WO2014077198A1 - NbO2焼結体及び該焼結体からなるスパッタリングターゲット並びにNbO2焼結体の製造方法 - Google Patents
NbO2焼結体及び該焼結体からなるスパッタリングターゲット並びにNbO2焼結体の製造方法 Download PDFInfo
- Publication number
- WO2014077198A1 WO2014077198A1 PCT/JP2013/080233 JP2013080233W WO2014077198A1 WO 2014077198 A1 WO2014077198 A1 WO 2014077198A1 JP 2013080233 W JP2013080233 W JP 2013080233W WO 2014077198 A1 WO2014077198 A1 WO 2014077198A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nbo
- sintered body
- powder
- plane
- ray diffraction
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3414—Targets
- H01J37/3426—Material
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G33/00—Compounds of niobium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/495—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/02—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
- C04B37/023—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
- C04B37/026—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/083—Oxides of refractory metals or yttrium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3435—Target holders (includes backing plates and endblocks)
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3488—Constructional details of particle beam apparatus not otherwise provided for, e.g. arrangement, mounting, housing, environment; special provisions for cleaning or maintenance of the apparatus
- H01J37/3491—Manufacturing of targets
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/74—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/10—Solid density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3251—Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/404—Refractory metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/79—Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/40—Metallic
- C04B2237/407—Copper
Definitions
- the present invention relates to an NbO 2 (niobium nioxide) sintered body, a sputtering target composed of the sintered body, and a method for producing the NbO 2 sintered body.
- NbO 2 niobium nioxide
- Patent Document 1 discloses niobium oxide (Nb 2 O 5 ) as a variable resistance layer included in ReRAM.
- Patent Document 4 discloses a niobium oxide sputtering target in which niobium pentoxide powder is produced by pressure sintering such as hot pressing although it is an example of niobium pentoxide.
- niobium oxide sputtering target in which niobium pentoxide powder is produced by pressure sintering such as hot pressing although it is an example of niobium pentoxide.
- the present invention provides an NbO 2 sintered body that can be used as a sputtering target without using expensive NbO 2 and a method for producing the same.
- the present inventor conducted intensive research. As a result, Nb 2 O 5 and Nb as raw materials were synthesized in advance to produce NbO 2 and sintered. It was found that a sintered NbO 2 body that can be used for a sputtering target, particularly a sintered body for sputtering target that has a high density and consists of a single phase of NbO 2 can be produced. Based on such knowledge, the present invention 1) The intensity ratio of the X-ray diffraction peak intensity from the (001) plane or the (110) plane of Nb 2 O 5 to the X-ray diffraction peak intensity from the (400) plane of NbO 2 is 1% or less.
- NbO 2 sintered body characterized. 2) The intensity ratio of the X-ray diffraction peak intensity from the (110) plane of Nb to the X-ray diffraction peak intensity from the (400) plane of NbO 2 is 1% or less, NbO 2 sintered body. 3) The intensity ratio of the X-ray diffraction peak intensity from the (400) plane of Nb 12 O 29 to the X-ray diffraction peak intensity from the (400) plane of NbO 2 is 5% or less. Or NbO 2 sintered body according to 2). 4) The NbO 2 sintered body according to any one of 1) to 3) above, wherein the relative density is 95% or more.
- the NbO 2 sintered body according to any one of 1) to 4) above wherein the density ratio at an arbitrary point in the sintered body surface is 1.0% or less.
- the NbO 2 sintered body according to any one of 1) to 5) above which has a diameter of 110 mm or more.
- Nb 2 O 5 were mixed with powder and Nb powder, and the obtained mixed powder was heat-treated at 1300 ° C. ⁇ 1400 ° C. in a vacuum or in an inert atmosphere to synthesize NbO 2, synthesized the NbO 2
- a method for producing an NbO 2 sintered body characterized by pulverizing and sintering the pulverized powder at 950 ° C. to 1300 ° C. by hot pressing.
- a NbO 2 sintered body made of NbO 2 obtained by synthesizing Nb 2 O 5 and NbO 2 can be obtained.
- the present invention provides a high density, it is possible to obtain a NbO 2 sintered body made of NbO 2 single phase, a sputtering target obtained by such a sintered body by machining during sputtering There is no occurrence of abnormal discharge, stable sputtering can be performed, and there is an excellent effect that an NbO 2 thin film with less generation of particles and excellent quality can be formed. Moreover, it has the outstanding effect that a high-density thing can be provided with respect to the demand of the large sized sputtering target in recent years.
- the orthorhombic Nb 2 O 5 powder shows the XRD profile of the synthesized NbO 2 at 1300 ° C..
- the monoclinic Nb 2 O 5 powder shows the XRD profile of the synthesized NbO 2 at 1300 ° C.. It is a figure which shows the external appearance photograph of the sintered compact (diameter 110mm) of Example 2 (1100 degreeC hot press).
- the orthorhombic Nb 2 O 5 and Nb shows the XRD profile of the reaction sintering the sintered body (the upper: sintering temperature 1200 ° C., middle: 1100 ° C., the lower: 1000 ° C., bottom: Nb 2 O 5 and Nb mixed powder).
- a and Nb Nb 2 O 5 of Comparative Example 1 is a diagram showing a SEM observation image of a sintered body reactive sintering at 1000 ° C..
- a and Nb Nb 2 O 5 of Comparative Example 2 is a diagram showing a SEM observation image of a sintered body reactive sintering at 1100 ° C..
- a and Nb Nb 2 O 5 of Comparative Example 3 is an SEM observation image of the reaction sintering the sintered body at 1200 ° C.. It is a figure which shows the external appearance photograph of the sintered compact (diameter of 460 mm) of the comparative example 4 (hot press at 1300 degreeC). It is a figure which shows the external appearance photograph of the sintered compact (diameter 110mm) of the comparative example 5 (1300 degreeC hot press).
- the present invention uses Nb 2 O 5 and Nb, which are inexpensive materials, without using expensive NbO 2 , the manufacturing cost can be significantly reduced.
- the present invention also provides an NbO 2 sintered body having excellent characteristics that can be used for a sputtering target by previously synthesizing Nb 2 O 5 and Nb to produce NbO 2 and sintering it. can do.
- the NbO 2 sintered body of the present invention is characterized by substantially consisting of an NbO 2 single phase.
- a NbO 2 sintered body is produced from Nb 2 O 5 and Nb by reaction sintering (a method in which synthesis and sintering are performed simultaneously), a sintering temperature, etc. Even if it is adjusted, complete synthesis cannot be performed, and an unreacted substance such as Nb 12 O 29 shown in a comparative example to be described later may remain and a plurality of phases may be formed.
- Nb 2 O 5 and Nb are completely synthesized in advance and sintered, so that a substantially sintered body of NbO 2 single phase can be produced.
- Such a sintered sputtering target can stably form an NbO 2 thin film.
- the X-ray diffraction peak intensity from the (400) plane of NbO 2 is 1% or less.
- the intensity ratio of the X-ray diffraction peak intensity from the (110) plane of Nb is 1% or less, and more preferably, the intensity of the X-ray diffraction peak intensity from the (400) plane of Nb 12 O 29 The ratio is 5% or less.
- the intensity ratio of the X-ray diffraction peak intensities of these NbO 2 , Nb, and Nb 12 O 29 is 1% or less, 1% or less, and 5%, respectively, with respect to the X-ray diffraction peak intensity from the (400) plane of NbO 2. If it is below, it is possible to perform stable sputtering substantially the same as the NbO 2 single phase target.
- the NbO 2 sintered body of the present invention has a relative density of 95% or higher, the sputtering target produced by machining this has no abnormal discharge during sputtering and is stable. Sputtering can be performed, and generation of particles is small, and a thin film with excellent quality can be formed.
- the density ratio at an arbitrary point in the sintered body surface can be suppressed to 1.0% or less, preferably 0.5% or less, more preferably 0.2% or less. Can do.
- the density ratio is obtained from ⁇ (relative density of a point having a high relative density) / (relative density of a point having a low relative density) ⁇ 1 ⁇ ⁇ 100 (%) at any two points in the sintered body surface. It is.
- the synthesized NbO 2 is sintered by hot pressing, it is considered that gas is generated during hot pressing because there are portions where holes are partially formed. The generation of this gas is considered to cause a bulge in the thickness direction gradually from the end to the center of the target, and the density is considered to be greatly different in the plane. This is particularly effective when producing a large-sized sintered body because it causes warping and cracking of the sintered body.
- the present invention exhibits a particularly excellent effect in a large-sized NbO 2 sintered body having a diameter of 110 mm or more, and further a diameter of 460 mm or more.
- the shape of the sintered body may change. If the diameter is less than 110 mm, a small sample may be used.
- the hot press conditions for which conditions have been determined can be applied as they are. However, when the diameter is 110 mm or more, applying the hot press conditions obtained from a small sample as it is causes a change in the shape of the sintered body. This is because it is difficult to produce a sintered body having a high density.
- the diameter is preferably up to about 480 mm from the viewpoint of production.
- the NbO 2 sintered body of the present invention can be produced, for example, as follows.
- the present invention is, NbO 2 powder is commercially available, it takes a time expensive and availability, and is characterized in the use of less expensive Nb 2 O 5 powder and Nb powder.
- an orthorhombic or monoclinic Nb 2 O 5 powder with a purity of 99.9% and an Nb powder with a purity of 99.9% are prepared, mixed, and then heat treated to synthesize.
- the heat treatment temperature can be appropriately determined while confirming the state of synthesis, but is preferably set to 1200 to 1400 ° C. in a vacuum or in an inert atmosphere.
- the heat treatment temperature is preferably higher than 1200 ° C, and more preferably higher than 1300 ° C.
- the temperature is preferably 1400 ° C. or lower from the viewpoint of productivity and the like.
- the synthesized NbO 2 powder is sintered by hot pressing. Since the synthesized NbO 2 powder has a coarse particle size, it is pulverized before sintering.
- known means can be used. For example, a jet mill or an SC mill can be used, and the particle diameter after pulverization is preferably 0.1 to 10.0 ⁇ m.
- the hot press sintering temperature is set to 950 ° C. to 1300 ° C.
- the higher the temperature the easier the relative density increases.
- the sintering temperature exceeds 1300 ° C.
- chipping may occur in the sintered body due to outgassing during sintering.
- the upper limit of the temperature is 1300 ° C.
- the lower limit of the sintering temperature is 950 ° C. This is because monotonous shrinkage cannot be obtained at 950 ° C. or lower according to TMA (thermomechanical analysis).
- the hot press sintering temperature is preferably 950 ° C. to 1100 ° C.
- the density of the sintered body decreases due to the outgassing during the sintering, and any point at the end (within 30 mm from the end) and the point at the center of the sintered body This is because there is a difference in density and chipping may occur in the sintered body itself.
- a single-phase NbO 2 sintered body having a relative density of 95% or more can be obtained.
- this sputtering body can produce a sputtering target by machining such as cutting and polishing.
- Example 1 An orthorhombic Nb 2 O 5 powder having a purity of 99.9% and an Nb powder having a purity of 99.9% were mixed, placed in a carbon crucible, and heat-treated in an inert gas atmosphere.
- the heat treatment temperature was 1300 ° C. and the treatment time was 2 hours. Note that the crystal structure of the Nb 2 O 5 powder is not affected by the heat treatment result, and the heat treatment time depends on the amount of treatment and the structure of the furnace, and is not limited to this.
- FIG. 1 shows the analysis result by the X-ray diffraction method after the heat treatment synthesis.
- the intensity ratio between the X-ray diffraction peak intensity of the Nb 12 O 29 (400) plane and the X-ray diffraction peak intensity of the NbO 2 (400) plane appearing during the synthesis is 1.7%, and Nb 2 O 5 (001 ) Plane X-ray diffraction peak intensity and NbO 2 (400) plane X-ray diffraction peak intensity ratio is 0.1% or less, and the Nb (110) plane X-ray diffraction peak intensity and NbO 2 (400 The intensity ratio with the X-ray diffraction peak intensity of the) plane was 0.1%. Further, as a result of measuring the Nb content of this synthesized raw material by ICP, the measured value was 74.5 wt% with respect to the theoretical value of 74.4 wt%, and it was confirmed that NbO 2 was synthesized.
- Example 2 Monoclinic Nb 2 O 5 powder with a purity of 99.9% and Nb powder with a purity of 99.9% were mixed, put into a carbon crucible, and heat-treated in vacuum.
- the heat treatment temperature was 1300 ° C. and the treatment time was 2 hours. Note that the crystal structure of the Nb 2 O 5 powder is not affected by the heat treatment result, and the heat treatment time depends on the amount of treatment and the structure of the furnace, and is not limited to this.
- FIG. 2 shows the analysis result by the X-ray diffraction method after the heat treatment synthesis.
- the intensity ratio of the X-ray diffraction peak intensity of the Nb 12 O 29 (400) plane and the X-ray diffraction peak intensity of the NbO 2 (400) plane appearing during the synthesis is 4.6%
- Nb 2 O 5 (001 ) Plane X-ray diffraction peak intensity and NbO 2 (400) plane X-ray diffraction peak intensity ratio is 0.1% or less
- the intensity ratio with the X-ray diffraction peak intensity of the) plane was 0.3%. Further, as a result of measuring the Nb amount of the synthesized raw material by ICP, the measured value was 74.0 wt% with respect to the theoretical value of 74.4 wt%, and it was confirmed that NbO 2 was synthesized.
- the target shape was 30 mm in diameter and 9 mm in thickness, and the hot press temperature was 1050 ° C.
- the average value of the relative density was as high as 96.5%.
- the relative density was calculated by setting the true density (theoretical density) to 5.9 g / cm 3 .
- the diameter of the sintered body with a diameter of 30 mm is small, there is not much meaning in confirming the in-plane distribution of density, and thus measurement is not performed.
- Example 3 The finely pulverized NbO 2 powder obtained in Example 1 was hot-press sintered at 1100 ° C. to prepare a sintered body having a diameter of 110 mm.
- the average value of the relative density of the obtained sintered body was as high as 95.8%, and the density ratio of the in-plane distribution could be suppressed to 0.2% or less.
- no particular abnormality was found in the appearance of the sintered body.
- the surface of this sintered body was ground and the resistivity of the surface was measured by a four-terminal method, it was 37.7 m ⁇ ⁇ cm.
- Example 4 The finely pulverized NbO 2 powder obtained in Example 1 was hot-press sintered at 950 ° C. to prepare a sintered body having a diameter of 110 mm.
- the average value of the relative density of the obtained sintered body was as high as 96.6%, and the density ratio of the in-plane distribution could be suppressed to 0.2% or less.
- no abnormality was particularly observed in the appearance of the sintered body.
- the surface of this sintered body was ground and the resistivity of the surface was measured by the four-terminal method, a good conductivity of 1.5 m ⁇ ⁇ cm could be obtained.
- Example 5 The finely pulverized NbO 2 powder obtained in Example 1 was hot-press sintered at 1060 ° C. to prepare a sintered body having a diameter of 460 mm.
- the average value of the relative density of the obtained sintered body was as high as 97.1%, and the density ratio of the in-plane distribution could be suppressed to 0.5% or less.
- no abnormality was particularly observed in the appearance of the sintered body.
- the surface of this sintered body was ground and the resistivity of the surface was measured by a four-terminal method, a good conductivity of 2.1 m ⁇ ⁇ cm could be obtained.
- Example 6 The finely pulverized NbO 2 powder obtained in Example 1 was hot-press sintered at 950 ° C. to prepare a sintered body having a diameter of 460 mm.
- the average value of the relative density of the obtained sintered body was as high as 95.2%, and the density ratio of the in-plane distribution could be suppressed to 0.5% or less. Further, although not shown, no abnormality was particularly observed in the appearance of the sintered body.
- Example 7 The finely pulverized NbO 2 powder obtained in Example 2 was hot-press sintered at 1050 ° C. to prepare a sintered body having a diameter of 460 mm. As a result, the average value of the relative density of the obtained sintered body was as high as 96.6%. Note that the measurement of the in-plane distribution of density is a destructive inspection, so this sintered body is not evaluated, but from the results of Examples 3, 4, 5, and 6, the density ratio is 0.5% or less. In-plane distribution can be expected. Next, this sintered body was processed into a disk of ⁇ 425 ⁇ 6.35 mm, and further bonded to a backing plate made of oxygen-free copper with In (indium) solder. And when the resistivity of this NbO 2 surface was measured by the four probe method, 2.5 m ⁇ ⁇ cm and good conductivity could be obtained.
- Nb 2 O 5 powder having a purity of 99.9% and Nb powder having a purity of 99.9% were mixed and subjected to reactive sintering in which synthesis and sintering were performed simultaneously.
- the reactive sintering was performed using a hot press.
- the press shape was 30 mm in diameter and 9 mm in thickness, and the hot press temperature was 1000 ° C.
- a photomicrograph of the surface of the obtained sintered body is shown in FIG. As a result, it was confirmed that substances other than NbO 2 (light gray portions) remained.
- Comparative Example 2 The hot press temperature was set to 1100 ° C., and the other conditions were the same as in Comparative Example 1, and a sintered body was produced by reactive sintering. A photomicrograph of the surface of the obtained sintered body is shown in FIG. As a result, it was confirmed that substances other than NbO 2 (light gray portion) remained and holes were formed around the metal Nb. Further, as a result of analyzing the surface of the sintered body using the X-ray diffraction method, peaks such as Nb and Nb 12 O 29 during synthesis were observed as shown in the middle of FIG. Thus, in Comparative Example 2, the synthesis of NbO 2 was not complete.
- Comparative Example 3 A sintered body was produced under the same conditions as in Comparative Example 1 except that the hot pressing temperature was 1200 ° C. A photomicrograph of the surface of the obtained sintered body is shown in FIG. As a result, it was confirmed that a large number of holes were formed around the metal Nb. Moreover, as a result of analyzing the surface of the sintered body using the X-ray diffraction method, peaks such as Nb and Nb 12 O 29 during synthesis were observed as shown in the upper part of FIG. Thus, in Comparative Example 3, the synthesis of NbO 2 was not complete.
- Example 4 The finely pulverized NbO 2 powder obtained in Example 1 was hot-press sintered at 1300 ° C. to prepare a sintered body having a diameter of 110 mm. As a result, the average value of the relative density of the obtained sintered body was greatly reduced to 85.0%, and the density ratio of the in-plane distribution was deteriorated to 6.1%. Further, as shown in FIG. 7, in the appearance of the sintered body, the center portion was cut and a depression was formed. This chipping is considered to be caused by gas generation (outgassing) during sintering.
- Example 5 The finely pulverized NbO 2 powder obtained in Example 1 was hot-press sintered at 1300 ° C. to prepare a sintered body having a diameter of 460 mm. As a result, the average value of the relative density of the obtained sintered body was significantly reduced to 79.5%, and the density ratio of the in-plane distribution was deteriorated to 3.1%. Moreover, as shown in FIG. 8, the center part lacked in the external appearance of the sintered compact, and the hollow was formed. This chipping is considered to be caused by gas generation (outgassing) during sintering.
- Example 6 The finely pulverized NbO 2 powder obtained in Example 1 was hot-press sintered at 900 ° C. to prepare a sintered body having a diameter of 110 mm. As a result, although the density ratio of the in-plane distribution of the obtained sintered body was as small as 0.9%, the average value of the relative density was greatly reduced to 88.6%. As described above, when the hot press temperature is low, there is no problem in the in-plane density distribution, but the density is insufficient and sufficient sintering cannot be performed.
- the NbO 2 sintered body of the present invention can be used as a sputtering target, and a thin film formed using this sputtering target is useful as a high-quality variable resistance layer used in ReRAM. Furthermore, the major feature of the present invention is that a high-density single-phase NbO 2 sintered body can be obtained without using expensive raw materials, so that stable sputtering is possible and production efficiency in recent years is improved. Is very useful against.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Inorganic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Vapour Deposition (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
ところで、ターゲット用焼結体を作製する場合、目的とする焼結体の組成と原料の組成とを一致させることが最も簡便な製造方法であるが、原料が高価である場合には、製造が簡便であっても、コストが高くなってしまい、生産上の観点から好ましくないという問題があった。
このような知見に基づき、本発明は、
1)NbO2の(400)面からのX線回折ピーク強度に対する、Nb2O5の(001)面もしくは(110)面からのX線回折ピーク強度の強度比が1%以下であることを特徴とするNbO2焼結体。
2)NbO2の(400)面からのX線回折ピーク強度に対する、Nbの(110)面からのX線回折ピーク強度の強度比が1%以下であることを特徴とする上記1)記載のNbO2焼結体。
3)NbO2の(400)面からのX線回折ピーク強度に対する、Nb12O29の(400)面からのX線回折ピーク強度の強度比が5%以下であることを特徴とする上記1)又は2)記載のNbO2焼結体。
4)相対密度が95%以上であることを特徴とする上記1)~3)のいずれか一に記載のNbO2焼結体。
5)焼結体面内の任意の点における密度比が1.0%以下であることを特徴とする上記1)~4)のいずれか一に記載のNbO2焼結体。
6)直径が110mm以上であることを特徴とする上記1)~5)のいずれか一に記載のNbO2焼結体。
7)上記1)~6)のいずれか一に記載のNbO2焼結体から作製することを特徴とするスパッタリングターゲット。
8)ターゲット表面の抵抗率が100mΩ・cm以下であることを特徴とする上記7)記載のスパッタリングターゲット。
9)無酸素銅、クロム化銅又は亜鉛化銅からなるバッキングプレートにインジウムソルダーを用いてボンディングすることを特徴とする上記7)又は8)記載のスパッタリングターゲット。
10)Nb2O5粉末とNb粉末とを混合し、得られた混合粉を真空中又は不活性雰囲気中で1300℃~1400℃で熱処理してNbO2を合成した後、合成したNbO2を粉砕し、この粉砕粉を950℃~1300℃でホットプレスにより焼結することを特徴とするNbO2焼結体の製造方法。
11)合成したNbO2の粉砕粉を950℃~1100℃でホットプレスにより焼結することを特徴とする上記10)記載のNbO2焼結体の製造方法。
12)Nb2O5粉末の純度が99.9%以上であり、Nb粉末の純度が99.9%以上であることを特徴とする上記10)又は11)記載のNbO2焼結体の製造方法。
13)Nb2O5粉末の結晶系が斜方晶又は単斜晶であることを特徴とする上記10)~12)のいずれか一に記載のNbO2焼結体の製造方法。
合成したNbO2をホットプレスで焼結すると、部分的に孔が形成されている箇所があることから、ホットプレス時にガスが発生していると考えられる。そして、このガスの発生により、ターゲットの端部から中央にかけて徐々に厚さ方向に膨らみが生じ、面内において密度が大きく異なると考えられる。大型の焼結体を作製する場合は、これが原因で焼結体の反りや割れが生じるため、特に有効である。
また、大型の焼結体の場合、特に直径が110mm以上の焼結体の場合には、ホットプレス焼結温度を950℃~1100℃とするのが好ましい。焼結温度が1100℃超では、焼結中の出ガスにより、焼結体の密度が低下するとともに、焼結体面内の端部(端から30mm以内)の任意の点と中心部の点とで密度に差が生じ、また、焼結体自体にも欠けが発生する場合があるからである。
純度99.9%の斜方晶系Nb2O5粉末と純度99.9%のNb粉末とを混合し、カーボン製の坩堝に入れ、不活性ガス雰囲気で熱処理を行った。熱処理温度は1300℃とし、処理時間は2時間とした。なお、Nb2O5粉の結晶構造は熱処理結果には左右されず、また熱処理時間は処理量や炉の構造によるものであるため、これに限定されない。熱処理合成した後のX線回折法による解析結果を図1に示す。合成の途中で現れるNb12O29(400)面のX線回折ピーク強度とNbO2(400)面のX線回折ピーク強度との強度比は1.7%であり、Nb2O5(001)面のX線回折ピーク強度とNbO2(400)面のX線回折ピーク強度との強度比は0.1%以下であり、Nb(110)面のX線回折ピーク強度とNbO2(400)面のX線回折ピーク強度との強度比は0.1%であった。また、この合成された原料をICPでNb量を測定した結果、理論値74.4wt%に対して、測定値74.5wt%であり、NbO2が合成されていることを確認した。
純度99.9%の単斜晶系Nb2O5粉末と純度99.9%のNb粉末とを混合し、カーボン製の坩堝に入れ、真空中で熱処理を行った。熱処理温度は1300℃とし、処理時間は2時間とした。なお、Nb2O5粉の結晶構造は熱処理結果には左右されず、また熱処理時間は処理量や炉の構造によるものであるため、これに限定されない。熱処理合成した後のX線回折法による解析結果を図2に示す。合成の途中で現れるNb12O29(400)面のX線回折ピーク強度とNbO2(400)面のX線回折ピーク強度との強度比は4.6%であり、Nb2O5(001)面のX線回折ピーク強度とNbO2(400)面のX線回折ピーク強度との強度比は0.1%以下であり、Nb(110)面のX線回折ピーク強度とNbO2(400)面のX線回折ピーク強度との強度比は0.3%であった。また、この合成された原料をICPでNb量を測定した結果、理論値74.4wt%に対して、測定値74.0wt%であり、NbO2が合成されていることを確認した。
実施例1で得られた微粉砕後のNbO2粉末を1100℃でホットプレス焼結して直径110mmの焼結体を作製した。その結果、得られた焼結体の相対密度の平均値は95.8%と高密度であり、面内分布の密度比を0.2%以下に抑えることができた。また、図2に示めすように焼結体の外観において特に異常は見られなかった。さらにこの焼結体の表面を研削し、表面の抵抗率を四端子法で測定したところ、37.7mΩ・cmであった。
実施例1で得られた微粉砕後のNbO2粉末を950℃でホットプレス焼結して直径110mmの焼結体を作製した。その結果、得られた焼結体の相対密度の平均値は96.6%と高密度であり、面内分布の密度比を0.2%以下に抑えることができた。また、図示していないが、焼結体の外観において特に異常は見られなかった。さらにこの焼結体の表面を研削し、表面の抵抗率を四端子法で測定したところ、1.5mΩ・cmと良好な導電性を得ることができた。
実施例1で得られた微粉砕後のNbO2粉末を1060℃でホットプレス焼結して直径460mmの焼結体を作製した。その結果、得られた焼結体の相対密度の平均値は97.1%と高密度であり、面内分布の密度比を0.5%以下に抑えることができた。また、図示していないが、焼結体の外観において特に異常は見られなかった。さらにこの焼結体の表面を研削し、表面の抵抗率を四端子法で測定したところ、2.1mΩ・cmと良好な導電性を得ることができた。
実施例1で得られた微粉砕後のNbO2粉末を950℃でホットプレス焼結して直径460mmの焼結体を作製した。その結果、得られた焼結体の相対密度の平均値は95.2%と高密度であり、面内分布の密度比を0.5%以下に抑えることができた。また、図示していないが、焼結体の外観において特に異常は見られなかった。
実施例2で得られた微粉砕後のNbO2粉末を1050℃でホットプレス焼結して直径460mmの焼結体を作製した。その結果、得られた焼結体の相対密度の平均値は96.6%と高密度であった。なお、密度の面内分布の測定については、破壊検査になるため、この焼結体では評価していないが、実施例3、4、5、6の結果から、密度比0.5%以下の面内分布が期待できる。次に、この焼結体をφ425×6.35mmの円盤に加工し、さらに、無酸素銅からなるバッキングプレートに、In(インジウム)ソルダーでボンディングした。そして、このNbO2表面の抵抗率を四端子法で測定したところ、2.5mΩ・cmと良好な導電性を得ることができた。
純度99.9%のNb2O5粉末と純度99.9%のNb粉末とを混合し、合成と焼結を同時に行う反応焼結を実施した。なお、反応焼結は、ホットプレスを用いて行った。プレス形状は直径30mm、厚さ9mmとし、ホットプレス温度は1000℃とした。
得られた焼結体の表面の顕微鏡写真を図4に示す。その結果、NbO2以外の物質(薄い灰色の部分)が残存していることを確認した。また、X線回折法を用いて焼結体表面を解析した結果、図3下段に示されるように、Nbや合成途中のNb12O29などのピークが観察された。このように、比較例1では、NbO2の合成が完全ではなかった。
ホットプレス温度を1100℃とし、それ以外の条件は比較例1と同様として、反応焼結により焼結体を作製した。得られた焼結体の表面の顕微鏡写真を図5に示す。その結果、NbO2以外の物質(薄灰色の部分)が残存しているとともに、メタルのNb周辺に孔が形成されていることを確認した。また、X線回折法を用いて焼結体表面を解析した結果、図3中段に示されるように、Nbや合成途中のNb12O29などのピークが観察された。このように、比較例2では、NbO2の合成が完全ではなかった。
ホットプレス温度を1200℃とし、それ以外の条件は比較例1と同様として焼結体を作製した。得られた焼結体の表面の顕微鏡写真を図6に示す。その結果、メタルのNb周辺に多数の孔が形成されていることを確認した。また、X線回折法を用いて焼結体表面を解析した結果、図3上段に示されるように、Nbや合成途中のNb12O29などのピークが観察された。このように、比較例3では、NbO2の合成が完全ではなかった。
実施例1で得られた微粉砕後のNbO2粉末を1300℃でホットプレス焼結して直径110mmの焼結体を作製した。その結果、得られた焼結体の相対密度の平均値は85.0%と大幅に低下し、面内分布の密度比は6.1%と悪化していた。また、図7に示めすように焼結体の外観において中心部が欠けて窪みが形成されていた。この欠けは焼結中のガスの発生(出ガス)が原因と考えられる。
実施例1で得られた微粉砕後のNbO2粉末を1300℃でホットプレス焼結して直径460mmの焼結体を作製した。その結果、得られた焼結体の相対密度の平均値は79.5%と大幅に低下し、面内分布の密度比は3.1%と悪化していた。また、図8に示めすように焼結体の外観において中心部が欠けて窪みが形成されていた。この欠けは焼結中のガスの発生(出ガス)が原因と考えられる。
実施例1で得られた微粉砕後のNbO2粉末を900℃でホットプレス焼結して直径110mmの焼結体を作製した。その結果、得られた焼結体の面内分布の密度比は0.9%と小さかったものの、相対密度の平均値は88.6%と大幅に低下していた。このように、ホットプレス温度が低い場合には、密度面内分布に問題はないものの、密度が不足し、十分な焼結を行うことができなかった。
Claims (13)
- NbO2の(400)面からのX線回折ピーク強度に対する、Nb2O5の(001)面もしくは(110)面からのX線回折ピーク強度の強度比が1%以下であることを特徴とするNbO2焼結体。
- NbO2の(400)面からのX線回折ピーク強度に対する、Nbの(110)面からのX線回折ピーク強度の強度比が1%以下であることを特徴とする請求項1記載のNbO2焼結体。
- NbO2の(400)面からのX線回折ピーク強度に対する、Nb12O29の(400)面からのX線回折ピーク強度の強度比が5%以下であることを特徴とする請求項1又は2記載のNbO2焼結体。
- 相対密度が95%以上であることを特徴とする請求項1~3のいずれか一項に記載のNbO2焼結体。
- 焼結体面内の任意の2点における密度比が1.0%以下であることを特徴とする請求項1~4のいずれか一項に記載のNbO2焼結体。
- 直径が110mm以上であることを特徴とする請求項1~5のいずれか一項に記載のNbO2焼結体。
- 請求項1~6のいずれか一項に記載のNbO2焼結体から作製することを特徴とするスパッタリングターゲット。
- ターゲット表面の抵抗率が100mΩ・cm以下であることを特徴とする請求項7記載のスパッタリングターゲット。
- 無酸素銅、クロム化銅又は亜鉛化銅からなるバッキングプレートにインジウムソルダーを用いてボンディングすることを特徴とする請求項7又は8記載のスパッタリングターゲット。
- Nb2O5粉末とNb粉末とを混合し、得られた混合粉を真空中又は不活性雰囲気中で1300℃~1400℃で熱処理してNbO2を合成した後、合成したNbO2を粉砕し、この粉砕粉を950℃~1300℃でホットプレスにより焼結することを特徴とするNbO2焼結体の製造方法。
- 合成したNbO2の粉砕粉を950℃~1100℃でホットプレスにより焼結することを特徴とする請求項10記載のNbO2焼結体の製造方法。
- Nb2O5粉末の純度が99.9%以上であり、Nb粉末の純度が99.9%以上であることを特徴とする請求項10又は11記載のNbO2焼結体の製造方法。
- Nb2O5粉末の結晶系が斜方晶又は単斜晶であることを特徴とする請求項10~12のいずれか一項に記載のNbO2焼結体の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/424,586 US10347471B2 (en) | 2012-11-13 | 2013-11-08 | NbO2 sintered compact, sputtering target comprising the sintered compact, and method of producing NbO2 sintered compact |
JP2014517068A JP5845343B2 (ja) | 2012-11-13 | 2013-11-08 | NbO2焼結体及び該焼結体からなるスパッタリングターゲット並びにNbO2焼結体の製造方法 |
KR1020157003648A KR101702790B1 (ko) | 2012-11-13 | 2013-11-08 | NbO2 소결체 및 그 소결체로 이루어지는 스퍼터링 타깃 그리고 NbO2 소결체의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-249181 | 2012-11-13 | ||
JP2012249181 | 2012-11-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014077198A1 true WO2014077198A1 (ja) | 2014-05-22 |
Family
ID=50731110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/080233 WO2014077198A1 (ja) | 2012-11-13 | 2013-11-08 | NbO2焼結体及び該焼結体からなるスパッタリングターゲット並びにNbO2焼結体の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10347471B2 (ja) |
JP (1) | JP5845343B2 (ja) |
KR (1) | KR101702790B1 (ja) |
WO (1) | WO2014077198A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016188164A (ja) * | 2015-03-30 | 2016-11-04 | 東ソー株式会社 | 酸化物焼結体及びその製造方法 |
KR101913052B1 (ko) * | 2014-10-06 | 2018-10-29 | 제이엑스금속주식회사 | 니오븀 산화물 소결체 및 해당 소결체로 이루어지는 스퍼터링 타깃, 그리고 니오븀 산화물 소결체의 제조 방법 |
CN110963529A (zh) * | 2018-09-30 | 2020-04-07 | 中国科学院上海硅酸盐研究所 | 一种纯相的铌的低价态氧化物纳米粉体及其制备方法和应用 |
CN115605437A (zh) * | 2020-05-19 | 2023-01-13 | 株式会社久保田(Jp) | 一种钛-铌复合氧化物的制备方法 |
WO2024053176A1 (ja) * | 2022-09-06 | 2024-03-14 | Jx金属株式会社 | スパッタリングターゲット、積層膜の製造方法、積層膜、及び磁気記録媒体 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005041774A (ja) * | 2003-07-22 | 2005-02-17 | Hc Starck Gmbh | 亜酸化ニオブ、亜酸化ニオブの製造方法ならびに亜酸化ニオブを含有するアノードを有するキャパシタ |
JP2006525222A (ja) * | 2003-05-02 | 2006-11-09 | チャールズ エイ モッチェンバッハ | 高純度一酸化ニオブ(NbO)の製造及びそれから作ったコンデンサ製品 |
CN101209927A (zh) * | 2007-12-25 | 2008-07-02 | 北京有色金属研究总院 | 导电氧化物陶瓷溅射靶材的热压制备方法 |
JP2012158493A (ja) * | 2011-01-31 | 2012-08-23 | Sumitomo Chemical Co Ltd | 微粒子低原子価酸化ニオブ組成物、およびその製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3636914B2 (ja) | 1998-02-16 | 2005-04-06 | 株式会社日鉱マテリアルズ | 高抵抗透明導電膜及び高抵抗透明導電膜の製造方法並びに高抵抗透明導電膜形成用スパッタリングターゲット |
JP2002338354A (ja) * | 2001-05-18 | 2002-11-27 | Kyocera Corp | 酸化ニオブ焼結体とその製造方法及びこれを用いたスパッタリングターゲット |
JP2004059965A (ja) * | 2002-07-25 | 2004-02-26 | Toshiba Corp | スパッタリングターゲットおよびその製造方法 |
US20070045694A1 (en) | 2005-08-30 | 2007-03-01 | Sharp Laboratories Of America, Inc. | Method of selecting a RRAM memory material and electrode material |
CN102365385B (zh) | 2009-03-27 | 2014-07-30 | 吉坤日矿日石金属株式会社 | Ti-Nb系氧化物烧结体溅射靶、Ti-Nb系氧化物薄膜及该薄膜的制造方法 |
CN101864555A (zh) * | 2009-04-14 | 2010-10-20 | 上海高展金属材料有限公司 | 一种导电的氧化铌靶材、制备方法及其应用 |
JP2011071380A (ja) | 2009-09-28 | 2011-04-07 | Toshiba Corp | 半導体メモリ装置およびその製造方法 |
EP2495224B1 (en) | 2009-10-26 | 2014-12-24 | JX Nippon Mining & Metals Corporation | Indium oxide sintered body and indium oxide transparent conductive film |
JP5570951B2 (ja) | 2009-12-26 | 2014-08-13 | キヤノンアネルバ株式会社 | 反応性スパッタリング方法及び反応性スパッタリング装置 |
-
2013
- 2013-11-08 US US14/424,586 patent/US10347471B2/en active Active
- 2013-11-08 JP JP2014517068A patent/JP5845343B2/ja active Active
- 2013-11-08 KR KR1020157003648A patent/KR101702790B1/ko active IP Right Grant
- 2013-11-08 WO PCT/JP2013/080233 patent/WO2014077198A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006525222A (ja) * | 2003-05-02 | 2006-11-09 | チャールズ エイ モッチェンバッハ | 高純度一酸化ニオブ(NbO)の製造及びそれから作ったコンデンサ製品 |
JP2005041774A (ja) * | 2003-07-22 | 2005-02-17 | Hc Starck Gmbh | 亜酸化ニオブ、亜酸化ニオブの製造方法ならびに亜酸化ニオブを含有するアノードを有するキャパシタ |
CN101209927A (zh) * | 2007-12-25 | 2008-07-02 | 北京有色金属研究总院 | 导电氧化物陶瓷溅射靶材的热压制备方法 |
JP2012158493A (ja) * | 2011-01-31 | 2012-08-23 | Sumitomo Chemical Co Ltd | 微粒子低原子価酸化ニオブ組成物、およびその製造方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101913052B1 (ko) * | 2014-10-06 | 2018-10-29 | 제이엑스금속주식회사 | 니오븀 산화물 소결체 및 해당 소결체로 이루어지는 스퍼터링 타깃, 그리고 니오븀 산화물 소결체의 제조 방법 |
JP2016188164A (ja) * | 2015-03-30 | 2016-11-04 | 東ソー株式会社 | 酸化物焼結体及びその製造方法 |
CN110963529A (zh) * | 2018-09-30 | 2020-04-07 | 中国科学院上海硅酸盐研究所 | 一种纯相的铌的低价态氧化物纳米粉体及其制备方法和应用 |
CN110963529B (zh) * | 2018-09-30 | 2021-12-07 | 中国科学院上海硅酸盐研究所 | 一种纯相的铌的低价态氧化物纳米粉体及其制备方法和应用 |
CN115605437A (zh) * | 2020-05-19 | 2023-01-13 | 株式会社久保田(Jp) | 一种钛-铌复合氧化物的制备方法 |
WO2024053176A1 (ja) * | 2022-09-06 | 2024-03-14 | Jx金属株式会社 | スパッタリングターゲット、積層膜の製造方法、積層膜、及び磁気記録媒体 |
Also Published As
Publication number | Publication date |
---|---|
JP5845343B2 (ja) | 2016-01-20 |
KR101702790B1 (ko) | 2017-02-06 |
US10347471B2 (en) | 2019-07-09 |
US20150255260A1 (en) | 2015-09-10 |
JPWO2014077198A1 (ja) | 2017-01-05 |
KR20150034777A (ko) | 2015-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5845343B2 (ja) | NbO2焼結体及び該焼結体からなるスパッタリングターゲット並びにNbO2焼結体の製造方法 | |
CN105439541B (zh) | 氧化铟烧结体、氧化铟透明导电膜以及该透明导电膜的制造方法 | |
JP2010037161A (ja) | 酸化物焼結体およびその製造方法、スパッタリングターゲット、半導体薄膜 | |
JP6393696B2 (ja) | Cu−Ga−In−Naターゲット | |
WO2013129434A1 (ja) | タングステン焼結体スパッタリングターゲット及び該ターゲットを用いて成膜したタングステン膜 | |
El Horr et al. | Microstructure of single-phase cobalt and manganese oxide spinel Mn3− xCoxO4 ceramics | |
KR101293330B1 (ko) | Cu-In-Ga-Se 4 원계 합금 스퍼터링 타겟 | |
WO2016088867A1 (ja) | スパッタリング用MgOターゲット材及び薄膜 | |
CN112938976A (zh) | A位含硒元素的max相层状材料、其制备方法及应用 | |
Gupta et al. | Phase composition and dielectric properties of spark plasma sintered PbZr0. 52Ti0. 48O3 | |
JP5546143B2 (ja) | 透明薄膜形成用の複合酸化物焼結体及び透明薄膜形成用材料 | |
JP6273376B2 (ja) | ニオブ酸化物焼結体及び該焼結体からなるスパッタリングターゲット並びにニオブ酸化物焼結体の製造方法 | |
Obata et al. | Grain-oriented Ca 3 Co 4 O 9 thermoelectric oxide ceramics prepared by solid-state reaction | |
Moetakef et al. | Synthesis of pyrochlore free PMN–PZT ceramics via a seeding method | |
Promsawat et al. | Enhancement in dielectric, ferroelectric, and electrostrictive properties of Pb (Mg1/3Nb2/3) 0.9 Ti0. 1O3 ceramics by CuO addition | |
KR200490068Y1 (ko) | Ti2AlC의 제조방법 및 이를 이용한 전극재 및 고온 부품 | |
JP2984581B2 (ja) | インジウム−スズ酸化物からなる部材およびその製造法 | |
WO2019202909A1 (ja) | Sn-Zn-O系酸化物焼結体とその製造方法 | |
JP2021521335A (ja) | ターゲット及びターゲットの製造方法 | |
JP7178707B2 (ja) | MgO-TiO系スパッタリングターゲットの製造方法 | |
Pršić et al. | Mechanochemically assisted solid-state and citric acid complex syntheses of Cu-doped sodium cobaltite ceramics | |
Feng et al. | Microstructural characterization of spark plasma sintered in situ TiB reinforced Ti matrix composite by EBSD and TEM | |
WO2017170152A1 (ja) | Mg-Ti-Oスパッタリングターゲット及びその製造方法 | |
JP7014541B2 (ja) | スパッタリングターゲット、スパッタリングターゲットの製造方法及び磁気媒体の製造方法 | |
JP7280075B2 (ja) | スパッタリングターゲット材及びその製造方法並びに薄膜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2014517068 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13854250 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20157003648 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14424586 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13854250 Country of ref document: EP Kind code of ref document: A1 |