[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014084296A1 - 色素増感太陽電池 - Google Patents

色素増感太陽電池 Download PDF

Info

Publication number
WO2014084296A1
WO2014084296A1 PCT/JP2013/082004 JP2013082004W WO2014084296A1 WO 2014084296 A1 WO2014084296 A1 WO 2014084296A1 JP 2013082004 W JP2013082004 W JP 2013082004W WO 2014084296 A1 WO2014084296 A1 WO 2014084296A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
dye
solar cell
sensitized solar
Prior art date
Application number
PCT/JP2013/082004
Other languages
English (en)
French (fr)
Inventor
正充 佐竹
尚志 星
紫垣 晃一郎
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to US14/443,738 priority Critical patent/US20150294798A1/en
Priority to EP13858313.3A priority patent/EP2928009A4/en
Priority to JP2014549884A priority patent/JPWO2014084296A1/ja
Priority to KR1020157014236A priority patent/KR20150090895A/ko
Priority to CN201380062574.5A priority patent/CN104823254A/zh
Publication of WO2014084296A1 publication Critical patent/WO2014084296A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C327/00Thiocarboxylic acids
    • C07C327/20Esters of monothiocarboxylic acids
    • C07C327/30Esters of monothiocarboxylic acids having sulfur atoms of esterified thiocarboxyl groups bound to carbon atoms of hydrocarbon radicals substituted by nitrogen atoms, not being part of nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/10The polymethine chain containing an even number of >CH- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/10The polymethine chain containing an even number of >CH- groups
    • C09B23/105The polymethine chain containing an even number of >CH- groups two >CH- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2013Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte the electrolyte comprising ionic liquids, e.g. alkyl imidazolium iodide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2077Sealing arrangements, e.g. to prevent the leakage of the electrolyte
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a dye-sensitized solar cell capable of realizing excellent photoelectric conversion efficiency and durability.
  • the structure is a substrate comprising a semiconductor-containing layer composed of oxide semiconductor fine particles sensitized with a dye, provided on a transparent conductive substrate serving as one electrode, and a counter electrode in which platinum or the like is disposed so as to face it.
  • Non-patent Document 1 a type in which a charge transfer layer (electrolyte solution containing a redox substance) is sandwiched between them.
  • a charge transfer layer electrophilic solution containing a redox substance
  • the dye-sensitized solar cell has reached the same performance as an amorphous silicon solar cell (Non-patent Document 1).
  • Improvement of durability especially for long-term use is one of the important issues to be overcome.
  • further improvements in photoelectric conversion efficiency and durability of the dye-sensitized solar cell are desired.
  • Non-Patent Document 2 The sensitizing dyes of dye-sensitized solar cells are roughly classified into two systems: ruthenium-based dyes and non-ruthenium-based dyes.
  • Non-Patent Document 2 non-ruthenium dyes with few resource restrictions and a wide range of molecular designs have been actively developed.
  • an electrode containing platinum is often used for the counter electrode of the dye-sensitized solar cell.
  • an electrolytic solution containing an iodine-based redox pair having a well-balanced performance is generally used for the charge transfer layer between the semiconductor-containing layer and the counter electrode.
  • the dye-sensitized solar cell obtained by these combinations has good initial photoelectric conversion efficiency, it has a problem that it is inferior in long-term stability due to high corrosivity of iodine-based redox.
  • Patent Document 1 proposes a method of preparing a counter electrode by performing a surface treatment of a platinum substrate with a compound containing sulfur, and a method of adding a sulfur-containing substance to an electrolytic solution. ing.
  • the surface treatment of the platinum substrate has a large process load, and the treatment effect may not last for a long time.
  • sulfur-containing substances having a low oxidation number are generally oxidized by iodine-based redox, the addition of such a compound to the electrolytic solution has a high possibility of greatly impairing the stability of the electrolytic solution.
  • the patent makes no mention of these issues.
  • the durability evaluation in the examples is not at a level where it is estimated that the battery has long-term stability. Therefore, the method disclosed in the patent is still an incomplete technology.
  • examples of adding a sulfur-based material to the electrolyte include electrolytes to which thiocyanate ions are added (Non-patent Document 3, Patent Document 2, etc.), and aminotriazoles having alkylthio groups and benzylthio groups. Examples thereof include an added electrolytic solution (Patent Document 3) and an electrolytic solution added with sulfolane (Patent Document 4).
  • Patent Document 3 an added electrolytic solution
  • Patent Document 4 an electrolytic solution added with sulfolane
  • the conventional dye-sensitized solar cell including all of the electrolyte including the non-ruthenium-based dye, the platinum electrode, and the iodine-based redox as a constituent member has long been expected to be put into practical use. It still has many inconveniences regarding durability.
  • An object of the present invention is to provide a dye-sensitized solar cell using a non-ruthenium dye capable of realizing excellent photoelectric conversion efficiency and durability.
  • the present inventors have intensively studied to solve the above-mentioned problems.
  • a compound using a non-ruthenium dye as the sensitizing dye, platinum as the counter electrode, iodine and iodine ions in the charge transfer layer, and both a thioester bond and a positively charged nitrogen atom in the molecule It has been found that a dye-sensitized solar cell using an electrolytic solution containing is excellent in both photoelectric conversion efficiency and durability.
  • a dye-sensitized solar cell which is an electrolytic solution containing a compound having both positively charged nitrogen atoms.
  • a compound having both a thioester bond and a positively charged nitrogen atom in the molecule is represented by the following formula (1): (In the formula, R1, R2, R3, R4, R5 and R6 are each independently a halogen atom, alkoxy group, ester group, acyl group, amino group, amide group, alkyl group, alkenyl group, alkynyl group, aryl group.
  • a cyano group, an isocyano group, a nitro group, a nitroso group, a hydroxyl group, a phosphate ester group, a sulfinyl group, and a sulfonyl group which may have one or more substituents having 1 to 10 carbon atoms Aliphatic hydrocarbon residue, halogen atom, alkoxy group, ester group, acyl group, amino group, amide group, alkyl group, alkenyl group, alkynyl group, aryl group, cyano group, isocyano group, nitro group, nitroso group, hydroxyl Having one or more substituents selected from the group consisting of a group, a phosphate group, a sulfinyl group and a sulfonyl group Aromatic hydrocarbon residue, halogen atom, alkoxy group, ester group, acyl group, amino group, amide group, alkyl group, alkenyl group,
  • the dye-sensitized solar cell according to item [1], wherein the semiconductor of the semiconductor-containing layer is fine particle titanium oxide or fine particle composite titanium oxide. [7].
  • the non-ruthenium organic dye is represented by the following formula (2) (In the formula, A 1 and A 2 are each independently a carboxyl group, a cyano group, an alkoxycarbonyl group, an acyl group, a nitro group, a cyclic hydrocarbon residue, a heterocyclic residue, an amino group, a hydroxyl group, hydrogen.
  • each A 1 and each A 2 each independently represent the above-mentioned group which may be the same or different, and when there are a plurality of A 1 or A 1, When there are a plurality of 1 , A 2 or A 2 , any two of A 2 and X may combine to form a ring.
  • a 1 in the formula (2) is a cyano group or a carboxyl group.
  • X in formula (2) is a (poly) ethenyl group or (poly) thiophenyl group having a triphenylamine derivative.
  • the dye-sensitized solar cell of the present invention is excellent in initial conversion efficiency and durability. In particular, the heat resistance is good. According to this dye-sensitized solar cell, high durability is achieved even when a non-ruthenium organic dye, which is generally difficult to ensure durability, is used as a sensitizing dye and platinum is used for the counter electrode. It is possible to realize.
  • the present invention is described in detail below.
  • the dye-sensitized solar cell of the present invention includes a first conductive support having a semiconductor-containing layer sensitized with a dye, and a counter provided at a position where the semiconductor-containing layer and the counter electrode face each other at a predetermined interval.
  • Second conductive support having electrodes, charge transfer layer sandwiched between gaps of first and second conductive support, and first and second conductive supports for sealing charge transfer layer
  • a dye-sensitized solar cell including a sealant provided in the periphery of the organic dye, wherein the dye is a non-ruthenium organic dye, the counter electrode has platinum, and the charge transfer layer is iodine, It is characterized by being an electrolytic solution containing iodine ions and a compound having both a thioester bond and a positively charged nitrogen atom in the molecule.
  • the dye-sensitized solar cell of the present invention has a first conductive support having a semiconductor-containing layer sensitized with a dye.
  • This first conductive support is generally supported by a substrate formed of glass or the like.
  • the conductive support include conductive materials typified by FTO (fluorine-doped tin oxide), ATO (antimony-doped tin oxide), and ITO (indium-doped tin oxide), glass, plastic, polymer film, quartz, silicon, and the like.
  • a thin film on the surface of the substrate is used. The thickness of the substrate is usually 0.01 to 10 mm.
  • a light transmissive substrate is used for at least one of the first and second conductive supports.
  • the resistance value of the conductive support is usually 1000 ⁇ / cm 2 or less, preferably 100 ⁇ / cm 2 or less.
  • metal chalcogenide fine particles are preferable.
  • transition metal oxides such as Ti, Zn, Sn, Nb, W, In, Zr, Y, La, and Ta, Al oxide, Si oxide, StTiO 3 , CaTiO 3 , and BaTiO 3 . 3 or the like perovskite oxide.
  • TiO 2 , ZnO, and SnO 2 are particularly preferable.
  • These oxides may be used in combination, and a preferred example is a SnO 2 —ZnO mixed system.
  • a mixed system they may be mixed in the form of fine particles, mixed in a slurry or paste state described below, or the components may be used in layers.
  • the primary particle size of the oxide semiconductor used here is usually 1 to 200 nm, preferably 1 to 50 nm.
  • an oxide semiconductor for example, titanium and magnesium, calcium, zirconium, strontium, etc. described in International Publication No. WO2006 / 080384 are disclosed.
  • a composite oxide semiconductor manufactured by mixing non-titanium metal or the like can also be used.
  • the sensitizing dye that can be used in the dye-sensitized solar cell of the present invention is not particularly limited as long as it is a non-ruthenium organic dye having an action of sensitizing light absorption in combination with semiconductor fine particles constituting the semiconductor-containing layer.
  • a non-ruthenium organic dye a single dye may be used, or several kinds of dyes may be mixed and used in an arbitrary ratio.
  • a wide absorption wavelength can be used by mixing dyes having different absorption wavelength regions, so that a solar cell with high conversion efficiency can be obtained.
  • non-ruthenium-based organic dyes include cyanine-based, merocyanine-based, oxonol-based, triphenylmethane-based, acrylic acid-based dyes described in International Publication No. WO2002 / 011213, and International Publication No. WO2006 / 126538 Methine dyes such as the pyrazolone methine dyes described in 1., xanthene, azo, anthraquinone, perylene, indigo, acridine, quinone, coumarin, phenylxanthene, phthalocyanine whose central metal is not ruthenium And porphyrin-based dyes whose central metal is not ruthenium.
  • Japanese Patent No. 3731752 Japanese Patent Application Laid-Open No. 2002-334729, Japanese Patent Application Laid-Open No. 2002-512729, Japanese Patent Application Publication No. 2003-007358, Japanese Patent Application Laid-Open No. 2003-015146, Japanese Patent Application Laid-Open No. 2003-05547.
  • JP, 2003-086257 JP 2003-115333, JP 2003-132965, JP 2003-142172, JP 2003-151649, JP 2003-157915, JP 2003-282165 A, JP 2004-014175 A, JP 2004-022222, JP 2004-022387 A, JP 2004-227825 A, JP 2005-005026 A, JP 2005-019130, JP 2 Nos.
  • the dye represented by the following formula (2) is particularly preferably used in the dye-sensitized solar cell of the present invention.
  • the dye represented by the formula (2) is used in the meaning including both the free acid represented by the formula (2) and a salt thereof unless otherwise specified.
  • the salt of the dye represented by the formula (2) include a metal salt in which the carboxylic acid moiety in the formula (2) is an alkali metal or alkaline earth metal such as lithium, sodium, potassium, magnesium or calcium. Or a compound that is a quaternary ammonium salt with tetramethylammonium, tetrabutylammonium, pyridinium, imidazolium, or the like.
  • a 1 and A 2 are each independently a carboxyl group, cyano group, alkoxycarbonyl group, acyl group, nitro group, cyclic hydrocarbon residue, heterocyclic residue, amino group, hydroxyl group, hydrogen
  • An atom, a halogen atom or an alkyl group is represented.
  • each A 1 and each A 2 each independently represent the same group as described above, which may be the same or different.
  • Examples of the alkyl group included in the alkoxycarbonyl group represented by A 1 and A 2 in Formula (2) include a saturated or unsaturated linear, branched or cyclic alkyl group which may have a substituent. .
  • linear or branched alkyl group an alkyl group having 1 to 36 carbon atoms is preferable, and a saturated linear alkyl group having 1 to 20 carbon atoms is more preferable.
  • the cyclic group include a cycloalkyl group having 3 to 8 carbon atoms.
  • the acyl group represented by A 1 and A 2 in Formula (2) include an alkylcarbonyl group having 1 to 10 carbon atoms, an arylcarbonyl group, etc., preferably an alkylcarbonyl group having 1 to 4 carbon atoms, specifically Examples include acetyl group and propionyl group.
  • the cyclic hydrocarbon residue represented by A 1 and A 2 in formula (2) means a group obtained by removing one hydrogen atom from a cyclic hydrocarbon.
  • the cyclic hydrocarbon include a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, pyrene ring, indene ring, azulene ring, fluorene ring, cyclohexane ring, cyclopentane ring, cyclohexene ring, cyclopentene ring, cyclohexadiene ring, And cyclopentadiene ring.
  • the cyclic hydrocarbon residue represented by A 1 and A 2 may have a substituent.
  • substituents examples include an alkyl group, an aryl group, a cyano group, an isocyano group, a thiocyanate group, an isothiocyanato group, a nitro group.
  • substituents include an alkyl group, an aryl group, a cyano group, an isocyano group, a thiocyanate group, an isothiocyanato group, a nitro group.
  • substituent examples include an alkyl group, an aryl group, a cyano group, an isocyano group, a thiocyanate group, an isothiocyanato group, a nitro group.
  • alkyl group here, the same thing as the alkyl group which the above-mentioned alkoxycarbonyl group has is mentioned.
  • the acyl group include the same groups as described above, and examples of the aryl group include a group obtained by removing a hydrogen atom from the aromatic ring described in the section of the cyclic hydrocarbon residue.
  • the aryl group may further have a substituent, and examples of the substituent include the same substituents that the above-described cyclic hydrocarbon residue may have.
  • the halogen atom include atoms such as chlorine, bromine and iodine.
  • the phosphoric acid ester group include phosphoric acid (having 1 to 4 carbon atoms) alkyl ester groups.
  • Examples of the substituted or unsubstituted mercapto group include a mercapto group and an alkyl mercapto group.
  • Examples of the substituted or unsubstituted amino group include an amino group, a mono- or dialkylamino group, a mono- or diaromatic amino group, and the like. Specific examples include mono or dimethylamino group, mono or diethylamino group, mono or dipropylamino group, mono or diphenylamino group, and mono or dibenzylamino group.
  • Examples of the substituted or unsubstituted amide group include an amide group, an alkylamide group, and an aromatic amide group.
  • alkoxy group examples include an alkoxy group having 1 to 10 carbon atoms.
  • alkoxyalkyl group examples include (alkoxy having 1 to 10) alkoxy (having 1 to 4 carbon) alkyl.
  • alkoxycarbonyl group examples include an alkoxycarbonyl group having 1 to 10 carbon atoms.
  • Acid groups such as carboxyl group, sulfo group, and phosphoric acid group include metal salts such as lithium, sodium, potassium, magnesium, and calcium, and quaternary ammonium salts such as tetramethylammonium, tetrabutylammonium, pyridinium, and imidazolium. Such a salt may be formed.
  • the heterocyclic residue represented by A 1 and A 2 in Formula (2) means a group obtained by removing one hydrogen atom from a heterocyclic compound.
  • the heterocyclic compound include a pyridine ring, pyrazine ring, pyrimidine ring, pyrazole ring, pyrazolidine ring, piperidine ring, thiazolidine ring, oxazolidine ring, pyran ring, chromene ring, pyrrole ring, benzimidazole ring, imidazoline ring, imidazoline ring.
  • Lysine ring imidazole ring, pyrazole ring, triazole ring, triazine ring, diazole ring, morpholine ring, indoline ring, thiophene ring, bithiophene ring, terthiophene ring, furan ring, oxazole ring, thiazine ring, thiazole ring, indole ring, benzo Examples include thiazole ring, naphthothiazole ring, benzoxazole ring, naphthoxazole ring, indolenine ring, benzoindolenin ring, pyrazine ring, quinoline ring, quinazoline ring, and carbazole ring.
  • the heterocyclic residue may have a substituent, and examples of the substituent include the same substituents that the above-described cyclic hydrocarbon residue may have.
  • Preferred examples of the heterocyclic residue represented by A 1 and A 2 include a pyridine ring, a pyrazine ring, a piperidine ring, a morpholine ring, an indoline ring, a thiophene ring, a furan ring, an oxazole ring, a thiazole ring, an indole ring, and a benzothiazole. And a group obtained by removing one hydrogen atom from a heterocyclic compound such as a ring, a benzoxazole ring, a pyrazine ring, or a quinoline ring.
  • the amino group represented by A 1 and A 2 in Formula (2) may have a substituent.
  • the amino group having a substituent include a mono- or dialkylamino group, a mono- or diaromatic amino group, and a monoalkyl monoaromatic amino group.
  • the alkyl group possessed by the alkylamino group includes the alkoxycarbonyl group described above. The same thing as the alkyl group which has is mentioned.
  • Examples of the aromatic that the aromatic amino group has are the same as those of the above-described cyclic hydrocarbon residue.
  • amino group having a substituent examples include a mono- or dimethylamino group, a mono- or diethylamino group, a mono- or dipropylamino group, a mono- or diphenylamino group, and a mono- or dibenzylamino group.
  • halogen atom represented by A 1 and A 2 in Formula (2) examples include the same ones as described above.
  • alkyl group represented by A 1 and A 2 in Formula (2) include the same alkyl groups as the above-described alkoxycarbonyl group.
  • the alkyl group may have a substituent.
  • substituent that the alkyl group may have include an aryl group, a halogen atom, and an alkoxy group.
  • the aryl group and halogen atom here are the same as those described above, and the alkyl group that the alkoxy group has is the same as the alkyl group that the alkoxycarbonyl group has.
  • both A 1 and A 2 may be bonded to form a ring.
  • any two of them may be bonded to form a ring.
  • any of A 1 and the one of A 2 is not limited particularly either binding, usually adjacent A 1 and A 2 or two adjacent of A 1 between or two adjacent A 2 A ring is formed with each other.
  • the ring may have a substituent. Examples of the substituent in the case of having a substituent include the same substituents that the above-described cyclic hydrocarbon residue may have.
  • Examples of the ring formed by combining any two of A 1 and A 2 or a plurality of A 1 and a plurality of A 2 include an unsaturated hydrocarbon ring or a heterocyclic ring.
  • Unsaturated hydrocarbon rings include benzene, naphthalene, anthracene, phenanthrene, pyrene, indene, azulene, fluorene, cyclobutene, cyclopentene, cyclohexene, cyclohexadiene, cyclopentadiene, etc. Can be mentioned.
  • Heterocycles include pyridine ring, pyrazine ring, indoline ring, thiophene ring, furan ring, pyran ring, oxazole ring, thiazole ring, indole ring, benzothiazole ring, benzoxazole ring, pyrazine ring, quinoline ring, carbazole ring, benzopyran A ring etc. are mentioned. Of these, preferred examples include a cyclobutene ring, a cyclopentene ring, a cyclohexene ring, and a pyran ring. Further, when A 1 or A 2 has a carbonyl group or a thionyl group, a cyclic ketone or a cyclic thioketone may be formed.
  • a 1 and A 2 include independently a carboxyl group, cyano group, alkoxycarbonyl group, acyl group, hydroxyl group, hydrogen atom, halogen atom, and alkyl group. More preferably, a carboxyl group, a cyano group, a hydrogen atom, a halogen atom, and an alkyl group are mentioned. Of the halogen atoms, a chlorine atom, a bromine atom, and an iodine atom are preferable.
  • Equation (2) A 1 that bind to the same carbon atom to the carboxyl group are specified in the (specified has been closest A 1 to the carboxyl groups) is particularly preferably a carboxyl group or a cyano group.
  • M in the formula (2) represents an integer of 1 to 6.
  • X represents an aromatic hydrocarbon residue, a heterocyclic residue or an amino group.
  • the aromatic hydrocarbon residue means a group obtained by removing one hydrogen atom from an aromatic hydrocarbon.
  • examples of the aromatic hydrocarbon residue include groups in which one hydrogen atom has been removed from an aromatic hydrocarbon such as a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, pyrene ring, indene ring, azulene ring, and fluorene ring. It is done.
  • These aromatic hydrocarbon residues usually have an aromatic ring having 6 to 16 carbon atoms (such as an aromatic ring and a condensed ring containing an aromatic ring). Any of these may have a substituent.
  • heterocyclic residue represented by X in Formula (2) examples include a group in which one hydrogen atom has been removed from a heterocyclic compound.
  • the heterocyclic compound include pyridine ring, pyrazine ring, pyrimidine ring, pyrazole ring, pyrazolidine ring, thiazolidine ring, oxazolidine ring, pyran ring, chromene ring, pyrrole ring, benzimidazole ring, imidazoline ring, imidazolidine ring, Imidazole ring, pyrazole ring, triazole ring, triazine ring, diazole ring, morpholine ring, indoline ring, thiophene ring, bithiophene ring, terthiophene ring, furan ring, oxazole ring, thiazine ring, thiazole ring, indole ring, benzothiazole ring, Examples of
  • Each of these rings may be ring-increased or hydrogenated, and may have a substituent.
  • the heterocyclic ring may be quaternized and may have a counter ion.
  • the counter ion is not particularly limited and may be a general anion. Specific examples include fluoride ion, chloride ion, bromide ion, iodide ion, perchlorate ion, hydroxide ion, methyl sulfate ion, toluenesulfonate anion, tetrafluoroborate anion, hexafluorophosphonate anion.
  • Bromide ion, iodide ion, perchlorate ion, tetrafluoroborate anion, hexafluorophosphonate anion, toluenesulfonate anion, trifluoromethanesulfonate anion, and bis (trifluoromethanesulfonyl) imide anion are preferred.
  • the amino group represented by X in Formula (2) may have a substituent.
  • amino group which may have a substituent examples include an amino group, a diphenylamino group, a monophenylamino group, a dialkylamino group, a monoalkylamino group, an alkylphenylamino group, an alkoxyamino group, an acylamino group ( Examples thereof include a benzoylamino group and an acetylamino group. Examples of the alkyl group, alkoxy group, acyl group and the like of these amino groups are the same as those described above.
  • X may be bonded to A 1 or A 2 to form a ring, and the formed ring may have a substituent.
  • the ring formed by combining X with A 1 or A 2 include, for example, a benzene ring, naphthalene ring, indene ring, pyridine ring, pyrazine ring, pyrimidine ring, quinoline ring, thiophene ring, indolenine ring, and benzoindolenine.
  • Examples of the group include the same substituents on the cyclic hydrocarbon described in the above section A 1 or A 2 , and a carbonyl group, a thiocarbonyl group, and the like.
  • Preferred as a substituent on the above aromatic hydrocarbon residue or heterocyclic residue in X, and a substituent on the ring formed from two of X, A 1 and A 2 are a substituent.
  • the amino group which may have a substituent is a mono or dialkyl substituted amino group, a monoalkyl monoaryl substituted amino group, a diaryl substituted amino group, a mono or divinyl substituted amino group, a mono or diallyl substituted amino group A mono- or dibutadienyl-substituted amino group, a mono- or distyryl-substituted amino group, and the like.
  • a dialkyl-substituted amino group and a diaryl-substituted amino group are preferable.
  • alkyl group which may have a substituent examples include an aryl-substituted alkyl group, a halogen atom-substituted alkyl group, and an alkoxy-substituted alkyl group.
  • alkoxy group which may have a substituent examples include an alkoxy-substituted alkoxy group, a halogen-substituted alkoxy group, and an aryl-substituted alkoxy group.
  • X include an ethenyl group derivative having a triphenylamine derivative at the terminal, a butadienyl group derivative, a hexatrienyl group derivative, a thiophenyl group derivative, a bithiophenyl group derivative, a terthiophenyl group derivative, and the like. Any of these derivatives may have a substituent.
  • the substituent may be as described above as the substituent when the aromatic hydrocarbon residue or heterocyclic residue in X has a substituent.
  • X is particularly preferably a (poly) ethenyl group or (poly) thiophenyl group having a triphenylamine derivative.
  • the dye represented by the formula (2) can take a structural isomer such as a cis isomer or a trans isomer. Any structural isomer is not particularly limited, and can be used favorably as a photosensitizing dye.
  • sensitizing dyes include, for example, International Publication No. WO2002 / 011213, Japanese Patent Application Laid-Open No. 2003-171146, Japanese Patent Application Laid-Open No. 2003-282165, Japanese Patent Application Publication No. WO2004 / 082061, and Japanese Patent Application Laid-Open No. 2006. Examples thereof include dyes described in JP-A No. 134649, JP-A 2006-079898, International Publication Nos. WO 2007/100033, JP-A 2007-149570, and the like.
  • the dye-sensitized solar cell of the present invention has a second conductive support having a counter electrode.
  • the second conductive support includes platinum that acts as a counter electrode on the surface of the same conductive support as that used for the first conductive support and catalytically acts on the reduction reaction of the redox electrolyte as a counter electrode. Or a metal fine particle containing platinum or a metal fine particle precursor containing platinum applied and fired.
  • the dye-sensitized solar cell of the present invention has, as a charge transfer layer, an electrolytic solution containing iodine, iodine ions, and a compound having both a thioester bond and a positively charged nitrogen atom in the molecule.
  • an electrolytic solution containing iodine, iodine ions a compound having both a thioester bond and a positively charged nitrogen atom in the molecule.
  • the compound has at least one thioester bond and at least one positively charged nitrogen atom in one molecule. Any structure of the compound can be used in the dye-sensitized solar cell of the present invention.
  • the thioester bond is a structure obtained by dehydration condensation of a carboxylic acid and a thiol, and can be represented by a chemical formula of R—CO—S—R ′.
  • the positively charged nitrogen atom is a nitrogen atom having four covalent bonds, specifically, a quaternary ammonium cation, an iminium cation, and pyridinium, imidazolium, pyrrolidinium, pyrrolium, pyrazolium. And those on which nitrogen on the heterocyclic ring such as oxazolium is cationic.
  • the positively charged nitrogen atom may have any counter ion.
  • examples of counterions include haloniums, oxoanions, thiocyanates, borates, imides, sulfonates, and metal complex ions such as aluminum, chromium, silver, zinc, and iron.
  • a compound represented by the following formula (1) is more preferably used in the dye-sensitized solar cell of the present invention. .
  • R 1, R 2, R 3, R 4, R 5 and R 6 each independently have an aliphatic hydrocarbon residue having 10 or less carbon atoms and a substituent which may have a substituent. Represents an aromatic hydrocarbon residue which may be substituted, a heterocyclic residue which may have a substituent, or a hydrogen atom.
  • n is 2 or more and a plurality of R5 and R6 are present, each R5 and each R6 independently represents the same or different groups described above.
  • the aliphatic hydrocarbon residue having 1 to 10 carbon atoms represented by R1 to R6 means a residue obtained by removing one hydrogen atom from an aliphatic hydrocarbon having 1 to 10 carbon atoms.
  • the aliphatic hydrocarbon residue may be linear, branched or cyclic, and may be any of saturated aliphatic hydrocarbon and unsaturated aliphatic hydrocarbon.
  • the aliphatic hydrocarbon residue having 1 to 10 carbon atoms is, for example, a halogen atom, alkoxy group, ester group, acyl group, amino group, amide group, alkyl group, alkenyl group, alkynyl group, aryl group, cyano group, A substituent selected from the group consisting of a group, an isocyano group, a nitro group, a nitroso group, a hydroxyl group, a phosphate ester group, a sulfinyl group, and a sulfonyl group.
  • the substitution position and the number of substitutions of the substituent are not particularly limited. These may have a plurality of the same substituents or may have a plurality of different substituents.
  • the aromatic hydrocarbon residue represented by R1 to R6 means a residue obtained by removing one hydrogen atom from an aromatic hydrocarbon.
  • the aromatic hydrocarbon include a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, pyrene ring, indene ring, azulene ring, and fluorene ring. Each of these rings may be increased.
  • the aromatic hydrocarbon residue may be, for example, a halogen atom, alkoxy group, ester group, acyl group, amino group, amide group, alkyl group, alkenyl group, alkynyl group, aryl group, cyano group, isocyano group, nitro group
  • the group may have a substituent selected from the group consisting of a group, a nitroso group, a hydroxyl group, a phosphate ester group, a sulfinyl group, and a sulfonyl group.
  • the substitution position and the number of substitutions of the substituent are not particularly limited. These may have a plurality of the same substituents or may have a plurality of different substituents.
  • the heterocyclic residue represented by R1 to R6 means a residue obtained by removing one hydrogen atom from a heterocyclic compound.
  • the heterocyclic compound include pyrrolidine ring, oxolane ring, thiolane ring, pyrrole ring, furan ring, thiophene ring, piperidine ring, oxane ring, thiane ring, pyridine ring, imidazole ring, pyrazole ring, oxazole ring, thiazole.
  • Ring imidazoline ring, pyrazine ring, morpholine ring, thiazine ring, indole ring, isoindole ring, benzimidazole ring, purine ring, quinoline ring, isoquinoline ring, quinoxaline ring, cinnoline ring, pteridine ring, chromene ring, isochromene ring, acridine Ring, xanthene ring, carbazole ring and the like. Each of these rings may be increased or hydrogenated.
  • the heterocyclic residue includes, for example, a halogen atom, an alkoxy group, an ester group, an acyl group, an amino group, an amide group, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a cyano group, an isocyano group, a nitro group, It may have a substituent selected from the group consisting of a nitroso group, a hydroxyl group, a phosphate ester group, a sulfinyl group, and a sulfonyl group.
  • the substitution position and the number of substitutions of the substituent are not particularly limited. These may have a plurality of the same substituents or may have a plurality of different substituents.
  • any two members selected from R1, R2, R3, R4, R5 and R6 may be combined to form a ring.
  • n is 2 or more and there are a plurality of R5 and R6, a ring may be formed by R5 or R6.
  • the ring that may be formed may be any of a saturated hydrocarbon ring, an unsaturated hydrocarbon ring, a saturated heterocyclic ring, and an unsaturated heterocyclic ring.
  • the ring that may be formed may have an arbitrary number of substituents at arbitrary positions.
  • Examples of the ring that may be formed include cyclohexane ring, cyclopentane ring, cyclohexene ring, cyclopentene ring, cyclohexadiene ring, cyclopentadiene ring, lactone ring, lactam ring, cyclic ketone, benzene ring, naphthalene ring, anthracene ring, Phenanthrene ring, pyrene ring, indene ring, azulene ring, fluorene ring, pyrrolidine ring, oxolane ring, thiolane ring, pyrrole ring, furan ring, thiophene ring, piperidine ring, oxane ring, thiane ring, pyridine ring, imidazole ring, pyrazole ring , Oxazole ring, thiazole ring, imidazoline ring, pyrazine
  • Each of these rings may be increased or hydrogenated.
  • substituents that may have include, for example, a halogen atom, alkoxy group, ester group, acyl group, amino group, amide group, alkyl group, alkenyl group, alkynyl group, aryl group, cyano group, isocyano group, nitro group, Examples thereof include a nitroso group, a hydroxyl group, a phosphate ester group, a sulfinyl group, and a sulfonyl group.
  • R1, R2, R3, R4, R5 and R6 include aliphatic hydrocarbon residues having 1 to 6 carbon atoms, phenyl group, naphthalenyl group, benzyl group, pyridyl group, pyrrole group, thiophenyl group, furanyl group.
  • Oxolanyl group, oxanyl group, and hydrogen atoms in these substituents are alkyl groups, aryl groups, alkenyl groups, alkynyl groups, alkoxy groups, ester groups, acyl groups, amino groups, amide groups, halogen atoms, cyano groups And the like, a hydrogen atom, and the like.
  • Y ⁇ represents a monovalent anion serving as a counter ion of the nitrogen cation.
  • Y ⁇ is not particularly limited as long as it is a monovalent anion that can stably exist in an iodine electrolyte.
  • An anion having a low basicity is preferred.
  • Preferred examples of the anion include fluoride ion, chloride ion, bromide ion, iodide ion, perchlorate ion, hydroxide ion, methyl sulfate ion, toluenesulfonate anion, tetrafluoroborate anion, hexafluorophosphate.
  • N in the formula (1) represents an integer of 1 to 6.
  • n is preferably an integer of 1 to 4, more preferably an integer of 1 to 3.
  • R 1, R 2, R 3 and R 4 are each an aliphatic hydrocarbon residue having 1 to 6 carbon atoms, a phenyl group, a naphthalenyl group, a benzyl group, a pyridyl group as described above.
  • pyrrole group thiophenyl group, furanyl group, oxolanyl group, oxanyl group, and hydrogen atoms in these substituents are alkyl groups, alkenyl groups, alkynyl groups, aryl groups, alkoxy groups, ester groups, acyl groups, amino groups It is preferably a substituent substituted with a group, an amide group, a halogen atom, a cyano group or the like, a hydrogen atom, or the like.
  • a hydrogen atom in a methyl group, an ethyl group, a propyl group, a butyl group, a phenyl group, a benzyl group, a thiophenyl group, a furanyl group, and a substituent thereof is an alkoxy group, an ester group, an acyl group, an amide group, or a halogen atom. It is more preferably a substituent substituted with any one.
  • Y ⁇ represents a fluoride ion, chloride ion, bromide ion, iodide ion, perchlorate ion, hydroxide ion, methyl sulfate as described above.
  • An imide anion, (N-trifluoromethanesulfonyl-N-pentafluoroethanesulfonyl) imide anion, and the like are preferable.
  • acetylthiocholine, propionylthiocholine, butyrylthiocholine, benzoylthiocholine chloride, bromide, and iodide are most preferable.
  • the compound having both a thioester bond and a positively charged nitrogen atom in the molecule in the dye-sensitized solar cell of the present invention may be used alone or in combination of two or more. These may be commercially available products or may be synthesized independently. A compound having a high purity is more preferable, and a compound having a high solubility in an electrolyte solvent is more preferable.
  • the concentration of these compounds in the electrolytic solution is usually 0.01 to 2M, preferably 0.02 to 1M, more preferably 0.03 to 0.5M, and particularly preferably 0.05 to 0.3M.
  • the electrolyte solution possessed by the dye-sensitized solar cell of the present invention usually contains a compound having iodine ions as a counter ion that can release iodine ions in the electrolyte solution.
  • the compound having iodine ion as a counter ion is not particularly limited as long as it is a compound that can provide iodine ion in the electrolytic solution. Those having a high degree of dissociation of iodine ions are preferred.
  • Preferred examples of the compound having iodine ions as counter ions include metal halide salts such as lithium iodide, sodium iodide, potassium iodide, cesium iodide; or trimethylammonium iodide, tetrapropylammonium iodide, tetra Ammonium iodides such as butylammonium iodide; imidazolium iodide, 1,3-dimethylimidazolium iodide, 1-ethyl-3-methylimidazolium iodide, 1-methyl-3-propylimidazolium iodide, 1-butyl-3-methylimidazolium iodide, 1-hexyl-3-methylimidazolium iodide, 1,2-dimethyl-3-propylimidazolium iodide, 1,2-dimethyl-3-butylimidazolium iodide I
  • Pyrrolium iodides such as 1-propyl-2-methylpyrazolium iodide
  • phosphonium iodides such as tetrabutylphosphonium iodide.
  • lithium iodide lithium iodide, sodium iodide, potassium iodide, trimethylammonium iodide, tetrabutylammonium iodide, 1,3-dimethylimidazolium iodide, 1-ethyl-3 More preferred are -methylimidazolium iodide, 1-methyl-3-propylimidazolium iodide, 1-butyl-3-methylimidazolium iodide, 1,2-dimethyl-3-propylimidazolium iodide, and the like.
  • a compound having iodine ion as a counter ion may be used alone or in combination of two or more in the electrolyte solution of the dye-sensitized solar cell of the present invention.
  • the concentration of these compounds in the electrolytic solution is usually 0.01 to 10M, preferably 0.02 to 5M, more preferably 0.03 to 3M, and particularly preferably 0.05 to 2M.
  • An electrochemically inert solvent may be used in combination with the electrolyte solution of the dye-sensitized solar cell of the present invention.
  • the solvent that can be used in combination may be either an organic solvent or an ionic liquid, or a mixture of both.
  • Organic solvents that can be used in combination include acetonitrile, butyronitrile, valeronitrile, hexanenitrile, propylene carbonate, ethylene carbonate, 3-methoxypropionitrile, methoxyacetonitrile, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, diethylene glycol dimethyl ether, tri Ethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, 1,2-dimethoxyethane, ⁇ -butyrolactone, diethyl ether, diethyl carbonate, dimethyl carbonate, dimethylformamide, dimethyl sulfoxide, 1,3-dioxolane, methyl formate, 2-methyltetrahydrofuran, 3-methyl-oxazolidine-2-one, Horan, tetrahydrofuran, methyl isopropyl sulfone, and the like as a preferable example.
  • acetonitrile, valeronitrile, hexanenitrile, propylene carbonate, ethylene carbonate, 3-methoxypropionitrile, methoxyacetonitrile, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, 1,2-dimethoxyethane, ⁇ -butyrolactone, sulfolane, methyl Isopropyl sulfone and the like are more preferable.
  • Acetonitrile, valeronitrile, hexanenitrile, 3-methoxypropionitrile, methoxyacetonitrile, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, 1,2-dimethoxyethane, sulfolane, methyl isopropyl sulfone and the like are particularly preferable.
  • ionic liquid that can be used in combination
  • a compound that is liquid at room temperature is preferable.
  • ionic liquids include cations such as imidazole cation, pyrrolidinium cation, pyridinium cation, pyrrolium cation, pyrazolium cation, and phosphonium cation, and fluoride ions, chloride ions, bromide ions, and iodides.
  • These solvents may be used alone or in combination of two or more. When two or more types are used in combination, the ratio can be arbitrarily selected.
  • the electrolytic solution used in the dye-sensitized solar cell of the present invention may contain a nitrogen-containing compound, other additives, and the like as necessary.
  • the nitrogen-containing compound that can be used, other additives, and the like are not particularly limited, and the addition amount may be appropriately selected according to the purpose. It has the effect of improving the transport efficiency of the redox couple in the electrolyte, the effect of promoting the valence injection from the dye to the oxide semiconductor, the effect of preventing the reverse electron transfer from the oxide semiconductor, etc. It is preferable to add those that increase the durability of the dye-sensitized solar cell by improving the stability of the electrolytic solution.
  • the sealing agent of the dye-sensitized solar cell of the present invention is used for the purpose of laminating the first and second conductive supports and sealing the electrolytic solution used in the charge transfer layer.
  • the sealing agent is not particularly limited as long as it fulfills the above purpose.
  • Specific sealants include epoxy resin sealants, acrylate resin sealants, silicone resin sealants, polyisobutylene resin sealants, ionomer resin sealants, (modified) olefin resin sealants, etc. It can be illustrated.
  • an epoxy resin-based sealing agent having strong adhesive force and excellent solvent resistance and iodine resistance is preferably used.
  • any of a thermosetting type, an ultraviolet curable type, and a photothermal combination type sealing agent can be used as the epoxy resin-based sealant.
  • a sealant that can be applied to a screen printing method and a dispensing method and is excellent in adhesion after curing, heat resistance, moisture resistance, solvent resistance, light resistance, gas barrier properties, and the like is preferable.
  • the epoxy resin contained in the epoxy resin-based sealing agent is not particularly limited as long as it is an epoxy resin having at least two epoxy groups in one molecule.
  • epoxy resins include novolak type epoxy resins, bisphenol type epoxy resins, biphenyl type epoxy resins, triphenylmethane type epoxy resins, hydantoin type epoxy resins, isocyanurate type epoxy resins, aliphatic chain epoxy resins, and bifunctional phenols.
  • trisphenol methane novolac type epoxy resin and bisphenol A type epoxy resin are preferred. These may be used alone or in combination of two or more.
  • the epoxy resin as described above is useful for adjusting the viscosity of the sealant.
  • the sealing agent using these epoxy resins enables a substrate to be superposed at room temperature when forming the dye-sensitized solar cell of the present invention, and facilitates gap formation.
  • the composition of the epoxy resin-based sealant is not particularly limited. For example, if it is a thermosetting sealant, an epoxy resin and a thermosetting agent are included. As an ultraviolet curable sealant, an epoxy resin and a photopolymerization initiator are included. As the inclusion and photothermal combination curing type sealing agent, those containing an epoxy resin, a thermosetting agent and a photoreaction initiator are generally used. Either composition may contain further additives.
  • thermosetting agent type sealants include other thermosetting resins, reaction accelerators, fillers, coupling agents, solvents, stress relaxation agents, viscosity modifiers, pigments, leveling agents, antifoaming agents, spacers, etc. You may contain as needed.
  • UV curable sealants include other UV curable resins, photosensitizers, ion catchers, fillers, coupling agents, solvents, stress relaxation agents, viscosity modifiers, pigments, leveling agents, antifoaming agents, spacers, etc. May be contained as necessary.
  • Photothermal combination curable sealants are other thermosetting resins, other ultraviolet curable resins, reaction accelerators, photosensitizers, ion catchers, fillers, coupling agents, solvents, stress relaxation agents, viscosity modifiers. , Pigments, leveling agents, antifoaming agents, spacers and the like may be contained as necessary. Among these, a thermosetting epoxy resin sealant is preferably used.
  • thermosetting epoxy resin-based sealant containing phenols, polyphenols, bisphenols, novolacs, amines, guanamines, imidazoles, hydrazides, acid anhydrides and the like as thermosetting agents is more preferable.
  • thermosetting epoxy resin-based sealants containing novolacs and hydrazides are particularly preferred.
  • Thermosetting epoxy resin-based sealants containing phenol novolacs, aromatic hydrazides, and aliphatic hydrazides having 6 or more carbon atoms are most preferred.
  • These thermosetting agents may be used independently and may use 2 or more types together.
  • the epoxy resin-based sealant as described above is excellent in adhesiveness, moisture resistance, solvent resistance, and the like. Therefore, the durability of the dye-sensitized solar cell of the present invention can be particularly improved.
  • the epoxy resin-based sealant examples include Japanese Patent Application Laid-Open No. 2002-368236, International Publication No. 2004/075333, International Publication No. WO2007 / 046499, International Publication No. WO2007 / 007671, International Application Patent No. PCT / JP2011 / 061166. No. (International Publication WO2011 / 145551) and the like.
  • the sealing agents described in JP-A No. 2002-368236 and International Application Patent No. PCT / JP2011 / 061166 International Publication WO2011 / 145551 are particularly preferable.
  • a thin film of oxide semiconductor fine particles is a method of directly forming oxide semiconductor fine particles on a conductive support by spray spraying or the like, and forming a thin film of semiconductor fine particles.
  • the slurry is obtained by dispersing secondary agglomerated oxide semiconductor fine particles in a dispersion medium by an ordinary method so that the average primary particle diameter is 1 to 200 nm.
  • the dispersion medium for dispersing the slurry is not particularly limited as long as the semiconductor fine particles can be dispersed.
  • water alcohol such as ethanol, ketone such as acetone or acetylacetone, hydrocarbon such as hexane, or the like is used. These may be used as a mixture. Use of water is preferable from the viewpoint of reducing the change in viscosity of the slurry.
  • a dispersion stabilizer can be used in combination for the purpose of stabilizing the dispersion state of the oxide semiconductor fine particles.
  • the dispersion stabilizer that can be used include acids such as acetic acid, hydrochloric acid and nitric acid, and organic solvents such as acetylacetone, acrylic acid, polyethylene glycol and polyvinyl alcohol.
  • the conductive support coated with the slurry may be fired.
  • the firing temperature is usually 100 ° C. or higher, preferably 200 ° C. or higher. And an upper limit is generally below melting
  • the firing time is not particularly limited but is preferably within 4 hours.
  • the thickness of the thin film on the conductive support is usually 1 to 200 ⁇ m, preferably 1 to 50 ⁇ m.
  • the thin film of oxide semiconductor fine particles may be subjected to secondary treatment.
  • the performance of the thin film of semiconductor fine particles can be improved by immersing the thin film together with the conductive support directly in a solution of the same metal alkoxide, chloride, nitride or sulfide as the semiconductor and drying or refiring. It can also be improved.
  • the metal alkoxide include titanium ethoxide, titanium isopropoxide, titanium t-butoxide, n-dibutyl-diacetyltin and the like.
  • an alcohol solution is preferably used.
  • the chloride include titanium tetrachloride, tin tetrachloride, and zinc chloride. In this case, an aqueous solution is preferably used.
  • the oxide semiconductor thin film thus obtained is composed of fine particles of an oxide semiconductor.
  • the solvent that can be used to dissolve or disperse the sensitizing dye include methanol, ethanol, acetonitrile, acetone, dimethyl sulfoxide, dimethylformamide, n-propanol, i-propanol, t-butanol, tetrahydrofuran, and the like. Is mentioned. These solvents may be used alone, or two or more kinds may be mixed and used at an arbitrary ratio.
  • the concentration of the sensitizing dye in the solution or dispersion is usually 1 ⁇ 10 ⁇ 6 to 1M, preferably 1 ⁇ 10 ⁇ 5 to 1 ⁇ 10 ⁇ 1 M.
  • dye is obtained by immersing the electroconductive support body in which the semiconductor content layer was provided in the solution or dispersion liquid of the sensitizing dye.
  • each dye in the case of using a mixture of dyes is not particularly limited, but generally it is preferable to use each dye at least about 10 mol% or more.
  • the total concentration of the dye in the solution may be the same as when only one kind is supported.
  • the solvent used for each dye may be the same or different.
  • inclusion compounds may be added to the dye solution, or the dye may be dissolved or dispersed after the inclusion compound is previously dissolved in a solvent. These inclusion compounds can be used in combination of two or more. In this case, the ratio of a plurality of inclusion compounds can be arbitrarily selected.
  • the semiconductor-containing layer may be treated with an amine compound such as 4-t-butylpyridine, pyridine, 4-methylpyridine, or triethylamine, or an acid such as formic acid, acetic acid, or propionic acid.
  • This treatment method includes, for example, a method of immersing a conductive support provided with a semiconductor-containing layer carrying a sensitizing dye in an ethanol solution to which an amine compound or an acid is added, or providing a semiconductor-containing layer carrying a sensitizing dye.
  • a method in which an amine compound or an acid is directly brought into contact with the conductive support thus obtained and washed and dried with an organic solvent, water, or the like after a certain time is employed.
  • a conductive support (first conductive support) having a semiconductor-containing layer sensitized with the dye obtained as described above and a conductive support (second conductive) having a counter electrode.
  • a sealant to which a spacer (gap control material) is added is dispenser, screen printing machine, ink jet printing machine, etc. leaving the injection port of the charge transfer layer around the conductive surface of one of the conductive supports. Apply in the shape of a weir. Thereafter, when the sealant contains a solvent, the solvent is evaporated by heating with, for example, a hot air dryer.
  • the other conductive support is overlapped so that the conductive surfaces of the first and second conductive supports face each other, and the sealant is cured by heating and / or ultraviolet irradiation.
  • the spacer used here for example, glass fiber, silica beads, polymer beads and the like, and fine particles coated with metal such as gold pearl and silver pearl are used.
  • the diameter varies depending on the purpose, but is usually 1 to 100 ⁇ m, preferably 10 to 40 ⁇ m.
  • the amount used is usually 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, and more preferably 1 to 2.5 parts by weight with respect to 100 parts by weight of the sealant.
  • the conditions for heat-curing the sealing agent are usually 90 to 180 ° C. and 1 to 3 hours.
  • a method of sandwiching with a hot press machine having two hot plates, a method of fixing in a jig, and a method of performing in an oven can be employed.
  • a method of sandwiching with a hot press machine having two hot plates, a method of fixing in a jig, and a method of performing in an oven can be employed.
  • what is necessary is just to select the irradiation conditions of the ultraviolet-ray in the case of using a ultraviolet curing type and a photothermal combined curing type sealing agent according to the curing rate of a sealing agent.
  • the gap between the first and second conductive supports is usually 1 to 100 ⁇ m, preferably 4 to 50 ⁇ m.
  • the dye-sensitized solar cell of the present invention can be obtained by injecting the charge transfer layer into the gap between the pair of conductive supports bonded together as described above and then sealing the injection port of the charge transfer layer. it can.
  • a sealing agent for sealing the injection port of the charge transfer layer, isobutylene resin, epoxy resin, UV curable acrylic resin, or the like can be used.
  • a commercially available sealant can be used as the sealant.
  • a UV curable acrylic resin is preferable.
  • a method described in International Publication No. WO2007 / 046499 can be employed as another method for producing a dye-sensitized solar cell.
  • a sealant weir is provided in the periphery of the conductive surface of one of the conductive supports without providing the charge transfer layer injection port, and then the same charge transfer layer is placed inside the sealant weir.
  • the other conductive support is placed and bonded so that the conductive surfaces of the first and second conductive supports face each other under reduced pressure, and at the same time a gap is formed, and then the sealant is cured.
  • a dye-sensitized solar cell can be obtained.
  • FIG. 1 is a schematic cross-sectional view of the relevant part for explaining the structure of the dye-sensitized solar cell of the present invention.
  • 1 is a first conductive support whose inside is conductive
  • 2 is a semiconductor-containing layer sensitized with a dye
  • 1 and 2 are collectively referred to as an oxide semiconductor electrode.
  • 3 is a second conductive support having a counter electrode in which platinum or the like is disposed on a conductive surface inside the conductive support
  • 4 is a charge transfer layer disposed in a gap between the pair of conductive supports
  • 5 is a sealing agent
  • 6 is a glass substrate.
  • Electrolyte preparation example 1 0.1M iodine, 0.1M lithium iodide (LiI) as iodide and 1.2M 1-methyl-3-propylimidazolium iodide, and thioester bond and positive charge in the molecule as additive
  • Each component was dissolved and mixed in 3-methoxypropionitrile so that a concentration of 0.1 M of butyrylthiocholine iodide, which is a compound having both nitrogen atoms, was obtained, and an electrolyte solution 1 for dye-sensitized solar cells was obtained. Obtained.
  • Electrolyte preparation examples 2-15, 17-21 Dye-sensitized solar cell electrolytes 2 to 15 and 17 to 21 were obtained in the same manner as in Electrolyte Preparation Example 1 except that the additives were changed to the compounds shown in Table 1.
  • Electrolytic solution preparation example 16 An electrolyte solution 16 for a dye-sensitized solar cell was obtained according to the electrolytic solution preparation example 1 except that the additive butyrylthiocholine iodide was not used.
  • Evaluation Test 1 Evaluation of heat stability of electrolyte 1 mL of each of the electrolyte solutions 1 to 21 obtained in the electrolyte solution preparation examples 1 to 21 was added to each of the brown sample bottles and heated in an oven at 85 ° C. for 20 hours in a sealed state. Thereafter, the state of the electrolytic solution was visually observed, and those having no change in the state were evaluated as ⁇ , and those in which the brown color of iodine was decolored, or those in which precipitation occurred in the solution were evaluated as ⁇ . The results are shown in Table 1.
  • Evaluation Test 2 Evaluation of heat resistance stability of platinum against electrolyte
  • the FTO conductive glass support which is a conductive support
  • platinum was vapor-deposited by 50% by sputtering, and cut into a size of 1 cm ⁇ 2 cm was used as a test piece.
  • 1 mL of each of electrolytes 1 to 21 and one of the above test pieces were added and heated in an oven at 85 ° C. for 20 hours in a sealed state. Then, the test piece was taken out and the state of platinum was visually observed. The case where there was no change in the state was rated as ⁇ , and the case where the black color of platinum was decolored was marked as x.
  • Table 1 The results are shown in Table 1.
  • Example 1 On a conductive surface of an FTO conductive glass support, which is a conductive support, TiO 2 fine particles (average particle size 20 nm) made into a paste with terpineol were applied with a screen printer and baked at 450 ° C. for 30 minutes. Then, a conductive support having a semiconductor-containing layer (film thickness: 10 ⁇ m, minor axis width: 5 mm, major axis width: 4 cm) was prepared. The conductive support provided with the obtained semiconductor-containing layer was prepared by applying 1.6 ⁇ 10 ⁇ to the dye described in Example 6 of International Publication No. WO2007 / 100033 (the dye represented by the following formula (3)).
  • An oxide semiconductor electrode was produced by immersing in a dye solution obtained by dissolving in acetone to a concentration of 4 M at room temperature for 24 hours. Next, Pt was vapor-deposited on the conductive surface of another FTO conductive glass support to produce a counter electrode.
  • a seal obtained by adding 2.5% by mass of gold pearl (pearl diameter: 20 ⁇ m) as a spacer to the epoxy resin-based sealant described in Sealant Preparation Example 3 of International Patent Publication WO2011 / 14551 at the periphery of the obtained counter electrode
  • the agent was applied using a screen printer so as to leave the injection port of the charge transfer layer, and then the solvent was removed by heating at 90 ° C. for 18 minutes with a hot air dryer.
  • the above oxide semiconductor electrode was overlaid on the sealant so that the conductive surface of the counter electrode and the semiconductor-containing layer face each other, and was heated at 150 ° C. at a pressure of 2.5 kg / cm 2 using a hot press. Was cured for 60 minutes to obtain a cell in which both conductive supports were bonded together.
  • the electrolyte solution 1 obtained in the electrolyte preparation example was filled into the cell from the injection port of the obtained cell, and then the injection port was sealed with a UV curable acrylic resin to thereby provide the dye-sensitized solar cell of the present invention. (Battery 1) was obtained.
  • Example 2 A dye-sensitized solar cell (battery 2) of the present invention was obtained in the same manner as in Example 1 except that the electrolytic solution 1 was changed to the electrolytic solution 2 obtained in the electrolytic solution preparation example.
  • Evaluation test 3 Measurement of initial photoelectric conversion efficiency (initial Eff)
  • the photoelectric conversion ability of the batteries 1 and 2 obtained in Examples 1 and 2 and the batteries 3 to 15 obtained in Comparative Examples 1 to 13 was measured.
  • a 1 kW xenon lamp manufactured by WACOM
  • WACOM photoelectric conversion efficiency
  • Eff photoelectric conversion efficiency calculated from the open-circuit voltage, short-circuit current, and form factor is set to 100 mW / cm 2 through an AM1.5 filter, and a solar simulator (WXS-155S). -10, manufactured by WACOM).
  • the results are shown in Table 2.
  • Evaluation test 4 Heat resistance acceleration test
  • the batteries 1 and 2 obtained in Examples 1 and 2 and the batteries 3 to 15 obtained in Comparative Examples 1 to 13 were subjected to a heat resistance acceleration test at 85 ° C.
  • the photoelectric conversion efficiency (Eff) after each battery was put in an aluminum bag and held at 85 ° C. for 500 hours was measured according to the test method of Evaluation Test 3. Further, the Eff deterioration rate was calculated by the following equation. The results are shown in Table 2.
  • the electrolytic solution containing a compound having both a thioester bond and a positively charged nitrogen atom in the molecule represented by the electrolytic solutions 1 to 3 has good storage stability. Had sex.
  • electrolytic solutions containing similar compounds, such as electrolytic solutions 4, 6, and 13 there was a system in which the oxidation-reduction reaction between sulfur atoms and iodine proceeded and the stability was greatly inferior.
  • the batteries 1 and 2 of the present invention using the electrolytic solutions 1 and 2 had good initial Eff and Eff after being held at 85 ° C. for 500 hours, and the Eff deterioration rate was about 5%.
  • the deterioration rate is greatly inferior to 86%
  • the battery 3 using the electrolytic solution 5 to which a compound having only a thioester bond is added The deterioration rate was 83%.
  • batteries 4 and 5 using electrolytic solutions 7 and 8 to which a thioamide compound is added, and batteries 6 to 9 using electrolytic solutions 9, 10, 14, 15, 17 and 18 to which a compound containing thiocyanate is added, 11 and 12 etc. the deterioration rate was 18% or more, and the durability of the battery was inferior.
  • the batteries 13 to 15 using the electrolytic solutions 19, 20, and 21 to which a compound containing only a positively charged nitrogen atom having no thioester bond in the molecule has a deterioration rate of 99% or more The battery durability was greatly inferior.
  • the same desired effect as described above can also be obtained by a dye-sensitized solar cell manufactured using a known non-ruthenium dye other than the compound represented by the formula (3).
  • the dye-sensitized solar cell of the present invention using an electrolytic solution containing a compound having both a thioester bond and a positively charged nitrogen atom in the molecule has excellent photoelectric conversion efficiency and heat durability. Obviously it has.
  • the sensitizing dye is a non-ruthenium organic dye
  • the counter electrode contains platinum
  • the charge transfer layer contains iodine, iodine ions, and a nitrogen atom having a thioester bond and a positive charge in the molecule.
  • a dye-sensitized solar cell which is an electrolytic solution containing a compound having both has excellent conversion efficiency and high durability. For this reason, it is possible to provide a dye-sensitized solar cell using a non-ruthenium-based dye that has few resource restrictions and a wide range of molecular design, and that has little deterioration even when used for a long period of time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 本発明は、優れた光電変換効率と耐久性を有する色素増感太陽電池を提供することを目的とする。色素によって増感された半導体含有層を有する第一の導電性支持体、該半導体含有層と対向電極とが所定の間隔で対向する位置に設けられた対向電極を有する第二の導電性支持体、第一及び第二の導電性支持体の間隙に挟持された電荷移動層、並びに電荷移動層をシールするために第一及び第二の導電性支持体の周辺部に設けられたシール剤を有する色素増感太陽電池であって、該色素が非ルテニウム系の有機色素であり、該対向電極が白金を含み、かつ該電荷移動層が、ヨウ素、ヨウ素イオン、及び分子内にチオエステル結合と正電荷を帯びた窒素原子の双方を有する化合物を含む電解液である色素増感太陽電池が開示される。

Description

色素増感太陽電池
 本発明は、優れた光電変換効率及び耐久性を実現可能な、色素増感太陽電池に関する。
 クリーンなエネルギー源として注目されている太陽電池は、近年、一般の住宅にも利用されるようになってきた。しかし、未だ十分に普及するには至っていない。その理由の一つとして、太陽電池そのものの性能が充分優れているとは言い難いためモジュールを大きくせざるを得ないことがある。また他の理由としては、モジュール製造における生産性が低いため、太陽電池そのものが高価であることがある。
 太陽電池にはいくつかの種類があるが、実用化されている太陽電池の大部分はシリコン太陽電池である。しかし、最近になって注目されるようになり、その実用化を目指して研究されているものに色素増感太陽電池がある。現在の色素増感太陽電池の原型は、1991年にグレッツェル(スイス)らによって開発され、グレッツェルセルとも呼ばれる。その構造は、一方の極となる透明導電性基板上に設けられた、色素によって増感された酸化物半導体微粒子からなる半導体含有層と、それと対峙するように白金等を配した対極からなる基板との間に、電荷移動層(レドックス物質を含む電解液)を狭持した形式が一般的である。例えば、ルテニウム錯体色素を多孔質酸化チタン電極に吸着させることにより、色素増感太陽電池はアモルファスシリコン太陽電池並みの性能を有するまでに至っている(非特許文献1)。しかし、その実用化に向けては未だ多くの課題が残されている。特に長期間使用するための耐久性の向上は、克服すべき重要な課題の一つとなっている。コストが高い前記シリコン太陽電池の代替として色素増感太陽電池の実用化を可能にするためにも、色素増感太陽電池の更なる光電変換効率及び耐久性の向上等が望まれている。
 色素増感太陽電池の増感色素は、ルテニウム系色素と非ルテニウム系色素の2系統に大別される。近年は、資源的な制約が少なく、分子設計の幅が広い、非ルテニウム系色素が盛んに開発されている(非特許文献2)。また、色素増感太陽電池の対向電極には、高い変換効率を達成するために、白金を含む電極を用いることが多い。さらに、半導体含有層と対向電極の間にある電荷移動層には、バランスの良い性能を持つヨウ素系のレドックス対を含んだ電解液が一般的に用いられる。しかし、これらの組み合わせで得られる色素増感太陽電池は、初期の光電変換効率は良好であるものの、ヨウ素系レドックスの高い腐食性により、長期の安定性に劣るという問題を抱えていた。
 前記のような問題を解決するため、特許文献1では、硫黄を含む化合物で白金基板の表面処理をして対向電極を作成する方法や、電解液中に含硫黄物質を添加する方法を提案している。確かに、これらの方法により白金対極の安定性は向上しているものの、白金基板の表面処理は、工程上の負荷が大きく、さらに処理効果が長期間持続しない虞がある。また、一般的に酸化数の低い含硫黄物質はヨウ素系レドックスにより酸化されるため、そのような化合物を電解液に添加すると、電解液の安定性を大きく損なう可能性が高い。しかし、該特許ではこれらの問題については何ら言及されていない。さらに、実施例中の耐久性評価も、電池の長期安定性を有するものと見積もられるレベルでは無い。従って、該特許で開示されている方法は、いまだ未完成の技術と言わざるを得ない。
 また、同様に硫黄系の材料を電解液に添加している例としては、チオシアネートイオンを加えた電解液(非特許文献3、特許文献2等)や、アルキルチオ基やベンジルチオ基を持つアミノトリアゾールを加えた電解液(特許文献3)、スルホランを加えた電解液(特許文献4)等が挙げられる。しかし、いずれも電解液や白金の安定性に関しては言及されておらず、また電池の構成に関する検討も十分なされていない。特に、一般的に広く知られているチオシアネートイオンを添加した電解液を用いた場合には、電池の長期耐久性を損なう可能性が高い。このように、非ルテニウム系色素、白金電極及びヨウ素系レドックスを含む電解液の全てを構成部材とする従来技術の色素増感太陽電池は、その実用化が期待されてきたにもかかわらず、長期耐久性に関して未だ多くの不都合を有している。
国際公開特許WO2012-014414号公報 特開2010-192226号公報 日本国特許第4264507号公報 国際公開特許WO2009-069757号公報
Nature,第353巻,第737~740頁,1991年 Chemical Reviews,第110巻第11号,第6616~6631頁,2010年 The Journal of Physical Chemistry C,第113巻,第21779~21783頁,2009年
 本発明の目的は、優れた光電変換効率と耐久性を実現可能な、非ルテニウム系色素を用いた色素増感太陽電池を提供することである。
 本発明者らは、前記した課題を解決すべく鋭意研究を重ねた。その結果、増感色素に非ルテニウム色素を用い、対向電極に白金を用いて、かつ電荷移動層にヨウ素、ヨウ素イオン、及び分子内にチオエステル結合と正電荷を帯びた窒素原子の双方を有する化合物を含む電解液を用いた色素増感太陽電池が、光電変換効率及び耐久性の双方に優れることを見出した。
 本発明の諸態様は、以下のとおりである。
 [1].色素によって増感された半導体含有層を有する第一の導電性支持体、該半導体含有層と対向電極とが所定の間隔で対向する位置に設けられた対向電極を有する第二の導電性支持体、第一及び第二の導電性支持体の間隙に挟持された電荷移動層、並びに、電荷移動層をシールするために第一及び第二の導電性支持体の周辺部に設けられたシール剤を含む色素増感太陽電池であって、該色素が非ルテニウム系の有機色素であり、該対向電極が白金を含み、かつ該電荷移動層が、ヨウ素、ヨウ素イオン、及び分子内にチオエステル結合と正電荷を帯びた窒素原子の双方を有する化合物を含む電解液である色素増感太陽電池。
 [2].分子内にチオエステル結合と正電荷を帯びた窒素原子の双方を有する化合物が、下記式(1)
Figure JPOXMLDOC01-appb-C000003

(式中、R1、R2、R3、R4、R5及びR6は、それぞれ独立に、ハロゲン原子、アルコキシ基、エステル基、アシル基、アミノ基、アミド基、アルキル基、アルケニル基、アルキニル基、アリール基、シアノ基、イソシアノ基、ニトロ基、ニトロソ基、ヒドロキシル基、リン酸エステル基、スルフィニル基及びスルホニル基からなる群より選ばれる一種以上の置換基を有していてもよい炭素数1~10の脂肪族炭化水素残基、ハロゲン原子、アルコキシ基、エステル基、アシル基、アミノ基、アミド基、アルキル基、アルケニル基、アルキニル基、アリール基、シアノ基、イソシアノ基、ニトロ基、ニトロソ基、ヒドロキシル基、リン酸エステル基、スルフィニル基及びスルホニル基からなる群より選ばれる一種以上の置換基を有していてもよい芳香族炭化水素残基、ハロゲン原子、アルコキシ基、エステル基、アシル基、アミノ基、アミド基、アルキル基、アルケニル基、アルキニル基、アリール基、シアノ基、イソシアノ基、ニトロ基、ニトロソ基、ヒドロキシル基、リン酸エステル基、スルフィニル基及びスルホニル基からなる群より選ばれる一種以上の置換基を有していてもよい複素環残基若しくは水素原子を表す。また、R1、R2、R3、R4、R5及びR6から選択される任意の2者は結合して環を形成してもよい。nは1~6の整数を表す。Y-は、1価の陰イオンを表す。)
で表される構造を有する上記[1]項に記載の色素増感太陽電池。
 [3].式(1)で表される化合物が、チオコリン残基を有する化合物である上記[2]項に記載の色素増感太陽電池。
 [4].式(1)で表される化合物が、ハロゲン化物イオンを有する化合物である上記[2]又は[3]項に記載の色素増感太陽電池。
 [5].シール剤が、エポキシ樹脂系シール剤である上記[1]項に記載の色素増感太陽電池。
 [6].半導体含有層の半導体が、微粒子状の酸化チタン又は微粒子状の複合酸化チタンである上記[1]項に記載の色素増感太陽電池。
 [7].非ルテニウム系の有機色素が、下記式(2)
Figure JPOXMLDOC01-appb-C000004

(式中、AおよびAは、それぞれ独立に、カルボキシル基、シアノ基、アルコキシカルボニル基、アシル基、ニトロ基、環式炭化水素残基、複素環残基、アミノ基、ヒドロキシル基、水素原子、ハロゲン原子又はアルキル基を表す。Xは芳香族炭化水素残基、複素環残基またはアミノ基を表す。mは1~6の整数を表す。また、mが2以上で、AおよびAが複数存在する場合、それぞれのAおよびそれぞれのAは互いに独立に同じ又は異なってもよい前記の基を表す。また、A若しくはAが複数存在する場合にはそれぞれのA、A若しくはAが複数存在する場合にはそれぞれのA及びXの中の任意の2者は結合して環を形成してもよい。)
で表される構造を有する上記[1]項に記載の色素増感太陽電池。
 [8].式(2)におけるAが、シアノ基またはカルボキシル基である上記[7]項に記載の色素増感太陽電池。
 [9].式(2)におけるXがトリフェニルアミン誘導体を有する(ポリ)エテニル基又は(ポリ)チオフェニル基である上記[7]又は[8]項に記載の色素増感太陽電池。
 本発明の色素増感太陽電池は、初期変換効率及び耐久性に優れている。特に耐熱耐久性が良好である。この色素増感太陽電池によれば、一般的に耐久性の確保が困難とされる、非ルテニウム系の有機色素を増感色素として用い、対向電極に白金を用いた場合でも、高い耐久性を実現することが可能である。
本発明の色素増感太陽電池の構造を説明する要部断面模式図である。
 以下に本発明を詳細に説明する。
 本発明の色素増感太陽電池は、色素によって増感された半導体含有層を有する第一の導電性支持体、該半導体含有層と対向電極とが所定の間隔で対向する位置に設けられた対向電極を有する第二の導電性支持体、第一及び第二の導電性支持体の間隙に挟持された電荷移動層、並びに電荷移動層をシールするために第一及び第二の導電性支持体の周辺部に設けられたシール剤を含む色素増感太陽電池であって、該色素が非ルテニウム系の有機色素であり、該対向電極が白金を有し、かつ該電荷移動層が、ヨウ素、ヨウ素イオン、及び分子内にチオエステル結合と正電荷を帯びた窒素原子の双方を有する化合物を含む電解液であることを特徴とする。
 本発明の色素増感太陽電池は、色素によって増感された半導体含有層を有する第一の導電性支持体を有する。この第一の導電性支持体は、一般的に、ガラス等で形成された基板によってサポートされている。
 導電性支持体としては、例えばFTO(フッ素ドープ酸化スズ)、ATO(アンチモンドープ酸化スズ)、ITO(インジウムドープ酸化スズ)に代表される導電性物質を、ガラス、プラスチック、ポリマーフィルム、石英、シリコン等の基板の表面に薄膜化させたものが用いられる。基板の厚みは、通常0.01~10mmである。基板の形状はフィルム状から板状まで様々な態様を取り得るが、第一及び第二の導電性支持体のうち少なくとも一方には、光透過性のある基板が用いられる。導電性支持体の抵抗値は通常1000Ω/cm2以下、好ましくは100Ω/cm2以下である。
 半導体含有層の調製に用いられる酸化物半導体としては、金属カルコゲニドの微粒子が好ましい。その具体例としては、Ti、Zn、Sn、Nb、W、In、Zr、Y、La、Ta等の遷移金属の酸化物、Alの酸化物、Siの酸化物、StTiO、CaTiO、BaTiO等のペロブスカイト型酸化物が挙げられる。これらの中でTiO、ZnO、SnOが特に好ましい。また、これらの酸化物は混合して用いてもよく、SnO-ZnO混合系が好ましい例として挙げられる。混合系の場合は微粒子の状態で混合したり、以下に述べるスラリーもしくはペースト状態で混合したり、各成分を層状に重ねて用いてもよい。ここで用いる酸化物半導体の一次粒径は通常1~200nm、好ましくは1~50nmである。また、色素増感太陽電池の開放電圧や変換効率を向上させる目的で、酸化物半導体として、例えば国際公開特許WO2006/080384号公報に記載されている、チタンとマグネシウム、カルシウム、ジルコニウム、ストロンチウム等の非チタン金属等とを混合して作製した複合酸化物半導体を用いることも可能である。
 本発明の色素増感太陽電池に用い得る増感色素としては、半導体含有層を構成する半導体微粒子と相まって光吸収を増感させる作用を有する非ルテニウム系の有機色素であれば特に限定はない。非ルテニウム系の有機色素として、単独の色素を用いてもよく、また数種類の色素を任意の割合で混合して用いてもよい。数種類の色素を混合して用いる場合は、吸収波長領域の異なる色素同士を混合することにより、幅広い吸収波長を用いることが出来るため、変換効率の高い太陽電池が得られる。
 非ルテニウム系の有機色素の具体例としては、シアニン系、メロシアニン系、オキソノール系、トリフェニルメタン系、国際公開特許WO2002/011213号公報に記載のアクリル酸系色素、国際公開特許WO2006/126538号公報に記載のピラゾロン系メチン色素などのメチン系色素や、キサンテン系、アゾ系、アンスラキノン系、ペリレン系、インジゴ系、アクリジン系、キノン系、クマリン系、フェニルキサンテン系、中心金属がルテニウムでないフタロシアニン系、中心金属がルテニウムでないポルフィリン系等の色素が挙げられる。これらの中でも、日本国特許第3731752号公報、特開2002-334729号公報、特開2002-512729号公報、特開2003-007358号公報、特開2003-017146号公報、特開2003-059547号公報、特開2003-086257号公報、特開2003-115333号公報、特開2003-132965号公報、特開2003-142172号公報、特開2003-151649号公報、特開2003-157915号公報、特開2003-282165号公報、特開2004-014175号公報、特開2004-022222号公報、特開2004-022387号公報、特開2004-227825号公報、特開2005-005026号公報、特開2005-019130公報、特開2005-135656号公報、特開2006-079898号公報、特開2006-134649号公報、特開2007-149570号公報、特開2008-021496号公報、特開2010-146864号公報、国際公開特許WO2002/001667号公報、国際公開特許WO2002/011213号公報、国際公開特許WO2002/071530号公報、国際公開特許WO2004/082061号公報、国際公開特許WO2006/082061号公報、国際公開特許WO2006/126538号公報、国際公開特許WO2007/100033号公報、国際公開特許WO2009/020098号公報、国際公開特許WO2010/021378号公報等に記載の色素であることが好ましく、中でもメロシアニン系やアクリル酸系等のメチン系色素等であることがより好ましい。
 これらの増感色素の中でも、本発明の色素増感太陽電池には、下記式(2)で表される色素が、特に好ましく用いられる。
Figure JPOXMLDOC01-appb-C000005
 本発明において、式(2)で表される色素といった場合、特に断りのない限り、上記式(2)で表されるフリーの酸及びその塩のいずれをも含む意味で用いられるものとする。式(2)で表される色素の塩としては、例えば式(2)中のカルボン酸の部分が、リチウム、ナトリウム、カリウム、マグネシウム又はカルシウムなどのアルカリ金属又はアルカリ土類金属などとの金属塩、若しくはテトラメチルアンモニウム、テトラブチルアンモニウム、ピリジニウム、イミダゾリウムなどとの4級アンモニウム塩である化合物を挙げることができる
 式(2)中、A及びAはそれぞれ独立にカルボキシル基、シアノ基、アルコキシカルボニル基、アシル基、ニトロ基、環式炭化水素残基、複素環残基、アミノ基、ヒドロキシル基、水素原子、ハロゲン原子又はアルキル基を表す。また、AおよびAが複数存在する場合、それぞれのAおよびそれぞれのAは互いに独立に同じ又は異なってもよい前記の基を表す。
 式(2)におけるA及びAが表すアルコキシカルボニル基が有するアルキル基としては、置換基を有してもよい飽和又は不飽和の直鎖状、分岐鎖状又は環状のアルキル基が挙げられる。直鎖状又は分岐鎖状のアルキル基としては、炭素数1~36のアルキル基が好ましく、より好ましくは飽和の炭素数1~20の直鎖状アルキル基である。環状のものとしては、例えば炭素数3~8のシクロアルキル基などが挙げられる。
 式(2)におけるA及びAが表すアシル基としては、炭素数1~10のアルキルカルボニル基、アリールカルボニル基等が挙げられ、好ましくは炭素数1~4のアルキルカルボニル基、具体的にはアセチル基、プロピオニル基等が挙げられる。
 式(2)におけるA及びAが表す環式炭化水素残基とは、環式炭化水素から水素原子を1つ除いた基を意味する。該環式炭化水素としては、例えばベンゼン環、ナフタレン環、アントラセン環、フェナンスレン環、ピレン環、インデン環、アズレン環、フルオレン環、シクロヘキサン環、シクロペンタン環、シクロヘキセン環、シクロペンテン環、シクロヘキサジエン環、シクロペンタジエン環等が挙げられる。
 A及びAが表す環式炭化水素残基は置換基を有していてもよく、該置換基としては、例えばアルキル基、アリール基、シアノ基、イソシアノ基、チオシアネート基、イソチオシアナト基、ニトロ基、ニトロシル基、アシル基、ハロゲン原子、ヒドロキシル基、リン酸基、リン酸エステル基、置換若しくは非置換メルカプト基、置換若しくは非置換アミノ基、置換若しくは非置換アミド基、アルコキシ基、アルコキシアルキル基、カルボキシル基、アルコキシカルボニル基、スルホ基等が挙げられる。ここでいうアルキル基としては、上記したアルコキシカルボニル基が有するアルキル基と同じものが挙げられる。アシル基としては上記したのと同じものが挙げられ、また、アリール(aryl)基としては上記した環式炭化水素残基の項で挙げた芳香環から水素原子をとった基等が挙げられる。アリール基は更に置換基を有していてもよく、該置換基としては上記した環式炭化水素残基が有していてもよい置換基と同じものが挙げられる。ハロゲン原子としては、塩素、臭素、ヨウ素等の原子が挙げられる。リン酸エステル基としては、リン酸(炭素数1~4)アルキルエステル基などが挙げられる。置換若しくは非置換メルカプト基としては、メルカプト基、アルキルメルカプト基などが挙げられる。置換若しくは非置換アミノ基としては、アミノ基、モノ又はジアルキルアミノ基、モノ又はジ芳香族アミノ基などが挙げられる。具体的には、モノ又はジメチルアミノ基、モノ又はジエチルアミノ基、モノ又はジプロピルアミノ基、モノ又はジフェニルアミノ基並びにモノ又はジベンジルアミノ基等が挙げられる。置換若しくは非置換アミド基としては、アミド基、アルキルアミド基、芳香族アミド基等が挙げられる。アルコキシ基としては、例えば炭素数1~10のアルコキシ基などが挙げられる。アルコキシアルキル基としては、例えば(炭素数1~10)アルコキシ(炭素数1~4)アルキル基などを挙げることができる。アルコキシカルボニル基としては、例えば炭素数1~10のアルコキシカルボニル基などが挙げられる。またカルボキシル基、スルホ基およびリン酸基等の酸性基は、リチウム、ナトリウム、カリウム、マグネシウム、カルシウムなどの金属塩や、テトラメチルアンモニウム、テトラブチルアンモニウム、ピリジニウム、イミダゾリウムなどの4級アンモニウム塩のような塩を形成していても良い。
 式(2)におけるA及びAが表す複素環残基とは、複素環式化合物から水素原子を1つ除いた基を意味する。該複素環式化合物としては、例えばピリジン環、ピラジン環、ピリミジン環、ピラゾール環、ピラゾリジン環、ピペリジン環、チアゾリジン環、オキサゾリジン環、ピラン環、クロメン環、ピロール環、ベンゾイミダゾール環、イミダゾリン環、イミダゾリジン環、イミダゾール環、ピラゾール環、トリアゾール環、トリアジン環、ジアゾール環、モルホリン環、インドリン環、チオフェン環、ビチオフェン環、ターチオフェン環、フラン環、オキサゾール環、チアジン環、チアゾール環、インドール環、ベンゾチアゾール環、ナフトチアゾール環、ベンゾオキサゾール環、ナフトオキサゾール環、インドレニン環、ベンゾインドレニン環、ピラジン環、キノリン環、キナゾリン環、カルバゾール環等が挙げられる。これらの環は、それぞれ増環や水素化されていてもよい。複素環残基は置換基を有していてもよく、該置換基としては、上記した環式炭化水素残基が有していてもよい置換基と同じものが挙げられる。
 A及びAが表す複素環残基の好ましいものとしては、例えばピリジン環、ピラジン環、ピペリジン環、モルホリン環、インドリン環、チオフェン環、フラン環、オキサゾール環、チアゾール環、インドール環、ベンゾチアゾール環、ベンゾオキサゾール環、ピラジン環、キノリン環等の複素環式化合物から水素原子を1つ除いた基が挙げられる。
 式(2)におけるAとAが表すアミノ基は、置換基を有していてもよい。置換基を有するアミノ基としては、モノ又はジアルキルアミノ基、モノ又はジ芳香族アミノ基、モノアルキルモノ芳香族アミノ基などが挙げられ、アルキルアミノ基が有するアルキル基としては、上記したアルコキシカルボニル基が有するアルキル基と同じものが挙げられる。また、芳香族アミノ基が有する芳香族としては、上記した環式炭化水素残基と同じものが挙げられる。置換基を有するアミノ基の具体例としては、モノ又はジメチルアミノ基、モノ又はジエチルアミノ基、モノ又はジプロピルアミノ基、モノ又はジフェニルアミノ基並びにモノ又はジベンジルアミノ基等が挙げられる。
 式(2)におけるAとAが表すハロゲン原子としては、上記したのと同じものが挙げられる。
 式(2)におけるAとAが表すアルキル基としては、上記したアルコキシカルボニル基が有するアルキル基と同じものが挙げられる。該アルキル基は置換基を有していてもよい。アルキル基が有していてもよい置換基としては、アリール基、ハロゲン原子、アルコキシ基等が挙げられる。ここでいうアリール基及びハロゲン原子としては、上記したのと同じものが、またアルコキシ基が有するアルキル基としては、上記したアルコキシカルボニル基が有するアルキル基と同じものが挙げられる。
 また、AとAの両者が結合して、環を形成していてもよい。特に後記するmが2以上で、AとAがそれぞれ複数存在する場合には、任意の2者が結合して、環を形成していてもよい。環を形成する場合、いずれのAといずれのAとが結合するかは特に限定されないが、通常は隣接するAとA若しくは隣接する2つのA同士若しくは隣接する2つのA同士で環を形成する。該環は置換基を有していてもよい。置換基を有する場合の置換基としては、上記した環式炭化水素残基が有していてもよい置換基と同じものが挙げられる。AとA若しくは複数存在するAと複数存在するAの任意の2者が結合して形成する環としては、不飽和炭化水素環または複素環が挙げられる。不飽和炭化水素環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナンスレン環、ピレン環、インデン環、アズレン環、フルオレン環、シクロブテン環、シクロペンテン環、シクロヘキセン環、シクロヘキサジエン環、シクロペンタジエン環等が挙げられる。複素環としては、ピリジン環、ピラジン環、インドリン環、チオフェン環、フラン環、ピラン環、オキサゾール環、チアゾール環、インドール環、ベンゾチアゾール環、ベンゾオキサゾール環、ピラジン環、キノリン環、カルバゾール環、ベンゾピラン環等が挙げられる。またこれらのうちの好ましい例として、シクロブテン環、シクロペンテン環、シクロヘキセン環、ピラン環などが挙げられる。また、A又はAがカルボニル基又はチオニル基等を有する場合には、環状ケトン又は環状チオケトンなどを形成していてもよい。
 AとAの好ましいものとしては、それぞれ独立にカルボキシル基、シアノ基、アルコキシカルボニル基、アシル基、ヒドロキシル基、水素原子、ハロゲン原子、アルキル基が挙げられる。さらに好ましくはカルボキシル基、シアノ基、水素原子、ハロゲン原子、アルキル基が挙げられる。ハロゲン原子の中でも塩素原子、臭素原子、ヨウ素原子が好ましい。また、式(2)中に明記されているカルボキシル基と同じ炭素原子に結合するA(明記されているカルボキシル基に最も近いA)は、カルボキシル基又はシアノ基であることが特に好ましい。
 式(2)におけるmは1~6の整数を表す。
 Xは芳香族炭化水素残基、複素環残基またはアミノ基を表す。芳香族炭化水素残基は芳香族炭化水素から水素原子1つを除いた基を意味する。例えば、芳香族炭化水素残基として、ベンゼン環、ナフタレン環、アントラセン環、フェナンスレン環、ピレン環、インデン環、アズレン環、フルオレン環等の芳香族炭化水素から水素原子1つを除いた基が挙げられる。これらの芳香族炭化水素残基は、通常炭素数6~16の芳香環(芳香環及び芳香環を含む縮合環等)を有する。これらは、いずれも置換基を有していてもよい。
 式(2)におけるXが表す複素環残基としては、複素環式化合物から水素原子を1つ除いた基が挙げられる。該複素環式化合物としては、例えばピリジン環、ピラジン環、ピリミジン環、ピラゾール環、ピラゾリジン環、チアゾリジン環、オキサゾリジン環、ピラン環、クロメン環、ピロール環、ベンゾイミダゾール環、イミダゾリン環、イミダゾリジン環、イミダゾール環、ピラゾール環、トリアゾール環、トリアジン環、ジアゾール環、モルホリン環、インドリン環、チオフェン環、ビチオフェン環、ターチオフェン環、フラン環、オキサゾール環、チアジン環、チアゾール環、インドール環、ベンゾチアゾール環、ナフトチアゾール環、ベンゾオキサゾール環、ナフトオキサゾール環、インドレニン環、ベンゾインドレニン環、ピラジン環、キノリン環、キナゾリン環、カルバゾール環等が挙げられる。これらの環は、それぞれ増環や水素化されていても良く、また置換基を有していてもよい。また、Xが複素環残基のとき、その複素環が四級化されていても良く、その際に対イオンを有しても良い。対イオンは、特に限定されず、一般的なアニオンで良い。具体例としては、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン、過塩素酸イオン、水酸化物イオン、メチル硫酸イオン、トルエンスルホナートアニオン、テトラフルオロボレートアニオン、ヘキサフルオロホスフォネートアニオン、チオシアネートアニオン、テトラシアノボレートアニオン、ジシアノイミドアニオン、トリフルオロメタンスルホナートアニオン、ビス(トリフルオロメタンスルホニル)イミドアニオン、ビス(ペンタフルオロエタンスルホニル)イミドアニオン、(N-トリフルオロメタンスルホニル-N-ペンタフルオロエタンスルホニル)イミドアニオン等が挙げられる。臭化物イオン、ヨウ化物イオン、過塩素酸イオン、テトラフルオロボレートアニオン、ヘキサフルオロホスフォネートアニオン、トルエンスルホナートアニオン、トリフルオロメタンスルホナートアニオン、ビス(トリフルオロメタンスルホニル)イミドアニオンが好ましい。また対イオンではなく分子内または分子間のカルボキシル基などの酸性基により中和されていても良い。
 式(2)におけるXが表すアミノ基は置換基を有していてもよい。置換基を有していてもよいアミノ基の具体例としては、アミノ基、ジフェニルアミノ基、モノフェニルアミノ基、ジアルキルアミノ基、モノアルキルアミノ基、アルキルフェニルアミノ基、アルコキシアミノ基、アシルアミノ基(例えばベンゾイルアミノ基、アセチルアミノ基等)などが挙げられる。これらアミノ基が有するアルキル基、アルコキシ基、アシル基等は、上記したのと同じものが挙げられる。
 XはAまたはAと結合して環を形成していてもよく、該形成した環が置換基を有していてもよい。XがAまたはAと結合して形成する環としては、例えば、ベンゼン環、ナフタレン環、インデン環、ピリジン環、ピラジン環、ピリミジン環、キノリン環、チオフェン環、インドレニン環、ベンゾインドレニン環、ピラゾール環、ピラゾリジン環、チアゾール環、チアゾリジン環、ベンゾチアゾール環、オキサゾール環、オキサゾリジン環、ベンゾオキサゾール環、ピラン環、クロメン環、ピロール環、イミダゾール環、ベンゾイミダゾール環、イミダゾリン環、イミダゾリジン環、インドール環、フラン環、カルバゾール環、ピラン環、ベンゾピラン環、フタロシアニン環、ポルフィリン環、フェロセンなどが挙げられる。これらの環は、それぞれ水素化されていても良い。
 Xにおける芳香族炭化水素残基または複素環残基が置換基を有する場合の置換基、並びに上記のX、AまたはAの2者から形成された環上に置換基を有する場合の置換基としては、先のAまたはAの項で述べた環式炭化水素上の置換基と同じもの、及びカルボニル基、チオカルボニル基等が挙げられる。また環を形成するX、AまたはAがカルボニル基やチオカルボニル基を有するときには、X、A及びAの中の2者から形成される環は、置換基としてO=、S=で置換された環、即ち環式ケトン、環式チオケトンであっても良い。Xにおける上記の芳香族炭化水素残基、または複素環残基等における置換基、並びにX、A及びAの中の2者から形成される環上の置換基として好ましいものは、置換基を有していてもよいアミノ基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアセチル基、ヒドロキシル基、ハロゲン原子、O=、S=が挙げられる。さらに好ましくは置換基を有していてもよいアミノ基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、O=、S=が挙げられる。ここで、置換基を有していてもよいアミノ基としては、モノ又はジアルキル置換アミノ基、モノアルキルモノアリール置換アミノ基、ジアリール置換アミノ基、モノ又はジビニル置換アミノ基、モノ又はジアリル置換アミノ基、モノ又はジブタジエニル置換アミノ基、モノ又はジスチリル置換アミノ基等が挙げられる。中でも、ジアルキル置換アミノ基、ジアリール置換アミノ基が好ましい。置換基を有していてもよいアルキル基としては、アリール置換アルキル基、ハロゲン原子置換アルキル基、アルコキシ置換アルキル基等が挙げられる。置換基を有していてもよいアルコキシ基としては、アルコキシ置換アルコキシ基、ハロゲン置換アルコキシ基、アリール置換アルコキシ基などが挙げられる。
 Xの特に好ましい例としては、末端にトリフェニルアミン誘導体を有するエテニル基誘導体、ブタジエニル基誘導体、ヘキサトリエニル基誘導体、チオフェニル基誘導体、ビチオフェニル基誘導体、ターチオフェニル基誘導体等が挙げられる。これらの誘導体は、いずれも置換基を有していてもよい。該置換基は、Xにおける芳香族炭化水素残基または複素環残基が置換基を有する場合の置換基として上で挙げたとおりのものであってよい。Xは、特に好ましくは、トリフェニルアミン誘導体を有する(ポリ)エテニル基又は(ポリ)チオフェニル基である。
 式(2)で示される色素は、シス体、トランス体などの構造異性体をとり得る。いずれの構造異性体も、特に限定されず、光増感用色素として良好に使用しうるものである。
 このような増感色素の具体例としては、例えば国際公開特許WO2002/011213号公報、特開2003-017146号公報、特開2003-282165号公報、国際公開特許WO2004/082061号公報、特開2006-134649号公報、特開2006-079898号公報、国際公開特許WO2007/100033号公報、特開2007-149570号公報等に記載の色素が例示できる。
 本発明の色素増感太陽電池は、対向電極を有する第二の導電性支持体を有する。
 第二の導電性支持体には、前記第一の導電性支持体に用いられるのと同様の導電性支持体の表面に、対向電極として酸化還元系電解質の還元反応に触媒的に作用する白金を蒸着したものや、白金を含む金属の微粒子、または白金を含む金属微粒子の前駆体等を塗布、焼成したものが用いられる。
 本発明の色素増感太陽電池は、ヨウ素、ヨウ素イオン、及び分子内にチオエステル結合と正電荷を帯びた窒素原子の双方を有する化合物を含む電解液を、電荷移動層として有する。分子内にチオエステル結合と正電荷を帯びた窒素原子の双方を有する化合物としては、1分子内に少なくとも一つのチオエステル結合と、少なくとも一つの正電荷を帯びた窒素原子を有する化合物でありさえすれば、どのような構造の化合物であっても本発明の色素増感太陽電池に用いることができる。チオエステル結合とは、カルボン酸とチオールが脱水縮合した構造であり、R-CO-S-R’の化学式で表すことができる。また、正電荷を帯びた窒素原子とは、共有結合を4つ持つ窒素原子であり、具体的には、第四級アンモニウムカチオンや、イミニウムカチオン、さらにピリジニウム、イミダゾリウム、ピロリジニウム、ピロリウム、ピラゾリウム、オキサゾリウム等の複素環上の窒素がカチオン性を帯びたもの等が挙げられる。さらに、正電荷を帯びた窒素原子は、どのような対イオンを有していても良い。例えば、対イオンとして、ハロニウム類、オキソアニオン類、チオシアネート類、ボレート類、イミド類、スルホナート類や、アルミニウム、クロム、銀、亜鉛、鉄等の金属錯イオン等を挙げることができる。
 前記のような分子内にチオエステル結合と正電荷を帯びた窒素原子の双方を有する化合物の中でも、本発明の色素増感太陽電池には下記式(1)で表される化合物がより好ましく用いられる。
Figure JPOXMLDOC01-appb-C000006
 式(1)中、R1、R2、R3、R4、R5及びR6は、それぞれ独立に、置換基を有していてもよい炭素数10以下の脂肪族炭化水素残基、置換基を有していてもよい芳香族炭化水素残基、置換基を有していてもよい複素環残基または水素原子を表す。また、nが2以上で、R5およびR6が複数存在する場合、それぞれのR5およびそれぞれのR6は互いに独立に、同じ又は異なってもよい前記の基を表す。
 R1~R6が表す炭素数1~10の脂肪族炭化水素残基とは、炭素数1~10の脂肪族炭化水素から水素原子を1つ除いた残基を意味する。脂肪族炭化水素残基は、直鎖状、分鎖状、環状のいずれでもよく、さらに飽和脂肪族炭化水素、不飽和脂肪族炭化水素のいずれでもよい。また、該炭素数1~10の脂肪族炭化水素残基は、例えば、ハロゲン原子、アルコキシ基、エステル基、アシル基、アミノ基、アミド基、アルキル基、アルケニル基、アルキニル基、アリール基、シアノ基、イソシアノ基、ニトロ基、ニトロソ基、ヒドロキシル基、リン酸エステル基、スルフィニル基及びスルホニル基からなる群より選ばれる置換基を有していてもよい。該置換基の置換位置及び置換数は、特に限定されない。これらは、同じ置換基を複数個有していてもよいし、異なった置換基を複数個有していてもよい。
 R1~R6が表す芳香族炭化水素残基とは、芳香族炭化水素から水素原子を1つ除いた残基を意味する。該芳香族炭化水素としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナンスレン環、ピレン環、インデン環、アズレン環、フルオレン環等が挙げられる。これらの環は、それぞれ増環されていてもよい。また、該芳香族炭化水素残基は、例えば、ハロゲン原子、アルコキシ基、エステル基、アシル基、アミノ基、アミド基、アルキル基、アルケニル基、アルキニル基、アリール基、シアノ基、イソシアノ基、ニトロ基、ニトロソ基、ヒドロキシル基、リン酸エステル基、スルフィニル基及びスルホニル基からなる群より選ばれる置換基を有していてもよい。該置換基の置換位置及び置換数は、特に限定されない。これらは、同じ置換基を複数個有していてもよいし、異なった置換基を複数個有していてもよい。
 R1~R6が表す複素環残基とは、複素環式化合物から水素原子を1つ除いた残基を意味する。該複素環式化合物としては、例えば、ピロリジン環、オキソラン環、チオラン環、ピロール環、フラン環、チオフェン環、ピペリジン環、オキサン環、チアン環、ピリジン環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、イミダゾリン環、ピラジン環、モルホリン環、チアジン環、インドール環、イソインドール環、ベンゾイミダゾール環、プリン環、キノリン環、イソキノリン環、キノキサリン環、シンノリン環、プテリジン環、クロメン環、イソクロメン環、アクリジン環、キサンテン環、カルバゾール環等が挙げられる。これらの環は、それぞれ増環や水素化されていてもよい。また、該複素環残基は、例えば、ハロゲン原子、アルコキシ基、エステル基、アシル基、アミノ基、アミド基、アルキル基、アルケニル基、アルキニル基、アリール基、シアノ基、イソシアノ基、ニトロ基、ニトロソ基、ヒドロキシル基、リン酸エステル基、スルフィニル基及びスルホニル基からなる群より選ばれる置換基を有していてもよい。該置換基の置換位置及び置換数は、特に限定されない。これらは、同じ置換基を複数個有していてもよいし、異なった置換基を複数個有していてもよい。
 また、R1、R2、R3、R4、R5及びR6から選択される任意の2者で結合して環を形成してもよい。nが2以上で、R5およびR6が複数存在する場合は、R5同士やR6同士で環を形成してもよい。形成してもよい環は、飽和炭化水素環、不飽和炭化水素環、飽和複素環、不飽和複素環のいずれでもよい。また形成してもよい環は、任意の場所に任意の数の置換基を有していてもよい。形成してもよい環としては、例えば、シクロヘキサン環、シクロペンタン環、シクロヘキセン環、シクロペンテン環、シクロヘキサジエン環、シクロペンタジエン環、ラクトン環、ラクタム環、環状ケトン、ベンゼン環、ナフタレン環、アントラセン環、フェナンスレン環、ピレン環、インデン環、アズレン環、フルオレン環、ピロリジン環、オキソラン環、チオラン環、ピロール環、フラン環、チオフェン環、ピペリジン環、オキサン環、チアン環、ピリジン環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、イミダゾリン環、ピラジン環、モルホリン環、チアジン環、インドール環、イソインドール環、ベンゾイミダゾール環、プリン環、キノリン環、イソキノリン環、キノキサリン環、シンノリン環、プテリジン環、クロメン環、イソクロメン環、アクリジン環、キサンテン環、カルバゾール環等が挙げられる。これらの環は、それぞれ増環や水素化されていてもよい。有してよい置換基としては、例えば、ハロゲン原子、アルコキシ基、エステル基、アシル基、アミノ基、アミド基、アルキル基、アルケニル基、アルキニル基、アリール基、シアノ基、イソシアノ基、ニトロ基、ニトロソ基、ヒドロキシル基、リン酸エステル基、スルフィニル基、スルホニル基等が挙げられる。
 R1、R2、R3、R4、R5及びR6の好ましい例としては、炭素数1~6の脂肪族炭化水素残基、フェニル基、ナフタレニル基、ベンジル基、ピリジル基、ピロール基、チオフェニル基、フラニル基、オキソラニル基、オキサニル基、およびこれらの置換基中の水素原子が、アルキル基、アリール基、アルケニル基、アルキニル基、アルコキシ基、エステル基、アシル基、アミノ基、アミド基、ハロゲン原子、シアノ基等で置換された置換基や、水素原子等が挙げられる。
 式(1)中、Y-は窒素カチオンの対イオンとなる1価の陰イオンを表す。Y-としては、ヨウ素系電解液中で安定に存在できる1価の陰イオンであれば特に限定されない。塩基性の低い陰イオンが好ましい。陰イオンの好ましい例としては、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン、過塩素酸イオン、水酸化物イオン、メチル硫酸イオン、トルエンスルホナートアニオン、テトラフルオロボレートアニオン、ヘキサフルオロホスフォネートアニオン、テトラシアノボレートアニオン、ジシアノイミドアニオン、トリフルオロメタンスルホナートアニオン、ビス(トリフルオロメタンスルホニル)イミドアニオン、ビス(ペンタフルオロエタンスルホニル)イミドアニオン、(N-トリフルオロメタンスルホニル-N-ペンタフルオロエタンスルホニル)イミドアニオン等が挙げられる。その中でも、塩化物イオン、臭化物イオン、ヨウ化物イオン、過塩素酸イオン、テトラフルオロボレートアニオン、ヘキサフルオロホスフォネートアニオン、トリフルオロメタンスルホナートアニオン、ビス(トリフルオロメタンスルホニル)イミドアニオン、ビス(ペンタフルオロエタンスルホニル)イミドアニオン、(N-トリフルオロメタンスルホニル-N-ペンタフルオロエタンスルホニル)イミドアニオンがより好ましい。
 式(1)におけるnは1~6の整数を表す。nは、好ましくは1~4の整数、より好ましくは1~3の整数である。
 式(1)で表される化合物の中でも、本発明の色素増感太陽電池には、n=2で、R5、R6がいずれも水素原子であるチオコリン残基を有する化合物が特に好ましく用いられる。また、チオコリン残基を有する式(1)の化合物において、R1、R2、R3、R4は、前記の通り炭素数1~6の脂肪族炭化水素残基、フェニル基、ナフタレニル基、ベンジル基、ピリジル基、ピロール基、チオフェニル基、フラニル基、オキソラニル基、オキサニル基、およびこれらの置換基中の水素原子が、アルキル基、アルケニル基、アルキニル基、アリール基、アルコキシ基、エステル基、アシル基、アミノ基、アミド基、ハロゲン原子、シアノ基等で置換された置換基や、水素原子等であることが好ましい。メチル基、エチル基、プロピル基、ブチル基、フェニル基、ベンジル基、チオフェニル基、フラニル基、およびこれらの置換基中の水素原子が、アルコキシ基、エステル基、アシル基、アミド基、ハロゲン原子のいずれかで置換された置換基であることがより好ましい。また、チオコリン残基を有する式(1)の化合物において、Y-は、前記の通り、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン、過塩素酸イオン、水酸化物イオン、メチル硫酸イオン、トルエンスルホナートアニオン、テトラフルオロボレートアニオン、ヘキサフルオロホスフォネートアニオン、テトラシアノボレートアニオン、ジシアノイミドアニオン、トリフルオロメタンスルホナートアニオン、ビス(トリフルオロメタンスルホニル)イミドアニオン、ビス(ペンタフルオロエタンスルホニル)イミドアニオン、(N-トリフルオロメタンスルホニル-N-ペンタフルオロエタンスルホニル)イミドアニオン等であることが好ましい。塩化物イオン、臭化物イオン、ヨウ化物イオン、過塩素酸イオン、テトラフルオロボレートアニオン、ヘキサフルオロホスフォネートアニオン、トリフルオロメタンスルホナートアニオン、ビス(トリフルオロメタンスルホニル)イミドアニオン、ビス(ペンタフルオロエタンスルホニル)イミドアニオン、(N-トリフルオロメタンスルホニル-N-ペンタフルオロエタンスルホニル)イミドアニオンであることがより好ましい。それらの中でも、式(1)で表される化合物としては、アセチルチオコリン、プロピオニルチオコリン、ブチリルチオコリン、ベンゾイルチオコリンの塩化物、臭化物、ヨウ化物が最も好ましい。
 本発明の色素増感太陽電池における分子内にチオエステル結合と正電荷を帯びた窒素原子の双方を有する化合物は、単独で用いてもよく、また2種類以上を組み合わせて用いてもよい。これらは、市販された物を用いてもよく、独自で合成したものを用いてもよい。純度の高いものがより好ましく、さらに電解液溶媒への溶解性が高い化合物がより好適である。これら化合物の電解液中の濃度は、通常0.01~2M、好ましくは0.02~1M、更に好ましくは0.03~0.5M、特に好ましくは0.05~0.3Mである。
 本発明の色素増感太陽電池が有する電解液は、電解液中にヨウ素イオンを放出し得る、ヨウ素イオンを対イオンとする化合物を通常含有する。該ヨウ素イオンを対イオンとする化合物は、電解液中にヨウ素イオンを提供できる化合物であれば特に限定されない。ヨウ素イオンの解離度が高いものが好ましい。該ヨウ素イオンを対イオンとする化合物の好ましい例としては、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化セシウム等のハロゲン化金属塩;あるいはトリメチルアンモニウムヨーダイド、テトラプロピルアンモニウムヨーダイド、テトラブチルアンモニウムヨーダイド等のアンモニウムヨーダイド類;イミダゾリウムヨーダイド、1,3-ジメチルイミダゾリウムヨーダイド、1-エチル-3-メチルイミダゾリウムヨーダイド、1-メチル-3-プロピルイミダゾリウムヨーダイド、1-ブチル-3-メチルイミダゾリウムヨーダイド、1-ヘキシル-3-メチルイミダゾリウムヨーダイド、1,2-ジメチル-3-プロピルイミダゾリウムヨーダイド、1,2-ジメチル-3-ブチルイミダゾリウムヨーダイド、1,2-ジメチル-3-ヘキシルイミダゾリウムヨーダイド等のイミダゾリウムヨーダイド類;N,N-ジメチルピロリジニウムヨーダイド、N-メチル-N-プロピルピロリジニウムヨーダイド、N,N-ジブチルピロリジニウムヨーダイド等のピロリジニウムヨーダイド類;N-メチルピリジニウムヨーダイド、N-プロピルピリジニウムヨーダイド、N-ブチルピリジニウムヨーダイド等のピリジニウムヨーダイド類;1-エチル-1-メチルピロリウムヨーダイド等のピロリウムヨーダイド類;1-プロピル-2-メチルピラゾリウムヨーダイド等のピラゾリウムヨーダイド類;テトラブチルホスフォニウムヨーダイド等のホスフォニウムヨーダイド類などが挙げられる。これらヨウ素イオンを対イオンとする化合物の中でも、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化トリメチルアンモニウム、ヨウ化テトラブチルアンモニウム、1,3-ジメチルイミダゾリウムヨーダイド、1-エチル-3-メチルイミダゾリウムヨーダイド、1-メチル-3-プロピルイミダゾリウムヨーダイド、1-ブチル-3-メチルイミダゾリウムヨーダイド、1,2-ジメチル-3-プロピルイミダゾリウムヨーダイド等がより好ましい。ヨウ素イオンを対イオンとする化合物は、本発明の色素増感太陽電池が有する電解液に単独で用いてもよく、また2種以上を組み合わせて用いてもよい。これら化合物の電解液中の濃度は、通常0.01~10M、好ましくは0.02~5M、更に好ましくは0.03~3M、特に好ましくは0.05~2Mである。
  本発明の色素増感太陽電池が有する電解液には、電気化学的に不活性な溶媒を併用してもよい。併用し得る溶媒としては、有機溶媒、イオン性液体のいずれでもよく、また両者を混合したものでも良い。併用し得る有機溶媒としては、アセトニトリル、ブチロニトリル、バレロニトリル、ヘキサンニトリル、プロピレンカーボネート、エチレンカーボネート、3-メトキシプロピオニトリル、メトキシアセトニトリル、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、1、2-ジメトキシエタン、γ-ブチロラクトン、ジエチルエーテル、ジエチルカーボネート、ジメチルカーボネート、ジメチルホルムアミド、ジメチルスルホキシド、1、3-ジオキソラン、メチルフォルメート、2-メチルテトラヒドロフラン、3-メチル-オキサゾリジン-2-オン、スルホラン、テトラヒドロフラン、メチルイソプロピルスルホン等が好ましい例として挙げられる。これらの中でも、アセトニトリル、バレロニトリル、ヘキサンニトリル、プロピレンカーボネート、エチレンカーボネート、3-メトキシプロピオニトリル、メトキシアセトニトリル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、1、2-ジメトキシエタン、γ-ブチロラクトン、スルホラン、メチルイソプロピルスルホン等がより好ましい。アセトニトリル、バレロニトリル、ヘキサンニトリル、3-メトキシプロピオニトリル、メトキシアセトニトリル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、1、2-ジメトキシエタン、スルホラン、メチルイソプロピルスルホン等が特に好ましい。
 また、併用し得るイオン性液体としては、常温で液状の化合物が好ましい。イオン性液体として、例えば、イミダゾールカチオン、ピロリジニウムカチオン、ピリジニウムカチオン、ピロリウムカチオン、ピラゾリウムカチオン、ホスフォニウムカチオン等のカチオン類と、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン、過塩素酸イオン、水酸化物イオン、メチル硫酸イオン、トルエンスルホナートアニオン、テトラフルオロボレートアニオン、テトラシアノボレートアニオン、ヘキサフルオロホスフォネートアニオン、テトラシアノボレートアニオン、ジシアノイミドアニオン、トリフルオロメタンスルホナートアニオン、ビス(トリフルオロメタンスルホニル)イミドアニオン、ビス(ペンタフルオロエタンスルホニル)イミドアニオン、(N-トリフルオロメタンスルホニル-N-ペンタフルオロエタンスルホニル)イミドアニオン等のアニオン類とを組み合わせた化合物が好ましい。これら溶媒は単独で用いてもよく、2種以上を組み合わせて用いてもよい。2種以上を組み合わせて用いる場合、その割合は任意に選択することが可能である。
 更に、本発明の色素増感太陽電池に用いられる電解液は、必要に応じて含窒素化合物や、その他の添加剤等を含有してもよい。用い得る含窒素化合物や、その他の添加剤等は特に限定されるものではなく、その添加量も目的に応じて適宣選択すればよい。電解液中のレドックス対の輸送効率向上効果、色素から酸化物半導体への電価注入の促進効果、酸化物半導体からの逆電子移動防止効果等を有するもので、色素増感太陽電池の効率を高めるものや、電解液の安定性を向上させて色素増感太陽電池の耐久性を高めるものを添加することが好ましい。
 本発明の色素増感太陽電池が有するシール剤は、第一及び第二の導電性支持体を貼合わせ、かつ電荷移動層に用いられている電解液を封止する目的で用いられる。該シール剤は、上記の目的を果たすものであれば特に限定されない。シール剤として、具体的には、エポキシ樹脂系シール剤、アクリレート樹脂系シール剤、シリコーン樹脂系シール剤、ポリイソブチレン樹脂系シール剤、アイオノマー樹脂系シール剤、(変性)オレフィン樹脂系シール剤等を例示することができる。これらの中でも、接着力が強く、耐溶剤性や耐ヨウ素性に優れたエポキシ樹脂系シール剤が好ましく用いられる。
 エポキシ樹脂系シール剤としては、熱硬化型、紫外線硬化型、光熱併用型いずれのタイプのシール剤も用いることができる。スクリーン印刷法やディスペンス法に適用可能で、硬化後の接着性、耐熱性、耐湿性、耐溶剤性、耐光性、ガスバリア性等に優れたシール剤が好ましい。エポキシ樹脂系シール剤が含有するエポキシ樹脂としては、一分子中に少なくとも2個以上のエポキシ基を持つエポキシ樹脂であれば特に限定されない。エポキシ樹脂として、例えば、ノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、脂肪族鎖状エポキシ樹脂、二官能フェノール類のジグリシジルエーテル化物、二官能アルコール類のジグリシジルエーテル化物、その他のグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、脂環式エポキシ樹脂、およびそれらのハロゲン化物、水素添加物などが挙げられる。その中でも、フェノールノボラック、クレゾールノボラック、ビスフェノールA型ノボラック、トリスフェノールメタンノボラック、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テトラブロモビスフェノールA、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタンや、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)と、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロロメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4-ビス(クロロメチル)ベンゼン、1,4-ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物から誘導されるグリシジルエーテル化エポキシ樹脂、グリシジルアミン化エポキシ樹脂、グリシジルエステル化エポキシ樹脂、及びそれらのハロゲン化物、水素添加物等の、固形又は液状エポキシ樹脂が好ましい。フェノールノボラック、クレゾールノボラック、トリスフェノールメタンノボラック、ビスフェノールA型ノボラック、ビスフェノールA、ビスフェノールF、ビスフェノールS、レゾルシン、フルオレンビスフェノールのグリシジルエーテル化エポキシ樹脂、およびそれらのハロゲン化物、水素添加物であるエポキシ樹脂がより好ましく、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリスフェノールメタンノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、レゾルシングリシジルエーテル、およびそれらのハロゲン化物、水素添加物であるエポキシ樹脂が特に好ましい。トリスフェノールメタンノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂が最も好ましい。これらは単独で用いてもよく、2種以上を併用してもよい。上記のようなエポキシ樹脂は、シール剤の粘度を調整するのに有益である。これらのエポキシ樹脂を使用したシール剤は、本発明の色素増感太陽電池作成時に常温での基板の重ね合わせ作業を可能とし、且つギャップ形成を容易にする。
 エポキシ樹脂系シール剤の組成は、特に限定されないが、例えば熱硬化型シール剤であれば、エポキシ樹脂及び熱硬化剤を含むもの、紫外線硬化型シール剤としては、エポキシ樹脂及び光重合開始剤を含むもの、光熱併用硬化型シール剤としては、エポキシ樹脂と熱硬化剤及び光反応開始剤を含むものが一般的である。いずれの組成も更なる添加剤を含んでよい。例えば、熱硬化剤型シール剤は、その他の熱硬化性樹脂、反応促進剤、充填剤、カップリング剤、溶媒、応力緩和剤、粘度調整剤、顔料、レベリング剤、消泡剤、スペーサーなどを必要に応じて含有してよい。紫外線硬化型シール剤は、その他の紫外線硬化性樹脂、光増感剤、イオンキャッチャー、充填剤、カップリング剤、溶媒、応力緩和剤、粘度調整剤、顔料、レベリング剤、消泡剤、スペーサーなどを必要に応じて含有してよい。光熱併用硬化型シール剤は、その他の熱硬化性樹脂、その他の紫外線硬化性樹脂、反応促進剤、光増感剤、イオンキャッチャー、充填剤、カップリング剤、溶媒、応力緩和剤、粘度調整剤、顔料、レベリング剤、消泡剤、スペーサーなどを必要に応じて含有してよい。これらの中でも、熱硬化型エポキシ樹脂系シール剤が好ましく用いられる。更にフェノール類、ポリフェノール類、ビスフェノール類、ノボラック類、アミン類、グアナミン類、イミダゾール類、ヒドラジド類、酸無水物類等を熱硬化剤として含む熱硬化型エポキシ樹脂系シール剤がより好ましい。その中でもノボラック類、ヒドラジド類を含む熱硬化型エポキシ樹脂系シール剤が特に好ましい。フェノールノボラック類、芳香族ヒドラジド類、炭素数6以上の脂肪族ヒドラジド類を含む熱硬化型エポキシ樹脂系シール剤が最も好ましい。これらの熱硬化剤は単独で用いてもよく、2種以上を併用してもよい。上記のようなエポキシ樹脂系シール剤は、接着性、耐湿性、耐溶剤性等に優れている。従って、本発明の色素増感太陽電池の耐久性を、特に向上させることができる。
 エポキシ樹脂系シール剤の具体例としては、特開2002-368236公報、国際公開特許2004/075333公報、国際公開特許WO2007/046499公報、国際公開特許WO2007/007671公報、国際出願特許PCT/JP2011/061166号(国際公開WO2011/145551公報)等に記載のシール剤などが例示できる。その中でも、特開2002-368236公報、国際出願特許PCT/JP2011/061166号(国際公開WO2011/145551公報)に記載のシール剤が特に好ましい。
 次に、本発明の色素増感太陽電池の一般的な作製法を説明する。まず、前記した導電性支持体上に酸化物半導体微粒子の薄膜(半導体含有層)を作成する。酸化物半導体微粒子の薄膜は、酸化物半導体の微粒子をスプレイ噴霧などで直接導電性支持体上に塗布して半導体微粒子の薄膜を形成する方法、導電性支持体を電極として電気的に半導体微粒子を薄膜状に析出させる方法、半導体微粒子のスラリー又は半導体アルコキサイド等の半導体微粒子の前駆体を加水分解することにより得られた微粒子を含有するペーストを導電性支持体上に塗布した後、乾燥、硬化もしくは焼成する方法等によって製造することができる。酸化物半導体を用いる電極の性能上、スラリーを用いる方法が好ましい。この方法の場合、スラリーは、二次凝集している酸化物半導体微粒子を、常法により分散媒中に平均1次粒子径が1~200nmになるように分散させることにより得られる。
 スラリーを分散させる分散媒としては、半導体微粒子を分散させ得るものであれば特に限定されず、例えば水、エタノール等のアルコール、アセトンやアセチルアセトン等のケトン、ヘキサン等の炭化水素等が用いられる。これらは混合して用いてもよい。また水を用いることはスラリーの粘度変化を少なくするという点で好ましい。また酸化物半導体微粒子の分散状態を安定化させる目的で、分散安定剤を併用することもできる。用い得る分散安定剤としては、例えば酢酸、塩酸及び硝酸等の酸、アセチルアセトン、アクリル酸、ポリエチレングリコール及びポリビニルアルコール等の有機溶媒等が挙げられる。
 スラリーを塗布した導電性支持体は焼成してもよい。その焼成温度は通常100℃以上、好ましくは200℃以上である。かつ、上限は概ね支持体材料の融点(軟化点)以下であり、通常900℃以下、好ましくは600℃以下である。また焼成時間には特に限定はないが、概ね4時間以内が好ましい。導電性支持体上の薄膜の厚みは通常1~200μm、好ましくは1~50μmである。
 酸化物半導体微粒子の薄膜には2次処理を施してもよい。例えば、半導体と同一の金属のアルコキサイド、塩化物、硝化物又は硫化物等の溶液に、直接、導電性支持体ごと薄膜を浸積させて乾燥もしくは再焼成することにより半導体微粒子の薄膜の性能を向上させることもできる。金属アルコキサイドとしては、チタンエトキサイド、チタンイソプロポキサイド、チタンt-ブトキサイド、n-ジブチル-ジアセチルスズ等が挙げられる。この場合、好ましくはアルコール溶液が用いられる。塩化物としては、例えば四塩化チタン、四塩化スズ、塩化亜鉛等が挙げられる。この場合、好ましくは水溶液が用いられる。このようにして得られた酸化物半導体薄膜は、酸化物半導体の微粒子から成っている。
 次に、酸化物半導体薄膜に、前記増感色素を吸着させる。増感色素を吸着させる方法としては、色素を溶媒に溶解した溶液又は色素を溶媒に分散した分散液に、上記半導体含有層の設けられた導電性支持体を浸漬する方法が挙げられる。溶液又は分散液中における色素の濃度は、色素の種類や溶解度によって適宜決めればよい。浸漬温度は概ね常温から溶媒の沸点迄である。また、浸漬時間は概ね1時間から72時間程度である。増感色素を溶解又は分散させるのに使用し得る溶媒の具体例としては、メタノール、エタノール、アセトニトリル、アセトン、ジメチルスルホキサイド、ジメチルホルムアミド、n-プロパノール、i-プロパノール、t-ブタノール、テトラヒドロフラン等が挙げられる。これらの溶媒は単独で用いてもよく、2種以上を任意の割合で混合して用いてもよい。溶液又は分散液中の増感色素の濃度は通常1×10-6~1M、好ましくは1×10-5~1×10-1Mである。この様に増感色素の溶液又は分散液に半導体含有層の設けられた導電性支持体を浸漬させることによって、色素で増感された半導体含有層を有する導電性支持体が得られる。
 色素を混合して用いる場合の各色素の比率は特に限定されないが、一般的にはそれぞれの色素を少なくとも10モル%程度以上使用することが好ましい。2種以上の色素を溶解もしくは分散した溶液を用いて半導体含有層に色素を担持させる場合、溶液中の色素の合計濃度が1種類のみ担持させる場合と同様であればよい。また、各色素用に用いる溶媒は同一であっても異なっていてもよい。
 色素同士の会合を防ぐために、包接化合物の共存下で、半導体含有層に色素を担持することが効果的である。ここで用いる包接化合物としては、コール酸類等のステロイド系化合物、クラウンエーテル、シクロデキストリン、カリックスアレン、ポリエチレンオキサイドなどが挙げられる。コール酸類を用いることが好ましい。コール酸類の中でも、コール酸、デオキシコール酸、ケノデオキシコール酸、コール酸メチルエステル、コール酸ナトリウム、ウルソデオキシコール酸、リトコール酸等を用いることが好ましい。デオキシコール酸、ケノデオキシコール酸、ウルソデオキシコール酸、リトコール酸を用いることがより好ましい。これら包摂化合物は、色素溶液に添加してもよいし、予め包摂化合物を溶媒に溶解させた後に色素を溶解又は分散させてもよい。これら包摂化合物は2種類以上を組み合わせて用いることも可能である。この場合、複数の包摂化合物の割合は任意に選択することができる。また、色素を担持させた後、4-t-ブチルピリジン、ピリジン、4-メチルピリジン、トリエチルアミン等のアミン化合物や、ギ酸、酢酸、プロピオン酸等の酸で半導体含有層を処理してもよい。この処理の方法は、例えばアミン化合物又は酸を添加したエタノール溶液に増感色素を担持した半導体含有層の設けられた導電性支持体を浸す方法や、増感色素を担持した半導体含有層の設けられた導電性支持体に直接アミン化合物や酸を接触させ、一定時間後に有機溶媒又は水等で洗浄及び乾燥する方法等が採られる。
 次に、前記のようにして得られた色素で増感された半導体含有層を有する導電性支持体(第一の導電性支持体)と対向電極を有する導電性支持体(第二の導電性支持体)とを、シール剤を用いて貼り合わせる方法の一例について説明する。まず、スペーサー(間隙制御材)を添加したシール剤を、いずれか一方の導電性支持体の導電面の周辺部に、電荷移動層の注入口を残してディスペンサー、スクリーン印刷機、インクジェット印刷機等により堰状に塗布する。その後、該シール剤が溶剤を含有する場合には、例えば温風乾燥機などで加熱して溶剤を蒸発させる。次いで第一と第二の導電性支持体の導電面が対面するように他方の導電性支持体を重ね合わせ、加熱及び/又は紫外線照射によりシール剤を硬化させる。ここで用いるスペーサーとしては、例えばグラスファイバー、シリカビーズ、ポリマービーズ等、さらには金パール、銀パール等の金属コーティングした微粒子等が用いられる。その直径は、目的に応じて異なるが、通常1~100μm、好ましくは10~40μmである。その使用量は、シール剤100質量部に対し通常0.1~10質量部、好ましくは0.5~5質量部、更に、好ましくは1~2.5質量部である。シール剤の加熱硬化の条件は、通常90~180℃で1~3時間である。尚、加熱硬化の方法としては、熱盤を2枚有する熱プレス機でサンドイッチ状に挟んで行う方法、冶具で固定した後にオーブン中で行なう方法等が採用できる。また、紫外線硬化型及び光熱併用硬化型のシール剤を用いる場合の紫外線の照射条件は、シール剤の硬化速度に併せて選択すればよい。第一と第二の導電性支持体の間隙は通常1~100μm、好ましくは4~50μmである。
 本発明の色素増感太陽電池は、上記のようにして貼り合わせた一対の導電性支持体の間隙に電荷移動層を注入した後、電荷移動層の注入口を封止することにより得ることができる。電荷移動層の注入口を封止する封止剤(封口剤)としては、イソブチレン樹脂、エポキシ樹脂、UV硬化性のアクリル樹脂等が使用できる。電荷移動層が注入口から漏洩するのを防ぐ効果を持つものであれば、前述に限らず封止剤として用いることが可能である。封止剤としては、市販の封止剤を用いることが可能である。特にUV硬化性アクリル系樹脂が好ましい。
 一方、色素増感太陽電池の別の作製法として、国際公開特許WO2007/046499号公報に記載の方法も採用できる。この方法では、いずれか一方の導電性支持体の導電面の周辺部に、電荷移動層注入口を設けることなくシール剤の堰を設け、次いで前記同様の電荷移動層をシール剤の堰の内側に配し、減圧下において第一と第二の導電性支持体の導電面が対面するように他方の導電性支持体を載置し貼り合わせると同時にギャップ形成を行い、その後シール剤を硬化させることにより色素増感太陽電池を得ることができる。
 図1は、本発明の色素増感太陽電池の構造を説明する要部断面模式図である。図中、1は内側が導電性を有する第一の導電性支持体、2は色素によって増感された半導体含有層、1と2を併せて酸化物半導体電極という。3は導電性支持体の内側の導電面の上に白金等を配した対向電極を有する第二の導電性支持体、4は一対の導電性支持体の間隙に配されている電荷移動層、5はシール剤、6はガラス基板である。
 以下に実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
電解液作成例1
 ヨウ素を0.1M、ヨウ化物としてリチウムヨーダイド(LiI)を0.1Mと1-メチル-3-プロピルイミダゾリウムヨーダイドを1.2M、添加剤として分子内にチオエステル結合と正電荷を帯びた窒素原子の双方を有する化合物であるブチリルチオコリンヨージドを0.1Mの濃度になるように、各成分を3-メトキシプロピオニトリルに溶解混合させて、色素増感太陽電池用電解液1を得た。
電解液作成例2~15、17~21
 添加剤を表1に示した各化合物に変更したこと以外は電解液作成例1に準じて、色素増感太陽電池用電解液2~15、17~21をそれぞれ得た。
電解液作成例16
 添加剤であるブチリルチオコリンヨージドを用いなかったこと以外は電解液作成例1に準じて、色素増感太陽電池用電解液16を得た。
評価試験1(電解液の耐熱安定性評価)
 電解液作成例1~21で得られた電解液1~21を、褐色のサンプル瓶中にそれぞれ1mLずつ加え、密閉した状態で85℃の乾燥機中で20時間加熱した。その後、電解液の状態を目視で観察し、状態に変化が無いものを○とし、ヨウ素の褐色が消色しているもの、または液中に沈殿が発生しているものを×とした。結果を表1に示した。
評価試験2(電解液に対する白金の耐熱安定性評価)
 導電性支持体であるFTO導電性ガラス支持体の導電面上に、スパッタリングにより白金を50Å蒸着し、1cm×2cmのサイズに切り出したものを試験片とした。褐色のサンプル瓶中に、電解液1~21をそれぞれ1mLずつと、上記の試験片を1枚ずつ加え、密閉した状態で85℃の乾燥機中で20時間加熱した。その後、試験片を取り出し、白金の状態を目視で観察して、状態に変化が無いものを○とし、白金の黒色が消色しているものを×とした。結果を表1に示した。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-C000008
実施例1
 導電性支持体であるFTO導電性ガラス支持体の導電面上に、TiO2微粒子(平均粒子径20nm)をターピネオールでペースト状にしたものをスクリーン印刷機で塗布して、450℃で30分間焼成し、半導体含有層(膜厚10μm 短軸幅5mm 長軸幅4cm)を有する導電性支持体を作成した。得られた半導体含有層の設けられた導電性支持体を、国際公開特許WO2007/100033号公報の実施例6に記載の色素(下記式(3)で示される色素)を1.6×10-4Mの濃度になるようにアセトンに溶解して得られた色素溶液に、室温で24時間浸漬して酸化物半導体電極を作製した。次に、別のFTO導電性ガラス支持体の導電面上にPtを50Å蒸着させて対向電極を作製した。得られた対向電極の周縁部に、国際公開特許WO2011/14551公報のシール剤作製例3に記載のエポキシ樹脂系シール剤にスペーサーとして金パール(パール径20μm)を2.5質量%添加したシール剤を、電荷移動層の注入口を残すようにスクリーン印刷機を用いて塗布した後、温風乾燥機で90℃、18分間加熱して溶剤を除去した。その後、前記した酸化物半導体電極を、対向電極の導電面と半導体含有層とが対面するようにシール剤上に重ね合わせ、熱プレス機を用いて2.5kg/cm2の圧力で、150℃で60分間硬化させることにより、両導電性支持体を貼り合わせたセルを得た。得られたセルの注入口から電解液作成例で得られた電解液1をセル内に充填した後、注入口をUV硬化性アクリル系樹脂で封止することにより本発明の色素増感太陽電池(電池1)を得た。
Figure JPOXMLDOC01-appb-C000009
実施例2
 電解液1を電解液作成例で得られた電解液2に変更したこと以外は実施例1に準じて、本発明の色素増感太陽電池(電池2)を得た。
比較例1~13
 電解液1を電解液作成例で得られた電解液5、7~10、14~21に変更したこと以外は実施例1に準じて、比較用の色素増感太陽電池(電池3~15)をそれぞれ得た。
評価試験3(初期光電変換効率(初期Eff)の測定)
 実施例1、2で得られた電池1、2、比較例1~13で得られた電池3~15について、光電変換能の測定を行った。光源には1kWキセノンランプ(WACOM製)を用いて、AM1.5フィルターを通して100mW/cmとし、開放電圧、短絡電流、形状因子から算出される光電変換効率(Eff)をソーラシミュレータ(WXS-155S-10、WACOM製)を用いて測定した。結果を表2に示した。
評価試験4(耐熱加速試験)
 実施例1、2で得られた電池1、2、比較例1~13で得られた電池3~15について、85℃の耐熱加速試験を実施した。それぞれの電池をアルミ製の袋に入れ、85℃で500時間保持した後の光電変換効率(Eff)を、評価試験3の試験方法に準じて測定した。また、以下の式によりEff劣化率を算出した。結果を表2に示した。
Eff劣化率(%)=
100×[(初期Eff-85℃500時間後Eff)/(初期Eff)]
Figure JPOXMLDOC01-appb-T000010
 電解液の安定性を試験した評価試験1において、電解液1~3に代表される分子内にチオエステル結合と正電荷を帯びた窒素原子の双方を有する化合物を含む電解液は、良好な保存安定性を有していた。それに対して、電解液4、6、13のように、類似の化合物を含む電解液でも、硫黄原子とヨウ素との酸化還元反応が進行してしまい、安定性が大きく劣る系も存在した。また、対極の白金の安定性を試験した評価試験2において、電解液1~3に代表される分子内にチオエステル結合と正電荷を帯びた窒素原子の双方を有する化合物を含む電解液は、白金の安定性が良好であった。それに対し、電解液11、12、16、並びに19乃至21では、電解液中のヨウ素により白金が腐食されてしまった。これらの結果より、分子内にチオエステル結合と正電荷を帯びた窒素原子の双方を有する化合物を含む電解液は、電解液の安定性と、対極材である白金の安定性の、双方に優れていることは明らかである。
 次に、評価試験1、2で結果が良好であった、電解液1、2を用いて本発明の電池1、2を、電解液5、7、8、9、10、14、15、16、17、18、19、20、21を用いて同様の構成の電池3~15を、それぞれ作成して、初期Effと85℃500時間の耐熱加速試験を実施した。その結果、電解液1、2を用いた本発明の電池1、2は、初期Eff、85℃で500時間保持した後のEff共に良好であり、Eff劣化率も5%程度であった。それに対して、硫黄系の添加物を含まない電解液16を用いた電池10では、劣化率が86%と大きく劣り、チオエステル結合のみを有する化合物を添加した電解液5を用いた電池3も、劣化率が83%であった。さらに、チオアミド系化合物を添加した電解液7、8を用いた電池4、5や、チオシアネートを含む化合物を添加した電解液9、10、14、15、17、18を用いた電池6~9、11、12等でも、劣化率は18%以上あり、いずれも電池の耐久性が劣っていた。また、分子内にチオエステル結合有さず、正電荷を帯びた窒素原子のみを含む化合物を添加した電解液19、20、21を用いた電池13~15は、全て劣化率が99%以上あり、電池の耐久性は大きく劣る結果となった。なお、式(3)で示される化合物以外の公知の非ルテニウム系色素を用いて作製された色素増感太陽電池によっても、上記同様の所望の効果が得られることが確認されている。
 以上の結果から、分子内にチオエステル結合と正電荷を帯びた窒素原子の双方を有する化合物を含む電解液を用いた本発明の色素増感太陽電池が、優れた光電変換効率と耐熱耐久性を有していることは明らかである。
 本発明の、増感色素が非ルテニウム系の有機色素であり、対向電極が白金を含み、かつ電荷移動層が、ヨウ素、ヨウ素イオン、及び分子内にチオエステル結合と正電荷を帯びた窒素原子の双方を有する化合物を含む電解液である色素増感太陽電池は、優れた変換効率と、高い耐久性を有する。このため、資源的な制約が少なく、分子設計の幅が広い、非ルテニウム系色素を用いた色素増感太陽電池で、長期間使用しても劣化が少ない電池が提供可能となる。
 1 導電性支持体
 2 色素によって増感された半導体含有層
 3 対向電極
 4 電荷移動層
 5 シール剤
 6 ガラス基板

Claims (9)

  1.  色素によって増感された半導体含有層を有する第一の導電性支持体、該半導体含有層と対向電極とが所定の間隔で対向する位置に設けられた対向電極を有する第二の導電性支持体、第一及び第二の導電性支持体の間隙に挟持された電荷移動層、並びに電荷移動層をシールするために第一及び第二の導電性支持体の周辺部に設けられたシール剤を含む色素増感太陽電池であって、該色素が非ルテニウム系の有機色素であり、該対向電極が白金を含み、かつ該電荷移動層が、ヨウ素、ヨウ素イオン、及び分子内にチオエステル結合と正電荷を帯びた窒素原子の双方を有する化合物を含む電解液である色素増感太陽電池。
  2.  分子内にチオエステル結合と正電荷を帯びた窒素原子の双方を有する化合物が、下記式(1)
    Figure JPOXMLDOC01-appb-C000001

    (式中、R1、R2、R3、R4、R5及びR6は、それぞれ独立に、ハロゲン原子、アルコキシ基、エステル基、アシル基、アミノ基、アミド基、アルキル基、アルケニル基、アルキニル基、アリール基、シアノ基、イソシアノ基、ニトロ基、ニトロソ基、ヒドロキシル基、リン酸エステル基、スルフィニル基及びスルホニル基からなる群より選ばれる一種以上の置換基を有していてもよい炭素数1~10の脂肪族炭化水素残基、ハロゲン原子、アルコキシ基、エステル基、アシル基、アミノ基、アミド基、アルキル基、アルケニル基、アルキニル基、アリール基、シアノ基、イソシアノ基、ニトロ基、ニトロソ基、ヒドロキシル基、リン酸エステル基、スルフィニル基及びスルホニル基からなる群より選ばれる一種以上の置換基を有していてもよい芳香族炭化水素残基、ハロゲン原子、アルコキシ基、エステル基、アシル基、アミノ基、アミド基、アルキル基、アルケニル基、アルキニル基、アリール基、シアノ基、イソシアノ基、ニトロ基、ニトロソ基、ヒドロキシル基、リン酸エステル基、スルフィニル基及びスルホニル基からなる群より選ばれる一種以上の置換基を有していてもよい複素環残基若しくは水素原子を表す。また、R1、R2、R3、R4、R5及びR6から選択される任意の2者は結合して環を形成してもよい。nは1~6の整数を表す。Y-は、1価の陰イオンを表す。)
    で表される構造を有する請求項1に記載の色素増感太陽電池。
  3.  式(1)で表される化合物が、チオコリン残基を有する化合物である請求項2に記載の色素増感太陽電池。
  4.  式(1)で表される化合物が、ハロゲン化物イオンを有する化合物である請求項2または3に記載の色素増感太陽電池。
  5.  シール剤が、エポキシ樹脂系シール剤である請求項1に記載の色素増感太陽電池。
  6.  半導体含有層の半導体が、微粒子状の酸化チタン又は微粒子状の複合酸化チタンである請求項1に記載の色素増感太陽電池。
  7.  非ルテニウム系の有機色素が、下記式(2)
    Figure JPOXMLDOC01-appb-C000002

    (式中、AおよびAは、それぞれ独立に、カルボキシル基、シアノ基、アルコキシカルボニル基、アシル基、ニトロ基、環式炭化水素残基、複素環残基、アミノ基、ヒドロキシル基、水素原子、ハロゲン原子又はアルキル基を表す。Xは芳香族炭化水素残基、複素環残基またはアミノ基を表す。mは1~6の整数を表す。また、mが2以上で、AおよびAが複数存在する場合、それぞれのAおよびそれぞれのAは互いに独立に同じ又は異なってもよい前記の基を表す。また、A若しくはAが複数存在する場合にはそれぞれのA、A若しくはAが複数存在する場合にはそれぞれのA及びXの中の任意の2者は結合して環を形成してもよい。)
    で表される構造を有する請求項1に記載の色素増感太陽電池。
  8.  式(2)におけるAが、シアノ基またはカルボキシル基である請求項7に記載の色素増感太陽電池。
  9.  式(2)におけるXが、トリフェニルアミン誘導体を有する(ポリ)エテニル基又は(ポリ)チオフェニル基である請求項7または8に記載の色素増感太陽電池。
PCT/JP2013/082004 2012-11-30 2013-11-28 色素増感太陽電池 WO2014084296A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/443,738 US20150294798A1 (en) 2012-11-30 2013-11-28 Dye-Sensitized Solar Cell
EP13858313.3A EP2928009A4 (en) 2012-11-30 2013-11-28 COLOR-SENSITIZED SOLAR CELL
JP2014549884A JPWO2014084296A1 (ja) 2012-11-30 2013-11-28 色素増感太陽電池
KR1020157014236A KR20150090895A (ko) 2012-11-30 2013-11-28 색소 증감 태양 전지
CN201380062574.5A CN104823254A (zh) 2012-11-30 2013-11-28 染料敏化太阳能电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012262251 2012-11-30
JP2012-262251 2012-11-30

Publications (1)

Publication Number Publication Date
WO2014084296A1 true WO2014084296A1 (ja) 2014-06-05

Family

ID=50827928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082004 WO2014084296A1 (ja) 2012-11-30 2013-11-28 色素増感太陽電池

Country Status (7)

Country Link
US (1) US20150294798A1 (ja)
EP (1) EP2928009A4 (ja)
JP (1) JPWO2014084296A1 (ja)
KR (1) KR20150090895A (ja)
CN (1) CN104823254A (ja)
TW (1) TW201439223A (ja)
WO (1) WO2014084296A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116865A1 (ja) * 2017-12-13 2019-06-20 株式会社ダイセル 電解質組成物及びその用途

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019117889A (ja) * 2017-12-27 2019-07-18 太陽誘電株式会社 色素増感太陽電池

Citations (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002001667A1 (fr) 2000-06-29 2002-01-03 Nippon Kayaku Kabushiki Kaisha Transducteur photoelectrique sensibilise par colorant
WO2002011213A1 (fr) 2000-07-27 2002-02-07 Nippon Kayaku Kabushiki Kaisha Transducteur photoélectrique sensibilisé par un colorant
JP2002512729A (ja) 1997-05-07 2002-04-23 エコール ポリテクニーク フェデラル ドゥ ローザンヌ 金属複合体光増感剤および光起電力セル
WO2002071530A1 (en) 2001-03-07 2002-09-12 Nippon Kayaku Kabushiki Kaisha Pigment sensitizing photoelectric conversion element
JP2002334729A (ja) 2001-03-09 2002-11-22 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2002368236A (ja) 2001-06-04 2002-12-20 Nippon Kayaku Co Ltd シール剤
JP2003007358A (ja) 2001-06-20 2003-01-10 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2003017146A (ja) 2001-06-29 2003-01-17 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2003059547A (ja) 2001-08-17 2003-02-28 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2003086257A (ja) 2001-09-07 2003-03-20 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2003115333A (ja) 2001-10-04 2003-04-18 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2003132965A (ja) 2001-07-10 2003-05-09 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2003142172A (ja) 2001-08-23 2003-05-16 Nippon Kayaku Co Ltd 色素増感光電変換素子及びこれを用いた太陽電池
JP2003151649A (ja) 2001-07-06 2003-05-23 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2003157915A (ja) 2001-09-04 2003-05-30 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2003234486A (ja) * 2002-02-07 2003-08-22 Seiko Epson Corp 光電変換素子
JP2003282165A (ja) 2002-01-16 2003-10-03 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2004014175A (ja) 2002-06-04 2004-01-15 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2004022387A (ja) 2002-06-18 2004-01-22 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2004022222A (ja) 2002-06-13 2004-01-22 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2004227825A (ja) 2003-01-21 2004-08-12 Nippon Kayaku Co Ltd 色素増感光電変換素子
WO2004075333A1 (ja) 2003-02-20 2004-09-02 Nippon Kayaku Kabushiki Kaisha 光電変換素子用シール剤及びこれを用いた光電変換素子
WO2004082061A1 (ja) 2003-03-14 2004-09-23 Nippon Kayaku Kabushiki Kaisha 色素増感光電変換素子
JP2005005026A (ja) 2003-06-10 2005-01-06 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2005019130A (ja) 2003-06-25 2005-01-20 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2005135656A (ja) 2003-10-28 2005-05-26 Shozo Yanagida 光電変換素子
JP3731752B2 (ja) 1992-08-21 2006-01-05 エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) 有機化合物
JP2006079898A (ja) 2004-09-08 2006-03-23 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2006134649A (ja) 2004-11-04 2006-05-25 Nippon Kayaku Co Ltd 光電変換素子
WO2006080384A1 (ja) 2005-01-27 2006-08-03 Nippon Kayaku Kabushiki Kaisha 修飾酸化チタン微粒子及びそれを用いた光電変換素子
WO2006082061A1 (de) 2005-02-03 2006-08-10 Kuka Schweissanlagen Gmbh Fertigungsverfahren und fertigungseinrichtung für bauteile
WO2006126538A1 (ja) 2005-05-24 2006-11-30 Nippon Kayaku Kabushiki Kaisha 色素増感光電変換素子
WO2007007671A1 (ja) 2005-07-07 2007-01-18 Nippon Kayaku Kabushiki Kaisha 光電変換素子用シール剤及びそれを用いた光電変換素子
WO2007046499A1 (ja) 2005-10-21 2007-04-26 Nippon Kayaku Kabushiki Kaisha 色素増感型光電変換素子及びその製造法
JP2007149570A (ja) 2005-11-30 2007-06-14 Nippon Kayaku Co Ltd 色素増感光電変換素子
WO2007100033A1 (ja) 2006-03-02 2007-09-07 Nippon Kayaku Kabushiki Kaisha 色素増感光電変換素子
JP2008021496A (ja) 2006-07-12 2008-01-31 Nippon Kayaku Co Ltd 色素増感光電変換素子
WO2009020098A1 (ja) 2007-08-08 2009-02-12 Nippon Kayaku Kabushiki Kaisha パイ電子共役系を拡張した色素増感型太陽電池用増感色素
JP4264507B2 (ja) 2003-07-15 2009-05-20 独立行政法人産業技術総合研究所 光電変換素子及びそれを用いた色素増感型太陽電池
WO2009069757A1 (ja) 2007-11-30 2009-06-04 Fujikura Ltd. 電解質組成物およびこれを用いた光電変換素子
JP2009199810A (ja) * 2008-02-20 2009-09-03 Konica Minolta Business Technologies Inc 色素増感光電変換素子および太陽電池
WO2010021378A1 (ja) 2008-08-22 2010-02-25 日本化薬株式会社 色素増感型光電変換素子
JP2010146864A (ja) 2008-12-19 2010-07-01 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2010192226A (ja) 2009-02-18 2010-09-02 Toyo Ink Mfg Co Ltd 電解質、電解質組成物、およびそれらの応用
WO2011014551A1 (en) 2009-07-28 2011-02-03 Vocollect Healthcare Systems, Inc. Method and system for sending messages
JP2011061166A (ja) 2009-09-14 2011-03-24 Taiheiyo Cement Corp 電波吸収体
WO2011145551A1 (ja) 2010-05-17 2011-11-24 日本化薬株式会社 熱硬化型光電変換素子用シール剤を用いた光電変換素子
WO2012014414A1 (ja) 2010-07-27 2012-02-02 島根県 色素増感太陽電池及び触媒電極からの触媒溶出防止方法
WO2013061958A1 (ja) * 2011-10-24 2013-05-02 日本化薬株式会社 色素増感太陽電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1873862A4 (en) * 2005-04-11 2009-07-29 Nippon Kayaku Kk ELECTROLYTE COMPOSITION FOR PHOTOELECTRIC CONVERTER AND PHOTOELECTRIC CONVERTER USING THE SAME
US20090099267A1 (en) * 2005-05-27 2009-04-16 University Of Massachusetts Polymers, compositions and methods of making the same
KR100928941B1 (ko) * 2007-11-07 2009-11-30 한국과학기술연구원 염료감응 태양전지와 이의 제조방법
CN101232080B (zh) * 2007-12-29 2012-11-07 中国科学院长春应用化学研究所 共熔室温离子液体及其制法和应用
EP2093278A1 (de) * 2008-02-05 2009-08-26 Evonik Goldschmidt GmbH Performance-Additive zur Verbesserung der Benetzungseigenschaften von ionischen Flüssigkeiten auf festen Oberflächen
US20100101644A1 (en) * 2008-10-23 2010-04-29 Tripod Technology Corporation Electrolyte composition and dye-sensitized solar cell (dssc) comprising the same
US8399939B2 (en) * 2010-12-03 2013-03-19 Massachusetts Institute Of Technology Color selective photodetector and methods of making

Patent Citations (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3731752B2 (ja) 1992-08-21 2006-01-05 エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) 有機化合物
JP2002512729A (ja) 1997-05-07 2002-04-23 エコール ポリテクニーク フェデラル ドゥ ローザンヌ 金属複合体光増感剤および光起電力セル
WO2002001667A1 (fr) 2000-06-29 2002-01-03 Nippon Kayaku Kabushiki Kaisha Transducteur photoelectrique sensibilise par colorant
WO2002011213A1 (fr) 2000-07-27 2002-02-07 Nippon Kayaku Kabushiki Kaisha Transducteur photoélectrique sensibilisé par un colorant
WO2002071530A1 (en) 2001-03-07 2002-09-12 Nippon Kayaku Kabushiki Kaisha Pigment sensitizing photoelectric conversion element
JP2002334729A (ja) 2001-03-09 2002-11-22 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2002368236A (ja) 2001-06-04 2002-12-20 Nippon Kayaku Co Ltd シール剤
JP2003007358A (ja) 2001-06-20 2003-01-10 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2003017146A (ja) 2001-06-29 2003-01-17 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2003151649A (ja) 2001-07-06 2003-05-23 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2003132965A (ja) 2001-07-10 2003-05-09 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2003059547A (ja) 2001-08-17 2003-02-28 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2003142172A (ja) 2001-08-23 2003-05-16 Nippon Kayaku Co Ltd 色素増感光電変換素子及びこれを用いた太陽電池
JP2003157915A (ja) 2001-09-04 2003-05-30 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2003086257A (ja) 2001-09-07 2003-03-20 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2003115333A (ja) 2001-10-04 2003-04-18 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2003282165A (ja) 2002-01-16 2003-10-03 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2003234486A (ja) * 2002-02-07 2003-08-22 Seiko Epson Corp 光電変換素子
JP2004014175A (ja) 2002-06-04 2004-01-15 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2004022222A (ja) 2002-06-13 2004-01-22 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2004022387A (ja) 2002-06-18 2004-01-22 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2004227825A (ja) 2003-01-21 2004-08-12 Nippon Kayaku Co Ltd 色素増感光電変換素子
WO2004075333A1 (ja) 2003-02-20 2004-09-02 Nippon Kayaku Kabushiki Kaisha 光電変換素子用シール剤及びこれを用いた光電変換素子
WO2004082061A1 (ja) 2003-03-14 2004-09-23 Nippon Kayaku Kabushiki Kaisha 色素増感光電変換素子
JP2005005026A (ja) 2003-06-10 2005-01-06 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2005019130A (ja) 2003-06-25 2005-01-20 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP4264507B2 (ja) 2003-07-15 2009-05-20 独立行政法人産業技術総合研究所 光電変換素子及びそれを用いた色素増感型太陽電池
JP2005135656A (ja) 2003-10-28 2005-05-26 Shozo Yanagida 光電変換素子
JP2006079898A (ja) 2004-09-08 2006-03-23 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2006134649A (ja) 2004-11-04 2006-05-25 Nippon Kayaku Co Ltd 光電変換素子
WO2006080384A1 (ja) 2005-01-27 2006-08-03 Nippon Kayaku Kabushiki Kaisha 修飾酸化チタン微粒子及びそれを用いた光電変換素子
WO2006082061A1 (de) 2005-02-03 2006-08-10 Kuka Schweissanlagen Gmbh Fertigungsverfahren und fertigungseinrichtung für bauteile
WO2006126538A1 (ja) 2005-05-24 2006-11-30 Nippon Kayaku Kabushiki Kaisha 色素増感光電変換素子
WO2007007671A1 (ja) 2005-07-07 2007-01-18 Nippon Kayaku Kabushiki Kaisha 光電変換素子用シール剤及びそれを用いた光電変換素子
WO2007046499A1 (ja) 2005-10-21 2007-04-26 Nippon Kayaku Kabushiki Kaisha 色素増感型光電変換素子及びその製造法
JP2007149570A (ja) 2005-11-30 2007-06-14 Nippon Kayaku Co Ltd 色素増感光電変換素子
WO2007100033A1 (ja) 2006-03-02 2007-09-07 Nippon Kayaku Kabushiki Kaisha 色素増感光電変換素子
JP2008021496A (ja) 2006-07-12 2008-01-31 Nippon Kayaku Co Ltd 色素増感光電変換素子
WO2009020098A1 (ja) 2007-08-08 2009-02-12 Nippon Kayaku Kabushiki Kaisha パイ電子共役系を拡張した色素増感型太陽電池用増感色素
WO2009069757A1 (ja) 2007-11-30 2009-06-04 Fujikura Ltd. 電解質組成物およびこれを用いた光電変換素子
JP2009199810A (ja) * 2008-02-20 2009-09-03 Konica Minolta Business Technologies Inc 色素増感光電変換素子および太陽電池
WO2010021378A1 (ja) 2008-08-22 2010-02-25 日本化薬株式会社 色素増感型光電変換素子
JP2010146864A (ja) 2008-12-19 2010-07-01 Nippon Kayaku Co Ltd 色素増感光電変換素子
JP2010192226A (ja) 2009-02-18 2010-09-02 Toyo Ink Mfg Co Ltd 電解質、電解質組成物、およびそれらの応用
WO2011014551A1 (en) 2009-07-28 2011-02-03 Vocollect Healthcare Systems, Inc. Method and system for sending messages
JP2011061166A (ja) 2009-09-14 2011-03-24 Taiheiyo Cement Corp 電波吸収体
WO2011145551A1 (ja) 2010-05-17 2011-11-24 日本化薬株式会社 熱硬化型光電変換素子用シール剤を用いた光電変換素子
WO2012014414A1 (ja) 2010-07-27 2012-02-02 島根県 色素増感太陽電池及び触媒電極からの触媒溶出防止方法
CN103038935A (zh) * 2010-07-27 2013-04-10 岛根县 防止催化剂从色素增感太阳电池及催化剂电极溶解析出的方法
KR20130040247A (ko) * 2010-07-27 2013-04-23 시마네켄 색소증감 태양전지 및 촉매전극으로부터의 촉매용출 방지방법
US20130125979A1 (en) * 2010-07-27 2013-05-23 Shimane Prefectural Government Method for preventing catalyst release from dye-sensitized solar cell and from catalytic electrodes
EP2600464A1 (en) * 2010-07-27 2013-06-05 Shimane Prefectural Government Method for preventing catalyst release from dye-sensitized solar cell and from catalytic electrodes
WO2013061958A1 (ja) * 2011-10-24 2013-05-02 日本化薬株式会社 色素増感太陽電池

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEMICAL REVIEWS, vol. 110, no. 11, 2010, pages 6616 - 6631
NATURE, vol. 353, 1991, pages 737 - 740
See also references of EP2928009A4
THE JOURNAL OF PHYSICAL CHEMISTRY C, vol. 113, 2009, pages 21779 - 21783

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116865A1 (ja) * 2017-12-13 2019-06-20 株式会社ダイセル 電解質組成物及びその用途
JP2019106472A (ja) * 2017-12-13 2019-06-27 株式会社ダイセル 電解質組成物及びその用途
JP7002313B2 (ja) 2017-12-13 2022-01-20 株式会社ダイセル 電解質組成物及びその用途

Also Published As

Publication number Publication date
KR20150090895A (ko) 2015-08-06
EP2928009A4 (en) 2016-08-24
EP2928009A1 (en) 2015-10-07
CN104823254A (zh) 2015-08-05
JPWO2014084296A1 (ja) 2017-01-05
TW201439223A (zh) 2014-10-16
US20150294798A1 (en) 2015-10-15

Similar Documents

Publication Publication Date Title
Zhou et al. Ladder-type pentaphenylene dyes for dye-sensitized solar cells
AU2006305129B2 (en) Dye-sensitized photoelectric conversion device and method for manufacturing same
US20090272433A1 (en) Functional Device and Method for Making the Same
AU2006267616B2 (en) Sealing agent for photoelectric converter and photoelectric converter using same
WO2010104117A1 (ja) 色素増感太陽電池、光電変換素子及びそれに使用される色素
JP2012530796A (ja) 新規の有機色素およびその製造方法
JP5649648B2 (ja) 熱硬化型光電変換素子用シール剤を用いた光電変換素子
Kajiyama et al. Organic dyes with oligo-n-hexylthiophene for dye-sensitized solar cells: relation between chemical structure of donor and photovoltaic performance
US20140137945A1 (en) Pigment sensitization solar cell
JP2010009786A (ja) 色素増感型太陽電池および色素増感型太陽電池モジュール
WO2014084296A1 (ja) 色素増感太陽電池
WO2011108481A1 (ja) スクアリリウム色素及びそれらの色素を用いた色素増感太陽電池、光電変換素子
JP2008186669A (ja) 色素増感型太陽電池の製造方法
JP2008226505A (ja) フェナントロチオフェン系化合物、および、その用途、ならびに製造方法
WO2013061958A1 (ja) 色素増感太陽電池
JP2004103420A (ja) 金属−金属酸化物複合電極の作製方法、光電変換素子及び光電池
JP2015115110A (ja) 色素増感太陽電池の製造方法および色素増感太陽電池
JP2016143867A (ja) 色素増感太陽電池
JP4230182B2 (ja) 色素増感光電変換素子及びこれを用いた太陽電池
KR20100128096A (ko) 신규한 루테늄계 염료 및 이의 제조방법
KR101597863B1 (ko) 플루오렌 유도체 및 그의 염
JP2007066704A (ja) 電解質組成物および色素増感太陽電池
JP6802802B2 (ja) シール剤
Ozawa et al. Black-dye-based dye-sensitized solar cells using the electrolyte solutions containing a quaternary phosphonium iodide with a various alkyl chain length
KR101173658B1 (ko) 염료감응 태양전지용 스쿠아레인계 염료

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858313

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014549884

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14443738

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013858313

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013858313

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157014236

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE