WO2014083767A1 - 透明導電層付き基材及び有機エレクトロルミネッセンス素子 - Google Patents
透明導電層付き基材及び有機エレクトロルミネッセンス素子 Download PDFInfo
- Publication number
- WO2014083767A1 WO2014083767A1 PCT/JP2013/006410 JP2013006410W WO2014083767A1 WO 2014083767 A1 WO2014083767 A1 WO 2014083767A1 JP 2013006410 W JP2013006410 W JP 2013006410W WO 2014083767 A1 WO2014083767 A1 WO 2014083767A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive
- fine particles
- transparent conductive
- conductive layer
- region
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 81
- 239000010419 fine particle Substances 0.000 claims abstract description 70
- 229920005989 resin Polymers 0.000 claims abstract description 49
- 239000011347 resin Substances 0.000 claims abstract description 49
- 239000011159 matrix material Substances 0.000 claims abstract description 19
- 239000000758 substrate Substances 0.000 claims description 62
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 12
- 239000002042 Silver nanowire Substances 0.000 claims description 5
- 238000005401 electroluminescence Methods 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 155
- 229910052751 metal Inorganic materials 0.000 description 38
- 239000002184 metal Substances 0.000 description 38
- 238000000034 method Methods 0.000 description 29
- 239000002585 base Substances 0.000 description 28
- 238000002347 injection Methods 0.000 description 21
- 239000007924 injection Substances 0.000 description 21
- 239000002070 nanowire Substances 0.000 description 19
- 238000000576 coating method Methods 0.000 description 16
- 239000010408 film Substances 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 15
- 230000005525 hole transport Effects 0.000 description 13
- 229920001410 Microfiber Polymers 0.000 description 12
- 238000007789 sealing Methods 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 10
- 238000000605 extraction Methods 0.000 description 10
- 238000000059 patterning Methods 0.000 description 10
- -1 polyethylene terephthalate Polymers 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 239000007983 Tris buffer Substances 0.000 description 6
- 239000003658 microfiber Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000000835 fiber Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000011368 organic material Substances 0.000 description 4
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 150000004982 aromatic amines Chemical class 0.000 description 3
- 239000012461 cellulose resin Substances 0.000 description 3
- 238000007607 die coating method Methods 0.000 description 3
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VFUDMQLBKNMONU-UHFFFAOYSA-N 9-[4-(4-carbazol-9-ylphenyl)phenyl]carbazole Chemical group C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 VFUDMQLBKNMONU-UHFFFAOYSA-N 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- 229920002284 Cellulose triacetate Polymers 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- WZJYKHNJTSNBHV-UHFFFAOYSA-N benzo[h]quinoline Chemical compound C1=CN=C2C3=CC=CC=C3C=CC2=C1 WZJYKHNJTSNBHV-UHFFFAOYSA-N 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- VPUGDVKSAQVFFS-UHFFFAOYSA-N coronene Chemical compound C1=C(C2=C34)C=CC3=CC=C(C=C3)C4=C4C3=CC=C(C=C3)C4=C2C3=C1 VPUGDVKSAQVFFS-UHFFFAOYSA-N 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000007756 gravure coating Methods 0.000 description 2
- 238000007646 gravure printing Methods 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical group C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 2
- 229920006122 polyamide resin Polymers 0.000 description 2
- 229920001230 polyarylate Polymers 0.000 description 2
- 229920000412 polyarylene Polymers 0.000 description 2
- 229920005668 polycarbonate resin Polymers 0.000 description 2
- 239000004431 polycarbonate resin Substances 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920005990 polystyrene resin Polymers 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 239000005033 polyvinylidene chloride Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- UWRZIZXBOLBCON-VOTSOKGWSA-N (e)-2-phenylethenamine Chemical class N\C=C\C1=CC=CC=C1 UWRZIZXBOLBCON-VOTSOKGWSA-N 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- NGQSLSMAEVWNPU-YTEMWHBBSA-N 1,2-bis[(e)-2-phenylethenyl]benzene Chemical class C=1C=CC=CC=1/C=C/C1=CC=CC=C1\C=C\C1=CC=CC=C1 NGQSLSMAEVWNPU-YTEMWHBBSA-N 0.000 description 1
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical compound C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- KLCLIOISYBHYDZ-UHFFFAOYSA-N 1,4,4-triphenylbuta-1,3-dienylbenzene Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)=CC=C(C=1C=CC=CC=1)C1=CC=CC=C1 KLCLIOISYBHYDZ-UHFFFAOYSA-N 0.000 description 1
- GUPMCMZMDAGSPF-UHFFFAOYSA-N 1-phenylbuta-1,3-dienylbenzene Chemical compound C=1C=CC=CC=1[C](C=C[CH2])C1=CC=CC=C1 GUPMCMZMDAGSPF-UHFFFAOYSA-N 0.000 description 1
- MQRCTQVBZYBPQE-UHFFFAOYSA-N 189363-47-1 Chemical compound C1=CC=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC=CC=1)C=1C=CC=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 MQRCTQVBZYBPQE-UHFFFAOYSA-N 0.000 description 1
- QZTQQBIGSZWRGI-UHFFFAOYSA-N 2-n',7-n'-bis(3-methylphenyl)-2-n',7-n'-diphenyl-9,9'-spirobi[fluorene]-2',7'-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=C3C4(C5=CC=CC=C5C5=CC=CC=C54)C4=CC(=CC=C4C3=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 QZTQQBIGSZWRGI-UHFFFAOYSA-N 0.000 description 1
- HONWGFNQCPRRFM-UHFFFAOYSA-N 2-n-(3-methylphenyl)-1-n,1-n,2-n-triphenylbenzene-1,2-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C(=CC=CC=2)N(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 HONWGFNQCPRRFM-UHFFFAOYSA-N 0.000 description 1
- MGADZUXDNSDTHW-UHFFFAOYSA-N 2H-pyran Chemical compound C1OC=CC=C1 MGADZUXDNSDTHW-UHFFFAOYSA-N 0.000 description 1
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 1
- ONKCIMOQGCARHN-UHFFFAOYSA-N 3-methyl-n-[4-[4-(3-methylanilino)phenyl]phenyl]aniline Chemical compound CC1=CC=CC(NC=2C=CC(=CC=2)C=2C=CC(NC=3C=C(C)C=CC=3)=CC=2)=C1 ONKCIMOQGCARHN-UHFFFAOYSA-N 0.000 description 1
- WEELZNKFYGCZKL-UHFFFAOYSA-N 4-(4-phenylphenyl)-n,n-bis[4-(4-phenylphenyl)phenyl]aniline Chemical compound C1=CC=CC=C1C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC(=CC=2)C=2C=CC(=CC=2)C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)C=2C=CC=CC=2)C=C1 WEELZNKFYGCZKL-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229910001148 Al-Li alloy Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 150000000918 Europium Chemical class 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229920000144 PEDOT:PSS Polymers 0.000 description 1
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 1
- XBDYBAVJXHJMNQ-UHFFFAOYSA-N Tetrahydroanthracene Natural products C1=CC=C2C=C(CCCC3)C3=CC2=C1 XBDYBAVJXHJMNQ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- UATJOMSPNYCXIX-UHFFFAOYSA-N Trinitrobenzene Chemical compound [O-][N+](=O)C1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1 UATJOMSPNYCXIX-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- JHYLKGDXMUDNEO-UHFFFAOYSA-N [Mg].[In] Chemical compound [Mg].[In] JHYLKGDXMUDNEO-UHFFFAOYSA-N 0.000 description 1
- 239000011354 acetal resin Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 150000005010 aminoquinolines Chemical class 0.000 description 1
- SMWDFEZZVXVKRB-UHFFFAOYSA-N anhydrous quinoline Natural products N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 150000001716 carbazoles Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002503 iridium Chemical class 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- SJCKRGFTWFGHGZ-UHFFFAOYSA-N magnesium silver Chemical compound [Mg].[Ag] SJCKRGFTWFGHGZ-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910001512 metal fluoride Inorganic materials 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000002121 nanofiber Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- 150000002907 osmium Chemical class 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 150000005041 phenanthrolines Chemical class 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 150000003057 platinum Chemical class 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000636 poly(norbornene) polymer Polymers 0.000 description 1
- 229920000548 poly(silane) polymer Polymers 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920006350 polyacrylonitrile resin Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 238000004917 polyol method Methods 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229960002796 polystyrene sulfonate Drugs 0.000 description 1
- 239000011970 polystyrene sulfonate Substances 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- YYMBJDOZVAITBP-UHFFFAOYSA-N rubrene Chemical compound C1=CC=CC=C1C(C1=C(C=2C=CC=CC=2)C2=CC=CC=C2C(C=2C=CC=CC=2)=C11)=C(C=CC=C2)C2=C1C1=CC=CC=C1 YYMBJDOZVAITBP-UHFFFAOYSA-N 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- IFLREYGFSNHWGE-UHFFFAOYSA-N tetracene Chemical compound C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 IFLREYGFSNHWGE-UHFFFAOYSA-N 0.000 description 1
- 150000004905 tetrazines Chemical class 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
- AAAQKTZKLRYKHR-UHFFFAOYSA-N triphenylmethane Chemical compound C1=CC=CC=C1C(C=1C=CC=CC=1)C1=CC=CC=C1 AAAQKTZKLRYKHR-UHFFFAOYSA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/81—Anodes
- H10K50/816—Multilayers, e.g. transparent multilayers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/82—Cathodes
- H10K50/828—Transparent cathodes, e.g. comprising thin metal layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/621—Providing a shape to conductive layers, e.g. patterning or selective deposition
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K77/00—Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
- H10K77/10—Substrates, e.g. flexible substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/40—Thermal treatment, e.g. annealing in the presence of a solvent vapour
- H10K71/421—Thermal treatment, e.g. annealing in the presence of a solvent vapour using coherent electromagnetic radiation, e.g. laser annealing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- the present invention relates to a substrate with a transparent conductive layer and an organic electroluminescence element using the same.
- Organic electroluminescence (hereinafter referred to as “organic EL”) is expected to be applied to main illumination and liquid crystal backlights as a surface light emitter.
- a general organic EL element has a laminated structure of transparent substrate / transparent electrode / light emitting layer / reflecting electrode. Light from the light emitting source (light emitting layer) is taken out from the atmosphere side surface of the transparent substrate through the transparent electrode and the transparent substrate to be taken out to the atmosphere (outside of the organic EL element). Specifically, since the refractive indexes of the transparent substrate and the transparent electrode are different from each other, about 45% of light is caused by total reflection at the interface between the transparent substrate and the transparent electrode (substrate / transparent electrode interface).
- ITO Indium Tin Oxide
- metal ultrafine fibers such as metal nanofibers and metal nanowires are frequently used as transparent electrodes as an alternative to ITO, which is a rare metal and is feared of resource depletion.
- Various methods have been proposed for patterning a transparent electrode using such metal microfibers. As an example, a patterning method is known in which a transparent electrode containing metal microfibers is formed on the surface of a transparent substrate, and unnecessary portions are removed by photoetching or laser processing to form a non-conductive region. (Patent Documents 1 to 3).
- the present invention takes out light guided in the lateral direction (layer direction) in the transparent conductive layer to the outside. It aims at providing the base material with a transparent conductive layer which can improve taking-out efficiency.
- the substrate with a transparent conductive layer of the present invention is A substrate; A transparent conductive layer disposed on the substrate; With The transparent conductive layer has a conductive region and a non-conductive region, The conductive region and the non-conductive region include conductive fine particles and a resin matrix, The haze value in the non-conductive region is larger than the haze value in the conductive region.
- the substrate with a transparent conductive layer of the present invention includes a nonconductive region having a large haze value in the transparent conductive layer, so that light guided in the lateral direction in the transparent conductive layer is a nonconductive region. It is scattered and taken out outside. Therefore, according to the base material with a transparent conductive layer of the present invention, the light extraction efficiency can be improved.
- the inventors of the present invention related to a conventional transparent electrode used for an organic EL element, which is formed by patterning a transparent electrode containing a metal ultrafine fiber described in the “Background Art” column. It has been found that the extraction efficiency of can be further improved.
- FIG. 3A and 3B show a conventional patterning method in a transparent conductive layer using metal ultrafine fibers.
- the conventional patterning methods described in Patent Documents 1 to 3 for example, as shown in FIG. 3A, by cutting or removing the metal ultrafine fibers 1021 included in the transparent conductive layer 102 disposed on the substrate 101, A non-conductive region 104 is formed.
- the non-conductive region 104 is insulated because the metal microfiber 1021 does not exist or is disconnected even if it exists.
- the non-conductive region 104 is formed by removing the metal microfibers 1021 and the matrix resin 1022.
- the transparent conductive layer 102 formed by such a patterning method light is guided from the conductive region 103 to the non-conductive region 104 in the lateral direction of the transparent conductive layer 102, so that it is not taken out to the outside. There is a lot of light that is absorbed by the transparent conductive layer 102.
- the present inventors have made various studies focusing on the light guided in the lateral direction in the transparent conductive layer, thereby making the light guided in the lateral direction in the transparent conductive layer non-conductive. It came to provide the base material with a transparent conductive layer of this invention which improved the extraction efficiency of light by scattering in an area
- 1st aspect of this invention is equipped with a base material and the transparent conductive layer arrange
- the said transparent conductive layer has an electroconductive area
- the conductive region and the non-conductive region include conductive fine particles and a resin matrix, and a haze value in the non-conductive region is larger than a haze value in the conductive region. .
- the base material with a transparent conductive layer according to the first aspect in the light guided in the lateral direction in the transparent conductive layer, from the conductive region to the non-conductive region having a higher haze value than the conductive region.
- the guided light can be extracted to the outside by changing the traveling direction by scattering in the non-conductive region. Therefore, according to the base material with a transparent conductive layer according to the first aspect, the light extraction efficiency can be improved.
- the conductive fine particles in the conductive region and the conductive fine particles in the non-conductive region are made of the same material, and in the non-conductive region.
- the conductive fine particles provide a substrate with a transparent conductive layer having an aspect ratio smaller than that of the conductive fine particles in the conductive region.
- the conductive fine particles in the conductive region and the conductive fine particles in the non-conductive region are made of the same material. Therefore, according to the second aspect, for example, a film including conductive fine particles and a resin matrix is manufactured, and light or heat such as a laser is applied to the conductive fine particles in a portion where a nonconductive region is formed in the film.
- the conductive fine particles can be changed to conductive fine particles having a smaller aspect ratio, so that a non-conductive region can be produced.
- the percentage of the volume occupied by the conductive fine particles in the non-conductive region with respect to the volume occupied by the conductive fine particles in the conductive region is 1
- a substrate with a transparent conductive layer that is not less than 50% and not more than 50%.
- the light guided to the non-conductive region is more easily scattered, so that more light can be extracted to the outside.
- the extraction efficiency can be further improved.
- the fourth aspect of the present invention provides a substrate with a transparent conductive layer according to any one of the first to third aspects, wherein the conductive fine particles in the conductive region are silver nanowires.
- a transparent conductive layer having high transparency and high conductivity can be obtained as compared with the case of using other metal nanowires.
- a substrate with a transparent conductive layer according to any one of the first to fourth aspects, and an electrode disposed to face the transparent conductive layer of the substrate with a transparent conductive layer. And a light-emitting layer disposed between the transparent conductive layer and the electrode.
- the nonconductive property in the light emitted from the light emitting layer and guided in the lateral direction in the transparent conductive layer, the nonconductive property has a higher haze value than the conductive region from the conductive region.
- the light guided to the region can be extracted to the outside by changing the traveling direction by scattering in the non-conductive region. Therefore, according to the fifth aspect, an organic EL element with improved light extraction efficiency can be realized.
- FIG. 1 is a cross-sectional view showing an example of a substrate with a transparent conductive layer in Embodiment 1 of the present invention.
- the base material 1 with a transparent conductive layer of this Embodiment is formed by arrange
- the transparent conductive layer 12 has a conductive region 13 having conductivity and a non-conductive region 14 that is insulated.
- the conductive region 12 includes first conductive fine particles 121 and a resin matrix 122.
- the nonconductive region 14 includes second conductive fine particles 123 and a resin matrix 122.
- the conductive region is a region having a sheet resistance of 500 ⁇ / ⁇ or less, and the non-conductive region is a sheet resistance of 10,000 ⁇ / ⁇ or more.
- a region having electrical resistance is provided.
- the base material 11 is not particularly limited in its shape, structure, size, and the like, and can be appropriately selected according to the purpose.
- Examples of the shape of the substrate 11 include a flat plate shape, a sheet shape, and a film shape.
- the structure of the substrate 11 may be, for example, a single layer structure or a laminated structure, and can be selected as appropriate.
- the inorganic material forming the substrate 11 include glass, quartz, and silicone.
- Examples of the organic material forming the base material 11 include acetate resins such as triacetyl cellulose (TAC), polyester resins such as polyethylene terephthalate (PET), polyethersulfone resins, polysulfone resins, polycarbonate resins, Polyamide resin, polyimide resin, polyolefin resin, acrylic resin, polynorbornene resin, cellulose resin, polyarylate resin, polystyrene resin, polyvinyl alcohol resin, polyvinyl chloride resin, polyvinylidene chloride resin And polyacrylic resins. These may be used individually by 1 type and may use 2 or more types together.
- TAC triacetyl cellulose
- PET polyethylene terephthalate
- PET polyethersulfone resins
- polysulfone resins polycarbonate resins
- Polyamide resin polyimide resin
- polyolefin resin acrylic resin
- polynorbornene resin cellulose resin
- polyarylate resin polystyrene resin
- the transparent conductive layer 12 has transparency, and has the conductive region 13 and the non-conductive region 14 as described above.
- the conductive region 12 can be formed using a material containing the first conductive fine particles 121 and the resin matrix 122.
- the nonconductive region 14 can be formed using a material containing the second conductive fine particles 123 and the resin matrix 122.
- first conductive fine particles 121 fibrous conductive fine particles having a large aspect ratio (for example, an aspect ratio of 10 to 10,000) are used.
- metal ultrafine fibers such as metal nanowires can be used. Any metal ultrafine fiber can be used.
- well-known means such as a liquid phase method and a gaseous-phase method, can be used.
- well-known manufacturing method can be used. For example, as a method for producing Ag nanowires (silver nanowires), “Adv. Mater.
- Non-Patent Document 3 “Materials Chemistry and Physics 2009, vol. 114, p333-338“ Preparation of Aggregates with high yield by polyol process ””, No. 9 and No. 9 A method can be mentioned.
- a method for producing Au nanowire (gold nanowire) a production method described in JP-A-2006-233252 and the like can be mentioned.
- Examples of the method for producing Cu nanowires (copper nanowires) include the production methods described in JP-A No. 2002-266007.
- Examples of the method for producing Co nanowires include the production methods described in JP-A No. 2004-149871.
- the method for producing Ag nanowires reported in 1 can easily produce a large amount of Ag nanowires in an aqueous system, and the volume resistivity of silver is the largest among metals. It can be desirably applied as a method for producing nanowires.
- the metal nanowire is desirably an Ag nanowire.
- the transparent conductive layer 12 which has high transparency and high electroconductivity can be obtained.
- the average diameter of the metal nanowire is desirably 200 nm or less from the viewpoint of transparency, and desirably 10 nm or more from the viewpoint of conductivity. If the average diameter is 200 nm or less, a decrease in light transmittance can be suppressed, which is desirable. If the average diameter is 10 nm or more, the function as a conductor can be expressed significantly, and a larger average diameter is desirable because conductivity is improved. Therefore, the average diameter is more desirably 20 to 150 nm, and most desirably 40 to 150 nm.
- the average length of the metal nanowires is preferably 1 ⁇ m or more from the viewpoint of conductivity, and is preferably 100 ⁇ m or less from the influence on the transparency due to aggregation. More desirably, the thickness is 1 to 50 ⁇ m, and most desirably 3 to 50 ⁇ m.
- the average diameter and average length of the metal nanowires can be obtained from an arithmetic average of measured values of individual metal nanowire images obtained by taking an electron micrograph of a sufficient number of metal nanowires using SEM or TEM.
- the number of metal nanowires to be measured is preferably at least 100 or more, and more preferably 300 or more metal nanowires.
- the second conductive fine particles 123 fine particles having an aspect ratio smaller than that of the first conductive fine particles 121 can be used.
- the material of the second conductive fine particles 123 is desirably the same material as that of the first conductive fine particles 121.
- the portion to be insulated that is, the portion to be the nonconductive region 14 is irradiated with light.
- the conductive fine particles can be transformed into the shape of the second conductive fine particles 123 to form the non-conductive region 14.
- the conductive fine particles can be used as they are as the first conductive fine particles 121 without performing a treatment such as irradiating light on the portion to be the conductive region 13.
- a treatment such as irradiating light on the portion to be the conductive region 13.
- an infrared laser irradiates light having a wavelength that is highly transmissive to the resin component and relatively highly absorptive to the conductive fine particles. For this reason, energy can be selectively given to the conductive fine particles without sublimating the resin component.
- the resin component acts to suppress the phenomenon that the conductive fine particles sublimate and disappear. That is, the conductive fine particles are sublimated and hardly disappear in the atmosphere due to the presence of the resin component.
- the conductive fine particles in the irradiated part become finer particles and remain in the non-irradiated part. Further, by using an infrared laser, the structure of the conductive region 13 and the non-conductive region 14 as shown in FIG. 1 can be easily produced at an arbitrary position with high positional accuracy.
- the volume of the second conductive fine particles 123 is preferably 0.75 nm 3 or more from the viewpoint of optical characteristics, and is preferably 200,000 nm 3 or less from the viewpoint of insulation. It is desirable that the volume of the second conductive fine particles 123 be 0.75 nm 3 or more because light absorption on the short wavelength side can be suppressed and a decrease in the reflectance and scattering rate of the guided light can be suppressed. From the viewpoint of insulating properties, it is desirable that the volume of the second conductive fine particles 123 be 200,000 nm 3 or less because sufficient insulating properties can be secured.
- the percentage of the volume occupied by the second conductive fine particles 123 in the non-conductive region 14 with respect to the volume occupied by the first conductive fine particles 121 in the conductive region 13 is 1% or more and 50% or less. According to such a configuration, since the light guided to the non-conductive region 14 is more easily scattered, more light can be extracted to the outside, and as a result, the light extraction efficiency is further improved. be able to.
- the resin matrix 122 examples include cellulose resin, silicone resin, fluorine resin, acrylic resin, polyethylene resin, polypropylene resin, polyethylene terephthalate resin, polymethyl methacrylate resin, polystyrene resin, polyethersulfone resin, polyarylate resin, polycarbonate resin, Polyurethane resin, polyacrylonitrile resin, polyvinyl acetal resin, polyamide resin, polyimide resin, diacryl phthalate resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl acetate resin, other thermoplastic resins, and these resins Two or more copolymers of monomers to be used can be used.
- the material for forming the transparent conductive layer includes conductive fine particles that become the first conductive fine particles 121 and the second conductive fine particles 123, and a resin material that becomes the resin matrix 122. Examples of conductive fine particles and resin materials that can be used are as described above.
- a material for forming a transparent conductive layer is applied to one surface of the substrate 11.
- the coating film is dried at 40 to 100 ° C. for 1 to 30 minutes, and then heated at 100 to 300 ° C. for 1 to 60 minutes, for example, so that the film contains conductive fine particles and a resin matrix.
- the method for applying the material for forming the transparent conductive layer is not particularly limited. For example, brush coating, spray coating, dipping (dip coating), roll coating, gravure coating, micro gravure coating, flow coating, curtain coating.
- Select various coating methods such as knife coating, spin coating, table coating, sheet coating, single wafer coating, die coating, bar coating, reverse coating, cap coating, etc., a pattern coating method using an inkjet coater, etc. Can do.
- the thickness of the film including the conductive fine particles and the resin matrix thus formed is preferably 20 to 1000 nm.
- a film containing conductive fine particles and a resin matrix is patterned into the conductive region 13 and the non-conductive region 14 to form the transparent conductive layer 12.
- the patterning method the method described in the column of [Second conductive fine particles 123] is preferably used.
- the irradiation energy is desirably about 0.3 to 5 J / cm 2 .
- the conductive region 13 and the nonconductive region 14 are formed separately.
- a forming material A film is formed by applying a material for forming a conductive region on the surface of the substrate 11 and drying and heating it. Next, a portion of the obtained film that becomes the nonconductive region 14 is removed, and a film is formed in the removed portion using a material for forming the nonconductive region. Thereby, the transparent conductive layer 12 comprised by the electroconductive area
- the non-conductive region 14 may be formed first.
- FIG. 2 is a cross-sectional view showing an example of an organic EL element according to Embodiment 2 of the present invention.
- the base material with a transparent conductive layer described in the first embodiment is used for the organic EL element 2 of the present embodiment shown in FIG.
- the organic EL element 2 includes a base material 21, a transparent electrode 22 disposed on the base material 21, a light emitting layer 23 disposed on the transparent electrode 22, and an electrode 24 disposed on the light emitting layer 23.
- a laminate is provided.
- the base material 21 and the transparent electrode 22 the base material 1 with a transparent conductive layer described in the first embodiment (see FIG. 1) can be used.
- the base material 21 corresponds to the base material 11
- the transparent electrode 22 corresponds to the transparent conductive layer 12.
- a hole transport layer (hole transport layer) (not shown) may be provided between the transparent electrode 22 and the light emitting layer 23.
- An electrode 24 is provided on the surface of the light emitting layer 23.
- the electrode 24 serves as a cathode, but an electron transport layer and an electron injection layer (both not shown) may be provided in this order from the light emitting layer 23 side between the light emitting layer 23 and the electrode 24.
- an electron transport layer and an electron injection layer are provided in this order from the light emitting layer 23 side between the transparent electrode 22 and the light emitting layer 23. May be.
- An electrode 24 is disposed on the surface of the light emitting layer 23. In this case, the electrode 24 serves as an anode, but a hole transport layer and a hole injection layer (both not shown) may be laminated between the light emitting layer 23 and the electrode 24 from the light emitting layer 23 side. .
- Examples of the material of the light-emitting layer 23 include an aluminum quinolinol complex (tris (8-hydroquinoline) aluminum), a polyparaphenylene vinylene derivative, a polythiophene derivative, a polyparaphenylene derivative, a polysilane derivative, a polyacetylene derivative, and the like, a polyfluorene derivative, polyvinyl Carbazole derivatives, dye bodies, polymerized light-emitting materials of metal complexes, anthracene, naphthalene, pyrene, tetracene, coronene, perylene, phthaloperylene, naphthaloperylene, diphenylbutadiene, tetraphenylbutadiene, coumarin, oxadiazole, bis Benzoxazoline, bisstyryl, cyclopentadiene, quinoline metal complex, tris (8-hydroxyquinolinato) aluminum complex, tris
- the light emitting layer 23 is desirably formed by a wet process such as a coating method (for example, a spin coating method, a spray coating method, a die coating method, a gravure printing method, a screen printing method, or the like).
- a coating method for example, a spin coating method, a spray coating method, a die coating method, a gravure printing method, a screen printing method, or the like.
- the method for forming the light emitting layer 23 is not limited to the coating method, and the light emitting layer 23 may be formed by a dry process such as a vacuum deposition method or a transfer method.
- the material for the electron injection layer examples include metal fluorides such as lithium fluoride and magnesium fluoride, metal halides such as sodium chloride and magnesium chloride, titanium, zinc, magnesium, calcium, An oxide such as barium or strontium can be used.
- the electron injection layer can be formed by a vacuum deposition method.
- an organic semiconductor material mixed with a dopant (such as an alkali metal) that promotes electron injection can be used.
- the electron injection layer can be formed by a coating method.
- the material of the electron transport layer can be selected from the group of compounds having electron transport properties. Examples of this type of compound include metal complexes known as electron transporting materials such as Alq3, and compounds having a heterocyclic ring such as phenanthroline derivatives, pyridine derivatives, tetrazine derivatives, oxadiazole derivatives, etc. Instead, any generally known electron transport material can be used.
- a low molecular material or a polymer material having a low LUMO (Lowest Unoccupied Molecular Orbital) level can be used.
- examples thereof include polymers containing aromatic amines such as polyvinyl carbazole (PVCz), polyarylene derivatives such as polypyridine and polyaniline, and polyarylene derivatives having aromatic amines in the main chain, but are not limited thereto. .
- Examples of the material for the hole transport layer include N, N-diphenyl-N, N-bis-3-methyl-phenyl-1,1-diphenyl-4,4-diamine, 4,4′-bis [N -(Naphthyl) -N-phenyl-amino] biphenyl ( ⁇ -NPD), N, N′-bis (3-methylphenyl)-(1,1′-biphenyl) -4,4′-diamine (TPD), 2-TNATA, 4,4 ′, 4 ′′ -tris (N- (3-methylphenyl) N-phenylamino) triphenylamine (MTDATA), 4,4′-N, N′-dicarbazole biphenyl (CBP) Spiro-NPD, spiro-TPD, spiro-TAD, TNB, and the like can be used.
- ⁇ -NPD N, N′-bis (3-methylphenyl)-(1,1′-biphenyl)
- Examples of the material for the hole injection layer include organic materials including thiophene, triphenylmethane, hydrazoline, amiramine, aniline, hydrazone, stilbene, triphenylamine, and the like.
- organic materials including thiophene, triphenylmethane, hydrazoline, amiramine, aniline, hydrazone, stilbene, triphenylamine, and the like.
- PET polystyrene sulfonate
- aromatic amine derivatives such as TPD, etc.
- Such a hole injection layer can be formed by a wet process such as a coating method (spin coating method, spray coating method, die coating method, gravure printing method, etc.).
- the electrode 24 may be either light reflective or transparent.
- a voltage of 9 eV to 5 eV Specifically, for example, aluminum, silver, magnesium, gold, copper, chromium, molybdenum, palladium, tin and the like and alloys thereof with other metals, such as magnesium-silver mixture, magnesium-indium mixture, aluminum-lithium Mention may be made of alloys.
- metals, metal oxides, and the like, and mixtures of these with other metals for example, a laminated film of a thin film made of aluminum oxide and a thin film made of aluminum can be used. Further, a metal having a high reflectance with respect to light emitted from the light emitting layer 23 and a low resistivity is desirable, and aluminum or silver is desirable.
- the hole injection layer has a thickness of 20 to 100 nm
- the hole transport layer has a thickness of 20 to 60 nm
- the light emitting layer 23 has a thickness of 20 to 80 nm
- the electron transport layer has a thickness of 20 to 60 nm
- the electron injection layer has a thickness of 20 to 60 nm.
- the film thickness can be set to 0.5 to 10 nm, and the film thickness between the transparent electrode 22 and the electrode 24 can be set to 80 to 260 nm, but is not limited thereto.
- the base material 21 and the transparent electrode 22 As the base material 21 and the transparent electrode 22, the base material 1 with a transparent conductive layer of Embodiment 1 (see FIG. 1) is used. On the transparent conductive layer 12 of the substrate 1 with the transparent conductive layer, a light emitting layer 23 and an electron injection layer, an electron transport layer, a hole transport layer and / or a hole injection layer provided as necessary are formed. These layers can be produced by using a known method used in producing a general organic EL element.
- a sealing cap 25 is attached to the base material 21 with a sealing agent 26 so as to cover the entire laminate including the transparent electrode 22, the light emitting layer 23, and the electrode 24 in an atmosphere in which outside air is blocked.
- the organic EL element 2 shown in FIG. 2 can be manufactured.
- a part of the transparent electrode 22 and the electrode 24 is drawn from the inside of the sealing cap 25 to the outside.
- a glass cap having transparency, an inner surface having light reflectivity, or the like can be used.
- a water absorbing agent may be attached to the inner surface of the sealing cap 25.
- the sealing agent 26 the thing made from an ultraviolet curable resin etc. can be used.
- the organic EL element 2 formed as described above uses the substrate 1 with a transparent conductive layer of Embodiment 1 as a configuration for extracting light (the substrate 21 and the transparent electrode 22). Therefore, since the guided light in the transparent electrode 22 can be scattered in the non-conductive region to change the light guiding direction, the amount of light extracted to the substrate side can be increased as compared with the conventional case, and the light extraction efficiency can be improved. I can expect.
- Example 1 Based on Non-Patent Document 3, “Materials Chemistry and Physics 2009, vol. 114, p333-338“ Preparation of Ag nanoords with high yield by poly process ”, the nanoparticle diameter is 50 nm. 5 ⁇ m) was prepared.
- a material A for forming a transparent conductive layer was prepared.
- a 40 mm square alkali-free glass plate (Corning “No. 1737”, refractive index 1.50 to 1.53 at a wavelength of 500 nm) was used.
- a material A was applied to the surface of the base material by a spin coating method, and was heated and dried at 100 ° C. for 5 minutes to form a transparent conductive layer having a thickness of 100 nm.
- the pulse energy intensity is 0.6 J / cm so that the conductive region of the transparent conductive layer is a strip having a width of 2 mm and non-conductive regions are formed on both sides thereof.
- region was formed by making 2 light scan by pulse irradiation. In this way, a substrate with a transparent conductive layer was produced in which a strip-shaped conductive region having a width of 2 mm was provided at the center of the transparent conductive layer and non-conductive regions were provided on both sides thereof.
- an organic EL element was produced using the obtained substrate with a transparent conductive layer.
- the transparent conductive layer of the substrate with a transparent conductive layer was used as the transparent electrode (anode) of the organic EL element.
- N, N-diphenyl-N, N-bis-3-methyl-phenyl-1,1-diphenyl-4,4-diamine (manufactured by Dojindo Laboratories) was vacuum deposited on the surface of the anode. A hole transport layer having a thickness of 50 nm was formed.
- an aluminum quinolinol complex (Tris (8-hydroquinoline) aluminum: manufactured by Dojindo Laboratories Co., Ltd.) was vacuum deposited to form a light emitting layer having a thickness of 50 nm.
- lithium fluoride was vacuum deposited on the surface of the light emitting layer to form an electron injection layer having a thickness of 5 nm.
- An electrode (cathode) was formed on the surface of the electron injection layer. This cathode was formed by vacuum-depositing aluminum (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.999%) so that the film thickness was 150 nm.
- the laminate composed of the transparent substrate, the anode, the hole transport layer, the light emitting layer, the electron injection layer, and the cathode was transported to a glove box having a dew point of ⁇ 80 ° C. or less without exposure to the atmosphere.
- a sealing cap made of glass was prepared, a water absorbing agent (manufactured by Dynic Co., Ltd.) was attached to the inner surface, and a sealing agent made of an ultraviolet curable resin was applied to the opening edge of the sealing cap. .
- the sealing cap was affixed on the transparent base material with the sealing agent so that the whole of an anode, a hole transport layer, a light emitting layer, an electron injection layer, and a cathode might be covered.
- the sealing agent is cured by ultraviolet irradiation and sealed, so that the hole transport layer between the transparent electrode 22 and the light emitting layer 23 emits light from the electrode 24 with respect to the organic EL element 2 shown in FIG.
- An organic EL element having a structure in which an electron injection layer was further provided between the layer 23 and the layer 23 was manufactured.
- Example 2 A substrate with a transparent conductive layer and an organic material are formed in the same manner as in Example 1 except that the non-conductive region is formed by scanning the fiber laser with a pulse energy intensity of 1.0 J / cm 2 by pulse irradiation. An EL element was manufactured.
- the characteristics of the organic EL devices manufactured using the substrates with transparent conductive layers of Examples 1 and 2 and Comparative Examples 1 and 2 were measured using a DC power source (manufactured by Case Ray) with a light emitting area of 2 mm ⁇ 2 mm
- the current flowing inside was fixed at 2 mA / cm 2 and evaluated using a luminance meter (Topcon).
- the front luminance was measured in the range of ⁇ 80 ° to + 80 ° in an angular direction every 10 ° together with the current efficiency (cd / A), and the total luminous flux (power efficiency (lm / W)) was calculated.
- Table 2 shows the measurement results of current efficiency and power efficiency.
- the haze value of the non-conductive region was larger than the haze value of the conductive region. That is, the laser irradiation of Examples 1 and 2 can form a nonconductive region having a higher haze value than the conductive region (laser non-irradiated portion), thereby obtaining a nonconductive region with a high scattering effect. It was. This is presumably because the silver nanowires remain as fine particles having a high scattering effect in the non-conductive region without completely disappearing.
- the haze value of the non-conductive region was smaller than the haze value of the conductive region. That is, it is considered that the silver irradiation in the non-conductive region that is the laser irradiation portion almost disappeared due to the laser irradiation in Comparative Examples 1 and 2, and the haze value was lower than that in the conductive region that was not irradiated with the laser. Therefore, the substrates with transparent conductive layers of Examples 1 and 2 receive more light guided in the lateral direction in the transparent conductive layer than the substrates with transparent conductive layers of Comparative Examples 1 and 2. It is possible to scatter in non-conductive regions. This is clear from the results shown in Table 2, and the current efficiency and power efficiency of the organic EL elements of Examples 1 and 2 are greatly improved as compared with the organic EL elements of Comparative Examples 1 and 2. It was.
- the substrate with a transparent conductive layer of the present invention is useful as an electrode substrate for a light emitting device.
- it is useful as an electrode substrate for organic EL devices.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electroluminescent Light Sources (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
基材と、
前記基材上に配置された透明導電層と、
を備え、
前記透明導電層は、導電性領域と非導電性領域とを有し、
前記導電性領域及び前記非導電性領域は、導電性微粒子と樹脂マトリクスとを含み、
前記非導電性領域におけるヘイズ値は、前記導電性領域におけるヘイズ値よりも大きい。
[透明導電層付き基材]
[全体構成]
図1は、本発明の実施の形態1における透明導電層付き基材の一例を示す断面図である。図1に示すように、本実施の形態の透明導電層付き基材1は、基材11上に透明導電層12が配置されることによって形成されている。透明導電層12は、導電性を有する導電性領域13と、絶縁されている非導電性領域14とを有している。導電性領域12は、第1の導電性微粒子121及び樹脂マトリクス122を含んでいる。非導電性領域14は、第2の導電性微粒子123及び樹脂マトリクス122を含んでいる。なお、本発明の透明導電層付き基材において、導電性領域とはシート抵抗で500Ω/□以下の電気抵抗を有する領域のことであり、非導電性領域とはシート抵抗で10000Ω/□以上の電気抵抗を有する領域のことである。
基材11は、その形状、構造及び大きさ等については特に制限されず、目的に応じて適宜選択することができる。基材11の形状としては、例えば平板状、シート状、フィルム状などが挙げられる。基材11の構造としては、例えば単層構造であってもよいし、積層構造であってもよく、適宜選択することができる。基材11の材料についても特に制限はなく、無機材料及び有機材料のいずれであっても好適に用いることができる。基材11を形成する無機材料としては、例えば、ガラス、石英、シリコーンなどが挙げられる。基材11を形成する有機材料としては、例えば、トリアセチルセルロース(TAC)等のアセテート系樹脂、ポリエチレンテレフタレート(PET)等のポリエステル系樹脂、ポリエーテルスルホン系樹脂、ポリスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、アクリル系樹脂、ポリノルボルネン系樹脂、セルロース系樹脂、ポリアリレート系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂及びポリアクリル系樹脂などが挙げられる。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。
透明導電層12は、透明性を有しており、上記のとおり導電性領域13と非導電性領域14とを有している。導電性領域12は、第1の導電性微粒子121及び樹脂マトリクス122を含有する材料を用いて形成することができる。非導電性領域14は、第2の導電性微粒子123及び樹脂マトリクス122を含有する材料を用いて形成することができる。
第1の導電性微粒子121としては、アスペクト比が大きい(例えばアスペクト比10以上、10000以下)繊維状の導電性微粒子が用いられる。例えば、金属ナノワイヤ等の金属極細繊維を用いることができる。金属極細繊維としては、任意のものを用いることが可能である。金属極細繊維の製造手段には特に制限は無く、例えば液相法及び気相法などの公知の手段を用いることができる。具体的な製造方法にも特に制限は無く、公知の製造方法を用いることができる。例えば、Agナノワイヤ(銀ナノワイヤ)の製造方法として、非特許文献1の「Adv.Mater.2002,14,P833~837」、非特許文献2の「Chem.Mater.2002,14,P4736~4745」、非特許文献3の「Materials Chemistry and Physics 2009,vol.114,p333-338“Preparation of Ag nanorods with high yield by polyol process”」、及び、特表2009-505358号公報等に記載されている製造方法を挙げることができる。Auナノワイヤ(金ナノワイヤ)の製造方法として、特開2006-233252号公報等に記載されている製造方法を挙げることができる。Cuナノワイヤ(銅ナノワイヤ)の製造方法として、特開2002-266007号公報等に記載されている製造方法を挙げることができる。Coナノワイヤ(コバルトナノワイヤ)の製造方法として、特開2004-149871号公報等に記載されている製造方法を挙げることができる。特に、上記のAdv.Mater.及びChem.Mater.で報告されたAgナノワイヤの製造方法は、水系で簡便にかつ大量にAgナノワイヤを製造することができ、また銀の体積抵抗率は金属中で最大であることから、本実施の形態で用いる金属ナノワイヤの製造方法として望ましく適用することができる。このように、金属ナノワイヤは、Agナノワイヤであることが望ましい。これにより、他の金属ナノワイヤを用いる場合に比べて、高い透明性及び高い導電性を有する透明導電層12を得ることができる。
第2の導電性微粒子123には、第1の導電性微粒子121よりもアスペクト比が小さい微粒子を用いることができる。第2の導電性微粒子123の材質は、第1の導電性微粒子121と同じ材質であることが望ましい。その場合、第1の導電性微粒子121及び第2の導電性微粒子123となる導電性微粒子を含む膜を形成した後、絶縁化する部分、すなわち非導電性領域14となる部分に光を照射したり熱を加えたりすることによって、導電性微粒子を第2の導電性微粒子123の形状へと変形させて、非導電性領域14を形成することができる。なお、導電性領域13となる部分には光を照射する等の処理を施さずに、導電性微粒子をそのまま第1の導電性微粒子121として用いることができる。このような方法で非導電性領域14を形成する場合には、赤外線レーザを用いることが望ましい。赤外線レーザは、樹脂成分に対しては透過性が高く、導電性微粒子に対しては相対的に吸収性が高い波長の光を照射する。このため、樹脂成分を昇華させることなく、選択的に導電性微粒子にエネルギーを与えることができる。また、樹脂成分は、導電性微粒子が昇華して消失する現象を抑えるように作用する。すなわち、導電性微粒子は、樹脂成分が存在することにより、昇華して大気中に消失しにくくなる。したがって、照射部の導電性微粒子はより微小な粒子となって非照射部に残存すると考えられる。また、赤外線レーザを用いることにより、高い位置精度で任意の位置に、図1に示すような導電性領域13及び非導電性領域14の構造を簡便に作製できる。
樹脂マトリクス122としては、例えば、セルロース樹脂、シリコーン樹脂、フッ素樹脂、アクリル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンテレフタレート樹脂、ポリメチルメタクリレート樹脂、ポリスチレン樹脂、ポリエーテルスルホン樹脂、ポリアリレート樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリアクリルニトリル樹脂、ポリビニルアセタール樹脂、ポリアミド樹脂、ポリイミド樹脂、ジアクリルフタレート樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、その他の熱可塑性樹脂や、これらの樹脂を構成する単量体の2種以上の共重合体等を用いることができる。
第1の導電性微粒子121と第2の導電性微粒子123とが同じ材質で形成されている場合の、透明導電層付き基材の製造方法の一例について説明する。
[有機EL素子]
[全体構成]
図2は、本発明の実施の形態2における有機EL素子の一例を示す断面図である。図2に示す本実施の形態の有機EL素子2には、実施の形態1で説明した透明導電層付き基材が用いられている。有機EL素子2は、基材21と、基材21上に配置された透明電極22と、透明電極22上に配置された発光層23と、発光層23上に配置された電極24とを含む積層体を備えている。基材21及び透明電極22には、実施の形態1で説明した透明導電層付き基材1(図1参照)を用いることができる。基材21は基材11に、透明電極22は透明導電層12に、それぞれ対応する。
発光層23の材料としては、例えば、アルミキノリノール錯体(トリス(8-ヒドロキノリン)アルミニウム)、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体など、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、色素体、金属錯体系発光材料を高分子化したものなどや、アントラセン、ナフタレン、ピレン、テトラセン、コロネン、ペリレン、フタロペリレン、ナフタロペリレン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、キノリン金属錯体、トリス(8-ヒドロキシキノリナート)アルミニウム錯体、トリス(4-メチル-8-キノリナート)アルミニウム錯体、トリス(5-フェニル-8-キノリナート)アルミニウム錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、トリ-(p-ターフェニル-4-イル)アミン、ピラン、キナクリドン、ルブレン、及びこれらの誘導体、あるいは、1-アリール-2,5-ジ(2-チエニル)ピロール誘導体、ジスチリルベンゼン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、及びこれらの発光性化合物からなる基を分子の一部分に有する化合物などが挙げられる。また、上記化合物に代表される蛍光色素由来の化合物のみならず、いわゆる燐光発光材料、例えばイリジウム錯体、オスミウム錯体、白金錯体、ユーロピウム錯体などの発光材料、又はそれらを分子内に有する化合物若しくは高分子も好適に用いることができる。これらの材料は、必要に応じて、適宜選択して用いることができる。発光層23は、塗布法(例えば、スピンコート法、スプレーコート法、ダイコート法、グラビア印刷法、スクリーン印刷法など)のような湿式プロセスによって成膜することが望ましい。ただし、発光層23の成膜方法は、塗布法に限らず、例えば、真空蒸着法、転写法などの乾式プロセスによって発光層23を成膜してもよい。
電子注入層の材料は、例えば、フッ化リチウムやフッ化マグネシウムなどの金属フッ化物、塩化ナトリウム、塩化マグネシウムなどに代表される金属塩化物などの金属ハロゲン化物や、チタン、亜鉛、マグネシウム、カルシウム、バリウム、ストロンチウムなどの酸化物などを用いることができる。これらの材料の場合、電子注入層は、真空蒸着法により形成することができる。また、電子注入層の材料は、例えば、電子注入を促進させるドーパント(アルカリ金属など)を混合した有機半導体材料を用いることができる。このような材料の場合、電子注入層は、塗布法により形成することができる。
電子輸送層の材料は、電子輸送性を有する化合物の群から選定することができる。この種の化合物としては、Alq3等の電子輸送性材料として知られる金属錯体や、フェナントロリン誘導体、ピリジン誘導体、テトラジン誘導体、オキサジアゾール誘導体などのヘテロ環を有する化合物などが挙げられるが、この限りではなく、一般に知られる任意の電子輸送材料を用いることが可能である。
ホール輸送層の材料としては、LUMO(Lowest Unoccupied Molecular Orbital)準位が小さい低分子材料や高分子材料を用いることができる。例えば、ポリビニルカルバゾール(PVCz)や、ポリピリジン、ポリアニリンなどの側鎖や主鎖に芳香族アミンを有するポリアリーレン誘導体などの芳香族アミンを含むポリマーなどが挙げられるが、これらに限定されるものではない。なお、ホール輸送層の材料としては、例えば、N,N-ジフェニル-N,N-ビス-3-メチル-フェニル-1,1-ジフェニル-4,4-ジアミン、4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)、N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)、2-TNATA、4,4’,4”-トリス(N-(3-メチルフェニル)N-フェニルアミノ)トリフェニルアミン(MTDATA)、4,4’-N,N’-ジカルバゾールビフェニル(CBP)、スピロ-NPD、スピロ-TPD、スピロ-TAD、TNBなどを用いることが可能である。
ホール注入層の材料としては、例えば、チオフェン、トリフェニルメタン、ヒドラゾリン、アミールアミン、アニリン、ヒドラゾン、スチルベン、トリフェニルアミンなどを含む有機材料が挙げられる。例えば、ポリビニルカルバゾール、ポリエチレンジオキシチオフェン:ポリスチレンスルホネート(PEDOT:PSS)、TPDなどの芳香族アミン誘導体などで、これらの材料を単独で用いてもよいし、2種類以上の材料を組み合わせて用いてもよい。このようなホール注入層は、塗布法(スピンコート法、スプレーコート法、ダイコート法、グラビア印刷法など)のような湿式プロセスによって成膜することができる。
電極24は、光反射性又は透明性のいずれであってもよい。電極24の材料としては、仕事関数の小さい金属、合金、電気伝導性化合物及びこれらの混合物からなる材料を用いることが望ましく、LUMO準位との差が大きくなりすぎないように仕事関数が1.9eV以上5eV以下のものを用いることが望ましい。具体的には、例えば、アルミニウム、銀、マグネシウム、金、銅、クロム、モリブデン、パラジウム、錫など、及びこれらと他の金属との合金、例えばマグネシウム-銀混合物、マグネシウム-インジウム混合物、アルミニウム-リチウム合金を挙げることができる。また、金属、金属酸化物など、及びこれらと他の金属との混合物、例えば、酸化アルミニウムからなる薄膜とアルミニウムからなる薄膜との積層膜なども使用可能である。また、発光層23から放射される光に対する反射率が高く、かつ抵抗率の低い金属が望ましく、アルミニウムや銀が望ましい。
基材21及び透明電極22には、実施の形態1の透明導電層付き基材1(図1参照)が用いられる。この透明導電層付き基材1の透明導電層12上に、発光層23と、必要に応じて設けられる電子注入層、電子輸送層、ホール輸送層及び/又はホール注入層とを形成する。これらの層は、一般的な有機EL素子を製造する際に用いられている公知の方法を用いて作製できる。
非特許文献3の「Materials Chemistry and Physics 2009,vol.114,p333-338“Preparation of Ag nanorods with high yield by polyol process”」に基づいて、導電性微粒子である銀ナノワイヤ(平均直径50nm、平均長さ5μm)を用意した。
ファイバーレーザのパルスエネルギー強度が1.0J/cm2の光をパルス照射により走査することによって非導電性領域を形成したこと以外は、実施例1と同様にして、透明導電層付き基材及び有機EL素子を製造した。
非導電性領域をパターニングする際にファイバーレーザの代わりに波長750nmのフェムト秒レーザを用いたことと、パルスエネルギー強度が1.0J/cm2の光をパルス照射により走査することによって非導電性領域を形成したこと以外は、実施例1と同様にして、透明導電層付き基材及び有機EL素子を製造した。
非導電性領域をパターニングする際にファイバーレーザの代わりに波長750nmのフェムト秒レーザを用いたことと、パルスエネルギー強度が3.0J/cm2の光をパルス照射により走査することによって非導電性領域を形成したこと以外は、実施例1と同様にして、透明導電層付き基材及び有機EL素子を製造した。
実施例1、2及び比較例1、2の透明導電層付き基材について、非導電性領域の光学特性(全光線透過率及びヘイズ値)と導電性領域の光学特性(全光線透過率及びヘイズ値)とを、ヘイズメーター(日本電色工業社製)で測定した。なお、導電性領域の光学特定は、非導電性領域を形成するためのレーザ照射前の透明導電層に対して実施した。全光線透過率及びヘイズ値を表1に示す。
Claims (5)
- 基材と、
前記基材上に配置された透明導電層と、
を備え、
前記透明導電層は、導電性領域と非導電性領域とを有し、
前記導電性領域及び前記非導電性領域は、導電性微粒子と樹脂マトリクスとを含み、
前記非導電性領域におけるヘイズ値は、前記導電性領域におけるヘイズ値よりも大きい、
透明導電層付き基材。 - 前記導電性領域における前記導電性微粒子と、前記非導電性領域における前記導電性微粒子とは、同じ材料からなり、
前記非導電性領域における前記導電性微粒子は、前記導電性領域における前記導電性微粒子よりも小さいアスペクト比を有する、
請求項1に記載の透明導電層付き基材。 - 前記導電性領域において前記導電性微粒子が占める体積に対する、前記非導電性領域において前記導電性微粒子が占める体積の百分率が、1%以上50%以下である、
請求項1に記載の透明導電層付き基材。 - 前記導電性領域における前記導電性微粒子が、銀ナノワイヤである、
請求項1に記載の透明導電層付き基材。 - 請求項1に記載の透明導電層付き基材と、
前記透明導電層付き基材の透明導電層と対向して配置された電極と、
前記透明導電層と前記電極との間に配置された発光層と、
を備えた、有機エレクトロルミネッセンス素子。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/375,339 US9247641B2 (en) | 2012-11-29 | 2013-10-30 | Substrate with transparent conductive layer and organic electroluminescence device |
JP2014549781A JP5903644B2 (ja) | 2012-11-29 | 2013-10-30 | 透明導電層付き基材及び有機エレクトロルミネッセンス素子 |
CN201380006477.4A CN104094671B (zh) | 2012-11-29 | 2013-10-30 | 带有透明导电层的基材以及有机电致发光元件 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012260779 | 2012-11-29 | ||
JP2012-260779 | 2012-11-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014083767A1 true WO2014083767A1 (ja) | 2014-06-05 |
Family
ID=50827431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/006410 WO2014083767A1 (ja) | 2012-11-29 | 2013-10-30 | 透明導電層付き基材及び有機エレクトロルミネッセンス素子 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9247641B2 (ja) |
JP (1) | JP5903644B2 (ja) |
CN (1) | CN104094671B (ja) |
WO (1) | WO2014083767A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105405984A (zh) * | 2015-11-02 | 2016-03-16 | 固安翌光科技有限公司 | 一种电极及其制备方法与应用 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9889806B2 (en) * | 2013-10-21 | 2018-02-13 | GM Global Technology Operations LLC | Light weight bus bars, methods of manufacture thereof and articles comprising the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008055479A (ja) * | 2006-08-31 | 2008-03-13 | Jfe Steel Kk | 金属板の突合せ接合方法および接合金属板 |
JP2010044968A (ja) * | 2008-08-13 | 2010-02-25 | Nissha Printing Co Ltd | 導電性パターン被覆体の製造方法および導電性パターン被覆体 |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5843332A (en) * | 1991-10-21 | 1998-12-01 | Dai Nippon Printing Co., Ltd. | Polymer dispersion-type liquid crystal optical device and method for producing the same |
US5411792A (en) * | 1992-02-27 | 1995-05-02 | Sumitomo Metal Mining Co., Ltd. | Transparent conductive substrate |
JP2002182006A (ja) * | 2000-12-19 | 2002-06-26 | Nippon Sheet Glass Co Ltd | 反射防止膜、それを備えた基材および光電変換装置 |
JP3560333B2 (ja) | 2001-03-08 | 2004-09-02 | 独立行政法人 科学技術振興機構 | 金属ナノワイヤー及びその製造方法 |
KR100924609B1 (ko) * | 2002-02-08 | 2009-11-02 | 다이니폰 인사츠 가부시키가이샤 | 방현성 필름 및 화상표시장치 |
JP4124432B2 (ja) | 2002-10-31 | 2008-07-23 | 独立行政法人科学技術振興機構 | ナノサイズの金属コバルト微粒子の電解析出方法 |
JP4821951B2 (ja) | 2005-02-23 | 2011-11-24 | 三菱マテリアル株式会社 | ワイヤー状の金微粒子と、その製造方法および含有組成物ならびに用途 |
JP4479608B2 (ja) * | 2005-06-30 | 2010-06-09 | Tdk株式会社 | 透明導電体及びパネルスイッチ |
JP4479609B2 (ja) * | 2005-06-30 | 2010-06-09 | Tdk株式会社 | 透明導電体及び透明導電材料 |
KR102103541B1 (ko) | 2005-08-12 | 2020-04-23 | 캄브리오스 필름 솔루션스 코포레이션 | 나노와이어 기반의 투명 도전체 |
US20070077349A1 (en) | 2005-09-30 | 2007-04-05 | Eastman Kodak Company | Patterning OLED device electrodes and optical material |
JP2007165284A (ja) | 2005-11-18 | 2007-06-28 | Seiko Instruments Inc | エレクトロルミネッセンス素子及びこれを用いた表示装置 |
CN101473699A (zh) * | 2006-06-26 | 2009-07-01 | 住友金属矿山株式会社 | 分散型电致发光元件及其制造方法 |
KR101406122B1 (ko) * | 2006-08-14 | 2014-06-12 | 다이니폰 인사츠 가부시키가이샤 | 방현성 광학 적층체 |
US7982380B2 (en) * | 2006-08-18 | 2011-07-19 | Dai Nippon Printing Co., Ltd. | Front filter for plasma display and plasma display |
JP5114438B2 (ja) * | 2008-02-13 | 2013-01-09 | 富士フイルム株式会社 | 光学フィルム、その製造方法、偏光板および画像表示装置 |
JP5203741B2 (ja) * | 2008-02-19 | 2013-06-05 | 富士フイルム株式会社 | 多層膜フィルム及びその製造方法 |
JP2010079101A (ja) * | 2008-09-26 | 2010-04-08 | Fujifilm Corp | 光学フィルム、偏光板、及び画像表示装置 |
JP2010085759A (ja) * | 2008-09-30 | 2010-04-15 | Fujifilm Corp | 防眩フィルム、反射防止フィルム、偏光板及び画像表示装置 |
JP5507898B2 (ja) | 2009-06-15 | 2014-05-28 | パナソニック株式会社 | 透明導電パターンの製造方法及び透明導電パターン付き基材 |
JP2011070820A (ja) * | 2009-09-24 | 2011-04-07 | Panasonic Electric Works Co Ltd | 透明導電膜付き基材及びその製造方法 |
EP2539943B1 (en) * | 2010-02-24 | 2021-01-06 | Cambrios Film Solutions Corporation | Nanowire-based transparent conductors and methods of patterning same |
JP4882027B2 (ja) | 2010-05-28 | 2012-02-22 | 信越ポリマー株式会社 | 透明導電膜及びこれを用いた導電性基板 |
JP5648993B2 (ja) | 2010-07-20 | 2015-01-07 | 信越ポリマー株式会社 | 導電パターン形成基板の製造方法及び導電パターン形成基板 |
KR101789586B1 (ko) * | 2010-12-06 | 2017-10-26 | 삼성디스플레이 주식회사 | 광 산란 기판, 이의 제조 방법, 이를 포함하는 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법 |
JP2012209030A (ja) | 2011-03-29 | 2012-10-25 | Toray Advanced Film Co Ltd | 透明導電積層体およびその製造方法 |
WO2012161462A2 (ko) * | 2011-05-20 | 2012-11-29 | 주식회사 엘지화학 | 전도성 기판 및 이를 포함하는 터치 패널 |
US8748749B2 (en) * | 2011-08-24 | 2014-06-10 | Innova Dynamics, Inc. | Patterned transparent conductors and related manufacturing methods |
JP5386686B2 (ja) | 2011-09-12 | 2014-01-15 | 信越ポリマー株式会社 | 透明導電膜及びその製造方法、導電性基板及びその製造方法 |
US9507057B2 (en) * | 2011-10-12 | 2016-11-29 | Dai Nippon Printing Co., Ltd. | Anti-glare sheet for image display device |
US9711263B2 (en) * | 2012-05-18 | 2017-07-18 | 3M Innovative Properties Company | Corona patterning of overcoated nanowire transparent conducting coatings |
US20140132883A1 (en) * | 2012-11-13 | 2014-05-15 | 3M Innovative Properties Company | Optical stack including light extraction layer and polymer dispersed liquid crystal layer |
-
2013
- 2013-10-30 CN CN201380006477.4A patent/CN104094671B/zh not_active Expired - Fee Related
- 2013-10-30 JP JP2014549781A patent/JP5903644B2/ja not_active Expired - Fee Related
- 2013-10-30 US US14/375,339 patent/US9247641B2/en not_active Expired - Fee Related
- 2013-10-30 WO PCT/JP2013/006410 patent/WO2014083767A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008055479A (ja) * | 2006-08-31 | 2008-03-13 | Jfe Steel Kk | 金属板の突合せ接合方法および接合金属板 |
JP2010044968A (ja) * | 2008-08-13 | 2010-02-25 | Nissha Printing Co Ltd | 導電性パターン被覆体の製造方法および導電性パターン被覆体 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105405984A (zh) * | 2015-11-02 | 2016-03-16 | 固安翌光科技有限公司 | 一种电极及其制备方法与应用 |
CN105405984B (zh) * | 2015-11-02 | 2018-05-25 | 固安翌光科技有限公司 | 一种电极及其制备方法与应用 |
Also Published As
Publication number | Publication date |
---|---|
CN104094671B (zh) | 2017-04-05 |
CN104094671A (zh) | 2014-10-08 |
JPWO2014083767A1 (ja) | 2017-01-05 |
US20150008416A1 (en) | 2015-01-08 |
US9247641B2 (en) | 2016-01-26 |
JP5903644B2 (ja) | 2016-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012127746A1 (ja) | 有機エレクトロルミネッセンス素子 | |
JP5824678B2 (ja) | 有機エレクトロルミネッセンス素子 | |
JP5520418B2 (ja) | 有機エレクトロルミネッセンス素子 | |
JPWO2014041795A1 (ja) | 有機エレクトロルミネッセンス素子、照明器具及び有機エレクトロルミネッセンス素子の製造方法 | |
JP5887540B2 (ja) | 有機エレクトロルミネッセンス素子 | |
JP5991626B2 (ja) | 有機エレクトロルミネッセンス素子 | |
JP5903644B2 (ja) | 透明導電層付き基材及び有機エレクトロルミネッセンス素子 | |
JP5810319B2 (ja) | 有機エレクトロルミネッセンス素子 | |
JP5991627B2 (ja) | 有機エレクトロルミネッセンス素子 | |
TWI487158B (zh) | 有機el元件及其製造方法 | |
JP2013161682A (ja) | 有機エレクトロルミネッセンス素子 | |
JP2012009225A (ja) | 有機エレクトロルミネッセンス素子及びその製造方法 | |
JP2016149184A (ja) | 透明導電膜付き基材、有機エレクトロルミネッセンス素子及び電子デバイス | |
JP2013089501A (ja) | 有機エレクトロルミネッセンス素子 | |
JP2014111335A (ja) | 導電層付き基材、電気素子及び有機エレクトロルミネッセンス素子 | |
JP2013097966A (ja) | 有機エレクトロルミネッセンス素子 | |
JP2015118863A (ja) | 発光素子及びそれを用いた照明装置 | |
JP2012243622A (ja) | 有機エレクトロルミネッセンス素子 | |
JP2014116200A (ja) | 導電層付き基材、電気素子及び有機エレクトロルミネッセンス素子 | |
JP2013175403A (ja) | 有機エレクトロルミネッセンス素子 | |
WO2012161057A1 (ja) | 有機エレクトロルミネッセンス素子 | |
JP2013030335A (ja) | 有機エレクトロルミネッセンス素子 | |
JP2012243623A (ja) | 有機エレクトロルミネッセンス素子 | |
JP2013127899A (ja) | 有機エレクトロルミネッセンス素子 | |
JP2013178945A (ja) | 透明導電膜付き基材及びその製造方法並びに有機エレクトロルミネッセンス素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2014549781 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13859403 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14375339 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13859403 Country of ref document: EP Kind code of ref document: A1 |