JP6028811B2 - リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池 - Google Patents
リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池 Download PDFInfo
- Publication number
- JP6028811B2 JP6028811B2 JP2014548570A JP2014548570A JP6028811B2 JP 6028811 B2 JP6028811 B2 JP 6028811B2 JP 2014548570 A JP2014548570 A JP 2014548570A JP 2014548570 A JP2014548570 A JP 2014548570A JP 6028811 B2 JP6028811 B2 JP 6028811B2
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- mass
- active material
- alloy
- electrode active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001416 lithium ion Inorganic materials 0.000 title claims description 83
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims description 79
- 239000007773 negative electrode material Substances 0.000 claims description 207
- 239000000956 alloy Substances 0.000 claims description 162
- 229910045601 alloy Inorganic materials 0.000 claims description 161
- 239000011230 binding agent Substances 0.000 claims description 62
- 238000000034 method Methods 0.000 claims description 28
- 229920005989 resin Polymers 0.000 claims description 20
- 239000011347 resin Substances 0.000 claims description 20
- 239000012535 impurity Substances 0.000 claims description 17
- 229910052725 zinc Inorganic materials 0.000 claims description 15
- 239000004642 Polyimide Substances 0.000 claims description 12
- 229920002312 polyamide-imide Polymers 0.000 claims description 12
- 229920001721 polyimide Polymers 0.000 claims description 12
- 239000004962 Polyamide-imide Substances 0.000 claims description 11
- 229910052718 tin Inorganic materials 0.000 claims description 11
- 229910052720 vanadium Inorganic materials 0.000 claims description 8
- 239000004952 Polyamide Substances 0.000 claims description 6
- 239000012752 auxiliary agent Substances 0.000 claims description 6
- 229920002647 polyamide Polymers 0.000 claims description 6
- 238000009864 tensile test Methods 0.000 claims description 4
- 239000011701 zinc Substances 0.000 description 142
- 239000000203 mixture Substances 0.000 description 111
- 239000000654 additive Substances 0.000 description 103
- 230000000996 additive effect Effects 0.000 description 102
- 229910000676 Si alloy Inorganic materials 0.000 description 66
- 238000012423 maintenance Methods 0.000 description 55
- 239000011135 tin Substances 0.000 description 53
- 239000000463 material Substances 0.000 description 47
- 230000014759 maintenance of location Effects 0.000 description 46
- 230000007704 transition Effects 0.000 description 44
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 43
- 239000011149 active material Substances 0.000 description 37
- 229910052799 carbon Inorganic materials 0.000 description 36
- 239000012071 phase Substances 0.000 description 36
- 239000013078 crystal Substances 0.000 description 34
- 239000007774 positive electrode material Substances 0.000 description 31
- 239000003792 electrolyte Substances 0.000 description 30
- 229910052751 metal Inorganic materials 0.000 description 29
- 229910052782 aluminium Inorganic materials 0.000 description 27
- 229910002058 ternary alloy Inorganic materials 0.000 description 27
- 230000000694 effects Effects 0.000 description 26
- 238000004519 manufacturing process Methods 0.000 description 25
- 239000002184 metal Substances 0.000 description 23
- 239000002245 particle Substances 0.000 description 23
- 229910008347 Si-Zn-Al Inorganic materials 0.000 description 22
- 229910006676 Si—Zn—Al Inorganic materials 0.000 description 22
- -1 Polyethylene Polymers 0.000 description 21
- 229910052744 lithium Inorganic materials 0.000 description 20
- 239000010409 thin film Substances 0.000 description 20
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 19
- 238000005275 alloying Methods 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 15
- 238000011156 evaluation Methods 0.000 description 15
- 238000004544 sputter deposition Methods 0.000 description 15
- 229920001940 conductive polymer Polymers 0.000 description 14
- 230000007423 decrease Effects 0.000 description 14
- 230000002195 synergetic effect Effects 0.000 description 14
- 238000007599 discharging Methods 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 12
- 230000008859 change Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 12
- 239000008151 electrolyte solution Substances 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- 239000005518 polymer electrolyte Substances 0.000 description 11
- 238000010248 power generation Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 229910052802 copper Inorganic materials 0.000 description 9
- 239000010949 copper Substances 0.000 description 9
- 229920001973 fluoroelastomer Polymers 0.000 description 9
- 239000011245 gel electrolyte Substances 0.000 description 9
- 229910052759 nickel Inorganic materials 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 8
- 239000002033 PVDF binder Substances 0.000 description 8
- 229910006680 Si—Zn—Sn Inorganic materials 0.000 description 8
- 229910002056 binary alloy Inorganic materials 0.000 description 8
- 230000000295 complement effect Effects 0.000 description 8
- 239000002482 conductive additive Substances 0.000 description 8
- 239000005001 laminate film Substances 0.000 description 8
- 239000002861 polymer material Substances 0.000 description 8
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 8
- 229910052723 transition metal Inorganic materials 0.000 description 8
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 7
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 7
- 239000010408 film Substances 0.000 description 7
- 239000011888 foil Substances 0.000 description 7
- 239000010439 graphite Substances 0.000 description 7
- 229910002804 graphite Inorganic materials 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- 229910003002 lithium salt Inorganic materials 0.000 description 7
- 159000000002 lithium salts Chemical class 0.000 description 7
- 229910002059 quaternary alloy Inorganic materials 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 6
- 229910006678 Si—Zn—V Inorganic materials 0.000 description 6
- 239000011231 conductive filler Substances 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 6
- 239000011572 manganese Substances 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 5
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 5
- 229910006674 Si—Zn—C Inorganic materials 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 229920001971 elastomer Polymers 0.000 description 5
- 239000011267 electrode slurry Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 239000011244 liquid electrolyte Substances 0.000 description 5
- 229920002239 polyacrylonitrile Polymers 0.000 description 5
- 229920001451 polypropylene glycol Polymers 0.000 description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 description 5
- 239000005060 rubber Substances 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 229910013870 LiPF 6 Inorganic materials 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 229910002796 Si–Al Inorganic materials 0.000 description 4
- 229910006776 Si—Zn Inorganic materials 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000006230 acetylene black Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 229910000733 Li alloy Inorganic materials 0.000 description 3
- 239000005062 Polybutadiene Substances 0.000 description 3
- 229910008344 Si-Zn-M Inorganic materials 0.000 description 3
- 229910006673 Si—Zn-M Inorganic materials 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000001989 lithium alloy Substances 0.000 description 3
- 239000002905 metal composite material Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910052755 nonmetal Inorganic materials 0.000 description 3
- 229920002857 polybutadiene Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 229910005190 Li(Li,Ni,Mn,Co)O2 Inorganic materials 0.000 description 2
- 229910003000 Li(Ni,Mn,Co)O2 Inorganic materials 0.000 description 2
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 description 2
- 229910013684 LiClO 4 Inorganic materials 0.000 description 2
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 2
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 229910003289 NiMn Inorganic materials 0.000 description 2
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000002134 carbon nanofiber Substances 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229920001684 low density polyethylene Polymers 0.000 description 2
- 239000004702 low-density polyethylene Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000005022 packaging material Substances 0.000 description 2
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920002620 polyvinyl fluoride Polymers 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 229920006132 styrene block copolymer Polymers 0.000 description 2
- OQMIRQSWHKCKNJ-UHFFFAOYSA-N 1,1-difluoroethene;1,1,2,3,3,3-hexafluoroprop-1-ene Chemical group FC(F)=C.FC(F)=C(F)C(F)(F)F OQMIRQSWHKCKNJ-UHFFFAOYSA-N 0.000 description 1
- UKMJGBVAAXISHI-UHFFFAOYSA-N 1-chloro-1,2,2-trifluoroethene 1,1-difluoroethene Chemical compound C(=C)(F)F.ClC(=C(F)F)F.C(=C)(F)F UKMJGBVAAXISHI-UHFFFAOYSA-N 0.000 description 1
- VSKJLJHPAFKHBX-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical compound CC(=C)C=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 VSKJLJHPAFKHBX-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910007857 Li-Al Inorganic materials 0.000 description 1
- 229910008367 Li-Pb Inorganic materials 0.000 description 1
- 229910007593 Li1.85Ni0.18Co0.10Mn0.87O3 Inorganic materials 0.000 description 1
- 229910011458 Li4/3 Ti5/3O4 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910002099 LiNi0.5Mn1.5O4 Inorganic materials 0.000 description 1
- 229910008447 Li—Al Inorganic materials 0.000 description 1
- 229910006738 Li—Pb Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229910021182 PFU-3K Inorganic materials 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 229910007933 Si-M Inorganic materials 0.000 description 1
- 229910005516 Si55Al29.3Fe15.7 Inorganic materials 0.000 description 1
- 229910005725 Si60Al20Fe12Ti8 Inorganic materials 0.000 description 1
- 229910005723 Si62Al16Fe14Ti8 Inorganic materials 0.000 description 1
- 229910005722 Si62Al18Fe16Zr4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910008318 Si—M Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 102100021227 TGF-beta-activated kinase 1 and MAP3K7-binding protein 2 Human genes 0.000 description 1
- 101710178681 TGF-beta-activated kinase 1 and MAP3K7-binding protein 2 Proteins 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RMJVTFCUOARTAL-UHFFFAOYSA-N [F].FC(C(=C(F)F)F)F.C(=C)(F)F Chemical compound [F].FC(C(=C(F)F)F)F.C(=C)(F)F RMJVTFCUOARTAL-UHFFFAOYSA-N 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 229910002064 alloy oxide Inorganic materials 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical group FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical group FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 229920003049 isoprene rubber Polymers 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 101150004907 litaf gene Proteins 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910021471 metal-silicon alloy Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000002116 nanohorn Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000011049 pearl Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 125000002467 phosphate group Chemical class [H]OP(=O)(O[H])O[*] 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- PNGLEYLFMHGIQO-UHFFFAOYSA-M sodium;3-(n-ethyl-3-methoxyanilino)-2-hydroxypropane-1-sulfonate;dihydrate Chemical compound O.O.[Na+].[O-]S(=O)(=O)CC(O)CN(CC)C1=CC=CC(OC)=C1 PNGLEYLFMHGIQO-UHFFFAOYSA-M 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 238000012719 thermal polymerization Methods 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229910000319 transition metal phosphate Inorganic materials 0.000 description 1
- 229910000385 transition metal sulfate Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C13/00—Alloys based on tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
- C22C18/04—Alloys based on zinc with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C27/00—Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
- C22C27/02—Alloys based on vanadium, niobium, or tantalum
- C22C27/025—Alloys based on vanadium, niobium, or tantalum alloys based on vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/04—Alloys containing less than 50% by weight of each constituent containing tin or lead
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/06—Alloys containing less than 50% by weight of each constituent containing zinc
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C45/00—Amorphous alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/42—Alloys based on zinc
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
- H01M4/623—Binders being polymers fluorinated polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/387—Tin or alloys based on tin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、電気デバイス用負極、及びこれを用いた電気デバイスに関する。本発明の電気デバイス用負極及びこれを用いた電気デバイスは、例えば、二次電池やキャパシタ等として電気自動車、燃料電池車及びハイブリッド電気自動車等の車両のモータ等の駆動用電源や補助電源に用いられる。
近年、大気汚染や地球温暖化に対処するため、二酸化炭素量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用二次電池などの電気デバイスの開発が盛んに行われている。
モータ駆動用二次電池としては、携帯電話やノートパソコン等に使用される民生用リチウムイオン二次電池と比較して極めて高い出力特性、及び高いエネルギーを有することが求められている。従って、全ての電池の中で最も高い理論エネルギーを有するリチウムイオン二次電池が注目を集めており、現在急速に開発が進められている。
リチウムイオン二次電池は、一般に、バインダを用いて正極活物質等を正極集電体の両面に塗布した正極と、バインダを用いて負極活物質等を負極集電体の両面に塗布した負極とが、電解質層を介して接続され、電池ケースに収納される構成を有している。
従来、リチウムイオン二次電池の負極には充放電サイクルの寿命やコスト面で有利な炭素・黒鉛系材料が用いられてきた。しかし、炭素・黒鉛系の負極材料ではリチウムイオンの黒鉛結晶中への吸蔵・放出により充放電がなされるため、最大リチウム導入化合物であるLiC6から得られる理論容量372mAh/g以上の充放電容量が得られないという欠点がある。このため、炭素・黒鉛系負極材料で車両用途の実用化レベルを満足する容量、エネルギー密度を得るのは困難である。
これに対し、負極にLiと合金化する材料を用いた電池は、従来の炭素・黒鉛系負極材料と比較しエネルギー密度が向上するため、車両用途における負極材料として期待されている。例えば、Si材料は、充放電において下記の反応式(1)のように1molあたり4.4molのリチウムイオンを吸蔵放出し、Li22Si5(=Li4.4Si)においては理論容量2100mAh/gである。さらに、Si重量当りで算出した場合、3200mAh/g(参考例Cのサンプル42参照)もの初期容量を有する。
しかしながら、負極にLiと合金化する材料を用いたリチウムイオン二次電池は、充放電時の負極での膨張収縮が大きい。例えば、Liイオンを吸蔵した場合の体積膨張は、黒鉛材料では約1.2倍であるのに対し、Si材料ではSiとLiが合金化する際、アモルファス状態から結晶状態へ転移し大きな体積変化(約4倍)を起こすため、電極のサイクル寿命を低下させる問題があった。また、Si負極活物質の場合、容量とサイクル耐久性はトレードオフの関係であり、高容量を示しつつ高サイクル耐久性を向上させることが困難であるといった問題があった。
こうした問題を解決すべく、式;SixMyAlzを有するアモルファス合金を含む、リチウムイオン二次電池用の負極活物質が提案されている(例えば、特許文献1参照)。ここで、式中x、y、zは原子パーセント値を表し、x+y+z=100、x≧55、y<22、z>0、Mは、Mn、Mo、Nb、W、Ta、Fe、Cu、Ti、V、Cr、Ni、Co、Zr、及びYの少なくとも1種からなる金属である。かかる特許文献1に記載の発明では、段落「0018」に金属Mの含有量を最小限にすることで、高容量の他に、良好なサイクル寿命を示すことが記載されている。
しかしながら、上記特許文献1に記載の式;SixMyAlzを有するアモルファス合金を有する負極を用いたリチウムイオン二次電池の場合、良好なサイクル特性を示すことができるとされているものの、初期容量が十分とはいえなかった。またサイクル特性も十分なものとはいえなかった。
そこで、本発明の目的は、高いサイクル特性を維持しつつ、かつ、初期容量も高くバランスよい特性を示すLiイオン二次電池等の電気デバイス用負極を提供することにある。
本発明者らは、上記課題を解決するため、鋭意研究を行った。その結果、所定の3元系Si合金と、所定範囲のE弾性率を有する樹脂をバインダとして用いることによって、上記課題が解決されうることを見出し、本発明を完成させるに至った。
すなわち、本発明は、集電体と、前記集電体の表面に配置された負極活物質、導電助剤、およびバインダを含む電極層と、を有する電気デバイス用負極に関する。この際、負極活物質が、下記式(1):
(上記式(1)において、
Mは、V、Sn、Al、Cおよびこれらの組み合わせからなる群から選択される少なくとも1つの金属であり、
Aは、不可避不純物であり、
x、y、z、およびaは、質量%の値を表し、この際、0<x<100、0<y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である。)
で表される合金を含む点に特徴がある。また、バインダが、1.00GPa超7.40GPa未満のE弾性率を有する樹脂を含む点にも特徴がある。
Mは、V、Sn、Al、Cおよびこれらの組み合わせからなる群から選択される少なくとも1つの金属であり、
Aは、不可避不純物であり、
x、y、z、およびaは、質量%の値を表し、この際、0<x<100、0<y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である。)
で表される合金を含む点に特徴がある。また、バインダが、1.00GPa超7.40GPa未満のE弾性率を有する樹脂を含む点にも特徴がある。
上述のように、本発明は、所定の3元系Si合金(3元系のSi−Zn−M系の合金)を負極活物質として用い、所定範囲のE弾性率を有する樹脂をバインダとして用いて電気デバイス用負極を構成する点に特徴を有する。
本発明によれば、3元系のSi−Zn−Mの合金を適用し、かつ、電極層(負極活物質層)に用いるバインダ材料として所定範囲の弾性率を有する樹脂を適用することで、SiとLiとが合金化する際のアモルファス−結晶の相転移を抑制してサイクル寿命を向上させるという作用が得られる。さらに、バインダ材料として用いられる樹脂が所定範囲の弾性率を有することで、充放電による負極活物質の膨張・収縮による体積変化に対してバインダ材料が追随することで、電極全体の体積変化を抑制することができる。また、バインダ材料の有する高い弾性率(機械的強度)により、充放電に伴う負極活物質へのリチウムイオンの反応が十分に進行しうる。こうした複合的な作用の結果として、本発明に係る負極は、初期容量も高く、高容量・高サイクル耐久性を有するという有用な効果が得られるのである。
以下、図面を参照しながら、本発明の電気デバイス用の負極及びこれを用いてなる電気デバイスの実施形態を説明する。但し、本発明の技術的範囲は、特許請求の範囲の記載に基づいて定められるべきであり、以下の形態のみには制限されない。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
以下、本発明の電気デバイス用の負極が適用され得る電気デバイスの基本的な構成を、図面を用いて説明する。本実施形態では、電気デバイスとしてリチウムイオン二次電池を例示して説明する。なお、本発明において「電極層」とは、負極活物質、導電助剤、およびバインダを含む合剤層を意味するが、本明細書の説明では「負極活物質層」とも称することがある。同様に、正極側の電極層を「正極活物質層」とも称する。
まず、本発明に係る電気デバイス用負極の代表的な一実施形態であるリチウムイオン二次電池用の負極およびこれを用いてなるリチウムイオン二次電池では、セル(単電池層)の電圧が大きく、高エネルギー密度、高出力密度が達成できる。そのため本実施形態のリチウムイオン二次電池用の負極を用いてなるリチウムイオン二次電池では、車両の駆動電源用や補助電源用として優れている。その結果、車両の駆動電源用等のリチウムイオン二次電池として好適に利用できる。このほかにも、携帯電話などの携帯機器向けのリチウムイオン二次電池にも十分に適用可能である。
すなわち、本実施形態の対象となるリチウムイオン二次電池は、以下に説明する本実施形態のリチウムイオン二次電池用の負極を用いてなるものであればよく、他の構成要件に関しては、特に制限されるべきものではない。
例えば、上記リチウムイオン二次電池を形態・構造で区別した場合には、積層型(扁平型)電池、巻回型(円筒型)電池など、従来公知のいずれの形態・構造にも適用し得るものである。積層型(扁平型)電池構造を採用することで簡単な熱圧着などのシール技術により長期信頼性を確保でき、コスト面や作業性の点では有利である。
また、リチウムイオン二次電池内の電気的な接続形態(電極構造)で見た場合、非双極型(内部並列接続タイプ)電池および双極型(内部直列接続タイプ)電池のいずれにも適用し得るものである。
リチウムイオン二次電池内の電解質層の種類で区別した場合には、電解質層に非水系の電解液等の溶液電解質を用いた溶液電解質型電池、電解質層に高分子電解質を用いたポリマー電池など従来公知のいずれの電解質層のタイプにも適用し得るものである。該ポリマー電池は、更に高分子ゲル電解質(単にゲル電解質ともいう)を用いたゲル電解質型電池、高分子固体電解質(単にポリマー電解質ともいう)を用いた固体高分子(全固体)型電池に分けられる。
したがって、以下の説明では、本実施形態のリチウムイオン二次電池用の負極を用いてなる非双極型(内部並列接続タイプ)リチウムイオン二次電池につき図面を用いてごく簡単に説明する。但し、本実施形態のリチウムイオン二次電池の技術的範囲が、これらに制限されるべきものではない。
<電池の全体構造>
図1は、本発明の電気デバイスの代表的な一実施形態である、扁平型(積層型)のリチウムイオン二次電池(以下、単に「積層型電池」ともいう)の全体構造を模式的に表した断面概略図である。
図1は、本発明の電気デバイスの代表的な一実施形態である、扁平型(積層型)のリチウムイオン二次電池(以下、単に「積層型電池」ともいう)の全体構造を模式的に表した断面概略図である。
図1に示すように、本実施形態の積層型電池10は、実際に充放電反応が進行する略矩形の発電要素21が、外装体であるラミネートシート29の内部に封止された構造を有する。ここで、発電要素21は、正極集電体11の両面に正極活物質層13が配置された正極と、電解質層17と、負極集電体12の両面に負極活物質層15が配置された負極とを積層した構成を有している。具体的には、1つの正極活物質層13とこれに隣接する負極活物質層15とが、電解質層17を介して対向するようにして、負極、電解質層および正極がこの順に積層されている。
これにより、隣接する正極、電解質層、および負極は、1つの単電池層19を構成する。したがって、図1に示す積層型電池10は、単電池層19が複数積層されることで、電気的に並列接続されてなる構成を有するともいえる。なお、発電要素21の両最外層に位置する最外層の正極集電体には、いずれも片面のみに正極活物質層13が配置されているが、両面に活物質層が設けられてもよい。すなわち、片面にのみ活物質層を設けた最外層専用の集電体とするのではなく、両面に活物質層がある集電体をそのまま最外層の集電体として用いてもよい。また、図1とは正極および負極の配置を逆にすることで、発電要素21の両最外層に最外層の負極集電体が位置するようにし、該最外層の負極集電体の片面または両面に負極活物質層が配置されているようにしてもよい。
正極集電体11および負極集電体12は、各電極(正極および負極)と導通される正極集電板25および負極集電板27がそれぞれ取り付けられ、ラミネートシート29の端部に挟まれるようにしてラミネートシート29の外部に導出される構造を有している。正極集電板25および負極集電板27は、それぞれ必要に応じて正極リードおよび負極リード(図示せず)を介して、各電極の正極集電体11および負極集電体12に超音波溶接や抵抗溶接等により取り付けられていてもよい。
上記で説明したリチウムイオン二次電池は、負極に特徴を有する。以下、当該負極を含めた電池の主要な構成部材について説明する。
<活物質層>
活物質層13または15は活物質を含み、必要に応じてその他の添加剤をさらに含む。
活物質層13または15は活物質を含み、必要に応じてその他の添加剤をさらに含む。
[正極活物質層]
正極活物質層13は、正極活物質を含む。
正極活物質層13は、正極活物質を含む。
(正極活物質)
正極活物質としては、例えば、リチウム−遷移金属複合酸化物、リチウム−遷移金属リン酸化合物、リチウム−遷移金属硫酸化合物、固溶体系、3元系、NiMn系、NiCo系、スピネルMn系などが挙げられる。
正極活物質としては、例えば、リチウム−遷移金属複合酸化物、リチウム−遷移金属リン酸化合物、リチウム−遷移金属硫酸化合物、固溶体系、3元系、NiMn系、NiCo系、スピネルMn系などが挙げられる。
リチウム−遷移金属複合酸化物としては、例えば、LiMn2O4、LiCoO2、LiNiO2、Li(Ni、Mn、Co)O2、Li(Li、Ni、Mn、Co)O2、LiFePO4及びこれらの遷移金属の一部が他の元素により置換されたもの等が挙げられる。
固溶体系としては、xLiMO2・(1−x)Li2NO3(0<x<1、Mは平均酸化状態が3+、Nは平均酸化状態が4+である1種類以上の遷移金属)、LiRO2−LiMn2O4(R=Ni、Mn、Co、Fe等の遷移金属元素)等が挙げられる。
3元系としては、ニッケル・コバルト・マンガン系(複合)正極材等が挙げられる。
NiMn系としては、LiNi0.5Mn1.5O4等が挙げられる。
NiCo系としては、Li(NiCo)O2等が挙げられる。
スピネルMn系としてはLiMn2O4等が挙げられる。
場合によっては、2種以上の正極活物質が併用されてもよい。好ましくは、容量、出力特性の観点から、リチウム−遷移金属複合酸化物が、正極活物質として用いられる。なお、上記以外の正極活物質が用いられてもよいことは勿論である。活物質それぞれの固有の効果を発現する上で最適な粒子径が異なる場合には、それぞれの固有の効果を発現する上で最適な粒子径同士をブレンドして用いればよく、全ての活物質の粒子径を必ずしも均一化させる必要はない。
正極活物質層13に含まれる正極活物質の平均粒子径は特に制限されないが、高出力化の観点からは、好ましくは1〜30μmであり、より好ましくは5〜20μmである。なお、本明細書において、「粒子径」とは、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用いて観察される活物質粒子(観察面)の輪郭線上の任意の2点間の距離のうち、最大の距離を意味する。また、本明細書において、「平均粒子径」の値は、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数〜数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。他の構成成分の粒子径や平均粒子径も同様に定義することができる。
正極活物質層13は、バインダを含みうる。
(バインダ)
バインダは、活物質同士または活物質と集電体とを結着させて電極構造を維持する目的で添加される。正極活物質層に用いられるバインダとしては、特に限定されないが、例えば、以下の材料が挙げられる。ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリアクリロニトリル、ポリイミド、ポリアミド、ポリアミドイミド、セルロース、カルボキシメチルセルロース(CMC)、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体およびその水素添加物、スチレン・イソプレン・スチレンブロック共重合体およびその水素添加物などの熱可塑性高分子、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド−ヘキサフルオロプロピレン系フッ素ゴム(VDF−HFP系フッ素ゴム)、ビニリデンフルオライド−ヘキサフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−HFP−TFE系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン系フッ素ゴム(VDF−PFP系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−PFP−TFE系フッ素ゴム)、ビニリデンフルオライド−パーフルオロメチルビニルエーテル−テトラフルオロエチレン系フッ素ゴム(VDF−PFMVE−TFE系フッ素ゴム)、ビニリデンフルオライド−クロロトリフルオロエチレン系フッ素ゴム(VDF−CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂等が挙げられる。中でも、ポリフッ化ビニリデン、ポリイミド、スチレン・ブタジエンゴム、カルボキシメチルセルロース、ポリプロピレン、ポリテトラフルオロエチレン、ポリアクリロニトリル、ポリアミド、ポリアミドイミドであることがより好ましい。これらの好適なバインダは、耐熱性に優れ、さらに電位窓が非常に広く正極電位、負極電位双方に安定であり活物質層に使用が可能となる。これらのバインダは、1種単独で用いてもよいし、2種併用してもよい。
バインダは、活物質同士または活物質と集電体とを結着させて電極構造を維持する目的で添加される。正極活物質層に用いられるバインダとしては、特に限定されないが、例えば、以下の材料が挙げられる。ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリアクリロニトリル、ポリイミド、ポリアミド、ポリアミドイミド、セルロース、カルボキシメチルセルロース(CMC)、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体およびその水素添加物、スチレン・イソプレン・スチレンブロック共重合体およびその水素添加物などの熱可塑性高分子、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド−ヘキサフルオロプロピレン系フッ素ゴム(VDF−HFP系フッ素ゴム)、ビニリデンフルオライド−ヘキサフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−HFP−TFE系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン系フッ素ゴム(VDF−PFP系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−PFP−TFE系フッ素ゴム)、ビニリデンフルオライド−パーフルオロメチルビニルエーテル−テトラフルオロエチレン系フッ素ゴム(VDF−PFMVE−TFE系フッ素ゴム)、ビニリデンフルオライド−クロロトリフルオロエチレン系フッ素ゴム(VDF−CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂等が挙げられる。中でも、ポリフッ化ビニリデン、ポリイミド、スチレン・ブタジエンゴム、カルボキシメチルセルロース、ポリプロピレン、ポリテトラフルオロエチレン、ポリアクリロニトリル、ポリアミド、ポリアミドイミドであることがより好ましい。これらの好適なバインダは、耐熱性に優れ、さらに電位窓が非常に広く正極電位、負極電位双方に安定であり活物質層に使用が可能となる。これらのバインダは、1種単独で用いてもよいし、2種併用してもよい。
正極活物質層中に含まれるバインダ量は、活物質を結着することができる量であれば特に限定されるものではないが、好ましくは活物質層に対して、0.5〜15質量%であり、より好ましくは1〜10質量%である。
正極(正極活物質層)は、通常のスラリーを塗布(コーティング)する方法のほか、混練法、スパッタ法、蒸着法、CVD法、PVD法、イオンプレーティング法および溶射法のいずれかの方法によって形成することができる。
[負極活物質層]
負極活物質層15は、負極活物質を含む。
負極活物質層15は、負極活物質を含む。
(負極活物質)
負極活物質は、所定の合金を必須に含む。
負極活物質は、所定の合金を必須に含む。
合金
本実施形態において、前記合金は、下記化学式(1)で表される。
本実施形態において、前記合金は、下記化学式(1)で表される。
上記式(1)において、Mは、V、Sn、Al、Cおよびこれらの組み合わせからなる群から選択される少なくとも1つの金属である。前記Aは、不可避不純物である。前記x、y、zおよびaは、質量%の値を表し、この際、0<x<100、0<y<100、0<z<100、および0≦a<0.5であり、x+y+z+a=100である。また、本明細書において、前記「不可避不純物」とは、Si合金において、原料中に存在したり、製造工程において不可避的に混入するものを意味する。当該不可避不純物は、本来は不要なものであるが、微量であり、Si合金の特性に影響を及ぼさないため、許容されている不純物である。
本実施形態では、負極活物質として、第1添加元素であるZnと、第2添加元素であるM(V、Sn、Al、Cおよびこれらの組み合わせからなる群から選択される少なくとも1つの金属)を選択したことによって、Li合金化の際に、アモルファス−結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質、例えば炭素系負極活物質よりも高容量のものとなる。
ここでLi合金化の際、アモルファス−結晶の相転移を抑制するのは、Si材料ではSiとLiが合金化する際、アモルファス状態から結晶状態へ転移し大きな体積変化(約4倍)を起こすため、粒子自体が壊れてしまい活物質としての機能が失われるためである。そのためアモルファス−結晶の相転移を抑制することで、粒子自体の崩壊を抑制し活物質としての機能(高容量)を保持することができ、サイクル寿命も向上させることができるものである。かかる第1及び第2添加元素を選定することにより、高容量で高サイクル耐久性を有するSi合金負極活物質を提供できる。
上述のように、Mは、V、Sn、Al、Cおよびこれらの組み合わせからなる群から選択される少なくとも1つの金属である。よって、以下、SixZnyVzAa、SixZnySnzAa、SixZnyAlzAaおよびSixZnyCzAaのSi合金について、それぞれ説明する。
(SixZnyVzAaで表されるSi合金)
上記SixZnyVzAaは、上述のように、第1添加元素であるZnと、第2添加元素であるVを選択したことによって、Li合金化の際に、アモルファス−結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質、例えば炭素系負極活物質よりも高容量のものとなる。
上記SixZnyVzAaは、上述のように、第1添加元素であるZnと、第2添加元素であるVを選択したことによって、Li合金化の際に、アモルファス−結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質、例えば炭素系負極活物質よりも高容量のものとなる。
上記合金の組成において、xが33〜50以上であり、yが0を超え46以下であり、zが21〜67であることが好ましい。なお、この数値範囲は、図3の符号Aで示す範囲に相当する。そして、このSi合金負極活物質は、電気デバイスの負極、例えばリチウムイオン二次電池の負極に用いられる。この場合、上記負極活物質に含有される合金は、電池の充電の際にリチウムイオンを吸収し、放電の際にリチウムイオンを放出する。
より詳細に説明すると、上記負極活物質はSi合金負極活物質であるが、その中に第1添加元素である亜鉛(Zn)と、第2添加元素であるバナジウム(V)とを添加したものである。そして、第1添加元素であるZnと、第2添加元素であるVを適切に選択することによって、リチウムと合金化する際に、アモルファス−結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、炭素系負極活物質よりも高容量にすることができる。そして、第1及び第2添加元素であるZn及びVの組成範囲をそれぞれ最適化することにより、50サイクル後にも良好なサイクル寿命を備えたSi(Si−Zn−V系)合金の負極活物質を得ることができる。
このとき、Si−Zn−V系合金から成る上記負極活物質において、前記xが33以上であり、前記yが0を超え、前記zが67以下である場合には、初期容量を十分に確保することができる。また、前記xが50以下であり、前記yが46以下であり、前記zが21以上である場合には、良好なサイクル寿命を奏することができる。
なお、当該負極活物質の上記特性をさらに良好なものとする観点から、前記xが33〜47の範囲、yが11〜27の範囲、zが33〜56の範囲とすることがさらに望ましい。なお、この数値範囲は、図4の符号Bで示す範囲に相当する。
なお、Aは上述のように、原料や製法に由来する上記3成分以外の不純物(不可避不純物)である。前記aは、0≦a<0.5であり、0≦a<0.1であることが好ましい。
(SixZnySnzAaで表されるSi合金)
上記SixZnySnzAaは、上述のように、第1添加元素であるZnと、第2添加元素であるSnを選択したことによって、Li合金化の際に、アモルファス−結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質、例えば炭素系負極活物質よりも高容量のものとなる。
上記SixZnySnzAaは、上述のように、第1添加元素であるZnと、第2添加元素であるSnを選択したことによって、Li合金化の際に、アモルファス−結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質、例えば炭素系負極活物質よりも高容量のものとなる。
上記合金の組成において、xが23を超え64未満であり、yが0を超え65未満であり、zが4以上58以下であることが好ましい。なお、この数値範囲は、図5の符号Xで示す範囲に相当する。そして、このSi合金負極活物質は、電気デバイスの負極、例えばリチウムイオン二次電池の負極に用いられる。この場合、上記負極活物質に含有される合金は、電池の充電の際にリチウムイオンを吸収し、放電の際にリチウムイオンを放出する。
より詳細に説明すると、上記負極活物質はSi合金負極活物質であるが、その中に第1添加元素である亜鉛(Zn)と、第2添加元素である錫(Sn)とを添加したものである。そして、第1添加元素であるZnと、第2添加元素であるSnを適切に選択することによって、リチウムと合金化する際に、アモルファス−結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、炭素系負極活物質よりも高容量にすることができる。
そして、第1及び第2添加元素であるZn及びSnの組成範囲をそれぞれ最適化することにより、50サイクル後、100サイクル後にも良好なサイクル寿命を備えたSi(Si−Zn−Sn系)合金の負極活物質を得ることができる。
このとき、Si−Zn−Sn系合金から成る上記負極活物質において、前記xが23を超える場合は1サイクル目の放電容量を十分に確保することができる。また、zが4以上の場合は、50サイクル目における良好な放電容量維持率を十分に確保することができる。前記x、y、zが上記組成の範囲内であれば、サイクル耐久性が向上し、100サイクル目における良好な放電容量維持率(例えば、50%以上)を十分に確保することができる。
なお、当該Si合金負極活物質の上記特性のさらなる向上を図る観点からは、上記合金の組成において、23<x<64、2<y<65、4≦z<34で示される図6の符号Aで示す範囲とすることが望ましい。さらに、23<x<44、0<y<43、34<z<58を満たす図6の符号Bで示す範囲とすることが望ましい。これによって、表2に示すように、50サイクルでは92%以上、100サイクルでは55%を超える放電容量維持率を得ることができる。そして、より良好なサイクル特性を確保する観点からは、23<x<64、27<y<61、4<z<34を満たす図7の符号Cで示す範囲とすることが望ましい。また、3<x<34、8<y<43、34<z<58を満たす図7の符号Dで示す範囲とすることが望ましい。これによってサイクル面、耐久性が向上し、表2に示すように、100サイクルで65%を超える放電容量維持率を得ることができる。
さらには、23<x<58、38<y<61、4<z<24を満たす図8の符号Eで示す範囲、23<x<38、27<y<53、24≦z<35を満たす図8の符号Fで示す範囲、23<x<38、27<y<44、35<z<40を満たす図8の符号Gで示す範囲、又は23<x<29、13<y<37、40≦z<58を満たす図8の符号Hで示す範囲とすることが望ましい。これによってサイクル耐久性が向上し、表2に示すように、100サイクルで75%を超える放電容量維持率を得ることができる。
なお、前記aは、0≦a<0.5であり、0≦a<0.1であることがより好ましい。
(SixZnyAlzAaで表されるSi合金)
上記SixZnyAlzAaは、上述のように、第1添加元素であるZnと、第2添加元素であるAlを選択したことによって、Li合金化の際に、アモルファス−結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質、例えば炭素系負極活物質よりも高容量のものとなる。
上記SixZnyAlzAaは、上述のように、第1添加元素であるZnと、第2添加元素であるAlを選択したことによって、Li合金化の際に、アモルファス−結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質、例えば炭素系負極活物質よりも高容量のものとなる。
上記合金の組成において、前記x、y、およびzが、21≦x<100であり、0<y<79であり、0<z<79が好ましい。当該合金の組成範囲を有する本実施形態では、Li合金化の際、アモルファス−結晶の相転移を抑制しサイクル寿命を向上させる第1添加元素Znと、該第1添加元素濃度が増加しても電極としての容量が減少しない第2添加元素種Alを選定し、これら添加元素種と高容量元素Siを適切な組成比としてなるものである。ここでLi合金化の際、アモルファス−結晶の相転移を抑制するのは、Si材料ではSiとLiが合金化する際、アモルファス状態から結晶状態へ転移し大きな体積変化(約4倍)を起すため、粒子自体が壊れてしまい活物質としての機能が失われるためである。そのためアモルファス−結晶の相転移を抑制することで、粒子自体の崩壊を抑制し活物質としての機能(高容量)を保持することができ、サイクル寿命も向上させることができるものである。かかる第1及び第2添加元素を選定し、これら添加元素種と高容量元素Siを適切な組成比とすることにより、高容量で高サイクル耐久性を有するSi合金負極活物質を提供できる。具体的にはSi−Zn−Al合金の組成比が上記範囲内であれば、図14の太い実線で囲われた範囲内(三角形の内側)の場合には、既存のカーボン系負極活物質では実現不可能な格段に高い高容量化を実現できる。同様に既存のSn系合金負極活物質と比較してもより高い高容量化(初期容量824mAh/g以上)を実現できる。更に高容量化とトレードオフの関係にあるサイクル耐久性についても、高容量であるがサイクル耐久性の悪いSn系負極活物質や特許文献1に記載の多元系合金負極活物質と比較した場合には格段に優れたサイクル耐久性を実現できる。特に50サイクル目での高い放電容量維持率を実現できる。これにより、優れたSi合金負極活物質を提供できる。
一実施形態として、好ましくは、前記x、y、およびzが、26≦x≦78であり、16≦y≦69であり、0<z≦51であることを特徴とする。このように第1添加元素であるZnと第2添加元素のAl、更に高容量元素Siの組成比が上記に規定する適切な範囲である場合に、良好な特性を有するSi合金負極活物質を提供できる。具体的にはSi−Zn−Al合金の組成比が図15の太い実線で囲われた範囲内(図15の6角形の内側)の場合にも、既存のカーボン系負極活物質では実現不可能な格段に高い高容量化を実現できる。同様に既存のSn系合金負極活物質と比較してもより高い高容量化(初期容量824mAh/g以上)を実現できる。更に高容量化とトレードオフの関係にあるサイクル耐久性についても、高容量であるがサイクル耐久性の悪いSn系負極活物質や特許文献1に記載の多元系合金負極活物質と比較した場合には格段に優れた高サイクル耐久性を実現できる。即ち、この場合には、参考例Cのサンプル1〜35で具体的に高容量化を実現できた組成範囲の中から、Sn系負極活物質や特許文献1に記載の多元系合金負極活物質と比較しても格段に優れたサイクル耐久性を実現できた組成範囲を選択したものである。具体的には、50サイクル目での高い放電容量維持率85%以上を実現できた組成範囲を選択した(図15の太い実線で囲われた6角形とした)ものであり、高容量化とサイクル耐久性のバランスの良い優れたSi合金負極活物質を提供できる(表3及び図15参照)。
一実施形態として、より好ましくは、前記x、y、およびzが、26≦x≦66であり、16≦y≦69であり、2≦z≦51であることを特徴とする。本実施形態では、第1添加元素であるZnと第2添加元素のAl、更に高容量元素Siの組成比が上記に規定する適切な範囲である場合に、非常に良好な特性を有するSi合金負極活物質を提供できる。具体的にはSi−Zn−Al合金の組成比が図16の太い実線で囲われた範囲内(小さい六角形の内側)の場合にも、既存のカーボン系負極活物質では実現不可能な格段に高い高容量化を実現できる。同様に既存のSn系合金負極活物質と比較してもより高い高容量化(初期容量1072mAh/g以上)を実現できる。更に高容量化とトレードオフの関係にあるサイクル耐久性についても、高容量であるがサイクル耐久性の悪いSn系負極活物質や特許文献1に記載の多元系合金負極活物質と比較した場合には格段に優れた高サイクル耐久性を実現できる。具体的には、50サイクル目での高い放電容量維持率90%以上を実現できる。即ち、この場合には、参考例Cのサンプル1〜35の中から具体的に高容量化と高サイクル耐久性を非常にバランスよく実現できた組成範囲のみ選択した(図16の太い実線で囲われた六角形とした)ものである。これにより、高性能なSi合金負極活物質を提供できる(表3及び図16参照)。
一実施形態として、特に好ましくは、前記x、y、およびzが、26≦x≦47であり、18≦y≦44であり、22≦z≦46であることを特徴とする。本実施形態では、第1添加元素であるZnと第2添加元素のAl、更に高容量元素Siの組成比が上記に規定する適切な範囲である場合に、最も良好な特性を有するSi合金負極活物質を提供できる。具体的にはSi−Zn−Al合金の組成比が図17の太い実線で囲われた範囲内(最も小さい六角形の内側)の場合にも、既存のカーボン系負極活物質では実現不可能な格段に高い高容量化を実現できる。同様に既存のSn系合金負極活物質と比較してもより高い高容量化(初期容量1072mAh/g以上)を実現できる。更に高容量化とトレードオフの関係にあるサイクル耐久性についても、高容量であるがサイクル耐久性の悪いSn系負極活物質や特許文献1に記載の多元系合金負極活物質と比較した場合には格段に優れた高サイクル耐久性を実現できる。具体的には、50サイクル目でのより高い放電容量維持率95%以上を実現できる。即ち、この場合には参考例Cのサンプル1〜35のうち、高容量化と高いサイクル耐久性を最もバランスよく実現できた組成範囲(ベストモード)のみ選択した(=図17の太い実線で囲われた最も小さな六角形とした)ものである。これにより、極めて高性能なSi合金負極活物質を提供できる(表3及び図17参照)。一方、SixZnyAlzAaで表される3元系合金でのSiへの添加金属元素のいずれか一方を含まない2元系合金(y=0のSi−Al合金やz=0のSi−Zn系合金)やSi単体では、高いサイクル特性、特に50サイクル目の高い放電容量維持率の維持が困難である。そのため、サイクル特性が低下(劣化)するため、上記した高容量化と高いサイクル耐久性を最もバランスよく実現することはできていない。
詳しくは、上記Si−Zn−Al系のSi合金負極活物質は、製造された状態(未充電状態)において、上記した適切な組成比を有する組成式SixZnyAlzAaで表される3元系のアモルファス合金である。そして、上記Si−Zn−Al系のSi合金負極活物質を用いたリチウムイオン二次電池では、充放電により、SiとLiが合金化する際にも、アモルファス状態から結晶状態へ転移し大きな体積変化を起すのを抑制し得る顕著な特性を有するものである。また特許文献1のSixMyAlzで表される他の3元系や4元系の合金でも、やはり高いサイクル特性、特に50サイクル目の高放電容量維持率の維持が困難であるため、サイクル特性が急激に低下(劣化)するという大きな問題が生じる。即ち、特許文献1の3元系や4元系の合金では、初期容量(1サイクル目の放電容量)は、既存のカーボン系負極活物質(理論容量372mAh/g)に比して格段に高容量であり、Sn系負極活物質(理論容量600〜700mAh/g程度)と比較しても高容量となっている。しかしながら、サイクル特性が、600〜700mAh/g程度と高容量化し得るSn系負極活物質の50サイクル目の放電容量維持率(60%程度)と比較した場合に非常に悪く十分なものとはいえなかった。即ち、トレードオフの関係にある高容量化とサイクル耐久性とのバランスが悪く実用化し得ないものであった。具体的には、特許文献1の実施例1のSi62Al18Fe16Zr4の4元系合金では、特許文献1の図2から初期容量は1150mAh/g程度と高容量であるが、僅か5〜6サイクル後の循環容量で既に1090mAh/g程度しかないことが図示されている。即ち、特許文献1の実施例1では、5〜6サイクル目の放電容量維持率が既に95%程度まで大幅に低下しており、1サイクルごとに放電容量維持率が概ね1%ずつ低下していることが図示されている。このことから50サイクル目では、放電容量維持率がほぼ50%低下する(=放電容量維持率がほぼ50%まで低下してしまう)ことが推測される。同様に特許文献1の実施例2のSi55Al29.3Fe15.7の3元系合金では、特許文献1の図4から初期容量が1430mAh/g程度と高容量であるが、僅か5〜6サイクル後の循環容量が既に1300mAh/g程度にまで大きく低下していることが図示されている。即ち、特許文献1の実施例2では、5〜6サイクル目の放電容量維持率が既に90%程度まで急激に低下しており、1サイクルごとに放電容量維持率が概ね2%ずつ低下していることが図示されている。このことから50サイクル目では、放電容量維持率がほぼ100%低下する(=放電容量維持率がほぼ0%まで低下してしまう)ことが推測される。特許文献1の実施例3のSi60Al20Fe12Ti8の4元系合金及び特許文献1の実施例4のSi62Al16Fe14Ti8の4元系合金では、初期容量の記載はないが、特許文献1の表2から僅か5〜6サイクル後の循環容量で既に700〜1200mAh/gの低い値になっていることが示されている。特許文献1の実施例3の5〜6サイクル目の放電容量維持率は実施例1〜2と同程度以下であり、50サイクル目の放電容量維持率も概ね50%〜100%低下する(=放電容量維持率がほぼ50%〜0%まで低下してしまう)ことが推測される)。なお、特許文献1の合金組成は原子比で記載されているため、本実施形態と同様に、質量比に換算すると、特許文献1の実施例ではFeが20質量%程度入っており、第一添加元素となっている合金組成が開示されていると言える。
そのためこれら既存の特許文献1記載の3元系や4元系合金を用いた電池では、車両用途のようにサイクル耐久性が強く求められる分野では実用化レベルを満足するサイクル特性が十分に得られない等、その信頼性・安全性に課題があり、実用化が困難である。一方、上記した適切な組成比を有する組成式SixZnyAlzAaで表される3元系合金を用いた負極活物質では、高いサイクル特性として50サイクル目の高い放電容量維持率を有する(図13参照)。さらに初期容量(1サイクル目の放電容量)も既存のカーボン系負極活物質より格段に高く、また既存のSn系負極活物質と比べても高く(図12参照)、バランスよい特性を示す負極活物質を提供できる。即ち、既存のカーボン系やSn系の負極活物質や特許文献1記載の3元系や4元系合金ではトレードオフの関係にあり実現できていなかった高容量化とサイクル耐久性の両特性を高次元でバランスよく成立し得る合金を用いた負極活物質を見出したものである。詳しくは、非常に多種多様な組合せが存在する1又は2以上の添加元素種よりなる群から、Zn、Alの2種を選択し、更にこれら添加元素種と高容量元素Siとを特定の組成比(組成範囲)を選択することで、所期の目的が達成し得ることを見出したものである。その結果、高容量でサイクル耐久性がよいリチウムイオン二次電池を提供できる点で優れている。
以下、上記Si−Zn−Al系の合金負極活物質につき詳しく説明する。
(1)上記合金の合計の質量%値について
上記Si−Zn−Al系の合金は、組成式SixZnyAlzAaで表される合金である。ここで、式中、Aは、不可避不純物である。また式中、x、y、zおよびaは、質量%の値を表し、この際、0<x<100、0<y<100、0<z<100、および0≦a<0.5である。そして上記組成式SixZnyAlzAaを有する合金の合計の質量%値である、式中のx+y+z+a=100である。即ち、Si−Zn−Al系の3元系の合金からなるものでなければならない。言い換えれば、2元系の合金、他の組成の3元系の合金、或いは別の金属を添加した4元系以上の合金は含まれないものと言える。但し、上記したように不可避不純物である、式中のAを0≦a<0.5の範囲で含み得る。なお、本実施形態の負極活物質層15には、少なくとも1種の組成式SixZnyAlzAaを有する合金が含まれていればよく、2種以上の組成の異なる当該合金を併用して用いてもよい。また本発明の作用効果を損なわない範囲内であれば、炭素系材料等の他の負極活物質と併用してもよい。
上記Si−Zn−Al系の合金は、組成式SixZnyAlzAaで表される合金である。ここで、式中、Aは、不可避不純物である。また式中、x、y、zおよびaは、質量%の値を表し、この際、0<x<100、0<y<100、0<z<100、および0≦a<0.5である。そして上記組成式SixZnyAlzAaを有する合金の合計の質量%値である、式中のx+y+z+a=100である。即ち、Si−Zn−Al系の3元系の合金からなるものでなければならない。言い換えれば、2元系の合金、他の組成の3元系の合金、或いは別の金属を添加した4元系以上の合金は含まれないものと言える。但し、上記したように不可避不純物である、式中のAを0≦a<0.5の範囲で含み得る。なお、本実施形態の負極活物質層15には、少なくとも1種の組成式SixZnyAlzAaを有する合金が含まれていればよく、2種以上の組成の異なる当該合金を併用して用いてもよい。また本発明の作用効果を損なわない範囲内であれば、炭素系材料等の他の負極活物質と併用してもよい。
(2)上記合金中のSiの質量%値について
上記組成式SixZnyAlzAaを有する合金中のSiの質量%値である、式中のxの範囲としては、好ましくは21≦x<100、より好ましくは26≦x≦78であり、さらに好ましくは26≦x≦66であり、特に好ましくは26≦x≦47である(表3、図14〜図17参照)。これは、合金中の高容量元素Siの質量%値(x値)の数値が高いほど高容量化でき、好ましい範囲である21≦x<100であれば、既存のカーボン系負極活物質では実現不可能な格段に高い高容量(824mAh/g以上)を実現できるためである。同様に、Sn系負極活物質と比較してもより高い高容量の合金を得ることができるためである(図14参照)。さらに21≦x<100の範囲であれば、50サイクル目の放電容量維持率(サイクル耐久性)にも優れるためである。
上記組成式SixZnyAlzAaを有する合金中のSiの質量%値である、式中のxの範囲としては、好ましくは21≦x<100、より好ましくは26≦x≦78であり、さらに好ましくは26≦x≦66であり、特に好ましくは26≦x≦47である(表3、図14〜図17参照)。これは、合金中の高容量元素Siの質量%値(x値)の数値が高いほど高容量化でき、好ましい範囲である21≦x<100であれば、既存のカーボン系負極活物質では実現不可能な格段に高い高容量(824mAh/g以上)を実現できるためである。同様に、Sn系負極活物質と比較してもより高い高容量の合金を得ることができるためである(図14参照)。さらに21≦x<100の範囲であれば、50サイクル目の放電容量維持率(サイクル耐久性)にも優れるためである。
合金中の高容量元素Siの質量%値(x値)として、より好ましくは高いサイクル特性(特に、50サイクル目の高い放電容量維持率)を維持しつつ、初期容量も高い特性をバランスよく示す負極活物質を提供する観点からは、26≦x≦78の範囲がより望ましい。加えて後述する第1添加元素であるZnと第2添加元素のAlの組成比が適切である場合に、良好な特性(既存の合金系負極活物質ではトレードオフの関係にあった高容量化とサイクル耐久性の双方に優れた特性)を有するSi合金負極活物質を実現できる。即ち、合金中の高容量元素Siの質量%値(x値)の数値が高いほど高容量化できる反面、サイクル耐久性が低下する傾向にあるが、26≦x≦78の範囲内であれば、高容量化(1072mAh/g以上)と共に高い放電容量維持率(85%以上)を維持できる点でより好ましい(表3及び図15参照)。
合金中の高容量元素Siの質量%値(x値)として、さらに好ましくは、より高いサイクル特性(より高い放電容量維持率)を維持しつつ、初期容量も高い特性をバランスよく示す負極活物質を提供する観点からは、26≦x≦66の範囲がさらに望ましいと言える。加えて後述する第1添加元素であるZnと第2添加元素のAlの組成比がより適切である場合に、より良好な特性を有するSi合金負極活物質を提供することができる(表3及び図16の太い実線で囲われた内部参照)。即ち、さらに好ましい範囲の26≦x≦66であれば、高容量化(1072mAh/g以上)と共に、50サイクル目のより高い放電容量維持率(90%以上)を維持できる点でより優れている(表3及び図16の太い実線で囲われた内部参照)。
合金中の高容量元素Siの質量%値(x値)として、特に好ましくは、特に高いサイクル特性(特に高い放電容量維持率)を維持しつつ、初期容量も高い特性をバランスよく示す負極活物質を提供する観点からは、26≦x≦47の範囲が特に望ましいと言える。加えて後述する第1添加元素であるZnと第2添加元素のAlの組成比がより適切である場合に、最も良好な特性を有する高性能なSi合金負極活物質を提供することができる(表3及び図17の太い実線で囲われた内部参照)。即ち、特に好ましい範囲の26≦x≦47であれば、高容量化(1072mAh/g以上)と共に、50サイクル目の特に高い放電容量維持率(95%以上)を維持できる点で特に優れている(表3及び図17の太い実線で囲われた内部参照)。一方、組成式SixZnyAlzAaで表される3元系の合金に比してSiへの添加金属元素(Zn、Al)のいずれか一方を含まない2元系の合金(y=0のSi−Al合金やz=0のSi−Zn系合金)では、高いサイクル特性を維持することができない。特に、50サイクル目での高い放電容量維持率を十分に維持することができず、サイクル特性が低下(劣化)する。そのため、上記した高容量化と共に、50サイクル目の特に高い放電容量維持率を最もバランスよく実現することはできていない。また、x=100の場合(Siへの添加金属元素Zn、Alを全く含まないpure Si(純Si)の場合)、容量とサイクル耐久性はトレードオフの関係であり、高容量を示しつつ高サイクル耐久性を向上させることが極めて困難である。即ち、高容量元素であるSiのみであるため、最も高容量である反面、充放電に伴いSiの膨脹収縮現象により、負極活物質としての劣化が顕著であり、最も悪く格段に低い放電容量維持率しか得られていない。そのため、上記した高容量化と共に、50サイクル目の特に高い放電容量維持率を最もバランスよく実現することはできていない。
ここで、x≧26の場合には、3200mAh/gもの初期容量を有するSi材料と第1添加元素であるZnと第2添加元素のAlの含有比率(バランス)が最適な範囲(図15〜図17の太い実線で囲われた範囲参照)となり得る。そのため、最も良好な特性を発現することができ、車両用途レベルでの高容量化を長期間にわたって安定且つ安全に維持することができる点で優れている。一方、x≦78、特にx≦66、中でもx≦47の場合には、3200mAh/gもの初期容量を有する高容量Si材料と第1添加元素であるZnと第2添加元素のAlの含有比率(バランス)が最適な範囲(図15〜図17の太い実線で囲われた範囲参照)となり得る。そのため、SiとLiとの合金化の際、アモルファス−結晶の相転移を格段に抑制し、サイクル寿命を大幅に向上させることができる。即ち、50サイクル目の放電容量維持率が85%以上、特に90%以上、中でも95%以上を実現できる。但し、xが上記の最適な範囲(26≦x≦78、特に26≦x≦66、中でも26≦x≦47)を外れる場合であっても、上記した本実施形態の作用効果を有効に発現することができる範囲であれば、本発明の技術範囲(権利範囲)に含まれることはいうまでもない。
また、上記した特許文献1の実施例では、僅か5〜6サイクル程度で既にかなりの容量低下によるサイクル特性の劣化現象を示すことが開示されている。即ち、特許文献1の実施例では5〜6サイクル目の放電容量維持率で既に90〜95%にまで低下しており、50サイクル目の放電容量維持率はほぼ50〜0%にまで低下することになる。一方、上記Si系合金では高容量Si材料への第1添加元素Znと第2添加元素Alという相互補完関係にある組合せを、いわば幾多の試行錯誤、加えて多種多様な添加(金属ないし非金属)元素の組み合わせによる過度の実験を通じて(一通りの組み合わせのみを)選定し得たものである。そして、その組み合わせにおいて、更に高容量Si材料の含有量を上記に示す最適な範囲とするとで、高容量化と共に、50サイクル目の放電容量維持率の減少を大幅に低減できる点でも優れている。即ち、SiとLiが合金化する際、第1添加元素Znと、このZnと相互補完関係にある第2添加元素Alとの最適範囲による格別顕著な相乗作用(効果)により、アモルファス状態から結晶状態へ転移を抑制し、大きな体積変化を防止できる。さらに、高容量を示しつつ電極の高いサイクル耐久性を向上させることができる点でも優れている(表3及び図15〜図17参照)。
(3)上記合金中のZnの質量%値について
上記組成式SixZnyAlzAaを有する合金中のZnの質量%値である、式中のyの範囲としては、好ましくは0<y<79であり、より好ましくは16≦y≦69であり、特に好ましくは18≦y≦44である。これは、合金中の第1添加元素Znの質量%値(y値)の数値が、好ましい範囲である0<y<79であれば、Znの持つ特性(更にAlとの相乗特性により、高容量Si材料のアモルファス−結晶の相転移を効果的に抑制することができる。その結果、サイクル寿命(サイクル耐久性)、特に50サイクル目での高い放電容量維持率(85%以上、特に90%以上、中でも95%以上)に優れた効果を発現することができる(図15〜図17参照)。また、高容量Si材料の含有量x値の数値を一定以上(21≦x<100)に保持し得ることができ、既存のカーボン系負極活物質では実現不可能な格段に高い高容量化を実現できる。同様に既存のSn系合金負極活物質と比較してもより高い高容量(初期容量824mAh/g以上、特に1072mAh/g以上)の合金を得ることができる(表3及び図15〜図17参照)。
上記組成式SixZnyAlzAaを有する合金中のZnの質量%値である、式中のyの範囲としては、好ましくは0<y<79であり、より好ましくは16≦y≦69であり、特に好ましくは18≦y≦44である。これは、合金中の第1添加元素Znの質量%値(y値)の数値が、好ましい範囲である0<y<79であれば、Znの持つ特性(更にAlとの相乗特性により、高容量Si材料のアモルファス−結晶の相転移を効果的に抑制することができる。その結果、サイクル寿命(サイクル耐久性)、特に50サイクル目での高い放電容量維持率(85%以上、特に90%以上、中でも95%以上)に優れた効果を発現することができる(図15〜図17参照)。また、高容量Si材料の含有量x値の数値を一定以上(21≦x<100)に保持し得ることができ、既存のカーボン系負極活物質では実現不可能な格段に高い高容量化を実現できる。同様に既存のSn系合金負極活物質と比較してもより高い高容量(初期容量824mAh/g以上、特に1072mAh/g以上)の合金を得ることができる(表3及び図15〜図17参照)。
合金中の第1添加元素Znの質量%値(y値)として、より好ましくは、高いサイクル特性(特に、50サイクル目の高い放電容量維持率)を維持しつつ、初期容量も高い特性をバランスよく示す負極活物質を提供する観点からは、16≦y≦69の範囲がより望ましい。Li合金化の際、アモルファス−結晶の相転移を抑制しサイクル寿命を向上させる作用効果を有する第1添加元素Znの含有比率が適切である場合に、良好な特性を有するSi合金負極活物質を提供することができる(表3及び図15、図16の太い実線で囲まれた組成範囲参照)。即ち、合金中の第1添加元素Znの質量%値(y値)の数値が、より好ましい範囲の16≦y≦69であれば、合金化する際、アモルファス−結晶の相転移を抑制しサイクル寿命を向上させる作用効果を有効に発現させることができ、50サイクル目での高い放電容量維持率(85%以上、特に90%以上)を維持できる点でより好ましい(表3及び図15及び図16参照)。この場合には、参考例Cのサンプル1〜35で具体的に高容量化を実現できた組成範囲(特にZn含有量に関しては16≦y≦69)を選択した(図15及び図16の太い実線で囲われた六角形とした)ものである。上記組成範囲、特にZn含有量に関しては16≦y≦69を選択することで、既存のSn系負極活物質や特許文献1記載の多元系合金負極活物質と比較しても格段に優れたサイクル耐久性(放電容量維持率85%以上、特に90%以上)を実現したSi合金負極活物質を提供できる(表3及び図15及び図16参照)。
合金中の第1添加元素Znの質量%値(y値)として特に好ましくは、より高いサイクル特性(50サイクル目での高い放電容量維持率)を維持しつつ、初期容量も高い特性を最もバランスよく示す負極活物質を提供する観点から18≦y≦44の範囲が望ましい。Li合金化の際、アモルファス−結晶の相転移を抑制しサイクル寿命を向上させる作用効果を有する第1添加元素Znの含有比率が最も適切である場合に、最も良好な特性を有するSi合金負極活物質を提供することができる(表3及び図17参照)。即ち、特に好ましい範囲の18≦y≦44であれば、合金化する際、アモルファス−結晶の相転移を抑制しサイクル寿命を向上させる効果をより有効に発現させることができ、50サイクル目での高い放電容量維持率95%以上を維持できる(表3及び図17参照)。特にこの場合には、参考例Cのサンプル1〜35のなかでも、より一層の高容量化及び50サイクル目での高い放電容量維持率95%以上を実現できた組成範囲(特にZn含有量に関しては18≦y≦44)を選択した(図17の太い実線で囲われた最も小さな六角形とした)ものである。上記組成範囲、特にZn含有量に関し18≦y≦44を選択することで高容量化と共にSn系負極活物質や特許文献1記載の多元系合金負極活物質と比較しても格段に優れたサイクル耐久性(より高い放電容量維持率)を実現したSi合金負極活物質を提供できる。一方、組成式SixZnyAlzAaで表される3元系の合金のSiへの添加金属元素(Zn、Al)のいずれか一方を含まない2元系の合金(特に、y=0のSi−Al合金)では、高いサイクル特性を維持することができない。特に、50サイクル目の高い放電容量維持率を十分に維持することができず、サイクル特性が低下(劣化)する。そのため、上記した高容量化と共に、優れたサイクル耐久性(50サイクル目の特に高い放電容量維持率)を最もバランス良いSi合金負極活物質を提供することはできていない。
ここで、y≧16、特にy≧18の場合には、3200mAh/gもの初期容量を有する高容量Si材料と第1添加元素Zn(更には残る第2添加元素Al)との含有比率(バランス)が最適な範囲(図15〜図17の太い実線で囲われた範囲参照)となり得る。そのため、Znの持つ特性(更にはAlとの相乗特性)である、Si材料のアモルファス−結晶の相転移を効果的に抑制し、サイクル寿命(特に放電容量維持率)を格段に向上させることができる。即ち、50サイクル目の放電容量維持率85%以上、特に90%以上、中でも95%以上を実現することができる。その結果、負極活物質(負極)としても、最も良好な特性を発現することができ、車両用途レベルでの高容量化を長期間にわたって安定且つ安全に維持することができる点で優れている。一方、y≦69、特にy≦44の場合には、3200mAh/gもの初期容量を有する高容量Si材料と第1添加元素であるZn(更には第2添加元素のAl)との含有比率(バランス)が最適な範囲(図15〜図17の太い実線で囲われた範囲参照)となり得る。そのため、SiとLiとの合金化の際、アモルファス−結晶の相転移を格段に抑制し、サイクル寿命を大幅に向上させることができる。即ち、50サイクル目の放電容量維持率85%以上、特に90%以上、中でも95%以上を実現することができる。但し、yが上記の最適な範囲(16≦y≦69、特に18≦y≦44)を外れる場合であっても、上記した本実施形態の作用効果を有効に発現することができる範囲であれば、本発明の技術範囲(権利範囲)に含まれることはいうまでもない。
また、上記した特許文献1の実施例では、僅か5〜6サイクル程度で既にかなりの容量低下によるサイクル特性の劣化現象を示すことが開示されている。即ち、特許文献1の実施例では5〜6サイクル目の放電容量維持率で既に90〜95%にまで低下しており、50サイクル目の放電容量維持率はほぼ50〜0%にまで低下することになる。一方、上記Si系合金では高容量Si材料への第1添加元素のZn(更には第2添加元素のAlという相互補完関係にある組合せ)を、いわば幾多の試行錯誤、加えて多種多様な添加(金属ないし非金属)元素の組み合わせによる過度の実験を通じて(一通りの組み合わせのみを)選定し得たものである。そして、その組み合わせにおいて、更にZnの含有量を上記に示す最適な範囲とするとで、50サイクル目の放電容量維持率の減少を大幅に低減できる点でも優れている。即ち、SiとLiが合金化する際、第1添加元素Zn(更にはZnと相互補完関係にある第2添加元素Al)の最適範囲による格別顕著な相乗作用(効果)により、アモルファス状態から結晶状態へ転移を抑制し、大きな体積変化を防止できる。さらに、高容量を示しつつ電極の高いサイクル耐久性を向上させることができる点でも優れている(表3及び図15〜図17参照)。
(4)上記合金中のAlの質量%値について
上記組成式SixZnyAlzAaを有する合金中のAlの質量%値である、式中のzの範囲としては、好ましくは0<z<79であり、より好ましくは0<z≦51であり、さらに好ましくは2≦z≦51であり、特に好ましくは22≦z≦46である。これは、合金中の第1添加元素濃度が増加しても電極としての容量が減少しない第2添加元素種Alの質量%値(z値)の数値が、好ましい範囲である0<z<79であれば、Znの持つ特性とAlとの相乗特性により、高容量Si材料のアモルファス−結晶の相転移を効果的に抑制することができる。その結果、サイクル寿命(サイクル耐久性)、特に50サイクル目での高い放電容量維持率(85%以上、特に90%以上、中でも95%以上)に優れた効果を発現することができる(表3、図15〜図17参照)。また、高容量Si材料の含有量x値の数値を一定以上(21≦x<100)に保持し得ることができ、既存のカーボン系負極活物質では実現不可能な格段に高い高容量化を実現できる。同様に既存のSn系合金負極活物質と比較しても同様以上の高容量(初期容量824mAh/g以上、特に1072mAh/g以上)の合金を得ることができる(表3及び図14〜17参照)。
上記組成式SixZnyAlzAaを有する合金中のAlの質量%値である、式中のzの範囲としては、好ましくは0<z<79であり、より好ましくは0<z≦51であり、さらに好ましくは2≦z≦51であり、特に好ましくは22≦z≦46である。これは、合金中の第1添加元素濃度が増加しても電極としての容量が減少しない第2添加元素種Alの質量%値(z値)の数値が、好ましい範囲である0<z<79であれば、Znの持つ特性とAlとの相乗特性により、高容量Si材料のアモルファス−結晶の相転移を効果的に抑制することができる。その結果、サイクル寿命(サイクル耐久性)、特に50サイクル目での高い放電容量維持率(85%以上、特に90%以上、中でも95%以上)に優れた効果を発現することができる(表3、図15〜図17参照)。また、高容量Si材料の含有量x値の数値を一定以上(21≦x<100)に保持し得ることができ、既存のカーボン系負極活物質では実現不可能な格段に高い高容量化を実現できる。同様に既存のSn系合金負極活物質と比較しても同様以上の高容量(初期容量824mAh/g以上、特に1072mAh/g以上)の合金を得ることができる(表3及び図14〜17参照)。
合金中の第2添加元素Alの質量%値(z値)として、より好ましくは、高いサイクル特性(特に、50サイクル目の高い放電容量維持率)を維持しつつ、初期容量も高い特性をバランスよく示す負極活物質を提供する観点からは、0<z≦51の範囲が望ましい。Li合金化の際、アモルファス−結晶の相転移を抑制しサイクル寿命を向上させる第1添加元素Znと、その第1添加元素濃度が増加しても負極活物質(負極)としての容量が減少しない第2添加元素Alの選定が本実施形態においては極めて重要かつ有用である。かかる第1及び第2添加元素により、特許文献1等の従来公知の3元系合金や4元系以上の合金、更にSi−Zn系合金やSi−Al系合金等の2元系合金との顕著な作用効果の差異が見られることがわかったものである。かかる第2添加元素Al(更にはAlと相互補完関係にある第1添加元素Zn)の含有比率が適切である場合に、良好な特性を有するSi合金負極活物質となる(表3及び図15の太い実線で囲まれた組成範囲参照)。即ち、合金中の第2添加元素Alの質量%値(z値)の数値が、より好ましい範囲の0<z≦51であれば、第1添加元素Znとの相乗効果(相互補完特性)により、合金化する際、アモルファス−結晶の相転移を抑制しサイクル寿命を向上させる効果を有効に発現できる。その結果、50サイクル目での高い放電容量維持率(85%以上)を維持できる(表3及び図15参照)。この場合には、参考例Cのサンプル1〜35で具体的に高容量化を実現できた組成範囲(特にZn含有量に関しては0<z≦51)を選択した(図15の太い実線で囲われた六角形とした)ものである。上記組成範囲、特にZn含有量に関しては0<z≦51を選択することで、第1添加元素Znとの相乗効果(相互補完特性)により、既存の高容量のSn系負極活物質や特許文献1記載の多元系合金負極活物質と比較しても格段に優れたサイクル耐久性を実現できる。その結果、50サイクル目での放電容量維持率85%以上を実現したSi合金負極活物質を提供できる(表3及び図15の太い実線で囲まれた組成範囲参照)。
合金中の第2添加元素Alの質量%値(z値)としてさらに好ましくは、より高いサイクル特性(50サイクル目での高い放電容量維持率)を維持しつつ、初期容量も高い特性を非常にバランスよく示す負極活物質を提供する観点から2≦z≦51の範囲が望ましい。Li合金化の際、Znとの相乗効果(相互補完特性)によりアモルファス−結晶の相転移を抑制しサイクル寿命を向上させる効果を奏し得る第2添加元素Alの含有比率がより適切である場合にさらに良好な特性を有するSi合金負極活物質を提供できるためである。即ち、さらに好ましい範囲の2≦z≦51であれば、Znとの相乗効果(相互補完特性)により、合金化する際、アモルファス−結晶の相転移を抑制しサイクル寿命を向上させる効果をより有効に発現させることができる。その結果、50サイクル目でのより高い放電容量維持率90%以上を維持できる(表3及び図16参照)。特にこの場合には、参考例Cのサンプル1〜35のなかでも、高容量化及び50サイクル目での高い放電容量維持率90%以上を実現できた組成範囲(特にAl含有量に関しては2≦z≦51)を選択した(図16の太い実線で囲われた小さな六角形とした)ものである。上記組成範囲、特にAl含有量に関し2≦z≦51を選択することで、Znとの相乗特性により高容量化と共に、既存の高容量のSn系負極活物質や特許文献1記載の多元系合金負極活物質と比較しても格段に優れたサイクル耐久性を実現したバランスの良いSi合金負極活物質を提供できる。
合金中の第2添加元素Alの質量%値(z値)として、特に好ましくは、より高いサイクル特性(50サイクル目での高い放電容量維持率)を維持しつつ、初期容量も高い特性を最もバランスよく示す負極活物質を提供する観点から22≦z≦46の範囲が望ましい。Li合金化の際、Znとの相乗効果(相互補完特性)によりアモルファス−結晶の相転移を抑制しサイクル寿命を向上させる効果を奏し得る第2添加元素Alの含有比率が最も適切である場合に最も良好な特性を有するSi合金負極活物質を提供できるためである。即ち、特に好ましい範囲の22≦z≦46であれば、Znとの相乗効果(相互補完特性)により、合金化する際、アモルファス−結晶の相転移を抑制しサイクル寿命を向上させる効果をより有効に発現させることができる。その結果、50サイクル目でのより一層高い放電容量維持率95%以上を維持できる(表3及び図17参照)。特にこの場合には、参考例Cのサンプル1〜35のなかでも、より一層の高容量化及び50サイクル目での高い放電容量維持率95%以上を実現できた組成範囲(特にAl含有量に関しては22≦z≦46)を選択した(図17の太い実線で囲われた最も小さい六角形とした)ものである。上記組成範囲、特にAl含有量に関し22≦z≦46を選択することで、Znとの相乗特性により高容量化と共に、既存の高容量のSn系負極活物質や特許文献1記載の多元系合金負極活物質と比較しても格段に優れたサイクル耐久性を実現した最もバランスの良いSi合金負極活物質を提供できる。一方、組成式SixZnyAlzAaで表される3元系の合金のSiへの添加金属元素(Zn、Al)のいずれか一方を含まない2元系の合金(特に、z=0のSi−Zn合金)では、高いサイクル特性を維持することができない。特に、50サイクル目の高い放電容量維持率を維持することができず、サイクル特性が低下(劣化)する。そのため、上記した高容量化と共に、優れたサイクル耐久性(50サイクル目の特に高い放電容量維持率)を最もバランス良いSi合金負極活物質を提供することはできていない。
ここで、z≧2、特にz≧22の場合には、3200mAh/gもの初期容量を有する高容量Si材料及び第1添加元素Znと、更なる第2添加元素Alとの含有比率(バランス)が最適な範囲(図16〜図17の太い実線で囲われた範囲参照)となり得る。そのため、Alの持つ特性である、アモルファス−結晶の相転移を抑制し得るZn濃度が増加しても負極活物質(負極)としての容量の減少を効果的に抑制し、サイクル寿命(特に放電容量維持率)を格段に向上させることができる。即ち、50サイクル目の放電容量維持率90%以上、特に95%以上を実現できる。その結果、負極活物質(負極)としても、最も良好な特性を発現することができ、車両用途レベルでの高容量化を長期間にわたって安定且つ安全に維持することができる点で優れている。一方、z≦51、特にz≦46の場合には、3200mAh/gもの初期容量を有する高容量Si材料及び第1添加元素Znと、第2添加元素Alとの含有比率(バランス)が最適な範囲(図15〜図17の太い実線で囲われた範囲参照)となり得る。そのため、SiとLiとの合金化の際、アモルファス−結晶の相転移を格段に抑制し、更にサイクル寿命(特に50サイクル目の放電容量維持率)を大幅に向上させることができる。即ち、50サイクル目の放電容量維持率が85%以上、特に90%以上、中でも95%以上を実現できる。但し、zが上記の最適な範囲(2≦z≦51、特に22≦z≦46)を外れる場合であっても、上記した本実施形態の作用効果を有効に発現することができる範囲であれば、本発明の技術範囲(権利範囲)に含まれることはいうまでもない。
また、上記した特許文献1の実施例では、僅か5〜6サイクル程度で既にかなりの容量低下によるサイクル特性の劣化現象を示すことが開示されている。即ち、特許文献1の実施例では5〜6サイクル目の放電容量維持率で既に90〜95%にまで低下しており、50サイクル目の放電容量維持率はほぼ50〜0%にまで低下することになる。一方、上記Si系合金では高容量Si材料への第1添加元素Znと第2添加元素Alという相互補完関係にある組み合わせを、いわば幾多の試行錯誤、加えて多種多様な添加(金属ないし非金属)元素種の組み合わせによる過度の実験を通じて(一通りの組み合わせのみを)選定し得たものである。そして、その組み合わせにおいて、更にAlの含有量を上記に示す最適な範囲とするとで、50サイクル目の放電容量維持率の減少を大幅に低減できる点でも優れている。即ち、SiとLiが合金化する際、第2添加元素Al(更にはAlと相互補完関係にある第1添加元素Zn)の最適範囲による格別顕著な相乗作用(効果)により、アモルファス状態から結晶状態へ転移を抑制し、大きな体積変化を防止できる。さらに、高容量を示しつつ電極の高いサイクル耐久性を向上させることができる点でも優れている。
(5)合金中のA(不可避不純物)の質量%値について
上記組成式SixZnyMzAaを有する合金中のAの質量%値である、式中のaの範囲は、0≦a<0.5であり、好ましくは0≦a<0.1である。Aは、上述のように、Si合金において、原料中に存在したり、製造工程において不可避的に混入するものであり、本来は不要なものであるが、微量であり、Si合金の特性に影響を及ぼさないため、合金中に含有されることが許容される。
上記組成式SixZnyMzAaを有する合金中のAの質量%値である、式中のaの範囲は、0≦a<0.5であり、好ましくは0≦a<0.1である。Aは、上述のように、Si合金において、原料中に存在したり、製造工程において不可避的に混入するものであり、本来は不要なものであるが、微量であり、Si合金の特性に影響を及ぼさないため、合金中に含有されることが許容される。
(SixZnyCzAaで表されるSi合金)
上記SixZnyCzAaは、上述のように、第1添加元素であるZnと、第2添加元素であるCを選択したことによって、Li合金化の際に、アモルファス−結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質、例えば炭素系負極活物質よりも高容量のものとなる。
上記SixZnyCzAaは、上述のように、第1添加元素であるZnと、第2添加元素であるCを選択したことによって、Li合金化の際に、アモルファス−結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、従来の負極活物質、例えば炭素系負極活物質よりも高容量のものとなる。
上記合金の組成において、前記xが25を超え54未満であり、前記yが13を超え69未満であり、前記zが1を超え47未満であることが好ましい。なお、この数値範囲は、図20の符号Aで示す範囲に相当する。そして、このSi合金負極活物質は、電気デバイスの負極、例えばリチウムイオン二次電池の負極に用いられる。この場合、上記負極活物質に含有される合金は、電池の充電の際にリチウムイオンを吸収し、放電の際にリチウムイオンを放出する。
より詳細に説明すると、上記負極活物質はSi合金負極活物質であるが、その中に第1添加元素である亜鉛(Zn)と、第2添加元素である炭素g(C)とを添加したものである。そして、第1添加元素であるZnと、第2添加元素であるCを適切に選択することによって、リチウムと合金化する際に、アモルファス−結晶の相転移を抑制してサイクル寿命を向上させることができる。また、これによって、炭素系負極活物質よりも高容量にすることができる。そして、第1及び第2添加元素であるZn及びCの組成範囲をそれぞれ最適化することにより、50サイクル後にも良好なサイクル寿命を備えたSi(Si−Zn−C系)合金の負極活物質を得ることができる。さらに、Si(Si−Zn−C系)合金の負極活物質では、高容量で、高サイクル耐久性を発揮することができ、さらに初期において高い充放電効率を発揮することができる。
このとき、Si−Zn−C系合金から成る上記負極活物質において、前記xが25を超える場合は1サイクル目の放電容量を十分に確保することができる。逆に、前記xが54未満の場合には従来の純Siの場合に比して優れたサイクル特性を発現することができる。また前記yが13を超える場合には、従来の純Siの場合に比して優れたサイクル特性を発現することができる。逆に、前記yが69未満の場合にはSiの含有量の低下を抑制することができ、初期容量が既存の純Si負極活物質と比べて低下するのを効果的に防止でき、初期において高容量で、高い充放電効率を発揮することができる。また、前記zが1を超える場合は、従来の純Siの場合に比して優れたサイクル特性を発現することができる。逆に前記zが47未満ではSiの含有量の低下を抑制することができ、初期容量が既存の純Si負極活物質と比べて低下するのを効果的に防止でき、初期において高容量で、高い充放電効率を発揮することができる。
なお、図21の符号Bに示すように、当該Si合金負極活物質の上記特性をさらに良好なものとする観点から、前記zが1を超え34未満の範囲にすることが望ましい。さらに、前記yが17を超え69未満の範囲にすることが望ましい。
なお、前記aは、0≦a<0.5であり、0≦a<0.1であることが好ましい。
Si合金の平均粒子径
上記Si合金の平均粒子径は、既存の負極活物質層15に含まれる負極活物質の平均粒子径と同程度であればよく、特に制限されない。高出力化の観点からは、好ましくは1〜20μmの範囲であればよい。ただし、上記範囲に何ら制限されるものではなく、本実施形態の作用効果を有効に発現できるものであれば、上記範囲を外れていてもよいことは言うまでもない。なお、Si合金の形状としては、特に制限はなく、球状、楕円状、円柱状、多角柱状、鱗片状、不定形などでありうる。
上記Si合金の平均粒子径は、既存の負極活物質層15に含まれる負極活物質の平均粒子径と同程度であればよく、特に制限されない。高出力化の観点からは、好ましくは1〜20μmの範囲であればよい。ただし、上記範囲に何ら制限されるものではなく、本実施形態の作用効果を有効に発現できるものであれば、上記範囲を外れていてもよいことは言うまでもない。なお、Si合金の形状としては、特に制限はなく、球状、楕円状、円柱状、多角柱状、鱗片状、不定形などでありうる。
合金の製造方法
本形態に係る組成式SixZnyMzAaを有する合金の製造方法としては、特に制限されるものではなく、従来公知の各種の製造を利用して製造することができる。即ち、作製方法による合金状態・特性の違いはほとんどないので、ありとあらゆる作製方法が適用できる。
本形態に係る組成式SixZnyMzAaを有する合金の製造方法としては、特に制限されるものではなく、従来公知の各種の製造を利用して製造することができる。即ち、作製方法による合金状態・特性の違いはほとんどないので、ありとあらゆる作製方法が適用できる。
具体的には、例えば、組成式SixZnyMzAaを有する合金の粒子形態の製造方法としては固相法、液相法、気相法があるが、例えば、メカニカルアロイ法、アークプラズマ溶融法等を利用することができる。
上記の粒子の形態に製造する方法では、該粒子にバインダ、導電助剤、粘度調整溶剤を加えてスラリーを調整し、該スラリーを用いてスラリー電極を形成することができる。そのため、量産化(大量生産)し易く、実際の電池用電極として実用化しやすい点で優れている。
以上、負極活物質層に必須に含まれる所定の合金について説明したが、負極活物質層はその他の負極活物質を含んでいてもよい。上記所定の合金以外の負極活物質としては、天然黒鉛、人造黒鉛、カーボンブラック、活性炭、カーボンファイバー、コークス、ソフトカーボン、もしくはハードカーボンなどのカーボン、SiやSnなどの純金属や上記所定の組成比を外れる合金系活物質、あるいはTiO、Ti2O3、TiO2、もしくはSiO2、SiO、SnO2などの金属酸化物、Li4/3Ti5/3O4もしくはLi7MnNなどのリチウムと遷移金属との複合酸化物、Li−Pb系合金、Li−Al系合金、Liなどが挙げられる。ただし、上記所定の合金を負極活物質として用いることにより奏される作用効果を十分に発揮させるという観点からは、負極活物質の全量100質量%に占める上記所定の合金の含有量は、好ましくは50〜100質量%であり、より好ましくは80〜100質量%であり、さらに好ましくは90〜100質量%であり、特に好ましくは95〜100質量%であり、最も好ましくは100質量%である。
続いて、負極活物質層15は、バインダを含む。
(バインダ)
バインダは、1.00GPa超7.40GPa未満のE弾性率を有する樹脂を必須に含む。
バインダは、1.00GPa超7.40GPa未満のE弾性率を有する樹脂を必須に含む。
上述したように、バインダは、活物質同士または活物質と集電体とを結着させて電極構造を維持する目的で添加される。負極活物質層に用いられるバインダの種類についても特に制限はなく、正極活物質層に用いられるバインダとして上述したものが同様に用いられうる。ただし、負極活物質層に用いられるバインダは、1.00GPa超7.40GPa未満のE弾性率を有する樹脂を必須に含む。これは、バインダのE弾性率が1.00GPa以下であっても7.40以上であっても、Si合金の体積変化にバインダが追随することができず、十分な放電容量を達成することができない虞があるためである。すなわち、バインダは、Si合金を接着する機能を有するが、バインダのE弾性率が1.00GPa以下であると、バインダが柔らかいため、Si合金の膨張時にバインダに対して印加される圧力に耐えることができない。一方、バインダのE弾性率が7.40GPa以上であると、バインダが固いため、Liイオンの挿脱時におけるSi合金の膨張が抑制され、十分なLiイオンをSi合金に導入できない。ここで、上記所定の範囲のE弾性率を有する樹脂は、ポリイミド、ポリアミドイミド、およびポリアミドからなる群から選択される1種または2種以上であることが好ましく、ポリイミドであることが特に好ましい。なお、E弾性率の値は、JIS K 7163に規定される引張試験方法に準じて測定した値を採用するものとする。また、複数のバインダが使用される場合には、上記所定のE弾性率を有する樹脂が少なくとも1つ含まれていればよい。
ここで、バインダのE弾性率の値は、バインダの材質、スラリーの濃度(固液比)、架橋の程度、ならびに乾燥温度、乾燥速度および乾燥時間などの熱履歴に依存する。本実施形態では、これらを調整することにより、バインダのE弾性率を上述した所望の範囲に調節することができる。
ここで、上記所定のE弾性率を有する樹脂をバインダとして用いることにより奏される作用効果を十分に発揮させるという観点からは、バインダの全量100質量%に占める上記所定のE弾性率を有する樹脂の含有量は、好ましくは50〜100質量%であり、より好ましくは80〜100質量%であり、さらに好ましくは90〜100質量%であり、特に好ましくは95〜100質量%であり、最も好ましくは100質量%である。
なお、負極活物質層中に含まれるバインダ量は、活物質を結着することができる量であれば特に限定されるものではないが、好ましくは活物質層に対して、0.5〜15質量%であり、より好ましくは1〜10質量%である。
(正極及び負極活物質層13、15に共通する要件)以下に、正極及び負極活物質層13、15に共通する要件につき、説明する。
正極活物質層13および負極活物質層15は、必要に応じて、導電助剤、電解質塩(リチウム塩)、イオン伝導性ポリマー等を含む。特に、負極活物質層15は、導電助剤をも必須に含む。
導電助剤
導電助剤とは、正極活物質層または負極活物質層の導電性を向上させるために配合される添加物をいう。導電助剤としては、アセチレンブラック等のカーボンブラック、グラファイト、気相成長炭素繊維などの炭素材料が挙げられる。活物質層が導電助剤を含むと、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与しうる。
導電助剤とは、正極活物質層または負極活物質層の導電性を向上させるために配合される添加物をいう。導電助剤としては、アセチレンブラック等のカーボンブラック、グラファイト、気相成長炭素繊維などの炭素材料が挙げられる。活物質層が導電助剤を含むと、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与しうる。
活物質層へ混入されてなる導電助剤の含有量は、活物質層の総量に対して、1質量%以上、より好ましくは3質量%以上、さらに好ましくは5質量%以上の範囲である。また、活物質層へ混入されてなる導電助剤の含有量は、活物質層の総量に対して、15質量%以下、より好ましくは10質量%以下、さらに好ましくは7質量%以下の範囲である。活物質自体の電子導電性は低く導電助剤の量によって電極抵抗を低減できる活物質層での導電助剤の配合比(含有量)を上記範囲内に規定することで以下の効果が発現される。即ち、電極反応を阻害することなく、電子導電性を十分に担保することができ、電極密度の低下によるエネルギー密度の低下を抑制でき、ひいては電極密度の向上によるエネルギー密度の向上を図ることができる。
また、上記導電助剤とバインダの機能を併せ持つ導電性結着剤をこれら導電助剤とバインダに代えて用いてもよいし、あるいはこれら導電助剤とバインダの一方ないし双方と併用してもよい。導電性結着剤としては、既に市販のTAB−2(宝泉株式会社製)を用いることができる。
電解質塩(リチウム塩)
電解質塩(リチウム塩)としては、Li(C2F5SO2)2N、LiPF6、LiBF4、LiClO4、LiAsF6、LiCF3SO3等が挙げられる。
電解質塩(リチウム塩)としては、Li(C2F5SO2)2N、LiPF6、LiBF4、LiClO4、LiAsF6、LiCF3SO3等が挙げられる。
イオン伝導性ポリマー
イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系およびポリプロピレンオキシド(PPO)系のポリマーが挙げられる。
イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系およびポリプロピレンオキシド(PPO)系のポリマーが挙げられる。
正極活物質層および上記(5)(ii)の粒子の形態の合金を用いる場合の負極活物質層中に含まれる成分の配合比は、特に限定されない。配合比は、非水溶媒二次電池についての公知の知見を適宜参照することにより、調整されうる。
各活物質層(集電体片面の活物質層)の厚さについても特に制限はなく、電池についての従来公知の知見が適宜参照されうる。一例を挙げると、各活物質層の厚さは、電池の使用目的(出力重視、エネルギー重視など)、イオン伝導性を考慮し、通常1〜500μm程度、好ましくは2〜100μmである。
<集電体>
集電体11、12は導電性材料から構成される。集電体の大きさは、電池の使用用途に応じて決定される。例えば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。
集電体11、12は導電性材料から構成される。集電体の大きさは、電池の使用用途に応じて決定される。例えば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。
集電体の厚さについても特に制限はない。集電体の厚さは、通常は1〜100μm程度である。
集電体の形状についても特に制限されない。図1に示す積層型電池10では、集電箔のほか、網目形状(エキスパンドグリッド等)等を用いることができる。
なお、負極活物質をスパッタ法等により薄膜合金を負極集電体12上に直接形成する場合には、集電箔を用いるのが望ましい。
集電体を構成する材料に特に制限はない。例えば、金属や、導電性高分子材料または非導電性高分子材料に導電性フィラーが添加された樹脂が採用されうる。
具体的には、金属としては、アルミニウム、ニッケル、鉄、ステンレス、チタン、銅などが挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、またはこれらの金属の組み合わせのめっき材などが好ましく用いられうる。また、金属表面にアルミニウムが被覆されてなる箔であってもよい。なかでも、電子伝導性や電池作動電位、集電体へのスパッタリングによる負極活物質の密着性等の観点からは、アルミニウム、ステンレス、銅、ニッケルが好ましい。
また、導電性高分子材料としては、例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアクリロニトリル、およびポリオキサジアゾールなどが挙げられる。かような導電性高分子材料は、導電性フィラーを添加しなくても十分な導電性を有するため、製造工程の容易化または集電体の軽量化の点において有利である。
非導電性高分子材料としては、例えば、ポリエチレン(PE;高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)など)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、ポリテトラフルオロエチレン(PTFE)、スチレン−ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)、またはポリスチレン(PS)などが挙げられる。かような非導電性高分子材料は、優れた耐電位性または耐溶媒性を有しうる。
上記の導電性高分子材料または非導電性高分子材料には、必要に応じて導電性フィラーが添加されうる。特に、集電体の基材となる樹脂が非導電性高分子のみからなる場合は、樹脂に導電性を付与するために必然的に導電性フィラーが必須となる。
導電性フィラーは、導電性を有する物質であれば特に制限なく用いることができる。例えば、導電性、耐電位性、またはリチウムイオン遮断性に優れた材料として、金属および導電性カーボンなどが挙げられる。金属としては、特に制限はないが、Ni、Ti、Al、Cu、Pt、Fe、Cr、Sn、Zn、In、Sb、およびKからなる群から選択される少なくとも1種の金属もしくはこれらの金属を含む合金または金属酸化物を含むことが好ましい。また、導電性カーボンとしては、特に制限はない。好ましくは、アセチレンブラック、バルカン、ブラックパール、カーボンナノファイバー、ケッチェンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンナノバルーン、およびフラーレンからなる群より選択される少なくとも1種を含むものである。
導電性フィラーの添加量は、集電体に十分な導電性を付与できる量であれば特に制限はなく、一般的には、5〜35質量%程度である。
<電解質層>
電解質層17を構成する電解質としては、液体電解質またはポリマー電解質が用いられうる。
電解質層17を構成する電解質としては、液体電解質またはポリマー電解質が用いられうる。
液体電解質は、有機溶媒にリチウム塩(電解質塩)が溶解した形態を有する。有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、メチルプロピルカーボネート(MPC)等のカーボネート類が例示される。
また、リチウム塩としては、Li(CF3SO2)2N、Li(C2F5SO2)2N、LiPF6、LiBF4、LiAsF6、LiTaF6、LiClO4、LiCF3SO3等の電極の活物質層に添加され得る化合物を採用することができる。
一方、ポリマー電解質は、電解液を含むゲル電解質と、電解液を含まない真性ポリマー電解質に分類される。
ゲル電解質は、イオン伝導性ポリマーからなるマトリックスポリマーに、上記の液体電解質(電解液)が注入されてなる構成を有する。電解質としてゲルポリマー電解質を用いることで電解質の流動性がなくなり、各層間のイオン伝導を遮断することが容易になる点で優れている。
マトリックスポリマーとして用いられるイオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、およびこれらの共重合体等が挙げられる。かようなポリアルキレンオキシド系ポリマーには、リチウム塩などの電解質塩がよく溶解しうる。
ゲル電解質中の上記液体電解質(電解液)の割合としては、特に制限されるべきものではないが、イオン伝導度などの観点から、数質量%〜98質量%程度とするのが望ましい。本実施形態では、電解液の割合が70質量%以上の、電解液が多いゲル電解質について、特に効果がある。
なお、電解質層が液体電解質やゲル電解質や真性ポリマー電解質から構成される場合には、電解質層にセパレータを用いてもよい。セパレータ(不織布を含む)の具体的な形態としては、例えば、ポリエチレンやポリプロピレン等のポリオレフィンからなる微多孔膜や多孔質の平板、更には不織布が挙げられる。
真性ポリマー電解質は、上記のマトリックスポリマーに支持塩(リチウム塩)が溶解してなる構成を有し、可塑剤である有機溶媒を含まない。したがって、電解質層が真性ポリマー電解質から構成される場合には電池からの液漏れの心配がなく、電池の信頼性が向上しうる。
ゲル電解質や真性ポリマー電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現しうる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。
<集電板およびリード>
電池外部に電流を取り出す目的で、集電板を用いてもよい。集電板は集電体やリードに電気的に接続され、電池外装材であるラミネートシートの外部に取り出される。
電池外部に電流を取り出す目的で、集電板を用いてもよい。集電板は集電体やリードに電気的に接続され、電池外装材であるラミネートシートの外部に取り出される。
集電板を構成する材料は、特に制限されず、リチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料が用いられうる。集電板の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましく、より好ましくは軽量、耐食性、高導電性の観点からアルミニウム、銅などが好ましい。なお、正極集電板と負極集電板とでは、同一の材質が用いられてもよいし、異なる材質が用いられてもよい。
正極端子リードおよび負極端子リードに関しても、必要に応じて使用する。正極端子リードおよび負極端子リードの材料は、公知のリチウムイオン二次電池で用いられる端子リードを用いることができる。なお、電池外装材29から取り出された部分は、周辺機器や配線などに接触して漏電したりして製品(例えば、自動車部品、特に電子機器等)に影響を与えないように、耐熱絶縁性の熱収縮チューブなどにより被覆するのが好ましい。
<電池外装材>
電池外装材29としては、公知の金属缶ケースを用いることができるほか、発電要素を覆うことができる、アルミニウムを含むラミネートフィルムを用いた袋状のケースが用いられうる。該ラミネートフィルムには、例えば、PP、アルミニウム、ナイロンをこの順に積層してなる3層構造のラミネートフィルム等を用いることができるが、これらに何ら制限されるものではない。高出力化や冷却性能に優れ、EV、HEV用の大型機器用電池に好適に利用することができるという観点から、ラミネートフィルムが望ましい。
電池外装材29としては、公知の金属缶ケースを用いることができるほか、発電要素を覆うことができる、アルミニウムを含むラミネートフィルムを用いた袋状のケースが用いられうる。該ラミネートフィルムには、例えば、PP、アルミニウム、ナイロンをこの順に積層してなる3層構造のラミネートフィルム等を用いることができるが、これらに何ら制限されるものではない。高出力化や冷却性能に優れ、EV、HEV用の大型機器用電池に好適に利用することができるという観点から、ラミネートフィルムが望ましい。
なお、上記のリチウムイオン二次電池は、従来公知の製造方法により製造することができる。
<リチウムイオン二次電池の外観構成>
図2は、積層型の扁平なリチウムイオン二次電池の外観を表した斜視図である。
図2は、積層型の扁平なリチウムイオン二次電池の外観を表した斜視図である。
図2に示すように、積層型の扁平なリチウムイオン二次電池50では、長方形状の扁平な形状を有しており、その両側部からは電力を取り出すための正極集電板58、負極集電板59が引き出されている。発電要素57は、リチウムイオン二次電池50の電池外装材52によって包まれ、その周囲は熱融着されており、発電要素57は、正極集電板58および負極集電板59を外部に引き出した状態で密封されている。ここで、発電要素57は、図1に示すリチウムイオン二次電池(積層型電池)10の発電要素21に相当するものである。発電要素57は、正極(正極活物質層)13、電解質層17および負極(負極活物質層)15で構成される単電池層(単セル)19が複数積層されたものである。
なお、上記リチウムイオン二次電池は、積層型の扁平な形状のもの(ラミネートセル)に制限されるものではない。巻回型のリチウムイオン電池では、円筒型形状のもの(コインセル)や角柱型形状(角型セル)のもの、こうした円筒型形状のものを変形させて長方形状の扁平な形状にしたようなもの、更にシリンダー状セルであってもよいなど、特に制限されるものではない。上記円筒型や角柱型の形状のものでは、その外装材に、ラミネートフィルムを用いてもよいし、従来の円筒缶(金属缶)を用いてもよいなど、特に制限されるものではない。好ましくは、発電要素がアルミニウムラミネートフィルムで外装される。当該形態により、軽量化が達成されうる。
また、図2に示す正極集電板58、負極集電板59の取り出しに関しても、特に制限されるものではない。正極集電板58と負極集電板59とを同じ辺から引き出すようにしてもよいし、正極集電板58と負極集電板59をそれぞれ複数に分けて、各辺から取り出すようにしてもよいなど、図2に示すものに制限されるものではない。また、巻回型のリチウムイオン電池では、集電板に変えて、例えば、円筒缶(金属缶)を利用して端子を形成すればよい。
上記したように、本実施形態のリチウムイオン二次電池用の負極活物質を用いてなる負極並びにリチウムイオン二次電池は、電気自動車やハイブリッド電気自動車や燃料電池車やハイブリッド燃料電池自動車などの大容量電源として、好適に利用することができる。即ち、高体積エネルギー密度、高体積出力密度が求められる車両駆動用電源や補助電源に好適に利用することができる。
なお、上記実施形態では、電気デバイスとして、リチウムイオン電池を例示したが、これに制限されるわけではなく、他のタイプの二次電池、さらには一次電池にも適用できる。また電池だけではなくキャパシタにも適用できる。
本発明を、以下の実施例を用いてさらに詳細に説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。
はじめに、参考例として、本発明に係る電気デバイス用負極を構成する化学式(1)で表されるSi合金についての性能評価を行った。
(参考例A):SixZnyVzAaについての性能評価
[1]負極の作製
スパッタ装置として、独立制御方式の3元DCマグネトロンスパッタ装置(大和機器工業株式会社製、コンビナトリアルスパッタコーティング装置、ガン−サンプル間距離:約100mm)を使用した。この装置を用い、厚さ20μmのニッケル箔から成る基板(集電体)上に、下記のターゲット及び成膜条件のもとで、各組成を有する負極活物質合金の薄膜をそれぞれ成膜した。その結果、表1に示す組成を有する負極活物質合金の薄膜を備えた、都合31種の負極サンプルを得た(参考例1〜9および参考比較例1〜27)。
[1]負極の作製
スパッタ装置として、独立制御方式の3元DCマグネトロンスパッタ装置(大和機器工業株式会社製、コンビナトリアルスパッタコーティング装置、ガン−サンプル間距離:約100mm)を使用した。この装置を用い、厚さ20μmのニッケル箔から成る基板(集電体)上に、下記のターゲット及び成膜条件のもとで、各組成を有する負極活物質合金の薄膜をそれぞれ成膜した。その結果、表1に示す組成を有する負極活物質合金の薄膜を備えた、都合31種の負極サンプルを得た(参考例1〜9および参考比較例1〜27)。
(1)ターゲット(株式会社高純度化学研究所製、純度:4N)
Si:50.8mm径、3mm厚さ(厚さ2mmの無酸素銅製バッキングプレート付)
Zn:50.8mm径、5mm厚さ
V:50.8mm径、5mm厚さ。
Si:50.8mm径、3mm厚さ(厚さ2mmの無酸素銅製バッキングプレート付)
Zn:50.8mm径、5mm厚さ
V:50.8mm径、5mm厚さ。
(2)成膜条件
ベース圧力:〜7×10−6Pa
スパッタガス種:Ar(99.9999%以上)
スパッタガス導入量:10sccm
スパッタ圧力:30mTorr
DC電源:Si(185W)、Zn(0〜50W)、V(0〜150W)
プレスパッタ時間:1min.
スパッタ時間:10min.
基板温度:室温(25℃)。
ベース圧力:〜7×10−6Pa
スパッタガス種:Ar(99.9999%以上)
スパッタガス導入量:10sccm
スパッタ圧力:30mTorr
DC電源:Si(185W)、Zn(0〜50W)、V(0〜150W)
プレスパッタ時間:1min.
スパッタ時間:10min.
基板温度:室温(25℃)。
すなわち、上記のようなSiターゲット、Znターゲット及びVターゲットを使用し、スパッタ時間を10分に固定し、DC電源のパワーを上記の範囲でそれぞれ変化させた。このようにして、Ni基板上にアモルファス状態の合金薄膜を成膜し、種々の組成の合金薄膜を備えた負極サンプルを得た。
ここで、サンプル作製条件の数例を示すと、サンプルNo.22(参考例)では、DC電源1(Siターゲット)を185W、DC電源2(Znターゲット)を40W、DC電源3(Vターゲット)を75Wとした。また、サンプルNo.30(比較参考例)では、DC電源1(Siターゲット)を185W、DC電源2(Znターゲット)を0W、DC電源3(Vターゲット)を80Wとした。さらに、サンプルNo.35(比較参考例)では、DC電源1(Siターゲット)を185W、DC電源2(Znターゲット)を42W、DC電源3(Vターゲット)を0Wとした。
これら合金薄膜の成分組成を表1及び図3に示す。なお、得られた合金薄膜の分析は、下記の分析法、分析装置によった。
(3)分析方法
組成分析:SEM−EDX分析(日本電子株式会社製)、EPMA分析(日本電子株式会社製)
膜厚測定(スパッタレート算出のため):膜厚計(株式会社東京インスツルメンツ製)
膜状態分析:ラマン分光測定(ブルカー社製)。
組成分析:SEM−EDX分析(日本電子株式会社製)、EPMA分析(日本電子株式会社製)
膜厚測定(スパッタレート算出のため):膜厚計(株式会社東京インスツルメンツ製)
膜状態分析:ラマン分光測定(ブルカー社製)。
[2]電池の作製
上記により得られた各負極サンプルとリチウム箔から成る対極(正極)とをセパレータを介して対向させたのち、電解液を注入することによって、IEC60086に規定されたCR2032型コインセルをそれぞれ作製した。
上記により得られた各負極サンプルとリチウム箔から成る対極(正極)とをセパレータを介して対向させたのち、電解液を注入することによって、IEC60086に規定されたCR2032型コインセルをそれぞれ作製した。
なお、対極のリチウム箔は、本城金属株式会社製リチウムフォイルを使用し、直径15mm、厚さ200μmに打ち抜いたものを使用した。また、セパレータは、セルガード社製セルガード2400を使用した。また、上記電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)を1:1の容積比で混合した混合非水溶媒中に、LiPF6(六フッ化リン酸リチウム)を1Mの濃度となるように溶解させたものを用いた。なお、対極には、正極スラリー電極(例えば、LiCoO2、LiNiO2、LiMn2O4、Li(Ni、Mn、Co)O2、Li(Li、Ni、Mn、Co)O2、LiRO2−LiMn2O4(R=Ni、Mn、Co等の遷移金属元素)でも可能である。
[3]電池の充放電試験
上記により得られたそれぞれの電池に対して下記の充放電試験を実施した。
上記により得られたそれぞれの電池に対して下記の充放電試験を実施した。
すなわち、充放電試験機を使用し、300K(27℃)の温度に設定された恒温槽中にて、充電及び放電を行った。なお、充放電試験機としては北斗電工株式会社製HJ0501SM8Aを使用し、恒温槽としては、エスペック株式会社製PFU−3Kを使用した。
そして、充電過程、つまり評価対象である負極へのLi挿入過程では、定電流・定電圧モードとして、0.1mAにて2Vから10mVまで充電した。その後、放電過程、つまり上記負極からのLi脱離過程では、定電流モードとし、0.1mA、10mVから2Vまで放電した。以上の充放電サイクルを1サイクルとして、これを50回繰り返した。
そして、1サイクル目及び50サイクル目の放電容量を求めた。この結果を表1に併せて示す。なお、表1における「50サイクル目の放電容量維持率(%)」とは、1サイクル目の放電容量に対する50サイクル目の放電容量の割合((50サイクル目の放電容量)/(1サイクル目の放電容量)×100)を示す。また、充放電容量は、合金重量当りで算出した値を示している。
なお、本明細書中において、「放電容量(mAh/g)」は、pure Si(純Si)又は合金重量当りのものであり、Si−Zn−M(M=V、Sn、Al、C)合金(Si−M合金、pure Si(純Si)またはSi−Zn合金)へLiが反応する時の容量を示す。なお、本明細書中で「初期容量」と表記しているものが、初期サイクル(1サイクル目)の「放電容量(mAh/g)」に相当するものである。
以上の結果、各成分が特定範囲内にあるSi−Zn−V系合金を負極活物質として用いた電池においては、初期容量とサイクル特性のバランスに優れていることが確認された。とりわけ、xが33〜50で、yが0を超え46以下で、zが21〜67の範囲の合金組成を有するSi−Zn−V系合金を負極活物質として用いた電池が初期容量とサイクル特性のバランスに特に優れていることが確認できた。詳しくは上記範囲の組成を有するSi合金負極活物質を用いた電池に相当するNo.1、4、7、10、13、15、17、18および22(参考例A1〜A9)の電池は、800mAh/gを超える初期容量及び89%以上の放電容量維持率を示すことがわかった。このことから参考例A1〜A9の電池では、初期容量とサイクル特性のバランスに特に優れていることが確認できた。
(参考例B):SixZnySnzAaについての性能評価
[1]負極の作製
参考例Aの(1)におけるターゲットの「Zn:50.8mm径、5mm厚さ」を「Zn:50.8mm径、3mm厚さ」に、「V:50.8mm径、5mm厚さ」を「Sn:50.8mm径、5mm厚さ」に変更した。さらに(2)におけるDC電源の「Zn(0〜50W)、V(0〜150W)」を「Zn(0〜150W)、Sn(0〜40W)」に変更した、上記変更を除いては、参考例Aと同様の方法で、都合44種の負極サンプルを作製した(参考例B1〜B32および参考比較例B1〜B14)。
[1]負極の作製
参考例Aの(1)におけるターゲットの「Zn:50.8mm径、5mm厚さ」を「Zn:50.8mm径、3mm厚さ」に、「V:50.8mm径、5mm厚さ」を「Sn:50.8mm径、5mm厚さ」に変更した。さらに(2)におけるDC電源の「Zn(0〜50W)、V(0〜150W)」を「Zn(0〜150W)、Sn(0〜40W)」に変更した、上記変更を除いては、参考例Aと同様の方法で、都合44種の負極サンプルを作製した(参考例B1〜B32および参考比較例B1〜B14)。
すなわち、上記のようなSiターゲット、Znターゲット及びSnターゲットを使用しスパッタ時間を10分に固定し、DC電源のパワーを上記の範囲でそれぞれ変化させた。このようにして、Ni基板上にアモルファス状態の合金薄膜を成膜し、種々の組成の合金薄膜を備えた負極サンプルを得た。
なお、前記(2)におけるDC電源について、サンプル作製条件の数例を示せば、参考例B4では、DC電源1(Siターゲット)を185W、DC電源2(Snターゲット)を22W、DC電源3(Znターゲット)を100Wとした。また、比較参考例B2では、DC電源1(Siターゲット)を185W、DC電源2(Snターゲット)を30W、DC電源3(Znターゲット)を0Wとした。さらに、比較参考例B5では、DC電源1(Siターゲット)を185W、DC電源2(Snターゲット)を0W、DC電源3(Znターゲット)を25Wとした。
これら合金薄膜の成分組成を表2−1、表2−2に示す。なお、得られた合金薄膜の分析は、参考例Aと同様の分析法、分析装置によった。
[2]電池の作製
参考例Aと同様の方法でCR2032型コインセルを作製した。
参考例Aと同様の方法でCR2032型コインセルを作製した。
[3]電池の充放電試験
参考例Aと同様の方法で電池の充放電試験を行った。ただし、参考例Aでは、充放電サイクルを50回繰り返したのに対し、本参考例Bでは充放電サイクルを100回繰り返した。
参考例Aと同様の方法で電池の充放電試験を行った。ただし、参考例Aでは、充放電サイクルを50回繰り返したのに対し、本参考例Bでは充放電サイクルを100回繰り返した。
そして、1サイクル目、50サイクル及び100サイクル目の放電容量を求めた。1サイクル目の放電容量に対する50サイクル目と100サイクル目の放電容量維持率(%)をそれぞれ算出した。この結果を表2−1、表2−2に併せて示すと共に、それぞれ図9〜11に図示した。表2−1及び表2−2中の50サイクル目と100サイクル目の放電容量維持率(%)については、例えば、50サイクル目の放電容量維持率(%)は、((50サイクル目の放電容量)/(1サイクル目の放電容量))×100として算出した。
以上の結果、各成分が特定範囲内、すなわち図5で示される範囲X内にあるSi−Zn−Sn系合金を負極活物質として用いた参考例B(表2−1参照)の電池においては、図9で示すように少なくとも1000mAh/gを超える初期容量を備えている。そして、図10及び図11で示すように、図5の範囲X内にあるSi−Zn−Sn系合金の負極活物質は、50サイクル後では92%以上、100サイクル後でも50%を超える放電容量維持率を示すことが確認された(表2−1の参考例B1〜B32参照)。
(参考例C):SixZnyAlzAaについての性能評価
[1]負極の作製
参考例Aの(1)におけるターゲットの「V(純度:4N):50.8mm径、5mm厚さ」を「Al(純度:5N):50.8mm径(直径2インチ)、5mm厚さ」に変更した。さらに(2)におけるDC電源の「Zn(0〜50W)、V(0〜150W)」を「Zn(30〜90W)、Al(30〜180W)」に変更した。上記変更を除いては、参考例Aと同様の方法で、都合48種の負極サンプルを作製した(参考例Cのサンプル1〜48)。
[1]負極の作製
参考例Aの(1)におけるターゲットの「V(純度:4N):50.8mm径、5mm厚さ」を「Al(純度:5N):50.8mm径(直径2インチ)、5mm厚さ」に変更した。さらに(2)におけるDC電源の「Zn(0〜50W)、V(0〜150W)」を「Zn(30〜90W)、Al(30〜180W)」に変更した。上記変更を除いては、参考例Aと同様の方法で、都合48種の負極サンプルを作製した(参考例Cのサンプル1〜48)。
すなわち、上記のようなSiターゲット、Znターゲット及びAlターゲットを使用しスパッタ時間を10分に固定し、DC電源のパワーを上記の範囲でそれぞれ変化させた。このようにして、Ni基板上にアモルファス状態の合金薄膜を成膜し、種々の組成の合金薄膜を備えた負極サンプルを得た。
なお、前記(2)におけるDC電源について、サンプル作製条件の1例を示せば、参考例Cのサンプル6では、DC電源2(Siターゲット):185W、DC電源1(Znターゲット):70W、DC電源3(Alターゲット):50Wとした。
これら合金薄膜の成分組成を下記表3−1、表3−2に示す。なお、得られた合金薄膜の分析は、参考例Aと同様の分析法、分析装置によった。
[2]電池の作製
参考例Aと同様の方法でCR2032型コインセルを作製した。
参考例Aと同様の方法でCR2032型コインセルを作製した。
[3]電池の充放電試験
参考例Aと同様の方法で電池の充放電試験を行った。
参考例Aと同様の方法で電池の充放電試験を行った。
長期サイクルの場合、電解液の劣化モードもサイクル特性に含まれる(逆に、高性能電解液を用いるとサイクル特性が良くなる)ことから、合金由来の成分特性が顕著な50サイクル目のデータを用いた。
そして、1サイクル目及び50サイクルの放電容量を求めた。また50サイクル目の放電容量の維持率(%)をそれぞれ算出した。この結果を表3−1、表3−2に併せて示す。ここで、「放電容量維持率(%)」は、「初期容量からどれだけ容量を維持しているか」の指標を表す。すなわち、50サイクル目の放電容量維持率(%)は、((50サイクル目の放電容量)/(最大放電容量))×100として算出した。なお、初期サイクル(1サイクル)〜10サイクル、通常は5〜10サイクルの間で最大放電容量を示す。
本参考例Cのサンプル1〜35の電池、なかでも図15〜図17の太い実線で囲った組成範囲のサンプルでは、1サイクル目の放電容量が、既存のカーボン系負極活物質(炭素・黒鉛系負極材料)では実現不可能な格段に高い高容量を実現できることがわかった。同様に既存の高容量のSn系合金負極活物質と比較してもより高い高容量(初期容量1072mAh/g以上)を実現できることが確認できた。更に高容量化とトレードオフの関係にあるサイクル耐久性についても、高容量であるがサイクル耐久性に劣る既存のSn系負極活物質や特許文献1に記載の多元系合金負極活物質と比較しても格段に優れたサイクル耐久性を実現できることが確認できた。具体的には、50サイクル目での高い放電容量維持率が85%以上、好ましくは90%以上、特に好ましくは95%以上という格段に優れたサイクル耐久性を実現できることが確認できた。このことからサンプル1〜35の電池のうち図15〜17の太い実線で囲った組成範囲のサンプルでは、他のサンプルの電池に比して放電容量維持が大きいことから、高い初期容量の低下を抑えて高容量をより効率良く維持できていることがわかった(表3−1参照)。
参考例Cの結果からLi合金化の際、アモルファス−結晶の相転移を抑制しサイクル寿命を向上させる第1添加元素Znと、その第1添加元素濃度が増加しても電極としての容量が減少しない第2添加元素種Alの選定が極めて有用かつ有効であることがわかった。かかる第1及び第2添加元素の選定により、高容量・高サイクル耐久性を有するSi合金系負極活物質を提供できる。その結果、高容量でサイクル耐久性がよいリチウムイオン二次電池を提供できることがわかった。また、本参考例Cのサンプル36〜48(表3−2参照)の金属Si又は2元系合金では、トレードオフの関係にある高容量化と高いサイクル耐久性の両特性をバランスよく備えた電池は得られなかった。
参考例Cのサンプル14、42(表3−1、3−2参照)の評価用電極を用いた評価用セル(CR2032型コインセル)につき、実施例1と同様の充放電条件で初期サイクルを実施した。初期サイクルの放電過程での電圧(V)に対するdQ/dV曲線を図18に示す。
図18のサンプル14からdQ/dVの解釈として、低電位(0.4V以下)の領域での下に凸のピーク本数が減少し、曲線が滑らかになっていることから、Si以外に元素(Zn、Al)を添加することでLi−Si合金の結晶化を抑制していることが確認できた。また、電解液の分解(約0.4V付近)が抑制されていることも確認できた。ここで、Qは電池容量(放電容量)を示す。
詳しくは、本参考例Cのサンプル42(pure Siの金属薄膜)の0.4V近傍での下に凸の急峻なピークが電解液の分解による変化を示している。そして、0.35V、0.2V及び0.05V近傍での下に凸の緩やかなピークが、それぞれアモルファス状態から結晶化状態に変化していることを示している。
一方、Si以外に元素(Zn、Al)を添加した本参考例Cのサンプル14(Si−Zn−Alの3元系合金薄膜)では、下に凸の急峻なピークがないことから電解液の分解(約0.4V付近)が抑制されていることも確認できた。また、本参考例Cのサンプル14のdQ/dV曲線では、曲線が滑らかになっており、アモルファス状態から結晶化状態に変化していることを示すような、下に凸の緩やかなピークも見られず、Li−Si合金の結晶化を抑制できていることが確認できた。
本参考例Cのサンプル14の評価用電極を用いた評価用セル(CR2032型コインセル)につき、上記と同様の充放電条件で初期サイクル〜50サイクルまでを実施した。初期サイクル〜50サイクル目まで充放電曲線を図19に示す。図中の充電過程は、サンプル14の評価用電極におけるLi反応(Lithiation)による各サイクルごとの充電曲線の様子を示すものである。放電過程はLi脱離(Delithiation)による各サイクルごとの放電曲線の様子を示すものである。
図19より、各サイクルでの曲線が密なのは、サイクル劣化が少ないことを示している。また、充放電曲線でのキンク(ねじれ、よじれ)が小さいのは、アモルファス状態を維持できていることを示している。さらに、充電と放電の容量差が少ないのは、充放電効率がよいことを示している。
以上の実験結果から、本参考例Cのサンプル1〜35の3元系合金、なかでも図15〜図17の太い実線で囲った組成範囲のサンプルの3元系合金が高いサイクル特性(特に、50サイクル目の高い放電容量維持率)を維持しつつ、かつ1サイクル目の放電容量も高くバランスよい特性を示すメカニズム(作用機序)につき以下のように推測(推定)することができる。
1.図18に示すように、三元系合金(サンプル14)のdQ/dV曲線を見ると、低電位領域(〜0.6V)でのピークが合金でないpure−Siのもの(サンプル42)と比べて少なく、滑らかである。これは、電解液の分解を抑制し、さらにLi−Si合金の結晶相への相転移を抑制することを意味していると思われる(図18参照)。
2.電解液の分解については、この分解によってサイクル数が進むにつれて、全てのサンプル1〜48で放電容量の減少がおきることがわかる(表3−1、表3−2参照)。しかしながら、放電容量維持率で比較した場合、三元系合金の放電容量維持率は、サンプル42の合金でないpure−Siと比べて格段に高い維持率を実現できてことがわかる。更に既存の高容量のSn系負極活物質や特許文献1記載の多元系合金負極活物質、更には参照用の二元系合金負極活物質と比べても高い放電容量維持率を実現できていることがわかる。その結果、放電容量維持率が高い状態を実現することで、サイクル特性が向上する傾向があることがわかる(表3−1、表3−2の50サイクル目の放電容量維持率を参照のこと)。
3.Li−Si合金の結晶相への相転移については、この相転移が起きると活物質の体積変化が大きくなる。それらによって、活物質自身の破壊、電極の破壊と連鎖が始まることになる。図18のdQ/dV曲線をみると、図15〜図17の太い実線で囲った組成範囲の3元系合金のサンプル14では、相転移に起因したピークが少なく、滑らかになっていることから、相転移を抑制できると判断できる。
(参考例D):SixZnyCzAaについての性能評価
[1]負極の作製
参考例Aの(1)におけるターゲットの「Zn:50.8mm径、5mm厚さ」を「Zn:50.8mm径、3mm厚さ」に、「V:50.8mm径、5mm厚さ」を「C:50.8mm径、3mm厚さ(厚さ2mmの無酸素銅製パッキングプレート付)」に変更した。さらに(2)におけるDC電源の「Zn(0〜50W)、V(0〜150W)」を「Zn(20〜90W)、C(30〜90W)」に変更した。上記変更を除いては、参考例Aと同様の方法で、都合29種の負極サンプルを作製した(参考例Dのサンプル1〜29)。
[1]負極の作製
参考例Aの(1)におけるターゲットの「Zn:50.8mm径、5mm厚さ」を「Zn:50.8mm径、3mm厚さ」に、「V:50.8mm径、5mm厚さ」を「C:50.8mm径、3mm厚さ(厚さ2mmの無酸素銅製パッキングプレート付)」に変更した。さらに(2)におけるDC電源の「Zn(0〜50W)、V(0〜150W)」を「Zn(20〜90W)、C(30〜90W)」に変更した。上記変更を除いては、参考例Aと同様の方法で、都合29種の負極サンプルを作製した(参考例Dのサンプル1〜29)。
すなわち、上記のようなSiターゲット、Znターゲット及びCターゲットを使用しスパッタ時間を10分に固定し、DC電源のパワーを上記の範囲でそれぞれ変化させた。このようにして、Ni基板上にアモルファス状態の合金薄膜を成膜し、種々の組成の合金薄膜を備えた負極サンプルを得た。
なお、前記(2)におけるDC電源について、サンプル作製条件の数例を示せば、参考例DのサンフルNo.5(参考例)では、DC電源1(Siターゲット)を185W、DC電源2(Cターゲット)を60W、DC電源3(Znターゲット)を30Wとした。また、参考例DのサンプルNo.22(比較参考例)では、DC電源1(Siターゲット)を185W、DC電源2(Cターゲット)を45W、DC電源3(Znターゲット)を0Wとした。さらに、参考例DのサンフルNo.26(比較参考例)では、DC電源1(Siターゲット)を185W、DC電源2(Cターゲット)を0W、DC電源3(Znターゲット)を28Wとした。
これら合金薄膜の成分組成を表4及び図20に示す。なお、得られた合金薄膜の分析は、参考例Aと同様の分析法、分析装置によった。
[2]電池の作製
参考例Aと同様の方法でCR2032型コインセルを作製した。
参考例Aと同様の方法でCR2032型コインセルを作製した。
[3]電池の充放電試験
参考例Aと同様の方法で電池の充放電試験を行った。なお、1サイクル目の充電容量、放電容量及び50サイクル目の放電容量を測定し、表4の各項目を算出した。この結果を表4に併せて示す。表4中の50サイクル後の放電容量維持率(%)とは、1サイクル目の放電容量に対する50サイクル目の放電容量の割合((50サイクル目の放電容量)/(1サイクル目の放電容量))×100を示す。また、「充放電効率」とは、充電容量に対する放電容量の割合(放電容量/充電容量×100)を示す。
参考例Aと同様の方法で電池の充放電試験を行った。なお、1サイクル目の充電容量、放電容量及び50サイクル目の放電容量を測定し、表4の各項目を算出した。この結果を表4に併せて示す。表4中の50サイクル後の放電容量維持率(%)とは、1サイクル目の放電容量に対する50サイクル目の放電容量の割合((50サイクル目の放電容量)/(1サイクル目の放電容量))×100を示す。また、「充放電効率」とは、充電容量に対する放電容量の割合(放電容量/充電容量×100)を示す。
表4より、参考例Dに係るサンプル番号1〜11の電池は、初期充放電効率及び放電容量維持率とのバランスが優れていることが分かる。特に、前記xが25を超え54未満、前記yが17を超え69未満、zが1を超え34未満の範囲内が良好であることが確認された(図21参照)。これに対し、比較参考例Dに係るサンプル番号12〜29の電池は、参考例Dの電池に比べ、初期充電容量は大きいものの、初期充放電効率及び/又は放電容量維持率の低下が著しいことが分かる。
次に、実施例として、上記Si合金のうちSi41Zn20Sn39を負極活物質として用い、これを各種のバインダとともに含む負極活物質層を有する電気デバイス用負極についての性能評価を行った。
なお、前記Si41Zn20Sn39以外のその他の本発明に用いられる合金(SixZnyVzAa、SixZnySnzAa、SixZnyAlzAa、SixZnyCzAaのうち、Si41Zn20Sn39以外のもの)についてもSi41Zn20Sn39を用いた下記の実施例と同一または類似する結果が得られる。この理由は、参考例に示されるように、前記その他の本発明に用いられる合金は、Si41Zn20Sn39と同様の特性を有するためである。すなわち、同様の特性を有する合金を用いた場合には、合金の種類を変更したとしても同様の結果が得られうる。
[Si合金の製造]
Si合金は、メカニカルアロイ法(または、アークプラズマ溶融法)により製造した。具体的には、ドイツ フリッチュ社製遊星ボールミル装置P−6を用いて、ジルコニア製粉砕ポットにジルコニア製粉砕ボールと各合金の各原料粉末を投入し、600rpm、48hかけて合金化させた。
Si合金は、メカニカルアロイ法(または、アークプラズマ溶融法)により製造した。具体的には、ドイツ フリッチュ社製遊星ボールミル装置P−6を用いて、ジルコニア製粉砕ポットにジルコニア製粉砕ボールと各合金の各原料粉末を投入し、600rpm、48hかけて合金化させた。
[負極の作製]
負極活物質である上記で製造したSi合金(Si41Zn20Sn39、粒子径0.3μm)80質量部と、導電助剤であるアセチレンブラック5質量部と、バインダであるポリアミドイミド(E弾性率2.00GPa)15質量部と、を混合し、N−メチルピロリドンに分散させて負極スラリーを得た。次いで、得られた負極スラリーを、銅箔よりなる負極集電体の両面にそれぞれ負極活物質層の厚さが30μmとなるように均一に塗布し、真空中で24時間乾燥させて、負極を得た。
負極活物質である上記で製造したSi合金(Si41Zn20Sn39、粒子径0.3μm)80質量部と、導電助剤であるアセチレンブラック5質量部と、バインダであるポリアミドイミド(E弾性率2.00GPa)15質量部と、を混合し、N−メチルピロリドンに分散させて負極スラリーを得た。次いで、得られた負極スラリーを、銅箔よりなる負極集電体の両面にそれぞれ負極活物質層の厚さが30μmとなるように均一に塗布し、真空中で24時間乾燥させて、負極を得た。
[正極の作製]
正極活物質であるLi1.85Ni0.18Co0.10Mn0.87O3を、特開2012−185913号公報の実施例1(段落0046)に記載の手法により作製した。そして、この正極活物質90質量部と、導電助剤であるアセチレンブラック5質量部と、バインダであるポリフッ化ビニリデン5質量部と、を混合し、N−メチルピロリドンに分散させて正極スラリーを得た。次いで、得られた正極スラリーを、アルミニウム箔よりなる正極集電体の両面にそれぞれ正極活物質層の厚さが30μmとなるように均一に塗布し、乾燥させて、正極を得た。
正極活物質であるLi1.85Ni0.18Co0.10Mn0.87O3を、特開2012−185913号公報の実施例1(段落0046)に記載の手法により作製した。そして、この正極活物質90質量部と、導電助剤であるアセチレンブラック5質量部と、バインダであるポリフッ化ビニリデン5質量部と、を混合し、N−メチルピロリドンに分散させて正極スラリーを得た。次いで、得られた正極スラリーを、アルミニウム箔よりなる正極集電体の両面にそれぞれ正極活物質層の厚さが30μmとなるように均一に塗布し、乾燥させて、正極を得た。
[電池の作製]
上記で作製した正極と、負極とを対向させ、この間にセパレータ(ポリオレフィン、膜厚20μm)を配置した。次いで、負極、セパレータ、および正極の積層体をコインセル(CR2032、材質:ステンレス鋼(SUS316))の底部側に配置した。さらに、正極と負極との間の絶縁性を保つためガスケットを装着し、下記電解液をシリンジにより注入し、スプリングおよびスペーサを積層し、コインセルの上部側を重ねあわせ、かしこめることにより密閉して、リチウムイオン二次電池を得た。
上記で作製した正極と、負極とを対向させ、この間にセパレータ(ポリオレフィン、膜厚20μm)を配置した。次いで、負極、セパレータ、および正極の積層体をコインセル(CR2032、材質:ステンレス鋼(SUS316))の底部側に配置した。さらに、正極と負極との間の絶縁性を保つためガスケットを装着し、下記電解液をシリンジにより注入し、スプリングおよびスペーサを積層し、コインセルの上部側を重ねあわせ、かしこめることにより密閉して、リチウムイオン二次電池を得た。
なお、上記電解液としては、エチレンカーボネート(EC)およびジエチルカーボネート(DEC)を、EC:DC=1:2(体積比)の割合で混合した有機溶媒に、支持塩である六フッ化リン酸リチウム(LiPF6)を、濃度が1mol/Lとなるように溶解させたものを用いた。
(実施例2)
バインダとして、ポリアミドイミド(E弾性率2.00GPa)に代えてポリイミド(E弾性率2.10GPa)を用いたことを除いては、実施例1と同様の方法で負極および電池を作製した。
バインダとして、ポリアミドイミド(E弾性率2.00GPa)に代えてポリイミド(E弾性率2.10GPa)を用いたことを除いては、実施例1と同様の方法で負極および電池を作製した。
(実施例3)
バインダとして、ポリアミドイミド(E弾性率2.00GPa)に代えてポリイミド(E弾性率3.30GPa)を用いたことを除いては、実施例1と同様の方法で負極および電池を作製した。
バインダとして、ポリアミドイミド(E弾性率2.00GPa)に代えてポリイミド(E弾性率3.30GPa)を用いたことを除いては、実施例1と同様の方法で負極および電池を作製した。
(実施例4)
バインダとして、ポリアミドイミド(E弾性率2.00GPa)に代えてポリイミド(E弾性率3.73GPa)を用いたことを除いては、実施例1と同様の方法で負極および電池を作製した。
バインダとして、ポリアミドイミド(E弾性率2.00GPa)に代えてポリイミド(E弾性率3.73GPa)を用いたことを除いては、実施例1と同様の方法で負極および電池を作製した。
(実施例5)
バインダとして、ポリアミドイミド(E弾性率2.00GPa)に代えてポリイミド(E弾性率7.00GPa)を用いたことを除いては、実施例1と同様の方法で負極および電池を作製した。
バインダとして、ポリアミドイミド(E弾性率2.00GPa)に代えてポリイミド(E弾性率7.00GPa)を用いたことを除いては、実施例1と同様の方法で負極および電池を作製した。
(比較例1)
バインダとして、ポリアミドイミド(E弾性率2.00GPa)に代えてポリフッ化ビニリデン(PVdF)(E弾性率1.00GPa)を用いたことを除いては、実施例1と同様の方法で負極および電池を作製した。
バインダとして、ポリアミドイミド(E弾性率2.00GPa)に代えてポリフッ化ビニリデン(PVdF)(E弾性率1.00GPa)を用いたことを除いては、実施例1と同様の方法で負極および電池を作製した。
(比較例2)
バインダとして、ポリアミドイミド(E弾性率2.00GPa)に代えてポリイミド(E弾性率7.40GPa)を用いたことを除いては、実施例1と同様の方法で負極および電池を作製した。
バインダとして、ポリアミドイミド(E弾性率2.00GPa)に代えてポリイミド(E弾性率7.40GPa)を用いたことを除いては、実施例1と同様の方法で負極および電池を作製した。
(比較例3)
負極活物質として、Si合金に代えて純Siを用いたことを除いては、実施例4と同様の方法で負極および電池を作製した。
負極活物質として、Si合金に代えて純Siを用いたことを除いては、実施例4と同様の方法で負極および電池を作製した。
(比較例4)
負極活物質として、Si合金に代えて純Siを用いたことを除いては、比較例1と同様の方法で負極および電池を作製した。
負極活物質として、Si合金に代えて純Siを用いたことを除いては、比較例1と同様の方法で負極および電池を作製した。
<性能評価>
[サイクル特性の評価]
上記で作製した各リチウムイオン二次電池について以下の方法でサイクル特性評価を行った。各電池について、30℃の雰囲気下、定電流方式(CC、電流:0.1C)で2.0Vまで充電し、10分間休止させた後、定電流(CC、電流:0.1C)で0.01Vまで放電し、放電後10分間休止させた。この充放電過程を1サイクルとし、50サイクルの充放電試験を行い、1サイクル目の放電容量に対する50サイクル目の放電容量の割合(放電容量維持率[%])を求めた。得られた放電容量維持率の結果を、比較例1の放電容量維持率を100としたときの相対値(放電容量維持率の向上率)として、下記の表5および図22に示す。
[サイクル特性の評価]
上記で作製した各リチウムイオン二次電池について以下の方法でサイクル特性評価を行った。各電池について、30℃の雰囲気下、定電流方式(CC、電流:0.1C)で2.0Vまで充電し、10分間休止させた後、定電流(CC、電流:0.1C)で0.01Vまで放電し、放電後10分間休止させた。この充放電過程を1サイクルとし、50サイクルの充放電試験を行い、1サイクル目の放電容量に対する50サイクル目の放電容量の割合(放電容量維持率[%])を求めた。得られた放電容量維持率の結果を、比較例1の放電容量維持率を100としたときの相対値(放電容量維持率の向上率)として、下記の表5および図22に示す。
上記表5および図22の結果から、所定範囲のE弾性率を有するバインダを含む実施例1〜5に係る電池は、高いサイクル特性を示すことが理解される。
本出願は、2012年11月22日に出願された日本国特許出願第2012−256871号に基づいており、その開示内容は、参照により全体として引用されている。
10、50 リチウムイオン二次電池(積層型電池)、
11 正極集電体、
12 負極集電体、
13 正極活物質層、
15 負極活物質層、
17 電解質層、
19 単電池層、
21、57 発電要素、
25、58 正極集電板、
27、59 負極集電板、
29、52 電池外装材(ラミネートフィルム)。
11 正極集電体、
12 負極集電体、
13 正極活物質層、
15 負極活物質層、
17 電解質層、
19 単電池層、
21、57 発電要素、
25、58 正極集電板、
27、59 負極集電板、
29、52 電池外装材(ラミネートフィルム)。
Claims (14)
- 集電体と、前記集電体の表面に配置された負極活物質、導電助剤、およびバインダを含む電極層と、を有するリチウムイオン二次電池用負極であって、
前記負極活物質が、質量比で、Siが33質量%以上50質量%以下、Znが0質量%超46質量%以下、Vが21質量%以上67質量%以下の領域内の成分を含有し、残部が0質量%以上0.5質量%未満の不可避不純物であり、Si、Zn、Vおよび不可避不純物の合計が100質量%である合金を含み、
前記バインダが、2.10GPa以上7.00GPa以下のE弾性率(JIS K 7163に規定される引張試験方法に準じて測定)を有する樹脂を含む、リチウムイオン二次電池用負極。 - 前記負極活物質が、
質量比で、Siが33質量%以上47質量%以下、Znが11質量%以上27質量%以下、Vが33質量%以上56質量%以下の領域内の成分を含有し、残部が不可避不純物である合金を含む、請求項1に記載のリチウムイオン二次電池用負極。 - 集電体と、前記集電体の表面に配置された負極活物質、導電助剤、およびバインダを含む電極層と、を有するリチウムイオン二次電池用負極であって、
前記負極活物質が、質量比で、Siが23質量%超64質量%未満、Znが0質量%超65質量%未満、Snが4質量%以上34質量%未満の領域内の成分を含有し、残部が0質量%以上0.5質量%未満の不可避不純物であり、Si、Zn、Snおよび不可避不純物の合計が100質量%である合金を含み、
前記バインダが、2.10GPa以上7.00GPa以下のE弾性率(JIS K 7163に規定される引張試験方法に準じて測定)を有する樹脂を含む、リチウムイオン二次電池用負極。 - 前記Znの含有量が27質量%超61質量%未満である、請求項3に記載のリチウムイオン二次電池用負極。
- 前記Znの含有量が38質量%超であり、前記Snの含有量が24質量%未満である、請求項4に記載のリチウムイオン二次電池用負極。
- 前記Siの含有量が24質量%以上38質量%未満である、請求項4に記載のリチウムイオン二次電池用負極。
- 集電体と、前記集電体の表面に配置された負極活物質、導電助剤、およびバインダを含む電極層と、を有するリチウムイオン二次電池用負極であって、
前記負極活物質が、質量比で、Siが23質量%超44質量%未満、Znが0質量%超65質量%未満、Snが34質量%以上58質量%以下の領域内の成分を含有し、残部が0質量%以上0.5質量%未満の不可避不純物であり、Si、Zn、Snおよび不可避不純物の合計が100質量%である合金を含み、
前記バインダが、2.10GPa以上7.00GPa以下のE弾性率(JIS K 7163に規定される引張試験方法に準じて測定)を有する樹脂を含む、リチウムイオン二次電池用負極。 - 前記Siの含有量が34質量%未満である、請求項7に記載のリチウムイオン二次電池用負極。
- 前記Siの含有量が38質量%未満であり、前記Znの含有量が27質量%超であり、前記Snの含有量が40質量%未満である、請求項7に記載のリチウムイオン二次電池用負極。
- 前記Siの含有量が29質量%未満であり、前記Snの含有量が40質量%以上である、請求項7に記載のリチウムイオン二次電池用負極。
- 前記樹脂のE弾性率が2.10GPa以上7.00GPa以下である、請求項1〜10のいずれか1項に記載のリチウムイオン二次電池用負極。
- 前記樹脂のE弾性率が3.30GPa以上3.73GPa以下である、請求項11に記載のリチウムイオン二次電池用負極。
- 前記樹脂が、ポリイミド、ポリアミドイミドおよびポリアミドからなる群から選択される1種または2種以上である、請求項1〜12のいずれか1項に記載のリチウムイオン二次電池用負極。
- 請求項1〜13のいずれか1項に記載のリチウムイオン二次電池用負極を含む、リチウムイオン二次電池。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012256871 | 2012-11-22 | ||
JP2012256871 | 2012-11-22 | ||
PCT/JP2013/081132 WO2014080892A1 (ja) | 2012-11-22 | 2013-11-19 | 電気デバイス用負極、及びこれを用いた電気デバイス |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6028811B2 true JP6028811B2 (ja) | 2016-11-24 |
JPWO2014080892A1 JPWO2014080892A1 (ja) | 2017-01-05 |
Family
ID=50776073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014548570A Active JP6028811B2 (ja) | 2012-11-22 | 2013-11-19 | リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20150295228A1 (ja) |
EP (1) | EP2924780B1 (ja) |
JP (1) | JP6028811B2 (ja) |
KR (1) | KR101810752B1 (ja) |
CN (1) | CN104781955B (ja) |
WO (1) | WO2014080892A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5751448B2 (ja) | 2011-05-25 | 2015-07-22 | 日産自動車株式会社 | リチウムイオン二次電池用負極活物質 |
EP2924772B1 (en) | 2012-11-22 | 2021-03-17 | Nissan Motor Co., Ltd | Negative electrode for electric device, and electric device using the same |
WO2014080895A1 (ja) | 2012-11-22 | 2014-05-30 | 日産自動車株式会社 | 電気デバイス用負極、及びこれを用いた電気デバイス |
US10476101B2 (en) | 2014-01-24 | 2019-11-12 | Nissan Motor Co., Ltd. | Electrical device |
EP3098891A4 (en) | 2014-01-24 | 2016-11-30 | Nissan Motor | ELECTRICAL DEVICE |
JP6958272B2 (ja) * | 2017-11-16 | 2021-11-02 | 日産自動車株式会社 | 非水電解質二次電池 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004311429A (ja) * | 2003-03-26 | 2004-11-04 | Canon Inc | リチウム二次電池用の電極材料、該電極材料を有する電極構造体、及び該電極構造体を有する二次電池 |
JP2007128842A (ja) * | 2005-05-19 | 2007-05-24 | Sony Corp | 負極活物質および電池 |
JP2007149604A (ja) * | 2005-11-30 | 2007-06-14 | Sanyo Electric Co Ltd | リチウム二次電池用負極及びリチウム二次電池 |
JP2009517850A (ja) * | 2005-12-01 | 2009-04-30 | スリーエム イノベイティブ プロパティズ カンパニー | ケイ素含有量が高いアモルファス合金に基づく電極組成物 |
US20090269511A1 (en) * | 2008-04-25 | 2009-10-29 | Aruna Zhamu | Process for producing hybrid nano-filament electrodes for lithium batteries |
WO2011065504A1 (ja) * | 2009-11-27 | 2011-06-03 | 日産自動車株式会社 | 電気デバイス用Si合金負極活物質 |
JP2012174535A (ja) * | 2011-02-22 | 2012-09-10 | Toyota Motor Corp | 電極活物質、及び当該電極活物質を負極に含有する金属二次電池 |
WO2012121240A1 (ja) * | 2011-03-08 | 2012-09-13 | 日産自動車株式会社 | 電気デバイス用負極活物質 |
JP2012185913A (ja) * | 2011-03-03 | 2012-09-27 | Nissan Motor Co Ltd | リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8216720B2 (en) * | 2002-06-26 | 2012-07-10 | Sanyo Electric Co., Ltd. | Negative electrode for lithium secondary cell and lithium secondary cell |
WO2004086539A1 (en) * | 2003-03-26 | 2004-10-07 | Canon Kabushiki Kaisha | Electrode material for lithium secondary battery and electrode structure having the electrode material |
US9012073B2 (en) * | 2008-11-11 | 2015-04-21 | Envia Systems, Inc. | Composite compositions, negative electrodes with composite compositions and corresponding batteries |
US8074366B2 (en) * | 2009-11-24 | 2011-12-13 | Jiang shu-sheng | Sensor and method for motion measurement of co-existing tilt and horizontal acceleration |
-
2013
- 2013-11-19 US US14/442,957 patent/US20150295228A1/en not_active Abandoned
- 2013-11-19 EP EP13857591.5A patent/EP2924780B1/en active Active
- 2013-11-19 KR KR1020157011799A patent/KR101810752B1/ko active IP Right Grant
- 2013-11-19 WO PCT/JP2013/081132 patent/WO2014080892A1/ja active Application Filing
- 2013-11-19 JP JP2014548570A patent/JP6028811B2/ja active Active
- 2013-11-19 CN CN201380059049.8A patent/CN104781955B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004311429A (ja) * | 2003-03-26 | 2004-11-04 | Canon Inc | リチウム二次電池用の電極材料、該電極材料を有する電極構造体、及び該電極構造体を有する二次電池 |
JP2007128842A (ja) * | 2005-05-19 | 2007-05-24 | Sony Corp | 負極活物質および電池 |
JP2007149604A (ja) * | 2005-11-30 | 2007-06-14 | Sanyo Electric Co Ltd | リチウム二次電池用負極及びリチウム二次電池 |
JP2009517850A (ja) * | 2005-12-01 | 2009-04-30 | スリーエム イノベイティブ プロパティズ カンパニー | ケイ素含有量が高いアモルファス合金に基づく電極組成物 |
US20090269511A1 (en) * | 2008-04-25 | 2009-10-29 | Aruna Zhamu | Process for producing hybrid nano-filament electrodes for lithium batteries |
WO2011065504A1 (ja) * | 2009-11-27 | 2011-06-03 | 日産自動車株式会社 | 電気デバイス用Si合金負極活物質 |
JP2012174535A (ja) * | 2011-02-22 | 2012-09-10 | Toyota Motor Corp | 電極活物質、及び当該電極活物質を負極に含有する金属二次電池 |
JP2012185913A (ja) * | 2011-03-03 | 2012-09-27 | Nissan Motor Co Ltd | リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池 |
WO2012121240A1 (ja) * | 2011-03-08 | 2012-09-13 | 日産自動車株式会社 | 電気デバイス用負極活物質 |
Also Published As
Publication number | Publication date |
---|---|
EP2924780A1 (en) | 2015-09-30 |
JPWO2014080892A1 (ja) | 2017-01-05 |
EP2924780B1 (en) | 2020-08-05 |
KR20150068433A (ko) | 2015-06-19 |
US20150295228A1 (en) | 2015-10-15 |
CN104781955B (zh) | 2017-05-10 |
WO2014080892A1 (ja) | 2014-05-30 |
CN104781955A (zh) | 2015-07-15 |
KR101810752B1 (ko) | 2017-12-19 |
EP2924780A4 (en) | 2015-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6020591B2 (ja) | リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池 | |
JP5387690B2 (ja) | 電気デバイス用Si合金負極活物質 | |
JP5333605B2 (ja) | 電気デバイス用Si合金負極活物質 | |
JP6040996B2 (ja) | リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池 | |
JP6123807B2 (ja) | リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池 | |
JP6032288B2 (ja) | 電気デバイス用負極、及びこれを用いた電気デバイス | |
JP5652161B2 (ja) | 電気デバイス用Si合金負極活物質 | |
JP6040995B2 (ja) | リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池 | |
JP6052299B2 (ja) | 電気デバイス用負極、及びこれを用いた電気デバイス | |
JP6024760B2 (ja) | リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池 | |
JP6040997B2 (ja) | リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池 | |
WO2014199785A1 (ja) | 電気デバイス用負極活物質、およびこれを用いた電気デバイス | |
JP6028811B2 (ja) | リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池 | |
JP6052298B2 (ja) | 電気デバイス用負極、及びこれを用いた電気デバイス | |
JP6015769B2 (ja) | リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池 | |
JP6040994B2 (ja) | リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池 | |
WO2014080900A1 (ja) | 電気デバイス用負極、及びこれを用いた電気デバイス | |
WO2014080898A1 (ja) | 電気デバイス用負極、及びこれを用いた電気デバイス | |
WO2014080903A1 (ja) | 電気デバイス用負極、及びこれを用いた電気デバイス | |
WO2014080902A1 (ja) | 電気デバイス用負極、及びこれを用いた電気デバイス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160920 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161003 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6028811 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |