 213 receives the signal of the basic target operating angle output by the basic target operating angle computing unit 211 and the signal of the operating angle upper limit output by the operating angle upper limit computing unit 212, and is smaller than the other.
  • the operating angle is output as a final target operating angle.
  • the variable valve lift mechanism 21 is controlled based on the final target operating angle.
  • the operating angle upper limit is output as the final target operating angle.
  • the final target operating angle is limited to the operating angle upper limit value or less.
  • the upper limit value of the operating angle is set as a value that can prevent interference between the piston 4 and the intake valves 7 and 7 in the compression ratio and phase at that time.
  • the variable valve lift mechanism 21 By controlling the variable valve lift mechanism 21 with the operating angle in the range below the upper limit value as the final target operating angle, interference between the intake valves 7, 7 and the piston 4 can be prevented.
  • the maximum valve lift amount is increased, the phase of the open period is retarded, and the compression ratio is decreased.
  • the operation of limiting control of the target operating angle will be described by taking the case of control as an example.
  • the intake valve 7 at the top dead center TDC is executed by performing the increase control of the operation angle toward the basic target operation angle. Interference between the piston 7 and the piston 4 may occur.
  • the operating angle upper limit value is set based on the compression ratio and phase at that time, and the target operating angle is limited to the operating angle upper limit value or less, control and opening to reduce the compression ratio. Even if the operation of retarding the phase of the period is delayed, it is limited to the maximum allowable operating angle or less in such a state, and interference between the intake valves 7 and 7 and the piston 4 can be prevented.
  • the operating angle upper limit is changed to a larger value accordingly, and finally the operating angle upper limit becomes the basic target operating angle As a result, the basic target operating angle is controlled to be the final target operating angle, and the operating angle converges to a value corresponding to the operating condition at that time.
  • the change of the target value of the variable valve lift mechanism 21 is limited, the change of the operation angle by the variable valve lift mechanism 21 is not stopped or the change speed is not suppressed. It is possible to suppress deterioration in responsiveness and convergence in control of
  • FIG. 6 is a functional block diagram showing a process of limiting the target value of the control amount of the variable valve timing mechanism 22 in the controller 31.
  • a basic target phase calculation unit 221 inputs a signal indicating an engine operating condition such as an engine load and an engine rotational speed, and calculates a basic target phase according to the engine operating condition.
  • the phase upper limit value calculation unit 222 inputs the signal of the compression ratio which is the control amount of the compression ratio variable mechanism 23 and the signal of the operating angle which is the control amount of the variable valve lift mechanism 21.
  • the phase upper limit value calculation unit 222 has a map that stores the upper limit value of the phase of the open period of the intake valves 7, 7 corresponding to the compression ratio and the operating angle, that is, the upper limit value of the phase advance amount.
  • the variable valve timing mechanism 22 is a mechanism that sets the most retarded position as the default position and advances the phase of the open period from the most retarded position, and the target phase is an advancing angle from the most retarded position.
  • the upper limit value of the target phase is calculated as the upper limit of the advance angle from the most retarded position.
  • the map of the phase upper limit value is the top dead center at the position of the crown surface 4a of the piston 4 at the top dead center TDC determined according to the compression ratio, and the valve lift amount in the opening period of the intake valves 7 and 7.
  • the maximum amount of phase advance is stored so that the crown surface 4a of the piston 4 at TDC can face the intake valves 7, 7 with a predetermined gap. That is, the valve lift amount that faces the piston 4 with a predetermined gap at the intake top dead center TDC is determined from the compression ratio, and the phase that can realize the valve lift amount depends on the operating angle of the intake valves 7, 7. Since it is determined, the phase at which the crown surface 4a of the piston 4 and the intake valves 7, 7 face each other with a predetermined gap at the intake top dead center TDC is determined from the compression ratio and the operating angle.
  • the upper phase limit value is set to a smaller value.
  • the predetermined gap takes into consideration the measurement error of the compression ratio and the operating angle, and further, the dispersion of the control accuracy of the central phase, etc., and even if these errors are accumulated, the interference between the piston 4 and the intake valves 7, 7 As a value that can prevent, it is adapted in advance.
  • the phase upper limit value calculation unit 222 searches the map for a signal of the phase upper limit value corresponding to the input compression ratio and operation angle, and outputs the signal.
  • the comparison unit 223 inputs the signal of the basic target phase output by the basic target phase calculation unit 221 and the signal of the phase upper limit value output by the phase upper limit value calculation unit 222, and is smaller than the advance angle among the two.
  • the phase is output as the final target phase.
  • the variable valve timing mechanism 22 is controlled based on the final target phase.
  • the phase upper limit value is finalized.
  • the final target phase is limited to the phase upper limit value or less, in other words, on the retard side of the advance angle limit.
  • the phase upper limit value is set as a value that can prevent interference between the piston 4 and the intake valves 7 and 7 at the compression ratio and the operating angle at that time.
  • the variable valve timing mechanism 22 By controlling the variable valve timing mechanism 22 with the phase within the range below the value as the final target phase, interference between the intake valves 7 and 7 and the piston 4 can be prevented.
  • the engine load changes from a high load to a low load, and the maximum valve lift amount is decreased to open the open period.
  • variable valve lift mechanism 21 When the engine load changes from high load to low load, for example, when the decrease in operating angle is delayed and the advance of the phase of the open period and the increase in compression ratio are advanced first, for example, the variable valve lift mechanism 21
  • the variable valve timing mechanism 22 and the variable compression ratio mechanism 23 operate without performing operation, by performing advance angle control of the center phase toward the basic target phase, interference between the intake valves 7 and 7 and the piston 4 is caused. It may occur.
  • the upper limit value of phase is set based on the operating angle and the operating angle at that time, and the target phase is limited to the upper limit of this phase, the operation for reducing the operating angle is delayed. In such a state, it is possible to limit the phase to the retard side of the maximum allowable phase, and the interference between the intake valves 7 and 7 and the piston 4 can be prevented.
  • the upper limit phase value is changed to a more advanced side accordingly, and finally the upper phase limit value
  • control is performed to set the basic target phase as the target phase, and the central phase converges to a value corresponding to the operating condition at that time.
  • the change operation of the phase by the variable valve timing mechanism 22 is not stopped or the change speed is not suppressed. It is possible to suppress deterioration in responsiveness, convergence, and the like in controlling the phase of the open period 7 or 7.
  • the target value restriction processing shown in FIG. 4 to FIG. 6 can be carried out in parallel, or only one of the restriction processing shown in FIG. 4 to FIG. Two restriction processes selected from among the restriction processes shown in 6 can be performed in parallel, or some functions of the restriction processes shown in FIGS. 4 to 6 can be provided.
  • the engine 1 provided with any one of the variable valve timing mechanism 22 and the variable valve lift mechanism 21, one of the limitation function shown in FIG. 5 and the limitation function shown in FIG. 6 is provided.
  • the restriction process to be performed when part of the restriction processing shown in FIGS. 4 to 6 is selected and implemented, or in the case where part of the functions of the restriction processing shown in FIGS. Based on differences in response speeds of the valve lift mechanism 21, the variable valve timing mechanism 22, and the compression ratio variable mechanism 23, it is possible to select the restriction process to be performed. That is, the action in the direction to reduce the distance between the intake valves 7 and 7 and the piston 4 at the top dead center quickly identifies the mechanism that causes the piston interference, and selectively processes the process of limiting the target value of the identified mechanism. In the case where the mechanism causing the piston interference differs depending on the operating condition, the restriction process to be performed can be selected according to the operating condition.
  • FIG. 7 shows a process of changing the upper limit value of the target compression ratio in the compression ratio variable mechanism 23 in accordance with the operating speeds of the variable valve lift mechanism 21 and the variable valve timing mechanism 22.
  • a basic target compression ratio calculation unit 231 calculates a basic target compression ratio according to engine operating conditions.
  • compression ratio upper limit value calculation unit 232 outputs a signal of an operating angle which is a control amount of variable valve lift mechanism 21 at the present time and a signal of a phase of an open period which is a control amount of variable valve timing mechanism 22 at the present time. Are input, and the signal of the compression ratio upper limit value is output according to these.
  • the compression ratio upper limit value calculation unit 232 sets the compression ratio upper limit value to a smaller value as the operation angle increases and as the phase is more advanced.
  • the signal of the compression ratio upper limit value output from the compression ratio upper limit value calculation unit 232 is input to the upper limit value correction unit 234 and is also input to the correction value calculation unit 235.
  • the correction value is set to zero when the compression ratio upper limit value calculated by the compression ratio upper limit value calculation unit 232 is increasing and changing.
  • the correction value is controlled by the variable valve lift mechanism 21 as the reduction speed becomes faster. The faster the advance angle change of the phase controlled by the increase of the operating angle and / or the variable valve timing mechanism 22 is set to a larger value.
  • the upper limit value correction unit 234 subtracts the correction value calculated by the correction value calculation unit 235 from the basic compression ratio upper limit value calculated by the compression ratio upper limit value calculation unit 232, and the subtraction result is the final compression ratio It is output to the comparison unit 233 as the upper limit value. Therefore, the larger the correction value is, the final upper limit of the compression ratio is changed to a smaller value, and the speed of increase of the operating angle and / or the advancing speed of the phase is faster even under the condition that the operating angle and phase are the same. In this case, a smaller value is set as the compression ratio upper limit value.
  • the operation speed of the variable valve lift mechanism 21 in the operation angle increasing direction and / or the operation speed of the phase advance direction of the variable valve timing mechanism 22 is high, and the intake valves 7, 7 and piston at top dead center If the distance to 4 is decreasing at a high speed, the compression ratio upper limit value is changed to a smaller value.
  • the comparison unit 233 inputs the signal of the basic target compression ratio output from the basic target compression ratio calculation unit 231 and the signal of the compression ratio upper limit value corrected by the upper limit value correction unit 234, and the compression of the lower one is lower. Output the ratio as the final target compression ratio.
  • the compression ratio variable mechanism 23 is controlled based on this final target compression ratio.
  • the compression ratio upper limit value As described above, when the operating angle increases at a high speed and / or when the phase advances at a high speed, the possibility of occurrence of piston interference is further increased. It is determined that the upper limit of the target compression ratio is lower to suppress the occurrence of piston interference. As a result, when the speed of increase of the operating angle and the advancing speed of the phase are slow, the upper limit of the target compression ratio can be made higher to prevent the operating range of the variable compression ratio mechanism 23 from being restricted. If the angular velocity and the phase advance rate are fast, the upper limit of the target compression ratio can be lowered to prevent piston interference.
  • FIG. 7 illustrates the process of changing the upper limit value of the target compression ratio in the variable compression ratio mechanism 23 according to the operating speeds of the variable valve lift mechanism 21 and the variable valve timing mechanism 22, the variable valve lift mechanism 21
  • the upper limit value of the target operating angle and the upper limit value of the target phase in the variable valve timing mechanism 22 in the above can be corrected according to the operating speed of the other mechanism, and similar actions and effects can be exhibited.
  • the limitation is simultaneously implemented.
  • the priority of the restriction process can be set. For example, when limiting the target values for all of the variable valve lift mechanism 21, the variable valve timing mechanism 22 and the compression ratio variable mechanism 23, as one example, the priority order of the restriction is the variable valve timing mechanism 22, the compression ratio variable The upper limit value maps are set so that the mechanism 23 and the variable valve lift mechanism 21 are in this order.
  • the target phase in the variable valve timing mechanism 22 is limited to the upper limit value or less, and if the possibility of interference is not eliminated even by such limitation, the target compression ratio in the compression ratio variable mechanism 23 is further limited to the upper limit value. If the possibility of the occurrence of interference is not eliminated even by these limitations, finally, the target operating angle of the variable valve lift mechanism 21 is limited to the upper limit value or less to prevent the occurrence of the interference. .
  • variable valve timing mechanism 22 When the phase of the open period of the intake valves 7, 7 is over-advanced by the variable valve timing mechanism 22, the overlap period of the open periods of the intake valves 7, 7 and the open valves of the exhaust valves 8, 8 becomes large, and internal EGR The amount of gas will increase and cause deterioration of combustion. Therefore, since the target phase limitation in the variable valve timing mechanism 22 acts in the direction to prevent combustion interference due to an increase in the amount of internal EGR gas while preventing piston interference, the variable valve timing mechanism 22 has the highest priority as a limitation priority. Prioritization and target value restriction to prevent interference is initially performed for the variable valve timing mechanism 22.
  • variable valve lift mechanism 21 increases the intake air amount of the engine 1, and limiting the target operating angle based on the upper limit is the engine By limiting the increase of the intake air amount, the acceleration performance of the engine 1 is impaired. Therefore, as the priority of restriction, the priority of the variable valve lift mechanism 21 is made the lowest and the increase of the intake air amount is suppressed as much as possible, and the target values of the variable valve timing mechanism 22 and the compression ratio variable mechanism 23 If the possibility of the occurrence of interference is not eliminated even if the limitation is imposed, the increase of the target operating angle of the variable valve lift mechanism 21 is limited based on the upper limit value to prevent the occurrence of the interference.
  • the mechanism that limits the target value By selecting the mechanism that limits the target value according to the above priority, it is possible to prevent the occurrence of piston interference while suppressing the deterioration of the combustibility and the acceleration. Further, the setting of the priority of restriction as described above can also be applied to the engine 1 which does not include the variable valve timing mechanism 22 and includes the variable compression ratio mechanism 23 and the variable valve lift mechanism 21. For example, when there is a possibility that piston interference may occur, first, the target compression ratio in the compression ratio variable mechanism 23 is limited, and the possibility of the occurrence of the interference is not eliminated even by such limitation. By limiting the target operating angle of, to prevent the occurrence of interference.
  • variable valve timing mechanism 22 may By limiting the target phase to the upper limit value or less and limiting the target compression ratio in the compression ratio variable mechanism 23 to the upper limit value or less when the possibility of interference occurrence is not eliminated even by such limitation, it is possible to prevent the occurrence of interference.
  • the priority order of restriction is not limited to the order of the variable valve timing mechanism 22, the compression ratio variable mechanism 23, and the variable valve lift mechanism 21. For example, when the combustibility can be secured, the variable valve timing mechanism 22 priorities can be lowered.
  • the priority order of restriction can be set according to the response speed of each mechanism 21 to 23. Furthermore, according to the change of the response speed due to the change of the hydraulic pressure or the power supply voltage, or the change of the response speed due to deterioration or failure. And the priority can be changed. Further, the setting of the allowable value of the facing distance between the intake valves 7 and 7 and the piston 4 in the limiting process can be changed with respect to the change in response speed of each mechanism 21-23, for example, each mechanism 21-23. In the case where an abnormality in which the response is delayed is generated, the tolerance value of the facing distance in the restriction process in the other normally operating mechanism can be changed to a smaller value.
  • the priority of restriction can be changed according to the engine operating conditions and the engine operating area. For example, the priority setting is changed between acceleration and deceleration, and the priority of the variable valve lift mechanism 21 is made the lowest in order to suppress the increase in intake air amount from being restricted during acceleration.
  • the target value restriction is implemented, and at the time of deceleration from a high load and high speed range, the priority of the variable compression ratio mechanism 23 is made lowest so that transition to a high compression ratio can be performed quickly.
  • a target value restriction can be implemented.
  • variable valve timing mechanism 22 and the variable valve lift mechanism 21 are shown as variable valve mechanisms for changing the opening characteristics of the intake valves 7, 7.
  • the intake valves 7, 7 are electromagnetically driven valves It can be done.
  • the piston Interference can be prevented.
  • the engine 1 provided with the variable valve mechanism in the exhaust valves 8, 8 in order to prevent the interference between the exhaust valves 8, 8 and the piston 4, it is possible to limit the operation range of the exhaust side variable valve mechanism. .
  • the increasing direction of the target operating angle in such an exhaust side variable valve lift mechanism causes piston interference similarly to the variable valve lift mechanism 21 at the intake side. Since the operation is in the direction to be performed, the target operating angle in the exhaust side variable valve lift mechanism is limited to the upper limit value or less according to the actual compression ratio or the like controlled by the compression ratio variable mechanism 23.
  • the phase retardation direction is an operation in the direction to cause the piston interference.
  • the phase retardation amount is limited to an upper limit value or less according to the actual compression ratio to be controlled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

本発明は、可変動弁機構とピストンの上死点位置を変更する圧縮比可変機構とを備えたエンジンの制御装置に関する。制御装置は、エンジン運転条件に応じて基本目標圧縮比を演算すると共に、吸気バルブの作動角と吸気バルブの開期間の位相とに対応する圧縮比上限値を設定する。そして、制御装置は、基本目標圧縮比と圧縮比上限値とのうちでより低い圧縮比を選択し、選択した圧縮比を最終的な目標圧縮比として圧縮比可変機構(23)を制御する。これにより、吸気バルブとピストンとの干渉を防ぎつつ、可変動弁機構及び圧縮比可変機構の制御性の低下を抑制できる。

Description

エンジンの制御装置
 本発明は、可変動弁機構と圧縮比可変機構とを備えたエンジンの制御装置に関する。
 特許文献1に開示されるエンジンの制御装置では、吸気バルブの開特性を可変とする可変動弁機構のアクチュエータの作動位置、及び、ピストンの上死点位置を変更する圧縮比可変機構のアクチュエータの作動位置を検出し、検出した作動位置に基づいて上死点におけるピストンと吸気バルブとの距離を予測する。そして、前記制御装置は、予測したピストンと吸気バルブとの距離が閾値よりも短い場合に、前記距離を短くする方向に作動するアクチュエータについて、作動を停止させるか、作動速度を遅くするか、若しくは、作動方向を反転させることで、吸気バルブとピストンとの干渉を防ぐようにしている。
特開2010-203269号公報
 しかし、吸気バルブとピストンとの干渉を回避するためにアクチュエータの作動を停止させたりすることは、応急的にバルブ干渉の発生を回避することになり、可変動弁機構や圧縮比可変機構の制御における応答性や収束性などを低下させてしまうという問題があった。
 本発明は上記問題点に鑑みなされたものであり、可変動弁機構と圧縮比可変機構とを備えたエンジンにおいて、吸気バルブとピストンとの干渉を防ぎつつ制御性の低下を抑制できる、エンジンの制御装置を提供することを目的とする。
 そのため、本願発明は、吸気バルブと排気バルブとの少なくとも一方の開特性を変更する可変動弁機構と、ピストンの上死点位置を変更する圧縮比可変機構と、を備えたエンジンにおいて、前記可変動弁機構と前記圧縮比可変機構とのいずれか一方の機構の制御量に応じて他方の機構の作動範囲を変更するようにした。
 上記発明によると、可変動弁機構及び圧縮比可変機構の制御性の低下を抑制しつつ、吸気バルブとピストンとの干渉を防ぐことができる。
本願発明の実施形態におけるエンジンのシステム図である。 本願発明の実施形態における吸気バルブの開特性の変化を示す図である。 本願発明の実施形態における運転条件の変化に伴う吸気バルブの開特性及び圧縮比の変化を示す図である。 本願発明の実施形態における目標圧縮比を制限する処理を示すブロック図である。 本願発明の実施形態における目標作動角を制限する処理を示すブロック図である。 本願発明の実施形態における目標位相を制限する処理を示すブロック図である。 本願発明の実施形態における圧縮比の上限値を変更する処理を示すブロック図である。
 以下に本発明の実施の形態を説明する。
 図1は、本発明に係る制御装置を適用するエンジンの一例を示す。
 エンジン1は内燃機関であり、シリンダブロック2、シリンダブロック2に形成されたシリンダボア3内に設けられたピストン4、吸気ポート5及び排気ポート6が形成されたシリンダヘッド10、吸気ポート5,排気ポート6の開口端を開閉する一気筒当たりそれぞれ一対の吸気バルブ7,7及び排気バルブ8,8を備えている。
 ピストン4は、ロアリンク11とアッパリンク12とからなるコンロッド13を介してクランクシャフト9に連結されている。
 そして、ピストン4の冠面4aとシリンダヘッド10の下面との間に燃焼室14が形成される。燃焼室14を形成するシリンダヘッド10の略中央には、点火栓15を設けてある。
 また、エンジン1は、吸気バルブ7,7のバルブリフト量及び作動角を可変とする可変バルブリフト機構21と、吸気バルブ7,7の開期間のクランクシャフト9に対する位相を可変とする可変バルブタイミング機構22と、ピストン4の上死点位置を変更することで、圧縮比を可変とする圧縮比可変機構23とを備えている。
 前記可変バルブリフト機構21及び可変バルブタイミング機構22は、吸気バルブ7,7の開特性を変更する可変動弁機構である。
 尚、吸気バルブ7,7の開特性を変更する可変動弁機構として、可変バルブリフト機構21と可変バルブタイミング機構22とのいずれか一方を備えるエンジン1とすることができる。
 可変バルブリフト機構21は、例えば、特開2003-172112号公報などに開示されるように、電動モータなどのアクチュエータによって制御軸の角度を変化させることによって、吸気バルブ7,7の最大バルブリフト量を変化させ、係る最大バルブリフト量の変化に連動して作動角を変化させる機構である。
 また、可変バルブタイミング機構22は、クランクシャフト9に対する吸気カムシャフト24の位相を変更することで、吸気バルブ7,7の作動角を一定としたまま作動角の中心位相を変化させる機構である。
 この可変バルブタイミング機構22としては、例えば、特開2012-132473号公報などに開示される油圧ベーン式の機構や、歯車を用いてクランクシャフト9に対し吸気カムシャフト24を相対回転させる機構などを用いることができ、更に、油圧アクチュエータの他、モータや電磁ブレーキなどをアクチュエータとして用いる機構を適宜採用できる。
 圧縮比可変機構23は、例えば、特開2002-276446号公報などに開示される構造によってピストン4の上死点位置を変化させることで、エンジン1の圧縮比を可変とする機構である。以下に、圧縮比可変機構23の構造の一例を説明する。
 クランクシャフト9は、複数のジャーナル部9aとクランクピン部9bとを備えており、シリンダブロック2の主軸受にジャーナル部9aが回転自在に支持される。
 クランクピン部9bは、ジャーナル部9aから偏心しており、ここにロアリンク11が回転自在に連結される。
 ロアリンク11は、2分割に構成され、略中央に設けた連結孔にクランクピン部9bが嵌合する。
 アッパリンク12は、下端側が連結ピン25によりロアリンク11の一端に回動可能に連結され、上端側がピストンピン26によりピストン4に回動可能に連結される。
 コントロールリンク27は、上端側が連結ピン28によりロアリンク11の他端に回動可能に連結され、下端側が制御シャフト29を介してシリンダブロック2の下部に回動可能に連結される。詳しくは、制御シャフト29は、回転可能にシリンダブロック2に支持されていると共に、その回転中心から偏心している偏心カム部29aを有し、この偏心カム部29aにコントロールリンク27の下端部が回転可能に嵌合する。
 制御シャフト29は、電動モータを用いた圧縮比制御アクチュエータ30によって角度が制御される。
 上記のような複リンク式の圧縮比可変機構23においては、制御シャフト29が圧縮比制御アクチュエータ30によって回動されると、偏心カム部29aの中心位置、つまり、偏心カム部29aのシリンダブロック2に対する相対位置が変化する。
 これにより、コントロールリンク27の下端の揺動支持位置が変化し、コントロールリンク27の揺動支持位置が変化するとピストン4の行程が変化し、ピストン上死点TDCにおけるピストン4の位置が高くなったり低くなったりして、エンジン1の圧縮比が変更される。
 可変バルブリフト機構21、可変バルブタイミング機構22、圧縮比可変機構23は、コントローラ31から送られる操作量に応じて動作し、吸気バルブ7,7の最大バルブリフト量、作動角、開期間の中心位相などの開特性、及び、エンジン1の圧縮比が変化する。
 コントローラ31は、可変バルブリフト機構21、可変バルブタイミング機構22、圧縮比可変機構23それぞれの制御量と、エンジン運転条件に応じて演算した各機構21,22の制御量の目標値とを比較して操作量を決定し、決定した操作量を可変バルブリフト機構21、可変バルブタイミング機構22、圧縮比可変機構23それぞれのアクチュエータに出力する。
 尚、コントローラ31は、各機構21,22の制御量の目標値を、例えばエンジン回転速度,エンジン負荷,エンジン温度などに基づいて演算する。
 可変バルブリフト機構21における制御量は、吸気バルブ7,7の作動角又は最大バルブリフト量又はこれらに相関する状態量である。また、可変バルブタイミング機構22における制御量は、吸気バルブ7,7の開期間の位相又は位相に相関する状態量である。更に、圧縮比可変機構23における制御量は、ピストン4の上死点位置又は上死点位置に相関する状態量である。
 コントローラ31は、エンジン1の運転条件を検出する各種センサからの信号を入力する。
 エンジン1の運転条件を検出する各種センサとして、エンジン1の回転速度に比例する周波数でパルス信号POSを出力するクランク角センサ32、エンジン1の吸入空気流量を示す信号QAを出力するエアーフローセンサ33、アクセルペダルの開度を示す信号ACCを出力するアクセル開度センサ34、エンジン1が搭載される車両の走行速度を示す信号VSPを出力する車速センサ35、エンジン1と組み合わされる変速機のギア位置を示す信号GPを出力するギア位置センサ36、エンジン1の冷却水の温度を示す信号TWを出力する水温センサ37などが設けられている。
 また、可変バルブリフト機構21における制御量を検出するセンサとして、制御軸の角度を検出する角度センサ41が設けられており、この角度センサ41が出力する制御軸の角度を示す信号CAが、可変バルブリフト機構21における制御量を示す信号として、コントローラ31に入力される。
 また、可変バルブタイミング機構22は、前述のように、クランクシャフト9に対する吸気カムシャフト24の位相を変更するから、コントローラ31は、クランクシャフト9の回転位置の情報と吸気カムシャフト24の回転位置の情報とに基づき、クランクシャフト9に対する吸気カムシャフト24の位相PHを検出する。
 つまり、クランクシャフト9の回転位置の情報としてクランク角センサ32の信号POSがコントローラ31に入力される。また、吸気カムシャフト24の回転位置の情報として、カム角センサ42が所定カム角毎に出力するパルス信号CRPがコントローラ31に入力される。そして、コントローラ31は、可変バルブタイミング機構22で変更される吸気バルブ7,7の開期間の位相PHをクランク角センサ32の信号POS及びカム角センサ42の信号CRPに基づいて検出する。
 また、圧縮比可変機構23においては、制御シャフト29の回転に応じて圧縮比が変化するので、圧縮比可変機構23による制御量を示す信号として、角度センサ43が出力する制御シャフト29の角度を示す信号CVPが、コントローラ31に入力される。
 図2は、可変バルブリフト機構21によって吸気バルブ7,7の最大バルブリフト量及び作動角が変化する様子、及び、可変バルブリフト機構21によって吸気バルブ7,7の開期間の位相が変化する様子を、ピストン4の動作と共に示す図である。
 この図2に示すように、可変バルブリフト機構21によって吸気バルブ7,7の最大バルブリフト量及び作動角を増大させると、吸気バルブ7,7の開時期IVOが進角し、ピストン上死点TDCにおける吸気バルブ7,7のバルブリフト量が増大する。
 また、図2に示す吸気バルブ7,7の開特性は、可変バルブリフト機構21によって開期間の位相を初期位置である最遅角位置としたときの特性であり、可変バルブリフト機構21によって開期間の位相を進角させると、ピストン上死点TDCにおける吸気バルブ7,7のバルブリフト量が増大することになる。
 ここで、可変バルブリフト機構21、可変バルブタイミング機構22、圧縮比可変機構23それぞれの制御量の目標値は、それぞれの制御量が目標値に収束している状態でピストン4と吸気バルブ7,7との干渉が発生しないように、コントローラ31がエンジン1の運転条件に応じて演算する。
 図3(A)は、エンジン1の加速前の低負荷状態におけるピストン上死点の目標値及び吸気バルブ7,7の開特性の目標値の一例を示す。また、図3(B)は、図3(A)に示したエンジン1の低負荷状態からアクセルペダルが踏まれてエンジン1の高負荷状態に移行したときのピストン上死点の目標値及び吸気バルブ7,7の開特性の目標値の一例を示す。この図3(A)及び図3(B)のいずれの運転条件でも、ピストン4と吸気バルブ7,7との干渉は発生しない。
 この図3に示す例では、エンジン負荷の低負荷から高負荷への変化に伴って、圧縮比を低下させ、吸気バルブ7,7の作動角(最大バルブリフト量)を増大させ、吸気バルブ7,7の開期間の位相を遅角変化させる。ここで、可変バルブリフト機構21、可変バルブタイミング機構22、圧縮比可変機構23が同時並行で動作すれば、図3(C)に示すように、エンジン負荷の低負荷から高負荷への変化過程においても、ピストン4と吸気バルブ7,7との干渉は発生しない。
 しかし、図3(D)に示すように、エンジン負荷の低負荷から高負荷への変化に伴って目標値が変化する場合に、例えば、可変バルブタイミング機構22及び圧縮比可変機構23が動作せずに、可変バルブリフト機構21のみが作動角を増大させる方向に動作したと仮定すると、圧縮比が高くかつ吸気バルブ7,7の開期間の位相が進角した状態のまま、吸気バルブ7,7の作動角が増大することになって、ピストン4と吸気バルブ7,7とが干渉する可能性がある。
 そこで、コントローラ31は、係る過渡状態でのピストン干渉の発生を防ぐために、可変バルブリフト機構21、可変バルブタイミング機構22、圧縮比可変機構23における現時点での制御量から、各機構の作動範囲を変更する処理を行う。
 例えば、図3(D)に示す例では、コントローラ31は、高い圧縮比、及び、進角した吸気バルブ7,7の開期間の位相に基づき、作動角の目標値をバルブ干渉が発生しない上限値以下に制限することで、バルブ干渉が発生しない作動範囲内で作動角の増大制御が行われるようにする。
 換言すれば、コントローラ31による各機構21,22,23の作動範囲を変更する処理とは、上死点における吸気バルブ7,7とピストン4との距離を近づける方向への作動である、圧縮比の増大、吸気バルブ7,7の最大バルブリフト量の増大、吸気バルブ7,7の開期間の位相の進角を制限する処理である。
 以下では、コントローラ31による処理を詳細に説明する。
 図4は、コントローラ31における、圧縮比可変機構23の制御量の目標値を制限する処理を示す機能ブロック図である。
 この図4において、基本目標圧縮比演算部231は、エンジン負荷、エンジン回転速度などのエンジン運転条件を示す信号を入力し、エンジン運転条件に応じて基本目標圧縮比を演算する。
 一方、圧縮比上限値演算部232は、可変バルブリフト機構21の制御量である吸気バルブ7,7の作動角の信号、及び、可変バルブタイミング機構22の制御量である吸気バルブ7,7の開期間の位相の信号を入力する。
 圧縮比上限値演算部232は、吸気バルブ7,7の作動角と開期間の位相とに応じて圧縮比の上限値を記憶するマップを備えている。
 圧縮比の上限値のマップは、上死点TDCでのピストン4の冠面が所定の間隙で吸気バルブ7,7と対向することになる最大圧縮比を、吸気バルブ7,7の作動角と開期間の位相とに応じて記憶するものである。
 ここで、吸気バルブ7,7の作動角が大きいほど、また、吸気バルブ7,7の開期間の位相が進角側であるほど、吸気上死点TDCでの吸気バルブ7,7のバルブリフト量が大きくなる。そこで、吸気バルブ7,7の作動角が大きいほど圧縮比上限値はより小さい値に設定され、また、吸気バルブ7,7の開期間の位相が進角側であるほど圧縮比上限値はより小さい値に設定される。
 尚、所定の間隙は、吸気バルブ7,7の作動角や吸気バルブ7,7の開期間の位相の計測誤差、更には、圧縮比の制御精度のばらつきなどを考慮し、これらの誤差が積み重なっても、ピストン4と吸気バルブ7,7との干渉を防ぐことができる値として予め適合されている。
 そして、圧縮比上限値演算部232では、そのときの吸気バルブ7,7の作動角及び吸気バルブ7,7の開期間の位相に対応する圧縮比上限値の信号を、マップから検索して出力する。
 比較部233は、基本目標圧縮比演算部231が出力した基本目標圧縮比の信号と、圧縮比上限値演算部232が出力した圧縮比上限値の信号とを入力し、両者のうちでより低い圧縮比を最終的な目標圧縮比として出力する。そして、圧縮比可変機構23は、この最終的な目標圧縮比に応じて制御される。
 つまり、基本目標圧縮比演算部231がエンジン1の運転条件に基づいて演算した基本目標圧縮比が、圧縮比上限値を上回る場合には、圧縮比上限値を最終的な目標圧縮比として出力することで最終的な目標圧縮比を圧縮比上限値以下に制限する。
 圧縮比上限値を上回る基本目標圧縮比に従って圧縮比可変機構23を制御した場合は、吸気上死点TDCにおける吸気バルブ7,7のバルブリフト量に対して、ピストン4の上死点位置が高過ぎて、吸気バルブ7,7とピストン4との干渉が生じる可能性がある。
 これに対し、圧縮比上限値は、前述のように、そのときの吸気バルブ7,7の作動角及び吸気バルブ7,7の開期間の位相において、ピストン4と吸気バルブ7,7との干渉を防ぐことができる値として設定される。従って、圧縮比上限値を下回る範囲内の圧縮比を最終的な目標圧縮比として圧縮比可変機構23を制御すれば、吸気バルブ7,7とピストン4との干渉を未然に防ぐことができる。
 ここで、図3に示したエンジン負荷の低負荷から高負荷への変化とは逆に、エンジン負荷が高負荷から低負荷に変化する場合であって、吸気バルブ7,7の最大バルブリフト量を減少させ、吸気バルブ7,7の開期間の位相を進角させ、かつ、圧縮比を増大させる方向に制御する場合を例として、目標圧縮比の制限制御の作用を説明する。
 エンジン負荷が高負荷から低負荷に変化する場合に、作動角の減少が遅れ、開期間の位相の進角と圧縮比の増大とが先行して進んだ場合、即ち、可変バルブリフト機構21が動作せず、可変バルブタイミング機構22及び圧縮比可変機構23が動作した場合、基本目標圧縮比に向けた圧縮比の増大制御を遂行することで、吸気バルブ7,7とピストン4との干渉が発生する可能性がある。
 これに対し、上記のように、そのときの吸気バルブ7,7の作動角及び吸気バルブ7,7の開期間の位相に基づいて圧縮比上限値を設定し、この圧縮比上限値以下に目標圧縮比を制限すれば、作動角、換言すれば、最大バルブリフト量を減少させる動作が遅れても、係る状態で許容できる最大の圧縮比以下に圧縮比を制限することになり、以って、吸気バルブ7,7とピストン4との干渉を防ぐことができる。
 そして、作動角を減少させる動作が進行し、吸気上死点TDCでのバルブリフト量が減少すれば、これに応じて圧縮比上限値はより高い値に変更され、最終的には圧縮比上限値が基本目標圧縮比を上回る値になって、基本目標圧縮比を最終的な目標圧縮比とする制御が行われるようになり、圧縮比はそのときの運転条件に応じた値に収束することになる。
 上記の制限制御では、圧縮比可変機構23の目標値の変化を一時的に制限するものの、圧縮比可変機構23による圧縮比の変更動作を停止させたり、変更速度を抑制したりすることはないので、圧縮比変化の応答性や収束性などの低下を抑制することができる。
 図5は、コントローラ31における、可変バルブリフト機構21の制御量の目標値を制限する処理を示す機能ブロック図である。
 この図5において、基本目標作動角演算部211は、エンジン負荷、エンジン回転速度などのエンジン運転条件を示す信号を入力し、エンジン運転条件に応じて基本目標作動角を演算する。
 一方、作動角上限値演算部212は、圧縮比可変機構23の制御量である圧縮比の信号、及び、可変バルブタイミング機構22の制御量である吸気バルブ7,7の開期間の位相の信号を入力する。
 作動角上限値演算部212は、圧縮比と吸気バルブ7,7の開期間の位相とに対応する作動角の上限値を記憶するマップを予め備えている。
 前記作動角上限値のマップは、そのときの上死点TDCでのピストン4の冠面4aの位置及び吸気バルブ7,7の開期間の位相の条件において、上死点TDCでのピストン4の冠面4aが所定の間隙をもって吸気バルブ7,7と対向することができる、最大の作動角を記憶するものである。
 即ち、圧縮比から、吸気上死点TDCで所定の間隙をもってピストン4と対向することになるバルブリフト量が定まり、係るバルブリフト量を実現できる作動角は、吸気バルブ7,7の開期間の位相に応じて定まるので、圧縮比と位相とから、吸気上死点TDCでピストン4の冠面と吸気バルブ7,7とが所定の間隙をもって対向することになる作動角が定まることになる。
 ここで、圧縮比が高いほど、吸気上死点TDCでのバルブリフト量の上限は低くなり、また、吸気バルブ7,7の開期間の位相が進角側であるほど、同じ作動角でも吸気上死点TDCでのバルブリフト量は高くなるので、実圧縮比が高いほど、また、吸気バルブ7,7の開期間の位相が進角側であるほど、作動角上限値はより小さい値に設定される。
 尚、所定の間隙は、圧縮比や位相の計測誤差、更には、作動角の制御精度のばらつきなどを考慮し、これらの誤差が積み重なっても、ピストン4と吸気バルブ7,7との干渉を防ぐことができる値として、予め適合されている。
 そして、作動角上限値演算部212では、入力した圧縮比と位相とに対応する作動角上限値の信号を、マップから検索して出力する。
 比較部213では、基本目標作動角演算部211が出力した基本目標作動角の信号と、作動角上限値演算部212が出力した作動角上限値の信号とを入力し、両者のうちでより小さい作動角を最終的な目標作動角として出力する。そして、可変バルブリフト機構21は、最終的な目標作動角に基づいて制御される。
 つまり、基本目標作動角演算部211がエンジン運転条件に基づいて演算した基本目標作動角が、作動角上限値を上回る場合には、作動角上限値を最終的な目標作動角として出力することで、最終的な目標作動角を作動角上限値以下に制限する。
 作動角上限値を上回る基本目標作動角に従って可変バルブリフト機構21を制御した場合は、ピストン4の上死点位置及び吸気バルブ7,7の開期間の位相に対して、吸気バルブ7,7の作動角が大き過ぎて、上死点TDCにおいて吸気バルブ7,7とピストン4との干渉が生じる可能性がある。
 これに対し、作動角上限値は、前述のように、そのときの圧縮比及び位相において、ピストン4と吸気バルブ7,7との干渉を防ぐことができる値として設定されるから、この作動角上限値を下回る範囲内の作動角を最終的な目標作動角として可変バルブリフト機構21を制御することで、吸気バルブ7,7とピストン4との干渉を防ぐことができる。
 ここで、図3に示したエンジン負荷が低負荷から高負荷に変化する場合であって、最大バルブリフト量を増大させ、開期間の位相を遅角させ、かつ、圧縮比を減少させる方向に制御する場合を例として、目標作動角の制限制御の作用を説明する。
 上記のエンジン負荷が低負荷から高負荷に変化する場合、圧縮比を減少させる制御及び開期間の位相を遅角させる動作が遅れ、作動角を増大させる動作が先行した場合、例えば、圧縮比可変機構23及び可変バルブタイミング機構22が動作せず、可変バルブリフト機構21が動作した場合、基本目標作動角に向けた作動角の増大制御を遂行することで、上死点TDCにおいて吸気バルブ7,7とピストン4との干渉が発生する可能性がある。
 これに対し、上記のように、そのときの圧縮比及び位相に基づいて作動角上限値を設定し、この作動角上限値以下に目標作動角を制限すれば、圧縮比を減少させる制御及び開期間の位相を遅角させる動作が遅れても、係る状態で許容できる最大の作動角以下に制限することになり、吸気バルブ7,7とピストン4との干渉を防ぐことができる。
 そして、開期間の位相を遅角させ圧縮比を減少させる動作が進行すれば、これに応じて作動角上限値はより大きな値に変更され、最終的には作動角上限値が基本目標作動角を上回る値になって、基本目標作動角を最終的な目標作動角とする制御が行われるようになり、作動角はそのときの運転条件に応じた値に収束することになる。
 上記の制限制御では、可変バルブリフト機構21の目標値の変化を制限するものの、可変バルブリフト機構21による作動角の変更を停止させたり、変更速度を抑制したりすることはないので、作動角の制御における応答性や収束性などの低下を抑制することができる。
 図6は、コントローラ31における、可変バルブタイミング機構22の制御量の目標値を制限する処理を示す機能ブロック図である。
 この図6において、基本目標位相演算部221は、エンジン負荷、エンジン回転速度などのエンジン運転条件を示す信号を入力し、エンジン運転条件に応じて基本目標位相を演算する。
 一方、位相上限値演算部222は、圧縮比可変機構23の制御量である圧縮比の信号、及び、可変バルブリフト機構21の制御量である作動角の信号を入力する。
 位相上限値演算部222は、圧縮比と作動角とに対応する、吸気バルブ7,7の開期間の位相の上限値、つまり、位相進角量の上限値を記憶するマップを備えている。
 尚、可変バルブタイミング機構22は、最遅角位置をデフォルト位置とし、係る最遅角位置から開期間の位相を進角させる機構であり、目標位相は、最遅角位置からの進角角度として演算され、目標位相の上限値は、最遅角位置からの進角角度の上限として演算される。
 前記位相上限値のマップは、圧縮比に応じて定まる上死点TDCでのピストン4の冠面4aの位置、及び、吸気バルブ7,7の開期間におけるバルブリフト量の条件において、上死点TDCでのピストン4の冠面4aが所定の間隙をもって吸気バルブ7,7と対向することができる、最大の位相進角量を記憶するものである。
 即ち、圧縮比から吸気上死点TDCで所定の間隙をもってピストン4と対向することになるバルブリフト量が定まり、係るバルブリフト量を実現できる位相は、吸気バルブ7,7の作動角に応じて定まるので、圧縮比と作動角とから吸気上死点TDCでピストン4の冠面4aと吸気バルブ7,7とが所定の間隙をもって対向することになる位相が定まることになる。
 ここで、圧縮比が高いほど吸気上死点TDCでのバルブリフト量の上限は低くなり、また、作動角が大きいほど同じ位相でも吸気上死点TDCでのバルブリフト量は高くなるので、圧縮比が高いほど、また、作動角が大きいほど、位相上限値はより小さい値に設定される。
 尚、所定の間隙は、圧縮比や作動角の計測誤差、更には、中心位相の制御精度のばらつきなどを考慮し、これらの誤差が積み重なっても、ピストン4と吸気バルブ7,7との干渉を防ぐことができる値として、予め適合されている。
 そして、位相上限値演算部222では、入力した圧縮比と作動角とに対応する位相上限値の信号を、マップから検索して出力する。
 比較部223では、基本目標位相演算部221が出力した基本目標位相の信号と、位相上限値演算部222が出力した位相上限値の信号とを入力し、両者のうちで進角角度としてより小さい位相を最終的な目標位相として出力する。そして、可変バルブタイミング機構22を、最終的な目標位相に基づいて制御させる。
 つまり、基本目標位相演算部221がエンジン運転条件に基づいて演算した基本目標位相が位相上限値を上回り、基本目標位相が位相上限値よりも進角側である場合には、位相上限値を最終的な目標位相として出力することで、最終的な目標位相を位相上限値以下に、換言すれば、進角限界よりも遅角側に制限する。
 位相上限値を上回る基本目標位相に従って可変バルブタイミング機構22を制御した場合は、ピストン4の上死点位置及び吸気バルブ7,7の作動角に対して吸気バルブ7,7の開期間の位相が進角し過ぎて、上死点TDCにおいて吸気バルブ7,7とピストン4との干渉が生じる可能性がある。
 これに対し、位相上限値は、前述のように、そのときの圧縮比及び作動角において、ピストン4と吸気バルブ7,7との干渉を防ぐことができる値として設定されるから、この位相上限値を下回る範囲内の位相を最終的な目標位相として可変バルブタイミング機構22を制御させることで、吸気バルブ7,7とピストン4との干渉を防ぐことができる。
 ここで、図3に示したエンジン負荷の低負荷から高負荷への変化とは逆に、エンジン負荷が高負荷から低負荷に変化する場合であって、最大バルブリフト量を減少させ、開期間の位相を進角させ、かつ、圧縮比を増大させる方向に制御する場合を例として、目標位相の制限制御の作用を説明する。
 エンジン負荷が高負荷から低負荷に変化する場合に、作動角の減少が遅れ、開期間の位相の進角と圧縮比の増大とが先行して進んだ場合、例えば、可変バルブリフト機構21が動作せず、可変バルブタイミング機構22及び圧縮比可変機構23が動作した場合、基本目標位相に向けた中心位相の進角制御を遂行することで、吸気バルブ7,7とピストン4との干渉が発生する可能性がある。
 これに対し、上記のように、そのときの作動角及び作動角に基づいて位相上限値を設定し、この位相上限値以下に目標位相を制限すれば、作動角を減少させる動作が遅れても、係る状態で許容できる最大の位相よりも遅角側に制限することになり、吸気バルブ7,7とピストン4との干渉を防ぐことができる。
 そして、作動角を減少させる動作が進行し、吸気上死点TDCでのバルブリフト量が減少変化すれば、これに応じて位相上限値はより進角側に変更され、最終的には位相上限値が基本目標位相よりも進角側になって、基本目標位相を目標位相とする制御が行われるようになり、中心位相はそのときの運転条件に応じた値に収束することになる。
 上記の制限制御では、可変バルブタイミング機構22の目標値の変化を制限するものの、可変バルブタイミング機構22による位相の変更動作を停止させたり、変更速度を抑制したりすることはないので、吸気バルブ7,7の開期間の位相の制御における応答性や収束性などの低下を抑制することができる。
 図4~図6に示した目標値の制限処理を、同時並行で実施することができる他、図4~図6に示した制限処理から1つだけ選択して実施したり、図4~図6に示した制限処理のうちから選択した2つの制限処理を並行実施したり、図4~図6に示した制限処理のうちの一部の機能を備えるようにすることができる。
 例えば、可変バルブタイミング機構22と可変バルブリフト機構21とのいずれか一方を備えるエンジン1の場合、図5に示す制限機能と図6に示す制限機能との一方を備えることになる。
 また、図4~図6に示した制限処理の一部を選択して実施する場合、或いは、図4~図6に示した制限処理のうちの一部の機能を備えるようにする場合、可変バルブリフト機構21、可変バルブタイミング機構22、圧縮比可変機構23の応答速度の違いに基づき、実施する制限処理を選択することができる。
 即ち、上死点における吸気バルブ7,7とピストン4との距離を近づける方向への動作が速くピストン干渉の要因となる機構を特定し、当該特定した機構の目標値を制限する処理を選択的に実施させることができ、また、ピストン干渉の要因となる機構が、運転条件に応じて異なる場合に、運転条件に応じて実施する制限処理を選択することができる。
 また、目標値に制限を加える機構以外の機構の動作速度に応じて上限値を変更することができる。
 図7は、可変バルブリフト機構21、可変バルブタイミング機構22の動作速度に応じて、圧縮比可変機構23における目標圧縮比の上限値を変更する処理を示す。
 図7において、基本目標圧縮比演算部231は、エンジン運転条件に応じて基本目標圧縮比を演算する。
 一方、圧縮比上限値演算部232は、現時点での可変バルブリフト機構21の制御量である作動角の信号、及び、現時点での可変バルブタイミング機構22の制御量である開期間の位相の信号を入力し、これらに応じて圧縮比上限値の信号を出力する。
 ここで、圧縮比上限値演算部232は、作動角が大きいほど、また、位相が進角側であるほど、圧縮比上限値をより小さい値に設定する。
 圧縮比上限値演算部232が出力する圧縮比上限値の信号は、上限値補正部234に入力されると共に補正値演算部235に入力される。
 補正値演算部235では、圧縮比上限値演算部232で演算された圧縮比上限値の前回値と今回値との偏差(偏差=前回値-今回値)、即ち、演算周期間における圧縮比上限値の変化量を演算し、前記偏差に応じて補正値(補正値≧0)を演算する。
 前記補正値は、圧縮比上限値演算部232で演算される圧縮比上限値が増大変化している場合には零に設定される。一方、前記補正値は、圧縮比上限値演算部232で演算される圧縮比上限値が減少変化している場合には減少速度が速いほど、換言すれば、可変バルブリフト機構21で制御される作動角の増大及び/又は可変バルブタイミング機構22で制御される位相の進角変化が速いほど、より大きな値に設定される。
 上限値補正部234では、圧縮比上限値演算部232で演算された基本の圧縮比上限値から、補正値演算部235で演算された補正値を減算して、減算結果を最終的な圧縮比上限値として比較部233に出力する。
 従って、補正値が大きいほど最終的な圧縮比上限値はより小さい値に変更され、作動角及び位相が同一である条件であっても、作動角の増大速度及び/又は位相の進角速度が速い場合には、圧縮比上限値としてより小さい値が設定されることになる。
 換言すれば、可変バルブリフト機構21の作動角増大方向の動作速度、及び/又は、可変バルブタイミング機構22の位相の進角方向の動作速度が速く、上死点における吸気バルブ7,7とピストン4との距離が速い速度で減少している場合には、圧縮比上限値がより小さい値に変更される。
 比較部233では、基本目標圧縮比演算部231が出力した基本目標圧縮比の信号と、上限値補正部234で補正された圧縮比上限値の信号とを入力し、両者のうちでより低い圧縮比を最終的な目標圧縮比として出力する。圧縮比可変機構23は、この最終的な目標圧縮比に基づいて制御される。
 上記のようにして圧縮比上限値を補正することで、作動角が速い速度で増大する場合及び/又は位相が速い速度で進角する場合は、よりピストン干渉が発生する可能性が高くなるものと判断して、目標圧縮比の上限をより低くすることでピストン干渉の発生を抑制する。
 これにより、作動角の増大速度及び位相の進角速度が遅い場合には、目標圧縮比の上限をより高くして、圧縮比可変機構23の作動範囲が制限されることを抑制でき、また、作動角の増大速度及び位相の進角速度が速い場合には、目標圧縮比の上限をより低くして、ピストン干渉を防ぐことができる。
 尚、図7では、可変バルブリフト機構21、可変バルブタイミング機構22の動作速度に応じて、圧縮比可変機構23における目標圧縮比の上限値を変更する処理を例示したが、可変バルブリフト機構21における目標作動角の上限値、可変バルブタイミング機構22における目標位相の上限値についても、他の機構の動作速度に応じて上限値を補正して、同様な作用、効果を奏することができる。
 また、圧縮比可変機構23における目標圧縮比の制限を行う一方、可変バルブリフト機構21と可変バルブタイミング機構22との少なくとも一方の目標値に制限を加える場合に、並行して制限を実施する他、制限処理の優先度を設定することができる。
 例えば、可変バルブリフト機構21、可変バルブタイミング機構22及び圧縮比可変機構23の全てについて目標値に制限を加える場合には、一例として、制限の優先順が、可変バルブタイミング機構22、圧縮比可変機構23、可変バルブリフト機構21の順となるように各上限値マップの設定を行う。
 これにより、吸気バルブ7,7とピストン4との干渉が発生する可能性がある状況、換言すれば、上死点における吸気バルブ7,7とピストン4との距離が近くなる方向に変化しているときに、まず、可変バルブタイミング機構22における目標位相を上限値以下に制限し、係る制限によっても干渉発生の可能性が解消されないと、更に、圧縮比可変機構23における目標圧縮比を上限値以下に制限し、これらの制限によっても干渉発生の可能性が解消されないと、最終的に可変バルブリフト機構21の目標作動角を上限値以下に制限することで、干渉の発生を防ぐようにする。
 可変バルブタイミング機構22によって吸気バルブ7,7の開期間の位相が過進角すると、吸気バルブ7,7の開期間と排気バルブ8,8の開期間との重なり期間が大きくなって、内部EGRガス量が増え燃焼悪化を招くことになる。
 従って、可変バルブタイミング機構22における目標位相の制限は、ピストン干渉の防ぐと共に、内部EGRガス量の増大による燃焼悪化を抑制する方向に作用するため、制限の優先度として可変バルブタイミング機構22を最優先とし、干渉を防ぐための目標値の制限が、最初に可変バルブタイミング機構22について行われるようにする。
 一方、可変バルブリフト機構21によって吸気バルブ7,7の作動角を増大させることは、エンジン1の吸入空気量を増大させることになり、目標作動角を上限値に基づいて制限することは、エンジン1の吸入空気量の増大を制限することになってエンジン1の加速性を損ねることになってしまう。
 そこで、制限の優先度として、可変バルブリフト機構21の優先度を最も低くし、吸入空気量の増大が制限されることをなるべく抑制し、可変バルブタイミング機構22及び圧縮比可変機構23の目標値に制限を加えても、干渉発生の可能性が解消されない場合に、可変バルブリフト機構21の目標作動角の増大を上限値に基づき制限して、干渉の発生を防ぐ。
 上記のような優先度に従って目標値を制限する機構を選択すれば、燃焼性の悪化や加速性の悪化を抑制しつつ、ピストン干渉の発生を防ぐことができる。
 また、上記のような制限の優先度の設定は、可変バルブタイミング機構22を備えず、圧縮比可変機構23と可変バルブリフト機構21とを備えるエンジン1においても適用できる。例えば、ピストン干渉が発生する可能性がある場合に、まず、圧縮比可変機構23における目標圧縮比に制限を加え、係る制限によっても干渉発生の可能性が解消されない場合に、可変バルブリフト機構21の目標作動角に制限を加えることで、干渉の発生を防ぐようにする。
 更に、可変バルブリフト機構21を備えず、圧縮比可変機構23と可変バルブタイミング機構22とを備えるエンジン1においては、ピストン干渉が発生する可能性がある場合に、まず、可変バルブタイミング機構22における目標位相を上限値以下に制限し、係る制限によっても干渉発生の可能性が解消されない場合に、圧縮比可変機構23における目標圧縮比を上限値以下に制限することで、干渉の発生を防ぐようにする。
 ここで、制限の優先順は、可変バルブタイミング機構22、圧縮比可変機構23、可変バルブリフト機構21の順に限定されるものではなく、例えば、燃焼性が確保できる場合には、可変バルブタイミング機構22の優先順を下げることができる。
 また、制限の優先順は、各機構21~23の応答速度に応じて設定することができ、更に、油圧や電源電圧の変化による応答速度の変化や、劣化や故障による応答速度の変化に応じて優先順を変更することができる。
 更に、各機構21~23の応答速度の変化に対して、制限処理における吸気バルブ7,7とピストン4との対向距離の許容値の設定を変更することができ、例えば、各機構21~23いずれかに応答が遅くなる異常が生じた場合に、他の正常動作する機構での制限処理における前記対向距離の許容値をより小さく変更することができる。
 また、エンジン運転条件やエンジン運転領域に応じて制限の優先度を変更することができる。例えば、加速時と減速時とで優先度の設定を変更することとし、加速時には、吸入空気量の増大が制限されることを抑制すべく、可変バルブリフト機構21の優先度を最も低くして最後に目標値の制限が実施されるようにし、高負荷、高回転域からの減速時には、高圧縮比への移行を速やかに行わせるように、圧縮比可変機構23の優先度を最も低くして最後に目標値の制限が実施されるようにすることができる。
 尚、上記実施形態では、吸気バルブ7,7の開特性を変更する可変動弁機構として、可変バルブタイミング機構22と可変バルブリフト機構21とを示したが、吸気バルブ7,7を電磁駆動バルブとすることができる。
 吸気バルブ7,7として電磁駆動バルブを用いるエンジン1の場合には、電磁駆動バルブの開タイミングの目標値を、圧縮比可変機構23によって制御される実圧縮比に応じて制限することで、ピストン干渉を防ぐことができる。
 また、排気バルブ8,8に可変動弁機構を備えるエンジン1においては、排気バルブ8,8とピストン4との干渉を防ぐために、排気側可変動弁機構の作動範囲に制限を加えることができる。
 排気バルブ8,8に可変バルブリフト機構を備えるエンジン1の場合は、係る排気側可変バルブリフト機構における目標作動角の増大方向が、吸気側の可変バルブリフト機構21と同様に、ピストン干渉を発生させる方向の動作となるので、圧縮比可変機構23によって制御される実圧縮比などに応じた上限値以下に、排気側可変バルブリフト機構における目標作動角を制限する。
 また、排気バルブ8,8の開期間の位相を可変とする可変バルブタイミング機構を備える場合には、位相の遅角方向がピストン干渉を発生させる方向の動作となるので、圧縮比可変機構23によって制御される実圧縮比などに応じた上限値以下に、位相の遅角量を制限する。
 1…エンジン、4…ピストン、7…吸気バルブ、8…排気バルブ、21…可変バルブリフト機構(可変動弁機構)、22…可変バルブタイミング機構、23…圧縮比可変機構(可変動弁機構)、31…コントローラ、32…クランク角センサ、41…角度センサ、42…カム角センサ、43…角度センサ

Claims (13)

  1.  吸気バルブと排気バルブとの少なくとも一方の開特性を変更する可変動弁機構と、
     ピストンの上死点位置を変更する圧縮比可変機構と、
     を備えたエンジンにおいて、
     前記可変動弁機構と前記圧縮比可変機構とのいずれか一方の機構の制御量に応じて他方の機構の作動範囲を変更する、エンジンの制御装置。
  2.  前記作動範囲の変更が、前記ピストンの上死点位置におけるバルブリフト量の変更と前記圧縮比の変更との少なくとも一方である、請求項1記載のエンジンの制御装置。
  3.  前記一方の機構の制御量及び前記一方の機構の動作速度に応じて前記他方の機構の作動範囲を変更する、請求項1記載のエンジンの制御装置。
  4.  前記可変動弁機構の作動範囲の変更と前記圧縮比可変機構の作動範囲の変更とに優先順位を設ける、請求項1記載のエンジンの制御装置。
  5.  前記可変動弁機構として、前記吸気バルブと前記排気バルブとの少なくとも一方の作動角を可変とする可変バルブリフト機構を備え、
     前記可変バルブリフト機構で可変とされる作動角の増大を制限する、請求項1記載のエンジンの制御装置。
  6.  前記可変動弁機構として、前記吸気バルブと前記排気バルブとの少なくとも一方の開期間の中心位相を可変とする可変バルブタイミング機構を備え、
     前記可変バルブリフト機構で可変とされる中心位相が上死点に近づくことを制限する、請求項1記載のエンジンの制御装置。
  7.  前記可変動弁機構として、前記吸気バルブと前記排気バルブとの少なくとも一方の作動角を可変とする可変バルブリフト機構と、前記吸気バルブと排気バルブとの少なくとも一方の開期間の中心位相を可変とする可変バルブタイミング機構とを備え、
     前記可変バルブタイミング機構の作動範囲を制限し、次いで、圧縮比可変機構の作動範囲を制限し、次いで前記可変バルブリフト機構の作動範囲を制限する、請求項4記載のエンジンの制御装置。
  8.  前記一方の機構の制御量に応じて前記他方の機構の目標値の基本限界値を設定し、前記基本限界値の変化速度と前記基本限界値とに応じて前記他方の機構の目標値の限界値を設定し、
     前記他方の機構の目標値が前記限界値を超えないように制限する、請求項1記載のエンジンの制御装置。
  9.  前記一方の機構の制御量に応じて前記他方の機構の目標値の基本限界値を設定し、前記基本限界値の変化速度と前記基本限界値の変化方向と前記基本限界値とに応じて前記他方の機構の目標値の限界値を設定し、
     前記他方の機構の目標値が前記限界値を超えないように制限する、請求項1記載のエンジンの制御装置。
  10.  吸気バルブと排気バルブとの少なくとも一方の開特性を変更する可変動弁機構と、
     ピストンの上死点位置を変更する圧縮比可変機構と、
     を備えたエンジンにおいて、
     前記可変動弁機構と前記圧縮比可変機構とのいずれか一方の機構の制御量を検出し、
     前記一方の機構の制御量に応じて他方の機構の作動範囲を変更する、
    エンジンの制御方法。
  11.  前記他方の機構の作動範囲を変更するステップが、
     前記ピストンの上死点位置におけるバルブリフト量の変更と前記圧縮比の変更との少なくとも一方を行う、請求項10記載のエンジンの制御方法。
  12.  前記他方の機構の作動範囲を変更するステップが、
     前記一方の機構の制御量及び前記一方の機構の動作速度に応じて前記他方の機構の作動範囲を変更する、請求項10記載のエンジンの制御方法。
  13.  前記他方の機構の作動範囲を変更するステップが、
     前記可変動弁機構の作動範囲の変更と前記圧縮比可変機構の作動範囲の変更とを優先順位に従って行う、請求項10記載のエンジンの制御方法。
PCT/JP2013/072304 2012-08-21 2013-08-21 エンジンの制御装置 WO2014030671A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112013001353.3T DE112013001353T5 (de) 2012-08-21 2013-08-21 Motorsteuervorrichtung
US14/384,926 US20150034052A1 (en) 2012-08-21 2013-08-21 Engine Control Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012182078A JP2014040775A (ja) 2012-08-21 2012-08-21 エンジンの制御装置
JP2012-182078 2012-08-21

Publications (1)

Publication Number Publication Date
WO2014030671A1 true WO2014030671A1 (ja) 2014-02-27

Family

ID=50149977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072304 WO2014030671A1 (ja) 2012-08-21 2013-08-21 エンジンの制御装置

Country Status (4)

Country Link
US (1) US20150034052A1 (ja)
JP (1) JP2014040775A (ja)
DE (1) DE112013001353T5 (ja)
WO (1) WO2014030671A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6065451B2 (ja) * 2012-08-13 2017-01-25 日産自動車株式会社 内燃機関の制御装置
JP6027516B2 (ja) * 2013-10-23 2016-11-16 日立オートモティブシステムズ株式会社 内燃機関の制御装置
KR101807034B1 (ko) 2015-12-09 2017-12-08 현대자동차 주식회사 연속 가변 밸브 듀레이션 엔진의 밸브 타이밍 제어 시스템 및 방법
US10415488B2 (en) 2015-12-09 2019-09-17 Hyundai Motor Company System and method for controlling valve timing of continuous variable valve duration engine
US10393037B2 (en) 2015-12-09 2019-08-27 Hyundai Motor Company Method for controlling of valve timing of continuous variable valve duration engine
KR102394575B1 (ko) 2017-11-20 2022-05-04 현대자동차 주식회사 연속 가변 밸브 듀레이션 장치 및 이를 포함하는 엔진
US10415485B2 (en) 2015-12-10 2019-09-17 Hyundai Motor Company Method for controlling of valve timing of continuous variable valve duration engine
US10920679B2 (en) 2015-12-11 2021-02-16 Hyundai Motor Company Method for controlling of valve timing of continuous variable valve duration engine
KR101807023B1 (ko) 2015-12-11 2017-12-08 현대자동차 주식회사 연속 가변 밸브 듀레이션 엔진의 밸브 타이밍 제어 시스템 및 방법
US10428747B2 (en) 2015-12-11 2019-10-01 Hyundai Motor Company System and method for controlling valve timing of continuous variable valve duration engine
KR101776743B1 (ko) 2015-12-11 2017-09-08 현대자동차 주식회사 연속 가변 밸브 듀레이션 엔진의 밸브 타이밍 제어 시스템 및 방법
US10634067B2 (en) 2015-12-11 2020-04-28 Hyundai Motor Company System and method for controlling valve timing of continuous variable valve duration engine
US10323585B2 (en) * 2015-12-11 2019-06-18 Hyundai Motor Company Method for controlling of valve timing of continuous variable valve duration engine
KR101807037B1 (ko) 2016-03-16 2017-12-08 현대자동차 주식회사 연속 가변 밸브 듀레이션 엔진의 밸브 타이밍 제어 시스템 및 방법
US10634066B2 (en) 2016-03-16 2020-04-28 Hyundai Motor Company System and method for controlling valve timing of continuous variable valve duration engine
US10378459B2 (en) * 2017-03-23 2019-08-13 Ford Global Technologies, Llc Method and system for engine control
US11149782B2 (en) * 2019-07-17 2021-10-19 Hyundai Motor Company Magnetically-actuated variable-length connecting rod devices and methods for controlling the same
US11215113B2 (en) * 2019-07-17 2022-01-04 Hyundai Motor Company Magnetically-actuated variable-length connecting rod devices and methods for controlling the same
DE102020110771A1 (de) 2020-04-21 2021-10-21 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben einer Brennkraftmaschinenanordnung, insbesondere eines Fahrzeugs

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263099A (ja) * 2000-03-15 2001-09-26 Nissan Motor Co Ltd 内燃機関の制御装置
JP2004218551A (ja) * 2003-01-16 2004-08-05 Nissan Motor Co Ltd 内燃機関の制御装置
JP2007120464A (ja) * 2005-10-31 2007-05-17 Toyota Motor Corp 圧縮比とバルブ特性を変更可能な内燃機関
JP2007332798A (ja) * 2006-06-12 2007-12-27 Toyota Motor Corp 可変圧縮比内燃機関のバルブタイミング制御システム
JP2009002357A (ja) * 2008-10-06 2009-01-08 Toyota Motor Corp 火花点火式内燃機関
JP2010043544A (ja) * 2008-08-08 2010-02-25 Toyota Motor Corp 可変圧縮比内燃機関
JP2010203269A (ja) * 2009-03-02 2010-09-16 Nissan Motor Co Ltd 内燃機関の制御装置及び制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH109005A (ja) * 1996-06-21 1998-01-13 Nippon Soken Inc 過渡時吸入空気量制御方法
US20070156321A1 (en) * 2005-12-29 2007-07-05 Schad Jahan N Speed regulation system for vehicles
JP5332645B2 (ja) * 2008-03-03 2013-11-06 日産自動車株式会社 筒内直接噴射式内燃機関
JP5218182B2 (ja) * 2008-08-28 2013-06-26 日産自動車株式会社 車速制限制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263099A (ja) * 2000-03-15 2001-09-26 Nissan Motor Co Ltd 内燃機関の制御装置
JP2004218551A (ja) * 2003-01-16 2004-08-05 Nissan Motor Co Ltd 内燃機関の制御装置
JP2007120464A (ja) * 2005-10-31 2007-05-17 Toyota Motor Corp 圧縮比とバルブ特性を変更可能な内燃機関
JP2007332798A (ja) * 2006-06-12 2007-12-27 Toyota Motor Corp 可変圧縮比内燃機関のバルブタイミング制御システム
JP2010043544A (ja) * 2008-08-08 2010-02-25 Toyota Motor Corp 可変圧縮比内燃機関
JP2009002357A (ja) * 2008-10-06 2009-01-08 Toyota Motor Corp 火花点火式内燃機関
JP2010203269A (ja) * 2009-03-02 2010-09-16 Nissan Motor Co Ltd 内燃機関の制御装置及び制御方法

Also Published As

Publication number Publication date
US20150034052A1 (en) 2015-02-05
JP2014040775A (ja) 2014-03-06
DE112013001353T5 (de) 2014-11-27

Similar Documents

Publication Publication Date Title
WO2014030671A1 (ja) エンジンの制御装置
JP4103769B2 (ja) 内燃機関の制御装置
JP5765494B2 (ja) 内燃機関の制御装置および制御方法
US8768601B2 (en) Control device for internal combustion engine having variable valve mechanism
US20070095313A1 (en) Internal combustion engine with variable compression ratio and valve characteristics
EP2851539B1 (en) Control device and control method for internal combustion engine
JP5316086B2 (ja) 内燃機関の制御装置及び制御方法
US9441549B2 (en) Control device for internal combustion engine
US8989987B2 (en) Engine control device
JP6191230B2 (ja) 内燃機関の制御装置および制御方法
US9371782B2 (en) Control apparatus for internal combustion engine
JP5249814B2 (ja) 可変動弁機構の制御装置
JP5310392B2 (ja) 内燃機関システムの制御方法及び内燃機関システム
JP2010077813A (ja) 内燃機関の制御装置
JP5092956B2 (ja) 車両用の内燃機関を制御する方法及び内燃機関システム
JP4609279B2 (ja) 内燃機関の制御装置
JP5930126B2 (ja) 内燃機関の制御装置および制御方法
WO2012004850A1 (ja) 内燃機関の制御装置
JP5397559B2 (ja) 内燃機関の制御装置
JP4280731B2 (ja) 可変バルブタイミング機構を備えた内燃機関の制御装置
JP5012565B2 (ja) 内燃機関の制御方法および内燃機関システム
JP2006207433A (ja) 内燃機関の制御装置
JP2008095632A (ja) 内燃機関の可変バルブ制御装置
JPH0544558A (ja) エンジンの出力制御装置
JPH04179837A (ja) 内燃機関の可変動弁装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831397

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14384926

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130013533

Country of ref document: DE

Ref document number: 112013001353

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13831397

Country of ref document: EP

Kind code of ref document: A1