WO2014084026A1 - 金属微粒子含有構造体 - Google Patents
金属微粒子含有構造体 Download PDFInfo
- Publication number
- WO2014084026A1 WO2014084026A1 PCT/JP2013/080368 JP2013080368W WO2014084026A1 WO 2014084026 A1 WO2014084026 A1 WO 2014084026A1 JP 2013080368 W JP2013080368 W JP 2013080368W WO 2014084026 A1 WO2014084026 A1 WO 2014084026A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal fine
- fine particles
- lipophilic
- dispersion
- clay
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/14—Conductive material dispersed in non-conductive inorganic material
- H01B1/16—Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/007—After-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D5/00—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/06—Metallic powder characterised by the shape of the particles
- B22F1/068—Flake-like particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/30—Drying; Impregnating
Definitions
- the present invention relates to a structure comprising fine metal particles and a specific lipophilic montmorillonite mineral group or mica group mineral.
- Patent Document 1 describes that a noble metal fine particles are aggregated in a fluid matrix typified by smectite to obtain a composite in which the aggregated state is stabilized.
- the montmorillonite mineral group such as smectite has affinity with high polar solvents such as water and dimethylsulfoamide because its surface and interlayer are hydrophilic. It has the property of not showing affinity to low polar solvents such as solvents. Therefore, it has been difficult for a group of montmorillonite minerals such as smectite to produce a layered compound-metal particle composite having an affinity for a low polarity substance.
- a layered compound-metal particle composite having an affinity for a low-polarity substance has good work efficiency because of (1) excellent volatility, and (2) improves the photoelectric conversion efficiency of organic solar cells. It had industrial utility such as being able to.
- the present inventor has completed an invention of a method for producing a layered compound-metal particle composite having excellent affinity with a low-polar substance by intercalation of organic ions (Patent Document 2).
- Patent Document 2 a method for producing a layered compound-metal particle composite having excellent affinity with a low-polar substance by intercalation of organic ions.
- metal particles metal plate fine particles or the like
- metal colloid metal particles or metal particles whose surface is covered with a dispersant such as citric acid
- An object of the present invention is to obtain a structure containing metal plate fine particles and an oleophilic clay-based intercalation compound, having excellent dispersion stability and practical stability.
- the dispersion stability is excellent.
- the present inventors have found that a structure having practical stability can be obtained, and have reached the present invention.
- the shape of the metal fine particles include spheres, cubes, cuboids, octahedrons, and other polyhedrons, stars, plates, rods, wires, prisms, and the like. It was found that the structure of the present invention exhibits various properties by controlling the ratio in a mixed system of polyhedrons and plates.
- the present invention is a structure containing metal fine particles and an oleophilic clay-based intercalation compound in a weight ratio of 0.01 to 50.
- the metal fine particles are, for example, at least one selected from the group consisting of gold, silver, copper, platinum, palladium, and rhodium.
- at least a part of the metal fine particles has a plate shape, the plate-like metal fine particles have a thickness of 1 nm to 50 nm, and the major plane has a major axis of 10 nm to 5000 nm.
- the aspect ratio of the plate-like fine metal particles is at least 3, preferably 3 or more.
- examples of the metal fine particles include those containing at least silver.
- the lipophilic clay-based intercalation compounds belong to the lipophilic montmorillonite mineral group or mica group mineral.
- the lipophilic clay-based intercalation compound is a lipophilic smectite, a lipophilic saponite, or a lipophilic hectorite, but a synthetic product can also be used as the lipophilic clay-based intercalation compound.
- the structure of this invention is a film
- the present invention is a method for producing a structure comprising metal fine particles and a lipophilic clay-based intercalation compound at a weight ratio of 0.01 to 50, and includes the following steps 1 to 3. .
- Step 1 A step of preparing a dispersion containing metal fine particles, a clay-based intercalation compound, and a liquid dispersion medium so that the weight ratio of the metal fine particles and the lipophilic clay-based intercalation compound is 0.01 to 50.
- Step 2 A step of applying the dispersion to a support to obtain a coating film.
- Process 3 The process of removing a liquid dispersion medium from this coating film. In the step 1, it is preferable to contain a resin in the dispersion.
- the resin examples include at least one selected from the group consisting of polyol, polycarboxylic acid, polysulfonic acid, polyether, polyester, polyamide, polyvinyl butyral, polysiloxane, polyvinyl pyrrolidone, and polycation compound.
- the present invention provides polyhedral metal fine particles containing spherical particles having an average particle diameter of 1 nm to 300 nm, a thickness of 1 nm to 50 nm, a major axis of the main plane of the fine particles of 10 nm to 5000 nm, and an aspect ratio of 3 or more. It is a structure containing plate-like fine metal particles and lipophilic clay-based intercalation compounds.
- the present invention it is possible to obtain a structure having practical strength while maintaining the dispersion stability of the metal fine particles as much as possible. Furthermore, according to the present invention, a structure having practical strength that enhances the plasmon effect and easily absorbs light, a structure having practical strength that enhances transparency of visible light, and substance permeability It is possible to obtain a structure having a practical strength with increased resistance.
- the first aspect of the present invention is a structure containing metal fine particles and a lipophilic clay-based intercalation compound in a weight ratio of 0.01 to 50.
- the metal fine particles are composed of at least one selected from the group consisting of gold, silver, copper, platinum, palladium and rhodium.
- the shape of the metal fine particles is plate-like, the thickness of the plate-like metal fine particles is 1 nm to 50 nm, the major axis of the main plane is 10 nm to 5000 nm, and the aspect ratio Is 3 or more.
- Another aspect of the structure of the present invention is a mixture of plate-like metal fine particles containing plate-like metal fine particles alone, or polyhedral metal fine particles containing spherical particles having an average particle diameter of 1 nm to 300 nm and plate stripe metal fine particles.
- the weight ratio of the spherical polyhedral fine particles is 10 or less with respect to the plate-like metal fine particles.
- the clay-based intercalation compound is a lipophilic clay-based intercalation compound.
- the shape of the metal fine particles is a plate shape, the thickness of the plate shape is 1 nm to 50 nm, the major axis of the main plane is 10 nm to 5000 nm, and the aspect ratio is 3 This is the above, and includes a lipophilic clay-based intercalation compound and a mixture of plate-like alone or a mixture of polyhedral metal fine particles containing spheres having an average particle diameter of 1 nm to 300 nm.
- the lipophilic clay-based intercalation compound may be a single type or a combination of a plurality of types of clay-based intercalation compounds.
- the clay-based intercalation compounds in the present invention are a montmorillonite mineral group and a mica mineral group.
- synthetic products in which the OH group in the above formula is substituted with a halogen such as fluorine are also commercially available. can do.
- the mica mineral group includes sodium silicic mica, sodium teniolite, lithium teniolite and the like.
- lipophilic clay-based intercalation compounds that can be synthesized from a clay-based intercalation compound and a C 4 to C 20 alkyl quaternary ammonium cation are useful in the present invention.
- smectites such as Lucentite SAN, Lucentite SAN 316, Lucentite STN, Lucentite SEN and Lucentite SPN (all trade names) manufactured by Coop Chemical Co., Ltd., saponite manufactured by Kunimine Industries Co., Ltd. (for example, organic saponite), Examples thereof include bentonite and Rockwood hectorite (for example, organic compounds of synthetic hectorite).
- the average particle diameter of the spherical polyhedral metal fine particles and plate-shaped metal fine particles used in the present invention is measured by a dynamic light scattering method, a Sears method, a laser diffraction scattering method, or the like.
- the aspect ratio of the plate-like fine metal particles can be obtained from an image observed using a scanning electron microscope.
- the first aspect of the present invention is a structure in which the weight ratio of metal fine particles to lipophilic synthetic smectite (weight of lipophilic synthetic smectite / weight of metal fine particles) satisfies 0.01 to 50.
- the structure of the present invention can take an aggregate formed by covering the surfaces of plate-like metal fine particles and spherical polyhedral metal fine particles with smectite. Thereby, it is possible to obtain a structure having excellent dispersion stability and excellent temporal stability.
- FIG. 1 shows a microscopic scanning electron micrograph of the structure according to the first aspect of the present invention.
- the plate-like metal fine particles are surrounded by smectite, but are hardly aggregated with other plate-like metal fine particles.
- the structure exhibits special optical characteristics and exhibits a light absorption effect.
- the weight ratio of the metal fine particles to the lipophilic synthetic smectite (weight of the lipophilic synthetic smectite / weight of the metal fine particles) satisfies 0.01 to 50. If the weight ratio is less than 0.01, the dispersion stability is insufficient and the stability over time is poor. On the other hand, when the number is 50 or more, the amount of smectite covering the surface of the plate-like fine metal particles is so much that the surface plasmon effect is lowered. In particular, in the case where various optical properties of the plate-like metal fine particles are effectively expressed, it is preferably 0.05 to 20.
- the metal fine particle is a plate shape alone or a mixture of a polyhedron including a sphere and a plate shape.
- the plate-shaped metal fine particles have a main plane of 1 nm to 50 nm in thickness, a star shape, a triangle, a polygon, a substantially polygon, etc., and the major axis has a major axis of 10 nm to 5000 nm, and its aspect ratio Is 3 or more.
- the major axis of the plate-like metal fine particle is preferably 30 nm to 1500 nm.
- the aspect ratio in the present invention is a value obtained by dividing the long side of the main plane by the thickness.
- the plate-shaped main plane refers to two surfaces having the widest area and facing each other, and the thickness refers to a side length sandwiched between the two main planes.
- the main plane being a star or a polygon indicates a shape obtained by projecting the main plane in the normal direction.
- the long side of the main plane is the longest part from the corner (vertex) to the corner (vertex) of the main plane.
- the second aspect of the structure of the present invention contains at least one of gold, silver, copper, platinum, palladium, and rhodium as the metal fine particles, but a single composition of any of gold, silver, and copper, or An alloy including at least one of these is preferable, and it is particularly preferable that silver is included singly.
- the third aspect of the present invention is that metal plate fine particles alone or polyhedral metal fine particles containing spheres having an average particle diameter of 1 nm to 300 nm and a thickness of 1 nm to 50 nm, and the major axis of the main plane of the metal fine particles is 10 nm to 5000 nm.
- the plate-like metal fine particles having an aspect ratio of 3 or more, and the weight ratio of the metal fine particles is 10 or less with respect to the plate-like metal fine particles.
- FIG. 2 shows a scanning electron micrograph of the structure according to the third aspect of the present invention.
- FIG. 2 shows a state in which spherical metal fine particles are attached to plate-like metal fine particles, both of which are covered with smectite.
- the fourth aspect of the present invention is a structure in which the smectites are lipophilic synthetic smectites.
- a scanning electron micrograph of the structure according to the fourth aspect of the present invention is shown in FIG.
- the lipophilic synthetic smectite can be finely dispersed in a solvent or dissolved in a molecular form to cover metal fine particles and the like. Thereby, the metal fine particles and the like are easily dispersed in the solvent, and it becomes easy to apply the structure of the present invention and to form a film thereof.
- the structure of the present invention is constituted by a composite in which the surface of metal fine particles is covered with a lipophilic clay-based intercalation compound.
- Another aspect of the structure of the present invention may take a form in which metal fine particles are associated or aggregated in the composite.
- it can take a layered form in which metal fine particles are laminated in the composite.
- the composite can be used as a mixture, aggregate, or composition depending on the application.
- the shape of the structure of the present invention can be a film shape, a fiber shape, a particle shape, etc., but from the viewpoint of effectively utilizing optical characteristics, substance permeability, conductivity, etc. that can be expressed, it is a film shape. It is preferable that In this case, from the viewpoint of maintaining the flexibility of the film, the thickness of the structure is preferably 10 ⁇ m or less.
- Step 1 A dispersion containing metal fine particles, a lipophilic clay-based intercalation compound, and a liquid dispersion medium is prepared so that the weight ratio of the metal fine particles to the lipophilic clay-based intercalation compound is 0.01 to 50.
- Step 2 A step of applying the dispersion to a support to obtain a coating film.
- Process 3 The process of removing a liquid dispersion medium from this coating film.
- the dispersion used in the present invention can typically be prepared by any of the following methods [1] to [4], for example, but the method for preparing the dispersion is not limited to these methods. Absent. [1] A method in which the metal fine particles and the lipophilic clay-based intercalation compound to be used are all simultaneously added and dispersed in a common liquid dispersion medium. [2] Dispersing metal fine particles in a liquid dispersion medium to prepare a metal fine particle dispersion, separately preparing a lipophilic clay-based intercalation compound by dispersing a lipophilic clay-based intercalation compound in the liquid dispersion medium, A method of mixing the respective dispersions.
- a metal fine particle dispersion containing metal fine particles is prepared by forming metal fine particles in a liquid dispersion medium, and a lipophilic clay-based intercalation compound dispersion containing a lipophilic clay-based intercalation compound is prepared separately.
- a method of preparing each dispersion by the procedure and then mixing all the dispersions.
- the dispersion liquid can be applied with strong dispersion means such as ultrasonic dispersion or ultra-high pressure dispersion to uniformly disperse the metal fine particles in the dispersion liquid.
- strong dispersion means such as ultrasonic dispersion or ultra-high pressure dispersion to uniformly disperse the metal fine particles in the dispersion liquid.
- the lipophilic clay-based intercalation compound and the metal fine particles used for preparing the dispersion are preferably in a colloidal state.
- the liquid dispersion medium of the present invention only needs to have a function of dispersing metal fine particles and the like, and water or an organic solvent can be used.
- the metal fine particles may be subjected to a surface treatment, or a dispersion medium electrolyte or a dispersion aid may be added.
- the pH is adjusted as necessary, and an electrolyte, particularly citric acid or a similar organic acid, and a dispersant are added. be able to.
- an electrolyte particularly citric acid or a similar organic acid, and a dispersant
- the concentration of the smectite dispersion is not particularly limited, but is preferably 1 to 50% by weight in order to maintain the stability of the metal plate fine particles in the solution.
- a resin can be contained in the dispersion.
- the resin include at least one selected from the group consisting of polyol, polycarboxylic acid, polysulfonic acid, polyether, polyester, polyamide, polyvinyl butyral, polysiloxane, polyvinyl pyrrolidone, and polycation compound. Or can be used in appropriate combination.
- the method for coating the dispersion on the support is not particularly limited.
- the dispersion is applied by a known method such as gravure coating, reverse coating, roll coating, spray coating, die coating, or bar coating. can do.
- the pressure and temperature at the time of removal can be appropriately selected depending on the smectite, metal plate fine particles and liquid dispersion medium to be used.
- the liquid dispersion medium is water
- the liquid dispersion medium can be removed at 25 ° C. to 60 ° C. under normal pressure.
- the main materials used are as follows.
- [Silver nanoparticle aqueous dispersion] A prototype manufactured by Dainippon Paint Co., Ltd. was used as an aqueous dispersion of silver nanoparticles.
- This dispersion is an aqueous dispersion of mixed silver nanoparticles containing plate-like particles and spherical polyhedral particles.
- the average major axis of the main plane of the plate-like particles is 500 nm to 800 nm, and the thickness is 10 nm to 20 nm.
- the average particle diameter of the spherical particles is 150 nm.
- the silver content of the dispersion is 0.006% by weight.
- Example 1 The evaluation of Example 1 was performed by the following method.
- a dispersion for coating described in the next section is prepared, and directly coated on the light receiving surface of a silicon photodiode (S2386-8K manufactured by Hamamatsu Photonics). After drying, the photocurrent generated by the light irradiation was measured with a potentio / galvanostat (COMACTACTSTAT manufactured by Ivium Technologies). In order to confirm the increase in photocurrent due to the application of the composite dispersion, in the same silicon photodiode, the ratio of the photocurrent before and after the composite application (photocurrent after composite application / before composite application). Of photocurrent).
- the wavelength counter of HM-25Q type hyper monolite manufactured by JASCO Corporation was set to 0 nm, and the light itself emitted from the Xe lamp as the light source was used.
- the solution was shaken well, left to be subjected to extraction operation, and separated from the top into two layers of a gray-black aqueous phase and a colorless and transparent organic phase.
- the grayish black phase was taken out from the separated layer, and a large amount of ethanol was added to produce a precipitate.
- the precipitate after filtration was washed with a large amount of ethanol and then dried.
- Example 2 this dispersion was applied directly onto the light receiving surface of the photodiode and dried, but aggregates were scattered and a uniform film could not be formed. Subsequently, when the photocurrent of the silicon photodiode was measured by the same evaluation method as in Example 1, only about 70% of the photocurrent before coating was obtained. In contrast to Example 1, the photocurrent increased. No effect was observed. (Example 2)
- a plate-like silver nanoparticle aqueous dispersion was prepared by the following procedure (silver content: 0.001% by weight). All reagents used were special grades manufactured by Wako Pure Chemical Industries.
- Ii While further vigorously stirring, add 125 ⁇ l of 100 mM sodium tetrahydroborate aqueous solution prepared at ice temperature.
- Example 3 a polyvinyl alcohol resin was added to this aqueous phase liquid so that it might become 0.005 weight%, and it was set as the coating material stock solution. Subsequently, an equal amount of ethanol was added to the stock solution, and the solution was applied on a glass substrate that had been subjected to alkali cleaning, and then heated and dried with a dryer. As a result, a non-uniform film in which aggregates were scattered was formed. When the dried film was brought into contact with alcohol, it was easily peeled off from the substrate. Moreover, when the surface resistance of the film was measured, it was about 10 10 ⁇ / ⁇ under normal temperature and normal pressure, and the resistivity was so large that it could not be compared with Example 2. (Example 3)
- polyvinyl butyral resin was added to this organic phase liquid so that it might become 0.005 weight%, and it was set as the coating material stock solution.
- an equal amount of ethanol was added to the stock solution, and the solution was applied on a glass substrate that had been subjected to alkali cleaning, and then heated and dried with a dryer.
- the surface resistance of the film was measured, it showed a numerical value of about 10 3 ⁇ / ⁇ , which was the same level as in Example 2 at normal temperature and normal pressure. The effect was recognized.
- the antistatic film, the conductive film, the transparent conductive film, the antireflection film, the transparent electrode for electronic paper, the antibacterial film Applied to catalyst carrier film, light scattering coating film, mother paste, plasmonic current collector film, etc. or to semiconductors, etc., and applied to flexible solar cells, photoelectric conversion elements such as electroluminescence, photocapacitors, photovoltaic batteries, etc. Is possible.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Nanotechnology (AREA)
- Powder Metallurgy (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Non-Insulated Conductors (AREA)
- Manufacturing Of Electric Cables (AREA)
- Conductive Materials (AREA)
Abstract
Description
工程1:金属微粒子と粘土系層間化合物と液体分散媒とを、金属微粒子と親油性の粘土系層間化合物との重量比が0.01~50となるように含有する分散液を調製する工程。
工程2:該分散液を支持体に塗工して塗工膜を得る工程。
工程3:該塗工膜から液体分散媒を除去する工程。
前記工程1において、分散液中に樹脂を含有させることが好ましい。前記樹脂としては、例えばポリオール、ポリカルボン酸、ポリスルホン酸、ポリエーテル、ポリエステル、ポリアミド、ポリビニルブチラール、ポリシロキサン、ポリビニルピロリドン及びポリカチオン化合物からなる群から選択される少なくとも一種を挙げることができる。
本発明におけるアスペクト比は、主平面の長辺を厚みで割った値である。ここで、プレート形状の主平面は、最も広い面積を有し、かつ対面となっている二つの面を指し、厚みとは、それら二つの主平面に挟まれた辺長を指す。また、主平面が星形や多角形というのは、主平面を法線方向に投影した形状を指す。主平面の長辺とは、主平面のコーナー(頂点)からコーナー(頂点)で、最も長い部分である。
工程1:金属微粒子と親油性粘土系層間化合物と液体分散媒とを、金属微粒子と親油性の粘土系層間化合物との重量比が0.01~50となるように含有する分散液を調製する工程。
工程2:該分散液を支持体に塗工して塗工膜を得る工程。
工程3:該塗工膜から液体分散媒を除去する工程。
[1] 用いる金属微粒子および親油性粘土系層間化合物を全て同時に共通の液体分散媒中に添加し、分散させる方法。
[2] 金属微粒子を液体分散媒中に分散させて金属微粒子分散液を調製し、別途、親油性粘土系層間化合物を液体分散媒中に分散させて親油性粘土系層間化合物を調製し、次いでそれぞれの分散液を混合する方法。
[3] 金属微粒子を液体分散媒中に分散させて金属微粒子分散液を調製し、次いで親油性粘土系層間化合物を添加し、分散させる方法。
[4] 液体分散媒中で金属微粒子を形成させて金属微粒子を含有する金属微粒子分散液を調製し、別途親油性粘土系層間化合物を含有する親油性粘土系層間化合物分散液を調製し、という手順でそれぞれの分散液を調製し、ついで全ての分散液を混合する方法。
(実施例1)
銀ナノ粒子水分散液として大日本塗料社製の試作品を使用した。この分散液は、プレート状粒子と球状を含む多面体粒子とを含有する混合系銀ナノ粒子の水分散液である。プレート状粒子の該主平面の平均長径は500nm~800nm、該厚みは10nm~20nmである。球状粒子の該平均粒径は150nmである。分散液の銀含有率は0.006重量%である。
クニミネ工業社製合成サポナイト(商品名:SA)1グラムを60mlの純水に微粒子分散させて分散液を作製した。あらかじめ50℃に加熱しておいた60mlの純水にベンジルオクタデシルジメチルアンモニウムクロリド1グラムを溶解させた溶液を、前記サポナイトを含む微粒子分散液に50℃で加熱撹拌しながら加え、混合後に1時間槓子撹拌を続けた。その後、溶液を一夜放置して室温に戻したところ、白色沈殿が析出したので濾取して回収し、100mlの純水及び冷メタノールの順で洗浄し、乾燥させた。
前記の親油性合成粘土の1重量%トルエン分散液を作製し、粘稠な液体11mlを採取してジクロロベンゼン:クロロホルム=1:3(vol/vol)の混合溶媒9mlで希釈した後、前記銀ナノ粒子水分散液100mlを加えてよく振り、抽出操作を施して放置したところ、上から水相、青緑相、黄土色相の3層に分離した。分離した層の中から黄土色相を回収し、これに多量の水とエタノールとの混合溶媒を加えたところベージュ色の沈殿を得たので、この沈殿物を回収した。この沈殿物を濾取して多量のエタノールで洗浄後に乾燥した。この回収物質をDMSO−水の混合溶媒に分散させて得た分散液から成膜し、薄膜を得た。この薄膜の走査型電子顕微鏡写真には、多量の微細な親油性合成粘土中に包埋したプレート状銀ナノ粒子が認められた。
γ‐ブチロラクトン:IPA=1:1(vol/vol)混合溶媒中に、前記回収の銀ナノ粒子−親油性粘土複合体の沈殿物(粉末状)を微粒子分散させた分散液(まず、IPAで分散させ、次にγ−ブチロラクトンを加えて30分ほど超音波分散した)を用いて、前記シリコンフォトダイオードの受光面上に直接塗布し、成膜(乾燥)した。続いて、前記手法によりシリコンフォトダイオードの光電流を測定したところ、塗布前と比較して4%程度の光電流の増大が認められた。
(比較例1)
実施例1に示した銀ナノ粒子−親油性粘土複合体の作製において、親油性合成粘土の代わりに、4級アンモニウムで置換されていない親水性の合成サポナイト(クニミネ工業社製合成サポナイト、商品名:SA)をそのまま用いて1重量%の水分散液を作製した。作製した分散液から11mlを採取して、実施例1に記載の銀ナノ粒子水分散液100mlを加え、さらに、ジクロロベンゼン:クロロホルム=1:3(vol/vol)の混合溶媒9mlを加えた。その後、溶液をよく振り、抽出操作を施して放置したところ、上から灰黒色の水相、無色透明の有機相の2層に分離した。分離層の中から灰黒色相をとり、多量のエタノールを加えて生じた沈殿物を濾取した。濾過後の沈殿物は多量のエタノールで洗浄した後に乾燥した。
(実施例2)
下記の手順により、プレート状銀ナノ粒子水分散液を作製した(銀含有率:0.001重量%)。全ての試薬は、和光純薬工業社製の特級グレードを用いた。
(i)超純水24ml中に、撹拌しながら150mMクエン酸三ナトリウム水溶液250μl、50mM硝酸銀水溶液50μl、30%過酸化水素水60μlを順次加える。
(ii)さらに激しく撹拌しながら、氷温で調製した100mMテトラヒドロほう酸ナトリウム水溶液125μlを加える。
(iii)テトラヒドロほう酸ナトリウム水溶液を加えた後、少なくとも30分激しく撹拌を続ける。さらに、5日以上静置し、銀ナノプレート核aの水分散液を得る。
(iv)超純水18ml中に、撹拌しながら前記銀ナノプレート核aの水分散液1250μl、20mMアスコルビン酸水溶液65μlを順次加える。
(v)さらに激しく撹拌しながら、0.5mM硝酸銀水溶液4750μlを1000μl/minの流速で加える。
(vi)前記硝酸銀水溶液の添加終了後、すぐに150mMクエン酸三ナトリウム水溶液1000μlを加え、撹拌速度を落とす。4時間撹拌し続けた後、銀ナノプレート核bの水分散液を得る。
(vii)超純水18ml中に、撹拌しながら前記銀ナノプレート核bの水分散液1250μl、20mMアスコルビン酸水溶液78μlを順次加える。
(viii)さらに激しく撹拌しながら、0.5mM硝酸銀水溶液5700μlを1000μl/minの流速で加える。
(ix)前記硝酸銀水溶液の添加終了後、撹拌速度を落とし、4時間撹拌し続けた後、プレート状銀ナノ粒子の水分散液を得る。
最終的に得られた銀ナノプレート水分散液を乾固させた後、日立社製SU8000型走査型電子顕微鏡により観察した。その結果、該銀ナノプレートの主平面の形状は、三角形、もしくは六角形であり、該主平面の長径が500nm以上、該厚みが10~20nmで、球状銀ナノ粒子の混在は確認できなかった(図4参照)。
実施例1に記載の親油性合成粘土の1重量%ジクロロベンゼン分散液を作製した。そして、作製した分散液から0.1mlを採取して、ジクロロベンゼンで2mlに希釈した後、前記の銀ナノプレート水分散液100mlを加えてよく振り、抽出操作を施して放置したところ、ごく淡い水色に着色した有機相を得た。淡い水色を呈していた水相は、放置している間に完全に無色となったことから、水相のプレート状銀ナノ粒子は親油性合成粘土と複合化することで、その殆が有機相に移行し、濃縮されたと考えられる。濃縮倍率は計算上100ml/2ml=50倍に達する。
(比較例2)
比較例1記載の親水性合成サポナイトの1重量%水分散液を作製した。作製した分散液から0.1mlを採取して、実施例2に記載の銀ナノプレート水分散液100mlを加え、さらにジクロロベンゼン2ml添加した後によく振り、抽出操作を施して放置したところ、実施例2とは異なり、無色透明な有機相を得た。淡い水色を呈していた水相は、放置している間、そのままの性状を維持した。このことから、水相のプレート状銀ナノ粒子は、そのほとんどが水相に留まったと考えられる。
(実施例3)
天然モンモリロナイト(クニミネ工業製商品名:クニピアF)1グラムを60mlの純水に微粒子分散して分散液を作製した。あらかじめ50℃に加熱しておいた60mlの純水にトリメチルオクタデシルジメチルアンモニウムクロリド0.5グラムを溶解させた溶液を、前記天然モンモリロナイトを含む微粒子分散液に50℃で加熱撹拌しながら加えた。溶液を混合した後に1時間槓子撹拌を続け、一夜放置して室温に戻したところ、淡黄色沈殿が析出した。析出した沈殿物を濾取して回収し、回収物を100mlの純水及び冷メタノールの順で洗浄し、乾燥させた。
前記の天然物由来親油性合成粘土の1重量%ジクロロベンゼン分散液を作製した。作製した分散液から0.1mlを採取してジクロロベンゼンで2mlに希釈した後、実施例2に記載の銀ナノプレート水分散液100mlを加えてよく振り、抽出操作を施して放置したところ、ごく淡い水色に着色した有機相を得た。淡い水色を呈していた水相は、放置している間に完全に無色となったことから、水相のプレート状銀ナノ粒子は天然物由来親油性クレイと複合化することで、その殆が有機相に移行し、濃縮されたと考えられる。濃縮倍率は計算上100ml/2ml=50倍に達する。
Claims (12)
- 金属微粒子と親油性の粘土系層間化合物とを、重量比0.01~50で含む構造体。
- 前記金属微粒子が、金、銀、銅、プラチナ、パラジウム及びロジウムからなる群から選ばれる少なくとも一つである請求項1に記載の構造体。
- 前記金属微粒子の少なくとも一部の形状はプレート状であり、該プレート状金属微粒子は、その厚さが1nm~50nmであり、その主平面の長径が10nm~5000nmである請求項1に記載の構造体。
- 前記プレート状金属微粒子のアスペクト比が3以上である請求項3に記載の構造体。
- 前記金属微粒子が、少なくとも銀を含むものである請求項1~4のいずれか1項に記載の構造体。
- 親油性の粘土系層間化合物が親油性のモンモリロナイト鉱物群又は雲母群鉱物に属するものである請求項1に記載の構造体。
- 親油性の粘土系層間化合物が、親油性のスメクタイト、親油性のサポナイト又は親油性のヘクトライトである請求項1に記載の構造体。
- 親油性の粘土系層間化合物が合成品である請求項7に記載の構造体。
- 膜状である請求項1~8のいずれか1項に記載の構造体。
- 金属微粒子と親油性の粘土系層間化合物とを、重量比0.01~50で含む構造体の製造方法であって、以下の工程1~3を含む、前記方法、
工程1:金属微粒子と粘土系層間化合物と液体分散媒とを、金属微粒子と親油性の粘土系層間化合物との重量比が0.01~50となるように含有する分散液を調製する工程、
工程2:該分散液を支持体に塗工して塗工膜を得る工程、
工程3:該塗工膜から液体分散媒を除去する工程。 - 前記工程1において、分散液中に樹脂を含有させることを特徴とする、請求項10に記載の方法。
- 前記樹脂が、ポリオール、ポリカルボン酸、ポリスルホン酸、ポリエーテル、ポリエステル、ポリアミド、ポリビニルブチラール、ポリシロキサン、ポリビニルピロリドン及びポリカチオン化合物からなる群から選択される少なくとも一種である請求項11に記載の方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/647,742 US11276509B2 (en) | 2012-11-29 | 2013-11-05 | Structure containing metal microparticles |
KR1020157011973A KR20150090890A (ko) | 2012-11-29 | 2013-11-05 | 금속 미립자 함유 구조체 |
JP2014550106A JP6366140B2 (ja) | 2012-11-29 | 2013-11-05 | 金属微粒子含有構造体 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-260642 | 2012-11-29 | ||
JP2012260642 | 2012-11-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014084026A1 true WO2014084026A1 (ja) | 2014-06-05 |
Family
ID=50827672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/080368 WO2014084026A1 (ja) | 2012-11-29 | 2013-11-05 | 金属微粒子含有構造体 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11276509B2 (ja) |
JP (2) | JP6366140B2 (ja) |
KR (1) | KR20150090890A (ja) |
WO (1) | WO2014084026A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016035109A1 (ja) * | 2014-09-05 | 2016-03-10 | 西松建設株式会社 | 銀ナノ粒子を含む複合体ならびに該複合体を利用した抗菌剤、光電変換素子、光感応性ポインティングデバイスおよび薄膜太陽電池 |
CN105845749A (zh) * | 2014-11-10 | 2016-08-10 | E.I.内穆尔杜邦公司 | 制造电气装置的方法 |
JP2017024214A (ja) * | 2015-07-17 | 2017-02-02 | 西松建設株式会社 | 機能性光透過材およびその製造方法、 |
JP2017156104A (ja) * | 2016-02-29 | 2017-09-07 | 西松建設株式会社 | 光増強素子とその製造方法ならびに分光分析用キットおよび分光分析方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170246690A1 (en) * | 2014-06-20 | 2017-08-31 | Rhodia Operations | Stabilizing agent-free metal nanoparticle synthesis and uses of metal nanoparticles synthesized therefrom |
CN110143764A (zh) * | 2018-02-11 | 2019-08-20 | 中国科学院理化技术研究所 | 一种具有抗菌性能的减反增透涂层及其制备方法 |
JP7324130B2 (ja) * | 2019-11-27 | 2023-08-09 | Dowaエレクトロニクス株式会社 | シリコン酸化物被覆軟磁性粉末および製造方法 |
KR102636281B1 (ko) * | 2021-11-15 | 2024-02-15 | 한국지질자원연구원 | 벤토나이트-은나노플레이트를 포함하는 나노프로브 및 이의 제조방법 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0663400A (ja) * | 1992-08-21 | 1994-03-08 | Toyota Motor Corp | 排ガス浄化用触媒 |
JP2012166145A (ja) * | 2011-02-14 | 2012-09-06 | Kyushu Univ | 層状化合物−金属粒子複合体及びその製造方法、並びにこれを用いたサスペンション、薄膜及びフレキシブル太陽電池 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04296394A (ja) | 1991-03-26 | 1992-10-20 | Toyota Central Res & Dev Lab Inc | 電気粘性流体 |
US5462905A (en) | 1992-08-21 | 1995-10-31 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purifying catalyst |
JPH07173022A (ja) * | 1993-12-17 | 1995-07-11 | Asahi Chem Ind Co Ltd | 抗菌剤 |
JPH07330527A (ja) * | 1994-06-07 | 1995-12-19 | Matsumoto Yushi Seiyaku Co Ltd | 抗菌性セラミックス |
JP3982953B2 (ja) * | 1999-07-28 | 2007-09-26 | 触媒化成工業株式会社 | 抗菌性塗膜および塗膜付基材 |
JP2006037001A (ja) | 2004-07-29 | 2006-02-09 | Toray Ind Inc | 熱可塑性樹脂製電極 |
JP2006184247A (ja) | 2004-12-28 | 2006-07-13 | Takao Fukuoka | Sers基質収容体 |
JP2007134195A (ja) | 2005-11-11 | 2007-05-31 | Alps Electric Co Ltd | 導電膜、導電性塗料、およびこれらの製造方法 |
WO2007065154A2 (en) * | 2005-12-02 | 2007-06-07 | Nanodynamics Inc. | Method of manufacturing silver platelets |
JP5323461B2 (ja) | 2008-12-03 | 2013-10-23 | 福田金属箔粉工業株式会社 | 導電塗料用の片状金属微粉末及びその製造方法 |
CA2754918C (en) * | 2009-03-24 | 2017-12-19 | Basf Se | Preparation of shaped metal particles and their uses |
WO2012147945A1 (ja) | 2011-04-28 | 2012-11-01 | Dowaエレクトロニクス株式会社 | 平板状の銀微粒子とその製造方法およびそれを用いたペーストとペーストを用いた印刷回路 |
EP2806050B1 (en) * | 2012-01-16 | 2017-11-01 | Hitachi Chemical Co., Ltd. | Silver surface treatment agent, and light-emitting device |
-
2013
- 2013-11-05 US US14/647,742 patent/US11276509B2/en active Active
- 2013-11-05 KR KR1020157011973A patent/KR20150090890A/ko not_active Application Discontinuation
- 2013-11-05 JP JP2014550106A patent/JP6366140B2/ja active Active
- 2013-11-05 WO PCT/JP2013/080368 patent/WO2014084026A1/ja active Application Filing
-
2017
- 2017-03-13 JP JP2017047001A patent/JP2017162815A/ja not_active Ceased
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0663400A (ja) * | 1992-08-21 | 1994-03-08 | Toyota Motor Corp | 排ガス浄化用触媒 |
JP2012166145A (ja) * | 2011-02-14 | 2012-09-06 | Kyushu Univ | 層状化合物−金属粒子複合体及びその製造方法、並びにこれを用いたサスペンション、薄膜及びフレキシブル太陽電池 |
Non-Patent Citations (3)
Title |
---|
BIBEK JYOTI BORAH ET AL.: "Controlled nanopore formation and stabilization of gold nanocrystals in acid-activated montmorillonite", APPLIED CLAY SCIENCE, vol. 49, 23 June 2010 (2010-06-23), pages 317 - 323 * |
BURRIDGE, K. ET AL.: "Silver nanoparticle-clay composites", JOURNAL OF MATERIALS CHEMISTRY, vol. 21, no. 3, 21 January 2011 (2011-01-21), pages 734 - 742 * |
MOJOVIC, Z. ET AL.: "Electrochemical behavior of silver-impregnated Al-pillared smectite in alkaline solution", JOURNAL OF SOLID STATE ELECTROCHEMISTRY, vol. 14, no. 9, September 2010 (2010-09-01), pages 1621 - 1627 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016035109A1 (ja) * | 2014-09-05 | 2016-03-10 | 西松建設株式会社 | 銀ナノ粒子を含む複合体ならびに該複合体を利用した抗菌剤、光電変換素子、光感応性ポインティングデバイスおよび薄膜太陽電池 |
JP5950217B1 (ja) * | 2014-09-05 | 2016-07-13 | 西松建設株式会社 | 銀ナノ粒子を含む複合体を利用した光電変換素子および光感応性ポインティングデバイス |
CN105845749A (zh) * | 2014-11-10 | 2016-08-10 | E.I.内穆尔杜邦公司 | 制造电气装置的方法 |
JP2017024214A (ja) * | 2015-07-17 | 2017-02-02 | 西松建設株式会社 | 機能性光透過材およびその製造方法、 |
JP2017156104A (ja) * | 2016-02-29 | 2017-09-07 | 西松建設株式会社 | 光増強素子とその製造方法ならびに分光分析用キットおよび分光分析方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014084026A1 (ja) | 2017-01-05 |
KR20150090890A (ko) | 2015-08-06 |
JP2017162815A (ja) | 2017-09-14 |
US11276509B2 (en) | 2022-03-15 |
US20150310958A1 (en) | 2015-10-29 |
JP6366140B2 (ja) | 2018-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6366140B2 (ja) | 金属微粒子含有構造体 | |
Wang et al. | Enhancing photocatalytic activity of titania materials by using porous structures and the addition of gold nanoparticles | |
Guo et al. | Synthesis and application of several sol–gel-derived materials via sol–gel process combining with other technologies: a review | |
Mao et al. | One-pot synthesis of BiOCl half-shells using microemulsion droplets as templates with highly photocatalytic performance for the degradation of ciprofloxacin | |
Du et al. | Hexagonal tin disulfide nanoplatelets: A new photocatalyst driven by solar light | |
US20180247722A1 (en) | Transparent conductors | |
Pan et al. | Facile fabrication of graphene-based aerogel with rare earth metal oxide for water purification | |
JP6191535B2 (ja) | 透明蛍光材及び発光デバイス | |
Salek et al. | Room temperature inorganic polycondensation of oxide (Cu2O and ZnO) nanoparticles and thin films preparation by the dip-coating technique | |
JP5820592B2 (ja) | 層状化合物−金属粒子複合体及びその製造方法、並びにこれを用いたサスペンション、薄膜及びフレキシブル太陽電池 | |
Kadi et al. | Decoration of mesoporous graphite-like C 3 N 4 nanosheets by NiS nanoparticle-driven visible light for hydrogen evolution | |
Cao et al. | Preparation of graphene oxide-loaded Ag3PO4@ AgCl and its photocatalytic degradation of methylene blue and O2 evolution activity under visible light irradiation | |
Kindalkar et al. | Sol-gel synthesized spin coated GO: ZnO composite thin films: optical, structural and electrical studies | |
Zhou et al. | Modification of BiOBr with cellulose nanocrystals to improve the photocatalytic performance under visible light | |
Su et al. | Citric acid-modulated in situ synthesis of 3D hierarchical Bi@ BiOCl microsphere photocatalysts with enhanced photocatalytic performance | |
Novikova et al. | Synthesis and transport properties of membrane materials with incorporated metal nanoparticles | |
CN105945302A (zh) | 一种抗氧化纳米铜粉的制备方法 | |
Xiong et al. | Engineered zinc oxide nanoaggregates for photocatalytic removal of ciprofloxacin with structure dependence | |
Liu et al. | Ni 2 P/ZnS (CdS) core/shell composites with their photocatalytic performance | |
TW200924878A (en) | Method of reducing metallic ion using nano silicate platelet and steadily dispersing nano metallic particle and the product | |
Taunk et al. | A comparative analysis of x-ray diffraction, morphology, and optical properties of sonochemically synthesized cupric oxide nanostructures | |
CN106010737A (zh) | 一种氧化石墨烯/草酸氧钛钡复合电流变液及其制备方法 | |
CN106927496B (zh) | 一种二维胶体晶体膜及其制备方法 | |
JP2011025673A (ja) | 金属粒子と非金属無機粒子とを含む構造体 | |
CN112569966A (zh) | 一种石墨烯/硫化铜锌花状微米球超结构可见光催化剂的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13857794 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014550106 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20157011973 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14647742 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13857794 Country of ref document: EP Kind code of ref document: A1 |