[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014006817A1 - 固体高分子型燃料電池用の膜電極接合体とその製造方法および固体高分子型燃料電池 - Google Patents

固体高分子型燃料電池用の膜電極接合体とその製造方法および固体高分子型燃料電池 Download PDF

Info

Publication number
WO2014006817A1
WO2014006817A1 PCT/JP2013/003474 JP2013003474W WO2014006817A1 WO 2014006817 A1 WO2014006817 A1 WO 2014006817A1 JP 2013003474 W JP2013003474 W JP 2013003474W WO 2014006817 A1 WO2014006817 A1 WO 2014006817A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
polymer electrolyte
fuel cell
region
reinforcing
Prior art date
Application number
PCT/JP2013/003474
Other languages
English (en)
French (fr)
Inventor
真也 菊住
森 正裕
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013540161A priority Critical patent/JP6155469B2/ja
Priority to EP13812570.3A priority patent/EP2858155B1/en
Priority to US14/409,943 priority patent/US10074866B2/en
Publication of WO2014006817A1 publication Critical patent/WO2014006817A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/1062Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the physical properties of the porous support, e.g. its porosity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/10Fuel cells in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a membrane electrode assembly used for a polymer electrolyte fuel cell.
  • a polymer electrolyte fuel cell is composed of a membrane electrode assembly by sequentially joining a catalyst layer and a gas diffusion layer to both outer surfaces of an electrolyte membrane that causes a power generation reaction.
  • a single cell is formed by sandwiching with a separator, and a plurality of single cells are stacked.
  • electrolyte membranes are used as electrolyte membranes, and in particular, cation exchange membranes made of perfluorocarbon polymers having sulfonic acid groups have been widely studied because of their excellent basic characteristics.
  • the outer periphery of the electrolyte membrane is often supported by a resin frame.
  • the separator has a concave groove on its inner side, and this groove becomes a gas flow path when the membrane electrode assembly is arranged with respect to the separator.
  • a gasket may be disposed between the end of the separator and the electrolyte membrane so that the gas sealing property, that is, the fuel gas or the oxidant gas does not leak outside. As described above, the gasket is interposed between the separator and the electrolyte membrane, thereby serving to seal the gas flow path with respect to the outside.
  • the polymer electrolyte fuel cell can simultaneously generate electric power, heat, and water.
  • H 2 for the negative electrode ⁇ 2H + + 2e ⁇ (1)
  • cross leak refers to a small gap generated between the inner edge of the frame and the electrode, and a part of the gas supplied into the battery passes through from one side of the anode side or the cathode side to the other side. This is a phenomenon.
  • Patent Documents 1 and 2 As a method for solving the above problems, a technique for arranging a non-porous sheet inside an electrolyte membrane and a technique for forming a frame body by injection molding have been proposed (see, for example, Patent Documents 1 and 2). The techniques described in Patent Documents 3 to 7 are also known.
  • FIG. 8 is a schematic diagram of a single cell of a conventional fuel cell.
  • a region 1 (105) having proton conductivity is disposed in the entire thickness direction of the electrolyte membrane 100, and a non-porous sheet is disposed on the outer periphery of the existing region 1 (105).
  • the entire region in the thickness direction of the membrane has a region 2 (106) having no proton conductivity, and the region from the outer edge of the catalyst layer 101 disposed on both surfaces of the electrolyte membrane to the outer edge of the gas diffusion layer 102 is a region. 2 (106).
  • a technique for reducing gas cross leak by disposing a gasket 104 is disclosed.
  • FIG. 9A, FIG. 9B, and FIG. 9C are schematic explanatory views of a conventional method for producing a membrane electrode assembly of a fuel cell.
  • the membrane electrode assembly 110, the frame body 111a, and the frame body are formed by forming the frame body 111b by injection molding so that the inner edge portion of the membrane electrode assembly 110 is disposed inside the frame body 111a.
  • a technique for improving the adhesion of the peripheral portion of 111b and reducing cross leak of gas is disclosed (FIGS. 9A to 9C).
  • Japanese Patent Laid-Open No. 2006-1000026 Japanese Patent No. 4335305 International Publication No. 2008/093658 JP 2009-064769 A JP 2010-170823 A Japanese Patent Laid-Open No. 10-172587 JP 2000-195333 A
  • Patent Document 1 gas sealing properties must be ensured by a gasket. Further, the configuration of Patent Document 2 has a problem that the manufacturing method is complicated.
  • An object of the present invention is to provide a membrane electrode assembly that has high gas sealing properties and suppresses cross leak. Furthermore, it aims at ensuring the characteristic of a fuel cell for a long period of time by comprising a polymer electrolyte fuel cell using this membrane electrode assembly.
  • the membrane / electrode assembly for a polymer electrolyte fuel cell of the present invention has the following characteristics.
  • a polymer electrolyte fuel cell having a polymer electrolyte membrane, a catalyst layer and a gas diffusion layer disposed on both surfaces of the polymer electrolyte membrane, and a reinforcing membrane made of a nonwoven fabric having regions having different pore sizes
  • the membrane electrode assembly has a first region of the reinforcing membrane included in the polymer electrolyte membrane, is disposed on the outer periphery of the first region, and has a pore size smaller than the pore size of the first region A part of the second region having a protrusion protrudes from the peripheral edge of the polymer electrolyte membrane.
  • the pore size of the first region of the nonwoven fabric is 0.035 ⁇ m or more and 5 ⁇ m or less, and the pore size of the second region is 0.035 ⁇ m or less.
  • the nonwoven fabric fibers are PVDF, PVF, a copolymer composed of a plurality of monomer units constituting a polymer selected from PVDF or PVF, or of these polymers. It consists of a mixture, The average fiber diameter of a fiber is 0.01 micrometer or more and 1 micrometer or less, It is characterized by the above-mentioned.
  • the void in the first region of the reinforcing membrane is filled with a perfluorocarbon polymer having a sulfonic acid group.
  • the membrane-electrode-frame assembly for the polymer electrolyte fuel cell of the present invention has the following characteristics.
  • the membrane electrode assembly according to [1] above is held by a frame body formed of a resin so that the membrane electrode assembly and the frame body have an integrated structure.
  • the polymer electrolyte fuel cell of the present invention has the following characteristics.
  • the method for producing a membrane electrode assembly for a polymer electrolyte fuel cell of the present invention has the following characteristics.
  • PVDF, PVF, a copolymer composed of a plurality of monomer units constituting a polymer selected from PVDF and PVF, and a mixture solution of these polymers and a solvent are formed by spinning by an electrospinning method.
  • the non-woven fabric is thermocompression-bonded, filled with the same kind of material, and a method selected from laser welding, the first region of the non-woven fabric, the outer diameter of the first region, and a pore size smaller than the pore size of the first region Producing a reinforcing membrane having a second region.
  • the electrolyte material is filled in the voids in the first region of the reinforcing membrane.
  • the method for producing a membrane-electrode-frame assembly for a polymer electrolyte fuel cell of the present invention has the following characteristics.
  • a nonwoven fabric having regions with different pore diameters in a polymer electrolyte membrane, and the peripheral portion of the reinforcing membrane and the frame are integrated by a method selected from heat, laser, ultrasonic waves, welding using a solvent, and an adhesive.
  • the gas sealing performance outside the power generation region of the electrolyte membrane can be improved, and the power generation efficiency can be improved. Furthermore, since the improvement in gas sealing property can also limit the movement of OH radicals that cause deterioration of the electrolyte membrane, the power generation characteristics of the fuel cell can be secured over a long period of time.
  • FIG. 1 is a schematic diagram of a fuel cell according to the present embodiment.
  • FIG. 2 is a schematic diagram of the stack of the present embodiment.
  • FIG. 3 is a schematic view of a cross section of the membrane-electrode-frame assembly of the present embodiment.
  • FIG. 4 is a schematic diagram of the reinforcing membrane of the present embodiment.
  • FIG. 5 is a schematic diagram of the fiberizing equipment used in the present embodiment.
  • FIG. 6A is a diagram showing a PET base material in the reinforcing film production process of the present embodiment.
  • FIG. 6B is a diagram showing a state in which a nonwoven fabric is formed on a PET substrate in the step of manufacturing a reinforcing film according to the present embodiment.
  • FIG. 6C is a diagram showing a state in which a second region having no through hole is formed in the peripheral edge portion of the nonwoven fabric in the step of manufacturing the reinforcing film of the present embodiment.
  • FIG. 7A is a diagram showing a state in which a reinforcing film is formed on the PET base material 35 in the electrolyte membrane manufacturing process of the present embodiment.
  • FIG. 7B shows a state where the electrolyte membrane is impregnated with the electrolyte solution except for the first region of the reinforcing membrane and the outer edge portion of the second region of the peripheral portion of the first region in the step of manufacturing the electrolyte membrane of the present embodiment.
  • FIG. FIG. 8 is a schematic view of a conventional solid polymer electrolyte membrane.
  • FIG. 9A is a view showing a frame body in a conventional membrane-electrode-frame body assembly.
  • FIG. 9B is a diagram showing a state in which the inner edge portion of the membrane electrode assembly in the conventional membrane-electrode-frame assembly is arranged inside the frame.
  • FIG. 9C is a diagram showing a state in which the inner edge portion of the membrane electrode assembly is sandwiched between a pair of frames in a conventional membrane-electrode-frame assembly.
  • FIG. 1 shows a schematic configuration diagram of a polymer electrolyte fuel cell of the present invention.
  • the fuel cell 5 generates electric power, heat, and water simultaneously by electrochemically reacting a fuel gas 90 containing hydrogen and an oxidant gas 91 containing oxygen.
  • the fuel cell 5 includes a stack 70 having a stacked structure in which a plurality of single cells each having a pair of anode and cathode electrodes are connected in series, a fuel processor 71 for extracting hydrogen from the fuel gas 90, and a fuel processor 71.
  • An anode humidifier 72 for humidifying the fuel gas containing hydrogen taken out in Step 1 a cathode humidifier 73 for humidifying the oxidant gas 91, and a fuel gas 90 and an oxidant gas 91 for supplying the fuel gas, respectively.
  • Pumps 74a and 74b are provided.
  • the fuel cell 5 includes a fuel supply device that supplies a fuel gas 90 to a single cell by a fuel processor 71, an anode humidifier 72, and a pump 74a.
  • the cathode humidifier 73 and the pump 74 b constitute an oxidant supply device that supplies an oxidant gas to the single cell of the stack 70.
  • Such a fuel supply device and oxidant supply device may adopt various other forms as long as they have a function of supplying fuel and oxidant, but in this embodiment, a plurality of stacks 70 are provided. If it is a supply apparatus which supplies fuel gas 90 and oxidant gas 91 in common with respect to this single cell, the effect of this embodiment mentioned later can be acquired suitably.
  • the fuel cell 5 has a pump 74c for circulating and supplying cooling water 92 for efficiently removing heat generated in the stack 70 during power generation, and this cooling water (for example, having conductivity).
  • a heat exchanger 75 for exchanging heat with a fluid such as tap water, and a hot water storage tank 76 for storing the heat-exchanged tap water.
  • the fuel cell 5 is provided with an operation control device 80 that performs operation control for power generation by associating each of these components with each other, and an electric output unit 81 that extracts electricity generated by the stack 70. ing.
  • FIG. 70 A schematic exploded view of the stack 70 is shown in FIG.
  • the stack 70 is configured by stacking a plurality of single cells 60 and fastening them with a predetermined load from both sides with a current collecting plate 61, an insulating plate 62, and an end plate 63.
  • Each current collecting plate 61 is provided with a current extraction terminal portion 61a, from which current, that is, electricity is extracted during power generation.
  • Each insulating plate 62 insulates between the current collecting plate 61 and the end plate 63, and may be provided with an inlet and outlet for gas and cooling water (not shown).
  • Each of the end plates 63 is held by fastening a plurality of unit cells 60, a current collecting plate 61, and an insulating plate 62 with a predetermined load by a pressing means (not shown).
  • the single cell 60 is configured such that the membrane electrode assembly 50 is sandwiched between a pair of separators 54a and 54b.
  • the separators 54a and 54b may be any gas-impermeable conductive material.
  • a material obtained by cutting a resin-impregnated carbon material into a predetermined shape or a mixture of carbon powder and a resin material is generally used. .
  • a concave groove is formed in a portion of the separators 54a and 54b that is in contact with the membrane electrode assembly 50.
  • fuel gas or oxidant gas is supplied to the electrode surface.
  • a gas flow path for carrying away excess gas is formed.
  • the gas diffusion layer 53 can be made of a material generally composed of carbon fibers as the base material, and as such a base material, for example, a carbon fiber woven fabric can be used.
  • the membrane electrode assembly 50 is formed by forming an anode side catalyst layer 51 mainly composed of carbon powder carrying a platinum-ruthenium alloy catalyst on the anode surface side of the polymer electrolyte membrane 1 to form a cathode.
  • a cathode side catalyst layer 52 mainly composed of carbon powder supporting a platinum catalyst is formed on the surface side, and fuel gas or oxidant gas permeability is provided on the outer surface of the anode side catalyst layer 51 and the cathode side catalyst layer 52.
  • a gas diffusion layer 53 having both electronic conductivity.
  • FIG. 3 shows a schematic diagram of a cross section of the membrane-electrode-frame assembly.
  • the polymer electrolyte membrane 1 includes a nonwoven reinforcing membrane 2 made of polyvinylidene difluoride polymer (hereinafter referred to as PVDF) fibers.
  • the reinforcing membrane 2 has regions having different hole diameters, the first region 21 of the nonwoven fabric, and the second region which is located on the outer peripheral portion of the first region 21 and has a hole diameter smaller than the hole diameter of the first region 21. 22 (FIG. 4).
  • the pore diameter of the first region 21 is desirably 0.035 ⁇ m or more and 5 ⁇ m or less, and when the pore diameter is smaller than 0.035 ⁇ m, the fiber content in the reinforcing membrane 2 increases, so that the proton content of the polymer electrolyte membrane 1 increases. Propagation is hindered and the power generation characteristics of the fuel cell are hindered.
  • the pore diameter is larger than 5 ⁇ m, the content of fibers that act as a reinforcing material for the polymer electrolyte membrane 1 decreases, and the dimensional change due to swelling of the polymer electrolyte membrane 1 cannot be suppressed.
  • the hole diameter of the second region 22 is desirably 0.035 ⁇ m or less. When the hole diameter is larger than 0.035 ⁇ m, sufficient gas sealing performance cannot be ensured, so that the power generation efficiency of the fuel cell is lowered.
  • the lower limit of the hole diameter of the second region 22 is not defined due to the measurement limit of the measuring instrument.
  • the outer edge portion of the second region 22 is directly fixed to the frame body 4.
  • the voids in the first region 21 of the reinforcing film 2 and a part of the second region 22 are filled with the electrolyte material 11. Since the fiber made of PVDF constituting the reinforcing membrane 2 has higher tensile strength than the electrolyte material 11 made of a sulfonic acid type perfluorocarbon polymer, the reinforcing membrane 2 works as a reinforcing material for the polymer electrolyte membrane 1 and is caused by water content. Swelling can be restricted, film deterioration can be suppressed, and durability is increased.
  • Fiber was produced by electrospinning method.
  • the average fiber diameter is desirably 0.01 ⁇ m or more and 1 ⁇ m or less, and when the fiber diameter is smaller than 0.01 ⁇ m, the content of fibers that serve as a reinforcing material for the polymer electrolyte membrane 1 is reduced, and the polymer electrolyte membrane 1 Dimensional change due to swelling cannot be suppressed.
  • the fiber diameter is larger than 1 ⁇ m, the fiber content in the reinforcing membrane 2 increases, so that the propagation of protons in the polymer electrolyte membrane 1 is hindered and the power generation characteristics of the fuel cell are hindered.
  • the polymer electrolyte membrane 1 encapsulating the fibers can generate power as a fuel cell by protons propagating through the electrolyte material 11 filled in the voids of the reinforcing membrane 2.
  • the outermost layer on one side or both sides of the polymer electrolyte membrane 1 may be covered with the first electrolyte material 11 even if the reinforcing membrane 2 is exposed.
  • the surface area of the electrolyte membrane increases, and the power generation characteristics of the fuel cell can be improved.
  • the material of the reinforcing membrane 2 has sufficient heat resistance even in the temperature range, and is chemically non-woven using a chemically stable material or electrospinning method.
  • PVDF may be used as the material of the reinforcing membrane 2 in that fiberization is possible.
  • a polyvinyl fluoride polymer hereinafter referred to as PVF
  • PVF polyvinyl fluoride polymer
  • Any material that has heat resistance and chemical resistance and can be electrospun can be used.
  • any material having hydrophobicity may be used, and unnecessary fibers generated in the polymer electrolyte membrane 1 due to a power generation reaction by disposing the non-woven fibers of the material having hydrophobicity inside the polymer electrolyte membrane 1. The generated water can be drained, and unnecessary swelling due to the generated water can be reduced.
  • the molecular weight of PVDF to be used is preferably 150,000 to 550,000.
  • PVDF in order to fiberize PVDF by an electrospinning method, PVDF may be dissolved in dimethylacetamide (hereinafter referred to as DMAc) as a solvent to form a solution.
  • DMAc dimethylacetamide
  • the solvent may be dimethyl sulfoxide, dimethylformamide, acetone or the like, and is easily dissolved when a polar solvent is used.
  • the solution concentration is desirably 10% to 25%. If the solution concentration is low, a sufficient fiber diameter cannot be obtained, and the dimensional change due to swelling and shrinkage of the polymer electrolyte membrane 1 cannot be suppressed. On the other hand, if the solution concentration is high, sufficient electrostatic explosion does not occur in fiber formation by electrospinning, and fibers cannot be obtained.
  • FIG. 5 is a schematic diagram of an equipment for forming a nonwoven fabric 36 that creates a fiber and uses the fiber to be processed into the reinforcing film 2 later.
  • a mixed solution 31 of PVDF and a solvent is put into a syringe 32, and a needle-like nozzle 33 is used as a solution discharge nozzle.
  • the inner diameter of the nozzle is preferably from ⁇ 0.18 mm to ⁇ 0.42 mm, and if the nozzle inner diameter is small, the discharge amount is reduced, resulting in low productivity. Further, when the nozzle inner diameter is increased, the discharge amount increases, and the electrostatic explosion cannot be appropriately caused and the fiber is not formed.
  • an air pulse dispenser (not shown) may be used for ejection.
  • the liquid feeding pressure is desirably 10 kPa to 50 kPa, and if the liquid feeding pressure is low, sufficient mixed solution 31 of PVDF, electrolyte material, and solvent is not discharged, resulting in low productivity. Further, when the liquid feeding pressure is increased, the discharge amount increases, and electrostatic explosion cannot be appropriately caused, and the fiber is not formed. Since the discharge amount changes depending on the viscosity of the solution, if the viscosity is high, the liquid supply pressure is increased.If the viscosity is low, the liquid supply pressure is decreased, and the liquid supply pressure is controlled so that an appropriate discharge amount is obtained. Good.
  • the PET base material 35 is placed on the collector 34, a voltage is applied to the nozzle 33, and the collector 34 for collecting fibers is connected to the ground.
  • the mixed solution 31 was discharged from the nozzle 33 while the syringe 32 and the collector 34 were moved relative to each other, and the fibers discharged from the nozzle 33 were spread on a flat PET substrate 35 to form a nonwoven fabric 36.
  • the electric field between the nozzle 33 and the collector 34 is desirably 10 kV to 50 kV.
  • the electric field is weak, sufficient electrostatic explosion cannot be obtained, and an appropriate fiber having an average fiber diameter of 0.01 ⁇ m or more and 1 ⁇ m or less is obtained. I can't.
  • the electric field is strong, the time until the mixed solution 31 of PVDF, electrolyte material, and solvent discharged from the nozzle 33 arrives at the collector 34 is shortened, and sufficient electrostatic explosion cannot be obtained.
  • Appropriate fibers having a diameter of 0.01 ⁇ m or more and 1 ⁇ m or less cannot be obtained.
  • a positive voltage is applied to the nozzle 33.
  • it is better to apply a negative charge, and the polarity of the voltage to be applied may be selected depending on the material.
  • the distance between the tip of the nozzle 33 and the collector 34 is desirably 90 mm to 160 mm. If the distance between the tip of the nozzle 33 and the collector 34 is short, the collector 31 after the mixed solution 31 of PVDF, electrolyte material, and solvent is discharged from the nozzle. The time until it reaches 34 is shortened, a sufficient electrostatic explosion cannot be obtained, and suitable fibers having an average fiber diameter of 0.01 ⁇ m or more and 1 ⁇ m or less cannot be obtained.
  • Electrostatic explosion is affected by the viscosity and amount of the solution.
  • the optimum applied voltage and the distance between the nozzle 33 and the collector 34 can be determined based on how the solvent of the solution is dried. If the solvent of the non-woven fiber generated in the collector 34 is not sufficiently dried and wet, the electrostatic explosion is insufficient, so that the discharge amount from the nozzle 33 may be reduced to an appropriate discharge amount. Further, if the distance between the nozzle 33 and the collector 34 is increased, an appropriate electrostatic explosion is likely to occur. If the discharge amount cannot be reduced in order to obtain high productivity, the distance between the nozzle 33 and the collector 34 is increased. May be.
  • a plurality of nozzles may be used.
  • the distance between the nozzles is preferably 10 mm or more.
  • the adjacent nozzle and the mixed solution 31 of the charged PVDF, the electrolyte material, and the solvent are affected by each other's electric charge, and sufficient electrostatic explosion occurs.
  • No suitable fiber having an average fiber diameter of 0.01 ⁇ m or more and 1 ⁇ m or less cannot be obtained.
  • the nonwoven fabric 36 is formed on the PET base material 35 (FIG. 6A) using an electrospinning method (FIG. 6B).
  • region 22 without a through-hole is produced
  • the second region 22 may be generated by a welding process using heat or laser or a method of filling the same kind of material.
  • This nonwoven fabric 36 was used as the reinforcing film 2.
  • FIG. 7A and FIG. 7B show schematic diagrams of the process for producing the electrolyte membrane.
  • the reinforcing membrane 2 (FIG. 7A) obtained on the PET base material 35 was impregnated with the electrolyte solution 37.
  • the entire region of the first region 21 formed in the reinforcing film 2 is impregnated with the electrolyte solution 37, and the second region 22 is impregnated with the outer edge portion remaining (FIG. 7B).
  • the electrolyte solution 37 may be applied to the reinforcing film 2 using a bar coater (not shown).
  • the electrolytic solution 37 may be applied by a method using a slit die or printing / spraying. If the electrolyte membrane 37 is impregnated into the reinforcing film 2 composed of fibers having a high porosity without any voids. Good.
  • the solvent is volatilized and the solution is dried.
  • the electrolyte solution 37 is applied so that the polymer electrolyte membrane 1 after drying has a predetermined thickness.
  • the annealing temperature is desirably 10 ° C. or more higher than the glass transition temperature of the electrolyte material. If the annealing temperature is low, sufficient crystallization does not occur, and the durability of the polymer electrolyte membrane 1 cannot be ensured.
  • the annealing time is preferably 30 minutes or more and 2 hours or less. If the annealing time is short, sufficient crystallization cannot be obtained. When the annealing time is long, crystallization proceeds excessively, so that proton conductivity is lowered.
  • the PET substrate 35 is peeled off after annealing and used as the polymer electrolyte membrane 1.
  • the peripheral part of the polymer electrolyte membrane 1 to which no electrolyte is applied is welded to the frame 4 (FIG. 3) to form an integrated structure.
  • a welding process using heat, laser, ultrasonic waves, or a solvent may be used if the frame and the reinforcing film are the same material, and a bonding method may be used if different materials are used.
  • a nonwoven fabric having two regions composed of PVDF fibers is disposed as a reinforcing membrane on an electrolyte membrane of a polymer electrolyte fuel cell, and a region without a through-hole protruding from the electrolyte membrane is framed by welding. It is possible to improve the gas sealing property by integrating with the body.
  • the integrated structure can suppress gas cross-leakage and improve power generation efficiency. Furthermore, since the improvement in gas sealing property can also limit the movement of OH radicals that cause deterioration of the electrolyte membrane, power generation characteristics can be ensured over a long period of time.
  • Example 1 About the production of fiber materials: Pelletized PVDF (molecular weight 275,000 manufactured by Arkema) was stirred with a self-revolving mixer and dissolved in DMAc to obtain a solution. PVDF: DMAc was used in a weight ratio of 2: 8.
  • a fiber manufacturing apparatus (model number: NF101, manufactured by Panasonic Factory Solutions) used for the electrospinning method was prepared.
  • the fiber diameter of the fibers formed on the collector had a distribution of 200 nm to 500 nm, and the average fiber diameter was 300 nm.
  • the film thickness of the nonwoven fabric which consists of fibers was 30 micrometers.
  • a hot roll press apparatus (model number: NF102, manufactured by Panasonic Factory Solutions Co., Ltd.) was prepared. The temperature of the upper roll and the lower roll was 125 ° C., the gap between the rolls was 60 ⁇ m, and the pressing pressure between the rolls was 12 MPa.
  • a hot roll press was carried out by sandwiching a non-woven fabric with a PET substrate having a thickness of 38 ⁇ m obtained by cutting out the first region and a non-woven fabric with a PET substrate having a thickness of 38 ⁇ m. The second region after pressing was a transparent sheet, and the film thickness was 7 ⁇ m.
  • the pore size distribution measurement method A pore size distribution measuring instrument (model number: CFP-1200AEX, manufactured by Porous Metals, Inc.) and a test solution (product name: Galwick, surface tension: 15.9 dynes / cm, manufactured by Porous Metals, Inc.) are prepared, and the bubble point method is used. The measurement of the pore size distribution of each of the first region and the second region of the reinforcing membrane was performed. For comparison, the reinforcing film before hot roll pressing was measured. The sample size was ⁇ 25 mm. The pore diameter measurement range when using the Galwick liquid is 0.035 ⁇ m to 180 ⁇ m. The results are shown in Table 1.
  • a gas leak measuring device (model number: NF-201, manufactured by Panasonic Corporation) was prepared, and the gas leak amount in the second region of the reinforcing film was measured by a sniffer method using He gas.
  • a commercially available electrolyte membrane (product name: Gore Select, manufactured by Nippon Gore Co., Ltd.) was measured.
  • Gore Select manufactured by Nippon Gore Co., Ltd.
  • the amount of gas leakage from one surface of the film to the other surface, that is, the thickness direction of the film was defined as the cross leak amount.
  • the sample size was 120 ⁇ 120 mm. The results are shown in (Table 1).
  • d C ⁇ r / P Equation (1)
  • d is the pore diameter of the reinforcing membrane
  • r is the surface tension of the liquid
  • P is the pressure at which the liquid membrane having the pore diameter is broken
  • C is a constant.
  • a value obtained by dividing the wet flow rate at a certain pressure by the dry flow rate at the same pressure is called a cumulative filter flow rate (unit:%).
  • the pore diameter of the liquid film that is broken at a pressure at which the cumulative filter flow rate is 50% is defined as the average flow pore size ( ⁇ m).
  • the maximum pore size ( ⁇ m) is the pore size of the liquid film that is broken by the bubble point pressure, and the minimum pore size ( ⁇ m) is the range of ⁇ 2 ⁇ where the cumulative filter flow rate is 100%, that is, the cumulative filter flow rate is 97.7%. It was set as the pore diameter of the liquid film destroyed by the pressure which becomes.
  • the minimum pore diameter was 0.65 ⁇ m
  • the maximum pore diameter was 1.97 ⁇ m
  • the average pore diameter was 1.00 ⁇ m.
  • the pore size distribution of the reinforcing membrane after hot roll pressing is as follows. In the first region, the minimum pore size is 0.65 ⁇ m, the maximum pore size is 1.97 ⁇ m, and the average pore size is 1.00 ⁇ m. No change was observed in the pore size distribution, and it was confirmed that the porosity was maintained.
  • the electrolyte material can be impregnated to function as an electrolyte membrane.
  • the membrane-electrode-frame assembly in which the peripheral portion of the second region is welded to the frame to form an integrated structure has high gas sealing properties even under power generation conditions and suppresses cross leaks, thereby improving power generation efficiency. Improve. Further, membrane deterioration due to the influence of cross leak can be prevented, the durability of the electrolyte membrane can be improved, and the characteristics of the fuel cell can be ensured for a long time.
  • the membrane-electrode-frame assembly of the present invention is widely used in the industry as a polymer electrolyte fuel cell that suppresses deterioration in power generation characteristics due to gas cross-leakage, improves the durability of the electrolyte membrane, and is excellent in productivity.
  • Solid polymer fuel cells are characterized by their low-temperature operation, high output current density, and miniaturization, and promise for applications such as home cogeneration systems, fuel cell vehicles, and mobile communication base stations. Has been.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

 固体高分子型燃料電池のガスのクロスリークによる発電特性低下を抑制し、高分子電解質膜の耐久性を向上し、かつ生産性に優れた膜-電極-枠体接合体を提供することを目的とする。膜-電極-枠体接合体は、固体高分子型燃料電池の高分子電解質膜にPVDFの繊維で構成された孔径の異なる2つの領域を有する不織布を補強膜として配し、高分子電解質膜から張り出した孔径の小さい領域を溶着により枠体と一体構造とし、ガス封止性を向上させる。

Description

固体高分子型燃料電池用の膜電極接合体とその製造方法および固体高分子型燃料電池
 本発明は、固体高分子型燃料電池に使用される膜電極接合体に関するものである。
 固体高分子型燃料電池(PEFC:Polymer Electrolyte Fuel Cell)は、発電反応を起こす電解質膜の両外面に触媒層、ガス拡散層を順に接合することで膜電極接合体を構成し、それらを一対のセパレータで挟み込むことで単セルとし、複数の単セルを積層することで構成される。
 近年、電解質膜は、プロトン導電性イオン交換膜が用いられ、特にスルホン酸基を有するパーフルオロカーボン重合体からなる陽イオン交換膜が、基本特性に優れるため広く検討されている。なお、電解質膜の外周は樹脂製の枠体によって支持されていることが多い。
 また、セパレータは、その内側部に凹状の溝が配置されており、この溝がセパレータに対して膜電極接合体が配置された際、ガス流路となる。更に、ガスの封止性、つまり、燃料ガスや酸化剤ガスが外部に漏れないように、セパレータの端部と電解質膜との間には、ガスケットが配置されることがある。このように、ガスケットがセパレータと電解質膜との間に介在することで、ガス流路を外部に対して密封する役割をなす。
 このような構成において、固体高分子型燃料電池に水素を含有する燃料ガスと、空気など酸素を含有する酸化剤ガスを供給すると、該電解質膜を介して燃料ガスと酸化剤ガスとを電気化学的に反応することになる。この原理を利用し、固体高分子型燃料電池は、電力、熱、及び水を同時に発生させることができる。
 固体高分子型燃料電池においては、
   負極では H2   → 2H + 2e-  ・・・(1)
   正極では 1/2O + 2H + 2e-   → HO ・・・(2)
の反応が起こり、電気エネルギが発生する。
 しかしながら、従来の固体高分子型燃料電池では、電解質膜と枠体の微小の隙間からガスのクロスリークが発生することがある。ここでクロスリークとは、枠体の内縁と電極との間に生じる僅かな隙間を、電池内に供給されたガスの一部が通ってアノード側またはカソード側の一方から他方へとガスが漏れてしまうという現象である。
 燃料電池における発電効率を向上させるためには、このようなガスのクロスリークを低減する必要がある。
 上記の問題を解決する方法として、電解質膜の内部に無孔シートを配置する技術や、枠体を射出成形により形成する技術が提案されている(例えば、特許文献1および2参照)。また、特許文献3~7に記載の技術も知られている。
 図8は、従来の燃料電池の単セルの模式図である。
 特許文献1では、電解質膜100の厚さ方向全体にプロトン導電性を有する領域1(105)と、既領域1(105)の外周部に位置し、かつ、無孔のシートが配置されることにより膜の厚さ方向全体にはプロトン導電性を有しない領域2(106)とを有し、電解質膜の両面に配設される触媒層101の外縁からガス拡散層102の外縁までが、領域2(106)に位置する。さらにガスケット104を配設することにより、ガスのクロスリークを低減する技術が開示されている。
 図9A、図9B、図9Cは、従来の燃料電池の膜電極接合体の製造方法の模式説明図である。
 特許文献2では、膜電極接合体110の内縁部が枠体111aの内部に配置されるように、枠体111bを射出成形により形成することにより、膜電極接合体110と枠体111a、枠体111bの周辺部の密着性を向上させて、ガスのクロスリークを低減する技術が開示されている(図9A~図9C)。
特開2006-100267号公報 特許第4335305号公報 国際公開第2008/093658号 特開2009-064769号公報 特開2010-170823号公報 特開平10-172587号公報 特開2000-195333号公報
 しかしながら、特許文献1の構成では、ガスケットによりガス封止性を確保しなければならない。また、特許文献2の構成では、製造方法が複雑になるという問題がある。
 本発明は、ガス封止性が高くクロスリークを抑制する膜電極接合体を提供することを目的とする。さらに、この膜電極接合体を使用して固体高分子型燃料電池を構成することにより、燃料電池の特性を長期に確保することを目的とする。
 上記目的を達成するために、本発明の固体高分子型燃料電池用の膜電極接合体は、以下の特徴を有する。
 〔1〕高分子電解質膜と、高分子電解質膜の両表面に配置された触媒層とガス拡散層と、孔径の異なる領域を有する不織布からなる補強膜と、を有する固体高分子型燃料電池用の膜電極接合体において、高分子電解質膜に内包される補強膜の第1の領域を有し、この第1の領域の外周部に配置され、かつ、第1の領域の孔径よりも小さい孔径を有する第2の領域の一部は、高分子電解質膜の周縁部から張り出していること。
 〔2〕上記〔1〕において、不織布の第1の領域の孔径は、0.035μm以上5μm以下であり、第2の領域の孔径は、0.035μm以下であることを特徴とする。
 〔3〕上記〔1〕または〔2〕において、不織布の繊維は、PVDF、またはPVF、またはPVDFやPVFから選択されるポリマーを構成する複数のモノマー単位からなる共重合体、またはこれらのポリマーの混合物からなり、繊維の平均繊維径は、0.01μm以上、1μm以下であることを特徴する。
 〔4〕上記〔1〕において、補強膜の第1の領域の空隙は、スルホン酸基を有するパーフルオロカーボン重合体で充填されていることを特徴とする。
 また、本発明の固体高分子型燃料電池用の膜-電極-枠体接合体は、以下の特徴を有する。
 〔5〕上記〔1〕における膜電極接合体の周縁部を樹脂により形成された枠体にて保持され、膜電極接合体と枠体とを一体化構造としたことを特徴とする。
 また、本発明の固体高分子型燃料電池は、以下の特徴を有する。
 〔6〕上記〔5〕の固体高分子型燃料電池用の膜-電極-枠体接合体を挟むように配置された一対のセパレータを有する単セルを、1又は複数積層して備えることを特徴とする。
 更に、本発明の固体高分子型燃料電池用の膜電極接合体の製造方法は、以下の特徴を有する。
 〔7〕PVDF、PVF、PVDFやPVFから選択されるポリマーを構成する複数のモノマー単位からなる共重合体、これらのポリマーの混合物と、溶媒との混合溶液を、エレクトロスピニング法により紡糸して形成した不織布を熱圧着、同種材で充填、レーザ溶着から選択される工法により、不織布に第1の領域と、第1の領域の外周部に位置し、第1の領域の孔径よりも小さい孔径を持つ第2の領域を有する補強膜を作製すること。加えて、補強膜の第1の領域の空隙に、電解質材料を充填する点に特徴を有する。
 また、本発明の固体高分子型燃料電池用の膜-電極-枠体接合体の製造方法は、以下の特徴を有する。
 〔8〕高分子電解質膜に孔径の異なる領域を有する不織布を補強膜の周縁部と枠体とを、熱やレーザ、超音波、溶媒を用いた溶着、接着剤から選択される工法により、一体化構造とするもの。
 この構成によれば、電解質膜の発電領域外でのガス封止性を向上させ、発電効率を向上させることができる。さらにガス封止性の向上は電解質膜劣化の原因となるOHラジカルの移動も制限することが出来るため、長期にわたって燃料電池の発電特性を確保することができる。
図1は本実施の形態の燃料電池の模式図である。 図2は本実施の形態のスタックの模式図である。 図3は本実施の形態の膜-電極-枠体接合体の断面の模式図である。 図4は本実施の形態の補強膜の模式図である。 図5は本実施の形態で用いる繊維化設備の模式図である。 図6Aは本実施の形態の補強膜作製の工程における、PET基材を示す図である。 図6Bは本実施の形態の補強膜作製の工程における、PET基材上に不織布が形成される状態を示す図である。 図6Cは本実施の形態の補強膜作製の工程における、不織布の周縁部に貫通孔の無い第2の領域が形成される状態を示す図である。 図7Aは本実施の形態の電解質膜作製の工程における、PET基材35に補強膜が形成される状態を示す図である。 図7Bは本実施の形態の電解質膜作製の工程における、補強膜の第1の領域、及び、第1の領域の周縁部の第2の領域の外縁部以外を電解質溶液で含浸させた状態を示す図である。 図8は従来の固体高分子電解質膜の模式図である。 図9Aは従来の膜-電極-枠体接合体における、枠体を示す図である。 図9Bは従来の膜-電極-枠体接合体における、膜電極接合体の内縁部が枠体の内部に配置される状態を示す図である。 図9Cは従来の膜-電極-枠体接合体における、膜電極接合体の内縁部が一対の枠体で挟持された状態を示す図である。
 以下、本発明の実施の形態を図1~図7に基づいて説明する。
 図1は、本発明の固体高分子型燃料電池の模式構成図を示す。
 燃料電池5は、水素を含有する燃料ガス90と、酸素を含有する酸化剤ガス91を電気化学的に反応させることで、電力、熱、及び水を同時に発生させるものである。
 燃料電池5には、アノード及びカソードの一対の極を備える単セルが複数個直列に接続された積層構造を有するスタック70と、燃料ガス90から水素を取り出す燃料処理器71と、燃料処理器71にて取り出された水素を含む燃料ガスを加湿するアノード加湿器72と、酸化剤ガス91に対しての加湿を行うカソード加湿器73と、燃料ガス90と酸化剤ガス91をそれぞれ供給するためのポンプ74a,74bを備えている。
 この燃料電池5には、燃料処理器71、アノード加湿器72、ポンプ74aにより燃料ガス90を単セルに供給する燃料供給装置が構成されている。また、カソード加湿器73とポンプ74bとにより、酸化剤ガスをスタック70の単セルに供給する酸化剤供給装置が構成されている。
 なお、このような燃料供給装置や酸化剤供給装置は、燃料や酸化剤の供給を行う機能を備えていればその他様々な形態を採用し得るが、本実施形態においては、スタック70が備える複数の単セルに対して、共通して燃料ガス90や酸化剤ガス91を供給する供給装置であれば、後述する本実施形態の効果を好適に得ることができる。
 また、燃料電池5には、発電の際にスタック70にて発生される熱を効率的に除去する冷却水92を循環供給するためのポンプ74cと、この冷却水(例えば、導電性を有さない液体、例えば純水が用いられる)により除去された熱を、水道水などの流体と熱交換するための熱交換器75と、熱交換された水道水を貯留させる貯湯タンク76が備えられている。さらに、燃料電池5には、このようなそれぞれの構成部を互いに関連付けて発電のための運転制御を行う運転制御装置80と、スタック70にて発電された電気を取り出す電気出力部81が備えられている。
 スタック70の模式分解図を図2に示す。
 このスタック70は、単セル60を複数個積層し、集電板61、絶縁板62、端板63で両側から所定の荷重で締結して構成されている。それぞれの集電板61には、電流取り出し端子部61aが設けられており、発電時にここから電流、すなわち電気が取り出される。
 それぞれの絶縁板62は、集電板61と端板63の間を絶縁するとともに、図示しないガスや冷却水の導入口、排出口が設けられている場合もある。それぞれの端板63は、複数枚積層された単セル60と集電板61、絶縁板62を図示しない加圧手段によって所定の荷重で締結し、保持されている。
 単セル60は図2に示すように、膜電極接合体50を一対のセパレータ54a,54bで挟み込むようにして構成されている。セパレータ54a,54bは、ガス不透過性の導電性材料であれば良く、例えば樹脂含浸カーボン材料を所定の形状に切削したもの、カーボン粉末と樹脂材料の混合物を成形したものが一般的に用いられる。
 セパレータ54a,54bにおける膜電極接合体50と接触する部分には凹状の溝部が形成されており、この溝部がガス拡散層53と接することで、電極面に燃料ガスあるいは酸化剤ガスを供給し、余剰ガスを運び去るためのガス流路が形成される。ガス拡散層53は、その基材として一般的に炭素繊維で構成されたものを用いることができ、このような基材としては例えば炭素繊維織布を用いることができる。
 膜電極接合体50は、図2に示すように、高分子電解質膜1のアノード面側に、白金-ルテニウム合金触媒を担持したカーボン粉末を主成分とするアノード側触媒層51を形成し、カソード面側には、白金触媒を担持したカーボン粉末を主成分とするカソード側触媒層52を形成し、アノード側触媒層51およびカソード側触媒層52の外面に、燃料ガス或いは酸化剤ガスの通気性と、電子導電性を併せ持つガス拡散層53を配置して構成される。
 図3に膜-電極-枠体接合体の断面の模式図を示す。
 高分子電解質膜1は、ポリビニリデンジフルオライド重合体(以下、PVDF)の繊維からなる不織布の補強膜2を内部に含んでいる。補強膜2は孔径の異なる領域を有し、不織布の第1の領域21と、第1の領域21の外周部に位置し、第1の領域21の孔径よりも小さい孔径を持つ第2の領域22を有する(図4)。
 第1の領域21の孔径は、0.035μm以上5μm以下であること望ましく、孔径が0.035μmより小さい場合、補強膜2内の繊維含有量が増加するため、高分子電解質膜1のプロトンの伝搬を妨げ、燃料電池の発電特性を阻害してしまう。孔径が5μmより大きい場合、高分子電解質膜1の補強材として働く繊維の含有量が減少し、高分子電解質膜1の膨潤による寸法変化を抑制することができない。第2の領域22の孔径は0.035μm以下であること望ましい。孔径が0.035μmより大きい場合、十分なガス封止性が確保できないため、燃料電池の発電効率を低下させてしまう。
 なお第2の領域22の孔径の下限値は、計測器の測定限界のため規定しない。第2の領域22の外縁部は枠体4と直接固定されている。補強膜2の第1の領域21の空隙と第2の領域22の一部には電解質材料11が充填されている。補強膜2を構成するPVDFからなる繊維は、スルホン酸型パーフルオロカーボン重合体からなる電解質材料11より引張強度が高いため、補強膜2が、高分子電解質膜1の補強材として働き、含水により引き起こされる膨潤を規制することができ、膜劣化を抑制することが可能となり、耐久性が高くなる。
 繊維は、エレクトロスピニング法により作製した。その平均繊維径は0.01μm以上、1μm以下であること望ましく、繊維径が0.01μmより小さい場合、高分子電解質膜1の補強材として働く繊維の含有量が減少し、高分子電解質膜1の膨潤による寸法変化を抑制することができない。繊維径が1μmより大きい場合、補強膜2内の繊維含有量が増加するため、高分子電解質膜1のプロトンの伝搬を妨げ、燃料電池の発電特性を阻害してしまう。
 繊維を内包する高分子電解質膜1は、補強膜2の空隙部に充填された電解質材料11をプロトンが伝搬し、燃料電池として発電することができる。
 また、高分子電解質膜1の片側又は両面の最外層は、補強膜2が露出していても第1電解質材料11で覆われていてもよい。補強膜2を露出することにより電解質膜の表面積が増加し、燃料電池の発電特性を向上することができる。
 燃料電池運転時には高分子電解質膜1が80℃にまでなるため、補強膜2の材料としてはその温度域においても充分な熱耐性を有し、かつ化学的安定した材質、エレクトロスピニング法で不織繊維化が可能であるといった点で、補強膜2の材料としてPVDFを用いるとよい。
 PVDF以外の補強膜2の材料としては、ポリビニルフルオライド重合体(以下、PVF)や、PVDFやPVFから選択されるポリマーを構成する複数のモノマー単位からなる共重合体、これらのポリマーの混合物でもよく、熱耐性・化学耐性を有した材料かつエレクトロスピニング法が可能な材料であればよい。さらに、疎水性を有した材料であればなお良く、疎水性を有した材料の不織繊維を高分子電解質膜1内部に配することにより、発電反応により高分子電解質膜1中に生じる不要な生成水を排水することができ、生成水による不要な膨潤を低減することが可能となる。
 本実施の形態において、高分子電解質膜1の膨潤収縮による寸法変化を低減するという目的から、引っ張り強度や伸度など機械的物性が良好であることが望ましい。分子量が低すぎると機械的強度が低下し、また分子量が高すぎる場合には溶解性が落ち、溶液化しにくくなるため、用いるPVDFの分子量は150000~550000が望ましい。
 本実施の形態では、PVDFをエレクトロスピニング法で繊維化するために、ジメチルアセトアミド(以下、DMAc)を溶媒として、PVDFを溶解させ、溶液にするとよい。溶媒は、ジメチルスルホキシドやジメチルホルムアミド、アセトンなどでも良く、極性を持つ溶媒を用いた場合、溶解しやすい。溶液濃度は10%から25%が望ましく、溶液濃度が低いと充分な繊維径を得ることが出来ず、高分子電解質膜1の膨潤収縮による寸法変化を抑制することができない。また、溶液濃度が高いと、エレクトロスピニング法での繊維化において、充分な静電爆発が発生せず、繊維を得ることが出来ない。
 図5は、繊維を作成し、この繊維を使用して後に補強膜2に加工する不織布36を形成する設備の模式図を示す。
 本実施の形態では、PVDFのエレクトロスピニング法による繊維化において、PVDFと溶媒との混合溶液31をシリンジ32に入れ、溶液吐出用ノズルはニードル状のノズル33を用いた。ノズル内径はφ0.18mmからφ0.42mmが望ましく、ノズル内径が小さいと吐出量が少なくなるため、生産性が低くなってしまう。また、ノズル内径を大きくすると、吐出量が多くなり、適切に静電爆発を起こすことができず繊維化しない。
 本実施の形態では、吐出にはエアパルス方式のディスペンサー(図示せず)を用いると良い。送液圧力としては、10kPaから50kPaが望ましく、送液圧力が低いと、充分なPVDFと電解質材料と溶媒との混合溶液31が吐出されず、生産性が低くなる。また、送液圧力を大きくすると、吐出量が多くなり、適切に静電爆発を起こすことができず、繊維化しない。溶液の粘度により吐出量が変化するため、粘度が高い場合は送液圧力を高くし、粘度が低い場合は送液圧力を低くし、適当な吐出量となるように送液圧力を制御すればよい。
 本実施の形態では、コレクタ34の上にPET基材35を載置し、ノズル33に電圧を印加し、繊維を集積するコレクタ34をアースに接続させた。シリンジ32とコレクタ34を相対移動させながらノズル33から混合溶液31を吐出させて、ノズル33から吐出された繊維を平板状のPET基材35の上に展開して不織布36を形成した。
 ノズル33とコレクタ34間の電界は10kVから50kVが望ましく、電界が弱い場合、充分な静電爆発を得ることができず、平均繊維径が0.01μm以上、1μm以下の適切な繊維を得ることができない。また電界が強い場合、ノズル33から吐出されたPVDFと電解質材料と溶媒との混合溶液31がコレクタ34に到着するまでの時間が短くなり、充分な静電爆発を得ることができず、平均繊維径が0.01μm以上、1μm以下の適切な繊維を得ることが出来ない。本実施の形態では、ノズル33に正の電圧を印加させたが、不織繊維化させる材料によっては負の電荷を印加した方が良く、材料により印加する電圧の極性を選択すればよい。
 ノズル33の先端とコレクタ34までの距離は90mmから160mmが望ましく、ノズル33の先端とコレクタ34までの距離が短いと、PVDFと電解質材料と溶媒との混合溶液31がノズルから吐出されてからコレクタ34に到着するまでの時間が短くなり、充分な静電爆発を得ることができず、平均繊維径が0.01μm以上、1μm以下の適切な繊維を得ることができない。
 静電爆発は溶液の粘度や量により影響を受ける。コレクタ34に不織繊維が生成した際に溶液の溶媒の乾燥具合により、最適な印加電圧やノズル33とコレクタ34間の距離を判断することができる。コレクタ34に生成した不織繊維の溶媒が充分に乾燥せず湿潤状態であれば静電爆発が不十分であるためノズル33からの吐出量を減らし適切な吐出量とすればよい。また、ノズル33とコレクタ34間の距離を大きくすることでも適切な静電爆発が起こりやすく、高い生産性を得るために吐出量を小さくできない場合は、ノズル33とコレクタ34間の距離を大きくしても良い。
 吐出量が少ない場合やノズル33とコレクタ34の間の距離が大きい場合、過度の静電爆発を起こし、所定の領域よりも広く不織繊維が形成されることとなり、必要な厚みを形成する時間が長くなるため、生産性が下がってしまう。
 生産性を向上させるためには複数のノズル(図示せず)を用いてもよい。ノズル間距離は10mm以上が望ましく、ノズル間距離を短くすると、隣接するノズルや電荷を帯びたPVDFと電解質材料と溶媒との混合溶液31が、お互いの電荷の影響を受け、充分な静電爆発を得ることができず、平均繊維径が0.01μm以上、1μm以下の適切な繊維を得ることができない。
 図6A、図6B、図6Cに補強膜作製の工程模式図を示す。
 本実施の形態では、エレクトロスピニング法を用いてPET基材35上(図6A)に、不織布36を形成する(図6B)。得られた不織布36の周縁部に熱ロールプレス(120℃)で貫通孔の無い第2の領域22を生成する(図6C)。第2の領域22を生成するには、熱やレーザを用いた溶着処理や同種の材料を充填する方法でも良い。この不織布36を補強膜2とした。
 図7A、図7Bに電解質膜作製の工程模式図を示す。
 本実施の形態では、PET基材35上に得られた補強膜2(図7A)に、電解質溶液37を含浸させた。補強膜2に形成した第1の領域21の全域は電解質溶液37を含浸させ、第2の領域22には外縁部を残して含浸させる(図7B)。
 本実施の形態では、バーコーター(図示せず)を用いて、電解質溶液37を補強膜2に塗工すると良い。電解質溶液37の塗工には、スリットダイを用いた塗工や印刷・スプレーを用いた方法でもよく、空隙率の高い繊維から構成される補強膜2に、電解質溶液37が空隙なく含浸すればよい。本実施の形態では、電解質溶液37の塗工後に溶媒を揮発させ、溶液を乾燥させる。本実施の形態では、乾燥後の高分子電解質膜1の膜厚が所定の厚みとなるように、電解質溶液37を塗工する。
 塗工した電解質溶液37が乾燥した後にアニールを行い、電解質を結晶化させる。アニールの温度は、電解質材料のガラス転移温度より10℃以上高いことが望ましい。アニール温度は低いと充分な結晶化が起こらず、高分子電解質膜1の耐久性が確保できない。アニール時間は30分以上、2時間以下で行うことが望ましく、アニール時間が短いと充分な結晶化が得られない。アニール時間が長い場合は、過度に結晶化が進んでしまうため、プロトン導電性が低くなる。
 本実施の形態では、アニール後にPET基材35を剥離し、高分子電解質膜1として用いる。
 電解質を塗工していない高分子電解質膜1の周縁部を枠体4(図3)に溶着し、一体化構造とする。一体化構造化には、枠体と補強膜が同種の材料であれば熱やレーザ、超音波、溶媒を用いた溶着処理、異種の材料であれば接着する方法でも良い。
 本発明によれば、固体高分子型燃料電池の電解質膜にPVDFの繊維で構成された2つの領域を有する不織布を補強膜として配し、電解質膜から張り出した貫通孔の無い領域を溶着により枠体と一体構造とし、ガス封止性を向上させるができる。
 また、一体化構造とすることでガスのクロスリークを抑制し発電効率を向上させることができる。さらにガス封止性の向上は電解質膜劣化の原因となるOHラジカルの移動も制限することが出来るため、長期にわたって発電特性を確保することができる。
 (実施例)
 1.繊維材料の作製について:
 ペレット状のPVDF(アルケマ社製 分子量275000)を自公転ミキサーで撹拌し、DMAcに溶解させ溶液とした。PVDF:DMAcは重量比で2:8の混合比とした。
 2.繊維化について:
 エレクトロスピニング法に用いる繊維製造装置(型番:NF101,パナソニックファクトリーソリューションズ社製)を用意した。容量10mLのディスポーザブルシリンジの先端に28G(内径0.3mm、外径0.36mm、針長15mm)のステンレス製のノズルを装着した。コレクタからノズルまでの距離は120mm、コレクタとノズル間の印加電圧15kV、送液圧力30kPaの条件で、繊維を作製した。コレクタ上に生成した繊維の繊維径は200nm~500nmの分布を持っており、平均繊維径は300nmであった。また繊維からなる不織布の膜厚は30μmであった。
 3.補強膜形成方法について:
 熱ロールプレス装置(型番:NF102,パナソニックファクトリーソリューションズ社製)を用意した。上ロール、下ロールの温度は125℃、ロール間ギャップは60μm、ロール間の押し圧力は12MPaとした。不織布の上を第1の領域の部分を切り抜いた厚み38μmのPET基材で、不織布の下を厚み38μmのPET基材ではさみ、熱ロールプレスを実施した。プレス後の第2の領域は透明のシート状になり、その膜厚は7μmであった。
 4.細孔径分布測定方法について:
 細孔径分布の測定器(型番:CFP-1200AEX,Porous Metrials, Inc.製)、試液(品名:Galwick, surface tention: 15.9dynes/cm,Porous Metrials,Inc.製)を用意し、バブルポイント法にて補強膜の第1の領域、第2の領域、それぞれの細孔径分布の測定を実施した。比較用として熱ロールプレス前の補強膜を測定した。試料のサイズはΦ25mmとした。Galwick液使用時の細孔径測定範囲は0.035μm~180μmである。
その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 5.クロスリーク量の測定方法について:
 ガスリークの測定器(型番:NF-201,パナソニック社製)を用意し、Heガスを用いて補強膜の第2の領域のガスのリーク量をスニファー法により測定を実施した。比較用として市販の電解質膜(品名:ゴアセレクト,日本ゴア株式会社製)の測定を実施した。測定された膜の一方の面から他方の面、すなわち膜の厚み方向へのガスのリーク量を、クロスリーク量とした。試料のサイズは120×120mmとした。その結果を(表1)に示す。
 表1に記載の細孔径分布測定の結果は、上記測定装置を用いて補強膜を、予め表面張力が既知の液体に浸し、補強膜の全ての細孔を液体の膜で覆った状態から補強膜に圧力をかけ、液膜の破壊される圧力と液体の表面張力から計算された細孔の孔径を測定する。計算には以下の数式を用いる。
 d=C・r/P ・・・・ 数式(1)
 なお、式中、dは補強膜の孔径、rは液体の表面張力、Pはその孔径の液膜が破壊される圧力、Cは定数である。
 数式(1)より、液体に浸した補強膜にかける圧力Pを低圧から高圧に連続的に変化させた場合の流量(ウェット流量)を測定すると、初期の圧力は最も大きな細孔の液膜でも破壊されないので、流量は0である。圧力を上げていくと、最も大きな細孔の液膜が破壊され、流量が発生する(バブルポイント)。
 さらに圧力を上げていくと、各圧力に応じて流量は増加し、最も小さな細孔の液膜が破壊され、乾いた状態の流量(ドライ流量)と一致する。上記測定装置では、ある圧力におけるウェット流量を、同圧力でのドライ流量で割った値を累積フィルター流量(単位:%)と呼ぶ。累積フィルター流量が50%となる圧力で破壊される液膜の孔径を、平均流量孔径(μm)と定義する。また、最大孔径(μm)は、バブルポイント圧力で破壊される液膜の孔径、最小孔径(μm)は、累積フィルター流量が100%の-2σの範囲、すなわち、累積フィルター流量が97.7%となる圧力で破壊される液膜の孔径とした。
 実施例の熱ロールプレス前の補強膜の細孔径分布は、最小孔径は0.65μm、最大孔径は1.97μm、平均孔径は1.00μmであった。熱ロールプレス後の補強膜の細孔径分布は、第1の領域では最小孔径は0.65μm、最大孔径は1.97μm、平均孔径は1.00μmであり、熱ロールプレスの前後を比較して細孔径分布に変化は見られず、空隙率が保持されていることが確認できた。これにより電解質材料を含浸させ電解質膜として機能させることが出来る。
 熱ロールプレスにより形成した第2の領域では、バブルポイントが存在せず、細孔径分布の測定器の測定範囲0.035μm~180μmの孔径の無いシートが形成された。Heガスによるガスリーク測定においてもクロスリーク量が5.7×10-5Pa・m/secとなり、比較例の市販の電解質膜の測定結果、1.5×10-3Pa・m/secと同等以上のガス封止性が確認できた。
 この第2の領域の周縁部を枠体に溶着し一体化構造とした膜-電極-枠体接合体は、発電の条件下においてもガス封止性が高くクロスリークを抑制し、発電効率を向上させる。またクロスリークの影響による膜劣化を防ぎ、電解質膜の耐久性を向上させ、燃料電池の特性を長期に確保することができる。
 本発明の膜-電極-枠体接合体は、ガスのクロスリークによる発電特性低下を抑制し、電解質膜の耐久性を向上し、かつ生産性に優れた固体高分子型燃料電池として産業上幅広く利用可能である。固体高分子型燃料電池は、低温で動作し、出力電流密度が高く小型化できるという特徴を有し、家庭用コジェネレーションシステム、燃料電池自動車、移動体通信の基地局などの用途に対し有望視されている。
1  高分子電解質膜
2  補強膜
4,111a,111b  枠体
21  第1の領域
22  第2の領域
51  アノード側触媒層
52  カソード側触媒層
53,102  ガス拡散層

Claims (8)

  1.  高分子電解質膜と、
     前記高分子電解質膜の両表面に配置された触媒層とガス拡散層と、
     孔径の異なる領域を有する不織布からなる補強膜と、
    を有する固体高分子型燃料電池用の膜電極接合体において、
     前記高分子電解質膜に内包される前記補強膜の第1の領域を有し、
     該第1の領域の外周部に配置され、かつ、前記第1の領域の孔径よりも小さい孔径を有する第2の領域の一部は、前記高分子電解質膜の周縁部から張り出していること、
     を特徴とする固体高分子型燃料電池用の膜電極接合体。
  2.  前記補強膜の第1の領域の孔径は、0.035μm以上5μm以下であり、前記第2の領域の孔径は、0.035μm以下である、
     請求項1記載の固体高分子型燃料電池用の膜電極接合体。
  3.  前記補強膜を構成する不織布の繊維は、PVDF、またはPVF、またはPVDFやPVFから選択されるポリマーを構成する複数のモノマー単位からなる共重合体、またはこれらのポリマーの混合物からなり、
     前記繊維の平均繊維径は、0.01μm以上1μm以下である、請求項1記載の固体高分子型燃料電池用の膜電極接合体。
  4.  前記補強膜の第1の領域の空隙は、スルホン酸基を有するパーフルオロカーボン重合体で充填されている、請求項1記載の固体高分子型燃料電池用の膜電極接合体。
  5.  請求項1記載の膜電極接合体と、
     前記膜電極接合体の周縁部を保持し、樹脂により形成された枠体と、を備え、前記膜電極接合体と前記枠体とを一体化構造とした、固体高分子型燃料電池用の膜-電極-枠体接合体。
  6.  請求項5記載の固体高分子型燃料電池用の膜-電極-枠体接合体を挟むように配置された一対のセパレータを有する単セルを、1又は複数積層して備える、固体高分子型燃料電池。
  7.  PVDF、PVF、PVDFやPVFから選択されるポリマーを構成する複数のモノマー単位からなる共重合体、これらのポリマーの混合物と、溶媒との混合溶液を、
     エレクトロスピニング法により紡糸して形成した不織布を熱圧着、同種材で充填、レーザ溶着から選択される工法により、前記補強膜に第1の領域と、前記第1の領域の外周部に位置し、
     第1の領域の孔径よりも小さい孔径を持つ第2の領域を有する補強膜を作製し、前記補強膜の第1の領域の空隙に、電解質材料を充填すること、
     を特徴とする固体高分子型燃料電池用の膜電極接合体の製造方法。
  8.  高分子電解質膜に孔径の異なる領域を有する不織布からなる補強膜の周縁部と、樹脂からなる枠体とを、熱やレーザ、超音波、溶媒を用いた溶着、接着剤から選択される工法により、一体化構造とすること、
     を特徴とする固体高分子型燃料電池用の膜-電極-枠体接合体の製造方法。
PCT/JP2013/003474 2012-07-02 2013-06-03 固体高分子型燃料電池用の膜電極接合体とその製造方法および固体高分子型燃料電池 WO2014006817A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013540161A JP6155469B2 (ja) 2012-07-02 2013-06-03 固体高分子型燃料電池用の膜電極接合体とその製造方法および固体高分子型燃料電池
EP13812570.3A EP2858155B1 (en) 2012-07-02 2013-06-03 Membrane electrode assembly for solid polymer fuel cell, method for producing same, and solid polymer fuel cell
US14/409,943 US10074866B2 (en) 2012-07-02 2013-06-03 Membrane electrode assembly for polymer electrolyte fuel cell, method of producing the same and polymer electrolyte fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012148239 2012-07-02
JP2012-148239 2012-07-02

Publications (1)

Publication Number Publication Date
WO2014006817A1 true WO2014006817A1 (ja) 2014-01-09

Family

ID=49881593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003474 WO2014006817A1 (ja) 2012-07-02 2013-06-03 固体高分子型燃料電池用の膜電極接合体とその製造方法および固体高分子型燃料電池

Country Status (4)

Country Link
US (1) US10074866B2 (ja)
EP (1) EP2858155B1 (ja)
JP (1) JP6155469B2 (ja)
WO (1) WO2014006817A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015059848A1 (ja) * 2013-10-25 2015-04-30 パナソニックIpマネジメント株式会社 燃料電池用の電解質膜およびその製造方法、並びに膜電極接合体および燃料電池
JP2017107643A (ja) * 2015-12-07 2017-06-15 トヨタ自動車株式会社 燃料電池
WO2017218781A1 (en) * 2016-06-17 2017-12-21 3M Innovative Properties Company Ion exchange membrane and method of producing same, membrane electrode assembly, and redox flow battery
US10333157B2 (en) 2014-11-25 2019-06-25 Johnson Matthey Fuel Cells Limited Membrane-seal assembly

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3014247B1 (fr) * 2013-11-29 2016-01-01 Commissariat Energie Atomique Procede de fabrication d'un assemblage membrane/electrodes comportant des renforts
JP2017031530A (ja) * 2015-07-31 2017-02-09 パナソニックIpマネジメント株式会社 積層不織布および空気清浄機
US10411222B2 (en) * 2017-05-23 2019-09-10 University Of Maryland, College Park Transparent hybrid substrates, devices employing such substrates, and methods for fabrication and use thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172587A (ja) 1996-12-06 1998-06-26 Toshiba Corp 固体高分子型燃料電池
JP2000195333A (ja) 1998-12-24 2000-07-14 Asahi Chem Ind Co Ltd 補強された固体電解質膜
JP2005302526A (ja) * 2004-04-12 2005-10-27 Asahi Glass Co Ltd 固体高分子電解質膜及び固体高分子電解質膜を有する膜電極接合体
JP2006100267A (ja) 2004-08-30 2006-04-13 Asahi Glass Co Ltd 固体高分子電解質膜電極接合体及び固体高分子形燃料電池
WO2008093658A1 (ja) 2007-01-29 2008-08-07 Panasonic Corporation 膜-膜補強部材接合体、膜-触媒層接合体、膜-電極接合体、及び高分子電解質形燃料電池
JP2008251314A (ja) * 2007-03-30 2008-10-16 Nok Corp 高分子電解質膜
JP2009064769A (ja) 2007-08-10 2009-03-26 Toyota Motor Corp 燃料電池用セルおよび燃料電池
JP4335305B2 (ja) 2007-10-12 2009-09-30 パナソニック株式会社 高分子電解質型燃料電池用の電極−膜−枠接合体およびその製造方法、並びに高分子電解質型燃料電池
JP2009245639A (ja) * 2008-03-28 2009-10-22 Asahi Glass Co Ltd 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
JP2010170823A (ja) 2009-01-22 2010-08-05 Toyota Motor Corp 燃料電池用複合型電解質膜
JP2013062240A (ja) * 2011-08-22 2013-04-04 Toray Ind Inc 複合化高分子電解質膜

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10042744A1 (de) 2000-08-31 2002-03-28 Omg Ag & Co Kg PEM-Brennstoffzellenstapel
JP2003077494A (ja) 2001-09-06 2003-03-14 Japan Vilene Co Ltd 固体高分子電解質用補強材及びこれを用いた固体高分子電解質補強体
EP1615282A4 (en) * 2003-04-17 2008-04-23 Asahi Glass Co Ltd SOLID POLYMER ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE FOR SOLID POLYMER FUEL CELL, AND PROCESS FOR PRODUCING SOLID POLYMER ELECTROLYTE MEMBRANES
JP2005108604A (ja) 2003-09-30 2005-04-21 Canon Inc 膜電極接合体、その製造方法および固体高分子型燃料電池
JP4438525B2 (ja) * 2004-06-11 2010-03-24 トヨタ自動車株式会社 燃料電池用セルモジュール及びその製造方法、並びに燃料電池
KR101232396B1 (ko) 2004-08-30 2013-02-12 파나소닉 주식회사 고체 고분자형 연료전지용 막전극접합체 및 고체 고분자형연료전지
JP2007250265A (ja) 2006-03-14 2007-09-27 Toyota Motor Corp 燃料電池用補強型電解質膜、その製造方法、燃料電池用膜−電極接合体、及びそれを備えた固体高分子型燃料電池
EP2254181B1 (en) * 2008-03-21 2012-10-24 Asahi Glass Company, Limited Membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell comprising the same
WO2011149732A2 (en) 2010-05-25 2011-12-01 3M Innovative Properties Company Reinforced electrolyte membrane
EP2642569B1 (en) 2011-01-07 2015-03-25 Panasonic Corporation Electrolyte membrane for solid polymer fuel cells, membrane electrode assembly having said electrolyte membrane, and solid polymer fuel cell

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172587A (ja) 1996-12-06 1998-06-26 Toshiba Corp 固体高分子型燃料電池
JP2000195333A (ja) 1998-12-24 2000-07-14 Asahi Chem Ind Co Ltd 補強された固体電解質膜
JP2005302526A (ja) * 2004-04-12 2005-10-27 Asahi Glass Co Ltd 固体高分子電解質膜及び固体高分子電解質膜を有する膜電極接合体
JP2006100267A (ja) 2004-08-30 2006-04-13 Asahi Glass Co Ltd 固体高分子電解質膜電極接合体及び固体高分子形燃料電池
WO2008093658A1 (ja) 2007-01-29 2008-08-07 Panasonic Corporation 膜-膜補強部材接合体、膜-触媒層接合体、膜-電極接合体、及び高分子電解質形燃料電池
JP2008251314A (ja) * 2007-03-30 2008-10-16 Nok Corp 高分子電解質膜
JP2009064769A (ja) 2007-08-10 2009-03-26 Toyota Motor Corp 燃料電池用セルおよび燃料電池
JP4335305B2 (ja) 2007-10-12 2009-09-30 パナソニック株式会社 高分子電解質型燃料電池用の電極−膜−枠接合体およびその製造方法、並びに高分子電解質型燃料電池
JP2009245639A (ja) * 2008-03-28 2009-10-22 Asahi Glass Co Ltd 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
JP2010170823A (ja) 2009-01-22 2010-08-05 Toyota Motor Corp 燃料電池用複合型電解質膜
JP2013062240A (ja) * 2011-08-22 2013-04-04 Toray Ind Inc 複合化高分子電解質膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2858155A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015059848A1 (ja) * 2013-10-25 2015-04-30 パナソニックIpマネジメント株式会社 燃料電池用の電解質膜およびその製造方法、並びに膜電極接合体および燃料電池
JP5793666B1 (ja) * 2013-10-25 2015-10-14 パナソニックIpマネジメント株式会社 燃料電池用の電解質膜およびその製造方法、並びに膜電極接合体および燃料電池
US11005119B2 (en) 2013-10-25 2021-05-11 Panasonic Intellectual Property Management Co., Ltd. Electrolyte membrane for fuel cell, manufacturing method of electrolyte membrane, membrane electrode assembly, and fuel cell
US10333157B2 (en) 2014-11-25 2019-06-25 Johnson Matthey Fuel Cells Limited Membrane-seal assembly
JP2017107643A (ja) * 2015-12-07 2017-06-15 トヨタ自動車株式会社 燃料電池
WO2017218781A1 (en) * 2016-06-17 2017-12-21 3M Innovative Properties Company Ion exchange membrane and method of producing same, membrane electrode assembly, and redox flow battery

Also Published As

Publication number Publication date
US20150333352A1 (en) 2015-11-19
EP2858155A1 (en) 2015-04-08
EP2858155B1 (en) 2016-05-11
JP6155469B2 (ja) 2017-07-05
US10074866B2 (en) 2018-09-11
EP2858155A4 (en) 2015-07-15
JPWO2014006817A1 (ja) 2016-06-02

Similar Documents

Publication Publication Date Title
JP6155469B2 (ja) 固体高分子型燃料電池用の膜電極接合体とその製造方法および固体高分子型燃料電池
JP5362144B2 (ja) 固体高分子型燃料電池用の電解質膜とその製造方法および固体高分子型燃料電池
CN1986613B (zh) 聚合物电解液膜和利用该聚合物电解液膜的燃料电池
KR20110120185A (ko) 연료전지용 고분자 전해질막 및 그 제조방법
KR102084568B1 (ko) 그래핀폼을 포함하는 가스유로/가스확산층 복합 기능 연료전지용 부재
CN110462906B (zh) 离子交换膜、其制造方法以及包括其的能量存储装置
CN110797546B (zh) 一种微孔层结构、制备方法、膜电极组件以及燃料电池
JP5665209B1 (ja) 膜電極接合体及びその製造方法、並びに固体高分子形燃料電池
EP4040549B1 (en) Ionomer dispersion having high dispersion stability, method for producing same, and polymer electrolyte membrane produced using same
KR100658739B1 (ko) 연료전지용 고분자 전해질막 및 그 제조방법
CN111395008B (zh) 全氟磺酸树脂/聚偏氟乙烯复合电纺丝膜及其制备方法
KR100696680B1 (ko) 연료전지용 고분자 전해질막 및 그 제조방법
US11817608B2 (en) Polymer electrolyte membrane, manufacturing method therefor, and electrochemical device comprising same
JP2016207514A (ja) 燃料電池用電解質膜とそれを用いた燃料電池
CA2568763C (en) Cell module having water permeable hollow body, and fuel cell comprising cell module
KR20080039615A (ko) 복합 전해질막 및 이를 이용한 연료전지
US10020526B2 (en) Reverse osmosis membranes made with PFSA ionomer and ePTFE
KR20180003006A (ko) 이온교환막용 부직포 지지체 및 그 제조방법
CN111370741B (zh) 一种全钒氧化还原液流电池用超薄膜及其制备方法
CN116199934B (zh) 质子传导膜和制备质子传导膜的方法
CN221900040U (zh) 一种气体扩散层结构及燃料电池
EP4016680A1 (en) Method for laminating a polymer electrolyte film onto a porous support layer for energy storage devices
CN118630272A (zh) 复合质子交换膜及其制备方法、膜电极及电化学装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013540161

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13812570

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14409943

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013812570

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE