WO2014014108A1 - パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池 - Google Patents
パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池 Download PDFInfo
- Publication number
- WO2014014108A1 WO2014014108A1 PCT/JP2013/069698 JP2013069698W WO2014014108A1 WO 2014014108 A1 WO2014014108 A1 WO 2014014108A1 JP 2013069698 W JP2013069698 W JP 2013069698W WO 2014014108 A1 WO2014014108 A1 WO 2014014108A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- passivation
- passivation layer
- composition
- layer
- forming
- Prior art date
Links
- 238000002161 passivation Methods 0.000 title claims description 667
- 239000000758 substrate Substances 0.000 title claims description 301
- 239000004065 semiconductor Substances 0.000 title claims description 123
- 238000004519 manufacturing process Methods 0.000 title claims description 44
- 239000011254 layer-forming composition Substances 0.000 title abstract description 38
- 239000010410 layer Substances 0.000 title description 434
- 238000000034 method Methods 0.000 title description 106
- 150000001875 compounds Chemical class 0.000 claims abstract description 107
- 229910052751 metal Inorganic materials 0.000 claims abstract description 25
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 15
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 13
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 13
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 11
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims description 186
- 239000000203 mixture Substances 0.000 claims description 180
- 238000010438 heat treatment Methods 0.000 claims description 130
- 125000000217 alkyl group Chemical group 0.000 claims description 56
- 125000004432 carbon atom Chemical group C* 0.000 claims description 41
- 229920005989 resin Polymers 0.000 claims description 39
- 239000011347 resin Substances 0.000 claims description 39
- 239000007788 liquid Substances 0.000 claims description 31
- 239000002184 metal Substances 0.000 claims description 24
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 13
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 9
- 125000003118 aryl group Chemical group 0.000 claims description 7
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 2
- 239000010955 niobium Substances 0.000 abstract description 28
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 abstract description 5
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 abstract description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 abstract description 4
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 abstract 1
- 125000005915 C6-C14 aryl group Chemical group 0.000 abstract 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 abstract 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 abstract 1
- 239000010408 film Substances 0.000 description 267
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 159
- 229910052710 silicon Inorganic materials 0.000 description 159
- 239000010703 silicon Substances 0.000 description 159
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 119
- 238000010304 firing Methods 0.000 description 93
- 229910052782 aluminium Inorganic materials 0.000 description 84
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 81
- 238000011156 evaluation Methods 0.000 description 81
- 238000009792 diffusion process Methods 0.000 description 75
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 61
- 238000007639 printing Methods 0.000 description 61
- 229910000484 niobium oxide Inorganic materials 0.000 description 58
- 230000000694 effects Effects 0.000 description 53
- 239000002243 precursor Substances 0.000 description 53
- 239000000126 substance Substances 0.000 description 52
- 238000000576 coating method Methods 0.000 description 50
- 238000003860 storage Methods 0.000 description 49
- 239000011248 coating agent Substances 0.000 description 45
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 44
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 38
- 125000002524 organometallic group Chemical group 0.000 description 30
- 238000010248 power generation Methods 0.000 description 29
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 27
- 238000000605 extraction Methods 0.000 description 26
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 25
- 239000002003 electrode paste Substances 0.000 description 25
- 230000000740 bleeding effect Effects 0.000 description 24
- -1 ethylhexyl group Chemical group 0.000 description 24
- 239000002609 medium Substances 0.000 description 24
- 229910001935 vanadium oxide Inorganic materials 0.000 description 23
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 22
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 22
- 239000012535 impurity Substances 0.000 description 22
- 239000012299 nitrogen atmosphere Substances 0.000 description 22
- 238000011160 research Methods 0.000 description 22
- 229910052709 silver Inorganic materials 0.000 description 22
- 239000004332 silver Substances 0.000 description 22
- 239000010409 thin film Substances 0.000 description 22
- 238000005259 measurement Methods 0.000 description 21
- 239000002245 particle Substances 0.000 description 21
- 229910001936 tantalum oxide Inorganic materials 0.000 description 21
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 20
- 238000006243 chemical reaction Methods 0.000 description 20
- 229910052581 Si3N4 Inorganic materials 0.000 description 19
- 230000015572 biosynthetic process Effects 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 19
- 238000009501 film coating Methods 0.000 description 19
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 19
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 18
- 239000003990 capacitor Substances 0.000 description 18
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 18
- ZTILUDNICMILKJ-UHFFFAOYSA-N niobium(v) ethoxide Chemical compound CCO[Nb](OCC)(OCC)(OCC)OCC ZTILUDNICMILKJ-UHFFFAOYSA-N 0.000 description 18
- 238000002360 preparation method Methods 0.000 description 18
- 229940116411 terpineol Drugs 0.000 description 18
- 239000001856 Ethyl cellulose Substances 0.000 description 17
- 235000019325 ethyl cellulose Nutrition 0.000 description 17
- 229920001249 ethyl cellulose Polymers 0.000 description 16
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 15
- 229910052796 boron Inorganic materials 0.000 description 15
- 229910052698 phosphorus Inorganic materials 0.000 description 15
- 239000011574 phosphorus Substances 0.000 description 15
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 14
- 239000011521 glass Substances 0.000 description 14
- 238000007650 screen-printing Methods 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 230000008569 process Effects 0.000 description 13
- 239000013522 chelant Substances 0.000 description 12
- 238000001035 drying Methods 0.000 description 12
- 238000005530 etching Methods 0.000 description 12
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 11
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 11
- MQQXUGFEQSCYIA-OAWHIZORSA-M aluminum;(z)-4-ethoxy-4-oxobut-2-en-2-olate;propan-2-olate Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CCOC(=O)\C=C(\C)[O-] MQQXUGFEQSCYIA-OAWHIZORSA-M 0.000 description 11
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 11
- 239000002904 solvent Substances 0.000 description 11
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 10
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 10
- 238000009835 boiling Methods 0.000 description 10
- QORWLRPWMJEJKP-UHFFFAOYSA-N butan-1-olate;tantalum(5+) Chemical compound [Ta+5].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] QORWLRPWMJEJKP-UHFFFAOYSA-N 0.000 description 10
- 239000000969 carrier Substances 0.000 description 10
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 10
- 238000000354 decomposition reaction Methods 0.000 description 9
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 9
- 238000007740 vapor deposition Methods 0.000 description 9
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 8
- 238000000921 elemental analysis Methods 0.000 description 8
- 229910052740 iodine Inorganic materials 0.000 description 8
- 239000011630 iodine Substances 0.000 description 8
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 7
- 239000012298 atmosphere Substances 0.000 description 7
- DINQVNXOZUORJS-UHFFFAOYSA-N butan-1-olate;niobium(5+) Chemical compound [Nb+5].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] DINQVNXOZUORJS-UHFFFAOYSA-N 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 7
- 230000006798 recombination Effects 0.000 description 7
- 238000005215 recombination Methods 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 238000000231 atomic layer deposition Methods 0.000 description 6
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 6
- 239000011256 inorganic filler Substances 0.000 description 6
- 229910003475 inorganic filler Inorganic materials 0.000 description 6
- 239000005360 phosphosilicate glass Substances 0.000 description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 6
- 239000003566 sealing material Substances 0.000 description 6
- SDTMFDGELKWGFT-UHFFFAOYSA-N 2-methylpropan-2-olate Chemical compound CC(C)(C)[O-] SDTMFDGELKWGFT-UHFFFAOYSA-N 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- YNCDEEFMDXHURQ-UHFFFAOYSA-N aluminum;ethyl 3-oxobutanoate Chemical compound [Al].CCOC(=O)CC(C)=O YNCDEEFMDXHURQ-UHFFFAOYSA-N 0.000 description 5
- 150000007514 bases Chemical class 0.000 description 5
- 238000001354 calcination Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 238000005238 degreasing Methods 0.000 description 5
- 238000005227 gel permeation chromatography Methods 0.000 description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- CGAFRZVAXRQUEI-UHFFFAOYSA-N niobium(5+);propan-1-olate Chemical compound [Nb+5].CCC[O-].CCC[O-].CCC[O-].CCC[O-].CCC[O-] CGAFRZVAXRQUEI-UHFFFAOYSA-N 0.000 description 5
- LJTHRDIGXSIYMM-UHFFFAOYSA-N propan-1-olate tantalum(5+) Chemical compound [Ta+5].CCC[O-].CCC[O-].CCC[O-].CCC[O-].CCC[O-] LJTHRDIGXSIYMM-UHFFFAOYSA-N 0.000 description 5
- 125000001424 substituent group Chemical group 0.000 description 5
- 150000003505 terpenes Chemical class 0.000 description 5
- 235000007586 terpenes Nutrition 0.000 description 5
- 229910000312 vanadium group oxide Inorganic materials 0.000 description 5
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 4
- BWVZAZPLUTUBKD-UHFFFAOYSA-N 3-(5,6,6-Trimethylbicyclo[2.2.1]hept-1-yl)cyclohexanol Chemical compound CC1(C)C(C)C2CC1CC2C1CCCC(O)C1 BWVZAZPLUTUBKD-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- ZUAZDLUFCIWOKB-UHFFFAOYSA-N [V+5].CC[O-].CC[O-].CC[O-] Chemical compound [V+5].CC[O-].CC[O-].CC[O-] ZUAZDLUFCIWOKB-UHFFFAOYSA-N 0.000 description 4
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 229910021419 crystalline silicon Inorganic materials 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 4
- IDIDIJSLBFQEKY-UHFFFAOYSA-N ethanol;oxovanadium Chemical compound [V]=O.CCO.CCO.CCO IDIDIJSLBFQEKY-UHFFFAOYSA-N 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 4
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- RLOWWWKZYUNIDI-UHFFFAOYSA-N phosphinic chloride Chemical compound ClP=O RLOWWWKZYUNIDI-UHFFFAOYSA-N 0.000 description 4
- 229960005235 piperonyl butoxide Drugs 0.000 description 4
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 4
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000013008 thixotropic agent Substances 0.000 description 4
- XLLIQLLCWZCATF-UHFFFAOYSA-N 2-methoxyethyl acetate Chemical compound COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- FIPWRIJSWJWJAI-UHFFFAOYSA-N Butyl carbitol 6-propylpiperonyl ether Chemical compound C1=C(CCC)C(COCCOCCOCCCC)=CC2=C1OCO2 FIPWRIJSWJWJAI-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- PCOPFSXTYFFNIG-UHFFFAOYSA-N butan-1-olate;yttrium(3+) Chemical compound [Y+3].CCCC[O-].CCCC[O-].CCCC[O-] PCOPFSXTYFFNIG-UHFFFAOYSA-N 0.000 description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000005430 electron energy loss spectroscopy Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 229910021478 group 5 element Inorganic materials 0.000 description 3
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- QASMZJKUEABJNR-UHFFFAOYSA-N methanolate;tantalum(5+) Chemical compound [Ta+5].[O-]C.[O-]C.[O-]C.[O-]C.[O-]C QASMZJKUEABJNR-UHFFFAOYSA-N 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229920003986 novolac Polymers 0.000 description 3
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000012766 organic filler Substances 0.000 description 3
- 229920002401 polyacrylamide Polymers 0.000 description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 230000007261 regionalization Effects 0.000 description 3
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- MQGIBEAIDUOVOH-UHFFFAOYSA-N 1-[2-[2-[2-(2-butoxyethoxy)ethoxy]ethoxy]ethoxy]butane Chemical compound CCCCOCCOCCOCCOCCOCCCC MQGIBEAIDUOVOH-UHFFFAOYSA-N 0.000 description 2
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 2
- NGCRLFIYVFOUMZ-UHFFFAOYSA-N 2,3-dichloroquinoxaline-6-carbonyl chloride Chemical compound N1=C(Cl)C(Cl)=NC2=CC(C(=O)Cl)=CC=C21 NGCRLFIYVFOUMZ-UHFFFAOYSA-N 0.000 description 2
- OJVAMHKKJGICOG-UHFFFAOYSA-N 2,5-hexanedione Chemical compound CC(=O)CCC(C)=O OJVAMHKKJGICOG-UHFFFAOYSA-N 0.000 description 2
- QQZOPKMRPOGIEB-UHFFFAOYSA-N 2-Oxohexane Chemical compound CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 description 2
- FEBUJFMRSBAMES-UHFFFAOYSA-N 2-[(2-{[3,5-dihydroxy-2-(hydroxymethyl)-6-phosphanyloxan-4-yl]oxy}-3,5-dihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-4-yl)oxy]-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl phosphinite Chemical class OC1C(O)C(O)C(CO)OC1OCC1C(O)C(OC2C(C(OP)C(O)C(CO)O2)O)C(O)C(OC2C(C(CO)OC(P)C2O)O)O1 FEBUJFMRSBAMES-UHFFFAOYSA-N 0.000 description 2
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 2
- QPRQEDXDYOZYLA-UHFFFAOYSA-N 2-methylbutan-1-ol Chemical compound CCC(C)CO QPRQEDXDYOZYLA-UHFFFAOYSA-N 0.000 description 2
- SYBYTAAJFKOIEJ-UHFFFAOYSA-N 3-Methylbutan-2-one Chemical compound CC(C)C(C)=O SYBYTAAJFKOIEJ-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- HCFAJYNVAYBARA-UHFFFAOYSA-N 4-heptanone Chemical compound CCCC(=O)CCC HCFAJYNVAYBARA-UHFFFAOYSA-N 0.000 description 2
- HRJSLUPAMXKPPM-UHFFFAOYSA-N 5-methyl-2-(3-methylphenyl)pyrazol-3-amine Chemical compound N1=C(C)C=C(N)N1C1=CC=CC(C)=C1 HRJSLUPAMXKPPM-UHFFFAOYSA-N 0.000 description 2
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 2
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- 241000416162 Astragalus gummifer Species 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 239000004375 Dextrin Substances 0.000 description 2
- 229920001353 Dextrin Polymers 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 229920002907 Guar gum Polymers 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 2
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 2
- WRQNANDWMGAFTP-UHFFFAOYSA-N Methylacetoacetic acid Chemical compound COC(=O)CC(C)=O WRQNANDWMGAFTP-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 2
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- QVHMSMOUDQXMRS-UHFFFAOYSA-N PPG n4 Chemical compound CC(O)COC(C)COC(C)COC(C)CO QVHMSMOUDQXMRS-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- 229920001615 Tragacanth Chemical class 0.000 description 2
- 238000002056 X-ray absorption spectroscopy Methods 0.000 description 2
- RGJSWMPPIHQBPC-UHFFFAOYSA-N [V+5].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] Chemical compound [V+5].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] RGJSWMPPIHQBPC-UHFFFAOYSA-N 0.000 description 2
- ZYOJNCNEQPCQLO-UHFFFAOYSA-N [V+5].CC[O-].CC[O-].CC[O-].CC[O-].CC[O-] Chemical compound [V+5].CC[O-].CC[O-].CC[O-].CC[O-].CC[O-] ZYOJNCNEQPCQLO-UHFFFAOYSA-N 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- QUKGYYKBILRGFE-UHFFFAOYSA-N benzyl acetate Chemical compound CC(=O)OCC1=CC=CC=C1 QUKGYYKBILRGFE-UHFFFAOYSA-N 0.000 description 2
- UAHWPYUMFXYFJY-UHFFFAOYSA-N beta-myrcene Chemical compound CC(C)=CCCC(=C)C=C UAHWPYUMFXYFJY-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- CKEGKURXFKLBDX-UHFFFAOYSA-N butan-1-ol;hafnium Chemical compound [Hf].CCCCO.CCCCO.CCCCO.CCCCO CKEGKURXFKLBDX-UHFFFAOYSA-N 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N caprylic alcohol Natural products CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- ULDHMXUKGWMISQ-UHFFFAOYSA-N carvone Chemical compound CC(=C)C1CC=C(C)C(=O)C1 ULDHMXUKGWMISQ-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- 235000019425 dextrin Nutrition 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 2
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 description 2
- 229940093858 ethyl acetoacetate Drugs 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 230000005283 ground state Effects 0.000 description 2
- 239000000665 guar gum Substances 0.000 description 2
- 235000010417 guar gum Nutrition 0.000 description 2
- 229960002154 guar gum Drugs 0.000 description 2
- SEKCULWEIYBRLO-UHFFFAOYSA-N hafnium(4+);propan-1-olate Chemical compound [Hf+4].CCC[O-].CCC[O-].CCC[O-].CCC[O-] SEKCULWEIYBRLO-UHFFFAOYSA-N 0.000 description 2
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- MLFHJEHSLIIPHL-UHFFFAOYSA-N isoamyl acetate Chemical compound CC(C)CCOC(C)=O MLFHJEHSLIIPHL-UHFFFAOYSA-N 0.000 description 2
- XAOGXQMKWQFZEM-UHFFFAOYSA-N isoamyl propanoate Chemical compound CCC(=O)OCCC(C)C XAOGXQMKWQFZEM-UHFFFAOYSA-N 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- LVNAMAOHFNPWJB-UHFFFAOYSA-N methanol;tantalum Chemical compound [Ta].OC.OC.OC.OC.OC LVNAMAOHFNPWJB-UHFFFAOYSA-N 0.000 description 2
- IJCCNPITMWRYRC-UHFFFAOYSA-N methanolate;niobium(5+) Chemical compound [Nb+5].[O-]C.[O-]C.[O-]C.[O-]C.[O-]C IJCCNPITMWRYRC-UHFFFAOYSA-N 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- ZWRUINPWMLAQRD-UHFFFAOYSA-N nonan-1-ol Chemical compound CCCCCCCCCO ZWRUINPWMLAQRD-UHFFFAOYSA-N 0.000 description 2
- GJQIMXVRFNLMTB-UHFFFAOYSA-N nonyl acetate Chemical compound CCCCCCCCCOC(C)=O GJQIMXVRFNLMTB-UHFFFAOYSA-N 0.000 description 2
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- SJNANEOQLCKOKB-UHFFFAOYSA-N oxovanadium;propan-1-ol Chemical compound [V]=O.CCCO.CCCO.CCCO SJNANEOQLCKOKB-UHFFFAOYSA-N 0.000 description 2
- XNLICIUVMPYHGG-UHFFFAOYSA-N pentan-2-one Chemical compound CCCC(C)=O XNLICIUVMPYHGG-UHFFFAOYSA-N 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- TZMFJUDUGYTVRY-UHFFFAOYSA-N pentane-2,3-dione Chemical compound CCC(=O)C(C)=O TZMFJUDUGYTVRY-UHFFFAOYSA-N 0.000 description 2
- PGMYKACGEOXYJE-UHFFFAOYSA-N pentyl acetate Chemical compound CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920001515 polyalkylene glycol Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- WUBJXWWQGDPUCE-UHFFFAOYSA-N propan-1-olate yttrium(3+) Chemical compound [Y+3].CCC[O-].CCC[O-].CCC[O-] WUBJXWWQGDPUCE-UHFFFAOYSA-N 0.000 description 2
- NREVZTYRXVBFAQ-UHFFFAOYSA-N propan-2-ol;yttrium Chemical compound [Y].CC(C)O.CC(C)O.CC(C)O NREVZTYRXVBFAQ-UHFFFAOYSA-N 0.000 description 2
- YKYONYBAUNKHLG-UHFFFAOYSA-N propyl acetate Chemical compound CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 2
- 238000012797 qualification Methods 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 125000001174 sulfone group Chemical group 0.000 description 2
- HSXKFDGTKKAEHL-UHFFFAOYSA-N tantalum(v) ethoxide Chemical compound [Ta+5].CC[O-].CC[O-].CC[O-].CC[O-].CC[O-] HSXKFDGTKKAEHL-UHFFFAOYSA-N 0.000 description 2
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 238000002411 thermogravimetry Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000000196 tragacanth Chemical class 0.000 description 2
- 235000010487 tragacanth Nutrition 0.000 description 2
- 229940116362 tragacanth Drugs 0.000 description 2
- MYXUYXMJVQWRPU-UHFFFAOYSA-N triethoxybismuthane Chemical compound [Bi+3].CC[O-].CC[O-].CC[O-] MYXUYXMJVQWRPU-UHFFFAOYSA-N 0.000 description 2
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 150000003722 vitamin derivatives Chemical class 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- OBETXYAYXDNJHR-SSDOTTSWSA-M (2r)-2-ethylhexanoate Chemical compound CCCC[C@@H](CC)C([O-])=O OBETXYAYXDNJHR-SSDOTTSWSA-M 0.000 description 1
- GQVMHMFBVWSSPF-SOYUKNQTSA-N (4E,6E)-2,6-dimethylocta-2,4,6-triene Chemical compound C\C=C(/C)\C=C\C=C(C)C GQVMHMFBVWSSPF-SOYUKNQTSA-N 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- VPBZZPOGZPKYKX-UHFFFAOYSA-N 1,2-diethoxypropane Chemical compound CCOCC(C)OCC VPBZZPOGZPKYKX-UHFFFAOYSA-N 0.000 description 1
- LEEANUDEDHYDTG-UHFFFAOYSA-N 1,2-dimethoxypropane Chemical compound COCC(C)OC LEEANUDEDHYDTG-UHFFFAOYSA-N 0.000 description 1
- PVMMVWNXKOSPRB-UHFFFAOYSA-N 1,2-dipropoxypropane Chemical compound CCCOCC(C)OCCC PVMMVWNXKOSPRB-UHFFFAOYSA-N 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- LAVARTIQQDZFNT-UHFFFAOYSA-N 1-(1-methoxypropan-2-yloxy)propan-2-yl acetate Chemical compound COCC(C)OCC(C)OC(C)=O LAVARTIQQDZFNT-UHFFFAOYSA-N 0.000 description 1
- GDXHBFHOEYVPED-UHFFFAOYSA-N 1-(2-butoxyethoxy)butane Chemical compound CCCCOCCOCCCC GDXHBFHOEYVPED-UHFFFAOYSA-N 0.000 description 1
- QMGJMGFZLXYHCR-UHFFFAOYSA-N 1-(2-butoxypropoxy)butane Chemical compound CCCCOCC(C)OCCCC QMGJMGFZLXYHCR-UHFFFAOYSA-N 0.000 description 1
- QWOZZTWBWQMEPD-UHFFFAOYSA-N 1-(2-ethoxypropoxy)propan-2-ol Chemical compound CCOC(C)COCC(C)O QWOZZTWBWQMEPD-UHFFFAOYSA-N 0.000 description 1
- HQSLKNLISLWZQH-UHFFFAOYSA-N 1-(2-propoxyethoxy)propane Chemical compound CCCOCCOCCC HQSLKNLISLWZQH-UHFFFAOYSA-N 0.000 description 1
- ZFPGARUNNKGOBB-UHFFFAOYSA-N 1-Ethyl-2-pyrrolidinone Chemical compound CCN1CCCC1=O ZFPGARUNNKGOBB-UHFFFAOYSA-N 0.000 description 1
- KZVBBTZJMSWGTK-UHFFFAOYSA-N 1-[2-(2-butoxyethoxy)ethoxy]butane Chemical compound CCCCOCCOCCOCCCC KZVBBTZJMSWGTK-UHFFFAOYSA-N 0.000 description 1
- UOWSVNMPHMJCBZ-UHFFFAOYSA-N 1-[2-(2-butoxypropoxy)propoxy]butane Chemical compound CCCCOCC(C)OCC(C)OCCCC UOWSVNMPHMJCBZ-UHFFFAOYSA-N 0.000 description 1
- JRRDISHSXWGFRF-UHFFFAOYSA-N 1-[2-(2-ethoxyethoxy)ethoxy]-2-methoxyethane Chemical compound CCOCCOCCOCCOC JRRDISHSXWGFRF-UHFFFAOYSA-N 0.000 description 1
- HYLLZXPMJRMUHH-UHFFFAOYSA-N 1-[2-(2-methoxyethoxy)ethoxy]butane Chemical compound CCCCOCCOCCOC HYLLZXPMJRMUHH-UHFFFAOYSA-N 0.000 description 1
- MBRRDORCFVPYMA-UHFFFAOYSA-N 1-[2-(2-methoxyethoxy)ethoxy]propane Chemical compound CCCOCCOCCOC MBRRDORCFVPYMA-UHFFFAOYSA-N 0.000 description 1
- BOGFHOWTVGAYFK-UHFFFAOYSA-N 1-[2-(2-propoxyethoxy)ethoxy]propane Chemical compound CCCOCCOCCOCCC BOGFHOWTVGAYFK-UHFFFAOYSA-N 0.000 description 1
- KTSVVTQTKRGWGU-UHFFFAOYSA-N 1-[2-[2-(2-butoxyethoxy)ethoxy]ethoxy]butane Chemical compound CCCCOCCOCCOCCOCCCC KTSVVTQTKRGWGU-UHFFFAOYSA-N 0.000 description 1
- OHRSSDYDJRJIMN-UHFFFAOYSA-N 1-[2-[2-(2-butoxypropoxy)propoxy]propoxy]butane Chemical compound CCCCOCC(C)OCC(C)OCC(C)OCCCC OHRSSDYDJRJIMN-UHFFFAOYSA-N 0.000 description 1
- YZWVMKLQNYGKLJ-UHFFFAOYSA-N 1-[2-[2-(2-ethoxyethoxy)ethoxy]ethoxy]-2-methoxyethane Chemical compound CCOCCOCCOCCOCCOC YZWVMKLQNYGKLJ-UHFFFAOYSA-N 0.000 description 1
- JVMKCHOJVQIXQN-UHFFFAOYSA-N 1-[2-[2-[2-(2-butoxypropoxy)propoxy]propoxy]propoxy]butane Chemical compound CCCCOCC(C)OCC(C)OCC(C)OCC(C)OCCCC JVMKCHOJVQIXQN-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- BNXZHVUCNYMNOS-UHFFFAOYSA-N 1-butylpyrrolidin-2-one Chemical compound CCCCN1CCCC1=O BNXZHVUCNYMNOS-UHFFFAOYSA-N 0.000 description 1
- RRQYJINTUHWNHW-UHFFFAOYSA-N 1-ethoxy-2-(2-ethoxyethoxy)ethane Chemical compound CCOCCOCCOCC RRQYJINTUHWNHW-UHFFFAOYSA-N 0.000 description 1
- ZIKLJUUTSQYGQI-UHFFFAOYSA-N 1-ethoxy-2-(2-ethoxypropoxy)propane Chemical compound CCOCC(C)OCC(C)OCC ZIKLJUUTSQYGQI-UHFFFAOYSA-N 0.000 description 1
- CNJRPYFBORAQAU-UHFFFAOYSA-N 1-ethoxy-2-(2-methoxyethoxy)ethane Chemical compound CCOCCOCCOC CNJRPYFBORAQAU-UHFFFAOYSA-N 0.000 description 1
- JXFITNNCZLPZNX-UHFFFAOYSA-N 1-ethoxy-2-(2-methoxypropoxy)propane Chemical compound CCOCC(C)OCC(C)OC JXFITNNCZLPZNX-UHFFFAOYSA-N 0.000 description 1
- KIAMPLQEZAMORJ-UHFFFAOYSA-N 1-ethoxy-2-[2-(2-ethoxyethoxy)ethoxy]ethane Chemical compound CCOCCOCCOCCOCC KIAMPLQEZAMORJ-UHFFFAOYSA-N 0.000 description 1
- ORRRIJVZQZKAKQ-UHFFFAOYSA-N 1-ethoxy-2-[2-(2-ethoxypropoxy)propoxy]propane Chemical compound CCOCC(C)OCC(C)OCC(C)OCC ORRRIJVZQZKAKQ-UHFFFAOYSA-N 0.000 description 1
- SFXVPXODAPMPMQ-UHFFFAOYSA-N 1-ethoxy-2-[2-(2-methoxypropoxy)propoxy]propane Chemical compound CCOCC(C)OCC(C)OCC(C)OC SFXVPXODAPMPMQ-UHFFFAOYSA-N 0.000 description 1
- FXAFMVDJGZBDEP-UHFFFAOYSA-N 1-ethoxy-2-[2-[2-(2-ethoxypropoxy)propoxy]propoxy]propane Chemical compound CCOCC(C)OCC(C)OCC(C)OCC(C)OCC FXAFMVDJGZBDEP-UHFFFAOYSA-N 0.000 description 1
- MCSTUOMMIRPEMK-UHFFFAOYSA-N 1-ethoxy-2-[2-[2-(2-methoxypropoxy)propoxy]propoxy]propane Chemical compound C(C)OCC(OCC(OCC(OCC(C)OC)C)C)C MCSTUOMMIRPEMK-UHFFFAOYSA-N 0.000 description 1
- BAWUFGWWCWMUNU-UHFFFAOYSA-N 1-hexylpyrrolidin-2-one Chemical compound CCCCCCN1CCCC1=O BAWUFGWWCWMUNU-UHFFFAOYSA-N 0.000 description 1
- RERATEUBWLKDFE-UHFFFAOYSA-N 1-methoxy-2-[2-(2-methoxypropoxy)propoxy]propane Chemical compound COCC(C)OCC(C)OCC(C)OC RERATEUBWLKDFE-UHFFFAOYSA-N 0.000 description 1
- ROSYHLFNMZTEKZ-UHFFFAOYSA-N 1-methoxy-2-[2-[2-(2-methoxypropoxy)propoxy]propoxy]propane Chemical compound COCC(C)OCC(C)OCC(C)OCC(C)OC ROSYHLFNMZTEKZ-UHFFFAOYSA-N 0.000 description 1
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- JOERQAIRIDZWHX-UHFFFAOYSA-N 1-propoxy-2-(2-propoxypropoxy)propane Chemical compound CCCOCC(C)OCC(C)OCCC JOERQAIRIDZWHX-UHFFFAOYSA-N 0.000 description 1
- DMFAHCVITRDZQB-UHFFFAOYSA-N 1-propoxypropan-2-yl acetate Chemical compound CCCOCC(C)OC(C)=O DMFAHCVITRDZQB-UHFFFAOYSA-N 0.000 description 1
- DCALJVULAGICIX-UHFFFAOYSA-N 1-propylpyrrolidin-2-one Chemical compound CCCN1CCCC1=O DCALJVULAGICIX-UHFFFAOYSA-N 0.000 description 1
- YRAJNWYBUCUFBD-UHFFFAOYSA-N 2,2,6,6-tetramethylheptane-3,5-dione Chemical compound CC(C)(C)C(=O)CC(=O)C(C)(C)C YRAJNWYBUCUFBD-UHFFFAOYSA-N 0.000 description 1
- LTMRRSWNXVJMBA-UHFFFAOYSA-L 2,2-diethylpropanedioate Chemical compound CCC(CC)(C([O-])=O)C([O-])=O LTMRRSWNXVJMBA-UHFFFAOYSA-L 0.000 description 1
- AWBIJARKDOFDAN-UHFFFAOYSA-N 2,5-dimethyl-1,4-dioxane Chemical compound CC1COC(C)CO1 AWBIJARKDOFDAN-UHFFFAOYSA-N 0.000 description 1
- CEGGECULKVTYMM-UHFFFAOYSA-N 2,6-dimethylheptane-3,5-dione Chemical compound CC(C)C(=O)CC(=O)C(C)C CEGGECULKVTYMM-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- FPZWZCWUIYYYBU-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl acetate Chemical compound CCOCCOCCOC(C)=O FPZWZCWUIYYYBU-UHFFFAOYSA-N 0.000 description 1
- CKCGJBFTCUCBAJ-UHFFFAOYSA-N 2-(2-ethoxypropoxy)propyl acetate Chemical compound CCOC(C)COC(C)COC(C)=O CKCGJBFTCUCBAJ-UHFFFAOYSA-N 0.000 description 1
- GHGDAJBKEFQCBH-UHFFFAOYSA-N 2-(2-heptan-2-yloxyethoxy)ethanol Chemical compound CCCCCC(C)OCCOCCO GHGDAJBKEFQCBH-UHFFFAOYSA-N 0.000 description 1
- CCGHAVKVTFDDJU-UHFFFAOYSA-N 2-(2-heptan-2-yloxypropoxy)propan-1-ol Chemical compound CC(CCCCC)OC(C)COC(C)CO CCGHAVKVTFDDJU-UHFFFAOYSA-N 0.000 description 1
- GZMAAYIALGURDQ-UHFFFAOYSA-N 2-(2-hexoxyethoxy)ethanol Chemical compound CCCCCCOCCOCCO GZMAAYIALGURDQ-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- HQLKZWRSOHTERR-UHFFFAOYSA-N 2-Ethylbutyl acetate Chemical compound CCC(CC)COC(C)=O HQLKZWRSOHTERR-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 1
- ZYXNLVMBIHVDRH-UHFFFAOYSA-N 2-Methylpropyl 3-oxobutanoate Chemical compound CC(C)COC(=O)CC(C)=O ZYXNLVMBIHVDRH-UHFFFAOYSA-N 0.000 description 1
- GQKZRWSUJHVIPE-UHFFFAOYSA-N 2-Pentanol acetate Chemical compound CCCC(C)OC(C)=O GQKZRWSUJHVIPE-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- WFSMVVDJSNMRAR-UHFFFAOYSA-N 2-[2-(2-ethoxyethoxy)ethoxy]ethanol Chemical compound CCOCCOCCOCCO WFSMVVDJSNMRAR-UHFFFAOYSA-N 0.000 description 1
- NNPUIIGTWSZCHE-UHFFFAOYSA-N 2-[2-(2-heptan-2-yloxypropoxy)propoxy]propan-1-ol Chemical compound CC(CCCCC)OC(C)COC(C)COC(C)CO NNPUIIGTWSZCHE-UHFFFAOYSA-N 0.000 description 1
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 1
- WAEVWDZKMBQDEJ-UHFFFAOYSA-N 2-[2-(2-methoxypropoxy)propoxy]propan-1-ol Chemical compound COC(C)COC(C)COC(C)CO WAEVWDZKMBQDEJ-UHFFFAOYSA-N 0.000 description 1
- AYIVTHITSLAIOM-UHFFFAOYSA-N 2-[2-(2-pentan-2-yloxyethoxy)ethoxy]ethanol Chemical compound CCCC(C)OCCOCCOCCO AYIVTHITSLAIOM-UHFFFAOYSA-N 0.000 description 1
- YIXPMXHWOUQTBS-UHFFFAOYSA-N 2-[2-(2-pentan-2-yloxypropoxy)propoxy]propan-1-ol Chemical compound CC(CCC)OC(C)COC(C)COC(C)CO YIXPMXHWOUQTBS-UHFFFAOYSA-N 0.000 description 1
- MXVMODFDROLTFD-UHFFFAOYSA-N 2-[2-[2-(2-butoxyethoxy)ethoxy]ethoxy]ethanol Chemical compound CCCCOCCOCCOCCOCCO MXVMODFDROLTFD-UHFFFAOYSA-N 0.000 description 1
- LKAIVSMFSUHTGS-UHFFFAOYSA-N 2-[2-[2-(2-heptan-2-yloxyethoxy)ethoxy]ethoxy]ethanol Chemical compound CCCCCC(C)OCCOCCOCCOCCO LKAIVSMFSUHTGS-UHFFFAOYSA-N 0.000 description 1
- SHHZIUZGAHMEJB-UHFFFAOYSA-N 2-[2-[2-(2-heptan-2-yloxypropoxy)propoxy]propoxy]propan-1-ol Chemical compound CC(CCCCC)OC(C)COC(C)COC(C)COC(C)CO SHHZIUZGAHMEJB-UHFFFAOYSA-N 0.000 description 1
- JPKNIKSLAPWTRU-UHFFFAOYSA-N 2-[2-[2-(2-pentan-2-yloxyethoxy)ethoxy]ethoxy]ethanol Chemical compound CCCC(C)OCCOCCOCCOCCO JPKNIKSLAPWTRU-UHFFFAOYSA-N 0.000 description 1
- JTXMVXSTHSMVQF-UHFFFAOYSA-N 2-acetyloxyethyl acetate Chemical compound CC(=O)OCCOC(C)=O JTXMVXSTHSMVQF-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- BYVKCQBOHJQWIO-UHFFFAOYSA-N 2-ethoxyethyl propanoate Chemical compound CCOCCOC(=O)CC BYVKCQBOHJQWIO-UHFFFAOYSA-N 0.000 description 1
- TZYRSLHNPKPEFV-UHFFFAOYSA-N 2-ethyl-1-butanol Chemical compound CCC(CC)CO TZYRSLHNPKPEFV-UHFFFAOYSA-N 0.000 description 1
- JKRXTSAPSPKNMS-UHFFFAOYSA-N 2-ethyl-3-oxoheptanoic acid Chemical compound CCCCC(=O)C(CC)C(O)=O JKRXTSAPSPKNMS-UHFFFAOYSA-N 0.000 description 1
- WOYWLLHHWAMFCB-UHFFFAOYSA-N 2-ethylhexyl acetate Chemical compound CCCCC(CC)COC(C)=O WOYWLLHHWAMFCB-UHFFFAOYSA-N 0.000 description 1
- CETWDUZRCINIHU-UHFFFAOYSA-N 2-heptanol Chemical compound CCCCCC(C)O CETWDUZRCINIHU-UHFFFAOYSA-N 0.000 description 1
- VAHNPAMCADTGIO-UHFFFAOYSA-N 2-methoxyethyl propanoate Chemical compound CCC(=O)OCCOC VAHNPAMCADTGIO-UHFFFAOYSA-N 0.000 description 1
- PFNHSEQQEPMLNI-UHFFFAOYSA-N 2-methyl-1-pentanol Chemical compound CCCC(C)CO PFNHSEQQEPMLNI-UHFFFAOYSA-N 0.000 description 1
- MSXVEPNJUHWQHW-UHFFFAOYSA-N 2-methylbutan-2-ol Chemical compound CCC(C)(C)O MSXVEPNJUHWQHW-UHFFFAOYSA-N 0.000 description 1
- WFLIQZBWVOJREF-UHFFFAOYSA-N 2-methylpropan-1-olate niobium(5+) Chemical compound [Nb+5].CC(C)C[O-].CC(C)C[O-].CC(C)C[O-].CC(C)C[O-].CC(C)C[O-] WFLIQZBWVOJREF-UHFFFAOYSA-N 0.000 description 1
- LYQSLVPTAJWTEG-UHFFFAOYSA-N 2-methylpropan-1-olate yttrium(3+) Chemical compound [Y+3].CC(C)C[O-].CC(C)C[O-].CC(C)C[O-] LYQSLVPTAJWTEG-UHFFFAOYSA-N 0.000 description 1
- SYGNFMCWKSOMRU-UHFFFAOYSA-N 2-methylpropan-1-olate;tantalum(5+) Chemical compound [Ta+5].CC(C)C[O-].CC(C)C[O-].CC(C)C[O-].CC(C)C[O-].CC(C)C[O-] SYGNFMCWKSOMRU-UHFFFAOYSA-N 0.000 description 1
- PYNACNWRKVQOMO-UHFFFAOYSA-N 2-methylpropan-2-olate;tantalum(5+) Chemical compound [Ta+5].CC(C)(C)[O-].CC(C)(C)[O-].CC(C)(C)[O-].CC(C)(C)[O-].CC(C)(C)[O-] PYNACNWRKVQOMO-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 2-octanone Chemical compound CCCCCCC(C)=O ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- PKNKULBDCRZSBT-UHFFFAOYSA-N 3,4,5-trimethylnonan-2-one Chemical compound CCCCC(C)C(C)C(C)C(C)=O PKNKULBDCRZSBT-UHFFFAOYSA-N 0.000 description 1
- HYDWALOBQJFOMS-UHFFFAOYSA-N 3,6,9,12,15-pentaoxaheptadecane Chemical compound CCOCCOCCOCCOCCOCC HYDWALOBQJFOMS-UHFFFAOYSA-N 0.000 description 1
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- QCAHUFWKIQLBNB-UHFFFAOYSA-N 3-(3-methoxypropoxy)propan-1-ol Chemical compound COCCCOCCCO QCAHUFWKIQLBNB-UHFFFAOYSA-N 0.000 description 1
- XHRGPLDMNNGHCX-UHFFFAOYSA-N 3-Methylbutyl 3-oxobutanoate Chemical compound CC(C)CCOC(=O)CC(C)=O XHRGPLDMNNGHCX-UHFFFAOYSA-N 0.000 description 1
- GUARKOVVHJSMRW-UHFFFAOYSA-N 3-ethylpentane-2,4-dione Chemical compound CCC(C(C)=O)C(C)=O GUARKOVVHJSMRW-UHFFFAOYSA-N 0.000 description 1
- JSGVZVOGOQILFM-UHFFFAOYSA-N 3-methoxy-1-butanol Chemical compound COC(C)CCO JSGVZVOGOQILFM-UHFFFAOYSA-N 0.000 description 1
- QMYGFTJCQFEDST-UHFFFAOYSA-N 3-methoxybutyl acetate Chemical compound COC(C)CCOC(C)=O QMYGFTJCQFEDST-UHFFFAOYSA-N 0.000 description 1
- GSOHKPVFCOWKPU-UHFFFAOYSA-N 3-methylpentane-2,4-dione Chemical compound CC(=O)C(C)C(C)=O GSOHKPVFCOWKPU-UHFFFAOYSA-N 0.000 description 1
- OCOBFMZGRJOSOU-UHFFFAOYSA-N 3-o-tert-butyl 1-o-ethyl propanedioate Chemical compound CCOC(=O)CC(=O)OC(C)(C)C OCOBFMZGRJOSOU-UHFFFAOYSA-N 0.000 description 1
- VATRWWPJWVCZTA-UHFFFAOYSA-N 3-oxo-n-[2-(trifluoromethyl)phenyl]butanamide Chemical compound CC(=O)CC(=O)NC1=CC=CC=C1C(F)(F)F VATRWWPJWVCZTA-UHFFFAOYSA-N 0.000 description 1
- BDCLDNALSPBWPQ-UHFFFAOYSA-N 3-oxohexanoic acid Chemical compound CCCC(=O)CC(O)=O BDCLDNALSPBWPQ-UHFFFAOYSA-N 0.000 description 1
- FERBIZCKDIJEAV-UHFFFAOYSA-N 4,4-dimethyl-3-oxopentanoic acid Chemical compound CC(C)(C)C(=O)CC(O)=O FERBIZCKDIJEAV-UHFFFAOYSA-N 0.000 description 1
- MQWCXKGKQLNYQG-UHFFFAOYSA-N 4-methylcyclohexan-1-ol Chemical compound CC1CCC(O)CC1 MQWCXKGKQLNYQG-UHFFFAOYSA-N 0.000 description 1
- VGVHNLRUAMRIEW-UHFFFAOYSA-N 4-methylcyclohexan-1-one Chemical compound CC1CCC(=O)CC1 VGVHNLRUAMRIEW-UHFFFAOYSA-N 0.000 description 1
- IGMOYJSFRIASIE-UHFFFAOYSA-N 6-Methylheptan-2,4-dione Chemical compound CC(C)CC(=O)CC(C)=O IGMOYJSFRIASIE-UHFFFAOYSA-N 0.000 description 1
- LPEKGGXMPWTOCB-UHFFFAOYSA-N 8beta-(2,3-epoxy-2-methylbutyryloxy)-14-acetoxytithifolin Natural products COC(=O)C(C)O LPEKGGXMPWTOCB-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910017944 Ag—Cu Inorganic materials 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 241000252073 Anguilliformes Species 0.000 description 1
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- 239000007848 Bronsted acid Substances 0.000 description 1
- 239000003341 Bronsted base Substances 0.000 description 1
- REIYHFWZISXFKU-UHFFFAOYSA-N Butyl acetoacetate Chemical compound CCCCOC(=O)CC(C)=O REIYHFWZISXFKU-UHFFFAOYSA-N 0.000 description 1
- MRABAEUHTLLEML-UHFFFAOYSA-N Butyl lactate Chemical compound CCCCOC(=O)C(C)O MRABAEUHTLLEML-UHFFFAOYSA-N 0.000 description 1
- IZNXGXORLKRGRH-UHFFFAOYSA-N CC(C)O[V](OC(C)C)(OC(C)C)(OC(C)C)OC(C)C Chemical compound CC(C)O[V](OC(C)C)(OC(C)C)(OC(C)C)OC(C)C IZNXGXORLKRGRH-UHFFFAOYSA-N 0.000 description 1
- CIURCIMZEPBPPG-UHFFFAOYSA-N CC(CCC)OC(C)COC(C)CO Chemical compound CC(CCC)OC(C)COC(C)CO CIURCIMZEPBPPG-UHFFFAOYSA-N 0.000 description 1
- RCZPHVPIOWNERS-UHFFFAOYSA-N CCCO[Ti] Chemical compound CCCO[Ti] RCZPHVPIOWNERS-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 239000005973 Carvone Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- YYLLIJHXUHJATK-UHFFFAOYSA-N Cyclohexyl acetate Chemical compound CC(=O)OC1CCCCC1 YYLLIJHXUHJATK-UHFFFAOYSA-N 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 239000002879 Lewis base Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- XOBKSJJDNFUZPF-UHFFFAOYSA-N Methoxyethane Chemical compound CCOC XOBKSJJDNFUZPF-UHFFFAOYSA-N 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- JKRZOJADNVOXPM-UHFFFAOYSA-N Oxalic acid dibutyl ester Chemical compound CCCCOC(=O)C(=O)OCCCC JKRZOJADNVOXPM-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical compound [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 description 1
- 229920002305 Schizophyllan Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000000441 X-ray spectroscopy Methods 0.000 description 1
- FHKPLLOSJHHKNU-INIZCTEOSA-N [(3S)-3-[8-(1-ethyl-5-methylpyrazol-4-yl)-9-methylpurin-6-yl]oxypyrrolidin-1-yl]-(oxan-4-yl)methanone Chemical compound C(C)N1N=CC(=C1C)C=1N(C2=NC=NC(=C2N=1)O[C@@H]1CN(CC1)C(=O)C1CCOCC1)C FHKPLLOSJHHKNU-INIZCTEOSA-N 0.000 description 1
- ATWHYLMNRJQICU-UHFFFAOYSA-N [O-]CCCC.[O-]CCCC.[O-]CCCC.[V+5] Chemical compound [O-]CCCC.[O-]CCCC.[O-]CCCC.[V+5] ATWHYLMNRJQICU-UHFFFAOYSA-N 0.000 description 1
- HGZSLMTUMOHPBM-UHFFFAOYSA-N [Ta+5].CCC(C)[O-].CCC(C)[O-].CCC(C)[O-].CCC(C)[O-].CCC(C)[O-] Chemical compound [Ta+5].CCC(C)[O-].CCC(C)[O-].CCC(C)[O-].CCC(C)[O-].CCC(C)[O-] HGZSLMTUMOHPBM-UHFFFAOYSA-N 0.000 description 1
- VJXLDJPPTHRASI-UHFFFAOYSA-N [V+5].CC(C)(C)[O-].CC(C)(C)[O-].CC(C)(C)[O-] Chemical compound [V+5].CC(C)(C)[O-].CC(C)(C)[O-].CC(C)(C)[O-] VJXLDJPPTHRASI-UHFFFAOYSA-N 0.000 description 1
- GGBZETYPUORFEI-UHFFFAOYSA-N [V+5].CC(C)C[O-].CC(C)C[O-].CC(C)C[O-].CC(C)C[O-].CC(C)C[O-] Chemical compound [V+5].CC(C)C[O-].CC(C)C[O-].CC(C)C[O-].CC(C)C[O-].CC(C)C[O-] GGBZETYPUORFEI-UHFFFAOYSA-N 0.000 description 1
- LPHBWRJXTUNCAI-UHFFFAOYSA-N [V+5].CCC[O-].CCC[O-].CCC[O-].CCC[O-].CCC[O-] Chemical compound [V+5].CCC[O-].CCC[O-].CCC[O-].CCC[O-].CCC[O-] LPHBWRJXTUNCAI-UHFFFAOYSA-N 0.000 description 1
- YXQNFAMIMZXXIK-UHFFFAOYSA-N [V+5].[O-]C.[O-]C.[O-]C.[O-]C.[O-]C Chemical compound [V+5].[O-]C.[O-]C.[O-]C.[O-]C.[O-]C YXQNFAMIMZXXIK-UHFFFAOYSA-N 0.000 description 1
- XPCLWNIAODCIMT-UHFFFAOYSA-N [Y+3].[O-]CCCC.[Y+3].[O-]CCCC.[O-]CCCC.[O-]CCCC.[O-]CCCC.[O-]CCCC Chemical compound [Y+3].[O-]CCCC.[Y+3].[O-]CCCC.[O-]CCCC.[O-]CCCC.[O-]CCCC.[O-]CCCC XPCLWNIAODCIMT-UHFFFAOYSA-N 0.000 description 1
- 229940022663 acetate Drugs 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- WBJMFJMRMFQXCO-UHFFFAOYSA-N acetic acid;2-[2-(2-hydroxyethoxy)ethoxy]-1-methoxyethanol Chemical compound CC(O)=O.COC(O)COCCOCCO WBJMFJMRMFQXCO-UHFFFAOYSA-N 0.000 description 1
- WDJHALXBUFZDSR-UHFFFAOYSA-M acetoacetate Chemical compound CC(=O)CC([O-])=O WDJHALXBUFZDSR-UHFFFAOYSA-M 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000005456 alcohol based solvent Substances 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- VYBREYKSZAROCT-UHFFFAOYSA-N alpha-myrcene Natural products CC(=C)CCCC(=C)C=C VYBREYKSZAROCT-UHFFFAOYSA-N 0.000 description 1
- JPUHCPXFQIXLMW-UHFFFAOYSA-N aluminium triethoxide Chemical compound CCO[Al](OCC)OCC JPUHCPXFQIXLMW-UHFFFAOYSA-N 0.000 description 1
- MQPPCKJJFDNPHJ-UHFFFAOYSA-K aluminum;3-oxohexanoate Chemical compound [Al+3].CCCC(=O)CC([O-])=O.CCCC(=O)CC([O-])=O.CCCC(=O)CC([O-])=O MQPPCKJJFDNPHJ-UHFFFAOYSA-K 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- UCRXQUVKDMVBBM-UHFFFAOYSA-N benzyl 2-amino-3-(4-phenylmethoxyphenyl)propanoate Chemical compound C=1C=CC=CC=1COC(=O)C(N)CC(C=C1)=CC=C1OCC1=CC=CC=C1 UCRXQUVKDMVBBM-UHFFFAOYSA-N 0.000 description 1
- 229940007550 benzyl acetate Drugs 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- JZIBIUMUMQLPTN-UHFFFAOYSA-N butan-2-olate niobium(5+) Chemical compound [Nb+5].CCC(C)[O-].CCC(C)[O-].CCC(C)[O-].CCC(C)[O-].CCC(C)[O-] JZIBIUMUMQLPTN-UHFFFAOYSA-N 0.000 description 1
- RDASHQZXQNLNMG-UHFFFAOYSA-N butan-2-olate;di(propan-2-yloxy)alumanylium Chemical compound CCC(C)O[Al](OC(C)C)OC(C)C RDASHQZXQNLNMG-UHFFFAOYSA-N 0.000 description 1
- ZCKJKAAKIXBAQX-UHFFFAOYSA-N butan-2-yl acetate;2-methylpropyl acetate Chemical compound CCC(C)OC(C)=O.CC(C)COC(C)=O ZCKJKAAKIXBAQX-UHFFFAOYSA-N 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- BTMVHUNTONAYDX-UHFFFAOYSA-N butyl propionate Chemical compound CCCCOC(=O)CC BTMVHUNTONAYDX-UHFFFAOYSA-N 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000006297 carbonyl amino group Chemical group [H]N([*:2])C([*:1])=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- GQVMHMFBVWSSPF-UHFFFAOYSA-N cis-alloocimene Natural products CC=C(C)C=CC=C(C)C GQVMHMFBVWSSPF-UHFFFAOYSA-N 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- NFKGQHYUYGYHIS-UHFFFAOYSA-N dibutyl propanedioate Chemical compound CCCCOC(=O)CC(=O)OCCCC NFKGQHYUYGYHIS-UHFFFAOYSA-N 0.000 description 1
- OFRFGNSZCYDFOH-UHFFFAOYSA-N diethyl 2-(2-methylpropyl)propanedioate Chemical compound CCOC(=O)C(CC(C)C)C(=O)OCC OFRFGNSZCYDFOH-UHFFFAOYSA-N 0.000 description 1
- MIIZSUOEOUHAIZ-UHFFFAOYSA-N diethyl 2-butan-2-ylpropanedioate Chemical compound CCOC(=O)C(C(C)CC)C(=O)OCC MIIZSUOEOUHAIZ-UHFFFAOYSA-N 0.000 description 1
- RPNFNBGRHCUORR-UHFFFAOYSA-N diethyl 2-butylpropanedioate Chemical compound CCCCC(C(=O)OCC)C(=O)OCC RPNFNBGRHCUORR-UHFFFAOYSA-N 0.000 description 1
- VQAZCUCWHIIFGE-UHFFFAOYSA-N diethyl 2-ethylpropanedioate Chemical compound CCOC(=O)C(CC)C(=O)OCC VQAZCUCWHIIFGE-UHFFFAOYSA-N 0.000 description 1
- RQFSNEWORATSCC-UHFFFAOYSA-N diethyl 2-pentan-2-ylpropanedioate Chemical compound CCCC(C)C(C(=O)OCC)C(=O)OCC RQFSNEWORATSCC-UHFFFAOYSA-N 0.000 description 1
- BYQFBFWERHXONI-UHFFFAOYSA-N diethyl 2-propan-2-ylpropanedioate Chemical compound CCOC(=O)C(C(C)C)C(=O)OCC BYQFBFWERHXONI-UHFFFAOYSA-N 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- WYACBZDAHNBPPB-UHFFFAOYSA-N diethyl oxalate Chemical compound CCOC(=O)C(=O)OCC WYACBZDAHNBPPB-UHFFFAOYSA-N 0.000 description 1
- 229940019778 diethylene glycol diethyl ether Drugs 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- MQXAJNXSULJYCY-UHFFFAOYSA-N dihexyl propanedioate Chemical compound CCCCCCOC(=O)CC(=O)OCCCCCC MQXAJNXSULJYCY-UHFFFAOYSA-N 0.000 description 1
- BEPAFCGSDWSTEL-UHFFFAOYSA-N dimethyl malonate Chemical compound COC(=O)CC(=O)OC BEPAFCGSDWSTEL-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- QRVSDVDFJFKYKA-UHFFFAOYSA-N dipropan-2-yl propanedioate Chemical compound CC(C)OC(=O)CC(=O)OC(C)C QRVSDVDFJFKYKA-UHFFFAOYSA-N 0.000 description 1
- LWIWFCDNJNZEKB-UHFFFAOYSA-N dipropyl propanedioate Chemical compound CCCOC(=O)CC(=O)OCCC LWIWFCDNJNZEKB-UHFFFAOYSA-N 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- CLPHAYNBNTVRDI-UHFFFAOYSA-N ditert-butyl propanedioate Chemical compound CC(C)(C)OC(=O)CC(=O)OC(C)(C)C CLPHAYNBNTVRDI-UHFFFAOYSA-N 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- ODQWQRRAPPTVAG-GZTJUZNOSA-N doxepin Chemical compound C1OC2=CC=CC=C2C(=C/CCN(C)C)/C2=CC=CC=C21 ODQWQRRAPPTVAG-GZTJUZNOSA-N 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- BFIMXCBKRLYJQO-UHFFFAOYSA-N ethanolate;hafnium(4+) Chemical compound [Hf+4].CC[O-].CC[O-].CC[O-].CC[O-] BFIMXCBKRLYJQO-UHFFFAOYSA-N 0.000 description 1
- KEQVPIDOPAGWCP-UHFFFAOYSA-N ethanolate;yttrium(3+) Chemical compound [Y+3].CC[O-].CC[O-].CC[O-] KEQVPIDOPAGWCP-UHFFFAOYSA-N 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- XIGZBCUFFUBWDM-UHFFFAOYSA-N ethyl 2-acetylheptanoate Chemical compound CCCCCC(C(C)=O)C(=O)OCC XIGZBCUFFUBWDM-UHFFFAOYSA-N 0.000 description 1
- ZTOQBHVLCJERBS-UHFFFAOYSA-N ethyl 2-acetylhexanoate Chemical compound CCCCC(C(C)=O)C(=O)OCC ZTOQBHVLCJERBS-UHFFFAOYSA-N 0.000 description 1
- OKANYBNORCUPKZ-UHFFFAOYSA-N ethyl 2-ethyl-3-oxobutanoate Chemical compound CCOC(=O)C(CC)C(C)=O OKANYBNORCUPKZ-UHFFFAOYSA-N 0.000 description 1
- FNENWZWNOPCZGK-UHFFFAOYSA-N ethyl 2-methyl-3-oxobutanoate Chemical compound CCOC(=O)C(C)C(C)=O FNENWZWNOPCZGK-UHFFFAOYSA-N 0.000 description 1
- YZKPCVHTRBTTAX-UHFFFAOYSA-N ethyl 3-oxodecanoate Chemical compound CCCCCCCC(=O)CC(=O)OCC YZKPCVHTRBTTAX-UHFFFAOYSA-N 0.000 description 1
- KQWWVLVLVYYYDT-UHFFFAOYSA-N ethyl 3-oxohexanoate Chemical compound CCCC(=O)CC(=O)OCC KQWWVLVLVYYYDT-UHFFFAOYSA-N 0.000 description 1
- UDRCONFHWYGWFI-UHFFFAOYSA-N ethyl 3-oxopentanoate Chemical compound CCOC(=O)CC(=O)CC UDRCONFHWYGWFI-UHFFFAOYSA-N 0.000 description 1
- XCLDSQRVMMXWMS-UHFFFAOYSA-N ethyl 4-methyl-3-oxopentanoate Chemical compound CCOC(=O)CC(=O)C(C)C XCLDSQRVMMXWMS-UHFFFAOYSA-N 0.000 description 1
- 229940116333 ethyl lactate Drugs 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- KIXLEMHCRGHACT-UHFFFAOYSA-N hafnium(4+);methanolate Chemical compound [Hf+4].[O-]C.[O-]C.[O-]C.[O-]C KIXLEMHCRGHACT-UHFFFAOYSA-N 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- HMKGKDSPHSNMTM-UHFFFAOYSA-N hafnium;propan-2-ol Chemical compound [Hf].CC(C)O.CC(C)O.CC(C)O.CC(C)O HMKGKDSPHSNMTM-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- YAVJSVDUZGIQPQ-UHFFFAOYSA-N heptyl 3-oxobutanoate Chemical compound CCCCCCCOC(=O)CC(C)=O YAVJSVDUZGIQPQ-UHFFFAOYSA-N 0.000 description 1
- QNVRIHYSUZMSGM-UHFFFAOYSA-N hexan-2-ol Chemical compound CCCCC(C)O QNVRIHYSUZMSGM-UHFFFAOYSA-N 0.000 description 1
- RXTNIJMLAQNTEG-UHFFFAOYSA-N hexan-2-yl acetate Chemical compound CCCCC(C)OC(C)=O RXTNIJMLAQNTEG-UHFFFAOYSA-N 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229920013819 hydroxyethyl ethylcellulose Polymers 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 229940117955 isoamyl acetate Drugs 0.000 description 1
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 1
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 1
- 229940011051 isopropyl acetate Drugs 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 1
- 239000005453 ketone based solvent Substances 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 150000007527 lewis bases Chemical class 0.000 description 1
- 235000001510 limonene Nutrition 0.000 description 1
- 229940087305 limonene Drugs 0.000 description 1
- WVLGTKBIJRAYME-UHFFFAOYSA-N methanolate;yttrium(3+) Chemical compound [Y+3].[O-]C.[O-]C.[O-]C WVLGTKBIJRAYME-UHFFFAOYSA-N 0.000 description 1
- VNKYTQGIUYNRMY-UHFFFAOYSA-N methoxypropane Chemical compound CCCOC VNKYTQGIUYNRMY-UHFFFAOYSA-N 0.000 description 1
- IMXBRVLCKXGWSS-UHFFFAOYSA-N methyl 2-cyclohexylacetate Chemical compound COC(=O)CC1CCCCC1 IMXBRVLCKXGWSS-UHFFFAOYSA-N 0.000 description 1
- HNNFDXWDCFCVDM-UHFFFAOYSA-N methyl 4-methyl-3-oxopentanoate Chemical compound COC(=O)CC(=O)C(C)C HNNFDXWDCFCVDM-UHFFFAOYSA-N 0.000 description 1
- 229940057867 methyl lactate Drugs 0.000 description 1
- ZIYVHBGGAOATLY-UHFFFAOYSA-N methylmalonic acid Chemical compound OC(=O)C(C)C(O)=O ZIYVHBGGAOATLY-UHFFFAOYSA-N 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 229940017144 n-butyl lactate Drugs 0.000 description 1
- PZYDAVFRVJXFHS-UHFFFAOYSA-N n-cyclohexyl-2-pyrrolidone Chemical compound O=C1CCCN1C1CCCCC1 PZYDAVFRVJXFHS-UHFFFAOYSA-N 0.000 description 1
- HNBDRPTVWVGKBR-UHFFFAOYSA-N n-pentanoic acid methyl ester Natural products CCCCC(=O)OC HNBDRPTVWVGKBR-UHFFFAOYSA-N 0.000 description 1
- PRRBQHNMYJRHFW-UHFFFAOYSA-N n-valeryl acetic acid Chemical compound CCCCC(=O)CC(O)=O PRRBQHNMYJRHFW-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- LZRGWUCHXWALGY-UHFFFAOYSA-N niobium(5+);propan-2-olate Chemical compound [Nb+5].CC(C)[O-].CC(C)[O-].CC(C)[O-].CC(C)[O-].CC(C)[O-] LZRGWUCHXWALGY-UHFFFAOYSA-N 0.000 description 1
- SJWFXCIHNDVPSH-UHFFFAOYSA-N octan-2-ol Chemical compound CCCCCCC(C)O SJWFXCIHNDVPSH-UHFFFAOYSA-N 0.000 description 1
- IKYDDBGYKFPTGF-UHFFFAOYSA-N octyl 3-oxobutanoate Chemical compound CCCCCCCCOC(=O)CC(C)=O IKYDDBGYKFPTGF-UHFFFAOYSA-N 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- PFTIWTQFHWICDR-UHFFFAOYSA-N pentan-3-yl 3-oxobutanoate Chemical compound CCC(CC)OC(=O)CC(C)=O PFTIWTQFHWICDR-UHFFFAOYSA-N 0.000 description 1
- GXOHBWLPQHTYPF-UHFFFAOYSA-N pentyl 2-hydroxypropanoate Chemical compound CCCCCOC(=O)C(C)O GXOHBWLPQHTYPF-UHFFFAOYSA-N 0.000 description 1
- IDZAUPYMMSSVHP-UHFFFAOYSA-N pentyl 3-oxobutanoate Chemical compound CCCCCOC(=O)CC(C)=O IDZAUPYMMSSVHP-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- IKNCGYCHMGNBCP-UHFFFAOYSA-N propan-1-olate Chemical compound CCC[O-] IKNCGYCHMGNBCP-UHFFFAOYSA-N 0.000 description 1
- KWUQLGUXYUKOKE-UHFFFAOYSA-N propan-2-ol;tantalum Chemical compound [Ta].CC(C)O.CC(C)O.CC(C)O.CC(C)O.CC(C)O KWUQLGUXYUKOKE-UHFFFAOYSA-N 0.000 description 1
- GVIIRWAJDFKJMJ-UHFFFAOYSA-N propan-2-yl 3-oxobutanoate Chemical compound CC(C)OC(=O)CC(C)=O GVIIRWAJDFKJMJ-UHFFFAOYSA-N 0.000 description 1
- DHGFMVMDBNLMKT-UHFFFAOYSA-N propyl 3-oxobutanoate Chemical compound CCCOC(=O)CC(C)=O DHGFMVMDBNLMKT-UHFFFAOYSA-N 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229930006978 terpinene Natural products 0.000 description 1
- 150000003507 terpinene derivatives Chemical class 0.000 description 1
- JKUYRAMKJLMYLO-UHFFFAOYSA-N tert-butyl 3-oxobutanoate Chemical compound CC(=O)CC(=O)OC(C)(C)C JKUYRAMKJLMYLO-UHFFFAOYSA-N 0.000 description 1
- BRGJIIMZXMWMCC-UHFFFAOYSA-N tetradecan-2-ol Chemical compound CCCCCCCCCCCCC(C)O BRGJIIMZXMWMCC-UHFFFAOYSA-N 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 239000005341 toughened glass Substances 0.000 description 1
- 230000005068 transpiration Effects 0.000 description 1
- WOZZOSDBXABUFO-UHFFFAOYSA-N tri(butan-2-yloxy)alumane Chemical compound [Al+3].CCC(C)[O-].CCC(C)[O-].CCC(C)[O-] WOZZOSDBXABUFO-UHFFFAOYSA-N 0.000 description 1
- 125000005270 trialkylamine group Chemical group 0.000 description 1
- MYWQGROTKMBNKN-UHFFFAOYSA-N tributoxyalumane Chemical compound [Al+3].CCCC[O-].CCCC[O-].CCCC[O-] MYWQGROTKMBNKN-UHFFFAOYSA-N 0.000 description 1
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
- UAEJRRZPRZCUBE-UHFFFAOYSA-N trimethoxyalumane Chemical compound [Al+3].[O-]C.[O-]C.[O-]C UAEJRRZPRZCUBE-UHFFFAOYSA-N 0.000 description 1
- MDDPTCUZZASZIQ-UHFFFAOYSA-N tris[(2-methylpropan-2-yl)oxy]alumane Chemical compound [Al+3].CC(C)(C)[O-].CC(C)(C)[O-].CC(C)(C)[O-] MDDPTCUZZASZIQ-UHFFFAOYSA-N 0.000 description 1
- XMUJIPOFTAHSOK-UHFFFAOYSA-N undecan-2-ol Chemical compound CCCCCCCCCC(C)O XMUJIPOFTAHSOK-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- IHPKGUQCSIINRJ-UHFFFAOYSA-N β-ocimene Natural products CC(C)=CCC=C(C)C=C IHPKGUQCSIINRJ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H01L31/032—
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/005—Compounds of elements of Group 5 of the Periodic Table without metal-carbon linkages
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F5/00—Compounds containing elements of Groups 3 or 13 of the Periodic Table
- C07F5/06—Aluminium compounds
- C07F5/069—Aluminium compounds without C-aluminium linkages
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/003—Compounds containing elements of Groups 4 or 14 of the Periodic Table without C-Metal linkages
-
- H01L31/02013—
-
- H01L31/02161—
-
- H01L31/02168—
-
- H01L31/1864—
-
- H01L31/1868—
-
- H01L2031/0344—
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a composition for forming a passivation layer, a semiconductor substrate with a passivation layer, a method for manufacturing a semiconductor substrate with a passivation layer, a solar cell element, a method for manufacturing a solar cell element, and a solar cell.
- n-type diffusion layer is uniformly formed by performing several tens of minutes at 800 ° C. to 900 ° C.
- n-type diffusion layers are formed not only on the front surface, which is the light receiving surface, but also on the side surface and the back surface. Therefore, side etching is performed to remove the n-type diffusion layer formed on the side surface.
- the n-type diffusion layer formed on the back surface needs to be converted into a p + -type diffusion layer. For this reason, by applying an aluminum paste containing aluminum powder and a binder to the entire back surface and heat-treating (baking) it, the n-type diffusion layer is converted into a p + -type diffusion layer and an aluminum electrode is formed. Get ohmic contact.
- the aluminum electrode formed from the aluminum paste has low conductivity.
- the aluminum electrode generally formed on the entire back surface must have a thickness of about 10 ⁇ m to 20 ⁇ m after heat treatment (firing).
- the thermal expansion coefficient differs greatly between silicon and aluminum, a large internal stress is generated in the silicon substrate during the heat treatment (firing) and cooling in the silicon substrate on which the aluminum electrode is formed, and the grain boundary Cause damage, crystal defect growth, and warping.
- a point contact method has been proposed in which an aluminum paste is applied to a part of the surface of a silicon substrate to partially form a p + -type diffusion layer and an aluminum electrode (for example, Japanese Patent No. 3107287). (See the publication).
- an SiO 2 film or the like has been proposed as a passivation layer for the back surface (see, for example, JP-A-2004-6565).
- a passivation effect by forming such a SiO 2 film there is an effect of terminating the dangling bonds of silicon atoms in the back surface layer portion of the silicon substrate and reducing the surface state density causing recombination.
- Such a passivation effect is generally called a field effect, and an aluminum oxide (Al 2 O 3 ) film or the like has been proposed as a material having a negative fixed charge (see, for example, Japanese Patent No. 4767110).
- Such a passivation layer is generally formed by a method such as an ALD (Atomic Layer Deposition) method or a CVD (Chemical Vapor Deposition) method (for example, Journal of Applied Physics, 104 (2008), 113703-1). 113703-7).
- composition for forming a passivation layer used in the methods described in Thin Solid Films, 517 (2009), 6327-6330 and Chinese Physics Letters, 26 (2009), 088102-1-088102-4 is a gel over time. It is difficult to say that the storage stability is sufficient because of problems such as crystallization.
- the present invention has been made in view of the above conventional problems, and provides a passivation layer forming composition capable of forming a passivation layer having excellent storage stability and a passivation effect by a simple method.
- the task is to do.
- the present invention provides a semiconductor substrate with a passivation layer provided with a passivation layer having an excellent passivation effect obtained using the composition for forming a passivation layer, a method for manufacturing a semiconductor substrate with a passivation layer, and excellent conversion efficiency. It is an object of the present invention to provide a solar cell element, a method for manufacturing the solar cell element, and a solar cell.
- M includes at least one metal element selected from the group consisting of Nb, Ta, V, Y, and Hf.
- R 1 independently represents an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms.
- m represents an integer of 1 to 5.
- composition for forming a passivation layer according to ⁇ 1> further comprising a compound represented by the following general formula (II).
- each R 2 independently represents an alkyl group having 1 to 8 carbon atoms.
- n represents an integer of 0 to 3.
- X 2 and X 3 each independently represent an oxygen atom or a methylene group.
- R 3 , R 4 and R 5 each independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
- composition for forming a passivation layer according to ⁇ 4> comprising the liquid medium and the resin, wherein the total content of the liquid medium and the resin is 5% by mass or more and 98% by mass or less.
- the total content of the compound represented by the general formula (I) and the compound represented by the general formula (II) including the compound represented by the general formula (II) is 0.1% by mass.
- ⁇ 8> A step of forming a composition layer by applying the composition for forming a passivation layer according to any one of ⁇ 1> to ⁇ 6> to the entire surface or a part of a semiconductor substrate, and the composition And forming a passivation layer by heat-treating the layer.
- a solar cell having the solar cell element according to ⁇ 9> and a wiring material provided on an electrode of the solar cell element.
- a passivation layer forming composition capable of forming a passivation layer having excellent storage stability and excellent passivation effect by a simple technique.
- a semiconductor substrate with a passivation layer obtained using the composition for forming a passivation layer and having a passivation layer having an excellent passivation effect, a method for producing a semiconductor substrate with a passivation layer, and excellent conversion efficiency
- a solar cell element a method for manufacturing a solar cell element, and a solar cell.
- the term “process” is not only an independent process, but is included in this term if the purpose of the process is achieved even if it cannot be clearly distinguished from other processes.
- a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
- the content of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition.
- the term “layer” includes a configuration of a shape formed in part in addition to a configuration of a shape formed on the entire surface when observed as a plan view.
- composition for forming a passivation layer of the present invention contains a compound represented by the following general formula (I) (hereinafter also referred to as “compound of formula (I)”).
- the composition for forming a passivation layer may further contain other components as necessary.
- a passivation layer having an excellent passivation effect can be formed by a simple technique. Further, the composition for forming a passivation layer is excellent in storage stability.
- M includes at least one metal element selected from the group consisting of Nb, Ta, V, Y, and Hf.
- R 1 represents an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms.
- m represents an integer of 1 to 5.
- the passivation effect of a semiconductor substrate refers to an effective lifetime of minority carriers in a semiconductor substrate on which a passivation layer is formed by using a device such as Nippon Semi-Lab Co., Ltd., WT-2000PVN, etc. It can be evaluated by measuring by the method.
- the effective lifetime ⁇ is expressed by the following equation (A) by the bulk lifetime ⁇ b inside the semiconductor substrate and the surface lifetime ⁇ s of the semiconductor substrate surface.
- ⁇ s becomes long, resulting in a long effective lifetime ⁇ .
- the bulk lifetime ⁇ b is increased and the effective lifetime ⁇ is increased. That is, by measuring the effective lifetime ⁇ , the interface characteristics between the passivation layer and the semiconductor substrate and the internal characteristics of the semiconductor substrate such as dangling bonds can be evaluated.
- composition for forming a passivation layer contains at least one compound represented by the general formula (I) (compound of formula (I)).
- a passivation layer having an excellent passivation effect can be formed. The reason for this can be considered as follows.
- a metal oxide formed by heat-treating (firing) a passivation layer-forming composition containing the compound of formula (I) has defects of metal atoms or oxygen atoms and is likely to generate fixed charges.
- this fixed charge generates charge near the interface of the semiconductor substrate, the concentration of minority carriers can be reduced. As a result, the carrier recombination rate at the interface is suppressed, and an excellent passivation effect is achieved. Conceivable.
- the state of the passivation layer that generates a fixed charge on the semiconductor substrate electron energy loss spectroscopy (EELS, Electron Energy Loss Spectroscopy) using a scanning transmission electron microscope (STEM, Scanning Transmission electron Microscope) ) Analysis of the binding mode. Further, by measuring an X-ray diffraction spectrum (XRD, X-ray diffraction), the crystal phase near the interface of the passivation layer can be confirmed. Furthermore, the fixed charge of the passivation layer can be evaluated by the CV method (CapacitanceitVoltage measurement).
- M contains at least one metal element selected from the group consisting of Nb, Ta, V, Y, and Hf, and has a passivation effect, storage stability of the composition for forming a passivation layer, and From the viewpoint of workability when preparing the composition for forming a passivation layer, M is preferably at least one selected from the group consisting of Nb, Ta and Y, more preferably Nb. Further, from the viewpoint of making the fixed charge density of the passivation layer negative, M is preferably at least one selected from the group consisting of Nb, Ta, VO, and Hf.
- each R 1 independently represents an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms, preferably an alkyl group having 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms.
- the alkyl group is more preferable.
- the alkyl group represented by R 1 may be linear or branched. Specific examples of the alkyl group represented by R 1 include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl, hexyl, octyl, 2- Examples thereof include an ethylhexyl group and a 3-ethylhexyl group.
- aryl group represented by R 1 examples include a phenyl group.
- the alkyl group and aryl group represented by R 1 may have a substituent, and examples of the substituent of the alkyl group include an amino group, a hydroxyl group, a carboxyl group, a sulfone group, and a nitro group.
- substituent for the aryl group include a methyl group, an ethyl group, an isopropyl group, an amino group, a hydroxyl group, a carboxyl group, a sulfone group, and a nitro group.
- R 1 is preferably an unsubstituted alkyl group having 1 to 8 carbon atoms, and more preferably an unsubstituted alkyl group having 1 to 4 carbon atoms, from the viewpoint of storage stability and a passivation effect.
- m represents an integer of 1 to 5. From the viewpoint of storage stability, m is preferably 5 when M is Nb, m is preferably 5 when M is Ta, and M is VO. M is preferably 3, m is preferably 3 when M is Y, and m is preferably 4 when M is Hf.
- M is at least one selected from the group consisting of Nb, Ta and Y, and R 1 is an unsubstituted alkyl group having 1 to 4 carbon atoms. , M is preferably an integer of 1 to 5.
- M is at least one selected from the group consisting of Nb, Ta, VO, and Hf, and R 1 is an unsubstituted C 1-4 substituent. It is preferable that m is an integer of 1 to 5.
- the state of the compound represented by the general formula (I) may be solid or liquid. From the viewpoint of the storage stability of the composition for forming a passivation layer and the miscibility in the case where the compound represented by the general formula (II) described later is used in combination, the compound represented by the general formula (I) may be a liquid. preferable.
- the compounds represented by the general formula (I) are niobium methoxide, niobium ethoxide, niobium isopropoxide, niobium n-propoxide, niobium n-butoxide, niobium t-butoxide, niobium isobutoxide, tantalum methoxide, tantalum ethoxy.
- niobium ethoxide, niobium n-propoxide, niobium n-butoxide, tantalum ethoxide, tantalum n-propoxide, tantalum n-butoxide, vanadium ethoxide oxide, vanadium n-propoxy Preference is given to oxides, vanadium n-butoxide oxide, hafnium ethoxide, hafnium n-propoxide and hafnium n-butoxide.
- a prepared product or a commercially available product may be used as the compound represented by the general formula (I).
- Commercially available products include, for example, pentamethoxyniobium, pentaethoxyniobium, penta-i-propoxyniobium, penta-n-propoxyniobium, penta-i-butoxyniobium, penta-n-butoxyniobium from High Purity Chemical Laboratory, Inc.
- Penta-sec-butoxy niobium pentamethoxy tantalum, pentaethoxy tantalum, penta-i-propoxy tantalum, penta-n-propoxy tantalum, penta-i-butoxy tantalum, penta-n-butoxy tantalum, penta-sec-butoxy tantalum , Penta-t-butoxytantalum, vanadium (V) trimethoxide oxide, vanadium (V) triethoxy oxide, vanadium (V) tri-i-propoxide oxide, vanadium (V) tri-n-propoxide oxide, vanadium (V Tri-i-butoxide oxide, vanadium (V) tri-n-butoxide oxide, vanadium (V) tri-sec-butoxide oxide, vanadium (V) tri-t-butoxide oxide, tri-i-propoxy yttrium, tri-n -Butoxy yttrium, tetramethoxy
- a halide of a specific metal (M) and an alcohol are reacted in the presence of an inert organic solvent, and ammonia or an amine compound is used to further extract the halogen.
- Known methods such as a method of adding (Japanese Patent Laid-Open No. 63-227593 and Japanese Patent Laid-Open No. 3-291247) can be used.
- the compound represented by the general formula (I) may be a compound in which a chelate structure is formed by mixing with a compound having a specific structure having two carbonyl groups described later.
- the number of carbonyl groups to be chelated is not particularly limited, but when M is Nb, the number of carbonyl groups to be chelated is preferably 1 to 5, and when M is Ta, the number of carbonyl groups to be chelated is The number of carbonyl groups to be chelated is preferably 1 to 3 when M is V, and the number of carbonyl groups to be chelated is 1 to 3 when M is Y. It is preferable that when M is Hf, the number of carbonyl groups to be chelated is preferably 1 to 4.
- a chelate structure in the compound represented by the general formula (I) can be confirmed by a commonly used analysis method. For example, it can be confirmed using an infrared spectrum, a nuclear magnetic resonance spectrum, a melting point, or the like.
- the content of the compound of the formula (I) contained in the composition for forming a passivation layer can be appropriately selected as necessary.
- the content of the compound of formula (I) can be 0.1% by mass to 80% by mass in the composition for forming a passivation layer from the viewpoint of storage stability and a passivation effect, and 0.5% by mass to 70% by mass.
- the content is preferably 1% by mass, more preferably 1% by mass to 60% by mass, and still more preferably 1% by mass to 50% by mass.
- composition for forming a passivation layer of the present invention may contain at least one compound represented by the following general formula (II) (hereinafter also referred to as “organoaluminum compound”).
- each R 2 independently represents an alkyl group having 1 to 8 carbon atoms.
- n represents an integer of 0 to 3.
- X 2 and X 3 each independently represent an oxygen atom or a methylene group.
- R 3 , R 4 and R 5 each independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
- the passivation effect can be further improved. This can be considered as follows.
- the organoaluminum compound includes compounds called aluminum alkoxide, aluminum chelate and the like, and preferably has an aluminum chelate structure in addition to the aluminum alkoxide structure. Further, as described in Nippon Seramikkusu Kyokai Gakujitsu Ronbunshi, vol. 97, pp369-399 (1989), the organoaluminum compound becomes aluminum oxide (Al 2 O 3 ) by heat treatment (firing). At this time, since the formed aluminum oxide is likely to be in an amorphous state, a four-coordinate aluminum oxide layer is easily formed in the vicinity of the interface with the semiconductor substrate, and may have a large negative fixed charge due to the four-coordinate aluminum oxide. It is considered possible. At this time, it is considered that a passivation layer having an excellent passivation effect can be formed by compounding with an oxide derived from the compound of formula (I) having a fixed charge.
- the passivation effect becomes higher due to the respective effects in the passivation layer. It is done.
- the metal (M) represented by the general formula (I) and aluminum are heat-treated (fired) in a state where the compound represented by the general formula (I) and the compound represented by the general formula (II) are mixed.
- the composite metal alkoxide with (Al) is generated, the physical properties such as reactivity and vapor pressure are improved, the denseness of the passivation layer as a heat-treated product (baked product) is improved, and as a result, the passivation effect becomes higher. Conceivable.
- each R 2 independently represents an alkyl group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms.
- the alkyl group represented by R 2 may be linear or branched. Specific examples of the alkyl group represented by R 2 include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl, hexyl, octyl, 2- Examples thereof include an ethylhexyl group and a 3-ethylhexyl group.
- the alkyl group represented by R 2 is preferably an unsubstituted alkyl group having 1 to 8 carbon atoms from the viewpoint of storage stability and a passivation effect, and is an unsubstituted alkyl group having 1 to 4 carbon atoms. More preferably.
- n represents an integer of 0 to 3. n is preferably an integer of 1 to 3 and more preferably 1 or 3 from the viewpoint of storage stability.
- X 2 and X 3 each independently represent an oxygen atom or a methylene group. From the viewpoint of storage stability, at least one of X 2 and X 3 is preferably an oxygen atom.
- R 3 , R 4 and R 5 in the general formula (II) each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
- the alkyl group represented by R 3 , R 4 and R 5 may be linear or branched.
- the alkyl group represented by R 3 , R 4 and R 5 may have a substituent or may be unsubstituted, and is preferably unsubstituted.
- the alkyl group represented by R 3 , R 4 and R 5 is an alkyl group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms.
- alkyl group represented by R 3 , R 4 and R 5 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a t-butyl group, and a hexyl group.
- R 3 and R 4 in the general formula (II) are preferably each independently a hydrogen atom or an unsubstituted alkyl group having 1 to 8 carbon atoms. Or it is more preferably an unsubstituted alkyl group having 1 to 4 carbon atoms.
- R 5 in the general formula (II) is preferably a hydrogen atom or an unsubstituted alkyl group having 1 to 8 carbon atoms from the viewpoint of storage stability and a passivation effect, and is preferably a hydrogen atom or 1 to 4 carbon atoms.
- the unsubstituted alkyl group is more preferable.
- the compound represented by the general formula (II) is a compound in which n is 1 to 3 and R 5 is independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms from the viewpoint of storage stability. It is preferable.
- the compound represented by the general formula (II) is a compound in which n is 0, R 2 is each independently an alkyl group having 1 to 4 carbon atoms, and n is from the viewpoint of storage stability and a passivation effect. 1 to 3, R 2 is each independently an alkyl group having 1 to 4 carbon atoms, at least one of X 2 and X 3 is an oxygen atom, and R 3 and R 4 are each independently a hydrogen atom Or an alkyl group having 1 to 4 carbon atoms, and R 5 is preferably at least one selected from the group consisting of compounds each independently being a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
- R 2 is each independently an unsubstituted alkyl group having 1 to 4 carbon atoms
- n is 1 to 3
- R 2 is each independently an unsubstituted alkyl group having 1 to 4 carbon atoms
- at least one of X 2 and X 3 is an oxygen atom
- R 3 or R 4 bonded to the oxygen atom is A group consisting of a compound having an alkyl group having 1 to 4 carbon atoms, and when X 2 or X 3 is a methylene group, R 3 or R 4 bonded to the methylene group is a hydrogen atom
- R 5 is a hydrogen atom It is at least 1 sort chosen from more.
- aluminum trialkoxide which is an organoaluminum compound represented by the general formula (II) and n is 0, include trimethoxyaluminum, triethoxyaluminum, triisopropoxyaluminum, trisec-butoxyaluminum, monosec-butoxy -Diisopropoxyaluminum, tri-t-butoxyaluminum, tri-n-butoxyaluminum and the like.
- organoaluminum compound represented by the general formula (II) where n is 1 to 3 include aluminum ethyl acetoacetate diisopropylate and tris (ethylacetoacetate) aluminum.
- organoaluminum compound represented by the general formula (II) and n being 1 to 3 a prepared product or a commercially available product may be used.
- commercially available products include Kawaken Fine Chemical Co., Ltd. trade names, ALCH, ALCH-50F, ALCH-75, ALCH-TR, ALCH-TR-20, and the like.
- the organoaluminum compound represented by the general formula (II) and n is 1 to 3 can be prepared by mixing an aluminum trialkoxide and a compound having a specific structure having two carbonyl groups.
- a commercially available aluminum chelate compound may also be used.
- the compound having a specific structure having two carbonyl groups is preferably at least one selected from the group consisting of ⁇ -diketone compounds, ⁇ -ketoester compounds and malonic acid diesters from the viewpoint of reactivity and storage stability. .
- ⁇ -diketone compounds include acetylacetone, 3-methyl-2,4-pentanedione, 2,3-pentanedione, 3-ethyl-2,4-pentanedione, and 3-butyl-2,4-pentane.
- Examples include dione, 2,2,6,6-tetramethyl-3,5-heptanedione, 2,6-dimethyl-3,5-heptanedione, 6-methyl-2,4-heptanedione, and the like.
- ⁇ -ketoester compounds include methyl acetoacetate, ethyl acetoacetate, propyl acetoacetate, isopropyl acetoacetate, isobutyl acetoacetate, butyl acetoacetate, t-butyl acetoacetate, pentyl acetoacetate, isopentyl acetoacetate, acetoacetate Hexyl, n-octyl acetoacetate, heptyl acetoacetate, 3-pentyl acetoacetate, ethyl 2-acetylheptanoate, ethyl 2-methylacetoacetate, ethyl 2-butylacetoacetate, ethyl hexylacetoacetate, 4,4-dimethyl-3- Ethyl oxovalerate, ethyl 4-methyl-3-oxovalerate, ethyl 2-ethylacetoacetate, methyl
- malonic acid diester examples include dimethyl malonate, diethyl malonate, dipropyl malonate, diisopropyl malonate, dibutyl malonate, di-t-butyl malonate, dihexyl malonate, t-butylethyl malonate, methyl malonate
- examples include diethyl, diethyl ethylmalonate, diethyl isopropylmalonate, diethyl butylmalonate, diethyl sec-butylmalonate, diethyl isobutylmalonate, diethyl 1-methylbutylmalonate, and the like.
- the number of aluminum chelate structures is not particularly limited as long as it is 1 to 3. Among these, 1 or 3 is preferable from the viewpoint of storage stability, and 1 is more preferable from the viewpoint of solubility.
- the number of aluminum chelate structures can be controlled, for example, by appropriately adjusting the ratio of mixing aluminum trialkoxide and a compound having a specific structure having two carbonyl groups. Moreover, you may select suitably the compound which has a desired structure from a commercially available aluminum chelate compound.
- the compounds represented by the general formula (II) from the viewpoint of the passivation effect and the compatibility with the solvent contained as necessary, specifically, it consists of aluminum ethyl acetoacetate diisopropylate and triisopropoxyaluminum. It is preferable to use at least one selected from the group, and it is more preferable to use aluminum ethyl acetoacetate diisopropylate.
- an aluminum chelate structure in the organoaluminum compound can be confirmed by a commonly used analysis method. For example, it can be confirmed using an infrared spectrum, a nuclear magnetic resonance spectrum, a melting point, or the like.
- the organoaluminum compound may be liquid or solid and is not particularly limited. From the viewpoint of the passivation effect and storage stability, the homogeneity of the formed passivation layer is further improved by using an organoaluminum compound having good stability at room temperature (25 ° C.) and solubility or dispersibility. A desired passivation effect can be stably obtained.
- the content of the organoaluminum compound is not particularly limited.
- the content of the organoaluminum compound when the total content of the compound of formula (I) represented by the general formula (I) and the organoaluminum compound is 100% by mass is 0.1% by mass or more and 80% by mass or less. It is preferably 0.5% by mass or more and 80% by mass or less, more preferably 1% by mass or more and 75% by mass or less, and further preferably 2% by mass or more and 70% by mass or less. Particularly preferred is 3% by mass or more and 70% by mass or less.
- the storage stability of the composition for forming a passivation layer tends to be improved. Moreover, it exists in the tendency for the passivation effect to improve by making an organoaluminum compound 80 mass% or less.
- the content of the organoaluminum compound in the composition for forming a passivation layer can be appropriately selected as necessary.
- the content of the organoaluminum compound may be 0.1% by mass to 60% by mass in the composition for forming a passivation layer, and 0.5% by mass to 55% by mass from the viewpoint of storage stability and a passivation effect. It is preferably 1% by mass to 50% by mass, more preferably 1% by mass to 45% by mass.
- the composition for forming a passivation layer may contain a liquid medium (solvent or dispersion medium).
- a liquid medium solvent or dispersion medium
- the viscosity can be easily adjusted, the impartability can be further improved, and a more uniform passivation layer can be formed.
- the liquid medium is not particularly limited and can be appropriately selected as necessary. Among them, a liquid medium that can dissolve the compound represented by the general formula (I) and the compound represented by the general formula (II) that is added as necessary to give a uniform solution is preferable. It is more preferable that 1 type is included.
- a liquid medium means a medium in a liquid state at room temperature (25 ° C.).
- liquid medium examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl isopropyl ketone, methyl-n-butyl ketone, methyl isobutyl ketone, methyl-n-pentyl ketone, methyl-n-hexyl ketone, diethyl ketone, Ketone solvents such as dipropyl ketone, diisobutyl ketone, trimethylnonanone, cyclohexanone, cyclopentanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone; diethyl ether, methyl ethyl ether, methyl-n-propyl ether, diisopropyl Ether, tetrahydrofuran, methyltetrahydrofuran, dioxane, dimethyldioxane, ethylene glycol dimethyl ether
- Aprotic polar solvents such as methylene chloride, chloroform, dichloroethane, benzene, toluene, xylene, hexane, octane, ethylbenzene, 2-ethylhexanoic acid, methyl isobutyl ketone, methyl ethyl ketone; methanol, ethanol, n-propanol , Isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, n-pentanol, isopentanol, 2-methylbutanol, sec-pentano , T-pentanol, 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, n-oct
- the liquid medium preferably contains at least one selected from the group consisting of a terpene solvent, an ester solvent, and an alcohol solvent, and is selected from the group consisting of a terpene solvent, from the viewpoint of impartability to a semiconductor substrate and pattern formation. More preferably, at least one kind is included.
- the content of the liquid medium is determined in consideration of the imparting property, pattern forming property, and storage stability.
- the content of the liquid medium is preferably 5% by mass to 98% by mass with respect to the total mass of the composition for forming a passivation layer, from the viewpoint of impartability of the composition and pattern formability, More preferably, it is 95 mass%.
- the composition for forming a passivation layer may further contain at least one resin.
- the shape stability of the composition layer formed by applying the composition for forming the passivation layer on the semiconductor substrate is further improved, and the passivation layer is formed in a region where the composition layer is formed. It can be formed in a shape.
- the type of resin is not particularly limited.
- the resin is preferably a resin whose viscosity can be adjusted within a range in which a good pattern can be formed when the composition for forming a passivation layer is applied onto a semiconductor substrate.
- Specific examples of the resin include polyvinyl alcohol, polyacrylamide, polyacrylamide derivatives, polyvinylamide, polyvinylamide derivatives, polyvinylpyrrolidone, polyethylene oxide, polyethylene oxide derivatives, polysulfonic acid, polyacrylamide alkylsulfonic acid, cellulose, and cellulose derivatives (carboxymethylcellulose).
- Cellulose ethers such as hydroxyethyl cellulose and ethyl cellulose
- gelatin gelatin derivatives, starch, starch derivatives, sodium alginate, sodium alginate derivatives, xanthan, xanthan derivatives, guar gum, guar gum derivatives, scleroglucan, scleroglucan derivatives, tragacanth, Tragacanth derivative, dextrin, dextrin derivative, (meta)
- crylic acid resin (meth) acrylic acid ester resin (alkyl (meth) acrylate resin, dimethylaminoethyl (meth) acrylate resin, etc.), butadiene resin, styrene resin, siloxane resin, and copolymers thereof.
- (meth) acrylic acid means at least one of “acrylic acid” and “methacrylic acid”
- (meth) acrylate means at least one of “acrylate” and “methacrylate”. means.
- the molecular weight of these resins is not particularly limited, and it is preferable to adjust appropriately in view of the desired viscosity as the composition for forming a passivation layer.
- the weight average molecular weight of the resin is preferably from 1,000 to 10,000,000, more preferably from 1,000 to 5,000,000, from the viewpoints of storage stability and pattern formability.
- the weight average molecular weight of resin is calculated
- the calibration curve is approximated by a cubic equation using a standard polystyrene five sample set (PStQuick MP-H, PStQuick B [Tosoh Corporation, trade name]).
- PStQuick MP-H, PStQuick B [Tosoh Corporation, trade name] The measurement conditions for GPC are shown below.
- the content of the resin in the composition for forming a passivation layer can be appropriately selected as necessary.
- the resin content is preferably 0.1% by mass to 50% by mass in the total mass of the composition for forming a passivation layer.
- the resin content is more preferably 0.2% by mass to 25% by mass, and more preferably 0.5% by mass to 20% by mass. Is more preferable, and 0.5 to 15% by mass is particularly preferable.
- the composition for forming a passivation layer of the present invention may further contain other components that are usually used in the art as needed, in addition to the components described above.
- the composition for forming a passivation layer may contain an acidic compound or a basic compound.
- the content of the acidic compound or the basic compound is 1% by mass or less in the composition for forming a passivation layer, respectively. It is preferable that the content is 0.1% by mass or less.
- Examples of acidic compounds include Bronsted acid and Lewis acid. Specific examples include inorganic acids such as hydrochloric acid and nitric acid; organic acids such as acetic acid.
- Examples of basic compounds include Bronsted bases and Lewis bases. Specifically, examples of the basic compound include inorganic bases such as alkali metal hydroxides and alkaline earth metal hydroxides; organic bases such as trialkylamine and pyridine.
- examples of other components include plasticizers, dispersants, surfactants, thixotropic agents, inorganic fillers, other metal alkoxide compounds, and high boiling point materials.
- at least 1 sort (s) selected from a thixotropic agent and an inorganic filler is included.
- the shape stability of the composition layer formed by applying the composition for forming the passivation layer on the semiconductor substrate is further improved, and the passivation layer is composed. It can be formed in a desired shape in the region where the physical layer is formed.
- thixotropic agents include fatty acid amides, polyalkylene glycol compounds, and organic fillers.
- polyalkylene glycol compound examples include compounds represented by the following general formula (III).
- R 6 and R 7 each independently represent a hydrogen atom or an alkyl group, and R 8 represents an alkylene group.
- n is an arbitrary integer of 3 or more.
- R 8 in the presence of a plurality of (O-R 8) may or may not be the same.
- fatty acid amides examples include compounds represented by the following general formulas (1), (2), (3) and (4).
- R 9 CONH 2 (1) R 9 CONH-R 10 -NHCOR 9 (2) R 9 NHCO—R 10 —CONHR 9 (3) R 9 CONH—R 10 —N (R 11 ) 2 ... (4)
- R 9 and R 11 each independently represents an alkyl group or an alkenyl group having 2 to 30 carbon atoms having 1 to 30 carbon atoms
- R 10 Represents an alkylene group having 1 to 10 carbon atoms.
- R 9 and R 11 may be the same or different.
- Two R 11 may be the same or different.
- organic filler examples include particles of acrylic resin, cellulose resin, polystyrene resin, and the like.
- the inorganic filler examples include particles of silicon dioxide, aluminum hydroxide, aluminum nitride, silicon nitride, aluminum oxide, zirconium oxide, silicon carbide and the like.
- the inorganic filler may be glass particles.
- the volume average particle diameter of the organic filler or inorganic filler is preferably 0.01 ⁇ m to 50 ⁇ m.
- the volume average particle diameter refers to the particle diameter (D50%) when the volume-based integrated value in the particle size distribution is 50%.
- the volume average particle size is measured by a laser diffraction / scattering particle size distribution analyzer (for example, Beckman Coulter, Inc., LS 13, 320). Hereinafter, a more detailed method for measuring the particle diameter will be described. For measurement, 0.01 g to 0.10 g of filler is used and dispersed in 125 ml of solvent (terpineol).
- the refractive index of the solvent is set to 1.48
- the refractive index of the filler is set to the value of each substance (for example, 1.57 in the case of aluminum hydroxide particles). From the particle size distribution measured under the above conditions, the particle size (D50%) when the volume-based integrated value is 50% is calculated.
- metal alkoxide compounds include titanium alkoxide, zirconium alkoxide, silicon alkoxide and the like.
- the composition for forming a passivation film may use a high-boiling point material together with the resin or as a material replacing the resin.
- the high boiling point material is preferably a compound that is easily vaporized when heated and does not need to be degreased.
- the high boiling point material is particularly preferably a high boiling point material having a high viscosity capable of maintaining a printed shape after printing or coating.
- An example of a material that satisfies these conditions is isobornylcyclohexanol.
- Isobornylcyclohexanol is commercially available as “Telsolve MTPH” (Nippon Terpene Chemical Co., Ltd., trade name). Isobornyl cyclohexanol has a high boiling point of 308 ° C. to 318 ° C. When it is removed from the composition layer, it does not need to be degreased by heat treatment (firing) like a resin, but is vaporized by heating. Can be eliminated. For this reason, most of the solvent and isobornyl cyclohexanol contained in the composition for forming a passivation layer as necessary can be removed in the drying step after application on the semiconductor substrate.
- the content of the high boiling point material is preferably 3% by mass to 95% by mass in the total mass of the composition for forming a passivation layer, and 5% by mass. It is more preferably from 90% by mass, particularly preferably from 7% by mass to 80% by mass.
- the composition for forming a passivation layer may contain at least one oxide selected from the group consisting of Nb, Ta, V, Y and Hf (hereinafter referred to as “specific oxide”). Since the specific oxide is an oxide generated by heat-treating (sintering) the compound of formula (I), the passivation layer formed from the composition for forming a passivation layer containing the specific oxide has an excellent passivation effect. Is expected to be played.
- the composition for forming a passivation layer may further contain aluminum oxide (Al 2 O 3 ). Aluminum oxide is an oxide produced by heat-treating (firing) a compound represented by the formula (II). Therefore, the composition for forming a passivation layer containing the compound of formula (I) and aluminum oxide is expected to exhibit an excellent passivation effect.
- the viscosity of the composition for forming a passivation layer is not particularly limited, and can be appropriately selected depending on a method for applying the composition to a semiconductor substrate.
- the viscosity of the composition for forming a passivation layer can be 0.01 Pa ⁇ s to 10,000 Pa ⁇ s.
- the viscosity of the composition for forming a passivation layer is preferably 0.1 Pa ⁇ s to 1000 Pa ⁇ s.
- the viscosity is measured at 25 ° C. and a shear rate of 1.0 s ⁇ 1 using a rotary shear viscometer.
- the shear viscosity of the composition for forming a passivation layer is not particularly limited, and the composition for forming a passivation layer preferably has thixotropy. Particularly when the passivation layer forming composition comprising a resin, from the viewpoint of pattern formability is calculated by dividing the shear viscosity eta 1 at a shear rate of 1.0 s -1 at shear viscosity eta 2 at a shear rate of 10s -1
- the thixo ratio ( ⁇ 1 / ⁇ 2 ) is preferably 1.05 to 100, more preferably 1.1 to 50.
- the shear viscosity is measured at a temperature of 25 ° C. using a rotary shear viscometer equipped with a cone plate (diameter 50 mm, cone angle 1 °).
- shear viscosity at a shear rate of 1000 s -1 shear viscosity eta 1 at a shear rate of 1.0 s -1 eta 3 The thixo ratio ( ⁇ 1 / ⁇ 3 ) calculated by dividing by is preferably 1.05 to 100, more preferably 1.1 to 50.
- a specific compound represented by the general formula (I), a compound represented by the general formula (II) contained as necessary, a liquid medium, a resin and the like are mixed by a commonly used mixing method. Can be manufactured.
- the components contained in the composition for forming a passivation layer and the content of each component are determined by thermal analysis such as differential thermal-thermogravimetric simultaneous measurement (TG / DTA), nuclear magnetic resonance (NMR), infrared spectroscopy ( It can be confirmed by spectral analysis such as IR), chromatographic analysis such as high performance liquid chromatography (HPLC), gel permeation chromatography (GPC) and the like.
- the semiconductor substrate with a passivation layer of the present invention includes a semiconductor substrate and a passivation layer that is a heat treatment product (baked product) of the composition for forming a passivation layer provided on the entire surface or a part of the semiconductor substrate.
- the semiconductor substrate with a passivation layer exhibits an excellent passivation effect when it has a passivation layer that is a heat-treated product (baked product) of the composition for forming a passivation layer.
- the semiconductor substrate is not particularly limited, and can be appropriately selected from those usually used according to the purpose.
- Examples of the semiconductor substrate include those obtained by doping (diffusing) p-type impurities or n-type impurities into silicon, germanium, or the like. Of these, a silicon substrate is preferable.
- the semiconductor substrate may be a p-type semiconductor substrate or an n-type semiconductor substrate. Among these, from the viewpoint of the passivation effect, it is preferable that the surface on which the passivation layer is formed is a semiconductor substrate having a p-type layer.
- the p-type layer on the semiconductor substrate is a p-type layer derived from the p-type semiconductor substrate
- the p-type layer is formed on the n-type semiconductor substrate or the p-type semiconductor substrate as a p-type diffusion layer or a p + -type diffusion layer. It may be a thing.
- the thickness of the semiconductor substrate is not particularly limited and can be appropriately selected depending on the purpose.
- the thickness of the semiconductor substrate can be 50 ⁇ m to 1000 ⁇ m, preferably 75 ⁇ m to 750 ⁇ m.
- the thickness of the passivation layer formed on the semiconductor substrate is not particularly limited and can be appropriately selected depending on the purpose.
- the thickness of the passivation layer is preferably 5 nm to 50 ⁇ m, more preferably 10 nm to 30 ⁇ m, and still more preferably 15 nm to 20 ⁇ m.
- the thickness of the passivation layer can be measured with an interference film thickness meter or the like.
- the semiconductor substrate with a passivation layer can be applied to solar cell elements, light emitting diode elements, and the like.
- the solar cell element excellent in conversion efficiency can be obtained by applying to a solar cell element.
- the method for producing a semiconductor substrate with a passivation layer according to the present invention includes a step of forming the composition layer by applying the composition for forming a passivation layer on the entire surface or a part of the semiconductor substrate, and heat-treating the composition layer ( Firing) to form a passivation layer.
- the manufacturing method may further include other steps as necessary.
- the method for producing a semiconductor substrate with a passivation layer preferably further includes a step of applying an alkaline aqueous solution on the semiconductor substrate before the step of forming the composition layer. That is, it is preferable to wash the surface of the semiconductor substrate with an alkaline aqueous solution before applying the composition for forming a passivation layer on the semiconductor substrate. By washing with an alkaline aqueous solution, organic substances, particles, and the like present on the surface of the semiconductor substrate can be removed, and the passivation effect is further improved.
- a method for cleaning with an alkaline aqueous solution generally known RCA cleaning and the like can be exemplified.
- the semiconductor substrate can be cleaned by removing organic substances and particles by immersing the semiconductor substrate in a mixed solution of aqueous ammonia and hydrogen peroxide and treating at 60 ° C. to 80 ° C.
- the washing time is preferably 10 seconds to 10 minutes, and more preferably 30 seconds to 5 minutes.
- a method for applying a composition for forming a passivation layer on a semiconductor substrate there is no particular limitation on the method for forming a composition layer by applying a passivation layer forming composition on a semiconductor substrate.
- a method for applying a composition for forming a passivation layer on a semiconductor substrate using a known application method or the like can be mentioned.
- Specific examples include an immersion method, a screen printing method, an ink jet method, a dispenser method, a spin coating method, a brush coating method, a spray method, a doctor blade method, and a roll coating method.
- a screen printing method, an inkjet method, and the like are preferable.
- the application amount of the composition for forming a passivation layer can be appropriately selected according to the purpose.
- the thickness of the passivation layer to be formed can be appropriately adjusted so as to be a desired thickness described later.
- a passivation layer is formed on a semiconductor substrate by heat-treating (baking) the composition layer formed by the composition for forming a passivation layer to form a heat-treated material layer (baked material layer) derived from the composition layer. be able to.
- the heat treatment (firing) conditions of the composition layer are the compound represented by the general formula (I) contained in the composition layer and the compound represented by the general formula (II) contained in the composition layer as necessary. There is no particular limitation as long as it can be converted into a metal oxide or composite oxide which is a fired product).
- the heat treatment (firing) temperature is preferably 300 ° C.
- the heat treatment (firing) temperature here means the maximum temperature in the furnace used for the heat treatment (firing).
- the heat treatment (firing) time can be appropriately selected according to the heat treatment (firing) temperature and the like. For example, it can be 0.1 to 10 hours, and preferably 0.2 to 5 hours.
- the heat treatment (firing) time here means the holding time at the maximum temperature.
- the heat treatment (firing) can be performed using a diffusion furnace (for example, ACCURONUCQ-1200, Hitachi Kokusai Electric Co., Ltd .; 206A-M100, Koyo Thermo System Co., Ltd.) and the like.
- the atmosphere in which the heat treatment (firing) is performed is not particularly limited, and can be performed in the air.
- the thickness of the passivation layer produced by the method for producing a semiconductor substrate with a passivation layer is not particularly limited and can be appropriately selected according to the purpose.
- the average thickness of the passivation layer is preferably 5 nm to 50 ⁇ m, preferably 10 nm to 30 ⁇ m, and more preferably 15 nm to 20 ⁇ m.
- the average thickness of the formed passivation layer measured the thickness of 3 points
- a method of manufacturing a semiconductor substrate with a passivation layer includes: a composition layer comprising a composition for forming a passivation layer, after the composition for forming a passivation layer is applied to the semiconductor substrate and before the step of forming the passivation layer by heat treatment (firing). You may further have the process of drying-processing. By including the step of drying the composition layer, a passivation layer having a more uniform passivation effect can be formed.
- the step of drying the composition layer is not particularly limited as long as at least a part of the liquid medium that may be contained in the passivation layer forming composition can be removed.
- the drying treatment can be, for example, a heat treatment at 30 ° C. to 250 ° C. for 1 minute to 60 minutes, and is preferably a heat treatment at 40 ° C. to 220 ° C. for 3 minutes to 40 minutes.
- the drying treatment may be performed under normal pressure or under reduced pressure.
- the method for producing a semiconductor substrate with a passivation layer includes the step of forming a passivation layer after applying the composition for forming a passivation layer and before forming the passivation layer by heat treatment (firing). You may further have the process of degreasing the composition layer which consists of a composition for formation. By having a step of degreasing the composition layer, a passivation layer having a more uniform passivation effect can be formed.
- the step of degreasing the composition layer is not particularly limited as long as at least part of the resin that may be contained in the composition for forming a passivation layer can be removed.
- the degreasing treatment can be, for example, a heat treatment at 250 to 450 ° C. for 10 to 120 minutes, preferably a heat treatment at 300 to 400 ° C. for 3 to 60 minutes.
- the degreasing treatment is preferably performed in the presence of oxygen, and more preferably performed in the atmosphere.
- the solar cell element of the present invention includes a semiconductor substrate in which a p-type layer and an n-type layer are pn-junction, and a heat treatment product (baked product) of the passivation layer forming composition provided on the entire surface or a part of the semiconductor substrate. ) And an electrode provided on at least one of the p-type layer and the n-type layer of the semiconductor substrate.
- the solar cell element may further include other components as necessary.
- a solar cell element is excellent in conversion efficiency by having the passivation layer formed from the composition for passivation layer formation of this invention.
- the semiconductor substrate to which the composition for forming a passivation layer is applied is not particularly limited, and can be appropriately selected from those usually used according to the purpose.
- a semiconductor substrate what was demonstrated by the semiconductor substrate with a passivation layer can be used, and the thing which can be used conveniently is also the same.
- the surface of the semiconductor substrate on which the passivation layer is provided may be any of the back surface, the light receiving surface, and the side surface of the solar cell element.
- the thickness of the passivation layer formed on the semiconductor substrate is not particularly limited and can be appropriately selected depending on the purpose.
- the average thickness of the passivation layer is preferably 5 nm to 50 ⁇ m, more preferably 10 nm to 30 ⁇ m, and still more preferably 15 nm to 20 ⁇ m.
- the composition layer is formed by applying the passivation layer forming composition to the entire surface or a part of a semiconductor substrate in which a p-type layer and an n-type layer are pn-junctioned.
- the method for manufacturing the solar cell element may further include other steps as necessary.
- a solar cell element having excellent conversion efficiency can be produced by a simple method.
- an electrode on at least one of a p-type layer and an n-type layer in a semiconductor substrate a commonly used method can be employed.
- it can be manufactured by applying an electrode forming paste such as a silver paste or an aluminum paste to a desired region of a semiconductor substrate and performing a heat treatment (firing) as necessary.
- the surface of the semiconductor substrate on which the passivation layer is provided may be a p-type layer or an n-type layer. Among these, a p-type layer is preferable from the viewpoint of conversion efficiency.
- the details of the method for forming a passivation layer using the composition for forming a passivation layer are the same as the method for manufacturing a semiconductor substrate with a passivation layer described above, and the preferred embodiments are also the same.
- the thickness of the passivation layer formed on the semiconductor substrate is not particularly limited and can be appropriately selected according to the purpose.
- the average thickness of the passivation layer is preferably 5 nm to 50 ⁇ m, more preferably 10 nm to 30 ⁇ m, and still more preferably 15 nm to 20 ⁇ m.
- FIG. 1 is a sectional view schematically showing an example of a method for producing a solar cell element having a passivation layer according to this embodiment.
- this process diagram does not limit the present invention at all.
- the p-type semiconductor substrate 1 is washed with an alkaline aqueous solution to remove organic substances, particles and the like on the surface of the p-type semiconductor substrate 1. Thereby, the passivation effect improves more.
- an alkaline aqueous solution generally known RCA cleaning or the like can be used.
- the surface of the p-type semiconductor substrate 1 is subjected to alkali etching or the like to form irregularities (also referred to as texture) on the surface.
- alkali etching an etching solution composed of NaOH and IPA (isopropyl alcohol) can be used.
- an n + -type diffusion layer 2 is formed with a depth of submicron order, A pn junction is formed at the boundary with the p-type bulk portion.
- a method for diffusing phosphorus for example, a method of performing several tens of minutes at 800 ° C. to 1000 ° C. in a mixed gas atmosphere of phosphorus oxychloride (POCl 3 ), nitrogen, and oxygen can be cited.
- the n + -type diffusion layer 2 is formed not only on the light receiving surface (front surface) but also on the back surface and side surfaces (not shown) as shown in FIG. Is formed.
- a PSG (phosphosilicate glass) layer 3 is formed on the n + -type diffusion layer 2. Therefore, side etching is performed to remove the side PSG layer 3 and the n + -type diffusion layer 2.
- the PSG layer 3 on the light receiving surface and the back surface is removed using an etching solution such as hydrofluoric acid. Further, as shown in FIG. 1 (5), the back surface is separately etched to remove the n + -type diffusion layer 2 on the back surface.
- an antireflection film 4 such as silicon nitride is formed on the n + type diffusion layer 2 on the light receiving surface by a PECVD (Plasma Enhanced Chemical Vapor Deposition) method or the like at a thickness of about 90 nm.
- PECVD Pulsma Enhanced Chemical Vapor Deposition
- the passivation layer forming composition of the present invention is applied to a part of the back surface by screen printing or the like, and after drying, heat treatment (baking) at a temperature of 300 ° C. to 900 ° C. To form a passivation layer 5.
- FIG. 5 an example of the formation pattern of the passivation layer 5 in the back surface is shown as a schematic plan view.
- FIG. 7 is an enlarged schematic plan view of a portion A in FIG.
- FIG. 8 is an enlarged schematic plan view of a portion B in FIG.
- the passivation layer 5 on the back surface has a dot shape except for a portion where the back surface output extraction electrode 7 is formed in a later step.
- the p-type semiconductor substrate 1 is formed with an exposed pattern.
- the pattern of the dot-shaped openings is defined by the dot diameter (L a ) and the dot interval (L b ), and is preferably arranged regularly.
- the dot diameter (L a ) and the dot interval (L b ) can be arbitrarily set, but from the viewpoint of the passivation effect and the suppression of minority carrier recombination, L a may be 5 ⁇ m to 2 mm and L b may be 10 ⁇ m to 3 mm. More preferably, L a is 10 ⁇ m to 1.5 mm and L b is 20 ⁇ m to 2.5 mm, more preferably L a is 20 ⁇ m to 1.3 mm and L b is 30 ⁇ m to 2 mm.
- the passivation layer having a desired shape is formed by applying the passivation layer forming composition to a portion where the passivation layer is to be formed (portion other than the dot-shaped opening) and heat-treating (firing).
- the composition for forming a passivation layer can be applied to the entire surface including the dot-shaped opening, and the passivation layer in the dot-shaped opening can be selectively removed by laser, photolithography, or the like after heat treatment (firing).
- the composition for forming a passivation layer can be selectively applied by masking in advance with a mask material on a portion where the composition for forming a passivation layer is not desired to be applied, such as a dot-shaped opening.
- FIG. 4 is a schematic plan view showing an example of the light receiving surface of the solar cell element.
- the light receiving surface electrode includes a light receiving surface current collecting electrode 8 and a light receiving surface output extraction electrode 9.
- the width of the light receiving surface current collecting electrode 8 is preferably 10 ⁇ m to 250 ⁇ m
- the width of the light receiving surface output extraction electrode 9 is preferably 100 ⁇ m to 2 mm.
- two light receiving surface output extraction electrodes 9 are provided.
- the number of light receiving surface output extraction electrodes 9 may be three or four. it can.
- FIG. 9 is a schematic plan view showing an example of the back surface of the solar cell element.
- the width of the back surface output extraction electrode 7 is not particularly limited, but the width of the back surface output extraction electrode 7 is preferably 100 ⁇ m to 10 mm from the viewpoint of the connectivity of the wiring material in the subsequent manufacturing process of the solar cell.
- the light receiving surface and the back surface After applying the electrode paste to each of the light receiving surface and the back surface, after drying, the light receiving surface and the back surface are both heat-treated (fired) at a temperature of about 450 ° C. to 900 ° C. in the atmosphere, and the light receiving surface collecting electrode 8 is applied to the light receiving surface. And the light receiving surface output extraction electrode 9 and the back surface collecting electrode 6 and the back surface output extraction electrode 7 are formed on the back surface, respectively.
- the glass particles contained in the silver electrode paste forming the light receiving surface electrode react with the antireflection film 4 (fire through),
- the light-receiving surface electrode (light-receiving surface current collecting electrode 8, light-receiving surface output extraction electrode 9) and the n + -type diffusion layer 2 are electrically connected (ohmic contact).
- the aluminum in the aluminum electrode paste diffuses into the semiconductor substrate 1 by heat treatment (firing). , P + -type diffusion layer 10 is formed.
- a composition for forming a passivation layer excellent in storage stability a passivation layer excellent in passivation effect can be formed by a simple method, and a solar cell element excellent in power generation performance can be manufactured. .
- FIG. 2 is a cross-sectional view showing another example of a method for manufacturing a solar cell element having a passivation layer according to this embodiment, and the n + -type diffusion layer 2 on the back surface is removed by an etching process.
- the solar battery cell can be manufactured in the same manner as in FIG. 1 except that the back surface is further flattened.
- a technique such as immersing the back surface of the semiconductor substrate in a mixed solution of nitric acid, hydrofluoric acid and acetic acid or a potassium hydroxide solution can be used.
- FIG. 3 is a cross-sectional view showing a process diagram illustrating another example of a method for manufacturing a solar cell element having a passivation layer according to the present embodiment. This method is the same as the method shown in FIG. 1 until the step of forming the texture structure, the n + -type diffusion layer 2 and the antireflection film 4 on the semiconductor substrate 1 (FIGS. 19 (19) to (24)).
- FIG. 6 an example of the formation pattern of the passivation layer in the back surface is shown as a schematic plan view.
- dot-like openings are arranged on the entire back surface, and dot-like openings are also arranged on the portion where the back-surface output extraction electrode is formed in a later step.
- a p + -type diffusion layer 10 is formed by diffusing aluminum from the portion, and then etched with hydrochloric acid or the like to form a heat-treated product layer (baked product layer) derived from the aluminum paste formed on the p + -type diffusion layer 10 A method of removing can be used.
- a silver electrode paste containing glass particles is applied to the light receiving surface by screen printing or the like, and a silver electrode paste containing glass particles is applied to the back surface by screen printing or the like.
- the silver electrode paste on the light receiving surface is applied in a pattern according to the shape of the light receiving surface electrode shown in FIG. 4, and the silver electrode paste on the back surface is applied in a pattern according to the shape of the back electrode shown in FIG.
- the light receiving surface and the back surface are heat-treated (fired) at a temperature of about 450 ° C. to 900 ° C. in air, as shown in FIG.
- a light receiving surface collecting electrode 8 and a light receiving surface output extraction electrode 9 are formed on the light receiving surface, and an aluminum electrode 11 and a back surface output extraction electrode 7 are formed on the back surface, respectively.
- the light receiving surface electrode and the n + -type diffusion layer 2 are electrically connected to each other on the light receiving surface
- the aluminum electrode 11 formed by vapor deposition and the back surface output extraction electrode 7 are electrically connected to each other on the back surface.
- the solar cell includes the above-described solar cell element and a wiring material provided on the electrode of the solar cell element.
- the solar cell preferably includes at least one of the solar cell elements, and the wiring material is disposed on the output extraction electrode of the solar cell element.
- the solar cell is configured by connecting a plurality of solar cell elements via a wiring material 13 and further sealing with a sealing material as necessary.
- the wiring material and the sealing material are not particularly limited, and can be appropriately selected from those usually used in the technical field.
- Example 1 (Preparation of composition 1 for forming a passivation layer) 1.2 g of pentaethoxyniobium (Hokuko Chemical Co., Ltd., structural formula: Nb (OC 2 H 5 ) 5 , molecular weight: 318.2), and terpineol (Nippon Terpene Chemical Co., Ltd., sometimes abbreviated as TPO) 18.8 g was mixed to prepare a composition 1 for forming a passivation layer.
- pentaethoxyniobium Hokuko Chemical Co., Ltd., structural formula: Nb (OC 2 H 5 ) 5 , molecular weight: 318.2)
- terpineol Nippon Terpene Chemical Co., Ltd., sometimes abbreviated as TPO
- the shear viscosity of the composition 1 for forming a passivation layer prepared above was measured immediately after the preparation (within 12 hours), on a rotary shear viscometer (AntonPaar, MCR301), and a cone plate (diameter 50 mm, cone angle 1 °). It was mounted and measured at a temperature of 25 ° C. and shear rates of 1.0 s ⁇ 1 and 10 s ⁇ 1 .
- the shear viscosity ( ⁇ 1 ) at a shear rate of 1.0 s ⁇ 1 was 22.3 Pa ⁇ s
- the shear viscosity ( ⁇ 2 ) at a shear rate of 10 s ⁇ 1 was 18.9 Pa ⁇ s.
- the thixo ratio ( ⁇ 1 / ⁇ 2 ) when the shear rate was 1.0 s ⁇ 1 and 10 s ⁇ 1 was 1.18.
- the shear viscosity of the composition 1 for forming a passivation layer prepared above was measured immediately after preparation (within 12 hours) and after storage at 25 ° C. for 30 days, respectively.
- the shear viscosity was measured by attaching a cone plate (diameter 50 nm, cone angle 1 °) to Anton Paar, MCR301, at a temperature of 25 ° C. and a shear rate of 1.0 s ⁇ 1 .
- the shear viscosity at 25 ° C. was 22.3 Pa ⁇ s immediately after preparation, and 23.9 Pa ⁇ s after storage at 25 ° C. for 30 days.
- the change rate of the shear viscosity after storage for 30 days is A when the change rate is less than 10%, B is the change rate of 10% or more and less than 30%, and C is 30% or more. If evaluation is A and B, it is favorable as the storage stability of the composition for forming a passivation layer.
- Table 2 the numerical value of the shear viscosity immediately after preparation and the evaluation result of storage stability are shown.
- a semiconductor substrate having a mirror-shaped single crystal p-type silicon substrate 50 mm square, thickness 625 ⁇ m, hereinafter referred to as substrate A
- substrate B Two types of single crystal p-type silicon substrates (50 mm square, thickness 180 ⁇ m, hereinafter referred to as substrate B) on which a texture structure was formed were used.
- the passivation layer forming composition 1 prepared above was screen-printed 10 times on each of the substrate A and the substrate B, and the substrate A was 9 sheets and the substrate B was 8 sheets. It was visually confirmed that there was no printing unevenness.
- A is the case where 9 or more out of 10 sheets have no print unevenness during printing
- B is the case of 8 or less and 6 or more
- C is the case of 5 or less. If evaluation is A and B, it is favorable as printing unevenness of the composition for forming a passivation layer.
- the uneven printing refers to a phenomenon in which the thickness of the composition layer varies depending on the location, which is caused when a part of the screen plate is badly separated when the screen plate is separated from the silicon substrate.
- the prepared composition 1 for forming a passivation layer was printed on the entire surface of the substrate A and the substrate B in a pattern shown in FIG.
- the dot-shaped opening pattern used in the evaluation has a dot diameter (L a ) of 368 ⁇ m and a dot interval (L b ) of 0.5 mm.
- substrate B which provided the composition 1 for passivation layer formation were heated at 150 degreeC for 3 minute (s), and were dried by evaporating a liquid medium.
- the substrate A and the substrate B were heat-treated (fired) at a temperature of 700 ° C. for 10 minutes, and then allowed to cool at room temperature (25 ° C.).
- the dot diameter (L a ) of the dot-shaped opening in the passivation layer formed on the substrate after heat treatment (firing) was measured, and the dot diameter (L a ) was measured at 10 points. The average value was calculated.
- the dot diameter (L a ) was 332 ⁇ m, and for substrate B, it was 270 ⁇ m.
- the dot diameter (L a ) (368 ⁇ m) immediately after printing is less than 10%
- the reduction rate of the dot diameter (L a ) after heat treatment (firing) is less than 10% and A is less than 30% Is B and 30% or more is C.
- a and B it is favorable as printing bleeding of the composition for forming a passivation layer.
- printing bleeding refers to a phenomenon in which a passivation layer forming composition applied on a semiconductor substrate stains and spreads.
- the semiconductor substrate was heat-treated (fired) at a temperature of 700 ° C. for 10 minutes, and then allowed to cool at room temperature (25 ° C.) to obtain an evaluation substrate.
- the heat treatment (firing) was performed using a diffusion furnace (ACCURON CQ-1200, Hitachi Kokusai Electric Co., Ltd.) under atmospheric conditions under conditions of a maximum temperature of 700 ° C. and a holding time of 10 minutes.
- the effective lifetime of the evaluation substrate obtained above was measured at room temperature (25 ° C.) by the reflected microwave photoconductive decay method using a lifetime measuring device (Nippon Semi-Lab Co., Ltd., WT-2000PVN).
- the effective lifetime of the region to which the composition for forming a passivation layer was applied was 203 ⁇ s.
- MIS Metal-Insulator-Semiconductor
- the voltage dependence (CV characteristics) of the capacitance of this capacitor was measured with a commercially available prober and LCR meter (HP, 4275A).
- V fb flat band voltage
- ⁇ ms ⁇ 0.81 [V]
- N f the fixed charge density N f was calculated from the difference between the flat band voltages (V fb ⁇ ms ), the measured capacitance value, the area of the aluminum electrode, and the elementary charge.
- the fixed charge density N f is a negative value when the value of V fb ⁇ ms is positive, that is, when V fb is larger than ⁇ 0.81 [V].
- the passivation layer has a negative fixed charge. Will show.
- a single crystal p-type semiconductor substrate (125 mm square, thickness 200 ⁇ m) was prepared, and texture structures were formed on the light receiving surface and the back surface by alkali etching.
- a mixed gas atmosphere of phosphorus oxychloride (POCl 3 ), nitrogen and oxygen treatment was performed at a temperature of 900 ° C. for 20 minutes to form n + -type diffusion layers on the light receiving surface, the back surface, and the side surface.
- side etching was performed to remove the side PSG layer and the n + -type diffusion layer, and the PSG layer on the light-receiving surface and the back surface was removed using an etching solution containing hydrofluoric acid.
- the back surface was separately etched to remove the n + -type diffusion layer on the back surface. Thereafter, an antireflection film made of silicon nitride was formed on the n + -type diffusion layer on the light-receiving surface with a thickness of about 90 nm by PECVD.
- the passivation layer forming composition 1 prepared above was applied to the back surface in the pattern of FIGS. 5, 7 and 8, and then dried at a temperature of 150 ° C. for 5 minutes, and a diffusion furnace (ACCURON CQ-1200, The passivation layer 1 was formed by performing heat treatment (baking) under the conditions of a maximum temperature of 700 ° C. and a holding time of 10 minutes in an atmospheric atmosphere using Hitachi Kokusai Electric). 5, 7, and 8, the back surface passivation layer 1 is formed in a pattern in which the p-type semiconductor substrate is exposed in a dot shape except for a portion where the back surface output extraction electrode is formed in a later step.
- the pattern of the dot-shaped openings has the same shape as that used in the printing bleeding evaluation, the dot diameter (L a ) is 368 ⁇ m, and the dot interval (L b ) is 0.5 mm.
- a commercially available silver electrode paste (PV-16A, DuPont) was printed on the light receiving surface with the pattern shown in FIG. 4 by screen printing.
- the electrode pattern is composed of a light receiving surface collecting electrode having a width of 120 ⁇ m and a light receiving surface output extraction electrode having a width of 1.5 mm, and printing conditions (for the screen plate) so that the thickness after heat treatment (firing) is 20 ⁇ m.
- the mesh, printing speed and printing pressure) were adjusted as appropriate. This was heated at a temperature of 150 ° C. for 5 minutes to evaporate the liquid medium, thereby performing a drying treatment.
- a wiring member (solder-plated rectangular wire for solar cell, product name: SSA-TPS 0.2 ⁇ 1.5 (20 ), A copper wire with a thickness of 0.2 mm x a width of 1.5 mm, with Sn-Ag-Cu lead-free solder plated to a maximum thickness of 20 ⁇ m per side, Hitachi Cable, Ltd.)
- NPS-150-M Tabbing & Stringing Machine, NPC, Inc.
- melting the solder under the conditions of a maximum temperature of 250 ° C. and a holding time of 10 seconds.
- glass plate 16 / sealing material 14 / wiring material 13 are connected in the order of solar cell element 12 / sealing material 14 / back sheet 15, and a part of the wiring member is laminated using a vacuum laminator (LM-50 ⁇ 50, NPC Corporation). Was laminated for 5 minutes at a temperature of 140 ° C. so as to expose the solar cell 1.
- a vacuum laminator LM-50 ⁇ 50, NPC Corporation
- the evaluation of the power generation performance of the produced solar cell was performed using pseudo-sunlight (WXS-155S-10, Wacom Denso Co., Ltd.) and voltage-current (IV) evaluation measuring instrument (IV CURVE TRACER MP-180, This was performed in combination with a measuring device of Eihiro Seiki Co., Ltd.). Jsc (short circuit current), Voc (open voltage), F. F. (Form factor) and ⁇ (conversion efficiency) were obtained by measuring in accordance with JIS-C-8913 (fiscal 2005) and JIS-C-8914 (fiscal 2005), respectively. The obtained measured value was converted into a relative value with the measured value of the solar cell (solar cell C1) produced in Comparative Example 1 shown later as 100.0.
- Example 2 ethyl cellulose (Nihon Kasei Co., Ltd., trade name: ETHOCEL 200 cps, sometimes abbreviated as EC) was added to the composition for forming a passivation layer. Specifically, the content of each component is 1.2 g of pentaethoxyniobium (Hokuko Chemical Co., Ltd., structural formula: Nb (OC 2 H 5 ) 5 , molecular weight: 318.2), and 18.5 g of terpineol. A composition 2 for forming a passivation layer was prepared in the same manner as in Example 1 except that ethyl cellulose was changed to 0.3 g.
- pentaethoxyniobium Hokuko Chemical Co., Ltd., structural formula: Nb (OC 2 H 5 ) 5 , molecular weight: 318.2
- a composition 2 for forming a passivation layer was prepared in the same manner as in Example 1 except that ethyl cellulose was
- Example 2 Thereafter, in the same manner as in Example 1, evaluation of thixotropy of the passivation layer forming composition 2, evaluation of storage stability, evaluation of printability (printing unevenness and printing bleeding), and effective lifetime of the passivation layer 2 The thickness and the fixed charge density were measured. Further, in the same manner as in Example 1, the solar cell element 2 and the solar cell 2 were produced, and the power generation performance was evaluated.
- Example 3 aluminum ethyl acetoacetatodiisopropylate (Kawaken Fine Chemical Co., Ltd., trade name: ALCH) was added to the composition for forming a passivation layer. Specifically, the content of each component is 1.2 g of pentaethoxyniobium (Hokuko Chemical Co., Ltd., structural formula: Nb (OC 2 H 5 ) 5 , molecular weight: 318.22) and 1.2 g of ALCH. A composition 3 for forming a passivation layer was prepared in the same manner as in Example 1 except that terpineol was changed to 17.6 g.
- ALCH aluminum ethyl acetoacetatodiisopropylate
- Example 2 Thereafter, in the same manner as in Example 1, evaluation of thixotropy of the composition 3 for forming a passivation layer, evaluation of storage stability, evaluation of printability (printing unevenness and printing bleeding), and effective lifetime of the passivation layer 3 The thickness and the fixed charge density were measured. Furthermore, it carried out similarly to Example 1, the solar cell element 3 and the solar cell 3 were produced, and electric power generation performance was evaluated.
- Example 4 ethyl cellulose (ETHOCEL 200 cps) and aluminum ethyl acetoacetate diisopropylate (ALCH) were added to the composition for forming a passivation layer.
- the content of each component is 1.6 g of pentaethoxyniobium (Hokuko Chemical Co., Ltd., structural formula: Nb (OC 2 H 5 ) 5 , molecular weight: 318.2), and 1.0 g of ALCH.
- a composition 4 for forming a passivation layer was prepared in the same manner as in Example 1 except that 17.1 g of terpineol and 0.3 g of ethyl cellulose were changed.
- Example 2 Thereafter, in the same manner as in Example 1, evaluation of the thixotropy of the passivation layer forming composition 4, evaluation of storage stability, evaluation of printability (printing unevenness and printing bleeding), and passivation layer 4 effective lifetime Evaluation was made and thickness and fixed charge density were measured. Further, in the same manner as in Example 1, the solar cell element 4 and the solar cell 4 were produced, and the power generation performance was evaluated.
- Example 5 For each evaluation, the composition for forming a passivation layer prepared in Example 4 was used. Evaluation of printability (printing unevenness and printing bleeding) Preparation of substrate, measurement substrate for measurement of effective lifetime and thickness of passivation layer, heat treatment (firing) conditions for passivation layer forming composition 4 in preparation of solar cell element Except that the temperature was changed from 700 ° C. for 10 minutes to 600 ° C. for 15 minutes, in the same manner as in Example 1, evaluation of printability (printing unevenness and printing bleeding) and evaluation of the effective lifetime of the passivation layer 5 The thickness and the fixed charge density were measured, the solar cell element 5 and the solar cell 5 were produced, and the power generation performance was evaluated.
- printability printing unevenness and printing bleeding
- Example 6 For each evaluation, the composition for forming a passivation layer prepared in Example 4 was used. Evaluation of printability (printing unevenness and printing bleeding) Preparation of substrate, measurement substrate for measurement of effective lifetime and thickness of passivation layer, heat treatment (firing) conditions for passivation layer forming composition 4 in preparation of solar cell element The evaluation of the printability (printing unevenness and printing bleeding) and the evaluation of the passivation layer 6 effective lifetime were performed in the same manner as in Example 1 except that the temperature was changed from 700 ° C. for 10 minutes to 800 ° C. for 8 minutes. The thickness and fixed charge density were measured, the solar cell element 6 and the solar cell 6 were produced, and the power generation performance was evaluated.
- Example 7 In Example 1, instead of pentaethoxyniobium, penta-n-butoxytantalum (High Purity Chemical Laboratory Co., Ltd., structural formula: Ta (On—C 4 H 9 ) 5 , molecular weight: 546.4) was used. Using. Specifically, a composition 7 for forming a passivation layer was prepared by mixing 1.6 g of penta-n-butoxytantalum and 18.4 g of terpineol with respect to the content of each component.
- penta-n-butoxytantalum High Purity Chemical Laboratory Co., Ltd., structural formula: Ta (On—C 4 H 9 ) 5 , molecular weight: 546.4
- Example 1 Thereafter, in the same manner as in Example 1, evaluation of the thixotropy of the passivation layer forming composition 7, evaluation of storage stability, evaluation of printability (printing unevenness and printing bleeding), and effective lifetime of the passivation layer 7 The thickness and the fixed charge density were measured. Further, in the same manner as in Example 1, the solar cell element 7 and the solar cell 7 were produced, and the power generation performance was evaluated.
- Example 8 aluminum ethylacetoacetatodiisopropylate (Kawaken Fine Chemical Co., Ltd., trade name: ALCH) was added to the composition for forming a passivation layer. Specifically, the content of each component was changed to penta-n-butoxytantalum (High Purity Chemical Laboratory, structural formula: Ta (On—C 4 H 9 ) 5 , molecular weight: 546.4). A passivation layer forming composition 8 was prepared in the same manner as in Example 7 except that 1.2 g, ALCH was changed to 1.2 g, and terpineol was changed to 17.6 g.
- Example 2 Thereafter, in the same manner as in Example 1, evaluation of the thixotropy of the passivation layer forming composition 8, evaluation of storage stability, evaluation of printability (printing unevenness and printing bleeding), and effective lifetime of the passivation layer 8 The thickness and the fixed charge density were measured. Further, in the same manner as in Example 1, the solar cell element 8 and the solar cell 8 were produced, and the power generation performance was evaluated.
- Example 9 In Example 1, instead of pentaethoxyniobium, vanadium (V) triethoxide oxide (high purity chemical research institute, structural formula: VO (OC 2 H 5 ) 3 , molecular weight: 546.4) was used. . Specifically, 1.6 g of vanadium (V) triethoxide oxide and 18.4 g of terpineol were mixed to prepare a passivation layer forming composition 9. Thereafter, in the same manner as in Example 1, evaluation of the thixotropy of the composition 9 for forming a passivation layer, evaluation of storage stability, evaluation of printability (printing unevenness and printing bleeding), and effective lifetime of the passivation layer 9 The thickness and the fixed charge density were measured. Further, in the same manner as in Example 1, a solar cell element 9 and a solar cell 9 were produced, and power generation performance was evaluated.
- Example 10 Aluminum ethylacetoacetatodiisopropylate (Kawaken Fine Chemical Co., Ltd., trade name: ALCH) and ethyl cellulose (ETHOCEL 200 cps) were added to the composition for forming a passivation layer. Specifically, the content of each component was changed to 1. for vanadium (V) triethoxide oxide (High Purity Chemical Laboratory Co., Ltd., structural formula: VO (OC 2 H 5 ) 3 , molecular weight: 546.4).
- V vanadium triethoxide oxide
- a composition 10 for forming a passivation layer was prepared in the same manner as in Example 9 except that 2 g, ALCH 0.8 g, terpineol 17.7 g, and ethyl cellulose 0.3 g were changed. Thereafter, in the same manner as in Example 1, evaluation of the thixotropy of the composition 10 for forming a passivation layer, evaluation of storage stability, evaluation of printability (printing unevenness and printing bleeding), and effective lifetime of the passivation layer 10 are performed. The thickness and the fixed charge density were measured. Further, in the same manner as in Example 1, the solar cell element 10 and the solar cell 10 were produced, and the power generation performance was evaluated.
- Example 11 In Example 1, instead of pentaethoxyniobium, tetra-t-butoxyhafnium (high purity chemical research institute, structural formula: Hf (Ot-C 4 H 9 ) 4 , molecular weight: 470.9) was used. Using. Specifically, 2.0 g of tetra-t-butoxyhafnium and 18.0 g of terpineol were mixed to prepare a passivation layer forming composition 11. Thereafter, in the same manner as in Example 1, evaluation of thixotropy of the composition 11 for forming a passivation layer, evaluation of storage stability, evaluation of printability (printing unevenness and printing bleeding), and effective lifetime of the passivation layer 11 are performed. The thickness and the fixed charge density were measured. Further, in the same manner as in Example 1, the solar cell element 11 and the solar cell 11 were produced, and the power generation performance was evaluated.
- Example 12 In Example 11, aluminum trisethyl acetoacetate (Kawaken Fine Chemical Co., Ltd., trade name: ALCH-TR) and ethyl cellulose (ETHOCEL 200 cps) were added to the composition for forming a passivation layer. Specifically, the content of each component was changed to tetra-t-butoxyhafnium (High-Purity Chemical Laboratory, structural formula: Hf (Ot-C 4 H 9 ) 4 , molecular weight: 470.9).
- a passivation layer forming composition 12 was prepared in the same manner as in Example 11 except that 1.2 g, ALCH-TR 1.2 g, terpineol 17.3 g, and ethyl cellulose 0.3 g were changed. Thereafter, in the same manner as in Example 1, evaluation of thixotropy of the passivation layer forming composition 12, evaluation of storage stability, evaluation of printability (printing unevenness and printing bleeding), and effective lifetime of the passivation layer 12 were performed. The thickness and the fixed charge density were measured. Further, in the same manner as in Example 1, solar cell elements 12 and solar cells 12 were produced, and the power generation performance was evaluated.
- Example 13> In the preparation of the composition for forming a passivation layer, pentaethoxyniobium (Hokuko Chemical Co., Ltd., structural formula: Nb (OC 2 H 5 ) 5 , molecular weight: 318.2), penta-n-butoxytantalum (high purity, Inc.) Chemical laboratory, structural formula: Ta (On-C 4 H 9 ) 5 , molecular weight: 546.4), terpineol, and ethyl cellulose (ETHOCEL 200 cps) were used.
- pentaethoxyniobium Hokuko Chemical Co., Ltd., structural formula: Nb (OC 2 H 5 ) 5 , molecular weight: 318.2
- penta-n-butoxytantalum high purity, Inc.
- Ta On-C 4 H 9
- terpineol terpineol
- ETHOCEL 200 cps ETHOCEL 200 cps
- composition 13 for forming a passivation layer was prepared. Thereafter, in the same manner as in Example 1, evaluation of thixotropy of the composition 13 for forming a passivation layer, evaluation of storage stability, evaluation of printability (printing unevenness and printing bleeding), and effective lifetime of the passivation layer 13 are performed. The thickness and the fixed charge density were measured. Further, in the same manner as in Example 1, a solar cell element 13 and a solar cell 13 were produced, and power generation performance was evaluated.
- Example 14> In the preparation of the composition for forming a passivation layer, penta-n-butoxyniobium (high purity chemical research institute, structural formula: Nb (On—C 4 H 9 ) 5 , molecular weight: 458.5), vanadium ( V) Triethoxide oxide (High Purity Chemical Laboratory Co., Ltd., structural formula: VO (OC 2 H 5 ) 3 , molecular weight: 546.4), aluminum ethyl acetoacetate diisopropylate (Kawaken Fine Chemical Co., Ltd., commodity) Name: ALCH), terpineol, and ethyl cellulose (ETHOCEL 200 cps) were used.
- each component was 1.6 g of penta-n-butoxyniobium, 0.6 g of vanadium (V) tri-n-propoxide oxide, 0.6 g of ALCH, and 17.0 g of terpineol.
- a composition 14 for forming a passivation layer was prepared in the same manner as in Example 1 except that the ethyl cellulose was changed to 0.2 g. Thereafter, in the same manner as in Example 1, evaluation of the thixotropy of the composition 14 for forming a passivation layer, evaluation of storage stability, evaluation of printability (printing unevenness and printing bleeding), and effective lifetime of the passivation layer 14 are performed. The thickness and the fixed charge density were measured. Further, in the same manner as in Example 1, the solar cell element 14 and the solar cell 14 were produced, and the power generation performance was evaluated.
- the passivation layer C1 made of aluminum oxide (Al 2 O 3 ) was formed using an ALD (Atomic Layer Deposition) method without using the passivation layer forming composition. Specifically, film formation conditions were adjusted using an atomic layer deposition apparatus so that the Al 2 O 3 layer had a thickness of 20 nm. In addition, the thickness after film-forming was measured using the interference type film thickness meter (F20 film thickness measuring system, Filmetrics Co., Ltd.).
- the effective lifetime and thickness evaluation substrate of the passivation layer C1, the solar cell element C1 and the solar cell C1 are manufactured, the effective lifetime, the thickness and the fixed charge density are measured, and the solar cell C1.
- the semiconductor substrate, type, film formation pattern, light receiving surface and back electrode forming method used for each evaluation are the same as those in Examples 1 to 16.
- Example 2 In the preparation of the composition for forming a passivation layer in Example 1, as shown in Table 1, without using the compound of formula (I), triethoxybismuth (High Purity Chemical Laboratory, Structural Formula: Bi (OC 2 A composition C2 for forming a passivation layer consisting of H 5 ) 3 , molecular weight 344.2, terpineol, and ethyl cellulose (ETHOCEL 200 cps) was prepared. Thereafter, in the same manner as in Example 1, evaluation of thixotropy of the passivation layer forming composition C2, evaluation of storage stability, evaluation of printability (printing unevenness and printing bleeding), and effective lifetime of the passivation layer C2 The thickness and the fixed charge density were measured. Further, in the same manner as in Example 1, a solar cell element C2 and a solar cell C2 were produced, and the power generation performance was evaluated.
- Triethoxybismuth High Purity Chemical Laboratory, Structural Formula: Bi (OC 2 A composition C2 for forming a
- Example 3 In the preparation of the composition for forming a passivation layer in Example 1, tetra-i-propoxytitanium (high purity chemical research institute, structural formula: Ti, as shown in Table 1 without using the compound of formula (I).
- a passivation layer forming composition C3 comprising (Oi-C 3 H 7 ) 4 , molecular weight 284.2, terpineol, and ethyl cellulose (ETHOCEL 200 cps) was prepared. Thereafter, in the same manner as in Example 1, evaluation of thixotropy of the passivation layer forming composition C3, evaluation of storage stability, evaluation of printability (print unevenness and printing bleeding), and effective lifetime of the passivation layer C3 Evaluation and thickness were measured. Further, in the same manner as in Example 1, a solar cell element C3 and a solar cell C3 were produced, and the power generation performance was evaluated.
- a texture structure was formed on the light receiving surface and the back surface, and an antireflection film made of n + -type diffusion layer and silicon nitride was formed on the light receiving surface with a thickness of about 90 nm by PECVD.
- a commercially available silver electrode paste PV-16A, DuPont was printed on the light-receiving surface with the pattern shown in FIG. 4 by screen printing, and this was heated at a temperature of 150 ° C. for 5 minutes to form a liquid medium. Drying was performed by transpiration.
- Example 2 For the solar cell element C4 obtained above, similarly to Example 1, a wiring member was connected on the light receiving surface output extraction electrode and the back surface output extraction electrode, and then a glass plate, a sealing material, and a back sheet were used. Laminated and vacuum laminated using a laminator to produce a solar cell C4.
- a resin ethyl cellulose
- the effective lifetime and the power generation performance of the solar cell evaluated in Examples 1 to 14 are almost the same as those measured in Comparative Example 1.
- the ALD method It was found that a passivation layer having an excellent passivation effect comparable to that of aluminum oxide (Al 2 O 3 ) was formed. From the measurement results of the fixed charge density, it was found that the passivation layers prepared in Examples 1 to 14 all showed negative fixed charges although the numerical values were different.
- the power generation performance of the produced solar cell tended to be relatively high when the passivation layer forming composition containing a resin (ethyl cellulose) was used.
- a resin ethyl cellulose
- printability improves (a printing blur is suppressed) and the dot diameter which prescribes
- the method for forming the passivation layer is not the screen printing method applied in the present example, but, for example, a passivation layer forming composition is applied to the entire back surface, and this is subjected to heat treatment (firing), followed by a desired pattern.
- a passivation layer forming composition is applied to the entire back surface, and this is subjected to heat treatment (firing), followed by a desired pattern.
- the power generation performance of the produced solar cell tended to be relatively high when the passivation layer forming composition containing both the compound of formula (I) and the organoaluminum compound was used.
- the passivation layer forming composition containing both the compound of formula (I) and the organoaluminum compound was used.
- a composite oxide of metal and aluminum derived from the compound of formula (I) is formed by heat treatment (firing). It is considered that the passivation effect is further improved by forming a denser passivation layer having a large negative fixed charge.
- Example 14 even when two types of compounds of the formula (I) are contained in the composition for forming a passivation layer, the passivation effect is high and contributes to the improvement of power generation performance of the solar cell. I understood that.
- a passivation film used for a solar cell element including aluminum oxide and niobium oxide and having a silicon substrate.
- niobium oxide / aluminum oxide a mass ratio (niobium oxide / aluminum oxide) between the niobium oxide and the aluminum oxide is 30/70 to 90/10.
- ⁇ 3> The passivation film according to ⁇ 1> or ⁇ 2>, in which a total content of the niobium oxide and the aluminum oxide is 90% by mass or more.
- the passivation film according to any one of ⁇ 1> to ⁇ 4> which is a heat-treated product of a coating type material including an aluminum oxide precursor and a niobium oxide precursor.
- a p-type silicon substrate made of single crystal silicon or polycrystalline silicon and having a light receiving surface and a back surface opposite to the light receiving surface;
- An n-type impurity diffusion layer formed on the light-receiving surface side of the silicon substrate;
- a first electrode formed on the surface of the n-type impurity diffusion layer on the light-receiving surface side of the silicon substrate;
- a passivation film comprising aluminum oxide and niobium oxide formed on the back surface of the silicon substrate and having a plurality of openings;
- a second electrode forming an electrical connection with the surface on the back side of the silicon substrate through the plurality of openings;
- a solar cell element comprising:
- a p-type silicon substrate made of single crystal silicon or polycrystalline silicon and having a light receiving surface and a back surface opposite to the light receiving surface;
- An n-type impurity diffusion layer formed on the light-receiving surface side of the silicon substrate;
- a first electrode formed on the surface of the n-type impurity diffusion layer on the light-receiving surface side of the silicon substrate;
- a p-type impurity diffusion layer formed on a part or all of the back side of the silicon substrate and doped with impurities at a higher concentration than the silicon substrate;
- a passivation film comprising aluminum oxide and niobium oxide formed on the back surface of the silicon substrate and having a plurality of openings;
- a second electrode that forms an electrical connection with the surface of the p-type impurity diffusion layer on the back side of the silicon substrate through the plurality of openings;
- a solar cell element comprising:
- An n-type silicon substrate made of single crystal silicon or polycrystalline silicon and having a light receiving surface and a back surface opposite to the light receiving surface;
- a p-type impurity diffusion layer formed on the light-receiving surface side of the silicon substrate;
- a second electrode formed on the back side of the silicon substrate;
- a passivation film formed on the light-receiving surface side surface of the silicon substrate and including a plurality of openings and containing aluminum oxide and niobium oxide;
- a first electrode formed on the surface of the p-type impurity diffusion layer on the light-receiving surface side of the silicon substrate and forming an electrical connection with the surface on the light-receiving surface side of the silicon substrate through the plurality of openings;
- a solar cell element comprising:
- ⁇ 10> The solar cell element according to any one of ⁇ 7> to ⁇ 9>, wherein a mass ratio of niobium oxide to aluminum oxide (niobium oxide / aluminum oxide) in the passivation film is 30/70 to 90/10.
- ⁇ 11> The solar cell element according to any one of ⁇ 7> to ⁇ 10>, wherein a total content of the niobium oxide and the aluminum oxide in the passivation film is 90% by mass or more.
- ⁇ 12> a silicon substrate;
- a passivation film having a long carrier lifetime of a silicon substrate and having a negative fixed charge can be realized at low cost.
- a coating type material for realizing the formation of the passivation film can be provided.
- a highly efficient solar cell element using the passivation film can be realized at low cost.
- a silicon substrate with a passivation film having a long carrier lifetime and a negative fixed charge can be realized at low cost.
- the passivation film of the present embodiment is a passivation film used for a silicon solar cell element, and includes aluminum oxide and niobium oxide.
- the fixed charge amount of the film can be controlled by changing the composition of the passivation film.
- the mass ratio of niobium oxide and aluminum oxide is 30/70 to 80/20 from the viewpoint that the negative fixed charge can be stabilized. Further, the mass ratio of niobium oxide and aluminum oxide is more preferably 35/65 to 70/30 from the viewpoint that the negative fixed charge can be further stabilized. Further, the mass ratio of niobium oxide and aluminum oxide is preferably 50/50 to 90/10 from the viewpoint that both improvement of carrier lifetime and negative fixed charge can be achieved.
- the mass ratio of niobium oxide to aluminum oxide in the passivation film is measured by energy dispersive X-ray spectroscopy (EDX), secondary ion mass spectrometry (SIMS), and high frequency inductively coupled plasma mass spectrometry (ICP-MS). be able to.
- Specific measurement conditions are as follows. Dissolving the passivation film in acid or alkaline aqueous solution, atomizing this solution and introducing it into Ar plasma, measuring the wavelength and intensity by spectroscopically analyzing the light emitted when the excited element returns to the ground state, Element qualification is performed from the obtained wavelength, and quantification is performed from the obtained intensity.
- the total content of niobium oxide and aluminum oxide in the passivation film is preferably 80% by mass or more, and more preferably 90% by mass or more from the viewpoint of maintaining good characteristics. As the components of niobium oxide and aluminum oxide in the passivation film increase, the effect of negative fixed charges increases.
- the total content of niobium oxide and aluminum oxide in the passivation film can be measured by combining thermogravimetric analysis, fluorescent X-ray analysis, ICP-MS, and X-ray absorption spectroscopy. Specific measurement conditions are as follows.
- the ratio of inorganic components can be calculated by thermogravimetric analysis, the ratio of niobium and aluminum can be calculated by fluorescent X-ray or ICP-MS analysis, and the ratio of oxide can be examined by X-ray absorption spectroscopy.
- components other than niobium oxide and aluminum oxide may be included as organic components from the viewpoint of improving the film quality and adjusting the elastic modulus.
- the presence of the organic component in the passivation film can be confirmed by elemental analysis and measurement of the FT-IR of the film.
- the content of the organic component in the passivation film is more preferably less than 10% by mass, further preferably 5% by mass or less, and particularly preferably 1% by mass or less in the passivation film.
- the passivation film may be obtained as a heat-treated product of a coating type material containing an aluminum oxide precursor and a niobium oxide precursor. Details of the coating type material will be described next.
- the coating material of the present embodiment includes an aluminum oxide precursor and a niobium oxide precursor, and is used for forming a passivation film for a solar cell element having a silicon substrate.
- the aluminum oxide precursor can be used without particular limitation as long as it produces aluminum oxide.
- As the aluminum oxide precursor it is preferable to use an organic aluminum oxide precursor from the viewpoint of uniformly dispersing aluminum oxide on the silicon substrate and chemically stable.
- organic aluminum oxide precursors include aluminum triisopropoxide (structural formula: Al (OCH (CH 3 ) 2 ) 3 , High Purity Chemical Research Laboratory SYM-AL04, and the like.
- the niobium oxide precursor can be used without particular limitation as long as it produces niobium oxide.
- the niobium oxide precursor it is preferable to use an organic niobium oxide precursor from the viewpoint of uniformly dispersing niobium oxide on the silicon substrate and chemically stable.
- organic niobium oxide precursors include niobium (V) ethoxide (structural formula: Nb (OC 2 H 5 ) 5 , molecular weight: 318.21), High Purity Chemical Laboratory Nb-05, etc. be able to.
- a passivation film is formed by forming a coating type material containing an organic niobium oxide precursor and an organic aluminum oxide precursor using a coating method or a printing method, and then removing organic components by a subsequent heat treatment (firing). Can be obtained. Therefore, as a result, a passivation film containing an organic component may be used.
- FIGS. 12 to 15 are cross-sectional views showing first to fourth configuration examples of the solar cell element using the passivation film on the back surface of the present embodiment.
- silicon substrate (crystalline silicon substrate, semiconductor substrate) 101 used in this embodiment mode either single crystal silicon or polycrystalline silicon may be used. Further, as the silicon substrate 101, either p-type crystalline silicon or n-type crystalline silicon may be used. From the standpoint of exerting the effects of the present embodiment, p-type crystalline silicon is more suitable.
- the single crystal silicon or polycrystalline silicon used for the silicon substrate 101 may be arbitrary, but single crystal silicon or polycrystalline silicon having a resistivity of 0.5 ⁇ ⁇ cm to 10 ⁇ ⁇ cm is preferable.
- a light receiving surface antireflection film 103 such as a silicon nitride (SiN) film, and a first electrode 105 (light receiving surface side electrode, first surface electrode, upper surface electrode) using silver (Ag) or the like. , A light receiving surface electrode) is formed.
- the light receiving surface antireflection film 103 may also have a function as a light receiving surface passivation film. By using the SiN film, both functions of the light receiving surface antireflection film and the light receiving surface passivation film can be provided.
- the solar cell element of the present embodiment may or may not have the light-receiving surface antireflection film 103.
- the light receiving surface of the solar cell element is preferably formed with a concavo-convex structure (texture structure) in order to reduce the reflectance on the surface, but the solar cell element of the present embodiment has a texture structure. It may or may not have.
- a BSF (Back Surface Field) layer 104 which is a layer doped with a group III element such as aluminum or boron, is formed on the back side (lower side, second side, back side in the figure) of the silicon substrate 101.
- the solar cell element of this embodiment may or may not have the BSF layer 104.
- a second surface made of aluminum or the like is used on the back surface side of the silicon substrate 101 to make contact (electrical connection) with the BSF layer 104 (or the surface on the back surface side of the silicon substrate 101 when the BSF layer 104 is not provided). Electrodes 106 (back side electrode, second side electrode, back side electrode) are formed.
- a contact region (a surface on the back side of the silicon substrate 101 when the BSF layer 104 is not provided) and the second electrode 106 are electrically connected (
- a passivation film (passivation layer) 107 containing aluminum oxide and niobium oxide is formed in a portion excluding the opening OA).
- the passivation film 107 of this embodiment can have a negative fixed charge. With this fixed charge, electrons which are minority carriers among the carriers generated in the silicon substrate 101 by light are bounced back to the surface side. For this reason, a short circuit current increases and it is anticipated that photoelectric conversion efficiency will improve.
- the second electrode 106 is formed on the entire surface of the contact region (opening OA) and the passivation film 107.
- the second electrode 106 is formed only in the region (opening OA).
- the second electrode 106 may be formed only in part on the contact region (opening OA) and the passivation film 107. Even with the solar cell element having the configuration shown in FIG. 13, the same effect as in FIG. 12 (first configuration example) can be obtained.
- the BSF layer 104 is formed only on a part of the back surface side including the contact region (opening OA portion) with the second electrode 106, and FIG. 12 (first configuration example). Thus, it is not formed on the entire back surface side. Even with the solar cell element having such a configuration (FIG. 14), the same effect as that of FIG. 12 (first configuration example) can be obtained. Further, according to the solar cell element of the third configuration example of FIG. 14, the BSF layer 104, that is, the impurity is doped at a higher concentration than the silicon substrate 101 by doping a group III element such as aluminum or boron. Since there are few areas, it is possible to obtain higher photoelectric conversion efficiency than that in FIG. 12 (first configuration example).
- FIG. 15 a fourth configuration example shown in FIG. 15 will be described.
- the second electrode 106 is formed on the entire surface of the contact region (opening OA) and the passivation film 107, but in FIG. 15 (fourth configuration example), the contact The second electrode 106 is formed only in the region (opening OA).
- the second electrode 106 may be formed only in part on the contact region (opening OA) and the passivation film 107. Even with the solar cell element having the configuration shown in FIG. 15, the same effect as in FIG. 14 (third configuration example) can be obtained.
- the second electrode 106 when the second electrode 106 is applied by a printing method and baked at a high temperature to form the entire surface on the back side, a convex warpage tends to occur in the temperature lowering process. Such warpage may cause damage to the solar cell element, which may reduce the yield. Further, the problem of warpage increases as the silicon substrate becomes thinner. The cause of this warp is that stress is generated because the thermal expansion coefficient of the second electrode 106 made of metal (for example, aluminum) is larger than that of the silicon substrate, and the shrinkage in the temperature lowering process is correspondingly large.
- metal for example, aluminum
- the electrode structure tends to be symmetrical vertically. This is preferable because stress due to the difference in thermal expansion coefficient is unlikely to occur. However, in that case, it is preferable to provide a separate reflective layer.
- a texture structure is formed on the surface of the silicon substrate 101 shown in FIG.
- the texture structure may be formed on both sides of the silicon substrate 101 or only on one side (light receiving side).
- the damaged layer of the silicon substrate 101 is removed by immersing the silicon substrate 101 in a heated potassium hydroxide or sodium hydroxide solution.
- a texture structure is formed on both surfaces or one surface (light receiving surface side) of the silicon substrate 101 by dipping in a solution containing potassium hydroxide and isopropyl alcohol as main components. Note that, as described above, the solar cell element of the present embodiment may or may not have a texture structure, and thus this step may be omitted.
- a phosphorus diffusion layer (n + layer) is formed as the diffusion layer 102 by thermal diffusion of phosphorus oxychloride (POCl 3 ) or the like on the silicon substrate 101.
- the phosphorus diffusion layer can be formed, for example, by applying a coating-type doping material solution containing phosphorus to the silicon substrate 101 and performing heat treatment. After the heat treatment, the phosphorous glass layer formed on the surface is removed with an acid such as hydrofluoric acid, whereby a phosphorous diffusion layer (n + layer) is formed as the diffusion layer 102.
- the method for forming the phosphorus diffusion layer is not particularly limited.
- the phosphorus diffusion layer may be formed so that the depth from the surface of the silicon substrate 101 is in the range of 0.2 ⁇ m to 0.5 ⁇ m, and the sheet resistance is in the range of 40 ⁇ / ⁇ to 100 ⁇ / ⁇ (ohm / square). preferable.
- a BSF layer 104 on the back surface side is formed by applying a coating-type doping material solution containing boron, aluminum or the like to the back surface side of the silicon substrate 101 and performing heat treatment.
- a coating-type doping material solution containing boron, aluminum or the like for the application, methods such as screen printing, inkjet, dispensing, spin coating and the like can be used.
- the BSF layer 104 is formed by removing a layer of boron glass, aluminum, or the like formed on the back surface with hydrofluoric acid, hydrochloric acid, or the like.
- the method for forming the BSF layer 104 is not particularly limited.
- the BSF layer 104 is formed so that the concentration range of boron, aluminum, etc.
- the solar cell element of the present embodiment may or may not have the BSF layer 104, and thus this step may be omitted.
- the diffusion layer 102 on the light-receiving surface and the BSF layer 104 on the back surface are formed using a coating-type doping material solution
- the above-described doping material solution is applied to both sides of the silicon substrate 101 to diffuse.
- the phosphorous diffusion layer (n + layer) and the BSF layer 104 as the layer 102 may be formed in a lump, and then phosphorous glass, boron glass, or the like formed on the surface may be removed all at once.
- a silicon nitride film as the light-receiving surface antireflection film 103 is formed on the diffusion layer 102.
- the method for forming the light receiving surface antireflection film 103 is not particularly limited.
- the light-receiving surface antireflection film 103 is preferably formed to have a thickness in the range of 50 to 100 nm and a refractive index in the range of 1.9 to 2.2.
- the light-receiving surface antireflection film 103 is not limited to a silicon nitride film, and may be a silicon oxide film, an aluminum oxide film, a titanium oxide film, or the like.
- the surface antireflection film 103 such as an silicon nitride film can be formed by a method such as plasma CVD or thermal CVD, and is preferably formed by plasma CVD that can be formed in a temperature range of 350 ° C. to 500 ° C.
- the passivation film 107 contains aluminum oxide and niobium oxide.
- an aluminum oxide precursor typified by an organometallic decomposition coating material from which aluminum oxide can be obtained by heat treatment (firing), and niobium oxide obtained by heat treatment (firing). It is formed by applying a material (passivation material) containing a niobium oxide precursor typified by a commercially available organometallic decomposition coating type material and heat-treating (firing).
- the formation of the passivation film 107 can be performed as follows, for example.
- the above coating material is spin-coated on one side of a 725 ⁇ m thick 8-inch (20.32 cm) p-type silicon substrate (8 ⁇ cm to 12 ⁇ cm) from which a natural oxide film has been previously removed with hydrofluoric acid having a concentration of 0.049% by mass
- pre-baking is performed on a hot plate at 120 ° C. for 3 minutes. Thereafter, heat treatment is performed at 650 ° C. for 1 hour in a nitrogen atmosphere. In this case, a passivation film containing aluminum oxide and niobium oxide is obtained.
- the thickness of the passivation film 107 formed by the above method is usually about several tens of nanometers as measured by an ellipsometer.
- the coating type material is applied to a predetermined pattern including the contact area (opening OA) by a method such as screen printing, offset printing, inkjet printing, or dispenser printing.
- the above-mentioned coating type material is pre-baked in the range of 80 ° C. to 180 ° C. after evaporation to evaporate the solvent, and then at 600 ° C. to 1000 ° C. for 30 minutes to 3 hours in a nitrogen atmosphere or in air. It is preferable to perform a degree of heat treatment (annealing) to form a passivation film 107 (oxide film).
- the opening (contact hole) OA is preferably formed in a dot shape or a line shape on the BSF layer 104.
- the mass ratio of niobium oxide to aluminum oxide is preferably 30/70 to 90/10, and preferably 30/70 to 80/20. More preferably, it is more preferably 35/65 to 70/30. Thereby, the negative fixed charge can be stabilized. Further, the mass ratio of niobium oxide and aluminum oxide is preferably 50/50 to 90/10 from the viewpoint that both improvement of carrier lifetime and negative fixed charge can be achieved.
- the total content of niobium oxide and aluminum oxide is preferably 80% by mass or more, and more preferably 90% by mass or more.
- the first electrode 105 which is an electrode on the light receiving surface side is formed.
- the first electrode 105 is formed by forming a paste mainly composed of silver (Ag) on the light-receiving surface antireflection film 103 by screen printing and performing a heat treatment (fire through).
- the shape of the 1st electrode 105 may be arbitrary shapes, for example, may be a known shape which consists of a finger electrode and a bus-bar electrode.
- the second electrode 106 which is an electrode on the back side is formed.
- the second electrode 106 can be formed by applying a paste containing aluminum as a main component using screen printing or a dispenser and heat-treating it.
- the shape of the second electrode 106 is preferably the same shape as the shape of the BSF layer 104, a shape covering the entire back surface, a comb shape, a lattice shape, or the like.
- the paste for forming the first electrode 105 and the second electrode 106, which are the electrodes on the light receiving surface side, is first printed, and then heat-treated (fire-through), whereby the first electrode 105 and the second electrode 106 are formed.
- the two electrodes 106 may be formed together.
- the BSF layer 104 is formed in a contact portion between the second electrode 106 and the silicon substrate 101 in a self-alignment manner. Is formed.
- the BSF layer 104 may be separately formed by applying a coating-type doping material solution containing boron, aluminum, or the like to the back side of the silicon substrate 101 and heat-treating it. .
- the diffusion layer 102 is formed by a layer doped with a group III element such as boron
- the BSF layer 104 is formed by doping a group V element such as phosphorus.
- a leakage current flows through a portion where the inversion layer formed at the interface due to the negative fixed charge and the metal on the back surface are in contact with each other, and the conversion efficiency may be difficult to increase.
- FIG. 16 is a cross-sectional view illustrating a configuration example of a solar cell element using the light-receiving surface passivation film of the present embodiment.
- the diffusion layer 102 on the light receiving surface side is p-type doped with boron, and collects holes on the light receiving surface side and electrons on the back surface side of the generated carriers. For this reason, it is preferable that the passivation film 107 having a negative fixed charge is on the light receiving surface side.
- an antireflection film made of SiN or the like may be further formed by CVD or the like.
- the passivation material (a-1) is spin-coated on one side of a 725 ⁇ m-thick 8-inch p-type silicon substrate (8 ⁇ cm to 12 ⁇ cm) from which a natural oxide film has been removed in advance with a hydrofluoric acid having a concentration of 0.049% by mass.
- Pre-baking was performed on the plate at 120 ° C. for 3 minutes.
- the FT-IR of the passivation film was measured, a very few peaks due to alkyl groups were observed in the vicinity of 1200 cm ⁇ 1 .
- a plurality of aluminum electrodes having a diameter of 1 mm were formed on the above-described passivation film through a metal mask by vapor deposition, thereby manufacturing a capacitor having a metal-insulator-semiconductor (MIS) structure.
- the voltage dependence (CV characteristics) of the capacitance of this capacitor was measured with a commercially available prober and LCR meter (HP, 4275A). As a result, it was found that the flat band voltage (Vfb) shifted from an ideal value of ⁇ 0.81V to + 0.32V. From this shift amount, it was found that the passivation film obtained from the passivation material (a-1) showed a negative fixed charge with a fixed charge density (Nf) of ⁇ 7.4 ⁇ 10 11 cm ⁇ 2 .
- the passivation material (a-1) is applied to both sides of an 8-inch p-type silicon substrate, pre-baked, and subjected to a heat treatment (firing) at 650 ° C. for 1 hour in a nitrogen atmosphere.
- a sample in which both surfaces of the substrate were covered with a passivation film was produced.
- the carrier lifetime of this sample was measured using a lifetime measuring device (Kobelco Research Institute, Inc., RTA-540). As a result, the carrier lifetime was 530 ⁇ s.
- the same 8-inch p-type silicon substrate was measured by passivation using the iodine passivation method, and the carrier lifetime was 1100 ⁇ s.
- the passivation film obtained by heat-treating (firing) the passivation material (a-1) showed a certain degree of passivation performance and a negative fixed charge.
- Reference Example 1-2 Similar to Reference Example 1-1, a commercially available organometallic decomposition coating material from which aluminum oxide (Al 2 O 3 ) can be obtained by heat treatment (calcination) [High-Purity Chemical Laboratory, SYM-AL04, concentration 2. 3 mass%] and a commercially available organometallic decomposable coating type material [High Purity Chemical Laboratory, Nb-05, concentration 5 mass%] from which niobium oxide (Nb 2 O 5 ) can be obtained by heat treatment (firing). Passivation materials (a-2) to (a-7) shown in Table 3 were prepared by mixing at different ratios.
- each of the passivation materials (a-2) to (a-7) was applied to one side of a p-type silicon substrate, and heat treatment (firing) was performed to produce a passivation film.
- the voltage dependence of the capacitance of the obtained passivation film was measured, and the fixed charge density was calculated therefrom.
- the carrier lifetime is also increased after heat treatment (firing). Since it showed a certain value, it was suggested that it functions as a passivation film. It was found that all the passivation films obtained from the passivation materials (a-2) to (a-7) stably show negative fixed charges and can be suitably used as a passivation for a p-type silicon substrate. .
- the passivation material (c-1) is spin-coated on one side of a 725 ⁇ m-thick 8-inch p-type silicon substrate (8 ⁇ cm to 12 ⁇ cm) from which a natural oxide film has been removed in advance with a hydrofluoric acid having a concentration of 0.049% by mass.
- Pre-baking was performed at 120 ° C. for 3 minutes on the plate.
- heat treatment was performed at 600 ° C. for 1 hour in a nitrogen atmosphere to obtain a passivation film containing aluminum oxide and niobium oxide. When the film thickness was measured with an ellipsometer, it was 50 nm.
- a plurality of aluminum electrodes having a diameter of 1 mm were formed on the above-described passivation film through a metal mask by vapor deposition, thereby manufacturing a capacitor having a metal-insulator-semiconductor (MIS) structure.
- the voltage dependence (CV characteristics) of the capacitance of this capacitor was measured with a commercially available prober and LCR meter (HP, 4275A). As a result, it was found that the flat band voltage (Vfb) shifted from an ideal value of ⁇ 0.81 V to +4.7 V. From this shift amount, it was found that the passivation film obtained from the passivation material (c-1) showed a negative fixed charge with a fixed charge density (Nf) of ⁇ 3.2 ⁇ 10 12 cm ⁇ 2 .
- the passivation material (c-1) was applied to both sides of an 8-inch p-type silicon substrate, pre-baked, and subjected to heat treatment (baking) at 600 ° C. for 1 hour in a nitrogen atmosphere to obtain silicon.
- a sample in which both surfaces of the substrate were covered with a passivation film was produced.
- the carrier lifetime of this sample was measured using a lifetime measuring device (Kobelco Research Institute, Inc., RTA-540). As a result, the carrier lifetime was 330 ⁇ s.
- the same 8-inch p-type silicon substrate was measured by passivation using the iodine passivation method, and the carrier lifetime was 1100 ⁇ s.
- the passivation film obtained by heat-treating (sintering) the passivation material (c-1) exhibited a certain degree of passivation performance and a negative fixed charge.
- the passivation material (c-2) is spin-coated on one side of a 725 ⁇ m-thick 8-inch p-type silicon substrate (8 ⁇ cm to 12 ⁇ cm) from which a natural oxide film has been removed in advance with a hydrofluoric acid having a concentration of 0.049% by mass.
- Pre-baking was performed at 120 ° C. for 3 minutes on the plate.
- heat treatment was performed at 600 ° C. for 1 hour in a nitrogen atmosphere to obtain a passivation film containing aluminum oxide and niobium oxide. When the film thickness was measured by an ellipsometer, it was 14 nm.
- a plurality of 1 mm diameter aluminum electrodes are deposited on the passivation film through a metal mask to form a MIS (Metal-Insulator-Semiconductor) capacitor.
- the voltage dependence (CV characteristics) of the capacitance of this capacitor was measured with a commercially available prober and LCR meter (HP, 4275A).
- Vfb flat band voltage
- LCR meter HP, 4275A
- Vfb flat band voltage
- the passivation film obtained from the passivation material (c-2) showed a negative fixed charge with a fixed charge density (Nf) of ⁇ 0.8 ⁇ 10 11 cm ⁇ 2 .
- the passivation material (c-2) is applied to both sides of an 8-inch p-type silicon substrate, pre-baked, and subjected to heat treatment (firing) at 600 ° C. for 1 hour in a nitrogen atmosphere.
- a sample in which both surfaces of the substrate were covered with a passivation film was produced.
- the carrier lifetime of this sample was measured with a lifetime measuring device (Kobelco Research Institute Co., Ltd., RTA-540). As a result, the carrier lifetime was 200 ⁇ s.
- the same 8-inch p-type silicon substrate was measured by passivation using the iodine passivation method, and the carrier lifetime was 1100 ⁇ s.
- each of the passivation materials (b-1) to (b-7) was applied to one side of a p-type silicon substrate and heat-treated (fired) to produce a passivation film, Using this, the voltage dependence of the capacitance was measured, and the fixed charge density was calculated therefrom.
- the passivation film obtained from the passivation materials (b-1) to (b-6) has a large carrier lifetime and has a function as a passivation.
- the niobium oxide / aluminum oxide ratios were 10/90 and 20/80, the fixed charge density values varied greatly, and a negative fixed charge density could not be stably obtained. It was confirmed that a negative fixed charge density can be realized by using niobium oxide.
- a negative fixed charge is stably generated because a passivation film showing a positive fixed charge is obtained in some cases. It turns out that it has not reached to show.
- a passivation film exhibiting a fixed charge can be used as a passivation for an n-type silicon substrate.
- a negative fixed charge density could not be obtained with the passivation material (b-7) containing 100% by mass of aluminum oxide.
- a passivation material (d-3) As a passivation material (d-3), a commercially available organometallic decomposition coating material [having high purity chemical laboratory Hf-05, concentration 5 mass%] from which hafnium oxide (HfO 2 ) can be obtained by heat treatment (firing) is used. Got ready.
- each of the passivation materials (d-1) to (d-3) is applied to one side of a p-type silicon substrate, and then heat-treated (fired) to produce a passivation film. Using this, the voltage dependence of the capacitance was measured, and the fixed charge density was calculated therefrom.
- the passivation material was applied to both sides of the p-type silicon substrate, and the carrier lifetime was measured using a sample obtained by heat treatment (firing). The results obtained are summarized in Table 5.
- the passivation films obtained from the passivation materials (d-1) to (d-3) have a small carrier lifetime and an insufficient function as a passivation. It also showed a positive fixed charge.
- the passivation film obtained from the passivation material (d-3) had a negative fixed charge, but its value was small. It was also found that the carrier lifetime was relatively small and the function as a passivation was insufficient.
- an SiN film produced by plasma CVD was formed as the light-receiving surface antireflection film 103 on the light-receiving surface side.
- the passivation material (a-1) prepared in Reference Example 1-1 was applied to the region excluding the contact region (opening OA) on the back surface side of the silicon substrate 101 by the inkjet method. Thereafter, heat treatment was performed to form a passivation film 107 having an opening OA.
- a sample using the passivation material (c-1) prepared in Reference Example 1-3 was separately prepared as the passivation film 107.
- a paste mainly composed of silver was screen-printed in the shape of predetermined finger electrodes and bus bar electrodes.
- a paste mainly composed of aluminum was screen-printed on the entire surface.
- heat treatment fire-through
- electrodes first electrode 105 and second electrode 106
- aluminum is diffused into the opening OA on the back surface to form the BSF layer 104.
- the fire-through process in which the SiN film is not perforated is described, but the opening OA is first formed in the SiN film by etching or the like, and then the silver electrode is formed. You can also.
- the passivation film 107 is not formed in the above manufacturing process, aluminum paste is printed on the entire back surface, and the p + layer 114 corresponding to the BSF layer 104 and the electrode 116 corresponding to the second electrode.
- the characteristic evaluation was performed on the entire surface to form a solar cell element having the structure shown in FIG.
- characteristic evaluation was performed according to JIS-C-8913 (fiscal 2005) and JIS-C-8914 (fiscal 2005). The results are shown in Table 6.
- the solar cell element having the passivation film 107 including the niobium oxide and aluminum oxide layers has both increased short-circuit current and open-circuit voltage as compared with the solar cell element not having the passivation film 107, and the conversion efficiency ( It was found that the photoelectric conversion efficiency was improved by 1% at the maximum.
- a passivation film for use in a solar cell element having a silicon substrate comprising aluminum oxide and an oxide of at least one vanadium group element selected from the group consisting of vanadium oxide and tantalum oxide.
- ⁇ 2> The passivation film according to ⁇ 1>, wherein a mass ratio of the oxide of the vanadium group element to the aluminum oxide (vanadium group element oxide / aluminum oxide) is 30/70 to 90/10.
- ⁇ 3> The passivation film according to ⁇ 1> or ⁇ 2>, in which a total content of the oxide of the vanadium group element and the aluminum oxide is 90% or more.
- the oxide of the vanadium group element includes any of oxides of two or three kinds of vanadium group elements selected from the group consisting of vanadium oxide, niobium oxide, and tantalum oxide. Any one of ⁇ 1> to ⁇ 3> The passivation film according to claim 1.
- ⁇ 5> Heat treatment of a coating-type material comprising: a precursor of aluminum oxide; and a precursor of an oxide of at least one vanadium group element selected from the group consisting of a precursor of vanadium oxide and a precursor of tantalum oxide.
- the said passivation film is a solar cell element containing aluminum oxide and the oxide of the at least 1 sort (s) of vanadium group element selected from the group which consists of vanadium oxide and a tantalum oxide.
- a p-type impurity diffusion layer formed on part or all of the second surface side of the silicon substrate and doped with an impurity at a higher concentration than the silicon substrate,
- the said passivation film is a solar cell element containing aluminum oxide and the oxide of the at least 1 sort (s) of vanadium group element selected from the group which consists of vanadium oxide and a tantalum oxide.
- n-type impurity diffusion layer formed on a part or all of the second surface side of the silicon substrate and doped with impurities at a higher concentration than the silicon substrate, The solar cell element according to ⁇ 9>, wherein the second electrode is electrically connected to the n-type impurity diffusion layer through an opening of the passivation film.
- ⁇ 11> The solar cell element according to any one of ⁇ 7> to ⁇ 10>, wherein a mass ratio of the oxide of the vanadium group element and the aluminum oxide in the passivation film is 30/70 to 90/10 .
- ⁇ 12> The solar cell element according to any one of ⁇ 7> to ⁇ 11>, wherein the total content of the oxide of the vanadium group element and the aluminum oxide in the passivation film is 90% or more.
- the oxide of the vanadium group element includes an oxide of two or three vanadium group elements selected from the group consisting of vanadium oxide, niobium oxide, and tantalum oxide, ⁇ 7> to ⁇ 12>
- the solar cell element according to any one of the above.
- ⁇ 14> a silicon substrate;
- a passivation film having a long carrier lifetime of a silicon substrate and having a negative fixed charge can be realized at low cost.
- a coating type material for realizing the formation of the passivation film can be provided.
- a low-cost and highly efficient solar cell element using the passivation film can be realized.
- a silicon substrate with a passivation film having a long carrier lifetime and a negative fixed charge can be realized at low cost.
- the passivation film of the present embodiment is a passivation film used for a silicon solar cell element, and includes aluminum oxide and an oxide of at least one vanadium group element selected from the group consisting of vanadium oxide and tantalum oxide. It is what was included.
- the amount of fixed charges possessed by the passivation film can be controlled by changing the composition of the passivation film.
- the vanadium group element is a Group 5 element in the periodic table, and is an element selected from vanadium, niobium, and tantalum.
- the mass ratio of the oxide of vanadium group element to aluminum oxide is preferably 35/65 to 90/10, from the viewpoint that the negative fixed charge can be stabilized, and is preferably 50/50 to 90/10. More preferably.
- the mass ratio of vanadium group element oxide and aluminum oxide in the passivation film is determined by energy dispersive X-ray spectroscopy (EDX), secondary ion mass spectrometry (SIMS), and high frequency inductively coupled plasma mass spectrometry (ICP-MS). ) Can be measured. Specific measurement conditions are as follows in the case of ICP-MS, for example. Dissolving the passivation film in acid or alkaline aqueous solution, atomizing this solution and introducing it into Ar plasma, measuring the wavelength and intensity by spectroscopically analyzing the light emitted when the excited element returns to the ground state, Element qualification is performed from the obtained wavelength, and quantification is performed from the obtained intensity.
- EDX energy dispersive X-ray spectroscopy
- SIMS secondary ion mass spectrometry
- ICP-MS high frequency inductively coupled plasma mass spectrometry
- the total content of the vanadium group element oxide and aluminum oxide in the passivation film is preferably 80% by mass or more, and more preferably 90% by mass or more from the viewpoint of maintaining good characteristics.
- the components other than the oxide of vanadium group elements and aluminum oxide in the passivation film increase, the effect of negative fixed charges increases.
- components other than vanadium group oxide and aluminum oxide may be contained as organic components from the viewpoint of improving the film quality and adjusting the elastic modulus.
- the presence of the organic component in the passivation film can be confirmed by elemental analysis and measurement of the FT-IR of the film.
- vanadium oxide As the oxide of the vanadium group element, it is preferable to select vanadium oxide (V 2 O 5 ) from the viewpoint of obtaining a larger negative fixed charge.
- the passivation film may include two or three vanadium group oxides selected from the group consisting of vanadium oxide, niobium oxide, and tantalum oxide as the vanadium group element oxide.
- the passivation film is preferably obtained by heat-treating a coating-type material, and can be obtained by forming a coating-type material using a coating method or a printing method, and then removing organic components by heat treatment. More preferred. That is, the passivation film may be obtained as a heat-treated product of a coating type material containing an aluminum oxide precursor and a vanadium group element oxide precursor. Details of the coating type material will be described later.
- the coating type material of the present embodiment is a coating type material used for a passivation film for a solar cell element having a silicon substrate, and includes a precursor of aluminum oxide, a precursor of vanadium oxide, and a precursor of tantalum oxide. And a precursor of an oxide of at least one vanadium group element selected from the group.
- a precursor of the oxide of the vanadium group element contained in the coating material a precursor of vanadium oxide (V 2 O 5 ) is selected from the viewpoint of the negative fixed charge of the passivation film formed from the coating material. It is preferable.
- the coating type material is composed of two or three vanadium group elements selected from the group consisting of vanadium oxide precursors, niobium oxide precursors and tantalum oxide precursors as vanadium group oxide precursors. An oxide precursor may also be included.
- the aluminum oxide precursor can be used without particular limitation as long as it produces aluminum oxide.
- As the aluminum oxide precursor it is preferable to use an organic aluminum oxide precursor from the viewpoint of uniformly dispersing aluminum oxide on the silicon substrate and a chemically stable viewpoint.
- Examples of the organic aluminum oxide precursor include aluminum triisopropoxide (structural formula: Al (OCH (CH 3 ) 2 ) 3 , Kojundo Chemical Laboratory Co., Ltd., SYM-AL04.
- the precursor of the oxide of the vanadium group element can be used without particular limitation as long as it generates an oxide of the vanadium group element.
- the vanadium group element oxide precursor is preferably an organic vanadium group oxide oxide precursor from the viewpoint of uniformly dispersing aluminum oxide on the silicon substrate and chemically stable. .
- organic vanadium oxide precursors examples include vanadium (V) oxytriethoxide (structural formula: VO (OC 2 H 5 ) 3 , molecular weight: 202.13), High Purity Chemical Laboratory, V-02 can be mentioned.
- organic tantalum oxide precursors include tantalum (V) methoxide (structural formula: Ta (OCH 3 ) 5 , molecular weight: 336.12), Kojundo Chemical Laboratory, Ta-10-P Can be mentioned.
- organic niobium oxide precursors examples include niobium (V) ethoxide (structural formula: Nb (OC 2 H 5 ) 5 , molecular weight: 318.21), High Purity Chemical Laboratory, Nb-05. Can be mentioned.
- a passivation film By forming a coating type material containing an organic vanadium group oxide precursor and an organic aluminum oxide precursor using a coating method or a printing method, and then removing the organic components by a heat treatment, A passivation film can be obtained. Therefore, as a result, a passivation film containing an organic component may be used.
- the content of the organic component in the passivation film is more preferably less than 10% by mass, still more preferably 5% by mass or less, and particularly preferably 1% by mass or less.
- the solar cell element (photoelectric conversion device) of the present embodiment includes the passivation film (insulating film, protective insulating film) described in the above embodiment in the vicinity of the photoelectric conversion interface of the silicon substrate, that is, aluminum oxide and vanadium oxide. And at least one oxide of a vanadium group element selected from the group consisting of tantalum oxide. By containing aluminum oxide and an oxide of at least one vanadium group element selected from the group consisting of vanadium oxide and tantalum oxide, the carrier lifetime of the silicon substrate can be extended and negative fixed charges can be obtained. And the characteristics (photoelectric conversion efficiency) of the solar cell element can be improved.
- Passivation of passivation material (a2-1) on one side of a 725 ⁇ m thick 8-inch p-type silicon substrate (8 ⁇ ⁇ cm to 12 ⁇ ⁇ cm) with natural oxide film removed beforehand with hydrofluoric acid at a concentration of 0.49% by mass It was applied and placed on a hot plate and prebaked at 120 ° C. for 3 minutes. Thereafter, a heat treatment (firing) was performed at 700 ° C. for 30 minutes in a nitrogen atmosphere to obtain a passivation film containing vanadium oxide and vanadium oxide [vanadium oxide / aluminum oxide 63/37 (mass%)]. It was 51 nm when the film thickness was measured with the ellipsometer. When the FT-IR of the passivation film was measured, a very few peaks due to alkyl groups were observed in the vicinity of 1200 cm ⁇ 1 .
- the passivation material (a2-1) was applied to both sides of an 8-inch p-type silicon substrate, pre-baked, and subjected to heat treatment (baking) at 650 ° C. for 1 hour in a nitrogen atmosphere.
- a sample in which both surfaces of the substrate were covered with a passivation film was produced.
- the carrier lifetime of this sample was measured with a lifetime measuring device (Kobelco Research Institute, Inc., RTA-540). As a result, the carrier lifetime was 400 ⁇ s.
- the same 8-inch p-type silicon substrate was measured by passivation using the iodine passivation method, and the carrier lifetime was 1100 ⁇ s.
- the carrier lifetime was 380 ⁇ s.
- the decrease in carrier lifetime (from 400 ⁇ s to 380 ⁇ s) was within ⁇ 10%, and the decrease in carrier lifetime was small.
- the passivation film obtained by heat-treating (sintering) the passivation material (a2-1) showed a certain degree of passivation performance and a negative fixed charge.
- Reference Example 2-2 Similar to Reference Example 2-1, a commercially available organometallic thin film coated material from which aluminum oxide (Al 2 O 3 ) can be obtained by heat treatment (calcination) [High Purity Chemical Laboratory, SYM-AL04, concentration 2 3 mass%] and a commercially available organometallic thin film coating type material [Vitamin Purity Laboratory, V-02, concentration 2 mass%] from which vanadium oxide (V 2 O 5 ) can be obtained by heat treatment, Passivation materials (a2-2) to (a2-7) shown in Table 7 were prepared by mixing at different ratios.
- each of the passivation materials (a2-2) to (a2-7) was applied to one side of a p-type silicon substrate and heat-treated (fired) to produce a passivation film.
- the voltage dependence of the capacitance of the obtained passivation film was measured, and the fixed charge density was calculated therefrom.
- the carrier lifetime was measured using a sample obtained by applying a passivation material to both sides of a p-type silicon substrate and performing heat treatment (firing).
- the passivation materials (a2-2) to (a2-7) are all negative after the heat treatment (firing). Since it showed a fixed charge and a certain carrier lifetime, it was suggested that it functions as a passivation film. It was found that all the passivation films obtained from the passivation materials (a2-2) to (a2-7) stably show negative fixed charges and can be suitably used as a passivation for a p-type silicon substrate. .
- the passivation material (b2-1) was applied to both sides of an 8-inch p-type silicon substrate, pre-baked, and subjected to heat treatment (baking) at 600 ° C. for 1 hour in a nitrogen atmosphere.
- a sample in which both surfaces of the substrate were covered with a passivation film was produced.
- the carrier lifetime of this sample was measured by a lifetime measuring device (Kobelco Research Institute, Inc., RTA-540). As a result, the carrier lifetime was 400 ⁇ s.
- the same 8-inch p-type silicon substrate was measured by passivation using the iodine passivation method, and the carrier lifetime was 1100 ⁇ s.
- the passivation film obtained by heat-treating (firing) the passivation material (b2-1) exhibits a certain degree of passivation performance and a negative fixed charge.
- the passivation material (b2-2) was applied to both sides of an 8-inch p-type silicon substrate, pre-baked, and subjected to heat treatment (baking) at 600 ° C. for 1 hour in a nitrogen atmosphere. A sample in which both surfaces of the substrate were covered with a passivation film was produced. The carrier lifetime of this sample was measured by a lifetime measuring device (Kobelco Research Institute, Inc., RTA-540). As a result, the carrier lifetime was 170 ⁇ s. For comparison, the same 8-inch p-type silicon substrate was measured by passivation using the iodine passivation method, and the carrier lifetime was 1100 ⁇ s.
- the passivation film obtained by curing the passivation material (b2-2) exhibited a certain degree of passivation performance and a negative fixed charge.
- Each of the passivation materials (c2-1) to (c2-6) is a 725 ⁇ m-thick 8-inch p-type silicon substrate (8 ⁇ ⁇ cm to 12 ⁇ ) from which a natural oxide film has been removed in advance with hydrofluoric acid having a concentration of 0.49% by mass.
- (Cm) was spin-coated on one side, placed on a hot plate, and pre-baked at 120 ° C. for 3 minutes. Thereafter, a heat treatment (firing) was performed at 700 ° C. for 30 minutes in a nitrogen atmosphere to obtain a passivation film containing aluminum oxide and tantalum oxide. Using this passivation film, the voltage dependence of the capacitance was measured, and the fixed charge density was calculated therefrom.
- each of the passivation materials (c2-1) to (c2-6) is applied to both sides of an 8-inch p-type silicon substrate, pre-baked, and heat-treated (fired) at 650 ° C. for 1 hour in a nitrogen atmosphere. )
- the carrier lifetime of this sample was measured by a lifetime measuring device (Kobelco Research Institute, Inc., RTA-540).
- the passivation materials (c2-1) to (c2-6) are all negative after heat treatment (firing). Since it showed a fixed charge and a certain carrier lifetime, it was suggested that it functions as a passivation film.
- Al oxide (Al 2 O 3 ) As a compound from which aluminum oxide (Al 2 O 3 ) can be obtained by heat treatment (firing), commercially available aluminum triisopropoxide (structural formula: Al (OCH (CH 3 ) 2 ) 3 , molecular weight: 204.25 2.04 g (0.010 mol) was dissolved in cyclohexane 60 g to prepare a passivation material (d2-1) having a concentration of 5% by mass.
- Al (OCH (CH 3 ) 2 ) 3 As a compound from which aluminum oxide (Al 2 O 3 ) can be obtained by heat treatment (firing), commercially available aluminum triisopropoxide (structural formula: Al (OCH (CH 3 ) 2 ) 3 , molecular weight: 204.25 2.04 g (0.010 mol) was dissolved in cyclohexane 60 g to prepare a passivation material (d2-1) having a concentration of 5% by mass.
- the passivation material (d2-1) was applied to both sides of an 8-inch p-type silicon substrate, pre-baked, and subjected to a heat treatment (firing) at 600 ° C. for 1 hour in a nitrogen atmosphere.
- a sample in which both surfaces of the substrate were covered with a passivation film was produced.
- the carrier lifetime of this sample was measured by a lifetime measuring device (Kobelco Research Institute, Inc., RTA-540). As a result, the carrier lifetime was 610 ⁇ s.
- the same 8-inch p-type silicon substrate was measured by passivation using the iodine passivation method, and the carrier lifetime was 1100 ⁇ s.
- the passivation film obtained by heat-treating the passivation material (d2-1) exhibited a certain degree of passivation performance and a negative fixed charge.
- the passivation material (d2-2) was applied to both sides of an 8-inch p-type silicon substrate, pre-baked, and subjected to heat treatment (baking) at 600 ° C. for 1 hour in a nitrogen atmosphere. A sample in which both surfaces of the substrate were covered with a passivation film was produced. The carrier lifetime of this sample was measured by a lifetime measuring device (Kobelco Research Institute, Inc., RTA-540). As a result, the carrier lifetime was 250 ⁇ s. For comparison, the same 8-inch p-type silicon substrate was measured by passivation using the iodine passivation method, and the carrier lifetime was 1100 ⁇ s.
- the passivation film obtained by heat treatment (firing) the passivation material (d2-2) exhibits a certain degree of passivation performance and a negative fixed charge.
- organometallic thin film coating type material High purity chemical research laboratory SYM-AL04, concentration 2.3 mass%
- aluminum oxide (Al 2 O 3 ) can be obtained by heat treatment (firing)
- heat treatment (firing) Niobium oxide (Nb 2 O) by commercially available organometallic thin film coating type material (VCO, Ltd., high purity chemical research laboratory V-02, concentration 2 mass%) from which vanadium oxide (V 2 O 5 ) is obtained, and heat treatment (firing) 5 )
- a commercially available organometallic thin film coating type material [Co-development High Purity Chemical Laboratory, Nb-05, concentration 5 mass%] obtained is mixed to obtain a passivation material (e2-2) which is a coating type material. Prepared (see Table 9).
- organometallic thin film coating type material High purity chemical research laboratory SYM-AL04, concentration 2.3 mass%] from which aluminum oxide (Al 2 O 3 ) can be obtained by heat treatment (firing), heat treatment (firing) Niobium oxide (Nb) by commercially available organometallic thin film coating material [Tapurio Chemical Lab. Ta-10-P, concentration 10% by mass] from which tantalum oxide (Ta 2 O 5 ) can be obtained, and heat treatment (firing) 2 O 5 ), a commercially available organometallic thin film coating material [High Purity Chemical Laboratory Nb-05, concentration 5 mass%] is mixed to form a passivation material (e2-3) which is a coating material Was prepared (see Table 9).
- organometallic thin film coating type material High purity chemical research laboratory SYM-AL04, concentration 2.3 mass%
- aluminum oxide Al 2 O 3
- heat treatment firing
- Tantalum oxide Ti 2 O 5
- heat treatment Niobium oxide
- Nb 2 O 5 Niobium oxide
- a commercially available organometallic thin film coating type material [High purity chemical research laboratory Nb-05, concentration 5 mass%] was mixed to prepare a passivation material (e2-4) as a coating type material (see Table 9).
- Each of the passivation materials (e2-1) to (e2-4) was 725 ⁇ m thick and 8 inches thick with the natural oxide film removed beforehand with hydrofluoric acid having a concentration of 0.49% by mass, as in Reference Example 2-1. It was spin-coated on one side of a p-type silicon substrate (8 ⁇ ⁇ cm to 12 ⁇ ⁇ cm), placed on a hot plate and prebaked at 120 ° C. for 3 minutes. Thereafter, a heat treatment (firing) was performed at 650 ° C. for 1 hour in a nitrogen atmosphere to obtain a passivation film containing aluminum oxide and two or more vanadium group element oxides.
- each of the passivation materials (e2-1) to (e2-4) is applied to both sides of an 8-inch p-type silicon substrate, pre-baked, and heat-treated (fired) at 650 ° C. for 1 hour in a nitrogen atmosphere. )
- the carrier lifetime of this sample was measured by a lifetime measuring device (Kobelco Research Institute, Inc., RTA-540).
- each of the passivation materials (f2-1) to (f2-9) was applied to one side of a p-type silicon substrate, and then heat treatment (firing) was performed to form a passivation film. This was used to measure the voltage dependence of the capacitance, and the fixed charge density was calculated therefrom.
- a SiN film was formed on the light receiving surface side by plasma CVD as the light receiving surface antireflection film 103.
- the passivation material (a2-1) prepared in Reference Example 2-1 was applied to the region excluding the contact region (opening OA) on the back surface side of the silicon substrate 101 by an inkjet method. Thereafter, heat treatment was performed to form a passivation film 107 having an opening OA.
- a sample using the passivation material (c2-1) prepared in Reference Example 2-5 was separately prepared as the passivation film 107.
- a paste mainly composed of silver was screen-printed in the shape of predetermined finger electrodes and bus bar electrodes.
- a paste mainly composed of aluminum was screen-printed on the entire surface.
- heat treatment fire-through
- electrodes first electrode 105 and second electrode 106
- aluminum is diffused into the opening OA on the back surface to form the BSF layer 104.
- the fire-through process in which the SiN film is not perforated is described.
- the opening OA is first formed in the SiN film by etching or the like, and then the silver electrode is formed. You can also
- the passivation film 107 is not formed in the above manufacturing process, aluminum paste is printed on the entire back surface, and the p + layer 114 corresponding to the BSF layer 104 and the electrode 116 corresponding to the second electrode. was formed on the entire surface to form a solar cell element having the structure of FIG.
- characteristic evaluation a short circuit current, an open circuit voltage, a fill factor, and conversion efficiency
- the characteristic evaluation was performed according to JIS-C-8913 (fiscal 2005) and JIS-C-8914 (fiscal 2005). The results are shown in Table 11.
- the solar cell element having the passivation film 107 has both a short-circuit current and an open-circuit voltage that are increased as compared with the solar electronic element not having the passivation film 107, and the conversion efficiency (photoelectric conversion efficiency) is 0 at the maximum. It was found to improve by 6%.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Photovoltaic Devices (AREA)
- Formation Of Insulating Films (AREA)
Abstract
Description
まず、光閉じ込め効果を促して高効率化を図るよう、受光面側にテクスチャー構造を形成したp型シリコン基板を準備し、続いてオキシ塩化リン(POCl3)、窒素及び酸素の混合ガス雰囲気において800℃~900℃で数十分の処理を行って一様にn型拡散層を形成する。この従来の方法では、混合ガスを用いてリンの拡散を行うため、受光面である表面のみならず、側面及び裏面にもn型拡散層が形成される。そのため、側面に形成されたn型拡散層を除去するためのサイドエッチングを行っている。また、裏面に形成されたn型拡散層はp+型拡散層へ変換する必要がある。このため、裏面全体にアルミニウム粉末及びバインダを含むアルミニウムペーストを塗布し、これを熱処理(焼成)することで、n型拡散層をp+型拡散層に変換し、且つアルミニウム電極を形成することでオーミックコンタクトを得ている。
このような受光面とは反対の面(以下、「裏面」ともいう)にポイントコンタクト構造を有する太陽電池の場合、アルミニウム電極以外の部分の表面において、少数キャリアの再結合速度を抑制する必要がある。そのための裏面用のパッシベーション層として、SiO2膜等が提案されている(例えば、特開2004-6565号公報参照)。このようなSiO2膜を形成することによるパッシベーション効果としては、シリコン基板の裏面表層部におけるケイ素原子の未結合手を終端させ、再結合の原因となる表面準位密度を低減させる効果がある。
このようなパッシベーション層は、一般的にはALD(Atomic Layer Deposition)法、CVD(Chemical Vapor Deposition)法等の方法で形成される(例えば、Journal of Applied Physics, 104(2008), 113703-1~113703-7参照)。また、半導体基板上に酸化アルミニウム膜を形成する簡便な手法として、ゾルゲル法による手法が提案されている(例えば、Thin Solid Films, 517(2009), 6327-6330、及びChinese Physics Letters, 26(2009), 088102-1~088102-4参照)。
<1> 下記一般式(I)で表される化合物を含むパッシベーション層形成用組成物である。
本発明のパッシベーション層形成用組成物は、下記一般式(I)で表される化合物(以下、式(I)化合物」ともいう)を含む。前記パッシベーション層形成用組成物は必要に応じてその他の成分を更に含んでいてもよい。パッシベーション層形成用組成物が上記成分を含むことで、パッシベーション効果に優れたパッシベーション層を簡便な手法で形成することが可能である。また該パッシベーション層形成用組成物は保存安定性に優れる。
パッシベーション層形成用組成物は、前記一般式(I)で表される化合物(式(I)化合物)の少なくとも1種を含む。パッシベーション層形成用組成物が式(I)化合物の少なくとも1種を含むことで、優れたパッシベーション効果を有するパッシベーション層を形成することができる、この理由は以下のように考えることができる。
中でもR1は、保存安定性とパッシベーション効果の観点から、炭素数1~8の無置換のアルキル基であることが好ましく、炭素数1~4の無置換のアルキル基であることがより好ましい。
また、一般式(I)で表される化合物としては、Mが、Nb、Ta、VO、及びHfからなる群より選択される少なくとも1種であり、R1が炭素数1~4の無置換のアルキル基であり、mが1~5の整数であることが好ましい。
本発明のパッシベーション層形成用組成物は、下記一般式(II)で表される化合物(以下、「有機アルミニウム化合物」ともいう)の少なくとも1種を含有してもよい。
また、一般式(II)におけるR5は、保存安定性及びパッシベーション効果の観点から、水素原子又は炭素数1~8の無置換のアルキル基であることが好ましく、水素原子又は炭素数1~4の無置換のアルキル基であることがより好ましい。
より好ましくは、一般式(II)で表される化合物は、nが0であり、R2がそれぞれ独立して炭素数1~4の無置換のアルキル基である化合物、並びにnが1~3であり、R2がそれぞれ独立して炭素数1~4の無置換のアルキル基であり、X2及びX3の少なくとも一方が酸素原子であり、この酸素原子に結合するR3又はR4が炭素数1~4のアルキル基であり、X2又はX3がメチレン基の場合、このメチレン基に結合するR3又はR4が水素原子であり、R5が水素原子である化合物からなる群より選ばれる少なくとも1種である。
有機アルミニウム化合物の含有率を0.1質量%以上とすることで、パッシベーション層形成用組成物の保存安定性が向上する傾向にある。また有機アルミニウム化合物を80質量%以下とすることで、パッシベーション効果が向上する傾向にある。
パッシベーション層形成用組成物は、液状媒体(溶媒又は分散媒)を含んでいてもよい。パッシベーション層形成用組成物が液状媒体を含有することで、粘度の調整がより容易になり、付与性がより向上すると共により均一なパッシベーション層を形成することができる。液状媒体としては特に制限されず、必要に応じて適宜選択することができる。中でも一般式(I)で表される化合物及び必要に応じて添加される一般式(II)で表される化合物を溶解して均一な溶液を与えることができる液状媒体が好ましく、有機溶剤の少なくとも1種を含むことがより好ましい。液状媒体とは、室温(25℃)において液体の状態の媒体をいう。
パッシベーション層形成用組成物は、樹脂の少なくとも1種を更に含有してもよい。樹脂を含むことで、パッシベーション層形成用組成物が半導体基板上に付与されて形成される組成物層の形状安定性がより向上し、パッシベーション層を組成物層が形成された領域に、所望の形状で形成することができる。
尚、本明細書における「(メタ)アクリル酸」とは「アクリル酸」及び「メタクリル酸」の少なくとも一方を意味し、「(メタ)アクリレート」とは「アクリレート」及び「メタクリレート」の少なくとも一方を意味する。
またこれら樹脂の分子量は特に制限されず、パッシベーション層形成用組成物としての所望の粘度を鑑みて適宜調整することが好ましい。樹脂の重量平均分子量は、保存安定性及びパターン形成性の観点から、1000~10,000,000であることが好ましく、1,000~5,000,000であることがより好ましい。尚、樹脂の重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)を用いて測定される分子量分布から標準ポリスチレンの検量線を使用して換算して求められる。検量線は、標準ポリスチレンの5サンプルセット(PStQuick MP-H、PStQuick B[東ソー株式会社、商品名])を用いて3次式で近似する。GPCの測定条件を以下に示す。
(検出器:L-2490型RI[株式会社日立ハイテクノロジーズ])
(カラムオーブン:L-2350[株式会社日立ハイテクノロジーズ])
カラム:Gelpack GL-R440 + Gelpack GL-R450 + Gelpack GL-R400M(計3本)(日立化成株式会社、商品名)
カラムサイズ:10.7mm(内径)×300mm
溶離液:テトラヒドロフラン
試料濃度:10mg/2mL
注入量:200μL
流量:2.05mL/分
測定温度:25℃
本発明のパッシベーション層形成用組成物は、上述した成分に加え、必要に応じて当該分野で通常用いられるその他の成分を更に含むことができる。
パッシベーション層形成用組成物は、酸性化合物又は塩基性化合物を含有してもよい。パッシベーション層形成用組成物が酸性化合物又は塩基性化合物を含有する場合、保存安定性の観点から、酸性化合物又は塩基性化合物の含有率が、パッシベーション層形成用組成物中にそれぞれ1質量%以下であることが好ましく、0.1質量%以下であることがより好ましい。
R9CONH-R10-NHCOR9・・・・(2)
R9NHCO-R10-CONHR9・・・・(3)
R9CONH-R10-N(R11)2・・・・(4)
パッシベーション膜形成用組成物は、樹脂と共に又は樹脂に替わる材料として、高沸点材料を用いてもよい。高沸点材料は、加熱したときに容易に気化して脱脂処理する必要のない化合物であることが好ましい。高沸点材料は特に、印刷又は塗布後に印刷形状が維持できる高粘度の高沸点材料であることが好ましい。これらを満たす材料として、例えば、イソボルニルシクロヘキサノールが挙げられる。
また、パッシベーション層形成用組成物は、酸化アルミニウム(Al2O3)を更に含有してもよい。酸化アルミニウムは、式(II)で表される化合物を熱処理(焼成)して生成する酸化物である。したがって、式(I)化合物と酸化アルミニウムとを含有するパッシベーション層形成用組成物は、優れたパッシベーション効果が奏されることが期待される。
尚、パッシベーション層形成用組成物中に含まれる成分、及び各成分の含有量は示差熱-熱重量同時測定(TG/DTA)等の熱分析、核磁気共鳴(NMR)、赤外分光法(IR)等のスペクトル分析、高速液体クロマトグラフィー(HPLC)、ゲル浸透クロマトグラフィー(GPC)等のクロマトグラフ分析などを用いて確認することができる。
本発明のパッシベーション層付半導体基板は、半導体基板と、前記半導体基板上の全面又は一部に設けられる前記パッシベーション層形成用組成物の熱処理物(焼成物)であるパッシベーション層とを有する。前記パッシベーション層付半導体基板は、前記パッシベーション層形成用組成物の熱処理物(焼成物)であるパッシベーション層を有することで優れたパッシベーション効果を示す。
本発明のパッシベーション層付半導体基板の製造方法は、半導体基板上の全面又は一部に、前記パッシベーション層形成用組成物を付与して組成物層を形成する工程と、前記組成物層を熱処理(焼成)してパッシベーション層を形成する工程とを有する。前記製造方法は必要に応じてその他の工程を更に含んでいてもよい。
前記パッシベーション層形成用組成物を用いることで、優れたパッシベーション効果を有するパッシベーション層を簡便な方法で形成することができる。
組成物層の熱処理(焼成)条件は、組成物層に含まれる一般式(I)で表される化合物及び必要に応じて含まれる一般式(II)で表される化合物を、その熱処理物(焼成物)である金属酸化物又は複合酸化物に変換可能であれば特に制限されない。パッシベーション層に効果的に固定電荷を与え、より優れたパッシベーション効果を得るために、具体的には、熱処理(焼成)温度は300℃~900℃が好ましく、450℃~800℃がより好ましい。ここでいう熱処理(焼成)温度は、熱処理(焼成)に用いる炉の中の最高温度を意味する。熱処理(焼成)時間は熱処理(焼成)温度等に応じて適宜選択できる。例えば、0.1時間~10時間とすることができ、0.2時間~5時間であることが好ましい。ここでいう熱処理(焼成)時間は、最高温度での保持時間を意味する。
尚、形成されたパッシベーション層の平均厚みは、干渉式膜厚計(例えば、フィルメトリクス株式会社、F20膜厚測定システム)を用いて常法により、3点の厚みを測定し、その算術平均値として算出される。
本発明の太陽電池素子は、p型層及びn型層がpn接合されてなる半導体基板と、前記半導体基板上の全面又は一部に設けられる前記パッシベーション層形成用組成物の熱処理物(焼成物)であるパッシベーション層と、前記半導体基板の前記p型層及び前記n型層の少なくとも一方の層上に設けられる電極とを有する。前記太陽電池素子は、必要に応じてその他の構成要素を更に有していてもよい。
太陽電池素子は、本発明のパッシベーション層形成用組成物から形成されたパッシベーション層を有することで、変換効率に優れる。
太陽電池素子の形状及び大きさに制限はない。例えば、一辺が125mm~156mmの略正方形であることが好ましい。
本発明の太陽電池素子の製造方法は、p型層及びn型層がpn接合されてなる半導体基板の全面又は一部に、前記パッシベーション層形成用組成物を付与して組成物層を形成する工程と、前記組成物層を熱処理(焼成)して、パッシベーション層を形成する工程と、前記p型層及び前記n型層の少なくとも一方の層上に、電極を形成する工程と、を有する。前記太陽電池素子の製造方法は、必要に応じてその他の工程を更に有していてもよい。
パッシベーション層形成用組成物を用いてパッシベーション層を形成する方法の詳細は、既述のパッシベーション層付半導体基板の製造方法と同様であり、好ましい態様も同様である。
図1は、本実施形態にかかるパッシベーション層を有する太陽電池素子の製造方法の一例を模式的に示す工程図を断面図として示したものである。但し、この工程図は、本発明をなんら制限するものではない。
太陽電池は、上記の太陽電池素子と、前記太陽電池素子の電極上に設けられる配線材料とを有する。太陽電池は、太陽電池素子の少なくとも1つを含み、太陽電池素子の出力取出し電極上に配線材料が配置されることが好ましい。太陽電池は更に必要に応じて、配線材料13を介して複数の太陽電池素子が連結され、更に封止材で封止されて構成される。前記配線材料及び封止材としては特に制限されず、当該技術分野で通常用いられているものから適宜選択することができる。
(パッシベーション層形成用組成物1の調製)
ペンタエトキシニオブ(北興化学工業株式会社、構造式:Nb(OC2H5)5、分子量:318.2)を1.2g、及びテルピネオール(日本テルペン化学株式会社、TPOと略記することがある)を18.8g混合して、パッシベーション層形成用組成物1を調製した。
上記で調製したパッシベーション層形成用組成物1のせん断粘度を、調製直後(12時間以内)に、回転式せん断粘度計(AntonPaar社、MCR301)に、コーンプレート(直径50mm、コーン角1°)を装着し、温度25℃で、せん断速度1.0s-1及び10s-1の条件でそれぞれ測定した。
せん断速度が1.0s-1の条件でのせん断粘度(η1)は22.3Pa・s、せん断速度が10s-1の条件でのせん断粘度(η2)は18.9Pa・sとなった。せん断速度が1.0s-1と10s-1の場合でのチキソ比(η1/η2)は1.18となった。
上記で調製したパッシベーション層形成用組成物1のせん断粘度を、調製直後(12時間以内)及び25℃で30日間保存した後にそれぞれ測定した。せん断粘度の測定には、AntonPaar社、MCR301に、コーンプレート(直径50nm、コーン角1°)を装着し、温度25℃でせん断速度1.0s-1で行った。25℃におけるせん断粘度は、調製直後は22.3Pa・s、25℃で30日間保存した後は23.9Pa・sであった。
保存安定性の評価では、30日間保存した後のせん断粘度の変化率が10%未満のものをA、10%以上30%未満のものをB、30%以上のものをCとしている。評価がA及びBであれば、パッシベーション層形成用組成物の保存安定性としては良好である。表2では、調製直後のせん断粘度の数値と、保存安定性の評価結果を示す。
パッシベーション層形成用組成物の印刷性の評価を行う際は、半導体基板として、表面がミラー形状の単結晶p型シリコン基板(50mm角、厚さ625μm、以下、基板Aと呼ぶ)と、表面にテクスチャー構造が形成された単結晶p型シリコン基板(50mm角、厚さ180μm、以下、基板Bと呼ぶ)の2種類を使用した。
ここで、印刷中に目視によって印刷ムラが生じなかったものが10枚中9枚以上の場合をA、8枚以下かつ6枚以上の場合をB、5枚以下の場合をCとしている。評価がA及びBであれば、パッシベーション層形成用組成物の印刷ムラとしては良好である。
尚、印刷ムラとは、スクリーン版がシリコン基板から離れる際に、一部版離れが悪い部分が生じたためにできる、組成物層の厚さが場所によりばらつく現象を指す。
その後、パッシベーション層形成用組成物1を付与した基板A及び基板Bを150℃で3分間加熱し、液状媒体を蒸散させることで乾燥処理した。次いで、基板A及び基板Bを700℃の温度で10分間熱処理(焼成)した後、室温(25℃)で放冷した。
ここで、印刷直後のドット径(La)(368μm)に対し、熱処理(焼成)後のドット径(La)の減少率が10%未満のものをA、10%以上30%未満のものをB、30%以上のものをCとしている。評価がA及びBであれば、パッシベーション層形成用組成物の印刷滲みとしては良好である。
尚、印刷滲みとは、半導体基板上に付与したパッシベーション層形成用組成物が染みて広がる現象を言う。
上記印刷ムラの評価で作製した、パッシベーション層形成用組成物1を全面に付与した10枚の基板Aのうち1枚を、150℃で3分間加熱し、液状媒体を蒸散させることで乾燥処理した。次いで半導体基板を700℃の温度で10分間熱処理(焼成)した後、室温(25℃)で放冷し、評価用基板とした。熱処理(焼成)は、拡散炉(ACCURON CQ-1200、株式会社日立国際電気)を用いて、大気中雰囲気下、最高温度700℃、保持時間10分間の条件で行った。
上記で得られた評価用基板の実効ライフタイムを、ライフタイム測定装置(日本セミラボ株式会社、WT-2000PVN)を用いて、室温(25℃)で反射マイクロ波光電導減衰法により測定した。得られた評価用基板において、パッシベーション層形成用組成物を付与した領域の実効ライフタイムは、203μsであった。
上記で得られた評価用基板上のパッシベーション層の厚みを、干渉式膜厚計(フィルメトリクス株式会社、F20膜厚測定システム)を用いて測定したところ、厚みは75nmであった。
上記で得られた評価用基板について、パッシベーション層上にメタルマスクを介して、直径1mmのアルミニウム電極を複数個蒸着し、MIS(Metal-Insulator-Semiconductor;金属-絶縁体-半導体)構造のキャパシタを作製した。
まず、単結晶p型半導体基板(125mm角、厚さ200μm)を用意し、アルカリエッチングにより、受光面及び裏面にテクスチャー構造を形成した。次いでオキシ塩化リン(POCl3)、窒素及び酸素の混合ガス雰囲気において、900℃の温度で20分間処理し、受光面、裏面及び側面にn+型拡散層を形成した。その後、サイドエッチングを行い、側面のPSG層及びn+型拡散層を除去し、そしてフッ酸を含むエッチング溶液を用いて受光面及び裏面のPSG層を除去した。更に裏面については別途エッチング処理を行い、裏面のn+型拡散層を除去した。その後、受光面のn+型拡散層上に窒化ケイ素からなる反射防止膜をPECVDにより約90nmの厚さで形成した。
燥処理を行った。
各電極ペーストを印刷した後、150℃の温度で5分間加熱し、液状媒体を蒸散させることで乾燥処理を行った。
実施例1において、パッシベーション層形成用組成物にエチルセルロース(日進化成株式会社、商品名:ETHOCEL200cps、ECと略記することがある)を加えた。具体的には、各成分の含有量を、ペンタエトキシニオブ(北興化学工業株式会社、構造式:Nb(OC2H5)5、分子量:318.2)を1.2g、テルピネオールを18.5g、エチルセルロースを0.3gと変更したこと以外は、実施例1と同様にして、パッシベーション層形成用組成物2を調製した。
その後は、実施例1と同様にして、パッシベーション層形成用組成物2のチキソ性の評価、保存安定性の評価、印刷性(印刷ムラ及び印刷滲み)の評価、及びパッシベーション層2の実効ライフタイムの評価を行い、厚さ及び固定電荷密度を測定した。更に実施例1と同様にして、太陽電池素子2及び太陽電池2を作製し、発電性能を評価した。
実施例1において、パッシベーション層形成用組成物にアルミニウムエチルアセトアセタトジイソプロピレート(川研ファインケミカル株式会社、商品名:ALCH)を加えた。具体的には、各成分の含有量を、ペンタエトキシニオブ(北興化学工業株式会社、構造式:Nb(OC2H5)5、分子量:318.22)を1.2g、ALCHを1.2g、テルピネオールを17.6gと変更したこと以外は、実施例1と同様にして、パッシベーション層形成用組成物3を調製した。
その後は、実施例1と同様にして、パッシベーション層形成用組成物3のチキソ性の評価、保存安定性の評価、印刷性(印刷ムラ及び印刷滲み)の評価、及びパッシベーション層3の実効ライフタイムの評価を行い、厚さ及び固定電荷密度を測定した。更に実施例1と同様にして、太陽電池素子3及び太陽電池3を作製し、発電性能を評価した。
実施例1において、パッシベーション層形成用組成物にエチルセルロース(ETHOCEL200cps)とアルミニウムエチルアセトアセタトジイソプロピレート(ALCH)を加えた。具体的には、各成分の含有量を、ペンタエトキシニオブ(北興化学工業株式会社、構造式:Nb(OC2H5)5、分子量:318.2)を1.6g、ALCHを1.0g、テルピネオールを17.1g、エチルセルロースを0.3gと変更したこと以外は、実施例1と同様にして、パッシベーション層形成用組成物4を調製した。
その後は、実施例1と同様にして、パッシベーション層形成用組成物4のチキソ性の評価、保存安定性の評価、印刷性(印刷ムラ及び印刷滲み)の評価、及びパッシベーション層4実効ライフタイムの評価を行い、厚さ及び固定電荷密度を測定した。更に実施例1と同様にして、太陽電池素子4及び太陽電池4を作製し、発電性能を評価した。
各評価には、実施例4において調製したパッシベーション層形成用組成物を用いた。印刷性(印刷ムラ及び印刷滲み)の評価基板の作製、実効ライフタイム及びパッシベーション層の厚さの測定用基板の作製、太陽電池素子の作製におけるパッシベーション層形成用組成物4の熱処理(焼成)条件を700℃、10分間から、600℃、15分間と変更したこと以外は、実施例1と同様にして、印刷性(印刷ムラ及び印刷滲み)の評価、及びパッシベーション層5の実効ライフタイムの評価を行い、厚さ及び固定電荷密度を測定し、太陽電池素子5及び太陽電池5を作製し、発電性能を評価した。
各評価には、実施例4において調製したパッシベーション層形成用組成物を用いた。印刷性(印刷ムラ及び印刷滲み)の評価基板の作製、実効ライフタイム及びパッシベーション層の厚さの測定用基板の作製、太陽電池素子の作製におけるパッシベーション層形成用組成物4の熱処理(焼成)条件を700℃、10分間から、800℃、8分間と変更したこと以外は、実施例1と同様にして、印刷性(印刷ムラ及び印刷滲み)の評価、及びパッシベーション層6実効ライフタイムの評価を行い、厚さ及び固定電荷密度を測定し、太陽電池素子6及び太陽電池6を作製し、発電性能を評価した。
実施例1において、ペンタエトキシニオブの代わりに、ペンタ-n-ブトキシタンタル(株式会社高純度化学研究所、構造式:Ta(O-n-C4H9)5、分子量:546.4)を用いた。具体的には、各成分の含有量を、ペンタ-n-ブトキシタンタルを1.6g、テルピネオールを18.4g混合し、パッシベーション層形成用組成物7を調製した。
その後は、実施例1と同様にして、パッシベーション層形成用組成物7のチキソ性の評価、保存安定性の評価、印刷性(印刷ムラ及び印刷滲み)の評価、及びパッシベーション層7の実効ライフタイムの評価を行い、厚さ及び固定電荷密度を測定した。更に実施例1と同様にして、太陽電池素子7及び太陽電池7を作製し、発電性能を評価した。
実施例7において、パッシベーション層形成用組成物にアルミニウムエチルアセトアセタトジイソプロピレート(川研ファインケミカル株式会社、商品名:ALCH)を加えた。具体的には、各成分の含有量を、ペンタ-n-ブトキシタンタル(株式会社高純度化学研究所、構造式:Ta(O-n-C4H9)5、分子量:546.4)を1.2g、ALCHを1.2g、テルピネオールを17.6gと変更したこと以外は、実施例7と同様にして、パッシベーション層形成用組成物8を調製した。
その後は、実施例1と同様にして、パッシベーション層形成用組成物8のチキソ性の評価、保存安定性の評価、印刷性(印刷ムラ及び印刷滲み)の評価、及びパッシベーション層8の実効ライフタイムの評価を行い、厚さ及び固定電荷密度を測定した。更に実施例1と同様にして、太陽電池素子8及び太陽電池8を作製し、発電性能を評価した。
実施例1において、ペンタエトキシニオブの代わりに、バナジウム(V)トリエトキシドオキシド(株式会社高純度化学研究所、構造式:VO(OC2H5)3、分子量:546.4)を用いた。具体的には、各成分の含有量を、バナジウム(V)トリエトキシドオキシドを1.6g、テルピネオールを18.4g混合し、パッシベーション層形成用組成物9を調製した。
その後は、実施例1と同様にして、パッシベーション層形成用組成物9のチキソ性の評価、保存安定性の評価、印刷性(印刷ムラ及び印刷滲み)の評価、及びパッシベーション
層9の実効ライフタイムの評価を行い、厚さ及び固定電荷密度を測定した。更に実施例1と同様にして、太陽電池素子9及び太陽電池9を作製し、発電性能を評価した。
実施例9において、パッシベーション層形成用組成物にアルミニウムエチルアセトアセタトジイソプロピレート(川研ファインケミカル株式会社、商品名:ALCH)及びエチルセルロース(ETHOCEL200cps)を加えた。具体的には、各成分の含有量を、バナジウム(V)トリエトキシドオキシド(株式会社高純度化学研究所、構造式:VO(OC2H5)3、分子量:546.4)を1.2g、ALCHを0.8g、テルピネオールを17.7g、エチルセルロースを0.3gと変更したこと以外は、実施例9と同様にして、パッシベーション層形成用組成物10を調製した。
その後は、実施例1と同様にして、パッシベーション層形成用組成物10のチキソ性の評価、保存安定性の評価、印刷性(印刷ムラ及び印刷滲み)の評価、及びパッシベーション層10の実効ライフタイムの評価を行い、厚さ及び固定電荷密度を測定した。更に実施例1と同様にして、太陽電池素子10及び太陽電池10を作製し、発電性能を評価した。
実施例1において、ペンタエトキシニオブの代わりに、テトラ-t-ブトキシハフニウム(株式会社高純度化学研究所、構造式:Hf(O-t-C4H9)4、分子量:470.9)を用いた。具体的には、各成分の含有量を、テトラ-t-ブトキシハフニウムを2.0g、テルピネオールを18.0g混合し、パッシベーション層形成用組成物11を調製した。
その後は、実施例1と同様にして、パッシベーション層形成用組成物11のチキソ性の評価、保存安定性の評価、印刷性(印刷ムラ及び印刷滲み)の評価、及びパッシベーション層11の実効ライフタイムの評価を行い、厚さ及び固定電荷密度を測定した。更に実施例1と同様にして、太陽電池素子11及び太陽電池11を作製し、発電性能を評価した。
実施例11において、パッシベーション層形成用組成物にアルミニウムトリスエチルアセトアセテート(川研ファインケミカル株式会社、商品名:ALCH-TR)及びエチルセルロース(ETHOCEL200cps)を加えた。具体的には、各成分の含有量を、テトラ-t-ブトキシハフニウム(株式会社高純度化学研究所、構造式:Hf(O-t-C4H9)4、分子量:470.9)を1.2g、ALCH-TRを1.2g、テルピネオールを17.3g、エチルセルロースを0.3gと変更したこと以外は、実施例11と同様にして、パッシベーション層形成用組成物12を調製した。
その後は、実施例1と同様にして、パッシベーション層形成用組成物12のチキソ性の評価、保存安定性の評価、印刷性(印刷ムラ及び印刷滲み)の評価、及びパッシベーション層12の実効ライフタイムの評価を行い、厚さ及び固定電荷密度を測定した。更に実施例1と同様にして、太陽電池素子12及び太陽電池12を作製し、発電性能を評価した。
パッシベーション層形成用組成物の調製において、ペンタエトキシニオブ(北興化学工業株式会社、構造式:Nb(OC2H5)5、分子量:318.2)、ペンタ-n-ブトキシタンタル(株式会社高純度化学研究所、構造式:Ta(O-n-C4H9)5、分子量:546.4)、テルピネオール、及びエチルセルロース(ETHOCEL200cps)を用いた。具体的には、各成分の含有量を、ペンタエトキシニオブを1.4g、ペンタ-n-ブトキシタンタルを1.0g、テルピネオールを17.3g、エチルセルロースを0.3gと変更したこと以外は、実施例1と同様にして、パッシベーション層形成用組成物13を調製した。
その後は、実施例1と同様にして、パッシベーション層形成用組成物13のチキソ性の評価、保存安定性の評価、印刷性(印刷ムラ及び印刷滲み)の評価、及びパッシベーション層13の実効ライフタイムの評価を行い、厚さ及び固定電荷密度を測定した。更に実施例1と同様にして、太陽電池素子13及び太陽電池13を作製し、発電性能を評価した。
パッシベーション層形成用組成物の調製において、ペンタ-n-ブトキシニオブ(株式会社高純度化学研究所、構造式:Nb(O-n-C4H9)5、分子量:458.5)、バナジウム(V)トリエトキシドオキシド(株式会社高純度化学研究所、構造式:VO(OC2H5)3、分子量:546.4)、アルミニウムエチルアセトアセタトジイソプロピレート(川研ファインケミカル株式会社、商品名:ALCH)、テルピネオール、及びエチルセルロース(ETHOCEL200cps)を用いた。具体的には、各成分の含有量を、ペンタ-n-ブトキシニオブを1.6g、バナジウム(V)トリ-n-プロポキシドオキシドを0.6g、ALCHを0.6g、テルピネオールを17.0g、エチルセルロースを0.2gと変更したこと以外は、実施例1と同様にして、パッシベーション層形成用組成物14を調製した。
その後は、実施例1と同様にして、パッシベーション層形成用組成物14のチキソ性の評価、保存安定性の評価、印刷性(印刷ムラ及び印刷滲み)の評価、及びパッシベーション層14の実効ライフタイムの評価を行い、厚さ及び固定電荷密度を測定した。更に実施例1と同様にして、太陽電池素子14及び太陽電池14を作製し、発電性能を評価した。
半導体基板へのパッシベーション層形成において、パッシベーション層形成用組成物を用いずに、ALD(Atomic Layer Deposition)法を用いて酸化アルミニウム(Al2O3)からなるパッシベーション層C1を形成した。
具体的には、原子層堆積装置を用いて、Al2O3層が20nmの厚さになるよう、成膜条件を調整した。尚、成膜後の厚さは干渉式膜厚計(F20膜厚測定システム、フィルメトリクス株式会社)を用いて測定した。
実施例1におけるパッシベーション層形成用組成物の調製において、式(I)化合物を用いずに、表1に示すように、トリエトキシビスマス(株式会社高純度化学研究所、構造式:Bi(OC2H5)3、分子量344.2、テルピネオール、及びエチルセルロース(ETHOCEL200cps)からなるパッシベーション層形成用組成物C2を調製した。
その後は、実施例1と同様にして、パッシベーション層形成用組成物C2のチキソ性の評価、保存安定性の評価、印刷性(印刷ムラ及び印刷滲み)の評価、及びパッシベーション層C2の実効ライフタイムの評価を行い、厚さ及び固定電荷密度を測定した。更に実施例1と同様にして、太陽電池素子C2及び太陽電池C2を作製し、発電性能を評価した。
実施例1におけるパッシベーション層形成用組成物の調製において、式(I)化合物を用いずに、表1に示すように、テトラ-i-プロポキシチタン(株式会社高純度化学研究所、構造式:Ti(O-i-C3H7)4、分子量284.2、テルピネオール、及びエチルセルロース(ETHOCEL200cps)からなるパッシベーション層形成用組成物C3を調製した。
その後は、実施例1と同様にして、パッシベーション層形成用組成物C3のチキソ性の評価、保存安定性の評価、印刷性(印刷ムラ及び印刷滲み)の評価、パッシベーション層C3の実効ライフタイムの評価及び厚さを測定した。更に実施例1と同様にして、太陽電池素子C3及び太陽電池C3を作製し、発電性能を評価した。
太陽電池素子の作製において、裏面にパッシベーション層を形成せず、太陽電池素子C4及び太陽電池C4を作製し、発電性能を評価した。
続いて、トンネル炉(1列搬送W/Bトンネル炉、株式会社ノリタケカンパニーリミテド)を用いて大気中雰囲気下、最高温度800℃、保持時間10秒の条件で熱処理(焼成)を行って、所望の電極が形成された太陽電池素子C4を作製した。
実施例1~14で作製したパッシベーション層用組成物は、いずれも保存安定性及び印刷性が良好であることが分かった。印刷性の評価のうち、印刷滲みの評価では、樹脂(エチルセルロース)を含むパッシベーション層形成用組成物にて、印刷滲みがより少なく良好であった。
以下は、参考実施形態1に係るパッシベーション膜、塗布型材料、太陽電池素子及びパッシベーション膜付シリコン基板である。
前記シリコン基板の受光面側に形成されたn型の不純物拡散層と、
前記シリコン基板の受光面側の前記n型の不純物拡散層の表面に形成された第1電極と、
前記シリコン基板の裏面側の表面に形成され、複数の開口部を有する酸化アルミニウムと酸化ニオブを含むパッシベーション膜と、
前記複数の開口部を通して、前記シリコン基板の裏面側の表面と電気的な接続を形成している第2電極と、
を備える太陽電池素子。
前記シリコン基板の受光面側に形成されたn型の不純物拡散層と、
前記シリコン基板の受光面側の前記n型の不純物拡散層の表面に形成された第1電極と、
前記シリコン基板の裏面側の一部又は全部に形成され、前記シリコン基板より高濃度に不純物が添加されたp型の不純物拡散層と、
前記シリコン基板の裏面側の表面に形成され、複数の開口部を有する酸化アルミニウムと酸化ニオブを含むパッシベーション膜と、
前記複数の開口部を通して、前記シリコン基板の裏面側の前記p型の不純物拡散層の表面と電気的な接続を形成している第2電極と、
を備える太陽電池素子。
前記シリコン基板の受光面側に形成されたp型の不純物拡散層と、
前記シリコン基板の裏面側に形成された第2電極と、
前記シリコン基板の受光面側の表面に形成され、複数の開口部を有する酸化アルミニウムと酸化ニオブを含むパッシベーション膜と、
前記シリコン基板の受光面側の前記p型の不純物拡散層の表面に形成され、前記複数の開口部を通して前記シリコン基板の受光面側の表面と電気的な接続を形成している第1電極と、
を備える太陽電池素子。
前記シリコン基板上の全面又は一部に設けられる<1>~<5>のいずれか1項に記載のパッシベーション膜と、
を有するパッシベーション膜付シリコン基板。
本実施の形態の太陽電池素子の構造について図12~図15を参照しながら説明する。図12~図15は、本実施の形態の裏面にパッシベーション膜を用いた太陽電池素子の第1~第4構成例を示す断面図である。
次に、上記構成をもつ本実施の形態の太陽電池素子(図12~図15)の製造方法の一例について説明する。ただし、本実施の形態は、以下に述べる方法で作製した太陽電池素子に限るものではない。
熱処理(焼成)により酸化アルミニウム(Al2O3)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所SYM-AL04、濃度2.3質量%]を3.0gと、熱処理(焼成)により酸化ニオブ(Nb2O5)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所Nb-05、濃度5質量%]を3.0gとを混合して、塗布型材料であるパッシベーション材料(a-1)を調製した。
参考実施例1-1と同様に、熱処理(焼成)により酸化アルミニウム(Al2O3)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所、SYM-AL04、濃度2.3質量%]と、熱処理(焼成)により酸化ニオブ(Nb2O5)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所、Nb-05、濃度5質量%]とを、比率を変えて混合して、表3に示すパッシベーション材料(a-2)~(a-7)を調製した。
市販のニオブ(V)エトキシド(構造式:Nb(OC2H5)5、分子量:318.21)を3.18g(0.010mol)と、市販のアルミニウムトリイソプロポキシド(構造式:Al(OCH(CH3)2)3、分子量:204.25)を1.02g(0.005mol)とをシクロヘキサン80gに溶解して、濃度5質量%のパッシベーション材料(c-1)を調製した。
市販のニオブ(V)エトキシド(構造式:Nb(OC2H5)5、分子量:318.21)を2.35g(0.0075mol)と、市販のアルミニウムトリイソプロポキシド(構造式:Al(OCH(CH3)2)3、分子量:204.25)を1.02g(0.005mol)と、ノボラック樹脂10gとを、ジエチレングリコールモノブチルエーテルアセタート10gとシクロヘキサン10gに溶解して、パッシベーション材料(c-2)を調製した。
参考実施例1-1と同様に、熱処理(焼成)により酸化アルミニウム(Al2O3)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所SYM-AL04、濃度2.3質量%]と、熱処理(焼成)により酸化ニオブ(Nb2O5)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所Nb-05、濃度5質量%]とを、比率を変えて混合して、表4に示すパッシベーション材料(b-1)~(b-7)を調製した。
一方、酸化アルミニウムが100質量%となるパッシベーション材料(b-7)では、負の固定電荷密度を得ることができなかった。
パッシベーション材料(d-1)として、熱処理(焼成)により酸化チタン(TiO2)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所Ti-03-P、濃度3質量%]、パッシベーション材料(d-2)として、熱処理(焼成)によりチタン酸バリウム(BaTiO3)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所BT-06、濃度6質量%]、パッシベーション材料(d-3)として、熱処理(焼成)により酸化ハフニウム(HfO2)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所Hf-05、濃度5質量%]を準備した。
シリコン基板101として、ボロンをドーパントした単結晶シリコン基板を用いて、図14に示す構造の太陽電池素子を作製した。シリコン基板101の表面をテクスチャー処理した後、塗布型のリン拡散材を受光面側に付与し、熱処理により拡散層102(リン拡散層)を形成した。その後、塗布型のリン拡散材を希フッ酸で除去した。
また、パッシベーション膜107として、参考実施例1-3で調製したパッシベーション材料(c-1)を用いたサンプルも別途作製した。
以下は、参考実施形態2に係るパッシベーション膜、塗布型材料、太陽電池素子及びパッシベーション膜付シリコン基板である。
前記シリコン基板の受光面側である第1面側に形成されたn型の不純物拡散層と、
前記不純物拡散層上に形成された第1電極と、
前記シリコン基板の受光面側とは逆の第2面側に形成され、開口部を有するパッシベーション膜と、
前記シリコン基板の第2面側に形成され、前記シリコン基板の第2面側と前記パッシベーション膜の開口部を通して電気的に接続されている第2電極と、を備え、
前記パッシベーション膜は、酸化アルミニウムと、酸化バナジウム及び酸化タンタルからなる群より選択される少なくとも1種のバナジウム族元素の酸化物と、を含む太陽電池素子。
前記第2電極は、前記p型の不純物拡散層と前記パッシベーション膜の開口部を通して電気的に接続されている、<7>に記載の太陽電池素子。
前記シリコン基板の受光面側である第1面側に形成されたp型の不純物拡散層と、
前記不純物拡散層上に形成された第1電極と、
前記シリコン基板の受光面側とは逆の第2面側に形成され、開口部を有するパッシベーション膜と、
前記シリコン基板の第2面側に形成され、前記シリコン基板の第2面側と前記パッシベーション膜の開口部を通して電気的に接続されている第2電極と、を備え、
前記パッシベーション膜は、酸化アルミニウムと、酸化バナジウム及び酸化タンタルからなる群より選択される少なくとも1種のバナジウム族元素の酸化物と、を含む太陽電池素子。
前記第2電極は、前記n型の不純物拡散層と前記パッシベーション膜の開口部を通して電気的に接続されている、<9>に記載の太陽電池素子。
前記シリコン基板上の全面又は一部に設けられる<1>~<5>のいずれか1項に記載の太陽電池素子用パッシベーション膜と、
を有するパッシベーション膜付シリコン基板。
[参考実施例2-1]
熱処理(焼成)により酸化アルミニウム(Al2O3)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、SYM-AL04、濃度2.3質量%]を3.0gと、熱処理(焼成)により酸化バナジウム(V2O5)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、V-02、濃度2質量%]を6.0gとを混合して、塗布型材料であるパッシベーション材料(a2-1)を調製した。
参考実施例2-1と同様に、熱処理(焼成)により酸化アルミニウム(Al2O3)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、SYM-AL04、濃度2.3質量%]と、熱処理により酸化バナジウム(V2O5)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、V-02、濃度2質量%]とを、比率を変えて混合して、表7に示すパッシベーション材料(a2-2)~(a2-7)を調製した。
熱処理(焼成)により酸化バナジウム(V2O5)が得られる化合物として、市販のバナジウム(V)オキシトリエトキシド(構造式:VO(OC2H5)3、分子量:202.13)を1.02g(0.010mol)と、熱処理(焼成)により酸化アルミニウム(Al2O3)が得られる化合物として、市販のアルミニウムトリイソプロポキシド(構造式:Al(OCH(CH3)2)3、分子量:204.25)を2.04g(0.010mol)とをシクロヘキサン60gに溶解して、濃度5質量%のパッシベーション材料(b2-1)を調製した。
市販のバナジウム(V)オキシトリエトキシド(構造式:VO(OC2H5)3、分子量:202.13)を1.52g(0.0075mol)と、市販のアルミニウムトリイソプロポキシド(構造式:Al(OCH(CH3)2)3、分子量:204.25)を1.02g(0.005mol)と、ノボラック樹脂10gとを、ジエチレングリコールモノブチルエーテルアセタート10gとシクロヘキサン10gに溶解して、パッシベーション材料(b2-2)を調製した。
[参考実施例2-5]
熱処理(焼成)により酸化アルミニウム(Al2O3)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、SYM-AL04、濃度2.3質量%]と、熱処理により酸化タンタル(Ta2O5)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、Ta-10-P、濃度10質量%]とを比率を変えて混合して、表8に示すパッシベーション材料(c2-1)~(c2-6)を調製した。
熱処理(焼成)により酸化タンタル(Ta2O5)が得られる化合物として、市販のタンタル(V)メトキシド(構造式:Ta(OCH3)5、分子量:336.12)を1.18g(0.0025mol)と、熱処理(焼成)により酸化アルミニウム(Al2O3)が得られる化合物として、市販のアルミニウムトリイソプロポキシド(構造式:Al(OCH(CH3)2)3、分子量:204.25)を2.04g(0.010mol)とをシクロヘキサン60gに溶解して、濃度5質量%のパッシベーション材料(d2-1)を調製した。
熱処理(焼成)により酸化タンタル(Ta2O5)が得られる化合物として、市販のタンタル(V)メトキシド(構造式:Ta(OCH3)5、分子量:336.12)1.18g(0.005mol)と、熱処理(焼成)により酸化アルミニウム(Al2O3)が得られる化合物として、市販のアルミニウムトリイソプロポキシド(構造式:Al(OCH(CH3)2)3、分子量:204.25)を1.02g(0.005mol)と、ノボラック樹脂10gとを、ジエチレングリコールモノブチルエーテルアセタート10gとシクロヘキサン10gの混合物に溶解して、パッシベーション材料(d2-2)を調製した。
[参考実施例2-8]
熱処理(焼成)により酸化アルミニウム(Al2O3)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、SYM-AL04、濃度2.3質量%]、熱処理(焼成)により酸化バナジウム(V2O5)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、V-02、濃度2質量%]、及び熱処理(焼成)により酸化タンタル(Ta2O5)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、Ta-10-P、濃度10質量%]を混合して、塗布型材料であるパッシベーション材料(e2-1)を調製した(表9参照)。
参考実施例2-1と同様に、熱処理(焼成)により酸化アルミニウム(Al2O3)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、SYM-AL04、濃度2.3質量%]と、熱処理(焼成)により酸化バナジウム(V2O5)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、V-02、濃度2質量%]、又は熱処理(焼成)により酸化タンタル(Ta2O5)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、Ta-10-P、濃度10質量%]を混合して、塗布型材料であるパッシベーション材料(f2-1)~(f2-8)を調製した(表10参照)。
シリコン基板101として、ボロンをドーパントとした単結晶シリコン基板を用いて、図14に示す構造の太陽電池素子を作製した。シリコン基板101の表面をテクスチャー処理した後、塗布型のリン拡散材を受光面側のみに塗布し、熱処理により拡散層102(リン拡散層)を形成した。その後、塗布型のリン拡散材を希フッ酸で除去した。
Claims (11)
- 下記一般式(I)で表される化合物を含有するパッシベーション層形成用組成物。
M(OR1)m (I)
[式中、MはNb、Ta、V、Y及びHfからなる群より選択される少なくとも1種の金属元素を含み、R1はそれぞれ独立して炭素数1~8のアルキル基又は炭素数6~14のアリール基を表し、mは1~5の整数を表す。] - 更に、液状媒体を含有する請求項1又は請求項2に記載のパッシベーション層形成用組成物。
- 更に、樹脂を含有する請求項1~請求項3のいずれか1項に記載のパッシベーション層形成用組成物。
- 前記液状媒体及び前記樹脂を含み、前記液状媒体及び前記樹脂の総含有率が5質量%以上98質量%以下である請求項4に記載のパッシベーション層形成用組成物。
- 前記一般式(II)で表される化合物を含み、前記一般式(I)で表される化合物及び前記一般式(II)で表される化合物の総含有率が0.1質量%以上80質量%以下である請求項2~請求項5のいずれか1項に記載のパッシベーション層形成用組成物。
- 半導体基板と、前記半導体基板上の全面又は一部に設けられる請求項1~請求項6のいずれか1項に記載のパッシベーション層形成用組成物の熱処理物であるパッシベーション層と、を有するパッシベーション層付半導体基板。
- 半導体基板上の全面又は一部に、請求項1~請求項6のいずれか1項に記載のパッシベーション層形成用組成物を付与して組成物層を形成する工程と、前記組成物層を熱処理してパッシベーション層を形成する工程と、を有するパッシベーション層付半導体基板の製造方法。
- p型層及びn型層がpn接合されてなる半導体基板と、前記半導体基板上の全面又は一部に設けられる請求項1~請求項6のいずれか1項に記載のパッシベーション層形成用組成物の熱処理物であるパッシベーション層と、前記p型層及び前記n型層の少なくとも一方の層上に設けられる電極と、を有する太陽電池素子。
- p型層及びn型層がpn接合されてなる半導体基板の全面又は一部に請求項1~請求項6のいずれか1項に記載のパッシベーション層形成用組成物を付与して組成物層を形成する工程と、前記組成物層を熱処理して、パッシベーション層を形成する工程と、前記p型層及び前記n型層の少なくとも一方の層上に、電極を形成する工程と、を有する太陽電池素子の製造方法。
- 請求項9に記載の太陽電池素子と、
前記太陽電池素子の電極上に設けられる配線材料と、
を有する太陽電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014525892A JPWO2014014108A1 (ja) | 2012-07-19 | 2013-07-19 | パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池 |
US14/414,865 US9714262B2 (en) | 2012-07-19 | 2013-07-19 | Composition for forming passivation layer, semiconductor substrate having passivation layer, method of producing semiconductor substrate having passivation layer, photovoltaic cell element, method of producing photovoltaic cell element and photovoltaic cell |
CN201380038209.0A CN104471720A (zh) | 2012-07-19 | 2013-07-19 | 钝化层形成用组合物、带钝化层的半导体基板、带钝化层的半导体基板的制造方法、太阳能电池元件、太阳能电池元件的制造方法及太阳能电池 |
KR1020157002949A KR102083249B1 (ko) | 2012-07-19 | 2013-07-19 | 패시베이션층 형성용 조성물, 패시베이션층이 형성된 반도체 기판, 패시베이션층이 형성된 반도체 기판의 제조 방법, 태양 전지 소자, 태양 전지 소자의 제조 방법 및 태양 전지 |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012160336 | 2012-07-19 | ||
JP2012-160336 | 2012-07-19 | ||
JP2012218389 | 2012-09-28 | ||
JP2012-218389 | 2012-09-28 | ||
JP2013-011934 | 2013-01-25 | ||
JP2013011934 | 2013-01-25 | ||
JP2013040153 | 2013-02-28 | ||
JP2013-040153 | 2013-02-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2014014108A1 true WO2014014108A1 (ja) | 2014-01-23 |
WO2014014108A9 WO2014014108A9 (ja) | 2014-07-03 |
Family
ID=49948928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/069698 WO2014014108A1 (ja) | 2012-07-19 | 2013-07-19 | パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9714262B2 (ja) |
JP (1) | JPWO2014014108A1 (ja) |
KR (1) | KR102083249B1 (ja) |
CN (1) | CN104471720A (ja) |
TW (1) | TWI608007B (ja) |
WO (1) | WO2014014108A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2014014110A1 (ja) * | 2012-07-19 | 2016-07-07 | 日立化成株式会社 | パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101614190B1 (ko) * | 2013-12-24 | 2016-04-20 | 엘지전자 주식회사 | 태양전지 및 이의 제조 방법 |
DE102014202718A1 (de) * | 2014-02-14 | 2015-08-20 | Evonik Degussa Gmbh | Beschichtungszusammensetzung, Verfahren zu ihrer Herstellung und ihre Verwendung |
JP6697456B2 (ja) * | 2015-06-17 | 2020-05-20 | 株式会社カネカ | 結晶シリコン太陽電池モジュールおよびその製造方法 |
CN109304950B (zh) * | 2017-07-26 | 2021-06-25 | 天津环鑫科技发展有限公司 | 一种硅片沟槽内丝网印刷工艺 |
CN109304951B (zh) * | 2017-07-26 | 2021-06-25 | 天津环鑫科技发展有限公司 | 一种gpp丝网印刷钝化层的方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03188938A (ja) * | 1989-08-18 | 1991-08-16 | Hitachi Ltd | 無機ポリマ薄膜の形成方法 |
JP2000294817A (ja) * | 1999-04-09 | 2000-10-20 | Dainippon Printing Co Ltd | 太陽電池モジュ−ル用表面保護シ−トおよびそれを使用した太陽電池モジュ−ル |
JP2004359532A (ja) * | 2003-04-09 | 2004-12-24 | Jsr Corp | タンタル酸化物膜形成用組成物、タンタル酸化物膜およびその製造方法 |
JP2008019285A (ja) * | 2006-07-10 | 2008-01-31 | Sekisui Chem Co Ltd | 金属含有ポリマーの製造方法、金属含有ポリマー、感光性樹脂組成物及び半導体素子 |
JP2011216845A (ja) * | 2010-03-18 | 2011-10-27 | Ricoh Co Ltd | 絶縁膜形成用インク、絶縁膜の製造方法及び半導体装置の製造方法 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4328260A (en) * | 1981-01-23 | 1982-05-04 | Solarex Corporation | Method for applying antireflective coating on solar cell |
US4411703A (en) * | 1981-01-23 | 1983-10-25 | Solarex Corporation | Composition for applying antireflective coating on solar cell |
US4496398A (en) | 1982-01-20 | 1985-01-29 | Solarex Corporation | Antireflective coating composition |
US4830879A (en) * | 1986-09-25 | 1989-05-16 | Battelle Memorial Institute | Broadband antireflective coating composition and method |
JP3107287B2 (ja) | 1996-03-25 | 2000-11-06 | 株式会社日立製作所 | 太陽電池 |
US5907766A (en) * | 1996-10-21 | 1999-05-25 | Electric Power Research Institute, Inc. | Method of making a solar cell having improved anti-reflection passivation layer |
JP3658962B2 (ja) * | 1998-01-13 | 2005-06-15 | 三菱化学株式会社 | プラスチック積層体 |
US6312565B1 (en) * | 2000-03-23 | 2001-11-06 | Agere Systems Guardian Corp. | Thin film deposition of mixed metal oxides |
JP2004006565A (ja) | 2002-04-16 | 2004-01-08 | Sharp Corp | 太陽電池とその製造方法 |
US6982230B2 (en) * | 2002-11-08 | 2006-01-03 | International Business Machines Corporation | Deposition of hafnium oxide and/or zirconium oxide and fabrication of passivated electronic structures |
CN1206743C (zh) * | 2003-04-03 | 2005-06-15 | 上海交通大学 | 一种晶体硅太阳电池的制作方法 |
CN2637473Y (zh) | 2003-08-19 | 2004-09-01 | 叶建荣 | 改进型虹吸式净水器 |
US7938988B2 (en) * | 2004-07-01 | 2011-05-10 | Toyo Aluminium Kabushiki Kaisha | Paste composition and solar cell element using the same |
JP4767110B2 (ja) | 2006-06-30 | 2011-09-07 | シャープ株式会社 | 太陽電池、および太陽電池の製造方法 |
JP2009088203A (ja) * | 2007-09-28 | 2009-04-23 | Sanyo Electric Co Ltd | 太陽電池、太陽電池モジュール及び太陽電池の製造方法 |
US20090139558A1 (en) * | 2007-11-29 | 2009-06-04 | Shunpei Yamazaki | Photoelectric conversion device and manufacturing method thereof |
US10020374B2 (en) | 2009-12-25 | 2018-07-10 | Ricoh Company, Ltd. | Field-effect transistor, semiconductor memory display element, image display device, and system |
FI20115534A0 (fi) * | 2011-05-30 | 2011-05-30 | Beneq Oy | Menetelmä ja rakenne passivoivan kerroksen suojaamiseksi |
JPWO2014014110A1 (ja) | 2012-07-19 | 2016-07-07 | 日立化成株式会社 | パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池 |
-
2013
- 2013-07-19 TW TW102126031A patent/TWI608007B/zh not_active IP Right Cessation
- 2013-07-19 KR KR1020157002949A patent/KR102083249B1/ko active IP Right Grant
- 2013-07-19 CN CN201380038209.0A patent/CN104471720A/zh active Pending
- 2013-07-19 US US14/414,865 patent/US9714262B2/en not_active Expired - Fee Related
- 2013-07-19 JP JP2014525892A patent/JPWO2014014108A1/ja active Pending
- 2013-07-19 WO PCT/JP2013/069698 patent/WO2014014108A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03188938A (ja) * | 1989-08-18 | 1991-08-16 | Hitachi Ltd | 無機ポリマ薄膜の形成方法 |
JP2000294817A (ja) * | 1999-04-09 | 2000-10-20 | Dainippon Printing Co Ltd | 太陽電池モジュ−ル用表面保護シ−トおよびそれを使用した太陽電池モジュ−ル |
JP2004359532A (ja) * | 2003-04-09 | 2004-12-24 | Jsr Corp | タンタル酸化物膜形成用組成物、タンタル酸化物膜およびその製造方法 |
JP2008019285A (ja) * | 2006-07-10 | 2008-01-31 | Sekisui Chem Co Ltd | 金属含有ポリマーの製造方法、金属含有ポリマー、感光性樹脂組成物及び半導体素子 |
JP2011216845A (ja) * | 2010-03-18 | 2011-10-27 | Ricoh Co Ltd | 絶縁膜形成用インク、絶縁膜の製造方法及び半導体装置の製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2014014110A1 (ja) * | 2012-07-19 | 2016-07-07 | 日立化成株式会社 | パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池 |
Also Published As
Publication number | Publication date |
---|---|
TWI608007B (zh) | 2017-12-11 |
JPWO2014014108A1 (ja) | 2016-07-07 |
KR20150036363A (ko) | 2015-04-07 |
WO2014014108A9 (ja) | 2014-07-03 |
CN104471720A (zh) | 2015-03-25 |
US9714262B2 (en) | 2017-07-25 |
US20150166582A1 (en) | 2015-06-18 |
KR102083249B1 (ko) | 2020-03-02 |
TW201412759A (zh) | 2014-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014014109A9 (ja) | パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法、及び太陽電池 | |
WO2014014110A9 (ja) | パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池 | |
WO2014014108A1 (ja) | パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池 | |
JP6350278B2 (ja) | 太陽電池素子、太陽電池素子の製造方法及び太陽電池モジュール | |
JP6330661B2 (ja) | パッシベーション層形成用組成物、パッシベーション層付半導体基板及びその製造方法、並びに太陽電池素子及びその製造方法 | |
JP6295673B2 (ja) | パッシベーション層付半導体基板、パッシベーション層形成用塗布型材料及び太陽電池素子 | |
JP6269484B2 (ja) | 電界効果型パッシベーション層形成用組成物、電界効果型パッシベーション層付半導体基板、電界効果型パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池 | |
JP6658522B2 (ja) | パッシベーション層形成用組成物、パッシベーション層付半導体基板及びその製造方法、太陽電池素子及びその製造方法、並びに太陽電池 | |
JP2015115488A (ja) | パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池 | |
JP6176249B2 (ja) | パッシベーション層付半導体基板及びその製造方法 | |
JP2017188537A (ja) | 太陽電池素子及びその製造方法並びに太陽電池 | |
JP2016058438A (ja) | パッシベーション層保護層形成用組成物、太陽電池素子及びその製造方法並びに太陽電池 | |
JP2017188536A (ja) | 太陽電池素子及び太陽電池 | |
WO2016002902A1 (ja) | パッシベーション層形成用組成物の製造方法、パッシベーション層付半導体基板及びその製造方法、太陽電池素子及びその製造方法、並びに太陽電池 | |
JP2018174271A (ja) | パッシベーション層付半導体基板、太陽電池素子、及び太陽電池 | |
JP2018006421A (ja) | パッシベーション層付半導体基板、太陽電池素子、及び太陽電池 | |
JP2016225349A (ja) | 太陽電池素子及びその製造方法、並びに太陽電池モジュール | |
JP2017011195A (ja) | パッシベーション層付太陽電池素子の製造方法及び太陽電池モジュール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13819930 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14414865 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2014525892 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157002949 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13819930 Country of ref document: EP Kind code of ref document: A1 |