[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014051108A1 - 圧縮型冷凍機用潤滑油 - Google Patents

圧縮型冷凍機用潤滑油 Download PDF

Info

Publication number
WO2014051108A1
WO2014051108A1 PCT/JP2013/076410 JP2013076410W WO2014051108A1 WO 2014051108 A1 WO2014051108 A1 WO 2014051108A1 JP 2013076410 W JP2013076410 W JP 2013076410W WO 2014051108 A1 WO2014051108 A1 WO 2014051108A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
carbon atoms
compression
group
hydrocarbon group
Prior art date
Application number
PCT/JP2013/076410
Other languages
English (en)
French (fr)
Inventor
忠 氣仙
知也 松本
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to JP2014538653A priority Critical patent/JP6122861B2/ja
Priority to EP13840751.5A priority patent/EP2902467A4/en
Priority to KR1020157007018A priority patent/KR102124305B1/ko
Priority to US14/430,704 priority patent/US9683190B2/en
Priority to CN201380050447.3A priority patent/CN104685040B/zh
Publication of WO2014051108A1 publication Critical patent/WO2014051108A1/ja
Priority to US15/603,603 priority patent/US20170260473A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/22Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol, aldehyde, ketonic, ether, ketal or acetal radical
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/30Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/32Condensation polymers of aldehydes or ketones; Polyesters; Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M131/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen
    • C10M131/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen containing carbon, hydrogen and halogen only
    • C10M131/04Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen containing carbon, hydrogen and halogen only aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/008Lubricant compositions compatible with refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/122Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/24Only one single fluoro component present
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical
    • C10M2209/043Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/1033Polyethers, i.e. containing di- or higher polyoxyalkylene groups used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • C10M2209/1045Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • C10M2209/1055Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/09Characteristics associated with water
    • C10N2020/097Refrigerants
    • C10N2020/101Containing Hydrofluorocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication

Definitions

  • the present invention relates to a lubricating oil for a compression refrigerator, and more particularly, a lubricating oil for a compression refrigerator using a difluoromethane (R32) refrigerant, a method for producing the same, a composition for a compression refrigerator, and a compression using the same.
  • the present invention relates to a mold refrigeration apparatus.
  • HFC hydrofluorocarbon
  • R134a 1,1,1,2-tetrafluoroethane
  • a compression refrigerator is composed of at least a compressor, a condenser, an expansion mechanism (such as an expansion valve), an evaporator, and the like.
  • the liquid mixture with the refrigerant circulates in the sealed system.
  • the temperature inside the compressor is low and the temperature inside the cooler is low. Therefore, the refrigerant and lubricating oil are phase separated within a wide temperature range from low temperature to high temperature. It is necessary to circulate in this system without doing so.
  • the temperature range in which the refrigerant and the lubricating oil are compatible without phase separation is preferably in the range of less than ⁇ 20 ° C. to 0 ° C. or more. If phase separation occurs during the operation of the refrigerator, the life and efficiency of the apparatus will be significantly adversely affected. For example, when phase separation of refrigerant and lubricating oil occurs in the compressor part, the moving part becomes poorly lubricated, causing seizure and the like, significantly shortening the life of the device, while phase separation occurs in the evaporator, Due to the presence of lubricating oil with high viscosity, the efficiency of heat exchange is reduced.
  • the compatibility at low temperature is insufficient when the conventionally known PVE is used as a lubricating oil. Therefore, when the R32 refrigerant is used in low-temperature equipment, the lubricating oil is required to have compatibility that does not separate from the refrigerant even at temperatures lower than ⁇ 20 ° C., and various studies have been made.
  • a refrigerating machine lubricating oil using a polyvinyl ether compound having a carbon / oxygen molar ratio (C / O molar ratio) of 4.2 to 7.0 is disclosed (see, for example, Patent Document 1). Although this describes compatibility with the R32 refrigerant, the low-temperature two-phase separation temperature is high, and it is not necessarily compatible enough for use in low-temperature equipment.
  • Patent Document 2 discloses compatibility with R32 refrigerant.
  • Patent Document 3 discloses compatibility between the polyvinyl ether compound and the R32 refrigerant.
  • lubricating oils for refrigerators that contain compounds containing polyalkylene glycol units and polyvinyl ether units in the molecule (see, for example, Patent Documents 4 and 5). These are lubricating oils for CO 2 refrigerants. Yes, no compatibility data with R32 refrigerant is disclosed.
  • Patent Document 5 discloses a technique in which a polyvinyl ether compound having a C / O molar ratio of 4.0 or less is excellent in compatibility with natural refrigerants (CO 2 , NH 3 , C 3 H 8 ). However, the R32 refrigerant is not mentioned. As described above, all of the lubricating oils disclosed so far have a problem that they are separated from the R32 refrigerant by -20 ° C.
  • a lubricating oil for a compression type refrigerator that does not separate from an R32 refrigerant even at a temperature lower than ⁇ 20 ° C., a method for producing the same, and a lubricating oil for the compression type refrigerator. It aims at providing the composition for compression type refrigerators etc. which were used.
  • the first aspect of the present invention is (1) A lubricating oil for a compression type refrigerator using a difluoromethane (R32) refrigerant, It is a polymer having a structural unit represented by the general formula (I-1), and includes a first polyvinyl ether compound having a carbon / oxygen molar ratio of 3.0 or more and less than 4.0, It is a lubricating oil for compression type refrigerators.
  • R32 difluoromethane
  • R 1 , R 2 and R 3 each represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and they may be the same or different.
  • R 4 represents a hydrocarbon group having 1 to 20 carbon atoms. R 1 to R 4 may be the same or different for each structural unit.
  • the first aspect of the present invention is (2) It is preferable that the said polyvinyl ether type compound contains 1 mol% or more of methoxy groups with respect to all the side chains in a polymer.
  • a lubricating oil for a compression type refrigerator using a difluoromethane (R32) refrigerant A polymer having an alkylene glycol unit or polyoxyalkylene glycol unit and a vinyl ether unit in the molecule and having a molecular weight in the range of 300 to 3,000, and carbon / oxygen in all side chains in the polymer
  • a lubricating oil for a compression type refrigerator comprising a second polyvinyl ether compound having a molar ratio of 1.00 or more and less than 2.40.
  • the second aspect of the present invention (4)
  • the second polyvinyl ether compound preferably has a structure represented by the general formula (I-2).
  • R 1 , R 2 and R 3 each represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and they may be the same or different from each other.
  • R b represents a divalent hydrocarbon group having 2 to 4 carbon atoms.
  • R a is a hydrogen atom, an aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, an aromatic group optionally having a substituent having 1 to 20 carbon atoms, an acyl group having 2 to 20 carbon atoms, Alternatively, it represents an oxygen-containing hydrocarbon group having 2 to 50 carbon atoms.
  • R 5 represents a hydrocarbon group having 1 to 10 carbon atoms.
  • R a , R b , and R 5 may be the same or different when there are a plurality of them.
  • m represents an average value of 1 to 50
  • k represents 1 to 50
  • p represents 0 to 50
  • k and p may each be a block or random when there are a plurality of them.
  • the plurality of R b O may be different even in the same.
  • the second aspect of the present invention further includes (5)
  • the second polyvinyl ether compound preferably contains an ethylene glycol residue and / or a propylene glycol residue in the polymer, (6) It is preferable that said 2nd polyvinyl ether type compound contains 5 to 50 mass% of ethylene glycol residues and / or propylene glycol residues with respect to the total mass.
  • the lubricating oil for a compression type refrigerator according to the first aspect of the present invention is produced by the following method for producing a lubricating oil for a compression type refrigerator. That is, the manufacturing method is (7) Using one or more first polymerization initiators selected from methanol, dimethyl acetal, and ethyl methyl acetal, the vinyl ether monomer represented by the general formula (II-1) is polymerized to (1) or ( It is a manufacturing method of the lubricating oil for compression type refrigerators which manufactures the lubricating oil for compression type refrigerators as described in 2).
  • R 1 , R 2 and R 3 each represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and they may be the same or different.
  • R 4 represents a hydrocarbon group having 1 to 20 carbon atoms.
  • the lubricating oil for a compression type refrigerator according to the second aspect of the present invention is produced by the following method for producing a lubricating oil for a compression type refrigerator. That is, the manufacturing method is (8) A vinyl ether monomer represented by general formula (II-2) is polymerized using a second polymerization initiator that is an alkylene glycol compound or a polyoxyalkylene glycol compound represented by general formula (III). A method for producing a lubricating oil for a compression refrigeration machine, which produces the lubricating oil for a compression refrigeration machine according to any one of (3) to (6).
  • R 1 , R 2 and R 3 each represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and they may be the same or different from each other.
  • R 5 represents a hydrocarbon group having 1 to 10 carbon atoms.
  • R a is a hydrogen atom, an aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, an aromatic group optionally having a substituent having 1 to 20 carbon atoms, an acyl group having 2 to 20 carbon atoms, Alternatively, it represents an oxygen-containing hydrocarbon group having 2 to 50 carbon atoms.
  • R b represents a divalent hydrocarbon group having 2 to 4 carbon atoms.
  • m represents a number having an average value of 1 to 50.
  • the lubricating oil for a compression type refrigerator according to the first aspect of the present invention and the lubricating oil for a compression type refrigerator according to the second aspect of the present invention may constitute a composition for a compression type refrigerator with the R32 refrigerant. That is, the composition for a compression refrigerator of the present invention is (9) A composition for a compression type refrigerator, comprising the lubricating oil for a compression refrigerator according to any one of (1) to (6) and an R32 refrigerant. In addition, the composition for the compression refrigerator is (10) A composition for a compression refrigeration machine characterized by including a lubricating oil for a compression refrigeration machine obtained by the production method according to (7) or (8) and an R32 refrigerant. .
  • the compression refrigeration apparatus may be configured using the lubricating oil for a compression type refrigerator according to the first aspect of the present invention and the lubricating oil for a compression type refrigerator according to the second aspect of the present invention. That is, the compression refrigeration apparatus of the present invention is (11) Lubricating oil for a compression type refrigerator according to any one of (1) to (6) and / or lubrication for a compression type refrigerator obtained by the production method according to (7) or (8) A compression-type refrigeration apparatus using oil.
  • a lubricating oil for a compression type refrigerator that does not separate from an R32 refrigerant even at a temperature lower than ⁇ 20 ° C., a method for producing the same, and a composition for a compression type refrigerator using the lubricating oil for a compression type refrigerator Etc. can be provided.
  • the present invention makes it possible to use an R32 refrigerant with a low global warming potential, contributing to the prevention of global warming.
  • the lubricating oil for a compression type refrigerator according to the present invention includes the lubricating oil for a compression type refrigerator according to the first aspect of the present invention and the lubricating oil for a compression type refrigerator according to the second aspect of the present invention.
  • the lubricating oil for a compression type refrigerator according to the first aspect of the present invention is a lubricating oil for a compression type refrigerator using a difluoromethane (R32) refrigerant, and has a structural unit represented by the general formula (I-1). And a first polyvinyl ether-based compound having a carbon / oxygen molar ratio of 3.0 or more and less than 4.0.
  • R 1 , R 2 and R 3 each represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and they may be the same or different.
  • R 4 represents a hydrocarbon group having 1 to 20 carbon atoms.
  • R 1 to R 4 may be the same or different for each structural unit. Since the lubricating oil for a compression type refrigerator according to the first aspect of the present invention has the above-described configuration, it can be a lubricating oil for a compression type refrigerator that does not separate from the R32 refrigerant even at a temperature lower than ⁇ 20 ° C.
  • the lubricating oil for a compression type refrigerator is a lubricating oil for a compression type refrigerator using a difluoromethane (R32) refrigerant, and an alkylene glycol unit or a polyoxyalkylene glycol unit in the molecule, A polymer having vinyl ether units and a molecular weight in the range of 300 to 3,000, and a carbon / oxygen molar ratio in all side chains in the polymer of 1.00 or more and less than 2.40.
  • a lubricating oil for a compression-type refrigerator comprising 2 polyvinyl ether compounds.
  • the lubricating oil for a compression type refrigerator according to the second aspect of the present invention has the above-described configuration, it is not separated from the R32 refrigerant even at a temperature lower than ⁇ 20 ° C., and the lubricating oil for the compression type refrigerator has a high viscosity index. be able to.
  • the lubricating oil for a compression type refrigerator according to the first aspect of the present invention and the lubricating oil for a compression type refrigerator according to the second aspect of the present invention are both lubricated for a compression type refrigerator using a difluoromethane (R32) refrigerant.
  • the base oil includes a polyvinyl ether compound having a specific structure and a specific carbon / oxygen molar ratio.
  • the polyvinyl ether compound used in the lubricating oil for the compression refrigerator will be described in detail.
  • the first polyvinyl ether compound used as the base oil in the lubricating oil for a compression refrigerator according to the first aspect of the present invention is a structural unit represented by the above general formula (I-1) It is a polymer having Further, from the viewpoint of compatibility between the lubricating oil for a compression refrigerator and R32, the carbon / oxygen molar ratio of the first polyvinyl ether compound is 3.0 or more and less than 4.0. When the carbon / oxygen molar ratio is 4.0 or more, it is separated from the R32 refrigerant at a temperature lower than ⁇ 20 ° C.
  • the carbon / oxygen molar ratio is less than 3.0, the viscosity index and the volume resistivity are unfavorable except for the case where the configuration of the polyvinyl ether compound is that of the second polyvinyl ether compound.
  • the carbon / oxygen molar ratio of the first polyvinyl ether compound is preferably 3.5 or more and 3.9 or less, and more preferably 3.7 or more and 3.9 or less.
  • the carbon / oxygen molar ratio of the first polyvinyl ether compound can be calculated from the measurement result obtained by performing elemental analysis on the first polyvinyl ether compound.
  • the first polyvinyl ether compound is a polymer having a structural unit represented by the general formula (I-1), and R 1 to R 3 in the general formula (I-1) and OR 4 is configured as the side chain of the polymer.
  • the lubricating oil for a compression refrigerator according to the first aspect of the present invention is such that the first polyvinyl ether-based compound contains all side chains in the polymer from the viewpoint of compatibility between the lubricating oil for the compression refrigerator and the R32 refrigerant. It is preferable that 1 mol% or more of methoxy groups are contained with respect to the molar amount. Further, the methoxy group is more preferably contained in the first polyvinyl ether compound in an amount of 5 mol% or more.
  • R 1 , R 2 and R 3 in the above general formula (I-1) each represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and they may be the same or different.
  • the hydrocarbon group having 1 to 8 carbon atoms specifically includes, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert group.
  • R 1 , R 2 and R 3 in formula (I-1) are particularly preferably hydrogen atoms.
  • R 4 in the general formula (I-1) represents a hydrocarbon group having 1 to 20 carbon atoms.
  • the hydrocarbon group having 1 to 20 carbon atoms include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
  • Alkyl groups such as various pentyl groups, various hexyl groups, various heptyl groups, various octyl groups, various nonyl groups, various decyl groups; cyclopentyl groups, cyclohexyl groups, various methylcyclohexyl groups, various ethylcyclohexyl groups, various propylcyclohexyl groups, Cycloalkyl groups such as various dimethylcyclohexyl groups; aryl groups such as phenyl groups, various methylphenyl groups, various ethylphenyl groups, various dimethylphenyl groups, various propylphenyl groups, various trimethylphenyl groups, various butylphenyl groups, and various naphthyl groups Benzyl group, various phenylethyl Shows various methylbenzyl groups, various phenylpropyl groups, and arylalkyl groups various phenylbutyl groups.
  • R 1 to R 4 may be the same or different for each structural unit. That is, the polyvinyl ether compound constituting the lubricating oil of the present invention may be a copolymer in which any or all of R 1 to R 4 are different for each structural unit.
  • the degree of polymerization of the first polyvinyl ether compound having the structural unit represented by the general formula (I-1) may be appropriately selected according to the desired kinematic viscosity.
  • the kinematic viscosity at 40 ° C. of the first polyvinyl ether compound is preferably 5 to 1,000 mm 2 / s, more preferably 7 to 300 mm 2 / s, and still more preferably 10 to 150 mm 2 / s.
  • the degree of polymerization of the first polyvinyl ether compound is selected.
  • the first polyvinyl ether compound having the above-described properties can be produced as follows. That is, a vinyl ether monomer represented by the general formula (II-1) is polymerized by a conventionally known method using one or more kinds of first polymerization initiators selected from methanol, dimethyl acetal, and ethyl methyl acetal. By setting it as a polymer, the first polyvinyl ether compound can be produced. The obtained polymer may be further hydrogenated.
  • R 1, R 2, R 3 and R 4 are the same as R 1, R 2, R 3 and R 4 in Formula (II-1). That is, R 1 , R 2 and R 3 each represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and they may be the same or different. R 4 represents a hydrocarbon group having 1 to 20 carbon atoms. R 1 to R 4 may be the same or different for each structural unit.
  • Examples of the vinyl ether monomer represented by the general formula (II-1) include vinyl methyl ether, vinyl ethyl ether, vinyl n-propyl ether, vinyl isopropyl ether, vinyl n butyl ether, vinyl isobutyl ether, vinyl -Sec-butyl ether, vinyl-tert-butyl ether, vinyl-n-pentyl ether, vinyl-n-hexyl ether and the like.
  • the first polyvinyl ether compound can be produced by radical polymerization, cationic polymerization, radiation polymerization or the like of the vinyl ether monomer represented by the general formula (II-1).
  • a polymer having a desired viscosity can be obtained by polymerizing a vinyl ether monomer represented by the general formula (II-1) using the following method.
  • at least one kind of first polymerization initiator selected from methanol, dimethyl acetal, and ethyl methyl acetal is used.
  • the following components may be used as necessary.
  • a combination of an adduct of water, alcohols, phenols, acetals or vinyl ethers with a carboxylic acid can be used for Bronsted acids, Lewis acids or organometallic compounds.
  • Bronsted acids include hydrofluoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, sulfuric acid, trichloroacetic acid, and trifluoroacetic acid.
  • Lewis acids include boron trifluoride, aluminum trichloride, aluminum tribromide, tin tetrachloride, zinc dichloride, and ferric chloride. Among these Lewis acids, boron trifluoride is particularly preferred. Is preferred.
  • the organometallic compound include diethyl aluminum chloride, ethyl aluminum chloride, diethyl zinc and the like.
  • any adduct of water, alcohols, phenols, acetals or vinyl ethers and a carboxylic acid combined with these can be selected.
  • the alcohols for example, the number of carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, sec-butanol, tert-butanol, various pentanols, various hexanols, various heptanols, various octanols, etc.
  • acetals include dimethyl acetal and ethyl methyl acetal.
  • the polymerization initiator always includes one or more selected from methanol, dimethyl acetal, and ethyl methyl acetal.
  • the polymerization of the vinyl ether monomer represented by the general formula (II-1) can be initiated at a temperature between ⁇ 80 to 150 ° C., usually ⁇ 80 to 50, depending on the kind of the raw material and the polymerization initiator. It can be carried out at a temperature in the range of ° C.
  • the polymerization reaction is completed in about 10 seconds to 10 hours after the start of the reaction.
  • the molecular weight in this polymerization reaction is adjusted by increasing the amount of water, alcohols, phenols, acetals, and adducts of vinyl ethers and carboxylic acids to the vinyl ether monomers represented by the general formula (II-1). By doing so, a polymer having a low average molecular weight can be obtained.
  • a polymer having a low average molecular weight can be obtained by increasing the amount of the Bronsted acids or Lewis acids.
  • This polymerization reaction is usually performed in the presence of a solvent.
  • the solvent is not particularly limited as long as it dissolves the required amount of the reaction raw material and is inert to the reaction.
  • hydrocarbon solvents such as hexane, benzene, toluene, and ethyl ether, 1,2- Ether solvents such as dimethoxyethane and tetrahydrofuran can be preferably used.
  • This polymerization reaction can be stopped by adding an alkali.
  • the first polyvinyl ether compound having the structural unit represented by the general formula (I-1) can be obtained by subjecting to the usual separation method and / or purification method as necessary. can get.
  • the first polyvinyl ether compound has a carbon / oxygen molar ratio of 3.0 or more and less than 4.0.
  • a polymer having the molar ratio in the above range can be produced by adjusting the carbon / oxygen molar ratio of the vinyl ether monomer represented by the general formula (II-1) as a raw material monomer. That is, if the carbon / oxygen molar ratio of the raw material monomer is large, a polymer having a large carbon / oxygen molar ratio is obtained, and if the carbon / oxygen molar ratio of the raw material monomer is small, a polymer having a small carbon / oxygen molar ratio is obtained. It tends to be.
  • the carbon / oxygen molar ratio of the first polyvinyl ether compound is 3.0 or more and less than 4.0 by including the vinyl ether monomer represented by the general formula (II-1) in the raw material monomer. It can be.
  • the carbon / oxygen molar ratio can be adjusted by a combination of water, alcohols, phenols and acetals used as a polymerization initiator, and monomers. That is, if alcohols, phenols, etc. having a larger carbon / oxygen molar ratio than the vinyl ether monomer represented by the general formula (II-1) are used as the polymerization initiator, the carbon / oxygen molar ratio of the raw material monomer A polymer having a large oxygen molar ratio can be obtained.
  • the carbon / oxygen is higher than the carbon / oxygen molar ratio of the raw material monomer.
  • a polymer with a small molar ratio is obtained.
  • the carbon / oxygen molar ratio of the first polyvinyl ether compound can be 3.0 or more and less than 4.0. .
  • the carbon / oxygen mole of the first polyvinyl ether compound is obtained by at least one of the monomer component containing the vinyl ether monomer represented by the general formula (II-1) and the first initiator component.
  • the ratio is 3.0 or more and less than 4.0.
  • the second polyvinyl ether compound used as the base oil in the lubricating oil for compression refrigerators of the second invention comprises an alkylene glycol unit or a polyoxyalkylene glycol unit in the molecule, A polymer having a vinyl ether unit and a molecular weight in the range of 300 to 3,000, and a carbon / oxygen molar ratio in all side chains in the polymer of 1.00 or more and less than 2.40.
  • the lubricating oil for a compression type refrigerator according to the second aspect of the present invention has the above-described configuration, it is not separated from the R32 refrigerant even at a temperature lower than ⁇ 20 ° C., and the lubricating oil for the compression type refrigerator has a high viscosity index. be able to.
  • the molecular weight of the second polyvinyl ether compound is preferably 300 to 2,000, and more preferably 300 to 900.
  • the second polyvinyl ether compound is a polymer having a specific structural unit and having a specific molecular weight, and at least an alkylene glycol group and an ether group are included as side chains of the polymer.
  • the constitution of the polyvinyl ether compound is that of the first polyvinyl ether compound. Except for the case of the constitution, in any case, the polyvinyl ether compound and the R32 refrigerant are separated at a temperature lower than ⁇ 20 ° C.
  • the carbon / oxygen molar ratio in the second polyvinyl ether compound is preferably 1.20 or more and less than 2.40, and more preferably 1.50 or more and less than 2.30.
  • the second polyvinyl ether compound preferably has a structure represented by the general formula (I-2).
  • R 1 , R 2 and R 3 each represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and they may be the same or different from each other.
  • R b represents a divalent hydrocarbon group having 2 to 4 carbon atoms.
  • R a is a hydrogen atom, an aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, an aromatic group optionally having a substituent having 1 to 20 carbon atoms, an acyl group having 2 to 20 carbon atoms, Alternatively, it represents an oxygen-containing hydrocarbon group having 2 to 50 carbon atoms.
  • R 5 represents a hydrocarbon group having 1 to 10 carbon atoms.
  • R a , R b , and R 5 may be the same or different when there are a plurality of them.
  • m represents an average value of 1 to 50
  • k represents 1 to 50
  • p represents 0 to 50
  • k and p may each be a block or random when there are a plurality of them.
  • the plurality of R b O may be different even in the same.
  • the hydrocarbon group having 1 to 8 carbon atoms of R 1 to R 3 specifically includes, for example, a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • Alkyl groups such as n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, various pentyl groups, various hexyl groups, various heptyl groups, various octyl groups; cyclopentyl group, cyclohexyl group, various methylcyclohexyl groups, Cycloalkyl groups such as various ethylcyclohexyl groups and various dimethylcyclohexyl groups; aryl groups such as phenyl groups, various methylphenyl groups, various ethylphenyl groups, and various dimethylphenyl groups; benzyl groups, various phenylethyl groups, various methylbenzyl groups, and the like
  • An arylalkyl group of Of the above, R 1 , R 2 and R 3 in formula (I-2) are particularly preferably hydrogen atoms.
  • the divalent hydrocarbon group having 2 to 4 carbon atoms represented by R b is specifically a divalent alkylene such as, for example, a methylene group, an ethylene group, a propylene group, a trimethylene group or various butylene groups.
  • R b O represents the number of R b O repeats, and the average value thereof is 1 to 50, preferably 2 to 20, more preferably 2 to 10, particularly preferably 2 to 5. The number of ranges.
  • R b O is plural, plural R b O may be the same or different.
  • K is 1 to 50, preferably 1 to 10, more preferably 1 to 2, particularly preferably 1, and p is a number from 0 to 50, preferably 2 to 25, more preferably 5 to 15, And p may be either block or random when there are a plurality of them.
  • the aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 5 to 10 carbon atoms, specifically Is methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, various pentyl groups, various hexyl groups, various heptyl groups, various octyl groups, various Nonyl group, various decyl groups, cyclopentyl group, cyclohexyl group, various methylcyclohexyl groups, various ethylcyclohexyl groups, various propylcyclohexyl groups, various dimethylcyclohexyl groups and the like can be mentioned.
  • aromatic group which may have a substituent having 1 to 20 carbon atoms in Ra
  • aromatic group which may have a substituent having 1 to 20 carbon atoms in Ra
  • aryl groups such as various butylphenyl groups and various naphthyl groups, benzyl groups, various phenylethyl groups, various methylbenzyl groups, various phenylpropyl groups, and arylalkyl groups of various phenylbutyl groups.
  • Examples of the acyl group having 2 to 20 carbon atoms in Ra include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a valeryl group, an isovaleryl group, a pivaloyl group, a benzoyl group, and a toluoyl group.
  • specific examples of the oxygen-containing hydrocarbon group having 2 to 50 carbon atoms in R a include methoxymethyl group, methoxyethyl group, methoxypropyl group, 1,1-bismethoxypropyl group, 1,2-bismethoxy group.
  • Preferable examples include propyl group, ethoxypropyl group, (2-methoxyethoxy) propyl group, (1-methyl-2-methoxy) propyl group and the like.
  • the hydrocarbon group having 1 to 10 carbon atoms represented by R 5 is specifically, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl.
  • the second polyvinyl ether compound has an alkylene glycol unit or a polyoxyalkylene glycol unit in the molecule from the viewpoint of compatibility with the R32 refrigerant.
  • alkylene glycol unit for example, in the general formula (I-2), “R 1 ” to “R 3 ” and “ ⁇ ” Among alkylene glycol units containing “O (R b O) mR a ”, m is a structural unit.
  • the polyoxyalkylene glycol unit refers to a structural unit in which m is greater than 1 in the general formula (I-2). Therefore, the second polyvinyl ether compound has an alkylene glycol residue represented by “—O (R b O) mR a ”.
  • the second polyvinyl ether compound preferably contains an ethylene glycol residue and / or a propylene glycol residue in the structural unit.
  • the second polyvinyl ether compound preferably contains an ethylene glycol residue and / or a propylene glycol residue in an amount of 5% by mass to 50% by mass with respect to the total mass of the second polyvinyl ether compound.
  • the second polyvinyl ether compound contains an ethylene glycol residue and / or a propylene glycol residue in an amount of 5% by mass to 50% by mass with respect to the total mass of the second polyvinyl ether compound, from ⁇ 20 ° C. Compatibility with R32 refrigerant at low temperatures is further improved.
  • the “ethylene glycol residue” and the “propylene glycol residue” in the present invention include an ethylene glycol residue, a propylene glycol residue, and m which is 1 in “—O (R b O) mR a ”. Not only low molecular residues such as 3 triethylene glycol residues, but also polymer residues that are polyethylene glycol residues and polypropylene glycol residues are included.
  • the polymerization degree of the second polyvinyl ether compound may be appropriately selected according to the desired kinematic viscosity.
  • the kinematic viscosity at 40 ° C. of the second polyvinyl ether compound is preferably 5 to 1,000 mm 2 / s, more preferably 7 to 300 mm 2 / s, and still more preferably 10 to 150 mm 2 / s.
  • the polymerization degree of the second polyvinyl ether compound is selected.
  • the 2nd polyvinyl ether type compound which has the property mentioned above can be manufactured as follows. That is, the vinyl ether monomer represented by the general formula (II-2) is polymerized using the second polymerization initiator that is an alkylene glycol compound or a polyoxyalkylene glycol compound represented by the general formula (III), By setting it as a polymer, the second polyvinyl ether compound can be produced. In the polymerization, a compound having an alkylene glycol residue represented by “—O (R b O) mR a ” may be used together with the second polymerization initiator. Further, the obtained polymer may be further hydrogenated.
  • R 1 , R 2 and R 3 each represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and they may be the same or different from each other.
  • R 5 represents a hydrocarbon group having 1 to 10 carbon atoms.
  • R a is a hydrogen atom, an aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, an aromatic group optionally having a substituent having 1 to 20 carbon atoms, an acyl group having 2 to 20 carbon atoms, Alternatively, it represents an oxygen-containing hydrocarbon group having 2 to 50 carbon atoms.
  • R b represents a divalent hydrocarbon group having 2 to 4 carbon atoms.
  • m represents a number having an average value of 1 to 50. In the above formula, R a , R b , m, R 1 to R 3 and R 5 are as described above.
  • examples of the vinyl ether monomer represented by the general formula (II-2) include vinyl methyl ether, vinyl ethyl ether, vinyl n-propyl ether, vinyl isopropyl ether, vinyl n butyl ether, and vinyl isobutyl.
  • Vinyl ethers such as ether, vinyl-sec-butyl ether, vinyl-tert-butyl ether, vinyl-n-pentyl ether, vinyl-n-hexyl ether; 1-methoxypropene, 1-ethoxypropene, 1-n-propoxypropene, 1 -Isopropoxypropene, 1-n-butoxypropene, 1-isobutoxypropene, 1-sec-butoxypropene, 1-tert-butoxypropene, 2-methoxypropene, 2-ethoxypropene, 2-n-propoxypropene, -Propenes such as isopropoxypropene, 2-n-butoxypropene, 2-isobutoxypropene, 2-sec-butoxypropene, 2-tert-butoxypropene; 1-methoxy-1-butene, 1-ethoxy-1- Butene, 1-n-propoxy-1-butene, 1-isopropoxy-1-butene, 1-n-butoxy-1-but
  • alkylene glycol compound represented by the general formula (III) m in the general formula (III) is 1, and in the polyoxyalkylene glycol compound represented by the general formula (III), m in the general formula (III) is Over 1
  • Specific examples of the alkylene glycol compound or polyoxyalkylene glycol compound represented by the general formula (III) include, for example, ethylene glycol, ethylene glycol monomethyl ether, diethylene glycol, diethylene glycol monomethyl ether, triethylene glycol, triethylene glycol monomethyl.
  • Alkylene glycol such as ether, propylene glycol, propylene glycol monomethyl ether, dipropylene glycol, dipropylene glycol monomethyl ether, tripropylene glycol, tripropylene glycol monomethyl ether, polyethylene glycol, polypropylene glycol, polyoxyalkylene glycol and their monoether compounds Etc.
  • the alkylene glycol compound or polyoxyalkylene glycol compound represented by the general formula (III) is a compound having an ethylene glycol residue in which R b in the general formula (III) is an ethylene group (for example, ethylene glycol, Triethylene glycol, polyethylene glycol and the like) and compounds having a propylene glycol residue in which R b in the general formula (III) is a propylene group (for example, propylene glycol, tripropylene glycol, polypropylene glycol and the like) are preferable.
  • the compound having an alkylene glycol residue include polyethylene glycol having one end methoxylated, polypropylene glycol having one end methoxylated, and copolymers thereof.
  • the compound having an alkylene glycol residue is also preferably a compound having an ethylene glycol residue or a propylene glycol residue.
  • the alkylene glycol compound or polyoxyalkylene glycol compound represented by the general formula (III) may be used alone or in combination of two or more.
  • the second polyvinyl ether compound can be produced by radical polymerization, cationic polymerization, radiation polymerization or the like of the vinyl ether monomer represented by the general formula (II-2).
  • a polymer having a desired viscosity can be obtained by polymerizing a vinyl ether monomer represented by the general formula (II-2) using the following method.
  • At the start of the polymerization at least a second polymerization initiator that is an alkylene glycol compound or a polyoxyalkylene glycol compound represented by the general formula (III) is used.
  • the following components may be used as necessary.
  • a combination of an adduct of water, alcohols, phenols, acetals or vinyl ethers with a carboxylic acid can be used for Bronsted acids, Lewis acids or organometallic compounds.
  • Bronsted acids include hydrofluoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, sulfuric acid, trichloroacetic acid, and trifluoroacetic acid.
  • Lewis acids include boron trifluoride, aluminum trichloride, aluminum tribromide, tin tetrachloride, zinc dichloride, and ferric chloride. Among these Lewis acids, boron trifluoride is particularly preferred. Is preferred.
  • the organometallic compound include diethyl aluminum chloride, ethyl aluminum chloride, diethyl zinc and the like.
  • Any adduct of water, alcohols, phenols, acetals or vinyl ethers and carboxylic acid combined with these can be selected.
  • alcohols include those having 1 to 20 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, sec-butanol, tert-butanol, various pentanols, various hexanols, various heptanols, and various octanols.
  • Saturated aliphatic alcohols unsaturated aliphatic alcohols having 3 to 10 carbon atoms such as allyl alcohol.
  • the polymerization of the vinyl ether monomer represented by the general formula (II-2) can be initiated at a temperature between ⁇ 80 to 150 ° C., and usually ⁇ 80 to 50, depending on the types of raw materials and the polymerization initiator. It can be carried out at a temperature in the range of ° C.
  • the polymerization reaction is completed in about 10 seconds to 10 hours after the start of the reaction.
  • the molecular weight in this polymerization reaction is adjusted by increasing the amount of water, alcohols, phenols, acetals, and adducts of vinyl ethers and carboxylic acids to the vinyl ether monomers represented by the general formula (II-2). By doing so, a polymer having a low average molecular weight can be obtained.
  • a polymer having a low average molecular weight can be obtained by increasing the amount of the Bronsted acids or Lewis acids.
  • This polymerization reaction is usually performed in the presence of a solvent.
  • the solvent is not particularly limited as long as it dissolves the required amount of the reaction raw material and is inert to the reaction.
  • hydrocarbon solvents such as hexane, benzene, toluene, and ethyl ether, 1,2- Ether solvents such as dimethoxyethane and tetrahydrofuran can be preferably used.
  • This polymerization reaction can be stopped by adding an alkali.
  • the second polyvinyl ether compound having the structure represented by the general formula (I-2) is obtained by subjecting to the usual separation method and / or purification method as necessary. It is done.
  • the carbon / oxygen molar ratio in all side chains in the polymer is 1.00 or more and less than 2.40.
  • the polymer in which the molar ratio is in the above range controls the composition of the second polymerization initiator which is an alkylene glycol compound or a polyoxyalkylene glycol compound represented by the general formula (III) used as a polymerization initiator.
  • the second polymerization initiator which is an alkylene glycol compound or a polyoxyalkylene glycol compound represented by the general formula (III) used as a polymerization initiator.
  • the carbon / oxygen molar ratio of the second polyvinyl ether compound can be made 1.00 or more and less than 2.40.
  • the amount of the compound having an ethylene glycol residue and / or a propylene glycol residue in the polymerization initiator is preferably about 10 to 100% by mass with respect to the total mass of the polymerization initiator.
  • the lubricating oil for a compression refrigerator preferably contains the first polyvinyl ether compound in an amount of 70% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, and particularly preferably. Contains 100% by mass.
  • a 1st polyvinyl ether compound may be used individually by 1 type, and may be used in combination of 2 or more type. There are no particular restrictions on the type of lubricating base oil other than the polyvinyl ether compound that can be used in combination at a ratio of 30% by mass or less.
  • the second polyvinyl ether compound is preferably 70% by mass or more, more preferably 80% by mass or more, further preferably 90% by mass or more, Particularly preferably, 100% by mass is contained.
  • a 2nd polyvinyl ether compound may be used individually by 1 type, and may be used in combination of 2 or more type. There are no particular restrictions on the type of lubricating base oil other than the polyvinyl ether compound that can be used in combination at a ratio of 30% by mass or less.
  • the lubricating oil for the compression type refrigerator of the first aspect of the present invention and the lubricating oil for the compression type refrigerator of the second aspect of the present invention each have various additives used in conventional lubricating oils, for example, withstand load.
  • a point depressant or the like can be added as desired as long as the object of the present invention is not impaired.
  • load-bearing additives examples include organic sulfur compounds such as monosulfides, polysulfides, sulfoxides, sulfones, thiosulfinates, sulfurized fats and oils, thiocarbonates, thiophenes, thiazoles, and methanesulfonate esters.
  • Phosphoric acid esters phosphoric acid monoesters, phosphoric acid diesters, phosphoric acid triesters (tricresyl phosphate), phosphorous acid monoesters, phosphorous acid diesters, phosphorous acid Phosphite esters such as acid triesters, thiophosphate esters such as thiophosphate triesters, higher fatty acids, hydroxyaryl fatty acids, carboxylic polyhydric alcohol esters, acrylic esters, etc.
  • Fatty acid esters chlorinated hydrocarbons, chlorinated carvone Organic chlorines such as derivatives, fluorinated aliphatic carboxylic acids, fluorinated ethylene resins, fluorinated alkylpolysiloxanes, organic fluorinated such as fluorinated graphite, alcohols such as higher alcohols, naphthene Metal compounds such as acid salts (lead naphthenate), fatty acid salts (lead fatty acid), thiophosphates (zinc dialkyldithiophosphate), thiocarbamates, organomolybdenum compounds, organotin compounds, organogermanium compounds, borate esters There are things.
  • chlorine scavengers include glycidyl ether group-containing compounds, epoxidized fatty acid monoesters, epoxidized oils and fats, and epoxycycloalkyl group-containing compounds.
  • Antioxidants include phenols (2,6-ditertiary butyl-p-cresol), aromatic amines ( ⁇ -naphthylamine), and the like.
  • metal deactivators include benzotriazole derivatives.
  • antifoaming agents include silicone oil (dimethylpolysiloxane) and polymethacrylates.
  • detergent dispersant include sulfonates, phenates, and succinimides.
  • viscosity index improver examples include polymethacrylate, polyisobutylene, ethylene-propylene copolymer, styrene-diene hydrogenated copolymer.
  • the amount of these additives is usually about 0.001 to 10% by mass based on the total amount of the lubricating oil.
  • the method for producing a lubricating oil for a compression refrigeration machine for producing a lubricating oil for a compression refrigeration machine according to the first aspect of the present invention comprises at least one first polymerization initiator selected from methanol, dimethyl acetal, and ethyl methyl acetal. It is produced by polymerizing a vinyl ether monomer represented by the general formula (II-1). That is, by producing the first polyvinyl ether compound contained in the lubricating oil for a compression refrigerator of the first aspect of the present invention by the above method and mixing various additives with the polyvinyl ether compound as necessary. A lubricating oil for a compression type refrigerator according to the first aspect of the present invention is produced.
  • a method for producing a lubricating oil for a compression refrigeration machine for producing a lubricating oil for a compression refrigeration machine according to the second aspect of the present invention comprises the step of converting a vinyl ether monomer represented by the general formula (II-2) into a general formula (III) It is produced by polymerization using a second polymerization initiator which is an alkylene glycol compound or a polyoxyalkylene glycol compound. That is, by producing the second polyvinyl ether-based compound contained in the lubricating oil for the compression refrigerator of the second aspect of the present invention by the above method, and by mixing various additives with the polyvinyl ether-based compound as necessary.
  • a lubricating oil for a compression type refrigerator according to the second aspect of the present invention is produced.
  • the details of the vinyl ether monomer represented by the general formula (II-2) and the alkylene glycol compound or polyoxyalkylene glycol compound represented by the general formula (III) are as described.
  • composition for compression type refrigerators of this invention contains the lubricating oil for compression type refrigerators of 1st this invention, or the lubricating oil for compression type refrigerators of 2nd this invention, and R32 refrigerant
  • the lubricating oil for a compression type refrigerator of the first aspect of the present invention and the lubricating oil for a compression type refrigerator of the second aspect of the present invention are such that the first polyvinyl ether compound and the second polyvinyl ether compound are each an R32 refrigerant. Since it is excellent in compatibility and excellent in lubricating performance, it is used as a lubricating oil in a composition for a compression type refrigerator.
  • the mixing ratio is a mass ratio of the first polyvinyl ether compound or the second polyvinyl ether compound and the R32 refrigerant (polyvinyl ether compound / R32 refrigerant) and is in the range of 1/99 to 99/1. Preferably, the range is 5/95 to 60/40.
  • the hydrofluorocarbon refrigerant includes an unsaturated hydrocarbon refrigerant having a double bond with a saturated fluorinated hydrocarbon refrigerant.
  • saturated fluorinated hydrocarbons include R125 (pentafluoroethane), R134a (1,1,1,2-tetrafluoroethane), R143a (1,1,1-trifluoroethane), and the like.
  • a mixed refrigerant obtained by mixing two or more of these refrigerants can also be used.
  • Examples of the mixed refrigerant include R404A (a mixture of R125, R143a, and R134a), R407A, R407C, and R407E (the above is a mixture of R32, R125, and R134a), R410A (a mixture of R32 and R125), and R507A (a mixture of R125 and R143a). Mixture)).
  • Typical examples of the unsaturated fluorinated hydrocarbon refrigerant include R1225ye (1,2,3,3,3-pentafluoropropene), R1234yf (2,3,3,3-tetrafluoropropene), R1234ze (1 , 3,3,3-tetrafluoropropene), R1234yz (1,2,3,3-tetrafluoropropene) and the like.
  • These unsaturated fluorinated hydrocarbon refrigerants can be used singly or in combination of two or more, and can also be used in combination with the saturated fluorinated hydrocarbon refrigerant.
  • the other refrigerant can also be used as a mixed refrigerant with a fluorine-containing ether refrigerant or a non-fluorine-containing ether refrigerant such as dimethyl ether.
  • the present invention also provides a compression refrigeration apparatus using the lubricating oil for a compression refrigeration machine of the present invention.
  • the lubricating oil for a compression type refrigerator used in the compression type refrigeration apparatus of the present invention includes the lubricating oil for a compression type refrigerator of the first aspect of the present invention, the lubricating oil for a compression type refrigerator of the second aspect of the present invention, and the compression of the present invention.
  • One type is used.
  • Examples of the compression-type refrigerant circulation system included in the compression-type refrigeration apparatus of the present invention include 1) a configuration including at least a compressor, a condenser, an expansion mechanism (such as an expansion valve) and an evaporator, or 2) a compressor and a condensation system. And a compression type refrigerant circulation system having a configuration in which an oven, an expansion mechanism, a dryer, and an evaporator are essential.
  • the compression type refrigerating apparatus of the present invention uses the above-described lubricating oil for a compression type refrigerating machine of the present invention as the R32 refrigerant and lubricating oil (refrigerating machine oil) together with the compression type refrigerant circulation system.
  • the dryer is preferably filled with a desiccant made of zeolite having a pore size of 3.5 mm or less. Examples of the zeolite include natural zeolite and synthetic zeolite.
  • the compression refrigeration apparatus of the present invention if such a desiccant is used, moisture can be efficiently removed without absorbing the refrigerant in the refrigeration cycle, and at the same time, pulverization due to deterioration of the desiccant itself is suppressed, Therefore, there is no fear of abnormal wear or the like due to blockage of piping caused by powdering or intrusion into the compressor sliding portion, and the refrigeration apparatus can be stably operated over a long period of time.
  • the compression type refrigeration apparatus of the present invention constitutes a circulation system as a refrigeration cycle of the compression type refrigeration apparatus, and an internal high-pressure type in which a compressor and an electric motor are covered in one cover or It is an internal low-pressure type hermetic compressor, or an open type compressor, a semi-hermetic type compressor, and a canned motor type compressor in which the drive unit of the compressor is outside.
  • the winding of the stator of the motor is a core wire (magnet wire, etc.) covered with enamel having a glass transition temperature of 130 ° C or higher, or the enamel wire is varnish having a glass transition temperature of 50 ° C or higher.
  • the enamel coating is preferably a single layer or a composite layer of polyesterimide, polyimide, polyamide or polyamideimide.
  • the enamel coating which is laminated with the lower glass transition temperature as the lower layer and the higher glass transition temperature as the upper layer, is excellent in water resistance, softening resistance, and swelling resistance, as well as mechanical strength, rigidity, and insulation. It is expensive and practically useful.
  • the insulating film that is an electrical insulating material for the motor portion is preferably made of a crystalline plastic film having a glass transition temperature of 60 ° C. or higher.
  • the crystalline plastic film preferably has an oligomer content of 5% by mass or less.
  • Suitable examples of such a crystalline plastic having a glass transition temperature of 60 ° C. or higher include polyether nitrile, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, polyether ether ketone, polyethylene naphthalate, polyamideimide, or polyimide. be able to.
  • the motor insulating film may be composed of a single layer of the above-mentioned crystalline plastic film, or may be a composite film in which a plastic layer having a high glass transition temperature is coated on a film having a low glass transition temperature. it can.
  • a vibration isolating rubber material can be disposed inside the compressor.
  • the vibration isolating rubber material is acrylonitrile-butadiene rubber (NBR), ethylene-propylene-diene. Selected from the group of rubbers (EPDM), ethylene-propylene rubber (EPM), hydrogenated acrylonitrile-butadiene rubber (HNBR), silicone rubber, and fluororubber (FKM), particularly with a rubber swelling rate of 10 mass % Or less is preferable.
  • various organic materials for example, lead wire covering materials, binding yarns, enamel wires, insulating films, etc.
  • the organic material those having a tensile strength reduction rate of 20% or less are preferably used.
  • the gasket has a swelling rate of 20% or less in the compressor.
  • Specific examples of the compression refrigeration apparatus of the present invention include a hermetic scroll compressor, hermetic swing compressor, hermetic reciprocating compressor, hermetic rotary compressor, and the like.
  • the applications of the hermetic compressor include electric car air conditioners, air conditioners, refrigerators, and water heaters.
  • the lubricating oil for a compression type refrigerator can be configured as follows.
  • a lubricating oil for a compression type refrigerator using a difluoromethane (R32) refrigerant It is a polymer having a structural unit represented by the general formula (I-1), and includes a first polyvinyl ether compound having a carbon / oxygen molar ratio of 3.0 or more and less than 4.0, Lubricating oil for compression refrigerators.
  • R 1 , R 2 and R 3 each represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and they may be the same or different.
  • R 4 represents a hydrocarbon group having 1 to 20 carbon atoms. R 1 to R 4 may be the same or different for each structural unit.
  • a vinyl ether monomer represented by the general formula (II-1) is polymerized by using one or more first polymerization initiators selected from methanol, dimethyl acetal, and ethyl methyl acetal (1- A method for producing a lubricating oil for a compression refrigeration machine, wherein the lubricating oil for a compression refrigeration machine according to 1) or (1-2) is produced.
  • R 1 , R 2 and R 3 each represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and they may be the same or different.
  • R 4 represents a hydrocarbon group having 1 to 20 carbon atoms.
  • composition for a compression type refrigerator comprising the lubricating oil for a compression refrigerator according to (1-1) or (1-2) and an R32 refrigerant.
  • composition for a compression refrigeration machine comprising a lubricating oil for a compression refrigeration machine obtained by the production method according to (1-3) and an R32 refrigerant.
  • the lubricating oil for a compression type refrigerator Since the lubricating oil for a compression type refrigerator according to the first aspect of the present invention has the above-described configuration, the lubricating oil for a compression type refrigerator that does not separate from the R32 refrigerant even at a temperature lower than ⁇ 20 ° C., a manufacturing method thereof, and the compression The composition for compression type refrigerators using the lubricating oil for type refrigerators can be provided. As a result, the present invention makes it possible to use an R32 refrigerant with a low global warming potential, contributing to the prevention of global warming.
  • the lubricating oil for a compression type refrigerator includes a first polyvinyl ether compound having a specific structural unit and having a carbon / oxygen molar ratio of 3.0 or more and less than 4.0. It was invented based on the knowledge that a lubricating oil can meet its purpose. Moreover, the manufacturing method of the lubricating oil for compression type refrigerators which concerns on 1st this invention WHEREIN: The 1st polyvinyl ether type compound contained in the lubricating oil for compression type refrigerators is used for a specific polymerization initiator and a specific monomer. It was invented based on the knowledge that it can be easily produced by use.
  • the lubricating oil for compression type refrigerators can be comprised as follows. .
  • a lubricating oil for a compression type refrigerator using a difluoromethane (R32) refrigerant A polymer having an alkylene glycol unit or polyoxyalkylene glycol unit and a vinyl ether unit in the molecule and having a molecular weight in the range of 300 to 3,000, and carbon / oxygen in all side chains in the polymer
  • R 1 , R 2 and R 3 each represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and they may be the same or different from each other.
  • R b represents a divalent hydrocarbon group having 2 to 4 carbon atoms.
  • R a is a hydrogen atom, an aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, an aromatic group optionally having a substituent having 1 to 20 carbon atoms, an acyl group having 2 to 20 carbon atoms, Alternatively, it represents an oxygen-containing hydrocarbon group having 2 to 50 carbon atoms.
  • R 5 represents a hydrocarbon group having 1 to 10 carbon atoms.
  • R a , R b , and R 5 may be the same or different when there are a plurality of them.
  • m represents an average value of 1 to 50
  • k represents 1 to 50
  • p represents 0 to 50
  • k and p may each be a block or random when there are a plurality of them.
  • the plurality of R b O may be different even in the same.
  • a vinyl ether monomer represented by the general formula (II-2) is used with a second polymerization initiator which is an alkylene glycol compound or a polyoxyalkylene glycol compound represented by the general formula (III).
  • a method for producing a lubricating oil for a compression refrigeration machine wherein the lubricating oil for a compression refrigeration machine according to any one of (2-1) to (2-4) is produced by polymerization.
  • R 1 , R 2 and R 3 each represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and they may be the same or different from each other.
  • R 5 represents a hydrocarbon group having 1 to 10 carbon atoms.
  • R a is a hydrogen atom, an aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, an aromatic group optionally having a substituent having 1 to 20 carbon atoms, an acyl group having 2 to 20 carbon atoms, Alternatively, it represents an oxygen-containing hydrocarbon group having 2 to 50 carbon atoms.
  • R b represents a divalent hydrocarbon group having 2 to 4 carbon atoms.
  • m represents a number having an average value of 1 to 50.
  • (2-6) A composition for a compression type refrigerator, comprising the lubricating oil for a compression type refrigerator according to any one of (2-1) to (2-4) and an R32 refrigerant.
  • (2-7) A composition for a compression refrigeration machine, comprising a lubricating oil for a compression refrigeration machine obtained by the production method according to (2-5) and an R32 refrigerant.
  • the lubricating oil for a compression refrigeration machine Since the lubricating oil for a compression refrigeration machine according to the second aspect of the present invention has the above-described configuration, the lubricating oil for a compression refrigeration machine having a high viscosity index that does not separate from the R32 refrigerant even at a temperature lower than ⁇ 20 ° C. and its A production method, a composition for a compression type refrigerator using the lubricating oil for the compression type refrigerator, and the like can be provided. As a result, the present invention makes it possible to use an R32 refrigerant with a low global warming potential, contributing to the prevention of global warming and the improvement of energy efficiency in the refrigerator.
  • the lubricating oil for a compression type refrigerator is a polymer having a specific structural unit, and the carbon / oxygen molar ratio in all side chains in the polymer is 1.00 or more and 2.40. It was invented on the basis of the knowledge that the lubricating oil containing the second polyvinyl ether compound which is less than the above can meet the purpose. Moreover, the manufacturing method of the lubricating oil for compression type refrigerators which concerns on 2nd this invention WHEREIN: The 2nd polyvinyl ether type compound contained in the lubricating oil for compression type refrigerators is used for a specific polymerization initiator and a specific monomer. It was invented based on the knowledge that it can be easily produced by use.
  • the examples and comparative examples according to the first invention are shown as Examples 1-1 to 1-3 and Comparative example 1-1, and the examples and comparative examples according to the second invention are It was shown as Example 2-1 to Example 2-4 and Comparative Example 2-1 to Comparative Example 2-2.
  • Each measurement of kinematic viscosity (40 ° C., 100 ° C.), viscosity index (VI), elemental analysis, methoxy residue content and polypropylene group content of the base oil (polyvinyl ether compound) obtained in each example, and The compatibility test for R32 of the base oil obtained in each example was performed as follows.
  • Example 1-1 to 1-3 and Comparative Example 1-1 related to the first present invention the carbon / oxygen molar ratio of the polyvinyl ether compound was determined, and Example 2-1 related to the second present invention was determined.
  • Example 2-1 and 2-2 the carbon / oxygen molar ratio in all side chains in the polyvinyl ether compound was determined.
  • the polyvinyl ether compound produced in each example was used as a sample, and the compatibility with R32 (difluoromethane) refrigerant was examined. Specifically, it was performed as follows. A predetermined amount of the sample was added to the pressure-resistant glass ampoule so that it would be 10% by mass and 20% by mass with respect to R32, and this was connected to the vacuum pipe and R32 gas pipe. The ampule was vacuum degassed at room temperature and then cooled with liquid nitrogen to collect a predetermined amount of R32. Next, the ampule was sealed, and the temperature at which the phase separation started was measured by gradually cooling the low temperature separation temperature from room temperature in a thermostatic bath. The lower the phase separation temperature, the better.
  • R32 difluoromethane
  • Preparation Example 1 [Preparation of catalyst] A 2 L volume autoclave made of SUS316L was charged with 6 g of nickel diatomaceous earth catalyst (manufactured by JGC Catalysts & Chemicals, trade name N113) and 300 g of isooctane. The inside of the autoclave was purged with nitrogen and then purged with hydrogen, and then the temperature was raised at a hydrogen pressure of 3.0 MPaG, maintained at 140 ° C. for 30 minutes, and then cooled to room temperature.
  • nickel diatomaceous earth catalyst manufactured by JGC Catalysts & Chemicals, trade name N113
  • Example 1-1 In a glass 300 cm 3 flask equipped with a stirrer, 40 g of toluene, 8.33 g of methanol, and 0.1 g of boron trifluoride diethyl ether complex were placed. 150 g of ethyl vinyl ether was placed in an Erlenmeyer flask. While stirring the inside of the flask, ethyl vinyl ether was supplied with a pump at 5 cm 3 / min, and when 22.5 g was supplied, the pump was once stopped. After confirming that the temperature in the flask rose due to the reaction, the pump was restarted and the remaining ethyl vinyl ether was supplied over 4 hours.
  • the temperature was controlled with a water bath so that the temperature in the flask was 25 ° C.
  • the mixture was further stirred for 5 minutes after the end of the supply.
  • the reaction mixture was transferred to a washing tank, washed once with 200 ml of a 1% by mass aqueous sodium hydroxide solution, and further washed three times with 200 ml of pure water. Using a rotary evaporator, the solvent and unreacted raw materials were removed under reduced pressure to obtain 150 g of a crude product.
  • the C / O molar ratio was 3.9, and the methoxy group content was 10 mol%.
  • the obtained base oil is a polymer having a structural unit represented by the general formula (I-1), wherein R 1 to R 3 in the general formula (I-1) are hydrogen atoms, and R 4 is an ethyl group. It was a polyvinyl ether compound.
  • Example 1-2 A glass 300 cm 3 flask equipped with a stirrer was charged with 36 g of isooctane, 8.53 g of methanol, and 0.1 g of boron trifluoride diethyl ether complex. In a pressure vessel, 135 g of ethyl vinyl ether and 15 g of methyl vinyl ether were put and sealed. While stirring the inside of the flask, a mixed liquid of ethyl vinyl ether and methyl vinyl ether was supplied by a pump at 5 cm 3 / min, and when 22 g was supplied, the pump was once stopped. After confirming that the temperature in the flask rose due to the reaction, the pump was restarted and the remaining vinyl ether mixture was supplied over 4 hours.
  • the obtained base oil is a polymer having a structural unit represented by the general formula (I-1), wherein R 1 to R 3 in the general formula (I-1) are hydrogen atoms, and R 4 is a methyl group.
  • Example 1-3 38 g of toluene, 20.3 g of dimethyl acetal, and 0.1 g of boron trifluoride diethyl ether complex were placed in a glass 300 cm 3 flask equipped with a stirrer. 130 g of ethyl vinyl ether was placed in an Erlenmeyer flask. While stirring the inside of the flask, ethyl vinyl ether was supplied by a pump over 4 hours. During this time, the temperature was controlled with a water bath so that the temperature in the flask was 25 ° C. The mixture was further stirred for 5 minutes after the end of the supply. Next, washing and hydrogenation reaction were carried out in the same manner as in Example 1-1 to obtain 100 g of base oil.
  • the base oil had a C / O molar ratio of 3.8 and a methoxy group content of 20 mol%.
  • the obtained base oil is a polymer having a structural unit represented by the general formula (I-1), wherein R 1 to R 3 in the general formula (I-1) are hydrogen atoms, and R 4 is an ethyl group. It was a polyvinyl ether compound.
  • Comparative Example 1-1 A glass 300 cm 3 flask equipped with a stirrer was charged with 24 g of isooctane, 7.67 g of ethanol, and 0.1 g of boron trifluoride diethyl ether complex. 90 g of ethyl vinyl ether was placed in an Erlenmeyer flask. While stirring the inside of the flask, ethyl vinyl ether was supplied with a pump at 5 cm 3 / min, and when 14 g was supplied, the pump was once stopped. After confirming that the temperature in the flask rose due to the reaction, the pump was restarted and the remaining vinyl ether was supplied over 4 hours.
  • the obtained base oil was a polyvinyl ether compound in which R 1 to R 3 in formula (I-1) are hydrogen atoms and R 4 is an ethyl group.
  • Example 2-1 In a glass 300 cm 3 flask equipped with a stirrer, 43 g of toluene, 19.8 g of ethylene glycol monomethyl ether, and 0.1 g of boron trifluoride diethyl ether complex were placed. 150 g of ethyl vinyl ether was placed in an Erlenmeyer flask. While stirring the inside of the flask, ethyl vinyl ether was supplied with a pump at 5 cm 3 / min, and when 22 g was supplied, the pump was once stopped. After confirming that the temperature in the flask rose due to the reaction, the pump was restarted and the remaining vinyl ether was supplied over 4 hours.
  • the temperature was controlled with a water bath so that the temperature in the flask was 25 ° C.
  • the mixture was further stirred for 5 minutes after the end of the supply.
  • the reaction mixture was transferred to a washing tank, washed once with 200 ml of a 1% by mass aqueous sodium hydroxide solution, and further washed three times with 200 ml of pure water. Using a rotary evaporator, the solvent and unreacted raw materials were removed under reduced pressure to obtain 150 g of a crude product.
  • the C / O molar ratio in all side chains in the polymer was 1.89, and the calculated molecular weight based on the theoretical structural formula of the base oil estimated from the charge was 564.
  • the ethylene glycol residue content in this base oil was 13.3 mass%.
  • the obtained base oil is a polymer having a structure represented by the general formula (I-2), wherein R 1 to R 3 of the alkylene glycol unit in the general formula (I-2) are hydrogen atoms, and R a is It was a polyvinyl ether compound in which a methyl group, R b was an ethylene group, m was 1, R 1 to R 3 of the vinyl ether unit were hydrogen atoms, and R 5 was an ethyl group.
  • Example 2-2 To a glass 300 cm 3 flask equipped with a stirrer, 48 g of toluene, 42.7 g of triethylene glycol monomethyl ether, and 0.1 g of boron trifluoride diethyl ether complex were placed. 150 g of ethyl vinyl ether was placed in an Erlenmeyer flask. While stirring the inside of the flask, ethyl vinyl ether was supplied with a pump at 5 cm 3 / min, and when 22 g was supplied, the pump was once stopped. After confirming that the temperature in the flask rose due to the reaction, the pump was restarted and the remaining vinyl ether was supplied over 4 hours.
  • Example 2 the temperature was controlled with a water bath so that the temperature in the flask was 25 ° C. The mixture was further stirred for 5 minutes after the end of the supply. Next, washing and hydrogenation reaction were performed in the same manner as in Example 1 to obtain 150 g of base oil.
  • the C / O molar ratio in all side chains in this base oil polymer was 1.91, and the calculated molecular weight based on the theoretical structural formula of the base oil estimated from the charge was 696.
  • the triethylene glycol residue content in this base oil was 23.4% by mass.
  • the obtained base oil is a polymer having a structure represented by the general formula (I-2), wherein R 1 to R 3 of the alkylene glycol unit in the general formula (I-2) are hydrogen atoms, and R a is It was a polyvinyl ether compound having a methyl group, R b is an ethylene group, m is 3; R 1 to R 3 of the vinyl ether unit are hydrogen atoms, and R 5 is an ethyl group.
  • Example 2-3 A glass 300 cm 3 flask equipped with a stirrer was charged with 37 g of toluene, 46.2 g of polyethylene glycol (PEG 200), and 0.2 g of boron trifluoride diethyl ether complex. 100 g of ethyl vinyl ether was placed in an Erlenmeyer flask. While stirring the inside of the flask, ethyl vinyl ether was supplied by a pump at 5 cm 3 / min, and when 40 g was supplied, the pump was once stopped. After confirming that the temperature in the flask rose due to the reaction, the pump was restarted and the remaining vinyl ether was supplied over 4 hours.
  • PEG 200 polyethylene glycol
  • boron trifluoride diethyl ether complex 100 g was placed in an Erlenmeyer flask. While stirring the inside of the flask, ethyl vinyl ether was supplied by a pump at 5 cm 3 / min, and when 40 g was supplied, the pump
  • Example 2-1 The temperature was controlled with a water bath so that the temperature in the flask was 25 ° C. The mixture was further stirred for 5 minutes after the end of the supply. Next, washing and hydrogenation reaction were carried out in the same manner as in Example 2-1, to obtain 70 g of base oil.
  • the C / O molar ratio in all side chains in this base oil polymer was 2.18, and the calculated molecular weight based on the theoretical structural formula of the base oil estimated from the charge was 796.
  • the base glycol had a polyethylene glycol residue content of 25.8% by mass.
  • the obtained base oil is a polymer having a structure represented by the general formula (I-2), wherein R 1 to R 3 of the alkylene glycol unit in the general formula (I-2) are hydrogen atoms, and R a is It was a polyvinyl ether compound in which a methyl group, R b was an ethylene group, m was 4, R 1 to R 3 of the vinyl ether unit were hydrogen atoms, and R 5 was an ethyl group.
  • Example 2-4 In a glass 300 cm 3 flask equipped with a stirrer, 54 g of isooctane, 65.2 g of polypropylene glycol monomethyl ether (average polymerization number: 3), and 0.1 g of boron trifluoride diethyl ether complex were placed. 150 g of ethyl vinyl ether was placed in an Erlenmeyer flask. While stirring the inside of the flask, ethyl vinyl ether was supplied by a pump at 5 cm 3 / min, and when 40 g was supplied, the pump was once stopped. After confirming that the temperature in the flask rose due to the reaction, the pump was restarted and the remaining vinyl ether was supplied over 4 hours.
  • Example 2-1 the temperature was controlled with a water bath so that the temperature in the flask was 25 ° C. The mixture was further stirred for 5 minutes after the end of the supply. Next, washing and hydrogenation were carried out in the same manner as in Example 2-1, to obtain 150 g of base oil.
  • the C / O molar ratio in all side chains in this base oil polymer was 2.20, and the calculated molecular weight based on the theoretical structural formula of the base oil estimated from the charge was 594.
  • the polypropylene glycol residue content rate in this base oil was 34.5 mass%.
  • the obtained base oil is a polymer having a structure represented by the general formula (I-2), wherein R 1 to R 3 of the alkylene glycol unit in the general formula (I-2) are hydrogen atoms, and R a is It was a polyvinyl ether compound in which a methyl group, R b is a propylene group, m is 3; R 1 to R 3 of the vinyl ether unit are hydrogen atoms, and R 5 is an ethyl group.
  • Comparative Example 2-1 A glass 300 cm 3 flask equipped with a stirrer was charged with 74 g of isooctane, 146 g of polypropylene glycol monomethyl ether (average polymerization number: 7), and 0.1 g of boron trifluoride diethyl ether complex. 150 g of ethyl vinyl ether was placed in an Erlenmeyer flask. While stirring the inside of the flask, ethyl vinyl ether was supplied at a rate of 5 cm 3 / min with a pump, and when 40 g was supplied, the pump was once stopped. After confirming that the temperature in the flask rose due to the reaction, the pump was restarted and the remaining vinyl ether was supplied over 4 hours.
  • Example 2-1 The temperature was controlled with a water bath so that the temperature in the flask was 25 ° C. The mixture was further stirred for 5 minutes after the end of the supply. Next, washing and hydrogenation were performed in the same manner as in Example 2-1, to obtain 160 g of base oil.
  • the C / O molar ratio in all side chains in this base oil polymer was 2.46, and the calculated molecular weight based on the theoretical structural formula of the base oil estimated from the charge was 826.
  • the polypropylene glycol residue content in this base oil was 52.9% by mass.
  • the obtained base oil is a polymer having a structure represented by the general formula (I-2), wherein R 1 to R 3 of the alkylene glycol unit in the general formula (I-2) are hydrogen atoms, and R a is
  • the polyvinyl ether compound was a methyl group, R b was a propylene group, m was 7; R 1 to R 3 of the vinyl ether unit were hydrogen atoms, and R 5 was an ethyl group.
  • Comparative Example 2-2 A glass 300 cm 3 flask equipped with a stirrer was charged with 62 g of isooctane, 97.5 g of polypropylene glycol monomethyl ether (average polymerization number: 7), and 0.1 g of boron trifluoride diethyl ether complex. 150 g of ethyl vinyl ether was placed in an Erlenmeyer flask. While stirring the inside of the flask, ethyl vinyl ether was supplied by a pump at 5 cm 3 / min, and when 27 g was supplied, the pump was once stopped. After confirming that the temperature in the flask rose due to the reaction, the pump was restarted and the remaining vinyl ether was supplied over 4 hours.
  • Example 2-1 the temperature was controlled with a water bath so that the temperature in the flask was 25 ° C. The mixture was further stirred for 5 minutes after the end of the supply. Next, washing and hydrogenation reaction were performed in the same manner as in Example 2-1, to obtain 180 g of base oil.
  • the C / O molar ratio in all side chains in this base oil polymer was 2.43, and the calculated molecular weight based on the theoretical structural formula of the base oil estimated from the charge was 1041.
  • the polypropylene glycol residue content rate in this base oil was 42.0 mass%.
  • the obtained base oil is a polymer having a structure represented by the general formula (I-2), wherein R 1 to R 3 of the alkylene glycol unit in the general formula (I-2) are hydrogen atoms, and R a is
  • the polyvinyl ether compound was a methyl group, R b was a propylene group, m was 7; R 1 to R 3 of the vinyl ether unit were hydrogen atoms, and R 5 was an ethyl group.
  • R32 refrigerant having a small global warming potential can be used, which can contribute to prevention of global warming. Furthermore, according to the lubricating oil for a compression type refrigerator of the second aspect of the present invention, energy efficiency in the refrigerator due to low viscosity and high VI is improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Emergency Medicine (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Lubricants (AREA)

Abstract

 本発明は、ジフルオロメタン(R32)冷媒を使用する圧縮型冷凍機用潤滑油であって、特定構造の構成単位を有する重合体であり、かつ炭素/酸素モル比が3.0以上4.0未満である第1のポリビニルエーテル系化合物を含むことを特徴とする、圧縮型冷凍機用潤滑油である。

Description

圧縮型冷凍機用潤滑油
 本発明は圧縮型冷凍機用潤滑油に関し、さらに詳しくはジフルオロメタン(R32)冷媒を用いた圧縮型冷凍機用潤滑油及びその製造方法、圧縮型冷凍機用組成物、並びにそれを用いた圧縮型冷凍装置に関するものである。
 従来、冷凍機、例えば圧縮機、凝縮器、膨張弁及び蒸発器からなる圧縮式冷凍サイクルには、冷媒としてHFC(ハイドロフルオロカーボン)、例えば、1,1,1,2-テトラフルオロエタン(R134a)をはじめ、環境汚染のおそれが少ない各種の所謂代替フロンが使われている。しかしながら、このようなHFCにおいても、地球温暖化能が高いなどの問題があり、近年このような問題のない冷媒の使用等が考えられてきた。
 また、地球温暖化に対する影響が少ない冷媒としては、炭酸ガス(二酸化炭素)、アンモニア、炭化水素ガスに加えて、R32(ジフルオロメタン)冷媒も代替冷媒として検討されている。
 例えば、炭酸ガス(二酸化炭素)は環境に対して無害であるものの、HFCに比べて圧力が高い等の問題点がある。アンモニアや炭化水素はそれぞれ毒性、可燃性の面から採用が進んでいない。
 一方でR32冷媒は、HFC冷媒に比べ地球温暖化係数が低く、冷媒としての特性が優れていることから次世代の冷媒としてその適用が検討されている。
 一般に、圧縮型冷凍機は少なくとも圧縮機、凝縮器、膨張機構(膨張弁など)、蒸発器などで構成され、このような圧縮型冷凍機潤滑油においては冷凍装置の潤滑油である冷凍機油と冷媒との混合液体が、この密閉された系内を循環する構造となっている。このような圧縮型冷凍機においては、装置の種類にもよるが、一般に、圧縮機内では高温、冷却器内では低温となるので、冷媒及び潤滑油は低温から高温まで幅広い温度範囲内で相分離することなく、この系内を循環することが必要である。
 一般に、冷媒と潤滑油が相分離せずに相溶している温度領域としては、-20℃未満から0℃以上の範囲であることが好ましい。もし、冷凍機の運転中に相分離が生じると、装置の寿命や効率に著しい悪影響を及ぼす。例えば、圧縮機部分で冷媒と潤滑油の相分離が生じると、可動部が潤滑不良となって、焼き付きなどを起こして装置の寿命を著しく短くし、一方蒸発器内で相分離が生じると、粘度の高い潤滑油が存在するため熱交換の効率低下をもたらす。また、圧縮型冷凍機用潤滑油は、冷凍機の可動部分を潤滑する目的で用いられることから、潤滑性能も当然重要となる。
 そこで、R32冷媒と共に用いるのに適した新規な冷凍機油の開発が進められており、ポリビニルエーテル(PVE)もその候補として考えられている。
 しかしながら、R32冷媒を低温機器で使おうとする場合、従来から知られているPVEを潤滑油として用いた場合には低温での相溶性が不足している。したがって、R32冷媒を低温機器で使用する際には、潤滑油に-20℃より低温でも冷媒と分離しない相溶性が求められ、種々の検討がなされてきた。
 例えば、炭素/酸素モル比(C/Oモル比)が4.2~7.0であるポリビニルエーテル系化合物を用いた冷凍機用潤滑油が開示されているが(例えば、特許文献1参照)、これにはR32冷媒との相溶性が記載されているものの、低温側二相分離温度が高く、低温機器に使用するためには、必ずしも十分な相溶性ではない。
 また、側鎖にオキシアルキレン構造を導入したポリビニルエーテル系化合物を冷凍機用潤滑油として用いることも検討され(例えば、特許文献2参照)、これにはR32冷媒との相溶性が開示されているが相溶性は必ずしも十分ではない。
 さらに、側鎖に異なるエーテル構造を有する構成単位を共重合させたポリビニルエーテル共重合体を冷凍機用潤滑油として用いることも検討されているが(例えば、特許文献3参照)、この場合にもポリビニルエーテル系化合物とR32冷媒との相溶性は必ずしも十分ではない。
 他方、分子中にポリアルキレングリコール単位とポリビニルエーテル単位とを含む化合物を冷凍機用潤滑油が開示されているが(例えば、特許文献4、5参照)、これらはCO2冷媒用の潤滑油であり、R32冷媒との相溶性データは開示されていない。
 また、特許文献5には、C/Oモル比が4.0以下のポリビニルエーテル系化合物が自然冷媒(CO2、NH3、C38)との相溶性に優れるとの技術が開示されているが、R32冷媒に関しては触れられていない。
 このように、これまでに開示された潤滑油では、いずれも-20℃までにR32冷媒と分離してしまうという問題があった。
特開平8-193196号公報 特開平6-128578号公報 特開平9-272886号公報 WO2008/108365号パンフレット WO2007/029746号パンフレット
 本発明は、このような状況下になされたもので、-20℃より低温においても、R32冷媒と分離しない圧縮型冷凍機用潤滑油及びその製造方法、並びに該圧縮型冷凍機用潤滑油を用いた圧縮型冷凍機用組成物等を提供することを目的とするものである。
 第1の本発明は、
(1)ジフルオロメタン(R32)冷媒を使用する圧縮型冷凍機用潤滑油であって、
 一般式(I-1)で表される構成単位を有する重合体であり、かつ炭素/酸素モル比が3.0以上4.0未満である第1のポリビニルエーテル系化合物を含むことを特徴とする、圧縮型冷凍機用潤滑油である。
Figure JPOXMLDOC01-appb-C000005
 式中、R1、R2及びR3は、それぞれ水素原子又は炭素数1~8の炭化水素基を示し、それらはたがいに同一でも異なっていてもよい。R4は炭素数1~20の炭化水素基を示す。R1~R4は構成単位毎に同一であってもそれぞれ異なっていてもよい。
 第1の本発明は、
(2)前記ポリビニルエーテル系化合物が、重合体中の全側鎖に対してメトキシ基を1モル%以上含むことが好ましい。
 第2の本発明は、
 ジフルオロメタン(R32)冷媒を使用する圧縮型冷凍機用潤滑油であって、
 分子中にアルキレングリコール単位又はポリオキシアルキレングリコール単位と、ビニルエーテル単位とを有し、分子量が300~3,000の範囲にある重合体であり、かつ該重合体における全側鎖中の炭素/酸素モル比が1.00以上2.40未満である第2のポリビニルエーテル系化合物を含むことを特徴とする、圧縮型冷凍機用潤滑油である。
 第2の本発明は、
(4)前記第2のポリビニルエーテル系化合物が、一般式(I-2)で表される構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000006
 式中、R1、R2及びR3は、それぞれ水素原子又は炭素数1~8の炭化水素基を示し、それらは互いに同一でも異なってもよい。Rbは炭素数2~4の二価の炭化水素基を示す。Raは、水素原子、炭素数1~20の脂肪族もしくは脂環式炭化水素基、炭素数1~20の置換基を有してもよい芳香族基、炭素数2~20のアシル基、又は炭素数2~50の酸素含有炭化水素基を示す。R5は炭素数1~10の炭化水素基を示す。Ra、Rb、及びR5は、それらが複数ある場合には、それぞれ同一であっても異なっていてもよい。
 mはその平均値が1~50、kは1~50、pは0~50示し、kおよびpはそれらが複数ある場合にはそれぞれブロックでもランダムでもよい。また、複数のRbOがある場合には、複数のRbOは同一であっても異なっていてもよい。
 第2の本発明は、更に、
(5)前記第2のポリビニルエーテル系化合物が、重合体中にエチレングリコール残基及び/又はプロピレングリコール残基を含むことが好ましく、
(6)前記第2のポリビニルエーテル系化合物が、全質量に対してエチレングリコール残基及び/又はプロピレングリコール残基を5質量%以上50質量%以下含むことが好ましい。
 第1の本発明に係る圧縮型冷凍機用潤滑油は、下記の圧縮型冷凍機用潤滑油の製造方法により製造される。すなわち、当該製造方法は、
(7)メタノール、ジメチルアセタール、エチルメチルアセタールから選ばれる1種類以上の第1の重合開始剤を用い、一般式(II-1)で表されるビニルエーテル系モノマーを重合して(1)又は(2)に記載の圧縮型冷凍機用潤滑油を製造する圧縮型冷凍機用潤滑油の製造方法である。
Figure JPOXMLDOC01-appb-C000007
 式中、R1、R2及びR3は、それぞれ水素原子又は炭素数1~8の炭化水素基を示し、それらはたがいに同一でも異なっていてもよい。R4は炭素数1~20の炭化水素基を示す。
 第2の本発明に係る圧縮型冷凍機用潤滑油は、下記の圧縮型冷凍機用潤滑油の製造方法により製造される。すなわち、当該製造方法は、
(8)一般式(II-2)で表されるビニルエーテル系モノマーを、一般式(III)で表されるアルキレングリコール化合物又はポリオキシアルキレングリコール化合物である第2の重合開始剤を用いて重合して(3)~(6)のいずれかに記載の圧縮型冷凍機用潤滑油を製造する圧縮型冷凍機用潤滑油の製造方法である。
Figure JPOXMLDOC01-appb-C000008
 式中、R1、R2及びR3は、それぞれ水素原子又は炭素数1~8の炭化水素基を示し、それらは互いに同一でも異なってもよい。R5は炭素数1~10の炭化水素基を示す。Raは、水素原子、炭素数1~20の脂肪族もしくは脂環式炭化水素基、炭素数1~20の置換基を有してもよい芳香族基、炭素数2~20のアシル基、又は炭素数2~50の酸素含有炭化水素基を示す。Rbは炭素数2~4の二価の炭化水素基を示す。mはその平均値が1~50の数を示す。
 第1の本発明に係る圧縮型冷凍機用潤滑油及び第2の本発明に係る圧縮型冷凍機用潤滑油は、R32冷媒と共に圧縮型冷凍機用組成物を構成してもよい。すなわち、本発明の圧縮型冷凍機用組成物は、
(9)(1)~(6)のいずれかに記載の圧縮型冷凍機用潤滑油と、R32冷媒とを含むことを特徴とする圧縮型冷凍機用組成物である。また、圧縮型冷凍機用組成物は、
(10)(7)又は(8)に記載の製造方法により得られた圧縮型冷凍機用潤滑油と、R32冷媒とを含むことを特徴とする圧縮型冷凍機用組成物であってもよい。
 第1の本発明に係る圧縮型冷凍機用潤滑油及び第2の本発明に係る圧縮型冷凍機用潤滑油を用いて圧縮型冷凍装置を構成してもよい。すなわち、本発明の圧縮型冷凍装置は、
(11)(1)~(6)のいずれかに記載の圧縮型冷凍機用潤滑油、及び/又は、(7)若しくは(8)に記載の製造方法により得られた圧縮型冷凍機用潤滑油を用いることを特徴とする圧縮型冷凍装置である。
 本発明によれば、-20℃より低温においても、R32冷媒と分離しない圧縮型冷凍機用潤滑油及びその製造方法、並びに該圧縮型冷凍機用潤滑油を用いた圧縮型冷凍機用組成物等を提供することができる。結果として、本発明は地球温暖化係数の少ないR32冷媒の使用を可能とし、地球温暖化防止に寄与する。
 まず、本発明の圧縮型冷凍機用潤滑油について説明する。
[圧縮型冷凍機用潤滑油及びその製造方法]
 本発明の圧縮型冷凍機用潤滑油は、次の第1の本発明に係る圧縮型冷凍機用潤滑油と、第2の本発明に係る圧縮型冷凍機用潤滑油とがある。
 第1の本発明に係る圧縮型冷凍機用潤滑油は、ジフルオロメタン(R32)冷媒を使用する圧縮型冷凍機用潤滑油であって、一般式(I-1)で表される構成単位を有する重合体であり、かつ炭素/酸素モル比が3.0以上4.0未満である第1のポリビニルエーテル系化合物を含むことを特徴とする、圧縮型冷凍機用潤滑油である。
Figure JPOXMLDOC01-appb-C000009
 式中、R1、R2及びR3は、それぞれ水素原子又は炭素数1~8の炭化水素基を示し、それらはたがいに同一でも異なっていてもよい。R4は炭素数1~20の炭化水素基を示す。R1~R4は構成単位毎に同一であってもそれぞれ異なっていてもよい。
 第1の本発明に係る圧縮型冷凍機用潤滑油が上記構成であることで、-20℃より低温においても、R32冷媒と分離しない圧縮型冷凍機用潤滑油とすることができる。
 第2の本発明に係る圧縮型冷凍機用潤滑油は、ジフルオロメタン(R32)冷媒を使用する圧縮型冷凍機用潤滑油であって、分子中にアルキレングリコール単位又はポリオキシアルキレングリコール単位と、ビニルエーテル単位とを有し、分子量が300~3,000の範囲にある重合体であり、かつ該重合体における全側鎖中の炭素/酸素モル比が1.00以上2.40未満である第2のポリビニルエーテル系化合物を含むことを特徴とする、圧縮型冷凍機用潤滑油である。
 第2の本発明に係る圧縮型冷凍機用潤滑油が上記構成であることで、-20℃より低温においても、R32冷媒と分離しない上、粘度指数の高い圧縮型冷凍機用潤滑油とすることができる。
 すなわち、第1の本発明に係る圧縮型冷凍機用潤滑油、及び第2の本発明に係る圧縮型冷凍機用潤滑油は、共にジフルオロメタン(R32)冷媒を使用する圧縮型冷凍機用潤滑油であり、基油として、特定の構造及び特定の炭素/酸素モル比を有するポリビニルエーテル系化合物を含む。
 以下、圧縮型冷凍機用潤滑油に用いるポリビニルエーテル系化合物について、詳細に説明する。
(ポリビニルエーテル系化合物)
1.第1のポリビニルエーテル系化合物
 第1の本発明の圧縮型冷凍機用潤滑油において、基油として用いられる第1のポリビニルエーテル系化合物は、上記一般式(I-1)で表される構成単位を有する重合体である。
 また、圧縮型冷凍機用潤滑油とR32との相溶性の観点から、第1のポリビニルエーテル系化合物の炭素/酸素モル比は、3.0以上4.0未満である。炭素/酸素モル比が4.0以上では、-20℃より低温において、R32冷媒と分離してしまう。また、炭素/酸素モル比が3.0未満では、ポリビニルエーテル系化合物の構成が第2のポリビニルエーテル系化合物の構成である場合を除き、粘度指数及び体積抵抗率が小さくなり好ましくない。
 第1のポリビニルエーテル系化合物の炭素/酸素モル比は3.5以上3.9以下であることが好ましく、3.7以上3.9以下であることがより好ましい。
 なお、第1のポリビニルエーテル系化合物の炭素/酸素モル比は、第1のポリビニルエーテル系化合物について元素分析を行い、測定結果から算出することができる。
 既述のように、第1のポリビニルエーテル系化合物は、一般式(I-1)で表される構成単位を有する重合体であり、一般式(I-1)中のR1~R3及びOR4が、重合体の側鎖として構成される。
 第1の本発明の圧縮型冷凍機用潤滑油は、圧縮型冷凍機用潤滑油とR32冷媒との相溶性の観点から、前記第1のポリビニルエーテル系化合物が、重合体中の全側鎖のモル量に対してメトキシ基を1モル%以上含むことが好ましい。
 さらに、該メトキシ基は、第1のポリビニルエーテル系化合物中に5モル%以上含まれることがより好ましい。
 上記一般式(I-1)におけるR1、R2及びR3は、それぞれ水素原子又は炭素数1~8の炭化水素基を示し、それらはたがいに同一でも異なっていてもよい。
 ここで、炭素数1~8の炭化水素基とは、具体的には、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基などのアルキル基;シクロペンチル基、シクロヘキシル基、各種メチルシクロヘキシル基、各種エチルシクロヘキシル基、各種ジメチルシクロヘキシル基などのシクロアルキル基;フェニル基、各種メチルフェニル基、各種エチルフェニル基、各種ジメチルフェニル基などのアリール基;ベンジル基、各種フェニルエチル基、各種メチルベンジル基などのアリールアルキル基を示す。
 一般式(I-1)におけるR1、R2及びR3は、以上の中でも、特に水素原子が好ましい。
 さらに、一般式(I-1)におけるR4は、炭素数1~20の炭化水素基を示す。
 炭素数1~20の炭化水素基とは、具体的には、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基などのアルキル基;シクロペンチル基、シクロヘキシル基、各種メチルシクロヘキシル基、各種エチルシクロヘキシル基、各種プロピルシクロヘキシル基、各種ジメチルシクロヘキシル基などのシクロアルキル基;フェニル基、各種メチルフェニル基、各種エチルフェニル基、各種ジメチルフェニル基、各種プロピルフェニル基、各種トリメチルフェニル基、各種ブチルフェニル基、各種ナフチル基などのアリール基;ベンジル基、各種フェニルエチル基、各種メチルベンジル基、各種フェニルプロピル基、各種フェニルブチル基のアリールアルキル基などを示す。
 なお、一般式(I-1)におけるR~R4は、構成単位毎に同一であっても異なっていてもよい。すなわち、本発明の潤滑油を構成するポリビニルエーテル系化合物は、R~R4のいずれか、又は全部が、構成単位毎に異なる共重合体であってもよい。
 前記一般式(I-1)で表される構成単位を有する第1のポリビニルエーテル系化合物の重合度は、所望する動粘度に応じて適宜選択すればよい。通常は、第1のポリビニルエーテル系化合物の40℃における動粘度が、好ましくは5~1,000mm2/s、より好ましくは7~300mm2/s、さらに好ましくは10~150mm2/sになるように、第1のポリビニルエーテル系化合物の重合度が選ばれる。
 前述した性状を有する第1のポリビニルエーテル系化合物は、次のようにして製造することができる。すなわち、メタノール、ジメチルアセタール、エチルメチルアセタールから選ばれる1種類以上の第1の重合開始剤を用い、一般式(II-1)で表されるビニルエーテル系モノマーを、従来公知の方法で重合し、重合体とすることで、第1のポリビニルエーテル系化合物を製造することができる。得られた重合体は、更に水素添加をしてもよい。
Figure JPOXMLDOC01-appb-C000010
 式中、R1、R2、R3及びR4は、一般式(II-1)におけるR1、R2、R3及びR4と同じである。すなわち、R1、R2及びR3は、それぞれ水素原子又は炭素数1~8の炭化水素基を示し、それらはたがいに同一でも異なっていてもよい。R4は炭素数1~20の炭化水素基を示す。R1~R4は構成単位毎に同一であってもそれぞれ異なっていてもよい。
 一般式(II-1)で表されるビニルエーテル系モノマーとしては、例えばビニルメチルエーテル、ビニルエチルエーテル、ビニル-n-プロピルエーテル、ビニル-イソプロピルエーテル、ビニル-n-ブチルエーテル、ビニル-イソブチルエーテル、ビニル-sec-ブチルエーテル、ビニル-tert-ブチルエーテル、ビニル-n-ペンチルエーテル、ビニル-n-ヘキシルエーテル等が挙げられる。
 第1のポリビニルエーテル系化合物は、一般式(II-1)で表されるビニルエーテル系モノマーをラジカル重合、カチオン重合、放射線重合などによって製造することができる。例えば、一般式(II-1)で表されるビニルエーテル系モノマーを、以下に示す方法を用いて重合することにより、所望の粘度の重合体が得られる。重合の開始には、メタノール、ジメチルアセタール、エチルメチルアセタールから選ばれる1種類以上の第1の重合開始剤を少なくとも用いる。一般式(II-1)で表されるビニルエーテル系モノマーの重合のために、更に、必要に応じて、次の成分を用いてもよい。例えば、ブレンステッド酸類、ルイス酸類又は有機金属化合物類に対して、水、アルコール類、フェノール類、アセタール類又はビニルエーテル類とカルボン酸との付加物を組み合わせたものを使用することができる。ブレンステッド酸類としては、例えばフッ化水素酸、塩化水素酸、臭化水素酸、ヨウ化水素酸、硝酸、硫酸、トリクロロ酢酸、トリフルオロ酢酸などが挙げられる。ルイス酸類としては、例えば三フッ化ホウ素、三塩化アルミニウム、三臭化アルミニウム、四塩化スズ、二塩化亜鉛、塩化第二鉄などが挙げられ、これらのルイス酸類の中では、特に三フッ化ホウ素が好適である。また、有機金属化合物としては、例えばジエチル塩化アルミニウム、エチル塩化アルミニウム、ジエチル亜鉛などが挙げられる。
 これらと組み合わせる水、アルコール類、フェノール類、アセタール類又はビニルエーテル類とカルボン酸との付加物は任意のものを選択することができる。ここで、アルコール類としては、既述の例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、sec-ブタノール、tert-ブタノール、各種ペンタノール、各種ヘキサノール、各種ヘプタノール、各種オクタノールなどの炭素数1~20の飽和脂肪族アルコール;アリルアルコールなどの炭素数3~10の不飽和脂肪族アルコールなどが挙げられる。また、アセタール類としてはジメチルアセタール、エチルメチルアセタールが挙げられる。
 ただし、第1の本発明においては、既述のように、重合開始剤として、メタノール、ジメチルアセタール、エチルメチルアセタールから選ばれる1種類以上を必ず含むこととする。
 一般式(II-1) で表されるビニルエーテル系モノマーの重合は、原料及び重合開始剤の種類にもよるが、-80~150℃の間で開始することができ、通常は-80~50℃の範囲の温度で行うことができる。また、重合反応は反応開始後10秒から10時間程度で終了する。この重合反応における分子量の調節は、一般式(II-1)で表されるビニルエーテル系モノマーに対し、水、アルコール類、フェノール類、アセタール類及びビニルエーテル類とカルボン酸との付加物の量を多くすることで平均分子量の低い重合体が得られる。さらに上記ブレンステッド酸類やルイス酸類の量を多くすることで平均分子量の低い重合体が得られる。この重合反応は、通常溶媒の存在下に行われる。
 溶媒は、反応原料を必要量溶解し、かつ反応に不活性なものであれば特に制限はないが、例えば、ヘキサン、ベンゼン、トルエンなどの炭化水素系の溶媒、及びエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフランなどのエーテル系の溶媒を好適に使用することができる。なお、この重合反応はアルカリを加えることによって停止することができる。重合反応終了後、必要に応じて通常の分離方法、及び/又は精製方法を施すことにより、目的とする一般式(I-1)で表される構成単位を有する第1のポリビニルエーテル系化合物が得られる。
 第1のポリビニルエーテル系化合物は、炭素/酸素モル比が3.0以上4.0未満にある。該モル比が前記範囲にある重合体は、原料モノマーである一般式(II-1)で表されるビニルエーテル系モノマーの炭素/酸素モル比を調節することによって製造することができる。すなわち、原料モノマーの炭素/酸素モル比が大きければ、炭素/酸素モル比の大きい重合体が得られ、原料モノマーの炭素/酸素モル比が小さければ、炭素/酸素モル比の小さな重合体が得られる傾向にある。また、炭素/酸素モル比の異なる複数の原料モノマーを用いた場合は、全原料モノマー中、炭素/酸素モル比が大きい原料モノマーの比率が大きければ、炭素/酸素モル比の大きな重合体が得られ、炭素/酸素モル比の小さい原料モノマーの比率が大きければ、炭素/酸素モル比の小さな重合体が得られる傾向にある。
 この観点から、原料モノマー中に一般式(II-1) で表されるビニルエーテル系モノマーを含ませることにより、第1のポリビニルエーテル系化合物の炭素/酸素モル比を3.0以上4.0未満とすることができる。
 また、重合開始剤として使用する水、アルコール類、フェノール類及びアセタール類等と、モノマー類との組合せによっても、炭素/酸素モル比を調整することが可能である。
 すなわち、一般式(II-1) で表されるビニルエーテル系モノマーより炭素/酸素モル比が大きいアルコール類、フェノール類などを重合開始剤として使用すれば、原料モノマーの炭素/酸素モル比より炭素/酸素モル比の大きな重合体が得られ、一方、メタノール、メトキシエタノール、ジメチルアセタールなどの炭素/酸素モル比の小さなアルコール類やアセタール類を用いれば、原料モノマーの炭素/酸素モル比より炭素/酸素モル比の小さな重合体が得られる。この観点から、重合開始剤として、メタノール等の第1の重合開始剤を用いることにより、第1のポリビニルエーテル系化合物の炭素/酸素モル比を3.0以上4.0未満とすることができる。
 第1の本発明においては、一般式(II-1) で表されるビニルエーテル系モノマーを含むモノマー成分及び第1の開始剤成分の少なくとも一方により、第1のポリビニルエーテル系化合物の炭素/酸素モル比を3.0以上4.0未満とする。
2.第2のポリビニルエーテル系化合物
 第2の本発明の圧縮型冷凍機用潤滑油において、基油として用いられる第2のポリビニルエーテル系化合物は、分子中にアルキレングリコール単位又はポリオキシアルキレングリコール単位と、ビニルエーテル単位とを有し、分子量が300~3,000の範囲にある重合体であり、かつ該重合体における全側鎖中の炭素/酸素モル比が1.00以上2.40未満である。
 第2の本発明に係る圧縮型冷凍機用潤滑油が上記構成であることで、-20℃より低温においても、R32冷媒と分離しない上、粘度指数の高い圧縮型冷凍機用潤滑油とすることができる。
 第2のポリビニルエーテル化合物の分子量が300に満たないと、潤滑油として潤滑性能や耐久性を発揮することができず、分子量が3,000を超えるとR32冷媒との相溶性が低下する。
 第2のポリビニルエーテル化合物の分子量としては、300~2,000であることが好ましく、300~900であることがより好ましい。
 第2のポリビニルエーテル系化合物は、特定の構成単位を有し、特定の分子量を有する重合体であり、少なくともアルキレングリコール基及びエーテル基が重合体の側鎖として含まれる。
 第2のポリビニルエーテル系化合物を構成する重合体における全側鎖中の炭素/酸素モル比が1.00未満又は2.40以上では、ポリビニルエーテル系化合物の構成が第1のポリビニルエーテル系化合物の構成である場合を除き、いずれの場合も-20℃より低温において、ポリビニルエーテル系化合物とR32冷媒と分離してしまう。
 第2のポリビニルエーテル系化合物における当該炭素/酸素モル比は1.20以上2.40未満であることが好ましく、1.50以上2.30未満であることがより好ましい。
 第2のポリビニルエーテル系化合物は、一般式(I-2)で表される構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000011
 式中、R1、R2及びR3は、それぞれ水素原子又は炭素数1~8の炭化水素基を示し、それらは互いに同一でも異なってもよい。Rbは炭素数2~4の二価の炭化水素基を示す。Raは、水素原子、炭素数1~20の脂肪族もしくは脂環式炭化水素基、炭素数1~20の置換基を有してもよい芳香族基、炭素数2~20のアシル基、又は炭素数2~50の酸素含有炭化水素基を示す。R5は炭素数1~10の炭化水素基を示す。Ra、Rb、及びR5は、それらが複数ある場合には、それぞれ同一であっても異なっていてもよい。
 mはその平均値が1~50、kは1~50、pは0~50示し、kおよびpはそれらが複数ある場合にはそれぞれブロックでもランダムでもよい。また、複数のRbOがある場合には、複数のRbOは同一であっても異なっていてもよい。
 前記一般式(I-2)において、R1~R3のうちの炭素数1~8の炭化水素基とは、具体的には、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基などのアルキル基;シクロペンチル基、シクロヘキシル基、各種メチルシクロヘキシル基、各種エチルシクロヘキシル基、各種ジメチルシクロヘキシル基などのシクロアルキル基;フェニル基、各種メチルフェニル基、各種エチルフェニル基、各種ジメチルフェニル基などのアリール基;ベンジル基、各種フェニルエチル基、各種メチルベンジル基などのアリールアルキル基を示す。
 一般式(I-2)におけるR1、R2及びR3は、以上の中でも、特に水素原子が好ましい。
 一方、Rbで示される炭素数2~4の二価の炭化水素基としては、具体的には、例えば、メチレン基、エチレン基、プロピレン基、トリメチレン基、各種ブチレン基などの二価のアルキレン基が挙げられる。
 なお、一般式(I-2)におけるmは、RbOの繰り返し数を示し、その平均値が1~50、好ましくは2~20、さらに好ましくは2~10、特に好ましくは2~5の範囲の数である。
 RbOが複数ある場合には、複数のRbOは同一でも異なっていてもよい。
 また、kは1~50、好ましくは1~10、さらに好ましくは1~2、特に好ましくは1、pは0~50、好ましくは2~25、さらに好ましくは5~15の数を示し、kおよびpはそれらが複数ある場合にはそれぞれブロックでもランダムでもよい。
 Raのうち炭素数1~20の脂肪族もしくは脂環式炭化水素基としては、好ましくは、炭素数1~10のアルキル基もしくは炭素数5~10のシクロアルキル基が挙げられ、具体的にはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基、シクロペンチル基、シクロヘキシル基、各種メチルシクロヘキシル基、各種エチルシクロヘキシル基、各種プロピルシクロヘキシル基、各種ジメチルシクロヘキシル基などが挙げられる。
 Raのうち炭素数1~20の置換基を有していてもよい芳香族基としては、具体的には、フェニル基、各種トリル基、各種エチルフェニル基、各種キシリル基、各種トリメチルフェニル基、各種ブチルフェニル基、各種ナフチル基などのアリール基、ベンジル基、各種フェニルエチル基、各種メチルベンジル基、各種フェニルプロピル基、各種フェニルブチル基のアリールアルキル基などが挙げられる。
 また、Raのうち炭素数2~20のアシル基としては、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基、ベンゾイル基、トルオイル基などを挙げることができる。
 さらに、Raのうち炭素数2~50の酸素含有炭化水素基の具体例としては、メトキシメチル基、メトキシエチル基、メトキシプロピル基、1,1-ビスメトキシプロピル基、1,2-ビスメトキシプロピル基、エトキシプロピル基、(2-メトキシエトキシ)プロピル基、(1-メチル-2-メトキシ)プロピル基などを好ましく挙げることができる。
 一般式(I-2)において、R5で示される炭素数1~10の炭化水素基とは、具体的には、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基などのアルキル基;シクロペンチル基、シクロヘキシル基、各種メチルシクロヘキシル基、各種エチルシクロヘキシル基、各種プロピルシクロヘキシル基、各種ジメチルシクロヘキシル基などのシクロアルキル基;フェニル基、各種メチルフェニル基、各種エチルフェニル基、各種ジメチルフェニル基、各種プロピルフェニル基、各種トリメチルフェニル基、各種ブチルフェニル基、各種ナフチル基などのアリール基;ベンジル基、各種フェニルエチル基、各種メチルベンジル基、各種フェニルプロピル基、各種フェニルブチル基のアリールアルキル基などが挙げられる。
 なお、R1~R3、Ra、Rb及びm並びにR1~R3及びR5は、それぞれ構成単位毎に同一であっても異なっていてもよい。
 第2のポリビニルエーテル系化合物は、R32冷媒との相溶性の観点から、分子中にアルキレングリコール単位又はポリオキシアルキレングリコール単位を有する。ここで、アルキレングリコール単位とは、一般式(I-2)で表されるポリビニルエーテル系化合物を例に挙げれば、一般式(I-2)において「R1」~「R3」及び「-O(RbO)mRa」を含むアルキレングリコール単位のうち、mが1である構成単位をいう。また、同様に、ポリオキシアルキレングリコール単位は、一般式(I-2)においてmが1を超える構成単位をいう。
 従って、第2のポリビニルエーテル系化合物は「-O(RbO)mRa」で表されるアルキレングリコール残基を有する。
 ここで、Rbが炭素数2のエチレン基である場合、「-O(RbO)mRa」は、エチレングリコール残基であり、Rbが炭素数3のプロピレン基である場合、「-O(RbO)mRa」はプロピレングリコール残基である。
 第2のポリビニルエーテル系化合物は、構成単位中にエチレングリコール残基及び/又はプロピレングリコール残基を含むものが好ましい。特に、第2のポリビニルエーテル系化合物中に、エチレングリコール残基及び/又はプロピレングリコール残基を、第2のポリビニルエーテル系化合物の全質量に対して5質量%以上50質量%以下含むことが好ましく、10質量%以上40質量%以下含むことがより好ましい。
 第2のポリビニルエーテル系化合物がエチレングリコール残基及び/又はプロピレングリコール残基を、第2のポリビニルエーテル系化合物の全質量に対して5質量%以上50質量%以下含むことにより、-20℃より低温におけるR32冷媒との相溶性が一層向上する。
 なお、本発明における「エチレングリコール残基」、及び「プロピレングリコール残基」には、「-O(RbO)mRa」におけるmが1のエチレングリコール残基、プロピレングリコール残基、mが3のトリエチレングリコール残基等の低分子残基だけでなく、ポリエチレングリコール残基及びポリプロピレングリコール残基である高分子残基も含まれる。
 第2のポリビニルエーテル系化合物の重合度は、所望する動粘度に応じて適宜選択すればよい。通常は、第2のポリビニルエーテル系化合物の40℃における動粘度が、好ましくは5~1,000mm2/s、より好ましくは7~300mm2/s、さらに好ましくは10~150mm2/sになるように、第2のポリビニルエーテル系化合物の重合度が選ばれる。
 前述した性状を有する第2のポリビニルエーテル系化合物は、次のようにして製造することができる。すなわち、一般式(II-2)で表されるビニルエーテル系モノマーを、一般式(III)で表されるアルキレングリコール化合物又はポリオキシアルキレングリコール化合物である第2の重合開始剤を用いて重合し、重合体とすることで、第2のポリビニルエーテル系化合物を製造することができる。重合にあたっては、第2の重合開始剤と共に、「-O(RbO)mRa」で表されるアルキレングリコール残基を有する化合物を用いてもよい。また、得られた重合体は、更に水素添加をしてもよい。
Figure JPOXMLDOC01-appb-C000012
 式中、R1、R2及びR3は、それぞれ水素原子又は炭素数1~8の炭化水素基を示し、それらは互いに同一でも異なってもよい。R5は炭素数1~10の炭化水素基を示す。Raは、水素原子、炭素数1~20の脂肪族もしくは脂環式炭化水素基、炭素数1~20の置換基を有してもよい芳香族基、炭素数2~20のアシル基、又は炭素数2~50の酸素含有炭化水素基を示す。Rbは炭素数2~4の二価の炭化水素基を示す。mはその平均値が1~50の数を示す。
 なお上記式において、Ra,Rb、m、R1~R3及びR5は前記で説明した通りである。
 一方、一般式(II-2)で表されるビニルエーテル系モノマーとしては、例えば、ビニルメチルエーテル、ビニルエチルエーテル、ビニル-n-プロピルエーテル、ビニル-イソプロピルエーテル、ビニル-n-ブチルエーテル、ビニル-イソブチルエーテル、ビニル-sec-ブチルエーテル、ビニル-tert-ブチルエーテル、ビニル-n-ペンチルエーテル、ビニル-n-ヘキシルエーテル等のビニルエーテル類;1-メトキシプロペン、1-エトキシプロペン、1-n-プロポキシプロペン、1-イソプロポキシプロペン、1-n-ブトキシプロペン、1-イソブトキシプロペン、1-sec-ブトキシプロペン、1-tert-ブトキシプロペン、2-メトキシプロペン、2-エトキシプロペン、2-n-プロポキシプロペン、2-イソプロポキシプロペン、2-n-ブトキシプロペン、2-イソブトキシプロペン、2-sec-ブトキシプロペン、2-tert-ブトキシプロペン等のプロペン類;1-メトキシ-1-ブテン、1-エトキシ-1-ブテン、1-n-プロポキシ-1-ブテン、1-イソプロポキシ-1-ブテン、1-n-ブトキシ-1-ブテン、1-イソブトキシ-1-ブテン、1-sec-ブトキシ-1-ブテン、1-tert-ブトキシ-1-ブテン、2-メトキシ-1-ブテン、2-エトキシ-1-ブテン、2-n-プロポキシ-1-ブテン、2-イソプロポキシ-1-ブテン、2-n-ブトキシ-1-ブテン、2-イソブトキシ-1-ブテン、2-sec-ブトキシ-1-ブテン、2-tert-ブトキシ-1-ブテン、2-メトキシ-2-ブテン、2-エトキシ-2-ブテン、2-n-プロポキシ-2-ブテン、2-イソプロポキシ-2-ブテン、2-n-ブトキシ-2-ブテン、2-イソブトキシ-2-ブテン、2-sec-ブトキシ-2-ブテン、2-tert-ブトキシ-2-ブテンなどのブテン類が挙げられる。
 これらのビニルエーテル系モノマーは公知の方法により製造することができる。
 一般式(III)で表されるアルキレングリコール化合物は、一般式(III)におけるmが1であり、一般式(III)で表されるポリオキシアルキレングリコール化合物は、一般式(III)におけるmが1を超える。
 一般式(III)で表されるアルキレングリコール化合物又はポリオキシアルキレングリコール化合物の具体的な化合物としては、例えば、エチレングリコール、エチレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコール、トリプロピレングリコールモノメチルエーテルなどのアルキレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシアルキレングリコール及びそれらのモノエーテル化合物などが挙げられる。
 一般式(III)で表されるアルキレングリコール化合物又はポリオキシアルキレングリコール化合物は、以上の中でも、一般式(III)におけるRbがエチレン基であるエチレングリコール残基を有する化合物(例えば、エチレングリコール、トリエチレングリコール、ポリエチレングリコール等)及び、一般式(III)におけるRbがプロピレン基であるプロピレングリコール残基を有する化合物(例えば、プロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール等)が好ましい。
 また、前記のアルキレングリコール残基を有する化合物としては、片末端がメトキシ化されたポリエチレングリコール、片末端がメトキシ化されたポリプロピレングリコール、さらにはこれらの共重合体などが挙げられる。アルキレングリコール残基を有する化合物も、エチレングリコール残基又はプロピレングリコール残基を有する化合物であることが好ましい。
 一般式(III)で表されるアルキレングリコール化合物又はポリオキシアルキレングリコール化合物は、1種のみを用いてもよいし、複数種を併用してもよい。
 第2のポリビニルエーテル系化合物は、一般式(II-2)で表されるビニルエーテル系モノマーをラジカル重合、カチオン重合、放射線重合などによって製造することができる。例えば、一般式(II-2)で表されるビニルエーテル系モノマーを、以下に示す方法を用いて重合することにより、所望の粘度の重合体が得られる。重合の開始には、一般式(III)で表されるアルキレングリコール化合物又はポリオキシアルキレングリコール化合物である第2の重合開始剤を少なくとも用いる。一般式(II-2)で表されるビニルエーテル系モノマーの重合のために、更に、必要に応じて、次の成分を用いてもよい。例えば、ブレンステッド酸類、ルイス酸類又は有機金属化合物類に対して、水、アルコール類、フェノール類、アセタール類又はビニルエーテル類とカルボン酸との付加物を組み合わせたものを使用することができる。ブレンステッド酸類としては、例えばフッ化水素酸、塩化水素酸、臭化水素酸、ヨウ化水素酸、硝酸、硫酸、トリクロロ酢酸、トリフルオロ酢酸などが挙げられる。ルイス酸類としては、例えば三フッ化ホウ素、三塩化アルミニウム、三臭化アルミニウム、四塩化スズ、二塩化亜鉛、塩化第二鉄などが挙げられ、これらのルイス酸類の中では、特に三フッ化ホウ素が好適である。また、有機金属化合物としては、例えばジエチル塩化アルミニウム、エチル塩化アルミニウム、ジエチル亜鉛などが挙げられる。
 これらと組み合わせる水、アルコール類、フェノール類、アセタール類又はビニルエーテル類とカルボン酸との付加物は任意のものを選択することができる。ここで、アルコール類としては、例えばメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、sec-ブタノール、tert-ブタノール、各種ペンタノール、各種ヘキサノール、各種ヘプタノール、各種オクタノールなどの炭素数1~20の飽和脂肪族アルコール;アリルアルコールなどの炭素数3~10の不飽和脂肪族アルコールなどが挙げられる。
 一般式(II-2) で表されるビニルエーテル系モノマーの重合は、原料及び重合開始剤の種類にもよるが、-80~150℃の間で開始することができ、通常は-80~50℃の範囲の温度で行うことができる。また、重合反応は反応開始後10秒から10時間程度で終了する。この重合反応における分子量の調節は、一般式(II-2)で表されるビニルエーテル系モノマーに対し、水、アルコール類、フェノール類、アセタール類及びビニルエーテル類とカルボン酸との付加物の量を多くすることで平均分子量の低い重合体が得られる。さらに上記ブレンステッド酸類やルイス酸類の量を多くすることで平均分子量の低い重合体が得られる。この重合反応は、通常溶媒の存在下に行われる。
 溶媒は、反応原料を必要量溶解し、かつ反応に不活性なものであれば特に制限はないが、例えば、ヘキサン、ベンゼン、トルエンなどの炭化水素系の溶媒、及びエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフランなどのエーテル系の溶媒を好適に使用することができる。なお、この重合反応はアルカリを加えることによって停止することができる。重合反応終了後、必要に応じて通常の分離方法、及び/又は精製方法を施すことにより、目的とする一般式(I-2)で表される構造を有する第2のポリビニルエーテル系化合物が得られる。
 第2のポリビニルエーテル系化合物は、重合体(第2のポリビニルエーテル系化合物)における全側鎖中の炭素/酸素モル比が1.00以上2.40未満にある。該モル比が前記範囲にある重合体は、重合開始剤として用いられる一般式(III)で表されるアルキレングリコール化合物又はポリオキシアルキレングリコール化合物である第2の重合開始剤の組成を制御することによって製造することができる。
 すなわち、第2の重合開始剤を用いることにより、第2のポリビニルエーテル系化合物の炭素/酸素モル比を1.00以上2.40未満とすることができる。第2の本発明においては、重合開始剤中のエチレングリコール残基及び/又はプロピレングリコール残基を有する化合物の量を、重合開始剤全質量に対して10~100質量%程度とすることが好ましい。
 第1の本発明の圧縮型冷凍機用潤滑油は、第1のポリビニルエーテル系化合物を、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上、特に好ましくは100質量%含む。第1のポリビニルエーテル化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。30質量%以下の割合で併用できるポリビニルエーテル系化合物以外の潤滑油基油の種類については特に制限はない。
 第2の本発明の圧縮型冷凍機用潤滑油においても同様に、第2のポリビニルエーテル系化合物を、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上、特に好ましくは100質量%含む。第2のポリビニルエーテル化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。30質量%以下の割合で併用できるポリビニルエーテル系化合物以外の潤滑油基油の種類については特に制限はない。
 第1の本発明の圧縮型冷凍機用潤滑油、及び第2の本発明の圧縮型冷凍機用潤滑油には、それぞれ、従来の潤滑油に使用されている各種添加剤、例えば耐荷重添加剤、塩素捕捉剤、酸化防止剤、金属不活性化剤、消泡剤、清浄分散剤、粘度指数向上剤、油性剤、耐摩耗添加剤、極圧剤、防錆剤、腐食防止剤、流動点降下剤などを本発明の目的が損なわれない範囲で所望に応じて添加することができる。
 上記耐荷重添加剤としては、モノスルフィド類、ポリスルフィド類、スルホキシド類、スルホン類、チオスルフィネート類、硫化油脂、チオカーボネート類、チオフェン類、チアゾール類、メタンスルホン酸エステル類などの有機硫黄化合物系のもの、リン酸モノエステル類、リン酸ジエステル類、リン酸トリエステル類(トリクレジルホスフェート)などのリン酸エステル系のもの、亜リン酸モノエステル類、亜リン酸ジエステル類、亜リン酸トリエステル類などの亜リン酸エステル系のもの、チオリン酸トリエステル類などのチオリン酸エステル系のもの、高級脂肪酸、ヒドロキシアリール脂肪酸類、含カルボン酸多価アルコールエステル類、アクリル酸エステル類などの脂肪酸エステル系のもの、塩素化炭化水素類、塩素化カルボン酸誘導体などの有機塩素系のもの、フッ素化脂肪族カルボン酸類、フッ素化エチレン樹脂、フッ素化アルキルポリシロキサン類、フッ素化黒鉛などの有機フッ素化系のもの、高級アルコールなどのアルコール系のもの、ナフテン酸塩類(ナフテン酸鉛)、脂肪酸塩類(脂肪酸鉛)、チオリン酸塩類(ジアルキルジチオリン酸亜鉛)、チオカルバミン酸塩類、有機モリブデン化合物、有機スズ化合物、有機ゲルマニウム化合物、ホウ酸エステルなどの金属化合物系のものがある。
 塩素捕捉剤としては、グリシジルエーテル基含有化合物、エポキシ化脂肪酸モノエステル類、エポキシ化油脂、エポキシシクロアルキル基含有化合物などがある。酸化防止剤としては、フェノール類(2,6-ジターシャリーブチル-p-クレゾール)、芳香族アミン類(α-ナフチルアミン)などがある。金属不活性化剤としては、ベンゾトリアゾール誘導体などがある。消泡剤としては、シリコーンオイル(ジメチルポリシロキサン)、ポリメタクリレート類などがある。清浄分散剤としてはスルホネート類、フェネート類、コハク酸イミド類などがある。粘度指数向上剤としては、ポリメタクリレート、ポリイソブチレン、エチレン-プロピレン共重合体、スチレン-ジエン水素化共重合体などがある。
 なお、これらの添加剤の配合量は、潤滑油全量基準で、通常0.001~10質量%程度である。
(圧縮型冷凍機用潤滑油の製造方法)
 第1の本発明の圧縮型冷凍機用潤滑油を製造する圧縮型冷凍機用潤滑油の製造方法は、メタノール、ジメチルアセタール、エチルメチルアセタールから選ばれる1種類以上の第1の重合開始剤を用い、一般式(II-1)で表されるビニルエーテル系モノマーを重合して、製造される。
 すなわち、第1の本発明の圧縮型冷凍機用潤滑油に含まれる第1のポリビニルエーテル系化合物を上記方法により製造し、必要に応じて、ポリビニルエーテル系化合物に各種添加剤を混合することにより第1の本発明の圧縮型冷凍機用潤滑油を製造する。
 第2の本発明の圧縮型冷凍機用潤滑油を製造する圧縮型冷凍機用潤滑油の製造方法は、一般式(II-2)で表されるビニルエーテル系モノマーを、一般式(III)で表されるアルキレングリコール化合物又はポリオキシアルキレングリコール化合物である第2の重合開始剤を用いて重合して、製造される。
 すなわち、第2の本発明の圧縮型冷凍機用潤滑油に含まれる第2のポリビニルエーテル系化合物を上記方法により製造し、必要に応じて、ポリビニルエーテル系化合物に各種添加剤を混合することにより第2の本発明の圧縮型冷凍機用潤滑油を製造する。なお、一般式(II-2)で表されるビニルエーテル系モノマー及び一般式(III)で表されるアルキレングリコール化合物又はポリオキシアルキレングリコール化合物の詳細は記述のとおりである。
〔圧縮型冷凍機用組成物〕
 本発明の圧縮型冷凍機用組成物は、第1の本発明の圧縮型冷凍機用潤滑油、又は、第2の本発明の圧縮型冷凍機用潤滑油と、R32冷媒とを含むことを特徴とする。第1の本発明の圧縮型冷凍機用潤滑油及び第2の本発明の圧縮型冷凍機用潤滑油は、第1のポリビニルエーテル系化合物及び第2のポリビニルエーテル系化合物がそれぞれR32冷媒との相溶性に優れるとともに、潤滑性能に優れることから、圧縮型冷凍機用組成物における潤滑油として用いられる。
 その混合割合は、第1のポリビニルエーテル系化合物又は第2のポリビニルエーテル系化合物と、R32冷媒との質量比(ポリビニルエーテル系化合物/R32冷媒)で、1/99~99/1の範囲であることが好ましく、5/95~60/40の範囲であることがより好ましい。
 また、本発明の圧縮型冷凍機用組成物における冷媒としては、R32冷媒と組み合わせてその他の冷媒も用いることができる。該その他の冷媒として、ハイドロフルオロカーボン冷媒としては、飽和フッ化炭化水素冷媒と二重結合を有する不飽和炭化水素冷媒が含まれる。
 飽和フッ化炭化水素の代表例としては、R125(ペンタフルオロエタン)、R134a(1,1,1,2-テトラフルオロエタン)、R143a(1,1,1-トリフルオロエタン)などが挙げられる。また、これらの冷媒を2以上混合した混合冷媒も使用できる。混合冷媒としては、例えばR404A(R125、R143a、R134aの混合物)、R407A、R407C、R407E(以上は、R32、R125、R134aの混合物)、R410A(R32、R125の混合物)、R507A(R125、R143aの混合物)等を挙げることができる。また、不飽和フッ化炭化水素冷媒の代表例としては、R1225ye(1,2,3,3,3-ペンタフルオロプロペン)やR1234yf(2,3,3,3-テトラフルオロプロペン)、R1234ze(1,3,3,3-テトラフルオロプロペン)、R1234yz(1,2,3,3-テトラフルオロプロペン)などが挙げられる。これらの不飽和フッ化炭化水素冷媒は、一種を単独で又は二種以上を混合して使用することができ、さらに、これらと前記飽和フッ化炭化水素冷媒と混合して使用することもできる。
 さらに、上記その他の冷媒としては、ハイドロフルオロカーボン以外に、含フッ素エーテル系冷媒、ジメチルエーテル等の非フッ素含有エーテル系冷媒との混合冷媒としても使用することもできる。
〔圧縮型冷凍装置〕
 本発明はまた、本発明の圧縮型冷凍機用潤滑油を用いることを特徴とする圧縮型冷凍装置をも提供する。
 本発明の圧縮型冷凍装置に用いる圧縮型冷凍機用潤滑油は、第1の本発明の圧縮型冷凍機用潤滑油、第2の本発明の圧縮型冷凍機用潤滑油、本発明の圧縮型冷凍機用潤滑油の製造方法により製造された第1の本発明の圧縮型冷凍機用潤滑油、及び、第2の本発明の圧縮型冷凍機用潤滑油からなる群より選択される少なくとも1種を用いる。
 本発明の圧縮型冷凍装置が有する圧縮型冷媒循環システムとしては、例えば、1)少なくとも圧縮機、凝縮器、膨張機構(膨張弁など)及び蒸発器を含む構成、又は、2)圧縮機、凝縮器、膨張機構、乾燥器及び蒸発器を必須とする構成からなる圧縮型冷媒循環システムが挙げられる。本発明の圧縮型冷凍装置は、かかる圧縮型冷媒循環システムと共に、R32冷媒と潤滑油(冷凍機油)として前述した本発明の圧縮型冷凍機用潤滑油が使用される。
 ここで乾燥器中には、細孔径3.5Å以下のゼオライトからなる乾燥剤を充填することが好ましい。また、このゼオライトとしては、天然ゼオライトや合成ゼオライトを挙げることができる。
 本発明の圧縮型冷凍装置において、このような乾燥剤を用いれば、冷凍サイクル中の冷媒を吸収することなく、水分を効率よく除去できると同時に、乾燥剤自体の劣化による粉末化が抑制され、したがって粉末化によって生じる配管の閉塞や圧縮機摺動部への侵入による異常摩耗等の恐れがなくなり、冷凍装置を長期間にわたって安定的に運転することができる。
 さらに、本発明の圧縮型冷凍装置は、上記圧縮型冷凍装置の冷凍サイクルとしての循環システムを構成するものであって、圧縮機と電動機とが一つのカバーの中に覆われた内部高圧形あるいは内部低圧形の密閉式圧縮機、または圧縮機の駆動部が外部にある開放型圧縮機、半密閉型圧縮機、キャンドモータ式圧縮機である。
 上記いずれの形式でも電動機(モーター)の固定子の巻線が、芯線(マグネットワイヤなど)をガラス転移温度130℃以上のエナメルで被覆したもの、あるいはエナメル線をガラス転移温度50℃以上のワニスで固定したものが好ましい。また、このエナメル被覆は、ポリエステルイミド、ポリイミド、ポリアミドあるいはポリアミドイミド等の単一層あるいは複合層が好ましい。特にガラス転移温度の低いものを下層に、ガラス転移温度の高いものを上層にして積層したエナメル被覆は、耐水性、耐軟化性、耐膨潤性に優れ、また機械的強度、剛性、絶縁性も高く、実用的にその利用価値は高い。
 また本発明の圧縮型冷凍装置において、モーター部分の電気絶縁材料である絶縁フィルムについては、ガラス転移温度60℃以上の結晶性プラスチックフィルムからなるものが好ましい。特にこの結晶性プラスチックフィルムにはオリゴマー含有量が5質量%以下のものが好適である。
 このようなガラス転移温度60℃以上の結晶性プラスチックとしては、例えばポリエーテルニトリル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエチレンナフタレート、ポリアミドイミドあるいはポリイミドを好適なものとして挙げることができる。
 なお、上記モーターの絶縁フィルムは、前述の結晶性プラスチックフィルム単一層からなるものでもよいが、またガラス転移温度の低いフィルム上に、ガラス転移温度の高いプラスチック層を被覆する複合フィルムとすることもできる。
 本発明の圧縮型冷凍装置においては、圧縮機内部に防振用ゴム材を配設することができるが、その場合、防振用ゴム材はアクリロニトリル-ブタジエンゴム(NBR)、エチレン-プロピレン-ジエン系ゴム(EPDM)、エチレン-プロピレンゴム(EPM)、水素化アクリロニトリル-ブタジエンゴム(HNBR)、シリコーンゴム及びフッ素ゴム(FKM)から選ばれたものが好適に用いられ、特にゴム膨潤率が10質量%以下のものが好ましい。
 更に、本発明の圧縮型冷凍装置においては、圧縮機内部に各種の有機材料(例えばリード線被覆材、結束糸、エナメル線、絶縁フィルムなど)を配設することができるが、その場合、該有機材料としては、その引張強度低下率が20%以下のものが好適に使用される。
 さらには、本発明の圧縮型冷凍装置において、圧縮機内のガスケットの膨潤率が20%以下のものが好ましい。
 本発明の圧縮型冷凍装置の具体例としては、密閉型スクロール式圧縮機、密閉型スイング式圧縮機、密閉型往復式圧縮機、密閉型ロータリー式圧縮機などがある。密閉型圧縮機の用途としては電動カーエアコン、空調機、冷凍機、給湯機などがある。
 第1の本発明の圧縮型冷凍機用潤滑油、圧縮型冷凍機用潤滑油の製造方法、圧縮型冷凍機用組成物、及び圧縮型冷凍装置は以下のように構成することができる。
(1-1)ジフルオロメタン(R32)冷媒を使用する圧縮型冷凍機用潤滑油であって、
 一般式(I-1)で表される構成単位を有する重合体であり、かつ炭素/酸素モル比が3.0以上4.0未満である第1のポリビニルエーテル系化合物を含むことを特徴とする、圧縮型冷凍機用潤滑油。
Figure JPOXMLDOC01-appb-C000013
 式中、R1、R2及びR3は、それぞれ水素原子又は炭素数1~8の炭化水素基を示し、それらはたがいに同一でも異なっていてもよい。R4は炭素数1~20の炭化水素基を示す。R1~R4は構成単位毎に同一であってもそれぞれ異なっていてもよい。
(1-2)前記第1のポリビニルエーテル系化合物が、重合体中の全側鎖に対してメトキシ基を1モル%以上含むことを特徴とする、(1-1)に記載の圧縮型冷凍機用潤滑油。
(1-3)メタノール、ジメチルアセタール、エチルメチルアセタールから選ばれる1種類以上の第1の重合開始剤を用い、一般式(II-1)で表されるビニルエーテル系モノマーを重合して(1-1)又は(1-2)に記載の圧縮型冷凍機用潤滑油を製造する圧縮型冷凍機用潤滑油の製造方法。
Figure JPOXMLDOC01-appb-C000014
 式中、R1、R2及びR3は、それぞれ水素原子又は炭素数1~8の炭化水素基を示し、それらはたがいに同一でも異なっていてもよい。R4は炭素数1~20の炭化水素基を示す。
(1-4)(1-1)又は(1-2)に記載の圧縮型冷凍機用潤滑油と、R32冷媒とを含むことを特徴とする圧縮型冷凍機用組成物。
(1-5)(1-3)に記載の製造方法により得られた圧縮型冷凍機用潤滑油と、R32冷媒とを含むことを特徴とする圧縮型冷凍機用組成物。
(1-6)(1-1)若しくは(1-2)に記載の圧縮型冷凍機用潤滑油、及び/又は、(1-3)に記載の製造方法により得られた圧縮型冷凍機用潤滑油を用いることを特徴とする圧縮型冷凍装置。
 第1の本発明に係る圧縮型冷凍機用潤滑油が上記構成であることで、-20℃より低温においても、R32冷媒と分離しない圧縮型冷凍機用潤滑油及びその製造方法、並びに該圧縮型冷凍機用潤滑油を用いた圧縮型冷凍機用組成物等を提供することができる。結果として、本発明は地球温暖化係数の少ないR32冷媒の使用を可能とし、地球温暖化防止に寄与する。
 第1の本発明に係る圧縮型冷凍機用潤滑油は、特定の構成単位を有し、かつ炭素/酸素モル比が3.0以上4.0未満である第1のポリビニルエーテル系化合物を含む潤滑油がその目的に適合し得るとの知見に基づき、発明された。
 また、第1の本発明に係る圧縮型冷凍機用潤滑油の製造方法は、圧縮型冷凍機用潤滑油に含まれる第1のポリビニルエーテル系化合物を、特定の重合開始剤と特定のモノマーを用いることにより容易に製造し得るとの知見に基づき発明された。
 また、第2の本発明の圧縮型冷凍機用潤滑油、圧縮型冷凍機用潤滑油の製造方法、圧縮型冷凍機用組成物、及び圧縮型冷凍装置は以下のように構成することができる。
(2-1)ジフルオロメタン(R32)冷媒を使用する圧縮型冷凍機用潤滑油であって、
 分子中にアルキレングリコール単位又はポリオキシアルキレングリコール単位と、ビニルエーテル単位とを有し、分子量が300~3,000の範囲にある重合体であり、かつ該重合体における全側鎖中の炭素/酸素モル比が1.00以上2.40未満である第2のポリビニルエーテル系化合物を含むことを特徴とする、圧縮型冷凍機用潤滑油。
(2-2)前記第2のポリビニルエーテル系化合物が、一般式(I-2)で表される構造を有することを特徴とする、(2-1)に記載の圧縮型冷凍機用潤滑油。
Figure JPOXMLDOC01-appb-C000015
 式中、R1、R2及びR3は、それぞれ水素原子又は炭素数1~8の炭化水素基を示し、それらは互いに同一でも異なってもよい。Rbは炭素数2~4の二価の炭化水素基を示す。Raは、水素原子、炭素数1~20の脂肪族もしくは脂環式炭化水素基、炭素数1~20の置換基を有してもよい芳香族基、炭素数2~20のアシル基、又は炭素数2~50の酸素含有炭化水素基を示す。R5は炭素数1~10の炭化水素基を示す。Ra、Rb、及びR5は、それらが複数ある場合には、それぞれ同一であっても異なっていてもよい。
 mはその平均値が1~50、kは1~50、pは0~50示し、kおよびpはそれらが複数ある場合にはそれぞれブロックでもランダムでもよい。また、複数のRbOがある場合には、複数のRbOは同一であっても異なっていてもよい。
(2-3)前記第2のポリビニルエーテル系化合物が、重合体中にエチレングリコール残基及び/又はプロピレングリコール残基を含む(2-1)又は(2-2)に記載の圧縮型冷凍機用潤滑油。
(2-4)前記第2のポリビニルエーテル系化合物が、全質量に対してエチレングリコール残基及び/又はプロピレングリコール残基を5質量%以上50質量%以下含む(2-3)に記載の圧縮型冷凍機用潤滑油。
(2-5)一般式(II-2)で表されるビニルエーテル系モノマーを、一般式(III)で表されるアルキレングリコール化合物又はポリオキシアルキレングリコール化合物である第2の重合開始剤を用いて重合して(2-1)~(2-4)のいずれかに記載の圧縮型冷凍機用潤滑油を製造する圧縮型冷凍機用潤滑油の製造方法。
Figure JPOXMLDOC01-appb-C000016
 式中、R1、R2及びR3は、それぞれ水素原子又は炭素数1~8の炭化水素基を示し、それらは互いに同一でも異なってもよい。R5は炭素数1~10の炭化水素基を示す。Raは、水素原子、炭素数1~20の脂肪族もしくは脂環式炭化水素基、炭素数1~20の置換基を有してもよい芳香族基、炭素数2~20のアシル基、又は炭素数2~50の酸素含有炭化水素基を示す。Rbは炭素数2~4の二価の炭化水素基を示す。mはその平均値が1~50の数を示す。
(2-6)(2-1)~(2-4)のいずれかに記載の圧縮型冷凍機用潤滑油と、R32冷媒とを含むことを特徴とする圧縮型冷凍機用組成物。
(2-7)(2-5)に記載の製造方法により得られた圧縮型冷凍機用潤滑油と、R32冷媒とを含むことを特徴とする圧縮型冷凍機用組成物。
(2-8)(2-1)~(2-4)のいずれかに記載の圧縮型冷凍機用潤滑油、及び/又は、(2-5)に記載の製造方法により得られた圧縮型冷凍機用潤滑油を用いることを特徴とする圧縮型冷凍装置。
 第2の本発明に係る圧縮型冷凍機用潤滑油が上記構成であることで、-20℃より低温においても、R32冷媒と分離しない上、粘度指数の高い圧縮型冷凍機用潤滑油及びその製造方法、並びに該圧縮型冷凍機用潤滑油を用いた圧縮型冷凍機用組成物等を提供することができる。結果として、本発明は地球温暖化係数の少ないR32冷媒の使用を可能とし、地球温暖化防止及び冷凍機におけるエネルギー効率向上に寄与する。
 第2の本発明に係る圧縮型冷凍機用潤滑油は、特定の構成単位を有する重合体であり、かつ該重合体における全側鎖中の炭素/酸素モル比が1.00以上2.40未満である第2のポリビニルエーテル系化合物を含む潤滑油がその目的に適合し得るとの知見に基づき、発明された。
 また、第2の本発明に係る圧縮型冷凍機用潤滑油の製造方法は、圧縮型冷凍機用潤滑油に含まれる第2のポリビニルエーテル系化合物を、特定の重合開始剤と特定のモノマーを用いることにより容易に製造し得るとの知見に基づき発明された。
 次に、本発明を実施例により、さらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。なお、第1の本発明に係る実施例及び比較例は、実施例1-1~実施例1-3及び比較例1-1として示し、第2の本発明に係る実施例及び比較例は、実施例2-1~実施例2-4及び比較例2-1~比較例2-2として示した。
 各例で得られた基油(ポリビニルエーテル系化合物)の動粘度(40℃、100℃)、粘度指数(VI)、元素分析、メトキシ残基含有率及びポリプロピレン基含有率の各測定、並びに、各例で得られた基油のR32に対する相溶性試験は、以下のように行った。
(1)動粘度
 JIS K2283に準拠して試料油の100℃の動粘度と40℃の動粘度を測定した。
(2)粘度指数(VI)
 JIS K2283に準拠し、得られた上記の動粘度から、粘度指数を求めた。
(3)元素分析
 各例で製造したポリビニルエーテル系化合物について、パーキンエルマー社製「2400-CHN装置」により元素分析を行い、炭素/酸素モル比(C/Oモル比)を求めた。
 なお、第1の本発明に関する実施例1-1~1-3及び比較例1-1においては、ポリビニルエーテル系化合物の炭素/酸素モル比を求め、第2の本発明に関する実施例2-1~2-4及び比較例2-1~2-2においては、ポリビニルエーテル系化合物における全側鎖中の炭素/酸素モル比を求めた。
(4)各例で製造したポリビニルエーテル系化合物中の特定基含有率の測定
 実施例1-1~1-3及び比較例1-1では、各例で製造したポリビニルエーテル系化合物の全側鎖中のメトキシ基含有率を求めた。
 実施例2-1~2-4及び比較例2-1~2-2では、ポリビニルエーテル系化合物全質量に対するポリビニルエーテル系化合物中のプロピレングリコール残基、エチレングリコール残基、エトキシ基の含有率を求めた。
 なお、特定基含有率は、各例で製造したポリビニルエーテル系化合物について、日本電子製:AL400型NMR装置によりNMRスペクトルを測定し、このスペクトルに基づき算出した。
(5)二層分離温度の測定
 各例で製造したポリビニルエーテル系化合物を試料として用い、R32(ジフルオロメタン)冷媒との相溶性を調べた。具体的には次のように行った。
 R32に対し、10質量%及び20質量%となるように所定量の試料を耐圧ガラスアンプルに加え、これを真空配管およびR32ガス配管に接続した。アンプルを室温で真空脱気後、液体窒素で冷却して所定量のR32を採取した。次いで、アンプルを封じ、恒温槽中で低温分離温度を室温から徐々に冷却することで、相分離が始まる温度を測定した。相分離温度が低いほど好ましい。
調製例1〔触媒の調製〕
 SUS316L製の2L容積オートクレーブに、ニッケル珪藻土触媒(日揮触媒化成社製、商品名N113)6g及びイソオクタン300gを仕込んだ。オートクレーブ内を窒素置換し、次いで水素置換したのち、水素圧を3.0MPaGとして昇温し、140℃で30分間保持後、室温まで冷却した。オートクレーブ内を窒素置換したのち、オートクレーブにアセトアルデヒドジエチルアセタール10gを加え、再び窒素置換し、次いで水素置換後、水素圧を3.0MPaGとして昇温した。130℃で30分間保持後、室温まで冷却した。昇温によりオートクレーブ内の圧力が上昇する一方、アセトアルデヒドジエチルアセタールが反応することにより、水素圧力の減少が認められた。圧力が減少し、3.0MPaG以下となった場合は水素を足し、3.0MPaGとした。室温まで冷却後脱圧し、次いで、オートクレーブ内を窒素置換したのち、脱圧した。
実施例1-1
 攪拌機を取付けたガラス製300cm3フラスコに、トルエン40g、メタノール8.33g、三フッ化ホウ素ジエチルエーテル錯体0.1gを入れた。三角フラスコにエチルビニルエーテル150gを入れた。フラスコ内を撹拌しながら、エチルビニルエーテルをポンプで5cm3/minで供給し、22.5g供給したところで一旦ポンプを停止した。反応によりフラスコ内の温度が上昇したことを確認したのち、ポンプを再起動し、4時間かけて残りのエチルビニルエーテルを供給した。この間、フラスコ内の温度が25℃になるようにウォーターバスで温度を制御した。供給終了後さらに5分間撹拌した。反応混合物を洗浄槽に移し、1質量%水酸化ナトリウム水溶液200ミリリットルで1回洗浄し、さらに、純水200ミリリットルで3回洗浄した。ロータリーエバポレターを用い減圧下溶媒及び未反応原料を除去し粗製品150gを得た。
 調製例1で調製した触媒入りのSUS-316L製2リットルオートクレーブに、上記粗製品120gとイソオクタン300gとを入れた。オートクレーブ内を水素で置換したのち、水素圧を3.5MPa に保ち撹拌しながら30分で140℃に昇温し、さらに140℃で3時間反応した。反応終了後室温まで冷却し常圧まで減圧した。ろ紙を用いてろ過を行った。ロータリーエバポレターを用い減圧下、溶媒、水分などを除去した。
 基油の収量は108gであった。またC/Oモル比は3.9であり、メトキシ基含有量は10モル%であった。
 得られた基油は、一般式(I-1)で表される構成単位を有する重合体であり、一般式(I-1)におけるR1~R3が水素原子、R4がエチル基のポリビニルエーテル系化合物であった。
実施例1-2
 攪拌機を取付けたガラス製300cm3フラスコに、イソオクタン36g、メタノール8.53g、三フッ化ホウ素ジエチルエーテル錯体0.1gを入れた。加圧容器にエチルビニルエーテル135gとメチルビニルエーテル15gを入れて密閉した。フラスコ内を撹拌しながら、エチルビニルエーテルとメチルビニルエーテルの混合液をポンプで5cm3/minで供給し、22g供給したところで一旦ポンプを停止した。反応によりフラスコ内の温度が上昇したことを確認したのち、ポンプを再起動し、4時間かけて残りのビニルエーテル混合液を供給した。この間、フラスコ内の温度が25℃になるようにウォーターバスで温度を制御した。供給終了後さらに5分間撹拌した。次いで、洗浄及び水添反応を実施例1-1と同様に行い110gの基油を得た。
 この基油におけるC/Oモル比は3.8であり、メトキシ基含有量は20モル%であった。
 得られた基油は、一般式(I-1)で表される構成単位を有する重合体であり、一般式(I-1)におけるR1~R3が水素原子、R4がメチル基のポリビニルエーテル系化合物と一般式(I-1)で表される構成単位を有する重合体であり、一般式(I-1)におけるR1~R3が水素原子、R4がエチル基のポリビニルエーテル系化合物の混合物であった。
実施例1-3
 攪拌機を取付けたガラス製300cm3フラスコに、トルエン38g、ジメチルアセタール20.3g、三フッ化ホウ素ジエチルエーテル錯体0.1gを入れた。三角フラスコにエチルビニルエーテル130gを入れた。フラスコ内を撹拌しながら、エチルビニルエーテルをポンプで4時間かけて供給した。この間、フラスコ内の温度が25℃になるようにウォーターバスで温度を制御した。供給終了後さらに5分間撹拌した。次いで、洗浄及び水添反応を実施例1-1と同様に行い100gの基油を得た。
 この基油におけるC/Oモル比は3.8であり、メトキシ基含有量は 20モル%であった。
 得られた基油は、一般式(I-1)で表される構成単位を有する重合体であり、一般式(I-1)におけるR1~R3が水素原子、R4がエチル基のポリビニルエーテル系化合物であった。
比較例1-1
 攪拌機を取付けたガラス製300cm3フラスコに、イソオクタン24g、エタノール 7.67g、三フッ化ホウ素ジエチルエーテル錯体0.1gを入れた。三角フラスコにエチルビニルエーテル90g入れた。フラスコ内を撹拌しながら、エチルビニルエーテルをポンプで5cm3/minで供給し、14g供給したところで一旦ポンプを停止した。反応によりフラスコ内の温度が上昇したことを確認したのち、ポンプを再起動し、4時間かけて残りのビニルエーテルを供給した。この間、フラスコ内の温度が25℃になるようにウォーターバスで温度を制御した。供給終了後さらに5分間撹拌した。次いで、洗浄及び水添反応を実施例1-1と同様に行い75gの製品を得た。
 上記製品のC/Oモル比は4.0であり、メトキシ基の含有量は0モル%であった。
 得られた基油は、一般式(I-1)におけるR1~R3が水素原子、R4がエチル基のポリビニルエーテル系化合物であった。
 上記実施例1-1~1-3及び比較例1-1で得られた基油の性状を第1表に示す。
Figure JPOXMLDOC01-appb-T000017
 第1表から分かるように、C/Oモル比が4.0の比較例1-1は、2層分離温度が低温側で-17.1℃であり、実施例1-1~1-3に比べて高く、所望の低温相溶性が得られない。
実施例2-1
 攪拌機を取付けたガラス製300cm3フラスコに、トルエン43g、エチレングリコールモノメチルエーテル19.8g、三フッ化ホウ素ジエチルエーテル錯体0.1gを入れた。三角フラスコにエチルビニルエーテル150gを入れた。フラスコ内を撹拌しながら、エチルビニルエーテルをポンプで5cm3/minで供給し、22g供給したところで一旦ポンプを停止した。反応によりフラスコ内の温度が上昇したことを確認したのち、ポンプを再起動し、4時間かけて残りのビニルエーテルを供給した。この間、フラスコ内の温度が25℃になるようにウォーターバスで温度を制御した。供給終了後さらに5分間撹拌した。次いで、反応混合物を洗浄槽に移し、1質量%水酸化ナトリウム水溶液200ミリリットルで1回洗浄し、さらに、純水200ミリリットルで3回洗浄した。ロータリーエバポレターを用い減圧下溶媒及び未反応原料を除去し粗製品150gを得た。
 調製例2-1で調製した触媒入りのSUS-316L製2リットルオートクレーブに粗製品120gとイソオクタン300gを入れた。オートクレーブ内を水素で置換したのち、水素圧を3.5MPa に保ち撹拌しながら30分で140℃に昇温し、さらに140℃で3時間反応した。反応終了後室温まで冷却し常圧まで減圧した。ろ紙を用いてろ過を行った。ロータリーエバポレターを用い減圧下、溶媒、水分などを除去した。基油の収量は108gであった。重合体における全側鎖中のC/Oモル比は1.89であり、また仕込みから推定される基油の理論構造式に基づく分子量の計算値は564であった。なお、この基油におけるエチレングリコール残基含有率は13.3質量%であった。
 得られた基油は、一般式(I-2)で表される構造を有する重合体であり、一般式(I-2)におけるアルキレングリコール単位のR1~R3が水素原子、Raがメチル基、Rbがエチレン基、mが1;ビニルエーテル単位のR1~R3が水素原子、R5がエチル基のポリビニルエーテル系化合物であった。
実施例2-2
 攪拌機を取付けたガラス製300cm3フラスコに、トルエン48g、トリエチレングリコールモノメチルエーテル42.7g、三フッ化ホウ素ジエチルエーテル錯体0.1gを入れた。三角フラスコにエチルビニルエーテル150g入れた。フラスコ内を撹拌しながら、エチルビニルエーテルをポンプで5cm3/minで供給し、22g供給したところで一旦ポンプを停止した。反応によりフラスコ内の温度が上昇したことを確認したのち、ポンプを再起動し、4時間かけて残りのビニルエーテルを供給した。この間、フラスコ内の温度が25℃になるようにウォーターバスで温度を制御した。供給終了後さらに5分間撹拌した。次いで、洗浄及び水添反応を実施例1と同様に行い150gの基油を得た。
 この基油の重合体における全側鎖中のC/Oモル比は1.91であり、また仕込みから推定される基油の理論構造式に基づく分子量の計算値は696であった。なお、この基油におけるトリエチレングリコール残基含有率は23.4質量%であった。
 得られた基油は、一般式(I-2)で表される構造を有する重合体であり、一般式(I-2)におけるアルキレングリコール単位のR1~R3が水素原子、Raがメチル基、Rbがエチレン基、mが3;ビニルエーテル単位のR1~R3が水素原子、R5がエチル基のポリビニルエーテル系化合物であった。
実施例2-3
 攪拌機を取付けたガラス製300cm3フラスコに、トルエン37g、ポリエチレングリコール(PEG200)46.2g、三フッ化ホウ素ジエチルエーテル錯体0.2gをいれた。三角フラスコにエチルビニルエーテル100g入れた。フラスコ内を撹拌しながら、エチルビニルエーテルをポンプで5cm3/minで供給し、40g供給したところで一旦ポンプを停止した。反応によりフラスコ内の温度が上昇したことを確認したのち、ポンプを再起動し、4時間かけて残りのビニルエーテルを供給した。この間、フラスコ内の温度が25℃になるようにウォーターバスで温度を制御した。供給終了後さらに5分間撹拌した。次いで、洗浄及び水添反応を実施例2-1と同様に行い70gの基油を得た。
 この基油の重合体における全側鎖中のC/Oモル比は2.18であり、また仕込みから推定される基油の理論構造式に基づく分子量の計算値は796であった。なお、この基油におけるポリエチレングリコール残基含有率は25.8質量%であった。
 得られた基油は、一般式(I-2)で表される構造を有する重合体であり、一般式(I-2)におけるアルキレングリコール単位のR1~R3が水素原子、Raがメチル基、Rbがエチレン基、mが4;ビニルエーテル単位のR1~R3が水素原子、R5がエチル基のポリビニルエーテル系化合物であった。
実施例2-4
 攪拌機を取付けたガラス製300cm3フラスコに、イソオクタン54g、ポリプロピレングリコールモノメチルエーテル(平均重合数:3)65.2g、三フッ化ホウ素ジエチルエーテル錯体0.1gを入れた。三角フラスコにエチルビニルエーテル150g入れた。フラスコ内を撹拌しながら、エチルビニルエーテルをポンプで5cm3/minで供給し、40g供給したところで一旦ポンプを停止した。反応によりフラスコ内の温度が上昇したことを確認したのち、ポンプを再起動し、4時間かけて残りのビニルエーテルを供給した。この間、フラスコ内の温度が25℃になるようにウォーターバスで温度を制御した。供給終了後さらに5分間撹拌した。次いで、洗浄及び水添反応を実施例2-1と同様に行い150gの基油を得た。
 この基油の重合体における全側鎖中のC/Oモル比は2.20であり、また仕込みから推定される基油の理論構造式に基づく分子量の計算値は594であった。なお、この基油におけるポリプロピレングリコール残基含有率は34.5質量%であった。
 得られた基油は、一般式(I-2)で表される構造を有する重合体であり、一般式(I-2)におけるアルキレングリコール単位のR1~R3が水素原子、Raがメチル基、Rbがプロピレン基、mが3;ビニルエーテル単位のR1~R3が水素原子、R5がエチル基のポリビニルエーテル系化合物であった。
比較例2-1
 攪拌機を取付けたガラス製300cm3フラスコに、イソオクタン74g、ポリプロピレングリコールモノメチルエーテル(平均重合数:7)146g、三フッ化ホウ素ジエチルエーテル錯体0.1gをいれた。三角フラスコにエチルビニルエーテル150g入れた。フラスコ内を撹拌しながら、エチルビニルエーテルをポンプで5cm3/minで供給し、40g供給したところで一旦ポンプを停止した。反応によりフラスコ内の温度が上昇したことを確認したのち、ポンプを再起動し、4時間かけて残りのビニルエーテルを供給した。この間、フラスコ内の温度が25℃になるようにウォーターバスで温度を制御した。供給終了後さらに5分間撹拌した。次いで、洗浄及び水添反応を実施例2-1と同様に行い160gの基油を得た。
 この基油の重合体における全側鎖中のC/Oモル比は2.46であり、また仕込みから推定される基油の理論構造式に基づく分子量の計算値は826であった。なお、この基油におけるポリプロピレングリコール残基含有率は52.9質量%であった。
 得られた基油は、一般式(I-2)で表される構造を有する重合体であり、一般式(I-2)におけるアルキレングリコール単位のR1~R3が水素原子、Raがメチル基、Rbがプロピレン基、mが7;ビニルエーテル単位のR1~R3が水素原子、R5がエチル基のポリビニルエーテル系化合物であった。
比較例2-2
 攪拌機を取付けたガラス製300cm3フラスコに、イソオクタン62g、ポリプロピレングリコールモノメチルエーテル(平均重合数:7)97.5g、三フッ化ホウ素ジエチルエーテル錯体0.1gをいれた。三角フラスコにエチルビニルエーテル150g入れた。フラスコ内を撹拌しながら、エチルビニルエーテルをポンプで5cm3/minで供給し、27g供給したところで一旦ポンプを停止した。反応によりフラスコ内の温度が上昇したことを確認したのち、ポンプを再起動し、4時間かけて残りのビニルエーテルを供給した。この間、フラスコ内の温度が25℃になるようにウォーターバスで温度を制御した。供給終了後さらに5分間撹拌した。次いで、洗浄及び水添反応を実施例2-1と同様に行い180gの基油を得た。
 この基油の重合体における全側鎖中のC/Oモル比は2.43であり、また仕込みから推定される基油の理論構造式に基づく分子量の計算値は1041であった。なお、この基油におけるポリプロピレングリコール残基含有率は42.0質量%であった。
 得られた基油は、一般式(I-2)で表される構造を有する重合体であり、一般式(I-2)におけるアルキレングリコール単位のR1~R3が水素原子、Raがメチル基、Rbがプロピレン基、mが7;ビニルエーテル単位のR1~R3が水素原子、R5がエチル基のポリビニルエーテル系化合物であった。
 上記実施例2-1~2-4及び比較例2-1~2-2で得られた基油の性状を第2表に示す。
Figure JPOXMLDOC01-appb-T000018
 第2表から分かるように、重合体における全側鎖中のC/Oモル比が2.40以上である比較例は、2層分離温度が低温側で実施例2-1~2-4に比べて高く、所望の低温相溶性が得られない。
 第1及び第2の本発明の圧縮型冷凍機用潤滑油によれば、地球温暖化係数の少ないR32冷媒を使用することができ、地球温暖化防止に寄与することができる。さらに、第2の本発明の圧縮型冷凍機用潤滑油によれば、低粘度高VI化による冷凍機におけるエネルギー効率が向上する。

Claims (11)

  1.  ジフルオロメタン(R32)冷媒を使用する圧縮型冷凍機用潤滑油であって、
     一般式(I-1)で表される構成単位を有する重合体であり、かつ炭素/酸素モル比が3.0以上4.0未満である第1のポリビニルエーテル系化合物を含むことを特徴とする、圧縮型冷凍機用潤滑油。
    Figure JPOXMLDOC01-appb-C000001
       
    〔式中、R1、R2及びR3は、それぞれ水素原子又は炭素数1~8の炭化水素基を示し、それらはたがいに同一でも異なっていてもよい。R4は炭素数1~20の炭化水素基を示す。R1~R4は構成単位毎に同一であってもそれぞれ異なっていてもよい。〕
  2.  前記第1のポリビニルエーテル系化合物が、重合体中の全側鎖に対してメトキシ基を1モル%以上含むことを特徴とする、請求項1に記載の圧縮型冷凍機用潤滑油。
  3.  ジフルオロメタン(R32)冷媒を使用する圧縮型冷凍機用潤滑油であって、
     分子中にアルキレングリコール単位又はポリオキシアルキレングリコール単位と、ビニルエーテル単位とを有し、分子量が300~3,000の範囲にある重合体であり、かつ該重合体における全側鎖中の炭素/酸素モル比が1.00以上2.40未満である第2のポリビニルエーテル系化合物を含むことを特徴とする、圧縮型冷凍機用潤滑油。
  4.  前記第2のポリビニルエーテル系化合物が、一般式(I-2)で表される構造を有することを特徴とする、請求項3に記載の圧縮型冷凍機用潤滑油。
    Figure JPOXMLDOC01-appb-C000002
    〔式中、R1、R2及びR3は、それぞれ水素原子又は炭素数1~8の炭化水素基を示し、それらは互いに同一でも異なってもよい。Rbは炭素数2~4の二価の炭化水素基を示す。Raは、水素原子、炭素数1~20の脂肪族もしくは脂環式炭化水素基、炭素数1~20の置換基を有してもよい芳香族基、炭素数2~20のアシル基、又は炭素数2~50の酸素含有炭化水素基を示す。R5は炭素数1~10の炭化水素基を示す。Ra、Rb、及びR5は、それらが複数ある場合には、それぞれ同一であっても異なっていてもよい。
     mはその平均値が1~50、kは1~50、pは0~50示し、kおよびpはそれらが複数ある場合にはそれぞれブロックでもランダムでもよい。また、複数のRbOがある場合には、複数のRbOは同一であっても異なっていてもよい。〕
  5.  前記第2のポリビニルエーテル系化合物が、重合体中にエチレングリコール残基及び/又はプロピレングリコール残基を含む請求項3又は4に記載の圧縮型冷凍機用潤滑油。
  6.  前記第2のポリビニルエーテル系化合物が、全質量に対してエチレングリコール残基及び/又はプロピレングリコール残基を5質量%以上50質量%以下含む請求項5に記載の圧縮型冷凍機用潤滑油。
  7.  メタノール、ジメチルアセタール、エチルメチルアセタールから選ばれる1種類以上の第1の重合開始剤を用い、一般式(II-1)で表されるビニルエーテル系モノマーを重合して請求項1又は2に記載の圧縮型冷凍機用潤滑油を製造する圧縮型冷凍機用潤滑油の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    〔式中、R1、R2及びR3は、それぞれ水素原子又は炭素数1~8の炭化水素基を示し、それらはたがいに同一でも異なっていてもよい。R4は炭素数1~20の炭化水素基を示す。〕
  8.  一般式(II-2)で表されるビニルエーテル系モノマーを、一般式(III)で表されるアルキレングリコール化合物又はポリオキシアルキレングリコール化合物である第2の重合開始剤を用いて重合して請求項3~6のいずれかに記載の圧縮型冷凍機用潤滑油を製造する圧縮型冷凍機用潤滑油の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    〔式中、R1、R2及びR3は、それぞれ水素原子又は炭素数1~8の炭化水素基を示し、それらは互いに同一でも異なってもよい。R5は炭素数1~10の炭化水素基を示す。Raは、水素原子、炭素数1~20の脂肪族もしくは脂環式炭化水素基、炭素数1~20の置換基を有してもよい芳香族基、炭素数2~20のアシル基、又は炭素数2~50の酸素含有炭化水素基を示す。Rbは炭素数2~4の二価の炭化水素基を示す。mはその平均値が1~50の数を示す。〕
  9.  請求項1~6のいずれかに記載の圧縮型冷凍機用潤滑油と、R32冷媒とを含むことを特徴とする圧縮型冷凍機用組成物。
  10.  請求項7又は8に記載の製造方法により得られた圧縮型冷凍機用潤滑油と、R32冷媒とを含むことを特徴とする圧縮型冷凍機用組成物。
  11.  請求項1~6のいずれかに記載の圧縮型冷凍機用潤滑油、及び/又は、請求項7若しくは8に記載の製造方法により得られた圧縮型冷凍機用潤滑油を用いることを特徴とする圧縮型冷凍装置。
PCT/JP2013/076410 2012-09-28 2013-09-27 圧縮型冷凍機用潤滑油 WO2014051108A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014538653A JP6122861B2 (ja) 2012-09-28 2013-09-27 圧縮型冷凍機用潤滑油
EP13840751.5A EP2902467A4 (en) 2012-09-28 2013-09-27 LUBRICANTS FOR COMPRESSION COOLING MACHINES
KR1020157007018A KR102124305B1 (ko) 2012-09-28 2013-09-27 압축형 냉동기용 윤활유
US14/430,704 US9683190B2 (en) 2012-09-28 2013-09-27 Lubricant for compression type refrigerating machines
CN201380050447.3A CN104685040B (zh) 2012-09-28 2013-09-27 压缩型冷冻机用润滑油
US15/603,603 US20170260473A1 (en) 2012-09-28 2017-05-24 Lubricant for compression type refrigerating machines

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-218003 2012-09-28
JP2012218007 2012-09-28
JP2012218003 2012-09-28
JP2012-218007 2012-09-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/430,704 A-371-Of-International US9683190B2 (en) 2012-09-28 2013-09-27 Lubricant for compression type refrigerating machines
US15/603,603 Division US20170260473A1 (en) 2012-09-28 2017-05-24 Lubricant for compression type refrigerating machines

Publications (1)

Publication Number Publication Date
WO2014051108A1 true WO2014051108A1 (ja) 2014-04-03

Family

ID=50388498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076410 WO2014051108A1 (ja) 2012-09-28 2013-09-27 圧縮型冷凍機用潤滑油

Country Status (8)

Country Link
US (2) US9683190B2 (ja)
EP (1) EP2902467A4 (ja)
JP (2) JP6122861B2 (ja)
KR (1) KR102124305B1 (ja)
CN (2) CN104685040B (ja)
MY (1) MY178209A (ja)
TW (1) TW201420744A (ja)
WO (1) WO2014051108A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186671A1 (ja) * 2014-06-06 2015-12-10 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
WO2016190286A1 (ja) * 2015-05-26 2016-12-01 出光興産株式会社 冷凍機油、冷凍機用組成物、及び冷凍機
KR20170034887A (ko) 2014-07-18 2017-03-29 이데미쓰 고산 가부시키가이샤 냉동기유 조성물 및 냉동 장치
JP2017071690A (ja) * 2015-10-07 2017-04-13 出光興産株式会社 冷凍機油、冷凍機用組成物、冷凍機及び冷凍機油の選定方法
JP2017125216A (ja) * 2017-04-25 2017-07-20 出光興産株式会社 冷凍機油、冷凍機用組成物、冷凍機及び冷凍機油の選定方法
JP2018100348A (ja) * 2016-12-20 2018-06-28 出光興産株式会社 冷凍機油、及び冷凍機用組成物
WO2018117116A1 (ja) * 2016-12-20 2018-06-28 出光興産株式会社 冷凍機油、及び冷凍機用組成物
US20180230397A1 (en) * 2015-09-16 2018-08-16 Idemitsu Kosan Co., Ltd. Refrigeration machine oil, composition for refrigeration machines, and compression-type refrigeration machine
JP2021088722A (ja) * 2014-10-09 2021-06-10 Eneos株式会社 冷凍機油及び冷凍機用作動流体組成物

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107216926A (zh) * 2017-07-06 2017-09-29 沈阳市宏城精细化工厂 与r32制冷剂低温互溶的聚乙烯基醚类润滑油基础油的制备方法及其在制冷系统中的应用
CN107653044B (zh) * 2017-10-26 2020-04-10 中国石油化工股份有限公司 一种燃气发动机润滑油组合物及其制备方法
KR102481126B1 (ko) * 2018-04-02 2022-12-26 에네오스 가부시키가이샤 냉동기, 냉동기유 및 냉동기용 작동 유체 조성물
JP2020139072A (ja) * 2019-02-28 2020-09-03 出光興産株式会社 冷凍機用組成物
CN113736552A (zh) * 2021-09-22 2021-12-03 东莞市金龙珠宝首饰有限公司 贵金属冷却液

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128578A (ja) 1992-06-04 1994-05-10 Idemitsu Kosan Co Ltd 圧縮型冷凍機用潤滑油
JPH08193196A (ja) 1993-12-03 1996-07-30 Idemitsu Kosan Co Ltd 圧縮型冷凍機用潤滑油
JPH09272886A (ja) 1996-02-05 1997-10-21 Idemitsu Kosan Co Ltd 圧縮型冷凍機用潤滑油
WO2007029746A1 (ja) 2005-09-07 2007-03-15 Idemitsu Kosan Co., Ltd. 圧縮型冷凍機用潤滑油、及びそれを用いた冷凍装置
WO2008108365A1 (ja) 2007-03-08 2008-09-12 Idemitsu Kosan Co., Ltd. 圧縮型冷凍機用潤滑油、及びそれを用いた冷凍装置
WO2009066727A1 (ja) * 2007-11-22 2009-05-28 Idemitsu Kosan Co., Ltd. 冷凍機用潤滑油組成物およびこれを用いた圧縮機
WO2009110584A1 (ja) * 2008-03-07 2009-09-11 出光興産株式会社 冷凍機用潤滑油組成物

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518643A (en) * 1992-06-04 1996-05-21 Idemitsu Kosan Co., Ltd. Lubricating oil containing a polyvinyl ether compound for compression-type refrigerators
ES2247745T3 (es) * 1992-06-04 2006-03-01 Idemitsu Kosan Co., Ltd. Compuesto de poli (eter de vinilo) y procedimiento de preparacion.
MY111325A (en) * 1993-12-03 1999-10-30 Idemitsu Kosan Co A lubricating oil for compression-type refrigerators.
JP3557053B2 (ja) * 1996-09-30 2004-08-25 三洋電機株式会社 冷媒圧縮機
JP3501258B2 (ja) * 1996-11-18 2004-03-02 出光興産株式会社 冷凍装置及び冷媒圧縮機
JPH10159734A (ja) * 1996-11-28 1998-06-16 Sanyo Electric Co Ltd 冷凍装置
JP4024899B2 (ja) * 1997-03-26 2007-12-19 出光興産株式会社 冷凍機油組成物
JP4885339B2 (ja) * 1998-05-13 2012-02-29 出光興産株式会社 冷凍機油組成物
JP3501058B2 (ja) * 1999-12-28 2004-02-23 ダイキン工業株式会社 空気調和機
JP5039251B2 (ja) * 2000-08-23 2012-10-03 出光興産株式会社 冷凍機用潤滑油組成物及びそれを用いた冷凍機用作動流体組成物
US20040157753A1 (en) * 2000-07-26 2004-08-12 Toshinori Tazaki Lubricating oil for refrigerators and hydraulic fluid composition for refrigerator using the same
JP4667761B2 (ja) * 2004-04-02 2011-04-13 出光興産株式会社 冷凍機油組成物
JP5139665B2 (ja) * 2006-11-02 2013-02-06 出光興産株式会社 冷凍機用潤滑油組成物
JP5060335B2 (ja) * 2008-02-15 2012-10-31 出光興産株式会社 冷凍機油組成物
WO2009151669A1 (en) * 2008-03-07 2009-12-17 Arkema Inc. Halogenated alkene heat transfer compositions with improved oil return
JP5248959B2 (ja) * 2008-09-12 2013-07-31 Jx日鉱日石エネルギー株式会社 冷凍機油および冷凍機用作動流体ならびに冷蔵庫
JP5590024B2 (ja) * 2009-02-26 2014-09-17 ダイキン工業株式会社 温暖化係数の低いハイドロフルオロプロペンを含む冷媒組成物
JP2011106770A (ja) * 2009-11-19 2011-06-02 Panasonic Corp 熱交換器および冷凍サイクル装置
JP5466555B2 (ja) * 2010-03-25 2014-04-09 出光興産株式会社 冷凍機用潤滑油組成物
JP5759696B2 (ja) * 2010-09-28 2015-08-05 出光興産株式会社 圧縮型冷凍機用潤滑油組成物
US8889031B2 (en) * 2010-11-30 2014-11-18 Jx Nippon Oil & Energy Corporation Working fluid composition for refrigerator machine and refrigerating machine oil
CN103261689B (zh) * 2010-12-20 2016-05-25 日立空调·家用电器株式会社 冷冻空调用压缩机及冷冻空调装置
JP5871688B2 (ja) * 2012-03-29 2016-03-01 Jx日鉱日石エネルギー株式会社 冷凍機用作動流体組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128578A (ja) 1992-06-04 1994-05-10 Idemitsu Kosan Co Ltd 圧縮型冷凍機用潤滑油
JPH08193196A (ja) 1993-12-03 1996-07-30 Idemitsu Kosan Co Ltd 圧縮型冷凍機用潤滑油
JPH09272886A (ja) 1996-02-05 1997-10-21 Idemitsu Kosan Co Ltd 圧縮型冷凍機用潤滑油
WO2007029746A1 (ja) 2005-09-07 2007-03-15 Idemitsu Kosan Co., Ltd. 圧縮型冷凍機用潤滑油、及びそれを用いた冷凍装置
WO2008108365A1 (ja) 2007-03-08 2008-09-12 Idemitsu Kosan Co., Ltd. 圧縮型冷凍機用潤滑油、及びそれを用いた冷凍装置
WO2009066727A1 (ja) * 2007-11-22 2009-05-28 Idemitsu Kosan Co., Ltd. 冷凍機用潤滑油組成物およびこれを用いた圧縮機
WO2009110584A1 (ja) * 2008-03-07 2009-09-11 出光興産株式会社 冷凍機用潤滑油組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2902467A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186671A1 (ja) * 2014-06-06 2015-12-10 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
KR20170034887A (ko) 2014-07-18 2017-03-29 이데미쓰 고산 가부시키가이샤 냉동기유 조성물 및 냉동 장치
KR20220159495A (ko) 2014-07-18 2022-12-02 이데미쓰 고산 가부시키가이샤 냉동기유 조성물 및 냉동 장치
JP7065222B2 (ja) 2014-10-09 2022-05-11 Eneos株式会社 冷凍機油及び冷凍機用作動流体組成物
JP2021088722A (ja) * 2014-10-09 2021-06-10 Eneos株式会社 冷凍機油及び冷凍機用作動流体組成物
WO2016190286A1 (ja) * 2015-05-26 2016-12-01 出光興産株式会社 冷凍機油、冷凍機用組成物、及び冷凍機
US20180230397A1 (en) * 2015-09-16 2018-08-16 Idemitsu Kosan Co., Ltd. Refrigeration machine oil, composition for refrigeration machines, and compression-type refrigeration machine
US10836973B2 (en) 2015-10-07 2020-11-17 Idemitsu Kosan Co., Ltd. Freezer oil, composition for freezers, freezer, and method for selecting freezer oil
JP2017071690A (ja) * 2015-10-07 2017-04-13 出光興産株式会社 冷凍機油、冷凍機用組成物、冷凍機及び冷凍機油の選定方法
JP2018100349A (ja) * 2016-12-20 2018-06-28 出光興産株式会社 冷凍機油、及び冷凍機用組成物
WO2018117116A1 (ja) * 2016-12-20 2018-06-28 出光興産株式会社 冷凍機油、及び冷凍機用組成物
US10889776B2 (en) 2016-12-20 2021-01-12 Idemitsu Kosan Co., Ltd. Refrigerating machine oil, and composition for refrigerating machine
US11015138B2 (en) 2016-12-20 2021-05-25 Idemitsu Kosan Co., Ltd. Refrigerating machine oil, and composition for refrigerating machine
JP2018100348A (ja) * 2016-12-20 2018-06-28 出光興産株式会社 冷凍機油、及び冷凍機用組成物
JP7032043B2 (ja) 2016-12-20 2022-03-08 出光興産株式会社 冷凍機油、及び冷凍機用組成物
JP2017125216A (ja) * 2017-04-25 2017-07-20 出光興産株式会社 冷凍機油、冷凍機用組成物、冷凍機及び冷凍機油の選定方法

Also Published As

Publication number Publication date
CN107663467A (zh) 2018-02-06
MY178209A (en) 2020-10-07
KR102124305B1 (ko) 2020-06-18
TW201420744A (zh) 2014-06-01
CN104685040A (zh) 2015-06-03
CN107663467B (zh) 2020-12-04
EP2902467A1 (en) 2015-08-05
US20150275119A1 (en) 2015-10-01
JP6122861B2 (ja) 2017-04-26
JP2017125209A (ja) 2017-07-20
US9683190B2 (en) 2017-06-20
JP6298556B2 (ja) 2018-03-20
KR20150059744A (ko) 2015-06-02
JPWO2014051108A1 (ja) 2016-08-25
US20170260473A1 (en) 2017-09-14
CN104685040B (zh) 2017-10-27
EP2902467A4 (en) 2016-05-25

Similar Documents

Publication Publication Date Title
JP6298556B2 (ja) 圧縮型冷凍機用潤滑油
EP2119760B1 (en) Composition for lubricating a compression type refrigerating
JP5357426B2 (ja) 圧縮型冷凍機用潤滑油、冷凍装置及び混合液体
JP4112645B2 (ja) 圧縮型冷凍機用潤滑油
KR101497179B1 (ko) 냉동기용 윤활유 조성물
JP5379485B2 (ja) 圧縮型冷凍機用潤滑油、及びそれを用いた冷凍装置
JP5379486B2 (ja) 圧縮型冷凍機用潤滑油、及びそれを用いた冷凍装置
JP5379483B2 (ja) 圧縮型冷凍機用潤滑油、及びそれを用いた冷凍装置
JP5379484B2 (ja) 圧縮型冷凍機用潤滑油、及びそれを用いた冷凍装置
JPWO2008041549A1 (ja) 圧縮型冷凍機用潤滑油、及びそれを用いた冷凍装置
JP5379488B2 (ja) 圧縮型冷凍機用潤滑油、及びそれを用いた冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840751

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538653

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157007018

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013840751

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14430704

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IDP00201501814

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE