WO2014045389A1 - 光記録再生装置および方法 - Google Patents
光記録再生装置および方法 Download PDFInfo
- Publication number
- WO2014045389A1 WO2014045389A1 PCT/JP2012/074185 JP2012074185W WO2014045389A1 WO 2014045389 A1 WO2014045389 A1 WO 2014045389A1 JP 2012074185 W JP2012074185 W JP 2012074185W WO 2014045389 A1 WO2014045389 A1 WO 2014045389A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- recording
- data
- signal
- recorded
- track
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/004—Recording, reproducing or erasing methods; Read, write or erase circuits therefor
- G11B7/006—Overwriting
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/2403—Layers; Shape, structure or physical properties thereof
- G11B7/24035—Recording layers
- G11B7/24038—Multiple laminated recording layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/2403—Layers; Shape, structure or physical properties thereof
- G11B7/24047—Substrates
- G11B7/2405—Substrates being also used as track layers of pre-formatted layers
Definitions
- Embodiments described herein relate generally to an optical recording / reproducing apparatus and method for recording / reproducing information on / from an optical recording medium.
- Optical information recording media represented by CDs (Compact Discs), DVDs (Digital Versatile Discs), BDs (Blu-ray (registered trademark) Discs) and the like have been used to shorten the wavelength of laser light and the numerical aperture of objective lenses ( The recording density is increased by increasing NA). However, all of these are said to be approaching the limits due to technical reasons and the like, and an increase in recording density by other means and methods is desired.
- a guide layer method in which a guide layer having tracking servo information (groove) is provided separately from a recording layer in an optical information recording medium (multilayer optical disc) having a multi-layered recording layer. Multi-layer optical discs have been proposed.
- the structure of the recording layer to be laminated becomes simple, and the disc manufacturing cost can be suppressed.
- the state of tilt of the disc there is a possibility that data may be overwritten on a track on which data has been previously recorded. In the worst case, data may be destroyed. Therefore, there is a technique for preventing overwriting by providing a certain unrecorded area from the final position of the recorded data and starting recording of data to be additionally recorded thereafter.
- the present disclosure has been made in order to solve the above-described problems, and an object thereof is to provide an optical recording / reproducing apparatus and method that allow easy data access.
- the optical recording / reproducing apparatus records data on a recording medium in which one or more recording layers on which data is recorded and a guide layer used for positioning are stacked apart from each other.
- the terminal position detection unit and the additional write start position setting unit are included.
- the end position detection unit when there is a recorded area related to the first data in the first recording layer of the recording medium, and when the second data is newly recorded on the first recording layer, Detect the end position.
- the additional recording start position setting unit sets the recording start position of the second data to a position that overlaps the recorded area rather than the end position.
- FIG. 1 is a block diagram showing an optical recording / reproducing apparatus according to an embodiment.
- 1 is a diagram showing an optical pickup head according to the present embodiment.
- the block diagram which shows the detail of a postscript control part.
- the block diagram which shows the postscript control part which concerns on the modification of this embodiment.
- FIG. 3 is a schematic diagram of data in a buffer area of the entire optical recording medium divided in the circumferential direction.
- the block diagram which shows the reproduction
- An optical recording medium 100 used in the optical recording / reproducing apparatus according to the present embodiment is a guide layer type multilayer medium, and a guide layer 101 having a groove and applying tracking servo and a recording layer 102 for recording data are provided separately. It is done. Thereby, the structure of the recording layer itself to be laminated can be simplified, and the manufacturing cost of the optical recording medium can be suppressed.
- one guide layer 101 and a recording layer 102 in which 10 layers from L0 to L9 are stacked are formed in an optical recording medium.
- Guide light 103 is focused on the guide layer 101
- recording light 104 is focused on the recording layer 102.
- Data recording and data reproduction are performed by focusing the recording light 104 along the position of the guide light 103.
- FIG. 2 is a schematic diagram showing spot positions at the time of additional writing when the guide layer 101 and the recording layer 102 are separated.
- the additional recording means that the first data is first recorded, the optical recording medium is removed from the optical recording / reproducing apparatus, and then the optical recording medium is inserted into the optical recording / reproducing apparatus again. The second data is recorded.
- FIG. 2A shows a case where no tilt occurs in the optical recording medium, and the track position 201 on the guide layer 101 indicates the track position 202 of the recording layer 102 located vertically below.
- data is recorded on the recording layer from the track on the left side of the guide layer to the Nth track, and a data string is formed on the recording layer as shown in FIG.
- Fig. 2 (b) shows a case where data is added after Fig. 2 (a).
- data it is completely unknown how the optical recording medium is tilted, and it is natural to think that a tilt state different from the previous recording occurs.
- FIG. 2B it is a state when the tilt ⁇ occurs. Since it can be extracted from the management information that the previously recorded data has been recorded up to the Nth track, additional recording is started from the N + 1th track in the case of a normal optical recording medium.
- the beam spot of the recording layer 102 is a track position 202 shifted by d ⁇ tan ⁇ in terms of the optical recording medium coordinates. As a result, it may interfere with the previously recorded track, and in the worst case, the data may be destroyed.
- the intentional pause of recording due to, for example, buffer underrun or recording strategy / servo parameter adjustment such as resuming recording immediately without re-inserting the optical recording medium, causes extreme tilt and lens shift conditions. It is assumed that there is no tilt, that is, a tilt that causes a problem does not occur.
- the optical recording / reproducing apparatus 300 includes a CPU 301, an interface unit 302, a RAM 303, an NV-RAM 304, a ROM 305, an error correction unit 306, an additional write control unit 307, a spindle motor control unit 308, a spindle motor 309, a rotary encoder 310, Optical pickup head 311, feed motor controller 312, feed motor 313, screw shaft 314, PLL controller 315, laser modulation controller 316, RF amplifier (also referred to as error signal generator) 317, collimator lens actuator controller 318, focus A control unit 319, a track control unit 320, a data reproduction unit 321, an address reproduction unit 322, and a reproduction control unit 1200 are included.
- the CPU 301 receives an operation command from the host device 350 via the interface unit 302.
- the CPU 301 generates a control signal in accordance with the operation command, and an error correction unit 306, a spindle motor control unit 308, a feed motor control unit 312, a PLL control unit 315, a laser modulation control unit 316, a collimator lens actuator control unit 318, a focus described later
- the entire optical recording / reproducing apparatus 300 such as the control unit 319, the track control unit 320, and the data reproducing unit 321 is comprehensively controlled.
- the CPU 301 uses the RAM 303 as a work area, appropriately refers to the parameters of each device recorded in the nonvolatile memory NV-RAM 304, and performs a predetermined operation according to the control program recorded in the ROM 305.
- the error correction unit 306 corrects the reproduction data with errors.
- the additional write control unit 307 receives data from a data reproduction unit 321 (to be described later) and address information from the address reproduction unit 322, and refers to the data and the address information as appropriate to perform additional data processing. Details of the write-once control unit 307 will be described later with reference to FIG.
- the reproduction control unit 1200 receives a tracking error signal output from an RF amplifier 317, which will be described later, and address information from the address generation unit 322, and controls the track control unit 320 based on a command from the CPU 301. The operation of the reproduction control unit 1200 will be described later with reference to FIG.
- the spindle motor control unit 308 receives a control signal from the CPU 301 via the signal bus 351 and generates a spindle motor drive signal.
- the spindle motor 309 receives a spindle motor drive signal from the spindle motor control unit 308, and rotationally drives the optical recording medium 100 installed according to the spindle motor drive signal.
- a rotation angle signal is provided from a rotary encoder 310 provided in the spindle motor 309.
- the rotation angle signal for example, five pulses are generated when the spindle motor makes one rotation. From this rotation angle signal, the rotation angle and the number of rotations of the spindle motor can be determined.
- the optical pickup head 311 generates a light reception signal by irradiating the optical recording medium 100 with a laser and receiving reflected light from the optical recording medium 100.
- the optical pickup head is connected via a feed motor 313, a gear, and a screw shaft 314. The detailed structure of the optical pickup head 311 will be described later with reference to FIG.
- the feed motor control unit 312 receives the control signal and generates a feed motor drive signal.
- the feed motor 313 receives the feed motor drive signal from the feed motor control unit 312 and rotates in accordance with the feed motor drive signal, thereby moving the optical pickup head in the radial direction of the optical recording medium 100.
- the PLL control unit 315 receives a control signal from the CPU 301 and performs phase synchronization to generate a recording clock signal for recording and a reproduction clock signal for reproduction.
- the laser modulation control unit 316 records data to be recorded from the host device 350 via the interface unit 302 when recording data (mark formation), a recording clock signal from the PLL control unit 315, and the CPU 301 and additional recording control. A control signal is received from the unit 307.
- the laser modulation control unit 316 generates a writing signal based on the recording data, the recording clock signal, and the control signal, and provides it to the optical pickup head 311. Further, the laser modulation control unit 316 provides a read signal smaller than the write signal to the optical pickup head 311 when reading data.
- the laser modulation control unit 316 causes the optical pickup head 311 to emit light at the reproduction laser power, the recording laser power, and the erasing laser power set by the CPU 301 based on the light reception signal from the optical pickup head 311. Control the included laser diode.
- the RF amplifier 317 receives a light reception signal from the optical pickup head 311.
- the RF amplifier 317 generates a first focus error signal, a second focus error signal, a first tracking error signal, a second tracking error signal, and a reproduction signal based on the received light signal.
- the first focus error signal is a signal indicating an error from the just focus of the guide layer.
- the second focus error signal is a signal indicating an error from the just focus of the recording layer.
- the first tracking error signal is a signal indicating an error between the center of the laser beam spot and the center of the guide track.
- the second tracking error signal is a signal indicating an error between the laser beam spot center and the recorded track center.
- the reproduction signal is a full addition signal of the received light signal.
- the collimator lens actuator control unit 318 receives the first focus error signal from the RF amplifier 317 based on the command from the CPU 301, and generates a collimator lens focus drive signal according to the first focus error signal.
- the collimator lens focus drive signal is supplied to the drive coil in the focus direction of the collimator lens lens actuator. Thus, focus servo is performed in which the red laser light is always just focused on the guide layer of the optical recording medium 100.
- the focus control unit 319 receives the second focus error signal from the RF amplifier 317 based on the command from the CPU 301, and generates a focus drive signal according to the second focus error signal.
- the focus drive signal is supplied to the drive coil in the focus direction of the objective lens actuator. As a result, focus servo is performed in which the blue laser light is always just focused on the recording layer of the optical recording medium 100.
- the track control unit 320 receives the first tracking error signal and the second tracking error signal from the RF amplifier 317 based on a command from the CPU 301.
- the track controller 320 generates a track driving signal according to the first tracking error signal and the second tracking error signal.
- the track drive signal is supplied to a drive coil in the tracking direction of the objective lens actuator.
- tracking servo is performed in which the laser beam always traces the track formed on the optical recording medium 100.
- the feed motor control unit 312 controls the feed motor 313, that is, the optical pickup head 311 so that the objective lens is positioned near a predetermined position. The That is, tracking servo control is performed in a direction in which the amount of deviation of the optical recording medium 100 from the predetermined position of the objective lens in the radial direction (hereinafter referred to as lens shift amount) is reduced.
- the optical recording medium 1 corresponds to the recording data in the full addition signal of the light reception signal from each photodetection cell of the photodetector described later included in the optical pickup head. Changes in the reflected light from the pits formed on the track are reflected, and this becomes a reproduction signal.
- the data reproduction unit 321 receives a reproduction signal from the RF amplifier 317 and a reproduction clock signal from the PLL control unit 315, respectively. As for the reproduction signal, the data reproduction unit 321 reproduces the recording data based on the reproduction clock signal.
- the address reproduction unit 322 receives a reproduction signal from the RF amplifier 317 and extracts address information from the reproduction signal.
- the optical pickup head includes a blue laser diode 401, a polarizing beam splitter (PBS) 402 and a polarizing beam splitter 407, a quarter wave plate 403 and a quarter wave plate 408, a collimator lens 404 and a collimator lens 409, and a collimator lens actuator. 405 and a collimator lens actuator 410, a red laser diode 406, a dichroic prism 411, an objective lens 412, an objective lens actuator 413, and a photodetector IC (PDIC) 414 and a photodetector IC 415.
- PBS polarizing beam splitter
- PDIC photodetector IC
- the blue laser diode 401 is a semiconductor laser having a wavelength of 405 nm, for example, and irradiates the recording layer of the optical recording medium 100 with a light beam for recording and reproduction.
- the polarization beam splitter 402 transmits incident light from the blue laser diode 401, and reflects light reflected by the optical recording medium 100 and having a 90-degree polarization plane rotated from the incident light.
- the quarter-wave plate 403 transmits incident light from the blue laser diode 401 and converts linearly polarized light into circularly polarized light. Further, the blue laser diode 401 transmits reflected light from the optical recording medium 100 and converts circularly polarized light into linearly polarized light. The linearly polarized light at this time is linearly polarized light having a 90-degree polarization plane different from that of the incident light.
- the collimator lens 404 converts incident light from the blue laser diode 401 into substantially parallel light.
- the collimator lens actuator 405 drives the collimator lens 404 so that the light beam of the blue laser beam that has passed through the objective lens 412 moves in the focus direction indicating the thickness direction of the optical recording medium 100. Specifically, the collimator lens 404 is driven so as to approach or move away from the facing surface of the quarter-wave plate 403.
- the red laser diode 406 is a semiconductor laser having a wavelength of 655 nm, for example, and irradiates the guide layer of the optical recording medium 100 with a tracking servo beam.
- the polarization beam splitter 407 transmits incident light from the red laser diode 406, and reflects light reflected by the optical recording medium 100 and having a 90-degree polarization plane rotated from the incident light.
- the quarter-wave plate 408 is similar to the quarter-wave plate 403, transmits incident light from the red laser diode 406, and converts linearly polarized light into circularly polarized light. Further, the reflected light from the optical recording medium 100 of the red laser diode 406 is transmitted, and circularly polarized light is converted into linearly polarized light.
- the collimator lens 409 converts incident light from the red laser diode 406 into substantially parallel light.
- the collimator lens actuator 410 is the same as the collimator lens actuator 405, and drives the collimator lens 409 so that the red laser beam that has passed through the objective lens 412 moves in the focus direction indicating the thickness direction of the optical recording medium 100. .
- the collimator lens 409 is driven so as to approach or move away from the facing surface of the quarter-wave plate 408.
- the dichroic prism 411 transmits the incident light from the blue laser diode 401 and reflects the incident light from the red laser diode 406.
- the objective lens 412 focuses the light beam emitted from the blue laser diode 401 on the recording layer of the optical recording medium 100. Further, the light beam emitted from the red laser diode 406 is condensed on the guide layer of the optical recording medium 100.
- the objective lens actuator 413 drives the objective lens 412 in the focus direction so that each light beam that has passed through the objective lens 412 moves in the focus direction on the optical recording medium 100. Further, the objective lens 412 is driven so that the light beam that has passed through the objective lens 412 moves in the radial direction on the optical recording medium 100.
- the photodetector IC 414 is composed of, for example, a quadrant photodetection cell, and the reflected light reflected by the polarization beam splitter 402 is detected by these photodetection cells to obtain a light reception signal.
- the generated light reception signal is output to the RF amplifier 317.
- the photodetector IC 415 includes, for example, a quadrant photodetection cell, and the reflected light reflected by the polarization beam splitter 407 is detected by these photodetection cells to obtain a light reception signal.
- the generated light reception signal is output to the RF amplifier 317.
- a blue front monitor PD included in the optical pickup head 311 and configured by a photodiode branches a part of the laser beam generated from the laser diode 401 by a fixed ratio by a half mirror (not shown), that is, the amount of light. A light reception signal proportional to the irradiation power is detected.
- the blue front monitor PD supplies the light reception signal to the laser modulation control unit 316.
- a red front monitor PD (not shown) that is included in the optical pickup head 311 and is configured by a photodiode branches a part of laser light generated from the laser diode 406 by a certain ratio by a half mirror (not shown) to divide the light amount, that is, irradiation A light reception signal proportional to the power is detected.
- the front monitor PD for red supplies a red laser modulation control unit (not shown).
- the additional write control unit 307 includes an end position detection unit 501 and an additional write start position setting unit 502.
- the end position detection unit 501 determines the end position of the first data when there is a recorded area related to the first data in the recording layer of the optical recording medium and new second data is recorded on the same recording layer. To detect.
- the additional recording start position setting unit 502 receives the end position from the end position detection unit 501, sets the recording start position of the second data to a position that overlaps the recorded area beyond the end position, and based on the information about the recording start position.
- the track controller 320 and the feed motor controller 312 are controlled.
- the first data 601 starts to be recorded on the optical recording medium according to a normal recording procedure. That is, the servo light spot is subjected to tracking servo so as to follow the guide groove of the guide layer, and the recording spot having a different focal point on the same axis as the servo light is focused on the recording layer, and recording is performed on the recording layer.
- the spiral data generally following the guide track is recorded.
- first buffer track an area where data from the end of the first data 601 up to a predetermined number of tracks is written.
- the second data 602 is appended after the first data 601 after an arbitrary time has elapsed, the data from the start of the second data 602 to the data of a predetermined number of tracks is called a second buffer track.
- the first buffer track and the second buffer track are collectively defined as a buffer region 603.
- the first buffer track and the second buffer track are overlapped in the radial direction of the optical recording medium by at least one track pitch, so that no matter how the tilt and lens shift change, there is always a boundary between data. A reproduced signal is present.
- tracking can be performed during continuous playback.
- the data pattern recorded on the first buffer track and the second buffer track defined here may be a single pattern or a dummy mark that does not depend on a predetermined modulation method.
- the data can be a part of the first data 601 and the second data 602, or can be arbitrary data representing management information other than user data. That is, any data pattern may be used.
- the additional recording start position setting unit 502 uses, as the start position of the second data 602, a track represented by the following formula from the address indicating the end of the first data 601 obtained by the end position detection unit 501.
- the address shifted to the recorded area (first data) by the number X as the additional recording start position, even if a tilt or lens shift different from the previous recording occurs during additional recording, the overlap is reliably realized. be able to.
- the number of tracks X for realizing the overlap is the maximum possible tilt amount ⁇ max , the lens shift amount Ls max , the distance d between the guide layer and the recording layer, the refractive index n of the medium, the lens shift amount and the maximum Assuming that the coefficient S and the track pitch Tp indicate the relationship with the amount of spot position deviation, the equation (1) can be obtained.
- X is a positive integer.
- the coefficient S indicating the relationship between the lens shift and the spot position deviation amount can be derived analytically from the optical design value, or can be obtained in advance from the actual measurement value.
- the number of margin tracks which is the number of tracks that can be overlapped, may be determined for the first buffer track number A and the second buffer track number B, instead of simply overlapping.
- the number of overlapping margin tracks is Y, it is determined so as to satisfy the following expressions (2) and (3).
- X and Y are positive integers
- FIG. 7A and 7B show (a) when the tilt and lens shift states are not changed (Normal) and (b) when tilt and lens shift occur in the direction in which the tracks are farthest from each other (Far). ) And (c) (Near) are shown when the tracks occur in the closest direction.
- the overlap margin track Y 10.
- the start of additional data in the buffer region 603 is possible regardless of any tilt and lens shift.
- the position is settled. Therefore, overwriting to data tracks other than the buffer area can be completely suppressed, and necessary data can be protected.
- the first buffer track and the second buffer track may be divided in the circumferential direction of the optical recording medium, and data may be recorded intermittently. By doing so, destruction of data in the buffer track can be prevented, and readable data can be recorded in the buffer track.
- the additional write control unit according to this modification will be described with reference to the block diagram of FIG.
- the write-once control unit 800 according to this modification includes an angle information detection unit 801, a first timing generation unit 802, a first recording control unit 804, a second timing generation unit 803, and a second recording control unit 805.
- the angle information detection unit 801 obtains angle information related to the rotation angle of the optical recording medium.
- the angle information may be obtained from address information obtained from the guide layer of the optical recording medium, for example.
- the rotation speed control method of the optical recording medium is a ZCAV (Zoned Constant Angular Velocity) method in which the rotation speed (angular velocity) is constant within a predetermined zone, angle information can be obtained simultaneously with address information.
- a spindle motor encoder or a rotary encoder pattern formed on the inner circumference / outer circumference of the optical recording medium may be used.
- the first timing generation unit 802 receives angle information from the angle information detection unit 801.
- the first timing generation unit 802 turns on the adjacent angle region based on the angle information for the angle region obtained by dividing the track of the angle information recording layer into N pieces (N ⁇ 2 even number) along the circumferential direction. And a first recording timing signal in which OFF is inverted is generated.
- the second timing generation unit 803 receives the first recording timing signal from the first timing generation unit 802 and outputs a second recording timing signal in which at least a part of the first recording timing signal is on during the off period. Generate.
- the first recording control unit 804 receives the first recording timing signal from the first timing generation unit 802.
- the first recording control unit 804 goes back by the number of the first buffer tracks from the end position of the first data based on the difference between the total capacity of the first data to be recorded and the recorded data capacity already recorded.
- the track position is detected, and the first data is intermittently recorded in the circumferential direction along the track in accordance with the first recording timing signal.
- the same effect can be obtained by recording arbitrary data intermittently in the circumferential direction along the track in accordance with the first recording timing signal after the first data recording is completed, in accordance with the first recording timing signal. can get.
- the second recording control unit 805 receives the recording start position from the additional recording start position setting unit 502 and the second recording timing signal from the second timing generation unit 803, respectively.
- the second recording control unit 805 intermittently distributes the second data in the circumferential direction along the track in accordance with the second recording timing signal from the recording start position of the second data over the number of the second buffer tracks or more. Record.
- FIG. 9 shows an example in which one round of the optical recording medium is divided into N angular regions.
- the second timing generation unit 803 outputs a signal obtained by inverting the first recording timing signal as the second recording timing signal.
- the second recording timing signal may be the recording on timing
- the second recording timing signal may be the recording off timing.
- the first recording timing signal and the second recording timing signal may overlap the recording off timing to some extent as long as the angular area of the medium indicated by the recording on timing does not overlap. That is, it is not necessary that the ratio between the recording on time and the off time is 1: 1.
- FIG. 10 shows a case where the second data 1002 is recorded after the first data 1001 is recorded, and the end portion of the first data is placed on the first buffer track 1004 in the buffer area 1003 by the recording method according to the modification.
- the start portion of the second data is recorded in the second buffer track 1005.
- the first data 1001 and the first buffer track 1004 are represented by thin lines, and the second data 1002 and the second buffer track 1005 are represented by thick lines.
- the first recording control unit 804 records data according to the above-described first recording timing signal, for example, when the first recording timing signal is “H”, and stops recording when the first recording timing signal is “L”. To do. As a result, as shown in the first buffer track 704, the first data is intermittently recorded by being divided in the circumferential direction of the optical recording medium. At the time of additional recording, the second recording control unit 804 records the second buffer track 705 so as to overlap the first buffer track 704. At this time, for example, the second recording timing signal is “H” according to the second recording timing signal. Data is sometimes recorded, and recording is stopped when the second recording timing signal is “L”.
- the second buffer track 705 is intermittently recorded in an angular area where the first buffer track 704 is not recorded.
- the first buffer track 704 and the second buffer track 705 are overlapped in the radial direction of the optical recording medium, but the data itself forming each buffer track is accurately separated and recorded when viewed two-dimensionally. . Therefore, the data recorded in the buffer area 1003 can be recorded without being destroyed.
- FIG. 11 shows a schematic diagram of data divided in the circumferential direction in the buffer region of the entire optical recording medium.
- the thin line in the figure is the first buffer track 1101, and the thick line in the figure is the second buffer track 1102.
- the sampling frequency in order to avoid the influence of the servo phase delay, it is necessary to sample the signal at a sampling frequency of 10 times or more of the servo band. That is, when the division number is N, the sampling number per rotation of the optical recording medium (N / 2), the rotational frequency R (Hz) of the optical recording medium, and the cutoff frequency F (Hz) of the tracking servo, N> 2 ⁇ 10 ⁇ F / R (4) It is understood that it is necessary to.
- the signal band of the tracking error signal is K (Hz)
- the time required to pass through one divided angular region is equal to or more than the time constant 1 / (2 ⁇ K) until the output is stabilized.
- the reproduction control unit 1200 includes a timing signal generation unit 1201, a sampling unit 1202, and a switching unit 1203.
- the timing signal generation unit 1201 receives the first recording timing signal from the first timing generation unit 802 and the second recording timing signal from the second timing generation unit 803, respectively.
- the timing signal generation unit 1201 generates a first sample timing signal for determining the first sample timing and a second sample timing signal for determining the second sample timing based on the first recording timing signal and the second recording timing signal. Generate.
- the sampling unit 1202 receives the first sample timing signal and the second sample timing signal from the timing signal generation unit 1202, and receives the second tracking error signal from the RF amplifier 317, respectively.
- the sampling unit 1202 samples and holds the second tracking error signal based on the first sample timing signal and the second sample timing signal. As a result, a first sampled tracking error signal at the first sample timing is obtained, and a second sampled tracking error signal at the second sample timing is obtained.
- the switching unit 1203 receives the first sampled tracking error signal and the second sampled tracking error signal from the sampling unit 1202.
- the switching unit 1203 controls the track control unit 320 by switching and outputting the first sampled tracking error signal and the second sampled tracking error signal according to the address information.
- a deviation amount from the recorded data string in the buffer area can be obtained as a tracking error signal.
- the sampling unit 1202 may alternately sample and hold in synchronization with the recording timing signal.
- the first sampled tracking error signal obtained from the data string forming the first buffer track in the buffer area and the second sampled tracking error signal obtained from the data string forming the second buffer track are made independent. Can get to. By obtaining the first sampled tracking error signal and the second sampled tracking error signal independently, each track can be selectively traced.
- the track section 1301 data is obtained using the tracking error signal obtained from the first data from the inner periphery to the outer periphery. Play.
- switching to the first sampled tracking error signal is performed from the time when the data recorded in the buffer area is reproduced.
- switching to the second sampled tracking error signal is performed when it is determined that the first buffer track and the second buffer track overlap in the radial direction.
- there is a possibility that a several track jump may occur due to the influence of the switching operation of the servo signal.
- by providing the above-described overlap margin track Y it is possible to find the switched destination track.
- the track section 1304 when it is determined that the second buffer track is completed, the track section 1304 is switched to a tracking error signal obtained from the second data.
- the buffer area is formed by overlapping the end of the first data and the start of the second data as additional recording data in the radial direction of the optical recording medium by several tracks.
- the buffer track forming the buffer area is divided into a plurality of areas along the circumferential direction, and the first data and the second data as additional data are alternately recorded in the circumferential direction, so that the existing data The desired data can be recorded even in the buffer area without being overwritten, and the data can be easily accessed during reproduction.
- optical recording medium can be applied to the rewritable phase change type recording method according to the present embodiment, and the write-once type medium is more necessary for additional writing.
- the recording method according to the present embodiment is particularly effective.
- PLL control section 316... Laser modulation control section, 317.
- Collimator lens actuator control unit 319... Focus control unit, 320... Track control unit, 321... Data reproduction unit, 322... Address reproduction unit, 350.
Landscapes
- Optical Recording Or Reproduction (AREA)
Abstract
本実施形態に係る光記録再生装置は、データが記録される1以上の記録層と、位置決めに用いられるガイド層とが離れて積層される記録媒体に対してデータの記録を行なう光記録再生装置であって、終端位置検出部と追記開始位置設定部とを含む。終端位置検出部は、前記記録媒体の第1記録層において第1データに関する記録済みの領域が存在し、かつ該第1記録層に対し新たに第2データを記録する場合、前記第1データの終端位置を検出する。追記開始位置設定部は、前記第2データの記録開始位置を、前記終端位置よりも前記記録済みの領域に重なる位置に設定する。
Description
本発明の実施形態は、光記録媒体に対して記録再生を行なう光記録再生装置および方法に関する。
CD(Compact Disc)やDVD(Digital Versatile Disc)、BD(Blu-ray(登録商標) Disc)等に代表される光情報記録媒体は、これまでレーザ光の短波長化および対物レンズの開口数(NA)の増大により記録密度を増加させている。しかしながら、そのいずれもが技術的な理由などにより限界に近づいているといわれており、その他の手段および方式による記録密度の増大が要望されている。種々の提案の中で、近年、記録層を多層化する光情報記録媒体(多層型光ディスク)において、記録層とは別に、トラッキングサーボ情報(グルーブ)を有するガイド層を独立して設けるガイドレイヤー方式の多層光ディスクが提案されている。これにより、積層する記録層の構造が単純になり、ディスク製造コストを抑えることができる。
ただし、ディスクの傾き(チルト)の状態によっては、以前にデータを記録したトラックにデータを上書きしてしまうおそれがあり、最悪の場合、データを破壊する可能性がある。そこで、記録データの最終位置から、ある程度未記録領域を設け、そのあとに追記するデータの記録を開始することで上書きを防止する手法がある。
ただし、ディスクの傾き(チルト)の状態によっては、以前にデータを記録したトラックにデータを上書きしてしまうおそれがあり、最悪の場合、データを破壊する可能性がある。そこで、記録データの最終位置から、ある程度未記録領域を設け、そのあとに追記するデータの記録を開始することで上書きを防止する手法がある。
しかし、上述の手法では、追記前後のデータの境界にデータが書き込まれない空白領域が存在し、再生時にピット列に追従するためのトラッキングエラー信号(DPD信号)を連続的に得ることができない。そのため、例えば追記後のデータの先頭を再生する場合に、内周から連続的に再生していくことができず、一旦追記後のデータ開始位置よりも遠くに粗動アクチュエータを使ってアクセスしたのちに、トラックジャンプを行い先頭位置まで移動してくる必要がある。また、追記データ量が短い場合は、そもそも追記データ範囲にアクセスすることが困難である。このような場合に、再生時のデータアクセス速度を著しく損ない、ユーザに不利益を生じることになる。
本開示は、上述の課題を解決するためになされたものであり、データアクセスが容易な光記録再生装置および方法を提供することを目的とする。
本実施形態に係る光記録再生装置は、データが記録される1以上の記録層と、位置決めに用いられるガイド層とが離れて積層される記録媒体に対してデータの記録を行なう光記録再生装置であって、終端位置検出部と追記開始位置設定部とを含む。終端位置検出部は、前記記録媒体の第1記録層において第1データに関する記録済みの領域が存在し、かつ該第1記録層に対し新たに第2データを記録する場合、前記第1データの終端位置を検出する。追記開始位置設定部は、前記第2データの記録開始位置を、前記終端位置よりも前記記録済みの領域に重なる位置に設定する。
以下、図面を参照しながら本実施形態に係る光記録再生装置および方法について詳細に説明する。なお、以下の実施形態では、同一の参照符号を付した部分は同様の動作をおこなうものとして、重複する説明を適宜省略する。
本実施形態に係る光記録再生装置において用いられる光記録媒体の層構造について図1を参照して説明する。
本実施形態に係る光記録再生装置で用いられる光記録媒体100は、ガイドレイヤー方式の多層媒体であり、グルーブを有しトラッキングサーボをかけるガイド層101とデータを記録する記録層102とが別に設けられる。これにより、積層する記録層自体の構造を単純化することができ、光記録媒体の製造コストを抑えることができる。図1に示す例では、光記録媒体において1つのガイド層101とL0からL9までの10層が積層される記録層102とが形成されている。ガイド層101にはガイド光103が焦点を結び、記録層102には記録光104が焦点を結ぶ。ガイド光103の位置に沿って記録光104の焦点を合わせることによりデータの記録およびデータの再生を行なう。
本実施形態に係る光記録再生装置において用いられる光記録媒体の層構造について図1を参照して説明する。
本実施形態に係る光記録再生装置で用いられる光記録媒体100は、ガイドレイヤー方式の多層媒体であり、グルーブを有しトラッキングサーボをかけるガイド層101とデータを記録する記録層102とが別に設けられる。これにより、積層する記録層自体の構造を単純化することができ、光記録媒体の製造コストを抑えることができる。図1に示す例では、光記録媒体において1つのガイド層101とL0からL9までの10層が積層される記録層102とが形成されている。ガイド層101にはガイド光103が焦点を結び、記録層102には記録光104が焦点を結ぶ。ガイド光103の位置に沿って記録光104の焦点を合わせることによりデータの記録およびデータの再生を行なう。
次に、光記録媒体にチルトが発生する場合のスポットずれについて図2を参照して説明する。
図2は、ガイド層101と記録層102とが分離している場合の追記時のスポット位置を表す概略図である。ここで追記とは、まず第1データが記録完了し、光記録媒体が光記録再生装置から取り外され、その後再び光記録媒体が光記録再生装置に挿入され、光記録媒体の空き領域部分に、第2データが記録されることをいう。
図2は、ガイド層101と記録層102とが分離している場合の追記時のスポット位置を表す概略図である。ここで追記とは、まず第1データが記録完了し、光記録媒体が光記録再生装置から取り外され、その後再び光記録媒体が光記録再生装置に挿入され、光記録媒体の空き領域部分に、第2データが記録されることをいう。
図2(a)は光記録媒体にチルトの発生が生じていない場合を示しており、ガイド層101上のトラック位置201はそのまま鉛直下方に位置する記録層102のトラック位置202を示す。この状態で、ガイド層の左側のトラックからN番目のトラックまで、記録層にデータを記録していき、図2(a)に示すように、記録層にデータ列が形成される。
図2(b)は、図2(a)ののちにデータを追記する場合である。データが追記される時、光記録媒体がどのようなチルト状態であるかは全くの未知であり、前回の記録時とは異なるチルト状態が生じていると考えるのが自然である。図2(b)の例では、チルトθが発生した場合の様子である。前回の記録済みのデータがN番目のトラックまで記録されていることは管理情報より抽出できるので、通常の光記録媒体であれば続けてN+1番目のトラックから追記が開始される。しかしながら、ガイド層101と記録層102とが離れている(距離d)場合、記録層102のビームスポットは光記録媒体座標でみるとd×tanθずれたトラック位置202となる。その結果、前回記録済みのトラックと干渉し、最悪の場合、データを破壊する恐れがある。
また、対物レンズが光記録媒体のラジアル方向に微小に変位した、いわゆるレンズシフト状態においても、ガイド層を再生するガイドビームのスポット位置と、記録再生を行う記録再生ビームのスポット位置が相対的にずれることが知られている。このレンズシフト量の変化に関しても、上記チルトと同様の問題を生じると考えられる。
なお、光記録媒体の再挿入なしに、直ちに記録を再開するような、例えばバッファアンダーランや、記録ストラテジ/サーボパラメータ調整などに伴う意図的な記録の一時停止は、チルトやレンズシフト状態が極端に変化しない、すなわち問題となるようなチルトが発生しないと仮定する。
次に、上述の課題を解決する本実施形態に係る光記録再生装置について図3のブロック図を参照して説明する。
本実施形態に係る光記録再生装置300は、CPU301、インタフェース部302、RAM303、NV-RAM304、ROM305、エラー訂正部306、追記制御部307、スピンドルモータ制御部308、スピンドルモータ309、ロータリエンコーダ310、光ピックアップヘッド311、送りモータ制御部312、送りモータ313、スクリューシャフト314、PLL制御部315、レーザ変調制御部316、RFアンプ(エラー信号生成部ともいう)317、コリメータレンズアクチュエータ制御部318、フォーカス制御部319、トラック制御部320、データ再生部321、アドレス再生部322および再生制御部1200を含む。
本実施形態に係る光記録再生装置300は、CPU301、インタフェース部302、RAM303、NV-RAM304、ROM305、エラー訂正部306、追記制御部307、スピンドルモータ制御部308、スピンドルモータ309、ロータリエンコーダ310、光ピックアップヘッド311、送りモータ制御部312、送りモータ313、スクリューシャフト314、PLL制御部315、レーザ変調制御部316、RFアンプ(エラー信号生成部ともいう)317、コリメータレンズアクチュエータ制御部318、フォーカス制御部319、トラック制御部320、データ再生部321、アドレス再生部322および再生制御部1200を含む。
CPU301は、インタフェース部302を介してホスト装置350から動作コマンドを受け取る。CPU301は、動作コマンドに従って制御信号を生成し、後述するエラー訂正部306、スピンドルモータ制御部308、送りモータ制御部312、PLL制御部315、レーザ変調制御部316、コリメータレンズアクチュエータ制御部318、フォーカス制御部319、トラック制御部320およびデータ再生部321など光記録再生装置300全体を総合的に制御する。また、CPU301は、RAM303を作業エリアとして使用し、不揮発メモリNV-RAM304に記録された装置個体ごとのパラメータを適宜参照し、ROM305に記録された制御プログラムに従って所定の動作を行なう。
エラー訂正部306は、再生データを誤り訂正する。
追記制御部307は、後述するデータ再生部321からデータを、アドレス再生部322からアドレス情報をそれぞれ受け取り、データおよびアドレス情報を適宜参照して、データの追記処理を行なう。追記制御部307の詳細については図5を参照して後述する。
再生制御部1200は、後述するRFアンプ317から出力されるトラッキングエラー信号と、アドレス生成部322からアドレス情報とをそれぞれ受け取り、CPU301からの司令に基づき、トラック制御部320を制御する。再生制御部1200の動作については図12を参照して後述する。
スピンドルモータ制御部308は、信号バス351を介してCPU301から制御信号を受け取り、スピンドルモータ駆動信号を生成する。
スピンドルモータ309は、スピンドルモータ制御部308からスピンドルモータ駆動信号を受け取り、スピンドルモータ駆動信号に応じて設置された光記録媒体100を回転駆動する。この際、スピンドルモータ309に設けられたロータリエンコーダ310から回転角信号が提供される。回転角信号は、スピンドルモータが1回転すると、例えば5つのパルスが発生する。この回転角信号からスピンドルモータの回転角度および回転数を判定することができる。
光ピックアップヘッド311は、光記録媒体100にレーザを照射し、光記録媒体100からの反射光を受光することで受光信号を生成する。光ピックアップヘッドは、送りモータ313とギアとスクリューシャフト314とを介して連結される。光ピックアップヘッド311の詳細な構造は図4を参照して後述する。
送りモータ制御部312は、制御信号を受け取り、送りモータ駆動信号を生成する。
送りモータ313は、送りモータ制御部312から送りモータ駆動信号を受け取り、送りモータ駆動信号に応じて回転することにより、光ピックアップヘッドを光記録媒体100の半径(ラジアル)方向に移動させる。
PLL制御部315は、CPU301から制御信号を受け取り、位相同期を行なって記録用である記録クロック信号および再生用である再生クロック信号を生成する。
レーザ変調制御部316は、データを記録する時(マーク形成時)に、ホスト装置350からインタフェース部302を介して記録すべき記録データを、PLL制御部315から記録クロック信号を、CPU301および追記制御部307から制御信号をそれぞれ受け取る。レーザ変調制御部316は、記録データ、記録クロック信号および制御信号に基づいて書き込み用信号を生成し、光ピックアップヘッド311に提供する。また、レーザ変調制御部316は、データ読取り時に、書き込み信号より小さい読取り用信号を光ピックアップヘッド311に提供する。またレーザ変調制御部316は、光ピックアップヘッド311からの受光信号に基づいて、CPU301により設定された再生時レーザパワー、記録時レーザパワー及び消去時レーザパワーで発光するように、光ピックアップヘッド311に含まれるレーザダイオードを制御する。
RFアンプ317は、光ピックアップヘッド311からの受光信号を受け取る。RFアンプ317は、受光信号に基づいて、第1フォーカスエラー信号、第2フォーカスエラー信号、第1トラッキングエラー信号、第2トラッキングエラー信号および再生信号を生成する。第1フォーカスエラー信号は、ガイド層のジャストフォーカスからの誤差を示す信号である。第2フォーカスエラー信号は、記録層のジャストフォーカスからの誤差を示す信号である。第1トラッキングエラー信号は、レーザ光のビームスポット中心とガイドトラック中心との誤差を示す信号である。第2トラッキングエラー信号は、レーザ光のビームスポット中心と記録されたトラック中心との誤差を示す信号である。再生信号は、受光信号の全加算信号である。
コリメータレンズアクチュエータ制御部318は、CPU301からの司令を基にRFアンプ317から第1フォーカスエラー信号を受け取り、第1フォーカスエラー信号に応じてコリメータレンズフォーカス駆動信号を生成する。コリメータレンズフォーカス駆動信号はコリメータレンズレンズアクチュエータのフォーカス方向の駆動コイルに供給される。これにより、赤色レーザ光が光記録媒体100のガイド層上に常時ジャストフォーカスとなるフォーカスサーボが行われる。
フォーカス制御部319は、CPU301からの司令を基にRFアンプ317から第2フォーカスエラー信号を受け取り、第2フォーカスエラー信号に応じてフォーカス駆動信号を生成する。フォーカス駆動信号は、対物レンズアクチュエータのフォーカス方向の駆動コイルに供給される。これにより、青色レーザ光が光記録媒体100の記録層上に常時ジャストフォーカスとなるフォーカスサーボが行われる。
トラック制御部320は、CPU301からの司令を基にRFアンプ317から第1トラッキングエラー信号および第2トラッキングエラー信号を受け取る。トラック制御部320は、第1トラッキングエラー信号および第2トラッキングエラー信号に応じてトラック駆動信号を生成する。トラック駆動信号は、対物レンズアクチュエータのトラッキング方向の駆動コイルに供給される。これによりレーザ光が光記録媒体100上に形成されたトラック上を常にトレースするトラッキングサーボが行われる。
トラック制御部320によって光ピックアップヘッド311に含まれる対物レンズが制御されているとき、送りモータ制御部312により、対物レンズが所定位置近傍に位置するよう送りモータ313、つまり光ピックアップヘッド311が制御される。つまり、対物レンズ位置の所定の位置からの光記録媒体100の半径方向へのずれ量(以下、レンズシフト量)が小さくなる方向にトラッキングサーボ制御が行われる。
トラック制御部320によって光ピックアップヘッド311に含まれる対物レンズが制御されているとき、送りモータ制御部312により、対物レンズが所定位置近傍に位置するよう送りモータ313、つまり光ピックアップヘッド311が制御される。つまり、対物レンズ位置の所定の位置からの光記録媒体100の半径方向へのずれ量(以下、レンズシフト量)が小さくなる方向にトラッキングサーボ制御が行われる。
上述したフォーカスサーボおよびトラッキングサーボがなされることで、光ピックアップヘッドに含まれる後述する光検出器の各光検出セルからの受光信号の全加算信号には、記録データに対応して光記録媒体1トラック上に形成されたピットなどからの反射光の変化が反映され、これが再生信号となる。
データ再生部321は、RFアンプ317から再生信号を、PLL制御部315から再生クロック信号をそれぞれ受け取る。再生信号は、データ再生部321は、再生用クロック信号に基づいて、記録データを再生する。
アドレス再生部322は、RFアンプ317から再生信号を受け取り、再生信号からアドレス情報を抽出する。
次に、光ピックアップヘッドの詳細について図2を参照して説明する。
光ピックアップヘッドは、青色レーザダイオード401、偏光ビームスプリッタ(PBS)402および偏光ビームスプリッタ407、4分の1波長板403および4分の1波長板408、コリメータレンズ404およびコリメータレンズ409、コリメータレンズアクチュエータ405およびコリメータレンズアクチュエータ410、赤色レーザダイオード406、ダイクロイックプリズム411、対物レンズ412、対物レンズアクチュエータ413、および、フォトディテクタIC(PDIC)414およびフォトディテクタIC415を含む。
光ピックアップヘッドは、青色レーザダイオード401、偏光ビームスプリッタ(PBS)402および偏光ビームスプリッタ407、4分の1波長板403および4分の1波長板408、コリメータレンズ404およびコリメータレンズ409、コリメータレンズアクチュエータ405およびコリメータレンズアクチュエータ410、赤色レーザダイオード406、ダイクロイックプリズム411、対物レンズ412、対物レンズアクチュエータ413、および、フォトディテクタIC(PDIC)414およびフォトディテクタIC415を含む。
青色レーザダイオード401は、例えば波長405nmを有する半導体レーザであり、記録および再生のため光束を光記録媒体100の記録層に照射する。
偏光ビームスプリッタ402は、青色レーザダイオード401からの入射光を透過する一方、光記録媒体100で反射された光であって、入射光から90度偏光面が回転した反射光を反射する。
偏光ビームスプリッタ402は、青色レーザダイオード401からの入射光を透過する一方、光記録媒体100で反射された光であって、入射光から90度偏光面が回転した反射光を反射する。
4分の1波長板403は、青色レーザダイオード401からの入射光を透過し、直線偏光を円偏光に変換する。また、青色レーザダイオード401の光記録媒体100からの反射光を透過し、円偏光を直線偏光に変換する。このときの直線偏光は、入射光と90度偏光面が異なる直線偏光になる。
コリメータレンズ404は、青色レーザダイオード401からの入射光を略平行光に変換する。
コリメータレンズ404は、青色レーザダイオード401からの入射光を略平行光に変換する。
コリメータレンズアクチュエータ405は、対物レンズ412を通過した青色レーザの光束が、光記録媒体100の厚み方向を示すフォーカス方向に移動するように、コリメータレンズ404を駆動させる。具体的には、4分の1波長板403の対向面に対して近づいたり遠ざかったりするようにコリメータレンズ404を駆動させる。
赤色レーザダイオード406は、例えば波長655nmを有する半導体レーザであり、トラッキングサーボ用の光束を光記録媒体100のガイド層へ照射する。
赤色レーザダイオード406は、例えば波長655nmを有する半導体レーザであり、トラッキングサーボ用の光束を光記録媒体100のガイド層へ照射する。
偏光ビームスプリッタ407は、赤色レーザダイオード406からの入射光を透過する一方、光記録媒体100で反射された光であって、入射光から90度偏光面が回転した反射光を反射する。
4分の1波長板408は、4分の1波長板403と同様であり、赤色レーザダイオード406からの入射光を透過し、直線偏光を円偏光に変換する。また、赤色レーザダイオード406の光記録媒体100からの反射光を透過し、円偏光を直線偏光に変換する。
4分の1波長板408は、4分の1波長板403と同様であり、赤色レーザダイオード406からの入射光を透過し、直線偏光を円偏光に変換する。また、赤色レーザダイオード406の光記録媒体100からの反射光を透過し、円偏光を直線偏光に変換する。
コリメータレンズ409は、赤色レーザダイオード406からの入射光を略平行光に変換する。
コリメータレンズアクチュエータ410は、コリメータレンズアクチュエータ405と同様であり、対物レンズ412を通過した赤色レーザの光束が、光記録媒体100の厚み方向を示すフォーカス方向に移動するように、コリメータレンズ409を駆動させる。具体的には、4分の1波長板408の対向面に対して近づいたり遠ざかったりするようにコリメータレンズ409を駆動させる。
コリメータレンズアクチュエータ410は、コリメータレンズアクチュエータ405と同様であり、対物レンズ412を通過した赤色レーザの光束が、光記録媒体100の厚み方向を示すフォーカス方向に移動するように、コリメータレンズ409を駆動させる。具体的には、4分の1波長板408の対向面に対して近づいたり遠ざかったりするようにコリメータレンズ409を駆動させる。
ダイクロイックプリズム411は、青色レーザダイオード401からの入射光を透過し、赤色レーザダイオード406からの入射光を反射する。
対物レンズ412は、青色レーザダイオード401から照射された光束を光記録媒体100の記録層に集光する。また、赤色レーザダイオード406から照射された光束を光記録媒体100のガイド層に集光する。
対物レンズアクチュエータ413は、対物レンズ412を通過した光束がそれぞれ光記録媒体100でフォーカス方向に移動するように、対物レンズ412をフォーカス方向に駆動する。また、対物レンズ412を通過した光束が光記録媒体100でラジアル方向に移動するように、対物レンズ412を駆動する。
対物レンズ412は、青色レーザダイオード401から照射された光束を光記録媒体100の記録層に集光する。また、赤色レーザダイオード406から照射された光束を光記録媒体100のガイド層に集光する。
対物レンズアクチュエータ413は、対物レンズ412を通過した光束がそれぞれ光記録媒体100でフォーカス方向に移動するように、対物レンズ412をフォーカス方向に駆動する。また、対物レンズ412を通過した光束が光記録媒体100でラジアル方向に移動するように、対物レンズ412を駆動する。
フォトディテクタIC414は、例えば4分割の光検出セルからなり、偏光ビームスプリッタ402で反射された反射光をこれらの光検出セルで検出し、受光信号を得る。生成される受光信号はRFアンプ317に出力される。
フォトディテクタIC415は、フォトディテクタIC414と同様に、例えば4分割の光検出セルから成り、偏光ビームスプリッタ407で反射された反射光をこれらの光検出セルで検出し、受光信号を得る。生成される受光信号はRFアンプ317に出力される。
フォトディテクタIC415は、フォトディテクタIC414と同様に、例えば4分割の光検出セルから成り、偏光ビームスプリッタ407で反射された反射光をこれらの光検出セルで検出し、受光信号を得る。生成される受光信号はRFアンプ317に出力される。
なお、光ピックアップヘッド311に含まれ、フォトダイオードにより構成される図示しない青用フロントモニタPDは、レーザダイオード401から発生するレーザ光の一部を、図示しないハーフミラーにより一定比率だけ分岐し光量つまり照射パワーに比例した受光信号を検出する。青用フロントモニタPDは、受光信号をレーザ変調制御部316に供給する。
さらに、光ピックアップヘッド311に含まれ、フォトダイオードにより構成される図示しない赤用フロントモニタPDは、レーザダイオード406から発生するレーザ光の一部を図示しないハーフミラーにより一定比率だけ分岐し光量つまり照射パワーに比例した受光信号を検出する。赤用フロントモニタPDは、同じく図示しない赤用レーザ変調制御部に供給する。
次に、追記制御部307の詳細について図5のブロック図を参照して説明する。
追記制御部307は、終端位置検出部501と追記開始位置設定部502とを含む。
終端位置検出部501は、光記録媒体の記録層において第1データに関する記録済みの領域が存在し、かつ同一の記録層に対し新たに第2データを記録する場合、第1データの終端位置を検出する。
追記開始位置設定部502は、終端位置検出部501から終端位置を受け取り、第2データの記録開始位置を、終端位置よりも記録済みの領域に重なる位置に設定し、記録開始位置に関する情報を基にトラック制御部320および送りモータ制御部312を制御する。
追記制御部307は、終端位置検出部501と追記開始位置設定部502とを含む。
終端位置検出部501は、光記録媒体の記録層において第1データに関する記録済みの領域が存在し、かつ同一の記録層に対し新たに第2データを記録する場合、第1データの終端位置を検出する。
追記開始位置設定部502は、終端位置検出部501から終端位置を受け取り、第2データの記録開始位置を、終端位置よりも記録済みの領域に重なる位置に設定し、記録開始位置に関する情報を基にトラック制御部320および送りモータ制御部312を制御する。
次に、本実施形態における光記録再生装置の記録方法について図6を参照して説明する。
まず、第1データ601は、通常の記録手順に従って光記録媒体への記録が開始される。すなわち、サーボ光スポットはガイド層の案内溝に従うようにトラッキングサーボをかけられ、サーボ光と同軸上で異なる焦点位置を持つ記録スポットは記録層にフォーカスされ、記録層に対して記録を行うことで、ガイドトラックに概ね従った螺旋状のデータが記録される。
まず、第1データ601は、通常の記録手順に従って光記録媒体への記録が開始される。すなわち、サーボ光スポットはガイド層の案内溝に従うようにトラッキングサーボをかけられ、サーボ光と同軸上で異なる焦点位置を持つ記録スポットは記録層にフォーカスされ、記録層に対して記録を行うことで、ガイドトラックに概ね従った螺旋状のデータが記録される。
ここで、第1データ601の終端から所定のトラック数前までのデータが書き込まれる領域を第1緩衝トラックと呼ぶ。
任意の時間経過後、第1データ601に続けて第2データ602を追記する場合、第2データ602の始端から、所定のトラック数のデータまでを第2緩衝トラックと呼ぶ。以下、第1緩衝トラックと第2緩衝トラックとを合わせて、緩衝領域603と定義する。
任意の時間経過後、第1データ601に続けて第2データ602を追記する場合、第2データ602の始端から、所定のトラック数のデータまでを第2緩衝トラックと呼ぶ。以下、第1緩衝トラックと第2緩衝トラックとを合わせて、緩衝領域603と定義する。
第1緩衝トラックと第2緩衝トラックとは、少なくとも1トラックピッチ以上光記録媒体の半径方向にオーバーラップさせることで、チルトおよびレンズシフトがどのように変化しても、データの境界部分には必ず再生信号が存在することになる。これにより、連続的な再生時においてトラッキングが可能な状態にすることができる。
ここで定義した第1緩衝トラックおよび第2緩衝トラックに記録されるデータパターンは、単一パターンや、所定の変調方式に依らないダミーマークであってもよい。さらに、後述する記録方法を用いれば第1データ601および第2データ602の一部とすることもでき、またユーザデータ以外の管理情報などを表す任意のデータとすることもできる。すなわち、データパターンは任意のパターンを用いればよい。
ここで定義した第1緩衝トラックおよび第2緩衝トラックに記録されるデータパターンは、単一パターンや、所定の変調方式に依らないダミーマークであってもよい。さらに、後述する記録方法を用いれば第1データ601および第2データ602の一部とすることもでき、またユーザデータ以外の管理情報などを表す任意のデータとすることもできる。すなわち、データパターンは任意のパターンを用いればよい。
具体的には、追記開始位置設定部502は、第2データ602の開始位置として、終端位置検出部501により得られた第1データ601の終端を示すアドレスから、以下の数式で表されるトラック数Xだけ、記録済み領域(第1データ)側へシフトしたアドレスを追記開始位置と設定することで、追記時に前回記録時と異なるチルトやレンズシフトが発生してもオーバーラップを確実に実現することができる。
オーバーラップを実現するトラック数Xは、想定される最大のチルト量θmax、レンズシフト量Lsmax、前記ガイド層と前記記録層との距離d、前記媒体の屈折率n、レンズシフト量と最大のスポット位置ずれ量との関係を示す係数S、トラックピッチTpとすると、式(1)のように表せる。
オーバーラップを実現するトラック数Xは、想定される最大のチルト量θmax、レンズシフト量Lsmax、前記ガイド層と前記記録層との距離d、前記媒体の屈折率n、レンズシフト量と最大のスポット位置ずれ量との関係を示す係数S、トラックピッチTpとすると、式(1)のように表せる。
ここでXは正の整数である。
なお、レンズシフトとスポット位置ずれ量との関係を示す係数Sは、光学設計値より解析的に導くこともできるし、実測値よりあらかじめ求めておくこともできる。
なお、レンズシフトとスポット位置ずれ量との関係を示す係数Sは、光学設計値より解析的に導くこともできるし、実測値よりあらかじめ求めておくこともできる。
上述したように、単純に重ねるだけではなく、第1緩衝トラック数Aおよび第2緩衝トラック数Bには、重なりの余地となるトラック数であるマージントラック数を決定してもよい。重なりのマージントラック数をYとしたとき、以下の式(2)および式(3)を満たすように決定する。
A>2X+Y ・・・(2)
B>2X+2Y ・・・(3) (X,Yは正の整数)
次に、緩衝領域における半径方向の重なりの関係について図7を参照して説明する。
図7は、初回記録時と追記時とにおいて、(a)チルトおよびレンズシフト状態に変化がない場合(Normal)、(b)トラック間が最も離れる方向にチルトおよびレンズシフトが生じた場合(Far)、(c)トラック間が最も近づく方向に生じた場合(Near)をそれぞれ示している。ここで、重なりマージントラックY=10とする。
A>2X+Y ・・・(2)
B>2X+2Y ・・・(3) (X,Yは正の整数)
次に、緩衝領域における半径方向の重なりの関係について図7を参照して説明する。
図7は、初回記録時と追記時とにおいて、(a)チルトおよびレンズシフト状態に変化がない場合(Normal)、(b)トラック間が最も離れる方向にチルトおよびレンズシフトが生じた場合(Far)、(c)トラック間が最も近づく方向に生じた場合(Near)をそれぞれ示している。ここで、重なりマージントラックY=10とする。
このように、重なりマージントラックYを設けて第1緩衝トラック数および第2緩衝トラック数を決定することで、どのようなチルトおよびレンズシフトが生じた場合でも、緩衝領域603内に追記データの開始位置が収まる。よって、緩衝領域以外のデータトラックへのオーバーライトを完全に抑制することができ、必要なデータを保護することができる。
(変形例)
本実施形態の変形例として、第1緩衝トラックと第2緩衝トラックとをそれぞれ光記録媒体の円周方向に分割し、間欠的にデータを記録してもよい。このようにすることで、緩衝トラック内のデータの破壊も防ぐことができ、緩衝トラック内に読み取り可能なデータを記録することができる。
本実施形態の変形例として、第1緩衝トラックと第2緩衝トラックとをそれぞれ光記録媒体の円周方向に分割し、間欠的にデータを記録してもよい。このようにすることで、緩衝トラック内のデータの破壊も防ぐことができ、緩衝トラック内に読み取り可能なデータを記録することができる。
本変形例に係る追記制御部について図8のブロック図を参照して説明する。
本変形例に係る追記制御部800は、角度情報検出部801と、第1タイミング生成部802、第1記録制御部804、第2タイミング生成部803および第2記録制御部805を含む。
本変形例に係る追記制御部800は、角度情報検出部801と、第1タイミング生成部802、第1記録制御部804、第2タイミング生成部803および第2記録制御部805を含む。
角度情報検出部801は、光記録媒体の回転角度に関する角度情報を得る。角度情報は、例えば、光記録媒体のガイド層から得られるアドレス情報から得ればよい。また、光記録媒体の回転数制御の方式を、所定のゾーン内で回転数(角速度)を一定とするZCAV(Zoned Constant Angular Velocity)方式とすると、アドレス情報とともに角度情報を同時に得ることができるので望ましい。その他、スピンドルモータエンコーダや、光記録媒体内周/外周に形成されたロータリエンコーダパターンを使用してもよい。
第1タイミング生成部802は、角度情報検出部801から角度情報を受け取る。第1タイミング生成部802は、角度情報記録層のトラックを円周方向に沿ってN個(N≧2の偶数)で分割した角度領域に対し、角度情報に基づいて、隣接する角度領域でオンおよびオフが反転する第1記録タイミング信号を生成する。具体的には、例えば、
第2タイミング生成部803は、第1タイミング生成部802から第1記録タイミング信号を受け取り、第1記録タイミング信号がオフの期間のうち、少なくとも一部の期間がオンとなる第2記録タイミング信号を生成する。
第1記録制御部804は、第1タイミング生成部802から第1記録タイミング信号を受け取る。第1記録制御部804は、記録しようとしている第1データの全容量と、既に記録済みの記録データ容量との差分を基に、第1データの終端位置よりも第1緩衝トラックの数だけ遡ったトラック位置を検出し、第1記録タイミング信号に従って、トラックに沿って第1データを円周方向に間欠的に記録する。もしくは第1データ記録終了後に、続けて第1緩衝トラックの数だけ、第1記録タイミング信号に従って、トラックに沿って任意のデータを円周方向に間欠的に記録するようにしても全く同じ効果が得られる。
第1タイミング生成部802は、角度情報検出部801から角度情報を受け取る。第1タイミング生成部802は、角度情報記録層のトラックを円周方向に沿ってN個(N≧2の偶数)で分割した角度領域に対し、角度情報に基づいて、隣接する角度領域でオンおよびオフが反転する第1記録タイミング信号を生成する。具体的には、例えば、
第2タイミング生成部803は、第1タイミング生成部802から第1記録タイミング信号を受け取り、第1記録タイミング信号がオフの期間のうち、少なくとも一部の期間がオンとなる第2記録タイミング信号を生成する。
第1記録制御部804は、第1タイミング生成部802から第1記録タイミング信号を受け取る。第1記録制御部804は、記録しようとしている第1データの全容量と、既に記録済みの記録データ容量との差分を基に、第1データの終端位置よりも第1緩衝トラックの数だけ遡ったトラック位置を検出し、第1記録タイミング信号に従って、トラックに沿って第1データを円周方向に間欠的に記録する。もしくは第1データ記録終了後に、続けて第1緩衝トラックの数だけ、第1記録タイミング信号に従って、トラックに沿って任意のデータを円周方向に間欠的に記録するようにしても全く同じ効果が得られる。
第2記録制御部805は、追記開始位置設定部502から記録開始位置を、第2タイミング生成部803から第2記録タイミング信号をそれぞれ受け取る。第2記録制御部805は、第2データの記録開始位置から、第2緩衝トラックの数以上のトラックにわたって、第2記録タイミング信号に従って、トラックに沿って第2データを円周方向に間欠的に記録する。
次に、光記録媒体を円周方向に分割した角度領域について図9を参照して説明する。
図9は、光記録媒体一周をN個の角度領域に分割した例である。
第1タイミング生成部802は、N個の角度領域について、隣接する角度領域にゼロおよび1の番号を交互に割り当てる。角度情報から、現在の記録スポットが照射されている角度領域がゼロか1かを判定する。例えばゼロのときは記録オフのタイミング、1のときは記録オンのタイミング、といったように第1記録タイミング信号を出力する。
具体的には、N=4、光記録媒体の回転角度をθとすると、以下のように記録タイミングを判定することができる。
図9は、光記録媒体一周をN個の角度領域に分割した例である。
第1タイミング生成部802は、N個の角度領域について、隣接する角度領域にゼロおよび1の番号を交互に割り当てる。角度情報から、現在の記録スポットが照射されている角度領域がゼロか1かを判定する。例えばゼロのときは記録オフのタイミング、1のときは記録オンのタイミング、といったように第1記録タイミング信号を出力する。
具体的には、N=4、光記録媒体の回転角度をθとすると、以下のように記録タイミングを判定することができる。
0≦θ<90度のとき 認識番号0(記録タイミング信号L)
90≦θ<180度のとき 認識番号1(記録タイミング信号H)
180≦θ<270度のとき 認識番号0(記録タイミング信号L)
270≦θ<360度のとき 認識番号1(記録タイミング信号H)
ここで、第2タイミング生成部803は、第2記録タイミング信号として、第1記録タイミング信号を反転した信号を出力する。上述の例では、0≦θ<90度のとき第2記録タイミング信号を記録オンのタイミングとし、90≦θ<180度のとき第2記録タイミング信号を記録オフのタイミングとすればよい。
このとき、第1記録タイミング信号と第2記録タイミング信号とは、記録オンのタイミングが示す媒体の角度領域が重複しなければ、記録オフのタイミングがある程度重なっていてもよい。すなわち、両者の記録オンおよびオフ時間の比率が1対1である必要はない。
90≦θ<180度のとき 認識番号1(記録タイミング信号H)
180≦θ<270度のとき 認識番号0(記録タイミング信号L)
270≦θ<360度のとき 認識番号1(記録タイミング信号H)
ここで、第2タイミング生成部803は、第2記録タイミング信号として、第1記録タイミング信号を反転した信号を出力する。上述の例では、0≦θ<90度のとき第2記録タイミング信号を記録オンのタイミングとし、90≦θ<180度のとき第2記録タイミング信号を記録オフのタイミングとすればよい。
このとき、第1記録タイミング信号と第2記録タイミング信号とは、記録オンのタイミングが示す媒体の角度領域が重複しなければ、記録オフのタイミングがある程度重なっていてもよい。すなわち、両者の記録オンおよびオフ時間の比率が1対1である必要はない。
次に、円周方向に分割された緩衝領域におけるデータ記録の一例について図10を参照して説明する。
図10は、第1データ1001が記録されたのち、第2データ1002が記録される場合で、変形例に係る記録方法により緩衝領域1003において第1緩衝トラック1004に第1データの終端部分が、第2緩衝トラック1005に第2データの開始部分がそれぞれ記録される例である。第1データ1001および第1緩衝トラック1004は細線で表され、第2データ1002および第2緩衝トラック1005は、太線で表される。
図10は、第1データ1001が記録されたのち、第2データ1002が記録される場合で、変形例に係る記録方法により緩衝領域1003において第1緩衝トラック1004に第1データの終端部分が、第2緩衝トラック1005に第2データの開始部分がそれぞれ記録される例である。第1データ1001および第1緩衝トラック1004は細線で表され、第2データ1002および第2緩衝トラック1005は、太線で表される。
第1記録制御部804は、上述した第1記録タイミング信号に従い、例えば第1記録タイミング信号が「H」のときにデータの記録を行ない、第1記録タイミング信号が「L」の時に記録を停止する。その結果、第1緩衝トラック704に示すように、光記録媒体の円周方向に分割されて第1データが間欠的に記録されることになる。
追記時には、第2記録制御部804が、第1緩衝トラック704に重ねて第2緩衝トラック705を記録するが、このとき、第2記録タイミング信号に従い、例えば第2記録タイミング信号が「H」のときにデータの記録を行ない、第2記録タイミング信号が「L」の時に記録を停止する。
追記時には、第2記録制御部804が、第1緩衝トラック704に重ねて第2緩衝トラック705を記録するが、このとき、第2記録タイミング信号に従い、例えば第2記録タイミング信号が「H」のときにデータの記録を行ない、第2記録タイミング信号が「L」の時に記録を停止する。
結果として、第2緩衝トラック705は、第1緩衝トラック704が記録されていない角度領域に間欠的に記録される。これにより、第1緩衝トラック704および第2緩衝トラック705は光記録媒体のラジアル方向には重なりつつ、それぞれの緩衝トラックを形成するデータ自体は2次元的にみれば正確に分離して記録される。よって、緩衝領域1003に記録されるデータも、破壊されずにデータを記録することができる。
次に、光記録媒体全体の緩衝領域における円周方向に分割されたデータの概略図を図11に示す。
図中の細線が第1緩衝トラック1101、図中の太線が第2緩衝トラック1102である。ラジアル方向には2つのトラックが重なることになるが、円周方向、すなわち回転角度方向に分割され相補的に記録されているため、データが重複せずに記録できることがわかる。
図中の細線が第1緩衝トラック1101、図中の太線が第2緩衝トラック1102である。ラジアル方向には2つのトラックが重なることになるが、円周方向、すなわち回転角度方向に分割され相補的に記録されているため、データが重複せずに記録できることがわかる。
なお、分割数Nは上記例では説明の簡略化のため、N=4の場合を一例として挙げたが、実際には、再生時のトラッキングサーボ帯域、光記録媒体回転数などによって決定される。
サンプリング周波数は、サーボの位相遅れの影響を回避するために、サーボの帯域の10倍以上のサンプリング周波数で信号をサンプルする必要がある。すなわち、分割数N、光記録媒体一回転あたりのサンプリング数(N/2)、光記録媒体の回転周波数R(Hz)、トラッキングサーボのカットオフ周波数F(Hz)とすると、
N>2×10×F/R・・・(4)
とすることが必要であることが分かる。また、一方で、トラッキングエラー信号の信号帯域をK(Hz)とすると、出力が安定するまでには、1分割の角度領域あたりを通過するのに要する時間が時定数1/(2πK)以上である必要があるので、
N<(2πK)/R・・・(5)
と上限を決定することができる。
例えば、R=30Hz、F=4kHz、K=600kHzの場合、Nは(4)式および(5)式より、以下の(6)式の範囲と設定することができる。
サンプリング周波数は、サーボの位相遅れの影響を回避するために、サーボの帯域の10倍以上のサンプリング周波数で信号をサンプルする必要がある。すなわち、分割数N、光記録媒体一回転あたりのサンプリング数(N/2)、光記録媒体の回転周波数R(Hz)、トラッキングサーボのカットオフ周波数F(Hz)とすると、
N>2×10×F/R・・・(4)
とすることが必要であることが分かる。また、一方で、トラッキングエラー信号の信号帯域をK(Hz)とすると、出力が安定するまでには、1分割の角度領域あたりを通過するのに要する時間が時定数1/(2πK)以上である必要があるので、
N<(2πK)/R・・・(5)
と上限を決定することができる。
例えば、R=30Hz、F=4kHz、K=600kHzの場合、Nは(4)式および(5)式より、以下の(6)式の範囲と設定することができる。
2667<N<125663 (Nは偶数)・・・(6)
(本実施形態に係るデータ再生方法)
次に、本実施形態に係るデータ記録方法により記録されたデータ(以下、記録データという)を再生する際の再生方法について説明する。
本実施形態に係る再生制御部について図12のブロック図を参照して説明する。
再生制御部1200は、タイミング信号生成部1201、サンプリング部1202および切替部1203を含む。
タイミング信号生成部1201は、第1タイミング生成部802から第1記録タイミング信号を、第2タイミング生成部803から第2記録タイミング信号をそれぞれ受け取る。タイミング信号生成部1201は、第1記録タイミング信号および第2記録タイミング信号に基づいて、第1サンプルタイミングを決定する第1サンプルタイミング信号と、第2サンプルタイミングを決定する第2サンプルタイミング信号とを生成する。
(本実施形態に係るデータ再生方法)
次に、本実施形態に係るデータ記録方法により記録されたデータ(以下、記録データという)を再生する際の再生方法について説明する。
本実施形態に係る再生制御部について図12のブロック図を参照して説明する。
再生制御部1200は、タイミング信号生成部1201、サンプリング部1202および切替部1203を含む。
タイミング信号生成部1201は、第1タイミング生成部802から第1記録タイミング信号を、第2タイミング生成部803から第2記録タイミング信号をそれぞれ受け取る。タイミング信号生成部1201は、第1記録タイミング信号および第2記録タイミング信号に基づいて、第1サンプルタイミングを決定する第1サンプルタイミング信号と、第2サンプルタイミングを決定する第2サンプルタイミング信号とを生成する。
サンプリング部1202は、タイミング信号生成部1202から第1サンプルタイミング信号および第2サンプルタイミング信号を、RFアンプ317から第2トラッキングエラー信号をそれぞれ受け取る。サンプリング部1202は、第1サンプルタイミング信号および第2サンプルタイミング信号に基づいて、第2トラッキングエラー信号をサンプルホールドする。これによって、第1サンプルタイミングにおける第1サンプルドトラッキングエラー信号を得、第2サンプルタイミングにおける第2サンプルドトラッキングエラー信号を得る。
切替部1203は、サンプリング部1202から第1サンプルドトラッキングエラー信号および第2サンプルドトラッキングエラー信号を受け取る。切替部1203は、第1サンプルドトラッキングエラー信号および第2サンプルドトラッキングエラー信号を、アドレス情報に応じて切替えて出力することで、トラック制御部320を制御する。
次に、記録データの再生方法の具体例について図13を参照して説明する。
記録されたデータの再生方法としては、例えばDPD法を使うことで、緩衝領域内の記録データ列からのずれ量をトラッキングエラー信号として得ることができる。さらに、円周方向に角度領域を分割した場合は、サンプリング部1202が、記録タイミング信号に同期して交互にサンプルホールドすればよい。これによって、緩衝領域内の第1緩衝トラックを形成するデータ列から得られる第1サンプルドトラッキングエラー信号と、第2緩衝トラックを形成するデータ列から得られる第2サンプルドトラッキングエラー信号とを独立に得ることができる。第1サンプルドトラッキングエラー信号と第2サンプルドトラッキングエラー信号とを独立に得ることによって、それぞれのトラックを選択的にトレースすることができる。
記録されたデータの再生方法としては、例えばDPD法を使うことで、緩衝領域内の記録データ列からのずれ量をトラッキングエラー信号として得ることができる。さらに、円周方向に角度領域を分割した場合は、サンプリング部1202が、記録タイミング信号に同期して交互にサンプルホールドすればよい。これによって、緩衝領域内の第1緩衝トラックを形成するデータ列から得られる第1サンプルドトラッキングエラー信号と、第2緩衝トラックを形成するデータ列から得られる第2サンプルドトラッキングエラー信号とを独立に得ることができる。第1サンプルドトラッキングエラー信号と第2サンプルドトラッキングエラー信号とを独立に得ることによって、それぞれのトラックを選択的にトレースすることができる。
具体的には、例えばトラックが内周から外周へ向けたスパイラル状に形成されている場合、トラック区間1301では、内周側から外周へ向けて第1データから得られるトラッキングエラー信号を用いてデータを再生する。
その後、トラック区間1302では、緩衝領域に記録されたデータを再生する時点から、第1サンプルドトラッキングエラー信号に切り替える。
トラック区間1303では、第1緩衝トラックと第2緩衝トラックとが半径方向にオーバーラップしたと判定した時点から、第2サンプルドトラッキングエラー信号に切り替える。このとき、サーボ信号の切り替え動作の影響で数トラックジャンプが発生する可能性が考えられるが、上述した重なりマージントラックYを設けることで、切り替えた先のトラックを見つけることができる。
トラック区間1303では、第1緩衝トラックと第2緩衝トラックとが半径方向にオーバーラップしたと判定した時点から、第2サンプルドトラッキングエラー信号に切り替える。このとき、サーボ信号の切り替え動作の影響で数トラックジャンプが発生する可能性が考えられるが、上述した重なりマージントラックYを設けることで、切り替えた先のトラックを見つけることができる。
トラック区間1304では、第2緩衝トラックが終了したと判定された時点で、第2データから得られるトラッキングエラー信号に切り替える。
上述の動作を行うことで、第1データから第2データまでをサーボ動作を停止することなくシームレスに再生することができ、迅速なデータアクセスを実現することができる。
上述の動作を行うことで、第1データから第2データまでをサーボ動作を停止することなくシームレスに再生することができ、迅速なデータアクセスを実現することができる。
以上に示した本実施形態に係る光記録再生装置によれば、第1データの終端と追記データである第2データの始端とを、光記録媒体のラジアル方向に数トラック重ねて緩衝領域を形成することで、追記時に前回データを記録した時と異なるチルト状態であっても再生時に連続的にトラッキングサーボをかけることができる。よって、再生時に容易にデータアクセスすることができる。さらに、緩衝領域を形成する緩衝トラックを円周方向に沿って複数の領域に分割して、第1データと追記データである第2データとを円周方向に交互に記録することで、既存データに上書きすることなく緩衝領域においても所望のデータを記録することができ、再生時に容易にデータアクセスすることができる。
なお、光記録媒体は、書き換え可能な相変化型についても本実施形態に係る記録方法が実施可能であるし、追記の必要性がより高まる、ライトワンス(write-once)型の媒体に対しても本実施形態に係る記録方法が特に有効である。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行なうことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
100・・・光記録媒体、101・・・ガイド層、102・・・記録層、103・・・ガイド光、104・・・記録光、100・・・光記録媒体、201,202・・・トラック位置、300・・・光記録再生装置、301・・・CPU、302・・・インタフェース部、303・・・RAM、304・・・NV-RAM、305・・・ROM、306・・・エラー訂正部、307,800・・・追記制御部、308・・・スピンドルモータ制御部、309・・・スピンドルモータ、310・・・ロータリエンコーダ、311・・・光ピックアップヘッド、312・・・モータ制御部、313・・・モータ、314・・・スクリューシャフト、315・・・PLL制御部、316・・・レーザ変調制御部、317・・・RFアンプ、318・・・コリメータレンズアクチュエータ制御部、319・・・フォーカス制御部、320・・・トラック制御部、321・・・データ再生部、322・・・アドレス再生部、350・・・ホスト装置、351・・・信号バス、401・・・青色レーザダイオード、402,407・・・偏光ビームスプリッタ、403,408・・・4分の1波長板、404,409・・・コリメータレンズ、405,410・・・コリメータレンズアクチュエータ、406・・・赤色レーザダイオード、411・・・ダイクロイックプリズム、412・・・対物レンズ、413・・・対物レンズアクチュエータ、501・・・終端位置検出部、502・・・追記開始位置設定部、601・・・第1データ、602・・・第2データ、603・・・緩衝領域、704・・・第1緩衝トラック、705・・・第2緩衝トラック、801・・・角度情報検出部、802・・・第1タイミング生成部、803・・・第2タイミング生成部、804・・・第1記録制御部、805・・・第2記録制御部、1001・・・第1記録データ、1002・・・第2記録データ、1003・・・緩衝領域、1004,1101・・・第1緩衝トラック、1005,1102・・・第2緩衝トラック、1200・・・再生制御部、1201・・・タイミング信号生成部、1202・・・サンプリング部、1203・・・切替部、1301,1302,1303,1304・・・トラック区間。
Claims (10)
- データが記録される1以上の記録層と、位置決めに用いられるガイド層とが離れて積層される記録媒体に対してデータの記録を行なう光記録再生装置であって、
前記記録媒体の記録層において第1データに関する記録済みの領域が存在し、かつ該記録層に対し新たに第2データを記録する場合、前記第1データの終端位置を検出する終端位置検出部と、
前記第2データの記録開始位置を、前記終端位置よりも前記記録済みの領域に重なる位置に設定する追記開始位置設定部と、を具備することを特徴とする光記録再生装置。 - 前記記録媒体の回転角度に関する角度情報を得る角度情報検出部と、
記録層のトラックを円周方向に沿った角度領域を2以上の偶数で分割し、前記角度情報に基づいて、隣接する角度領域でオンおよびオフが反転する第1記録タイミング信号を生成する第1タイミング生成部と、
前記第1データを記録する場合、前記第1データの前記終端位置よりも第1トラック数遡って記録されたトラックの位置から、前記第1記録タイミング信号に従って、前記記録層のトラックに沿って前記第1データを円周方向に間欠に記録する第1記録制御部と、
前記第1記録タイミング信号がオフの期間のうち、少なくとも一部の期間がオンとなる第2記録タイミング信号を生成する第2タイミング生成部と、
前記第2データを記録する場合、前記第2データの前記記録開始位置から、第2トラック数以上のトラック数にわたって、前記第2記録タイミング信号に従って、前記記録層のトラックに沿って前記第2データを円周方向に間欠に記録する第2記録制御部と、を具備することを特徴とする請求項1に記載の光記録再生装置。 - 前記角度情報検出部は、前記ガイド層のアドレス情報から前記角度情報を得ることを特徴とする請求項2に記載の光記録再生装置。
- 前記記録媒体の回転制御方式は、ゾーン内で回転数を一定とするZCAV(Zoned Constant Angular Velocity)方式であることを特徴とする請求項1から請求項3のいずれか1項に記載の光記録再生装置。
- 前記第1トラック数および前記第2トラック数は、
第1トラック数>2X+Y
第2トラック数>2X+2Y
を満たすように設定され、第1トラック数および第2トラック数は正の整数であり、Xは、
- 前記角度領域の分割数をN(Nは正の整数)とした場合、該NはN>20×F/Rを満たし、Rは前記記録媒体の回転周波数であり、Fはサーボのカットオフ周波数であることを特徴とする請求項2から請求項5のいずれか1項に記載の光記録再生装置。
- データが記録される1以上の記録層と、位置決めに用いられるガイド層とが離れて積層される光記録媒体から前記データの再生を行なう光記録再生装置であって、
前記光記録媒体に照射されたビームの反射光を受光し、受光した前記光に基づいて受光信号を生成する光ピックアップヘッドと、
前記受光信号に基づいて、記録されたデータの位置と前記ビームのスポット位置とのトラッキングエラー信号を生成するエラー信号生成部と、
オンおよびオフが反転する第1記録タイミング信号に基づいて、第1サンプルタイミングを決定する第1サンプルタイミング信号と、前記第1記録タイミング信号がオフの期間のうち、少なくとも一部の期間がオンとなる第2記録タイミング信号に基づいて、第2サンプルタイミングを決定する第2サンプルタイミング信号とを生成するタイミング信号生成部と、
前記第1サンプルタイミング信号および前記第2サンプルタイミング信号に基づいて、前記トラッキングエラー信号をサンプルホールドし、第1サンプルタイミングにおける第1サンプルドトラッキングエラー信号と、第2サンプルタイミングにおける第2サンプルドトラッキングエラー信号とを得るサンプリング部と、
第1サンプルドトラッキングエラー信号および第2サンプルドトラッキングエラー信号に応じて切替えを行ない、該第1サンプルドトラッキングエラー信号に応じて第1データを得、第2サンプルドトラッキングエラー信号に応じて第2データを得る切替部と、を具備することを特徴とする光記録再生装置。 - データが記録される1以上の記録層と、位置決めに用いられるガイド層とが離れて積層される記録媒体に対してデータの記録を行なう光記録再生方法であって、
前記記録媒体の記録層において第1データに関する記録済みの領域が存在し、かつ該記録層に対し新たに第2データを記録する場合、前記第1データの終端位置を検出し、
前記第2データの記録開始位置を、前記終端位置よりも前記記録済みの領域に重なる位置に設定することを特徴とする光記録再生方法。 - データが記録される1以上の記録層と、位置決めに用いられるガイド層とが離れて積層される光記録媒体から前記データの再生を行なう光記録再生方法であって、
前記光記録媒体に照射されたビームの反射光を受光し、受光した前記光に基づいて受光信号を生成し、
前記受光信号に基づいて、記録されたデータの位置と前記ビームのスポット位置とのトラッキングエラー信号を生成し、
オンおよびオフが反転する第1記録タイミング信号に基づいて、第1サンプルタイミングを決定する第1サンプルタイミング信号と、前記第1記録タイミング信号がオフの期間のうち、少なくとも一部の期間がオンとなる第2記録タイミング信号に基づいて、第2サンプルタイミングを決定する第2サンプルタイミング信号とを生成し、
前記第1サンプルタイミング信号および前記第2サンプルタイミング信号に基づいて、前記トラッキングエラー信号をサンプルホールドし、第1サンプルタイミングにおける第1サンプルドトラッキングエラー信号と、第2サンプルタイミングにおける第2サンプルドトラッキングエラー信号とを得る、
第1サンプルドトラッキングエラー信号および第2サンプルドトラッキングエラー信号に応じて切替えを行ない、該第1サンプルドトラッキングエラー信号に応じて第1データを得、第2サンプルドトラッキングエラー信号に応じて第2データを得ることを特徴とする光記録再生方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/074185 WO2014045389A1 (ja) | 2012-09-21 | 2012-09-21 | 光記録再生装置および方法 |
PCT/JP2013/074950 WO2014046066A1 (ja) | 2012-09-21 | 2013-09-13 | 光記録再生装置および方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/074185 WO2014045389A1 (ja) | 2012-09-21 | 2012-09-21 | 光記録再生装置および方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014045389A1 true WO2014045389A1 (ja) | 2014-03-27 |
Family
ID=50340743
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/074185 WO2014045389A1 (ja) | 2012-09-21 | 2012-09-21 | 光記録再生装置および方法 |
PCT/JP2013/074950 WO2014046066A1 (ja) | 2012-09-21 | 2013-09-13 | 光記録再生装置および方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/074950 WO2014046066A1 (ja) | 2012-09-21 | 2013-09-13 | 光記録再生装置および方法 |
Country Status (1)
Country | Link |
---|---|
WO (2) | WO2014045389A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009140552A (ja) * | 2007-12-05 | 2009-06-25 | Sony Corp | 光ディスク装置及び光情報記録方法 |
WO2012063326A1 (ja) * | 2010-11-09 | 2012-05-18 | 株式会社 東芝 | 情報記録媒体、情報再生装置及び情報記録装置 |
-
2012
- 2012-09-21 WO PCT/JP2012/074185 patent/WO2014045389A1/ja active Application Filing
-
2013
- 2013-09-13 WO PCT/JP2013/074950 patent/WO2014046066A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009140552A (ja) * | 2007-12-05 | 2009-06-25 | Sony Corp | 光ディスク装置及び光情報記録方法 |
WO2012063326A1 (ja) * | 2010-11-09 | 2012-05-18 | 株式会社 東芝 | 情報記録媒体、情報再生装置及び情報記録装置 |
Also Published As
Publication number | Publication date |
---|---|
WO2014046066A1 (ja) | 2014-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009140552A (ja) | 光ディスク装置及び光情報記録方法 | |
KR20080109635A (ko) | 광 디스크 장치 및 수렴 위치 보정 방법 | |
JP4605147B2 (ja) | 多層光記録媒体の光記録方法、光記録装置、多層光記録媒体 | |
WO2007055107A1 (ja) | 多層ディスク及びその情報記録再生装置 | |
US8699309B2 (en) | Recording apparatus | |
JP2002237063A (ja) | 情報記録再生装置 | |
JP5403769B2 (ja) | ガイド層分離型の光記録媒体、光記録媒体ドライブ装置及び記録層アクセス方法 | |
JP2011216171A (ja) | 光学ピックアップ、光学ドライブ装置、光照射方法 | |
US20130070577A1 (en) | Optical recording medium, recording apparatus, recording method | |
JP4882802B2 (ja) | ホログラム記録装置及びホログラム再生装置 | |
WO2014045389A1 (ja) | 光記録再生装置および方法 | |
JP2011258281A (ja) | 記録装置、記録方法 | |
JP2011198427A (ja) | 記録装置、記録方法 | |
JP4743129B2 (ja) | ホログラム記録媒体、ホログラム記録方法及びその装置、ホログラム再生方法及びその装置 | |
JP2001236674A (ja) | 光学式ピックアップ装置 | |
JP2011198425A (ja) | 光学ドライブ装置、スポット位置ずれ補正方法 | |
JP2005327328A (ja) | 3次元光情報記録媒体 | |
JP5659076B2 (ja) | 光ディスク装置 | |
JP5331841B2 (ja) | 光ピックアップヘッド、情報記録装置、再生装置および方法 | |
JP2013125555A (ja) | 光ディスク装置及び光ディスク装置の記録方法 | |
JP2013020660A (ja) | 光ディスク装置、位置制御方法 | |
JP2012094207A (ja) | 記録装置、スポット位置制御方法 | |
JP2012009091A (ja) | 光記録再生装置 | |
WO2013076846A1 (ja) | 情報記録再生装置及び情報記録再生方法、並びに記録媒体 | |
JP2008159266A (ja) | 光記録媒体、光記録再生方法および再生方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12884954 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12884954 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |