[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013114850A1 - 溶融亜鉛めっき鋼板およびその製造方法 - Google Patents

溶融亜鉛めっき鋼板およびその製造方法 Download PDF

Info

Publication number
WO2013114850A1
WO2013114850A1 PCT/JP2013/000434 JP2013000434W WO2013114850A1 WO 2013114850 A1 WO2013114850 A1 WO 2013114850A1 JP 2013000434 W JP2013000434 W JP 2013000434W WO 2013114850 A1 WO2013114850 A1 WO 2013114850A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
hot
amount
strength
Prior art date
Application number
PCT/JP2013/000434
Other languages
English (en)
French (fr)
Inventor
英之 木村
克利 ▲高▼島
金子 真次郎
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020147022936A priority Critical patent/KR101638719B1/ko
Priority to CN201380007595.7A priority patent/CN104093873B/zh
Priority to US14/375,053 priority patent/US9322091B2/en
Priority to EP13742881.9A priority patent/EP2811047B1/en
Publication of WO2013114850A1 publication Critical patent/WO2013114850A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/285Thermal after-treatment, e.g. treatment in oil bath for remelting the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/38Pretreatment of metallic surfaces to be electroplated of refractory metals or nickel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]

Definitions

  • the present invention relates to a high-strength hot-dip galvanized steel sheet excellent in collision resistance and material uniformity in a coil and a manufacturing method thereof, and more particularly to a technique applicable to a high-strength thin steel sheet suitable as a member of a structural part of an automobile.
  • Patent Document 1 C: 0.04 to 0.15%, Si: 0.20% or less, Mn: 1.0 to 2.5%, P: 0.050% or less, S: By containing 0.020% or less, Al: 0.010 to 0.120%, Cr: 0.1 to 2.0%, and making the steel sheet structure a three-phase composite structure of ferrite, martensite and bainite. , Ensuring high elongation characteristics and high BH characteristics, which are the characteristics of ferrite-martensite composite structure, and coexisting bainite structure with this, reduce the hard martensite that becomes the starting point of voids and lowers stretch flangeability. Technology is disclosed.
  • Patent Document 2 C: 0.04 to 0.22%, Si: 1.0% or less, Mn: 3.0% or less, P: 0.05% or less, S: 0.01% or less, Al: 0.01 to 0.1%, N: 0.001 to 0.005% and one or more selected from Nb, Ti, and V in total 0.008% to 0.05%,
  • the steel sheet structure a ferrite-martensite composite structure and further defining the maximum grain size ( ⁇ 2 ⁇ m) and area ratio ( ⁇ 5%) of martensite, the generation start point of voids governing stretch flange forming is reduced,
  • a technique for improving stretch flangeability and further ensuring BH properties by securing a martensite amount of 5% or more is disclosed.
  • Patent Document 1 has a maximum BH amount of 51 MPa and a yield ratio (YR) as low as 0.51 to 0.58.
  • the technique described in Patent Document 2 has a high BH amount and very good impact resistance performance, no description about elongation characteristics and material variations as an index of press formability is recognized.
  • high strength steel sheets with a TS of 590 MPa or more contain a large amount of various alloy elements in order to increase the strength. Therefore, depending on variations in production conditions, the types of precipitates and second phase present in the steel The amount changes variously, and variations in materials such as strength and elongation tend to increase in the coil, particularly in the longitudinal direction of the coil. In this case, in a continuous press line of an automobile, it is difficult to perform stable press molding, and workability is greatly reduced. Therefore, material uniformity in the coil is strongly demanded.
  • Patent Document 3 Ti and Nb are combined and added to steel with C reduced to 0.0070% or less, and the rolling temperature is set to 620 ° C. or higher, so that the material in the coil is changed.
  • Techniques for homogenization are disclosed.
  • N causing the material variation is precipitated as TiN instead of AlN before finish rolling, and C is precipitated as (Ti, Nb) C which is a composite carbide.
  • the coiling temperature may be less than 620 ° C. or locally within the coil may be less than 620 ° C. In such a case, due to fluctuations in the precipitation behavior in the coil.
  • a technique for reducing the dependency of mechanical properties such as elongation on the coiling temperature is disclosed.
  • this technology is a ferritic single-phase steel based on IF steel (Interstitial Free steel), which is a very low carbon steel, and does not mention any high strength steel sheets having a tensile strength of 590 MPa or more. .
  • the yield ratio (YR), the amount of seizure hardening (BH amount) and the continuous press line of the automobile necessary for satisfying sufficient impact resistance properties so far can be stably performed.
  • a high-strength steel sheet that satisfies the required material uniformity in the coil is not known.
  • the present invention secures a high yield ratio (YR) and a high seizure hardening amount (BH amount) from the viewpoint of improving the impact resistance performance, and has excellent material uniformity, particularly strength and elongation, in the coil TS ⁇ 590 MPa. It is an object to provide a high-strength hot-dip galvanized steel sheet and a method for producing the same.
  • the present inventors diligently studied various factors that affect the strength and impact resistance characteristics of a steel sheet, and also the uniformity of material in the coil necessary for stable press forming. As a result, in mass%, C: more than 0.060% and 0.13% or less, Nb: 0.005% or more and 0.10% or less, Ti: 0.03% or more and 0.15% or less, S: 0.00.
  • Ti * amount ( Ti- (48/14) N- (48/32) S) and Nb which are included in the range of 010% or less, N: 0.0100% or less, and are not fixed by N and S and C (Nb / 93 + Ti * / 48) / (C / 12) > 0.08, ferrite having an average crystal grain size of 15 ⁇ m or less and an area ratio of 80% or more and an area ratio of 1%
  • TS tensile strength
  • YiR yield ratio
  • BH amount seizure hardening amount
  • a high-strength hot-dip galvanized steel sheet with excellent material uniformity inside the coil is obtained.
  • the rolling reduction in the final two passes in the finish rolling of the hot rolling of the steel material having the above composition, and the temperature range of 700 to 800 ° C. during annealing and heating at a low speed of less than 3 ° C./s. It was found that by heating, a high-strength hot-dip galvanized steel sheet having the steel sheet structure and characteristics can be produced.
  • the present invention has been made based on the above findings, and the gist thereof is as follows.
  • Ti * Ti- (48/14)
  • C, Nb, Ti, N, and S represent the content (mass%) of each element in the steel, respectively. Show.
  • a high-strength hot-dip galvanized steel sheet excellent in collision resistance and material uniformity in the coil characterized in that in [1] above, V: 0.10% or less is further contained in mass%.
  • the anti-collision performance and the inside of the coil are characterized by further containing, in mass%, one or two of Mo and Cr in total of 0.50% or less.
  • the composition further contains one or two of Cu: 0.30% or less and Ni: 0.30% or less in mass%.
  • the composition further contains one or two selected from Sn: 0.2% or less and Sb: 0.2% or less by mass%.
  • Sn 0.2% or less
  • Sb 0.2% or less by mass%.
  • the composition further comprises Ta: 0.005% or more and 0.1% or less by mass%, and the anti-collision performance and in the coil High-strength hot-dip galvanized steel sheet with excellent material uniformity.
  • the tensile strength (TS) is 590 MPa or more
  • the yield ratio (YR) is 0.70 or more
  • the seizure hardening amount (BH amount) is 60 MPa or more.
  • cooling is started within 3 seconds after completion of the finish rolling of the hot rolling, and is cooled to 720 ° C. or less at an average cooling rate of 40 ° C./s or more, and a temperature of 500 to 700 ° C.
  • the high-strength hot-dip galvanized steel sheet produced in [8] or [9] above has a tensile strength (TS) of 590 MPa or more, a yield ratio (YR) of 0.70 or more, and a seizure hardening amount (BH amount). ) Is 60 MPa or more, a method for producing a high-strength hot-dip galvanized steel sheet excellent in collision resistance and material uniformity in the coil.
  • the tensile strength (TS) has a high strength of 590 MPa or more, an excellent impact resistance performance with a high yield ratio (YR ⁇ 0.70) and a high seizure hardening amount (BH ⁇ 60 MPa), Furthermore, a high-strength hot-dip galvanized steel sheet having excellent material uniformity with small material fluctuations in the coil can be obtained. Therefore, when the high-strength hot-dip galvanized steel sheet of the present invention is applied to automobile body members, it can greatly contribute to the improvement of collision safety and weight reduction, and the material uniformity in the coil is good. We can expect improvement of workability at the time.
  • a so-called precipitation-strengthened high-strength steel sheet to which carbide-generating elements such as Ti and Nb are added among high-strength steel sheets of TS590 MPa class or higher has a high yield ratio (YR).
  • the so-called structure-strengthened high-strength steel sheet that produces a hard second phase such as martensite has a characteristic of having a high seizure hardening amount (BH amount). It is considered that a high-strength hot-dip galvanized steel sheet excellent in performance can be obtained.
  • C more than 0.060% and 0.13% or less C is an element effective for increasing the strength of a steel sheet.
  • carbide forming elements such as Nb and Ti and fine alloy compounds or alloy carbonitrides. This contributes to higher strength and further to higher yield ratio (YR).
  • YR higher yield ratio
  • BH high seizure hardening
  • the content exceeds 0.13% the steel sheet is hardened and not only the formability is lowered, but also the spot weldability is lowered.
  • the C content is set to more than 0.060% and 0.13% or less. Preferably it is more than 0.060% and 0.10% or less.
  • Si 0.01% or more and 0.7% or less
  • Si is an element that contributes to high strength mainly by solid solution strengthening, and there is relatively little reduction in ductility with respect to strength increase. It is an element that contributes to improving the balance of ductility. In order to obtain this effect, it is necessary to contain Si by 0.01% or more.
  • the Si content exceeds 0.7%, Si-based oxides are likely to be formed on the surface of the steel sheet, and chemical conversion treatment properties, coating adhesion, and post-coating corrosion resistance may be reduced. Therefore, the Si content is set to 0.01% or more and 0.7% or less. From the viewpoint of improving the balance between strength and ductility, 0.2% or more is preferable. More preferably, it is 0.2% or more and 0.5% or less.
  • Mn 1.0% or more and 3.0% or less
  • Mn is an element that contributes to strengthening by forming solid solution strengthening and martensite. To obtain this effect, 1.0% or more should be contained. is required. On the other hand, if the Mn content exceeds 3.0%, the raw material cost is increased, and the formability and weldability are significantly reduced. In addition, since the martensite becomes excessive and it becomes easy to continuously yield due to the stress field around the martensite, the yield ratio (YR) and the seizure hardening amount (BH amount) are reduced, and the desired high yield ratio (YR), A high seizure hardening amount (BH amount) may not be obtained. Therefore, the Mn content is 1.0% or more and 3.0% or less. Preferably they are 1.0% or more and 2.5% or less, More preferably, they are 1.0% or more and 2.0% or less.
  • P 0.005% or more and 0.100% or less
  • P is an element effective for increasing the strength of a steel sheet by solid solution strengthening.
  • the P content is less than 0.005%, not only the effect does not appear, but also the dephosphorization cost increases in the steel making process.
  • the P content exceeds 0.100%, P segregates at the grain boundaries, and the secondary work brittleness resistance and weldability deteriorate. Therefore, the P content is set to 0.005% or more and 0.100% or less. From the viewpoint of making the above effect higher, 0.010% or more is preferable.
  • the grain boundary segregation C which is effective in obtaining a high seizure hardening amount (BH amount) due to the grain boundary segregation of P, decreases, and the desired seizure hardening amount (BH amount) cannot be obtained. Therefore, it is preferably 0.080% or less, and more preferably 0.050% or less.
  • S 0.010% or less
  • S is a harmful element that causes hot brittleness and is present in the steel as sulfide inclusions and lowers the workability of the steel sheet. Therefore, S is preferably reduced as much as possible.
  • the upper limit of the S content is 0.010%. Preferably it is 0.008% or less. Although there is no lower limit in particular, it is preferable to make it 0.0005% or more because extremely low S increases the steelmaking cost.
  • Al 0.005% or more and 0.100% or less
  • Al is an element contained as a deoxidizer, but has an effect of strengthening solid solution, and thus effectively acts to increase the strength.
  • the Al content is sol. If the Al content is less than 0.005%, the above effect cannot be obtained.
  • the Al content is sol. If it exceeds 0.100% as Al, it will cause an increase in raw material cost and also cause a surface defect of the steel sheet. Therefore, the Al content is sol. Al is set to be 0.005% or more and 0.100% or less.
  • N 0.0100% or less
  • the N content is set to 0.0100% or less.
  • Nb 0.005% or more and 0.10% or less Nb is one of the important elements in the present invention. Nb contributes to higher strength by forming carbides and carbonitrides with C and N, and further contributes to a higher yield ratio (YR). In addition, Nb has the effect of refining the hot-rolled sheet structure, and by refining the hot-rolled sheet, the ferrite grain size after cold rolling and annealing is refined. High BH characteristics can be obtained by increasing the amount of C segregation. In order to express such an effect, the Nb content is set to 0.005% or more in the present invention.
  • the excessive Nb content exceeding 0.10% causes an increase in cost, increases the load during hot rolling, and increases the deformation resistance during cold rolling, thereby producing a stable actual machine. It makes it difficult, and further remarkably lowers moldability.
  • solid solution C for forming martensite is required.
  • Nb content is set to 0.005% or more and 0.10% or less. Preferably it is 0.08% or less, More preferably, it is 0.05% or less.
  • Ti 0.03% or more and 0.15% or less Ti, like Nb, contributes to higher strength by forming carbides and carbonitrides with C and N, and further contributes to higher yield ratio (YR). .
  • Ti also has the effect of refining the hot-rolled sheet structure in the same way as Nb, and the ferrite grain size after cold rolling and annealing is refined, so C segregation to the grain boundary accompanying an increase in grain boundary area. By increasing the amount, a high seizure hardening amount (BH amount) can be obtained.
  • the Ti content is set to 0.03% or more.
  • the excessive Ti content exceeding 0.15% increases the raw material cost and increases the deformation resistance during cold rolling, which makes stable production difficult. Further, the excessive Ti content reduces the solid solution C as in the case of Nb. Therefore, the formation of martensite in the cooling process after annealing is inhibited, and the desired seizure hardening amount (BH amount) cannot be obtained. There is a case. Therefore, the Ti content is 0.03% or more and 0.15% or less. From the viewpoint of effectively expressing the above effects, it is preferably more than 0.05%.
  • the high-strength steel sheet of the present invention further needs to contain C, Nb, Ti, N and S satisfying the following formula (1).
  • Ti * Ti ⁇ (48/14) N ⁇ (48/32) S.
  • Ti ⁇ (48/14) N ⁇ (48/32) S 0.
  • the element symbol of each element indicates the content (% by mass) of the element.
  • (Nb / 93 + Ti * / 48) / (C / 12), which is the atomic ratio of Ti and Nb to C, is 0.08 or less, martensite increases and the desired high yield ratio (YR ) And the amount of seizure hardening (BH amount) may not be obtained, and the variation in the material within the coil may increase due to the change in the precipitation behavior during hot rolling. Therefore, (Nb / 93 + Ti * / 48) / (C / 12) is more than 0.08. Preferably it is 0.10 or more, More preferably, it is 0.15 or more.
  • the steel of the present invention can obtain the desired characteristics, but in addition to the above essential additive elements, one or two and / or Cu selected from V and / or Mo and Cr. One or two selected from Ni and Ni can be added.
  • V 0.10% or less V, like Nb and Ti, can contribute to an increase in strength by forming fine carbonitrides, and can be contained as necessary. In order to express such an effect, it is preferable to make it contain 0.01% or more. On the other hand, when the V content exceeds 0.10%, not only the above effects are saturated, but also the raw material costs are increased. Therefore, when adding V, the content is made 0.10% or less.
  • One or two types selected from Mo and Cr: 0.50% or less in total Mo and Cr are elements that contribute to high strength by improving hardenability and generating martensite. It can be contained accordingly. Such an effect is remarkably exhibited when the total content of the above components is 0.10% or more. Therefore, the content is preferably 0.10% or more. On the other hand, if the total content of Mo and Cr exceeds 0.50%, not only the above effects are saturated but also the cost of raw materials is increased. Therefore, when these elements are contained, the total content thereof is 0.50% or less.
  • One or two selected from Cu: 0.30% or less and Ni: 0.30% or less Cu is a harmful element that causes cracks during hot rolling and causes surface defects.
  • the adverse effect of Cu on the steel sheet characteristics is small, so that a content of 0.30% or less is acceptable.
  • Ni like Cu, has a small effect on the steel sheet properties, but has the effect of preventing the occurrence of surface flaws due to the addition of Cu.
  • the said effect can be expressed by containing 1/2 or more of Cu content.
  • the Ni content is excessive, the generation of other surface defects due to non-uniform scale formation is promoted. Therefore, when Ni is contained, the content is made 0.30% or less.
  • the high-strength hot-dip galvanized steel sheet of the present invention can further contain one or two selected from Sn and Sb and / or Ta.
  • Sn and Sb are decarburized in the region of several tens of microns on the surface of the steel sheet caused by nitriding, oxidation, or oxidation of the steel sheet surface It can contain from a viewpoint which suppresses. By suppressing such nitriding and oxidation, a reduction in the amount of martensite produced on the steel sheet surface is prevented, and fatigue characteristics and surface quality are improved. From the viewpoint of suppressing nitriding and oxidation, when Sn or Sb is contained, the content is preferably 0.005% or more, and if it exceeds 0.2%, the toughness is deteriorated. Is preferred.
  • Ta 0.005% or more and 0.1% or less Ta, like Nb and Ti, contributes to higher strength by forming carbides and carbonitrides with C and N, and further increases the yield ratio (YR).
  • Ta has the effect of refining the hot-rolled sheet structure in the same way as Nb and Ti, and the ferrite grain size after cold rolling and annealing is refined.
  • BH amount high seizure hardening amount
  • 0.005% or more of Ta can be contained.
  • the content of excess Ta exceeding 0.1% not only increases the raw material cost, but, like Nb and Ti, may interfere with the formation of martensite in the cooling process after annealing.
  • TaC precipitated in the hot-rolled sheet increases the deformation resistance during cold rolling and may make it difficult to manufacture a stable actual machine. Therefore, when it contains Ta, it may be 0.1% or less. preferable.
  • the balance other than the above components consists of Fe and inevitable impurities.
  • the content of other components is not rejected as long as the effects of the present invention are not impaired.
  • oxygen (O) forms non-metallic inclusions and adversely affects the quality of the steel sheet, the content is preferably reduced to 0.003% or less.
  • the high-strength hot-dip galvanized steel sheet excellent in collision resistance performance and material uniformity in the coil according to the present invention will be described.
  • the high-strength hot-dip galvanized steel sheet of the present invention has a mean grain size of 15 ⁇ m or less, which is precipitation strengthened by Ti and Nb, and an area ratio of 80% or more.
  • BH amount high seizure hardening amount
  • the average particle size is 15 ⁇ m or less and the area ratio is 80% or more.
  • the average particle size of ferrite is necessary to obtain a high seizure hardening amount (BH amount). If the average grain size of the ferrite exceeds 15 ⁇ m, the grain interfacial area of the ferrite decreases, so the amount of C segregation at the grain boundary decreases, and it may be difficult to obtain a high seizure hardening amount (BH amount). .
  • the average particle diameter of a ferrite shall be 15 micrometers or less. Preferably it is 12 micrometers or less.
  • the area ratio of ferrite strengthened by precipitation with Nb, Ti or the like is necessary to obtain a high yield ratio (YR).
  • the area ratio of the ferrite is less than 80%, a large number of hard second phases such as martensite are present. Therefore, continuous yielding is easily caused by the stress field around the hard second phase, and the yield ratio (YR) In some cases, the amount of seizure and hardening (BH amount) decreases, making it difficult to ensure good collision resistance. For this reason, the area ratio of ferrite is 80% or more. Preferably it is 85% or more, more preferably 88% or more.
  • Martensite 1% or more and 15% or less in area ratio Martensite is a hard phase necessary to ensure the strength of the steel sheet of the present invention, and is further necessary for obtaining a high seizure hardening amount (BH amount). It is a hard phase. If the area ratio of martensite is less than 1%, the steel sheet strength decreases, and it becomes difficult not only to secure TS: 590 MPa or more but also to ensure BH: 60 MPa or more. On the other hand, if the area ratio of martensite exceeds 15%, the amount of dislocations introduced around the martensite and the amount of elastic strain increase, and plastic deformation starts easily from around the martensite during plastic deformation.
  • the area ratio of martensite is 1% or more and 15% or less. Preferably it is 12% or less.
  • pearlite, bainite, retained austenite, carbide, etc. may be included as the remaining structure other than ferrite and martensite, but these are acceptable if the total area ratio is 5% or less.
  • the area ratio is a structure obtained by polishing the L cross section (vertical cross section parallel to the rolling direction) of the steel sheet, corroding with nital, observing 5 fields of view with a SEM (scanning electron microscope) at a magnification of 2000 times, and photographing. It can be obtained by image analysis of photos.
  • ferrite is a slightly black contrast region
  • pearlite is a region where carbides are generated in a lamellar shape
  • bainite is a region where carbides are generated in a dot sequence
  • martensite and retained austenite (residual ⁇ ) Is a particle with white contrast.
  • the average particle diameter of ferrite is measured by a cutting method in accordance with the provisions of JIS G0522.
  • the high-strength hot-dip galvanized steel sheet according to the present invention as described above typically has the following characteristics.
  • the steel sheet strength (TS) is 590 MPa or more, and the above requirements can be satisfied.
  • Yield ratio (YR) ⁇ 0.70, Bake hardening (BH) ⁇ 60 MPa From the viewpoint of improving the impact resistance, it is necessary to increase the yield ratio (YR) and the seizure hardening amount (BH amount) of the steel sheet.
  • the yield ratio (YR) ⁇ 0.70 and the seizure hardening amount (BH) ⁇ 60 MPa so that desired impact resistance characteristics can be obtained.
  • TS tensile strength
  • YP yield strength
  • El total elongation
  • the high-strength hot-dip galvanized steel sheet of the present invention is manufactured by melting a steel adjusted to the above-described composition range into a slab, then hot rolling, cold rolling, and annealing.
  • hot rolling the rolling reduction of the final pass in finish rolling is 10% or more
  • the rolling reduction of the previous pass of the final pass is 15% or more
  • the temperature range of 700 to 800 ° C. is less than 3 ° C./s.
  • the steel is heated at an average heating rate of 800 to 900 ° C., cooled at an average cooling rate of 3 to 15 ° C./s from the annealing temperature, immersed in a galvanizing bath, and hot dip galvanized.
  • After the hot dip galvanization cooling is performed at an average cooling rate of 5 to 100 ° C./s.
  • further alloying treatment of galvanization is performed, and after the alloying treatment, 5 to 100 ° C./s.
  • Annealing is performed at an average cooling rate.
  • the average cooling rate is 40 ° C./s or more and is cooled to 720 ° C. or less, and wound at a temperature of 500 to 700 ° C.
  • Cold rolling is preferably performed at a rolling rate of 40% or more.
  • the steel slab used in the production method of the present invention is preferably produced by a continuous casting method in order to prevent macro segregation of components, but may be produced by an ingot-making method or a thin slab casting method.
  • direct feed rolling in which a hot slab is placed in a heating furnace without cooling and hot rolling is performed, or slight heat retention Energy-saving processes such as direct-rolling and direct rolling, which are hot-rolled immediately after being carried out, and a method in which a part of reheating is omitted by charging in a heating furnace in a high-temperature state (hot piece charging) can be applied without any problems. be able to.
  • the slab heating temperature is less than 1000 ° C, the rolling load increases and the risk of trouble during hot rolling increases.
  • the upper limit of the slab heating temperature is preferably 1300 ° C. because of an increase in scale loss accompanying an increase in oxidized weight.
  • the steel slab obtained as described above is subjected to hot rolling including rough rolling and finish rolling.
  • the steel slab is made into a sheet bar by rough rolling.
  • the conditions for rough rolling need not be specified, and can be performed according to a conventional method. From the viewpoint of lowering the slab heating temperature and preventing troubles during hot rolling, it is an effective method to use a so-called sheet bar heater for heating the sheet bar.
  • the sheet bar is finish-rolled to obtain a hot-rolled sheet.
  • the rolling reduction of the final pass of final rolling and the pass before the final pass it is necessary to control the rolling reduction of the final pass of final rolling and the pass before the final pass to an appropriate range, the rolling reduction of the final pass is 10% or more, and the rolling reduction of the pass before the final pass is 15%. That's it.
  • the final pass reduction ratio is less than 10%, the effect of refining ferrite grains and the effect of promoting the precipitation of NbC and TiC become insufficient, and the above-mentioned high BH effect and the effect of material uniformity in the coil may not be obtained.
  • the rolling reduction in the final pass is preferably 13% or more.
  • the rolling reduction of the pass before the final pass is preferably 18% or more.
  • both of these rolling reductions are less than 40%.
  • the rolling temperature in the final pass and the pass before the final pass is not particularly limited, but the rolling temperature in the final pass is preferably 830 ° C. or higher, more preferably 860 ° C. or higher. Further, the rolling temperature of the pass before the final pass is preferably 1000 ° C. or less, and more preferably 960 ° C. or less.
  • the rolling temperature of the final pass is less than 830 ° C.
  • the transformation from non-recrystallized austenite to ferrite increases, and the steel sheet structure after cold rolling annealing is affected by the hot rolled sheet structure, and the uneven structure is elongated in the rolling direction.
  • workability may be reduced.
  • the hot-rolled sheet that has finished hot rolling starts cooling within 3 seconds after finishing rolling, from the viewpoint of improving BH by refining crystal grains and making the material in the coil uniform by promoting precipitation of NbC and TiC. It is preferable that the average cooling rate is 40 ° C./s or more to 720 ° C. or less, and the coil is wound at a temperature of 500 to 700 ° C.
  • the hot-rolled sheet structure becomes coarse and the effect of increasing the BH is obtained. It may not be possible.
  • the coiling temperature exceeds 700 ° C.
  • the hot-rolled sheet structure becomes coarse, and there is a concern that the strength after cold-rolling annealing may decrease, and the increase in BH may be hindered.
  • the coiling temperature is less than 500 ° C.
  • precipitation of NbC and TiC becomes difficult and solute C increases, so excessive increase of martensite is disadvantageous for high BH and precipitation behavior of NbC and TiC. Since the fluctuation of the coil becomes large, it is disadvantageous for uniformizing the material in the coil.
  • the cold rolling condition is not particularly limited as long as it can be a cold-rolled sheet having a desired dimension and shape, but the rolling reduction during cold rolling is preferably 40% or more. On the other hand, when the rolling reduction exceeds 90%, the load on the roll during rolling increases, and there is a risk of causing a sheet passing trouble.
  • the cold-rolled steel sheet is then annealed to impart desired strength and impact resistance characteristics.
  • the temperature range of 700 to 800 ° C. is heated at an average heating rate of less than 3 ° C./s, and is annealed at an annealing temperature of 800 to 900 ° C. From the annealing temperature, 3 to 15 ° C.
  • the cold-rolled steel plate obtained through the cold rolling process The recrystallization temperature becomes relatively high, and the processed structure tends to remain in the steel.
  • the ductility of the steel sheet is greatly reduced, not only deteriorating the press formability, but also reducing the amount of seizure hardening (BH amount) and further increasing the material variation. Therefore, when heating the cold-rolled steel sheet to the annealing temperature, the temperature range of 700 to 800 ° C.
  • the average heating rate is preferably 0.5 ° C./s or more.
  • Annealing temperature 800-900 ° C
  • the annealing temperature needs to be a two-phase region temperature of ferrite and austenite, and the annealing temperature is 800 to 900 ° C. Temperature range.
  • the annealing temperature is less than 800 ° C., a predetermined martensite amount cannot be obtained after cooling after annealing, and a desired seizure hardening amount (BH amount) cannot be obtained.
  • BH amount seizure hardening amount
  • BH amount seizure hardening
  • the annealing temperature exceeds 900 ° C.
  • an austenite single phase region is obtained, and depending on the subsequent cooling rate, the second phase (martensite, bainite, pearlite) increases more than necessary, and the second phase, particularly martensite.
  • the yield ratio (YR) and the seizure hardening amount (BH amount) are lowered, and it may be difficult to ensure good collision resistance.
  • the productivity is lowered and the energy cost is increased. Therefore, the annealing temperature is in the range of 800 to 900 ° C. Preferably, it is in the range of 800 to 870 ° C.
  • the soaking time in annealing is preferably 15 seconds or more from the viewpoint of progress of recrystallization and partial austenite transformation or concentration of elements such as C to austenite.
  • the soaking time exceeds 300 seconds, the crystal grain size becomes coarse, which adversely affects various properties of the steel sheet, such as a decrease in strength, deterioration of the surface properties of the steel sheet, and a decrease in the amount of seizure hardening (BH amount).
  • BH amount seizure hardening
  • the line speed of the continuous hot dip galvanizing line will be extremely slowed, leading to a decrease in productivity. Therefore, the soaking time in annealing is preferably in the range of 15 to 300 seconds, and more preferably in the range of 15 to 200 seconds.
  • Average cooling rate from annealing temperature to galvanizing bath (primary cooling rate): 3 to 15 ° C./s After soaking at the above-mentioned annealing temperature, it is cooled at an average cooling rate of 3 to 15 ° C./s to the temperature of the galvanizing bath normally maintained at 420 to 500 ° C.
  • the average cooling rate is less than 3 ° C / s, it passes through the pearlite generation nose in the temperature range of 550 to 650 ° C, so a large amount of pearlite and bainite are generated in the second phase, and a predetermined amount of martensite cannot be obtained.
  • the average cooling rate from the annealing temperature to the galvanizing bath is set to 3 to 15 ° C./s. Preferably, it is 5 to 15 ° C./s.
  • the hot dip galvanizing process may be performed by a conventional method.
  • the alloying process of a galvanization can also be performed as needed.
  • the alloying treatment of galvanizing is performed, for example, by heating to a temperature range of 500 to 700 ° C. after the hot dip galvanizing treatment and holding for several seconds to several tens of seconds.
  • the cooling rate from the annealing temperature to the galvanizing bath is controlled as described above, even if such an alloying treatment is performed, a large amount of pearlite or the like is not generated, and a predetermined amount of Since martensite is obtained, a desired strength can be ensured without causing a decrease in ductility and a decrease in the amount of seizure hardening (BH amount).
  • the amount of plating is 20 to 70 g / m 2 per side, and when alloying, the Fe% in the plating layer is preferably 6 to 15%.
  • the pearlite is around 400-500 ° C for slow cooling after the hot dip galvanizing process or after the alloying process of galvanizing is performed at a cooling rate of less than 5 ° C / s at an average cooling rate to a temperature of 150 ° C or less.
  • bainite is generated, a predetermined amount of martensite cannot be obtained, and a desired strength or seizure hardening amount (BH amount) may not be obtained.
  • the secondary cooling rate exceeds 100 ° C./s in terms of average cooling rate, the martensite becomes too hard and ductility decreases. Therefore, from the viewpoint of obtaining stable and good martensite, the secondary cooling rate is set to an average cooling rate of 5 to 100 ° C./s.
  • the temperature is preferably 10 to 100 ° C./s.
  • temper rolling or leveler processing may be performed for the purpose of shape correction and surface roughness adjustment.
  • the elongation is preferably about 0.3 to 1.5%.
  • Example 1 Molten steel having the composition shown in Table 1 was melted in a converter, and a slab having a thickness of 230 mm was formed by a continuous casting method. These steel slabs were heated to 1220 ° C., hot-rolled, and wound around a coil to obtain a hot-rolled sheet having a thickness of 3.5 mm.
  • the rolling temperature and reduction ratio of the final pass and the pass before the final pass in the hot rolling finish rolling, the average cooling rate from the start of cooling after the finish rolling to the temperature range of 720 ° C. or less, and the winding temperature are shown in the table. As shown in FIG. Further, the time from the end of finish rolling to the start of cooling was set to within 3 seconds.
  • the hot-rolled sheet obtained as described above After pickling the hot-rolled sheet obtained as described above, it was cold-rolled under the conditions shown in Table 2 to obtain a cold-rolled steel sheet having a sheet thickness of 1.4 mm. Then, it was subjected to temper rolling with an elongation rate of 0.7% to obtain a hot dip galvanized steel sheet (product).
  • the hot dip galvanizing treatment was adjusted so that the adhesion amount was 50 g / m 2 per side (double-side plating), and the alloying treatment was adjusted so that the Fe% in the plating layer was 9-12%.
  • a sample is taken from the 1/4 width position of the central part (M part) in the coil longitudinal direction, and the structure observation and 90 ° direction with respect to the rolling direction are performed by the following method.
  • the structure of the steel sheet from the above structure photograph is defined as an area where the ferrite is slightly black contrast, the pearlite is an area where the carbide is generated in a lamellar shape, and the bainite is an area where the carbide is generated in a dot sequence.
  • the site and residual austenite (residual ⁇ ) were particles having white contrast.
  • the area ratio is calculated again as the area that was bainite or martensite before heat treatment, and the fine particles remaining as white contrast are measured as residual ⁇ , with white contrast before tempering
  • the area ratio of martensite was determined from the difference from the area ratio of the particles (martensite and residual ⁇ ).
  • the area ratio of each phase is obtained by layering the transparent OHP sheet for each phase, coloring the image, binarizing it, image analysis software (Digital Image Pro Plus ver. 0).
  • the average particle diameter of the ferrite was measured by the cutting method in accordance with JIS G0522.
  • Steel sheet No. 1 is represented by C, Nb, Ti content and (Nb / 93 + Ti * / 48) / (C / 12), and the atomic ratio of Ti and Nb to C is below the range of the present invention, so that martensite is present.
  • Yield ratio (YR) and seizure hardening amount (BH amount) are low due to excessive generation and easy yielding due to the stress field around martensite, and YR ⁇ 0.70 and BH ⁇ 60 MPa are not achieved. It has become.
  • the comparative example No. Since the steel plate No. 2 has a Mn and P content below the range of the present invention, a large amount of pearlite is generated during cooling after annealing or during alloying treatment. As a result, the desired martensite amount cannot be obtained, and TS ⁇ 590 MPa and BH ⁇ 60 MPa are not achieved.
  • Comparative Example No. Steel plate No. 3 has Nb and Ti contents exceeding the scope of the present invention, and C in the steel is fixed as NbC or TiC to prevent the formation of martensite. Therefore, the desired martensite amount cannot be obtained, and TS ⁇ 590 MPa BH ⁇ 60 MPa is not achieved. Comparative Example No. In Steel No.
  • the Mn content exceeds the range of the present invention, so that martensite is excessively generated, and YR ⁇ 0.70 and BH ⁇ 60 MPa are not achieved.
  • the steel plate No. 4 also has a P content exceeding the scope of the present invention, and there is concern about deterioration of secondary work embrittlement resistance, and further, it is effective for high seizure hardening (BH content) due to P grain boundary segregation. Since the amount of field segregation C decreases, BH ⁇ 60 MPa is not achieved.
  • Steel sheet No. 20 has an amount of C exceeding the range of the present invention, and since the atomic ratio of Ti and Nb to C is below the range of the present invention, martensite is excessively generated, yield ratio (YR) and seizure hardening amount (BH amount) ) Is low, and YR ⁇ 0.70 and BH ⁇ 60 MPa are not achieved.
  • the atomic ratio of Ti and Nb to C is low, the coil tip portion that is relatively easy to cool after hot rolling is insufficiently precipitated, and NbC, TiC and the like are insufficiently deposited, resulting in an increase in material variation in the coil and ⁇ YP ⁇ 30 MPa and ⁇ El ⁇ 3.0% are not achieved.
  • Example 2 Molten steel having the component compositions of steels G and P shown in Table 1 was melted in a converter and made into a slab having a thickness of 230 mm by a continuous casting method. These steel slabs were heated to 1220 ° C., hot-rolled, and wound around a coil to obtain a hot-rolled sheet having a thickness of 3.5 mm.
  • the rolling temperature and reduction ratio of the final pass and the pass before the final pass in the hot rolling finish rolling, the average cooling rate from the start of cooling after the finish rolling to the temperature range of 720 ° C. or less, and the winding temperature are shown in the table. As shown in FIG. Further, the time from the end of finish rolling to the start of cooling was set to within 3 seconds.
  • hot dip galvanized steel sheet product
  • the hot dip galvanizing treatment was adjusted so that the adhesion amount was 50 g / m 2 per side (double-side plating), and the alloying treatment was adjusted so that the Fe% in the plating layer was 9-12%.
  • the area ratio of the ferrite phase and martensite phase, the average grain size of ferrite, the yield strength (YP), the tensile strength (TS), the yield ratio (YR) as in Example 1. YP / TS), total elongation (El), and amount of seizure hardening (BH amount), and further, fluctuation amounts of TS, YP and El, ⁇ TS, ⁇ YP and ⁇ El in the coil longitudinal and width directions were evaluated.
  • the measurement results are shown in Table 5. From Table 5, No. satisfying the production conditions of the present invention is obtained.
  • the steel sheets of the examples of the present invention having 25 to 31, 33, 34, and 37 to 40 are suitable for the present invention in terms of steel composition and manufacturing method, with a tensile strength (TS) of 590 MPa or more and a yield ratio (YR) of 0. It is a hot-dip galvanized steel sheet that satisfies the .70 or more and seizure hardening amount (BH amount) of 60 MPa or more. Further, ⁇ YP and ⁇ TS are 30 MPa or less and ⁇ El is 3.0% or less, and the hot dip galvanized steel sheet is excellent in material uniformity in the coil longitudinal direction.
  • the average cooling rate after finishing rolling was 40 ° C./s or higher.
  • the steel plates Nos. 25, 27, and 28 are No.s having an average cooling rate after finish rolling of less than 40 ° C / s.
  • a seizure hardening amount (BH amount) higher than 29 is obtained.
  • the rolling reductions of the final pass of final rolling and the pass before the final pass are 13% or more and 15% or more, respectively.
  • No. Steel plates Nos. 25, 27 to 29, 31, 33, and 34 have No. 13 and 15% rolling reductions in the final pass and the pass before the final pass, respectively.
  • ⁇ YP, ⁇ TS, and ⁇ E1 are smaller than those of 26 and 30, and the material uniformity in the coil is excellent.
  • the comparative example No. Since the steel plate No. 32 has a rolling reduction rate in the final pass of final rolling and the pass before the final pass, and the primary cooling rate from the annealing temperature to the galvanizing bath is below the range of the present invention, the ferrite grain size is within the range of the present invention.
  • the desired seizure hardening amount (BH amount) cannot be obtained, and the martensite fraction exceeds the range of the present invention, so that the desired yield ratio (YR) ⁇ 0.70 cannot be obtained.
  • the effect of promoting the precipitation of NbC or TiC in the hot-rolled sheet stage cannot be obtained, and desired ⁇ YP ⁇ 30 MPa, ⁇ TS ⁇ 30 MPa, and ⁇ El ⁇ 3.0 cannot be obtained.
  • the comparative example No. Since the annealing temperature of the steel plate No. 35 is below the range of the present invention, the desired martensite amount cannot be obtained, the tensile strength (TS) is less than 590 MPa, and the seizure hardening amount (BH amount) is also less than 60 MPa. is there. Comparative Example No. Since the steel plate No. 36 was annealed in the austenite single-phase region with the annealing temperature exceeding the range of the present invention, the amount of solute C in the ferrite was reduced, and the ferrite grain size after cooling with austenite grain growth However, since it became coarse exceeding the range of the present invention, a desired amount of seizure hardening (BH amount) cannot be obtained. Moreover, since pearlite and bainite are generated excessively, the ductility is significantly reduced.
  • the average rate of temperature increase at 700 to 800 ° C. during annealing heating exceeds the range of the present invention, so that recrystallization of ferrite becomes insufficient, ⁇ YP exceeds 30 MPa, and ⁇ El exceeds 3.0%. It has become.
  • the high-strength steel sheet of the present invention is not limited to automobile members, and can be suitably used in other applications that require high strength and anti-collision performance. Therefore, it is also suitable as a material for home appliance parts and steel pipes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Abstract

耐衝突性能向上の観点から高降伏比(YR)および高焼付き硬化量(BH量)を確保し、かつ、材質、特に強度、伸びのコイル内均一性に優れたTS≧590MPaの高強度溶融亜鉛めっき鋼板およびその製造方法を提供する。質量%でC:0.060%超0.13%以下、Si:0.01%以上0.7%以下、Mn:1.0%以上3.0%以下、P:0.005%以上0.100%以下、S:0.010%以下、sol.Al:0.005%以上0.100%以下、N:0.0100%以下、Nb:0.005%以上0.10%以下、Ti:0.03%以上0.15%以下を含有し、かつ(Nb/93+Ti/48)/(C/12)>0.08(ただしTi=Ti-(48/14)N-(48/32)S)の関係を満足し、平均結晶粒径が15μm以下でかつ面積率が80%以上のフェライトと面積率が1%以上15%以下のマルテンサイトを含む組織を有する。

Description

溶融亜鉛めっき鋼板およびその製造方法
 本発明は、耐衝突性能およびコイル内の材質均一性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法に関し、特に自動車の構造部品の部材として好適な高強度薄鋼板に適用可能な技術に関する。
 近年、地球環境保全という観点から、COの排出量を規制するため、自動車車体の軽量化が強く求められており、これに加えて、車両衝突時に乗員の安全を確保するため、自動車車体の衝突特性を中心とした安全性の向上も強く求められている。これらの要求に答えるためには、自動車車体の軽量化と高強度化を同時に満たす必要があり、自動車車体の素材となる鋼板板厚を剛性が問題とならない範囲で薄肉化するとともに、耐衝突特性向上の観点から、鋼板の降伏比(YR)を高くすることや焼付き硬化量(BH量)を高くすることが必要となる。
 これに対して、特許文献1にはC:0.04~0.15%、Si:0.20%以下、Mn:1.0~2.5%、P:0.050%以下、S:0.020%以下、Al:0.010~0.120%、Cr:0.1~2.0%を含有し、鋼板組織をフェライト・マルテンサイト・ベイナイトの3相の複合組織とすることで、フェライト・マルテンサイト複合組織の特徴である高伸び特性と高BH特性を確保し、これにベイナイト組織を共存させることで、ボイドの発生起点となり伸びフランジ成形性を低下させる硬質マルテンサイトを低減する技術が開示されている。
 また、特許文献2にはC:0.04~0.22%、Si:1.0%以下、Mn:3.0%以下、P:0.05%以下、S:0.01%以下、Al:0.01~0.1%、N:0.001~0.005%およびNb、Ti、Vから選ばれる1種以上を合計で0.008%以上0.05%以下含有するとともに、鋼板組織をフェライト・マルテンサイト複合組織とし、さらにマルテンサイトの最大粒径(≦2μm)および面積率(≧5%)を規定することで、伸びフランジ成形を支配するボイドの発生起点を低減させ、これにより、伸びフランジ性を改善し、さらにマルテンサイト量を5%以上確保することでBH性を確保する技術が開示されている。
 しかしながら、特許文献1に記載の技術は、BH量が最大で51MPaであり、さらに降伏比(YR)が0.51~0.58と低いため、耐衝突特性の更なる向上が課題となる。また、特許文献2に記載の技術は、BH量が高く耐衝突性能は非常に良好であるが、プレス成形性の指標となる伸び特性や材質バラツキに関する記載は認められない。
 一般にTSが590MPa以上の高強度鋼板は、高強度化するために各種合金元素を多量に含有しているため、製造条件の変動によっては、鋼中に存在する析出物や第2相の種類や量が多様に変化し、コイル内、特にコイル長手方向において、強度や伸びといった材質のバラツキが大きくなりやすい。この場合、自動車の連続プレスラインにおいて、安定的にプレス成形を行うことが困難となり作業性が大きく低下するため、コイル内の材質均一性が強く求められている。
 このような高強度鋼板のコイル内の材質均一性を高める技術については、従来から多くの提案がなされている。例えば、特許文献3にはCを0.0070%以下に低減した鋼に、Ti、Nbを複合添加し、巻取り温度を620℃以上とする熱間圧延を行うことで、コイル内の材質を均質化する技術が開示されている。この技術では、材質バラツキの原因となるNを、AlNではなくTiNとして仕上げ圧延前に析出させ、また、Cは複合炭化物である(Ti、Nb)Cとして析出させている。しかしながら、実操業では、巻取り温度が620℃未満となったり、あるいはコイル内において局部的に620℃未満となったりすることがあり、このような場合には、コイル内の析出挙動の変動により、材質のバラツキが大きくなるという問題がある。特に、Cに対するTi、Nbの原子比が低い場合には、Cの析出固定が不十分となり、比較的冷却されやすいコイルの先端部や尾端部での材質劣化が大きくなる。
 また、特許文献4には、Cを0.0050%超0.010%以下とし、(Nb%×12)/(C%×93)=1.6~2.4に制御することで、強度、伸びなどの機械的特性の巻取り温度依存性を小さくする技術が開示されている。しかしながら、この技術は、対象としている鋼板が、極低炭素鋼のIF鋼(Interstitial Free鋼)をベースとしたフェライト単相鋼であり、引張強度が590MPa以上の高強度鋼板について何ら言及していない。
特許第3263143号公報 特許第3887235号公報 特公昭61-032375号公報 特開2000-303141号公報
 このように、これまでのところ十分な耐衝突特性を満足するのに必要な降伏比(YR)、焼付き硬化量(BH量)および自動車の連続プレスラインにおいて安定的にプレス成形を行うのに必要なコイル内の材質均一性を満足した高強度鋼板は知られていない。
 本発明は、耐衝突性能向上の観点から高降伏比(YR)および高焼付き硬化量(BH量)を確保し、かつ、材質、特に強度、伸びのコイル内均一性に優れたTS≧590MPaの高強度溶融亜鉛めっき鋼板およびその製造方法を提供することを課題とする。
 本発明者らは、鋼板の高強度化と耐衝突特性、さらには安定的にプレス成形を行うのに必要なコイル内材質均一性に及ぼす各種要因について鋭意検討した。その結果、質量%で、C:0.060%超0.13%以下、Nb:0.005%以上0.10%以下、Ti:0.03%以上0.15%以下、S:0.010%以下、N:0.0100%以下の範囲で含み、かつ、NおよびSで固定されないTi量(=Ti-(48/14)N-(48/32)S)とNbをCとの関係で(Nb/93+Ti/48)/(C/12)>0.08に限定し、さらに、平均結晶粒径が15μm以下でかつ面積率が80%以上のフェライトと面積率が1%以上15%以下のマルテンサイトを含む鋼板組織とすることにより、引張強度(TS)が590MPa以上、降伏比(YR)が0.70以上、焼付き硬化量(BH量)が60MPa以上でかつ、コイル内材質均一性に優れた高強度溶融亜鉛めっき鋼板が得られること、および、上記成分組成の鋼素材の熱間圧延の仕上げ圧延における仕上げ後段2パスの圧下率を制御し、かつ焼鈍加熱時に700~800℃の温度範囲を3℃/s未満の低速で加熱することで、上記鋼板組織および特性を有する高強度溶融亜鉛めっき鋼板が製造可能であることを知見した。
 本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
 [1]質量%でC:0.060%超0.13%以下、Si:0.01%以上0.7%以下、Mn:1.0%以上3.0%以下、P:0.005%以上0.100%以下、S:0.010%以下、sol.Al:0.005%以上0.100%以下、N:0.0100%以下、Nb:0.005%以上0.10%以下、Ti:0.03%以上0.15%以下を含有し、かつ下記式(1)の関係を満足し、残部が鉄および不可避的不純物からなり、平均結晶粒径が15μm以下でかつ面積率が80%以上のフェライトと面積率が1%以上15%以下のマルテンサイトを含む組織を有することを特徴とする耐衝突性能およびコイル内の材質均一性に優れた高強度溶融亜鉛めっき鋼板。
 (Nb/93+Ti/48)/(C/12)>0.08・・・(1)
 ここで、Ti=Ti-(48/14)N-(48/32)Sで表され、C,Nb,Ti,N,Sは、それぞれ鋼中の各元素の含有量(質量%)を示す。
 [2]上記[1]において、さらに、質量%で、V:0.10%以下含有することを特徴とする、耐衝突性能およびコイル内の材質均一性に優れた高強度溶融亜鉛めっき鋼板。
 [3]上記[1]または[2]において、さらに、質量%で、Mo、Crの1種または2種を合計で0.50%以下含有することを特徴とする、耐衝突性能およびコイル内の材質均一性に優れた高強度溶融亜鉛めっき鋼板。
 [4]上記[1]~[3]のいずれかにおいて、さらに、質量%で、Cu:0.30%以下、Ni:0.30%以下の1種または2種を含有することを特徴とする、耐衝突性能およびコイル内の材質均一性に優れた高強度溶融亜鉛めっき鋼板。
 [5]上記[1]~[4]のいずれかにおいて、さらに、質量%で、Sn:0.2%以下、Sb:0.2%以下のうちから選ばれる1種または2種を含有することを特徴とする、耐衝突性能およびコイル内の材質均一性に優れた高強度溶融亜鉛めっき鋼板。
 [6]上記[1]~[5]のいずれかにおいて、さらに、質量%で、Ta:0.005%以上0.1%以下を含有することを特徴とする、耐衝突性能およびコイル内の材質均一性に優れた高強度溶融亜鉛めっき鋼板。
 [7]上記[1]~[6]のいずれかにおいて、引張強度(TS)が590MPa以上、降伏比(YR)が0.70以上、焼付き硬化量(BH量)が60MPa以上であることを特徴とする、耐衝突性能およびコイル内の材質均一性に優れた高強度溶融亜鉛めっき鋼板。
 [8]上記[1]~[6]のいずれかの成分組成を有する鋼素材を熱間圧延し、冷間圧延し、焼鈍して高強度鋼板を製造するに際し、熱間圧延では、仕上圧延における最終パスの圧下率を10%以上、前記最終パスの前パスの圧下率を15%以上とし、焼鈍工程では、700~800℃の温度範囲を3℃/s未満の平均加熱速度で加熱し、800~900℃の焼鈍温度で焼鈍し、前記焼鈍温度から3~15℃/sの平均冷却速度で冷却し、亜鉛めっき浴に浸漬して溶融亜鉛めっきを施し、前記溶融亜鉛めっき後、5~100℃/sの平均冷却速度で冷却する、あるいは前記溶融亜鉛めっき後、さらに亜鉛めっきの合金化処理を施し、前記合金化処理後、5~100℃/sの平均冷却速度で冷却することを特徴とする、耐衝突性能およびコイル内の材質均一性に優れた高強度溶融亜鉛めっき鋼板の製造方法。
 [9]上記[8]において、前記熱間圧延の仕上圧延終了後、3秒以内に冷却を開始し、平均冷却速度40℃/s以上で720℃以下まで冷却し、500~700℃の温度で巻取りした後、圧延率40%以上で冷間圧延することを特徴とする、耐衝突性能およびコイル内の材質均一性に優れた高強度溶融亜鉛めっき鋼板の製造方法。
 [10]上記[8]または[9]において製造された高強度溶融亜鉛めっき鋼板が、引張強度(TS)が590MPa以上、降伏比(YR)が0.70以上、焼付き硬化量(BH量)が60MPa以上であることを特徴とする、耐衝突性能およびコイル内の材質均一性に優れた高強度溶融亜鉛めっき鋼板の製造方法。
 本発明によれば、引張強度(TS)が590MPa以上の高強度で、高降伏比(YR≧0.70)および高焼付き硬化量(BH≧60MPa)で優れた耐衝突性能を有し、さらにコイル内において材質変動が小さい材質均一性に優れた高強度溶融亜鉛めっき鋼板が得られる。よって、本発明の高強度溶融亜鉛めっき鋼板を自動車車体部材に適用した場合には、衝突安全性の向上や軽量化に大きく貢献でき、さらにコイル内の材質均一性が良好であるため、プレス成形時における作業性の向上も期待できる。
 以下、本発明について詳細に説明する。
 TS590MPa級以上の高強度鋼板の中でTiやNbなどの炭化物生成元素を添加した、いわゆる析出強化型の高強度鋼板は、降伏比(YR)が高い特徴を有している。一方、マルテンサイトなどの硬質な第2相を生成させた、いわゆる組織強化型の高強度鋼板は高い焼付き硬化量(BH量)を有する特徴があり、両特性を満足することができれば耐衝突性能に優れた高強度溶融亜鉛めっき鋼板が得られると考えられる。
 そこで、発明者らが鋭意研究を進めた結果、TiやNbで析出強化された母相フェライトに適正量のマルテンサイトを生成させることで高降伏比(YR)と高焼付き硬化性(BH性)を満足することを新たに見出した。また、本発明では熱間圧延での仕上げ圧延における最終パスの圧下率および最終パスの前パスの圧下率を適正範囲に制御し、さらに、仕上げ圧延後の冷却条件を適正に制御することにより、比較的冷却されやすい熱延コイルの先端部や尾端部におけるNbCやTiCの析出を促進し、高強度鋼板のコイル長手方向の材質バラツキ、特にTSやElのバラツキを大幅に低減することが可能となることを新たに見出し、本発明を完成するに至った。
 [成分組成]
 次に、本発明における鋼の成分組成について説明する。
 C:0.060%超0.13%以下
 Cは鋼板の高強度化に有効な元素であり、特にNbやTiといった炭化物形成元素と微細な合金化合物、あるいは、合金炭窒化物を形成することで高強度化に寄与し、さらに高降伏比(YR)化に寄与する。また、マルテンサイトを形成することで高強度化に寄与し、さらに高焼付き硬化(BH)を得ることに寄与する。これらの効果を得るためにはC量は0.060%超含有することが必要である。一方、0.13%を超えて過剰に含有すると鋼板が硬化し成形性が低下するだけでなく、スポット溶接性も低下する。さらに、マルテンサイトが過剰に生成し、マルテンサイトの周囲の応力場により連続降伏しやすくなるため、降伏比(YR)および焼付き硬化量(BH量)が低くなり、所望の高降伏比(YR)および高焼付き硬化量(BH量)が得られない場合がある。よって、C含有量を0.060%超0.13%以下とする。好ましくは0.060%超0.10%以下である。
 Si:0.01%以上0.7%以下
 Siは主に固溶強化により高強度化に寄与する元素であり、強度上昇に対して延性の低下が比較的少なく、強度のみならず、強度と延性のバランスの向上にも寄与する元素である。この効果を得るためにはSiを0.01%以上含有することが必要である。一方、Si含有量が0.7%を超えると、鋼板表面にSi系酸化物が形成されやすく、化成処理性や塗装密着性、塗装後耐食性が低下する場合がある。よって、Si含有量を0.01%以上0.7%以下とする。強度と延性のバランス向上の観点からは0.2%以上が好ましい。より好ましくは0.2%以上0.5%以下である。
 Mn:1.0%以上3.0%以下
 Mnは固溶強化およびマルテンサイトを生成することで高強度化に寄与する元素であり、この効果を得るためには1.0%以上含有することが必要である。一方、Mn含有量が3.0%を超えると、原料コストの上昇を招くとともに、成形性や溶接性が顕著に低下するようになる。また、マルテンサイトが過剰となり、マルテンサイトの周囲の応力場により連続降伏しやすくなるため、降伏比(YR)や焼付き硬化量(BH量)が低下し、所望の高降伏比(YR)、高焼付き硬化量(BH量)が得られない場合がある。よって、Mn含有量を1.0%以上3.0%以下とする。好ましくは1.0%以上2.5%以下、より好ましくは1.0%以上2.0%以下である。
 P:0.005%以上0.100%以下
 Pは固溶強化により、鋼板の高強度化に有効な元素である。しかしながら、P含有量が0.005%未満ではその効果が現れないだけでなく、製鋼工程において脱燐コストの上昇を招く。一方、P含有量が0.100%を超えると、Pが粒界に偏析し耐二次加工脆性および溶接性が劣化する。よって、P含有量を0.005%以上0.100%以下とする。上記効果をより高いものとする観点からは0.010%以上が好ましい。また、Pの粒界偏析により、高焼付き硬化量(BH量)を得るのに有効とされる粒界偏析C量が低下し、所望の焼付き硬化量(BH量)が得られない場合があるため、0.080%以下とすることが好ましく、0.050%以下とすることがより好ましい。
 S:0.010%以下
 Sは熱間脆性を起こす原因となるほか、鋼中に硫化物系介在物として存在して、鋼板の加工性を低下させる有害な元素である。したがって、Sは極力低減するのが好ましく、本発明では、S含有量の上限を0.010%とする。好ましくは0.008%以下である。下限は特にないが、極低S化は製鋼コストが上昇するため、0.0005%以上とすることが好ましい。
 sol.Al:0.005%以上0.100%以下
 Alは、脱酸剤として含有される元素であるが、固溶強化能を有するため、高強度化に有効に作用する。しかし、Al含有量がsol.Alとして0.005%未満では上記効果が得られない。一方、Al含有量がsol.Alとして0.100%を超えると、原料コストの上昇を招くとともに、鋼板の表面欠陥を誘発する原因ともなる。よって、Al含有量をsol.Alとして0.005%以上0.100%以下とする。
 N:0.0100%以下
 N含有量が0.0100%を超えると、鋼中に過剰な窒化物が生成することに起因して、延性や靭性の低下のほか、鋼板の表面性状の悪化も招く。よって、N含有量を0.0100%以下とする。
 Nb:0.005%以上0.10%以下
 Nbは本発明において重要な元素のひとつである。NbはCやNと炭化物や炭窒化物を形成することで高強度化に寄与し、さらに高降伏比(YR)に寄与する。また、Nbは熱延板組織を微細化する作用を有し、この熱延板微細化により、冷延、焼鈍後のフェライト粒径が微細化されるため、粒界面積の増大に伴う粒界へのC偏析量の増大により、高BH特性を得ることができる。このような効果を発現すべく、本発明ではNb含有量を0.005%以上とする。一方、0.10%を超える過剰なNbの含有はコストの増加を招くとともに、熱間圧延時の負荷を増大させ、また、冷間圧延時の変形抵抗を高くして、安定した実機製造を困難にし、さらに成形性を顕著に低下させる。また、本発明において焼鈍後の冷却工程において、マルテンサイトを形成させるための固溶Cを必要とするが、Nbを過剰に含有させると、鋼中のCをすべてNbCとして固定してしまい、マルテンサイトの形成を妨げることになり、所望の焼付き硬化量(BH量)が得られない場合がある。したがって、Nb含有量を0.005%以上0.10%以下とする。好ましくは0.08%以下、さらに好ましくは0.05%以下である。
 Ti:0.03%以上0.15%以下
 TiはNbと同様、CやNと炭化物や炭窒化物を形成することで高強度化に寄与し、さらに高降伏比(YR)化に寄与する。また、TiはNbと同様に熱延板組織を微細化する作用を有し、冷延、焼鈍後のフェライト粒径が微細化されるため、粒界面積の増大に伴う粒界へのC偏析量の増大により、高焼付き硬化量(BH量)を得ることができる。このような効果を発現すべく、本発明ではTi含有量を0.03%以上とする。一方、0.15%を超える過剰なTiの含有は、原料コストの上昇を招くとともに、冷間圧延時の変形抵抗を高くするため、安定した製造を困難にする。また、過剰なTiの含有は、Nbと同様に、固溶Cを低減するため、焼鈍後の冷却過程におけるマルテンサイトの形成を阻害し、所望の焼付き硬化量(BH量)が得られない場合がある。よって、Ti含有量は0.03%以上0.15%以下とする。上記効果を有効に発現する観点からは0.05%超が好ましい。
 本発明の高強度鋼板は、上記成分組成を満たすことに加えてさらに、C、Nb、Ti、NおよびSが下記の(1)式を満たして含有することが必要である。
 (Nb/93+Ti/48)/(C/12)>0.08・・・(1)
 ここで、Ti=Ti-(48/14)N-(48/32)Sである。ただし、Ti-(48/14)N-(48/32)S≦0の場合は、Ti-(48/14)N-(48/32)S=0とする。また、上記式中、各元素の元素記号はその元素の含有量(質量%)を示す。
 (1)式の左辺で表されるCに対するTi、Nbの原子比が低い場合、マルテンサイトが過剰に生成し、マルテンサイトの周囲の応力場により連続降伏しやすくなるため、降伏比(YR)および焼付き硬化量(BH量)が低くなる。また、熱延巻取り後に比較的冷却されやすいコイル先端部では、NbC、TiCなどの析出が不十分となり、コイル内材質バラツキが増大する場合がある。したがって本発明においては、所望の特性確保およびコイル内の材質均一性確保の観点から、(Nb/93+Ti/48)/(C/12)を適正に制御する必要があり、(Nb/93+Ti/48)/(C/12)を規定する(1)式は、本発明において最も重要な指標である。
 すなわち、Cに対するTi、Nbの原子比である(Nb/93+Ti/48)/(C/12)の値が0.08以下であると、マルテンサイトが増加し、所望の高降伏比(YR)および焼付き硬化量(BH量)が得られない場合があり、さらに熱延巻取り時の析出挙動の変動により、コイル内の材質バラツキが増大する場合がある。したがって、(Nb/93+Ti/48)/(C/12)は0.08超とする。好ましくは0.10以上、より好ましくは0.15以上である。また、(Nb/93+Ti/48)/(C/12)が0.70を超えると、マルテンサイトの生成に必要な固溶CがNbCやTiCとして固定されるため、マルテンサイトの形成を妨げることになり、所望の引張強度(TS)および焼付き硬化量(BH量)が得られない場合がある。したがって、TS≧590MPaおよびBH≧60MPaを安定して確保するためには、(Nb/93+Ti/48)/(C/12)を0.70以下とすることが好ましい。
 以上の必須添加元素で、本発明鋼は目的とする特性が得られるが、上記の必須添加元素に加えて、Vおよび/またはMoおよびCrのうちから選ばれる1種または2種および/またはCuおよびNiのうちから選ばれる1種または2種を添加することができる。
 V:0.10%以下
 VはNb,Tiと同様、微細な炭窒化物を形成することで、強度上昇に寄与することができるため、必要に応じて含有させることができる。このような効果を発現させるためには、0.01%以上含有させることが好ましい。一方、V含有量が0.10%を超えると、上記効果が飽和するだけでなく、原料コストの上昇を招く。したがって、Vを添加する場合は、その含有量を0.10%以下とする。
 Mo、Crのうちから選ばれる1種または2種:合計で0.50%以下
 MoおよびCrは焼入れ性を向上させ、マルテンサイトを生成することで高強度化に寄与する元素であり、必要に応じて含有することができる。このような効果は、上記成分の合計含有量が0.10%以上で顕著に発現するので、0.10%以上含有させることが好ましい。一方、MoおよびCrの合計含有量が0.50%を超えると、上記効果が飽和するだけでなく、原料コストの上昇を招く。したがって、これらの元素を含有する場合は、これらの含有量を合計で0.50%以下とする。
 Cu:0.30%以下およびNi:0.30%以下のうちから選ばれる1種または2種
 Cuは熱間圧延時に割れを引き起こして、表面疵の発生原因となる有害元素である。しかし、本発明の冷延鋼板では、Cuによる鋼板特性への悪影響は小さいので、0.30%以下の含有量であれば許容できる。これにより、スクラップ等を使用し、リサイクル原料の活用が可能となるので原料コストの低減を図ることができる。Niは、Cuと同様、鋼板特性に及ぼす影響は小さいが、Cu添加による表面疵の発生を防止する効果がある。上記効果は、Cu含有量の1/2以上含有することで発現させることができる。しかし、Niの含有量が過剰になると、スケールの不均一生成に起因した別の表面欠陥の発生を助長するので、Niを含有する場合、その含有量を0.30%以下とする。
 本発明の高強度溶融亜鉛めっき鋼板は、上記成分組成に加えてさらに、SnおよびSbのうちから選ばれる1種または2種および/またはTaを添加することができる。
 Sn:0.2%以下およびSb:0.2%以下のうちから選ばれる1種または2種
 SnやSbは鋼板表面の窒化、酸化、あるいは酸化により生じる鋼板表面の数十ミクロン領域の脱炭を抑制する観点から含有することができる。このような窒化や酸化を抑制することで鋼板表面においてマルテンサイトの生成量が減少するのを防止し、疲労特性や表面品質が改善される。窒化や酸化を抑制する観点から、SnあるいはSbを含有する場合は0.005%以上とすることが好ましく、0.2%を超えると靭性の劣化を招くので、0.2%以下とすることが好ましい。
 Ta:0.005%以上0.1%以下
 TaはNbやTiと同様に、CやNと炭化物や炭窒化物を形成することで高強度化に寄与し、さらに高降伏比(YR)化に寄与し、さらに、TaはNbやTiと同様に熱延板組織を微細化する作用を有し、冷延、焼鈍後のフェライト粒径が微細化されるため、粒界面積の増大に伴う粒界へのC偏析量の増大により、高焼付き硬化量(BH量)を得ることができる。このような観点から、Taを0.005%以上含有することができる。一方、0.1%を超える過剰のTaの含有は、原料コストの増加を招くだけでなく、NbやTiと同様に、焼鈍後の冷却過程におけるマルテンサイトの形成を妨げる可能性があり、さらに熱延板中に析出したTaCは、冷間圧延時の変形抵抗を高くし、安定した実機製造を困難にする場合があるため、Taを含有する場合は、0.1%以下とすることが好ましい。
 上記成分以外の残部は、Feおよび不可避的不純物からなる。本発明の効果を害しない範囲であれば、その他の成分の含有を拒むものではない。ただし、酸素(O)は非金属介在物を形成して鋼板品質に悪影響を及ぼすため、その含有量は0.003%以下に低減するのが好ましい。
 [組織]
 次に、本発明の耐衝突性能およびコイル内材質均一性に優れた高強度溶融亜鉛めっき鋼板の組織について説明する。
 本発明の高強度溶融亜鉛めっき鋼板は、高降伏比(YR)を得るために、Ti、Nbにより析出強化された平均粒径が15μm以下でかつ面積率が80%以上の母相フェライトに対して、高焼付き硬化量(BH量)を付与するために、面積率で1%以上15%以下のマルテンサイトを有することが必要である。
 フェライト:平均粒径が15μm以下でかつ面積率が80%以上
 フェライトの平均粒径は高焼付き硬化量(BH量)を得るために必要である。前記フェライトの平均粒径が15μm超えでは、フェライトの粒界面積が減少するため、粒界へのC偏析量が減少し、高焼付き硬化量(BH量)を得ることが困難な場合がある。このため、フェライトの平均粒径は15μm以下とする。好ましくは12μm以下である。また、NbやTi等で析出強化されたフェライトの面積率は高降伏比(YR)を得るために必要である。前記フェライトの面積率が80%未満では、マルテンサイトなどの硬質な第2相が多く存在することとなるため、硬質第2相の周囲の応力場により連続降伏しやすくなり、降伏比(YR)や焼付き硬化量(BH量)が低下し、良好な耐衝突特性を確保することが困難となる場合がある。このため、フェライトの面積率は80%以上とする。好ましくは85%以上、より好ましくは88%以上である。
 マルテンサイト:面積率で1%以上15%以下
 マルテンサイトは、本発明の鋼板の強度を確保するのに必要な硬質相であり、さらに高焼付き硬化量(BH量)を得るために必要な硬質相である。マルテンサイトの面積率が1%未満では、鋼板強度が低下し、TS:590MPa以上を確保することが困難となるだけでなく、BH:60MPa以上を確保することが困難となる。一方、マルテンサイトの面積率が15%を超えると、マルテンサイト周囲の転位の導入量や弾性的な歪量が多くなり、塑性変形時にこのようなマルテンサイトの周囲から容易に塑性変形が開始し連続降伏しやすくなるため、降伏比(YR)や焼付き硬化量(BH量)が低くなり、良好な耐衝突特性を確保することが困難となる。したがって、マルテンサイトの面積率は1%以上15%以下とする。好ましくは12%以下である。
 本発明の鋼板においては、フェライトとマルテンサイト以外の残部組織として、パーライト、ベイナイト、残留オーステナイトおよび炭化物等を含む場合があるが、これらは合計面積率で5%以下であれば許容できる。
 なお、上記面積率は鋼板のL断面(圧延方向に平行な垂直断面)を研磨後、ナイタールで腐食し、SEM(走査型電子顕微鏡)で2000倍の倍率にて5視野観察し、撮影した組織写真を画像解析して求めることができる。組織写真でフェライトはやや黒いコントラストの領域であり、パーライトは炭化物がラメラー状に生成している領域、ベイナイトは炭化物が点列状に生成している領域とし、マルテンサイトおよび残留オーステナイト(残留γ)は白いコントラストの付いている粒子とする。また、フェライトの平均粒径はJIS G0522の規定に準拠し、切断法にて測定する。
 [特性]
 以上からなる本発明の高強度溶融亜鉛めっき鋼板は典型的には以下の特性を有する。
(1)TS≧590MPa
 近年、自動車車体の軽量化および車両衝突時の乗員安全性確保が強く求められており、これらの要求に答えるためには、自動車車体の素材となる鋼板を高強度化することが必要となる。本発明では鋼板強度(TS)が590MPa以上となり、上記要求を満たすことができる。
(2)降伏比(YR)≧0.70、焼付け硬化量(BH)≧60MPa
 耐衝突特性向上の観点から、鋼板の降伏比(YR)や焼付き硬化量(BH量)を高めることが必要となる。本発明においては、降伏比(YR)≧0.70、焼付き硬化量(BH)≧60MPaとなり、所望の耐衝突特性を得ることができる。なお、降伏比(YR)は引張強度(TS)に対する降伏点(YP)の比を示す値であり、YR=YP/TSで表される。
(3)ΔTS≦30MPa、ΔYP≦30MPa、ΔEl≦3.0%
 コイル内材質均一性を評価するに当たり、製造したコイル内の長手方向の先端部(T部:コイル先端から10m位置)、中央部(M部)および尾端部(B部:コイル尾端から10m位置)にて、それぞれ幅方向中央位置、両エッジ1/4幅位置の9ヶ所から、圧延方向に対して90°方向(C方向)を引張方向とするJIS5号引張試験片(JIS Z 2201)を採取し、JIS Z 2241の規定に準拠した引張試験を行い、引張強度(TS)、降伏強度(YP)および全伸び(El)を測定し、それぞれの最大値と最小値の差、すなわち、ΔTS、ΔYP、ΔElを評価する。本発明においては、ΔTS≦30MPa、ΔYP≦30MPa、ΔEl≦3.0%となり、良好なコイル内材質均一性が得られる。
 [製造方法]
 次に本発明における高強度溶融亜鉛めっき鋼板の製造方法について説明する。
 本発明の高強度溶融亜鉛めっき鋼板は、前述の成分組成の範囲に調整された鋼を溶製しスラブとし、次いで、熱間圧延し、冷間圧延し、焼鈍して製造される。熱間圧延では、仕上げ圧延における最終パスの圧下率を10%以上、前記最終パスの前パスの圧下率を15%以上とし、焼鈍工程では、700~800℃の温度範囲を3℃/s未満の平均加熱速度で加熱し、800~900℃の焼鈍温度で焼鈍し、前記焼鈍温度から3~15℃/sの平均冷却速度で冷却し、亜鉛めっき浴に浸漬して溶融亜鉛めっきを施し、前記溶融亜鉛めっき後、5~100℃/sの平均冷却速度で冷却する、あるいは前記溶融亜鉛めっき後、さらに亜鉛めっきの合金化処理を施し、前記合金化処理後、5~100℃/sの平均冷却速度で冷却する焼鈍を行う。この場合に、熱間圧延の仕上圧延終了後、3秒以内に冷却を開始し、平均冷却速度40℃/s以上で720℃以下まで冷却し、500~700℃の温度で巻取りした後、圧延率40%以上で冷間圧延することが好ましい。
  (鋼素材製造)
 本発明の製造方法で使用する鋼スラブは成分のマクロ偏析を防止すべく連続鋳造法で製造することが望ましいが、造塊法や薄スラブ鋳造法で製造してもよい。また、鋼スラブを製造した後、一旦室温まで冷却し、その後再度加熱する従来法に加え、冷却せず温片のままで加熱炉に装入し熱間圧延する直送圧延、あるいはわずかの保熱をおこなった後に直ちに熱間圧延する直送圧延・直接圧延、高温状態のまま加熱炉に装入して再加熱の一部を省略する方法(温片装入)などの省エネルギープロセスも問題なく適用することができる。
 スラブ加熱温度は1000℃未満では圧延荷重が増大し熱間圧延時におけるトラブル発生の危険性が増大するので、1000℃以上にすることが好ましい。なお、酸化重量の増加に伴うスケールロスの増大などから、スラブ加熱温度の上限は1300℃とすることが好ましい。
  (熱間圧延)
 上記により得られた鋼スラブに対して粗圧延および仕上げ圧延を含む熱間圧延を施す。まず、鋼スラブは粗圧延によりシートバーとされる。なお、粗圧延の条件は特に規定する必要はなく、常法に従って行うことができる。また、スラブ加熱温度を低くし、かつ熱間圧延時のトラブルを防止するといった観点からは、シートバーを加熱する所謂シートバーヒーターを活用することは有効な方法である。
 次いで、シートバーを仕上げ圧延して熱延板とする。本発明においては、仕上げ圧延の最終パスおよび最終パスの前パスの圧下率を適正範囲に制御する必要があり、最終パスの圧下率を10%以上、最終パスの前パスの圧下率を15%以上とする。
 仕上げ圧延の最終パスの圧下率を10%以上とすることにより、旧オーステナイト粒内にせん断帯を多数導入し、フェライト変態の核生成サイトを増大して熱延板の微細化を図るとともに、比較的冷却されやすい熱延コイルの先尾端部におけるNbCやTiCの析出を促進する。この熱延板微細化の作用により、冷延、焼鈍後のフェライト平均粒径が微細化されるため、粒界面積の増大に伴う粒界へのC偏析量の増大による高BH化に有効である。また、NbCやTiCの析出促進は、コイル内の材質均一性の向上に有効である。最終パス圧下率が10%未満ではフェライト粒の微細化効果やNbC、TiCの析出促進効果が不十分となり、上記の高BH効果やコイル内材質均一性効果が得られない場合がある。最終パスの圧下率は、好ましくは13%以上である。
 高BH化やコイル内の材質均一化の効果をより高めるためには、上記最終パスの圧下率制御に加えて、最終パスの前パスの圧下率を適正範囲に制御する必要がある。すなわち、この最終パスの前パスの圧下率を15%以上とすることによって、歪蓄積効果がより高まって旧オーステナイト粒内にせん断帯が多数導入され、フェライト変態の核生成サイトがさらに増大して熱延板組織がより微細化する。さらに、NbCやTiCの析出促進にも効果的であり、高BH化やコイル内の材質均一化の効果がさらに向上する。最終パスの前パスの圧下率が15%未満では、フェライト粒の微細化効果やNbC、TiCの析出促進効果が不十分となり、上記の高BH効果やコイル内材質均一性効果が得られない場合がある。最終パスの前パスの圧下率は、好ましくは18%以上である。
 なお、上記最終パスおよび最終パスの前パスの2パスの圧下率が大きくなると圧延負荷が上昇するため、これらの圧下率はいずれも40%未満とするのが好ましい。
 最終パスおよび最終パスの前パスにおける圧延温度については、特に制限する必要はないが、最終パスの圧延温度は830℃以上が好ましく、860℃以上がより好ましい。また、最終パスの前パスの圧延温度は1000℃以下が好ましく、960℃以下がより好ましい。
 最終パスの圧延温度が830℃未満では、未再結晶オーステナイトからフェライトへの変態が多くなり、冷延焼鈍後の鋼板組織が熱延板組織の影響を受けて圧延方向に伸長した不均一な組織となり、加工性が低下する場合がある。
 また、最終パスの前パスの圧延温度が1000℃を超えると、回復によって歪の蓄積効果が不十分となるため、熱延板組織が微細化しにくくなるとともに、NbCやTiCの析出促進効果が低下するため、高BH化やコイル内の材質均一化の効果が得られなくなる場合がある。
 上記熱間圧延を終了した熱延板は、結晶粒微細化によるBH向上およびNbCやTiCの析出促進によるコイル内の材質均一化を図る観点から、仕上げ圧延終了後、3秒以内に冷却を開始し、平均冷却速度40℃/s以上で720℃以下まで冷却し、500~700℃の温度で巻き取ることが好ましい。
 冷却を開始するまでの時間が3秒を超えたり、平均冷却速度が40℃/s未満、あるいは冷却停止温度が720℃より高い場合は、熱延板組織が粗大となり、高BH化効果が得られない場合がある。
 また、巻取り温度が700℃を超えると、熱延板組織が粗大化し、冷延焼鈍後の強度の低下が懸念されるとともに、高BH化を阻害する恐れがある。一方、巻き取り温度が500℃未満では、NbCやTiCの析出が困難となり固溶Cが増加するため、マルテンサイトの過剰な増加により、高BH化に不利になるとともに、NbCやTiCの析出挙動の変動が大きくなるためコイル内の材質均一化にも不利となる。
  (冷間圧延)
 次いで、適宜酸洗を行い、冷間圧延を施し冷延板とする。
 酸洗は必須ではなく、適宜行うことができる。また、酸洗を行う場合は、通常の条件にて行うことができる。
 冷間圧延条件は所望の寸法形状の冷延板とすることができればよく、特に限定されないが、冷間圧延時の圧下率は40%以上とすることが好ましい。一方、圧下率が90%を超えると圧延時のロールへの負荷も高まり、通板トラブルが発生する恐れがあるため、90%以下とすることが好ましい。
  (焼鈍)
 上記冷間圧延した鋼板は、その後、焼鈍して、所望とする強度と耐衝突特性を付与する。ただし、焼鈍工程では上述したように、700~800℃の温度範囲を3℃/s未満の平均加熱速度で加熱し、800~900℃の焼鈍温度で焼鈍し、前記焼鈍温度から3~15℃/sの平均冷却速度で冷却し、亜鉛めっき浴に浸漬して溶融亜鉛めっきを施し、前記溶融亜鉛めっき後、5~100℃/sの平均冷却速度で冷却する、あるいは前記溶融亜鉛めっき後、さらに亜鉛めっきの合金化処理を施し、前記合金化処理後、5~100℃/sの平均冷却速度で冷却することが必要である。
 700~800℃の温度範囲の平均加熱速度:3℃/s未満
 本発明においては、熱延鋼板の段階でTiCやNbCを析出させているため、冷間圧延工程を経て得られた冷延鋼板の再結晶温度は比較的高温となり、鋼中に加工組織が残存しやすくなる。この場合、鋼板の延性は大きく低下し、プレス成形性を劣化させるだけでなく、焼付き硬化量(BH量)を低下させ、さらに材質バラツキを増大させる。このため、冷延鋼板を焼鈍温度まで加熱するに際しては、再結晶を促進させて材質均一性を確保する観点から、700~800℃の温度範囲を平均加熱速度3℃/s未満の低速で加熱する必要がある。なお、生産効率の観点から、上記平均加熱速度は0.5℃/s以上とすることが好ましい。
 焼鈍温度:800~900℃
 本発明の鋼板組織を、フェライトと所望の面積率のマルテンサイトを含む複合組織とするためには、焼鈍温度はフェライトとオーステナイトの2相域温度とする必要があり、焼鈍温度を800~900℃の温度範囲とする。焼鈍温度が800℃未満では、焼鈍後の冷却後に所定のマルテンサイト量が得られず、所望の焼付き硬化量(BH量)が得られない。また、焼鈍中に再結晶が十分に完了しないため鋼中に加工組織が残存しやすく、鋼板の延性低下に伴うプレス成形性の劣化が顕著となり、さらに焼付き硬化量(BH量)の低下や材質バラツキの増大を招く。一方、焼鈍温度が900℃を超えると、フェライト中の固溶C量が低減し、その後の冷却条件によっては、所望の焼付き硬化量(BH量)が得られない場合がある。また、焼鈍温度が900℃を超えると、オーステナイト単相域となるため、その後の冷却速度によっては、第2相(マルテンサイト、ベイナイト、パーライト)が必要以上に増加し、第2相、特にマルテンサイト周囲の応力場により連続降伏しやすくなるため、降伏比(YR)や焼付き硬化量(BH量)が低くなり、良好な耐衝突性能を確保することが困難となる場合がある。さらに、生産性の低下やエネルギーコストの増加を招くという問題もある。よって、焼鈍温度は800~900℃の範囲とする。好ましくは800~870℃の範囲である。
 なお、焼鈍における均熱保持時間は、再結晶の進行および一部のオーステナイト変態やオーステナイトへのC等の元素の濃化を進行させる観点から、15秒以上とするのが好ましい。一方、均熱保持時間が300秒を超えると、結晶粒径が粗大化し、強度の低下や鋼板表面性状の劣化、焼付き硬化量(BH量)の低下等、鋼板の諸特性に悪影響を及ぼす恐れがある。また、連続溶融亜鉛めっきラインのライン速度を極端に遅くすることになり、生産性の低下にもつながる。よって、焼鈍での均熱保持時間は15~300秒の範囲が好ましく、15~200秒の範囲がより好ましい。
 焼鈍温度から亜鉛めっき浴までの平均冷却速度(1次冷却速度):3~15℃/s
 上記焼鈍温度で均熱後、通常420~500℃に保持されている亜鉛めっき浴の温度まで平均冷却速度3~15℃/sで冷却する。平均冷却速度が3℃/s未満の場合、550~650℃の温度域でパーライト生成ノーズを通過するため、第2相中にパーライトおよびベイナイトが多量に生成し所定量のマルテンサイトが得られないため、延性の低下が顕著となるだけでなく、所望の強度や焼付き硬化量(BH量)が得られない場合がある。一方、平均冷却速度が15℃/s超えの場合、焼鈍温度からの冷却時に、γ→α変態によるγへのMn、C等の元素濃化が不十分となり、合金化処理を施した場合に、パーライト等が生成しやすくなる。このため、所定量のマルテンサイトが得られず、延性の低下が顕著となるだけでなく、所望の強度や焼付き硬化量(BH量)が得られない場合がある。したがって、焼鈍温度から亜鉛めっき浴までの平均冷却速度を3~15℃/sとする。好ましくは5~15℃/sである。
 上記1次冷却速度で冷却後、亜鉛めっき浴に浸漬して溶融亜鉛めっき処理を施す。溶融亜鉛めっき処理は常法で行えばよい。また、亜鉛めっき浴に浸漬して溶融亜鉛めっき処理を施した後、必要に応じて亜鉛めっきの合金化処理を施すこともできる。この場合、亜鉛めっきの合金化処理は、例えば、溶融亜鉛めっき処理後、500~700℃の温度域に加熱し、数秒~数十秒保持する。本発明の鋼板では、上記のように焼鈍温度から亜鉛めっき浴までの冷却速度を制御しているため、このような合金化処理を施しても、パーライト等が多量に生成せず、所定量のマルテンサイトが得られるため、延性の低下や焼付き硬化量(BH量)の低下を招くことなく、所望の強度が確保できる。亜鉛めっき条件としては、めっき付着量は片面あたり20~70g/mであり、合金化する場合、めっき層中のFe%は6~15%とすることが好ましい。
 溶融亜鉛めっき処理後、あるいは亜鉛めっきの合金化処理後の平均冷却速度(2次冷却速度):5~100℃/s
 溶融亜鉛めっき処理後、あるいは亜鉛めっきの合金化処理を施した後の2次冷却速度が、150℃以下の温度まで平均冷却速度で5℃/s未満の緩冷却では400~500℃付近でパーライトあるいはベイナイトが生成し、所定量のマルテンサイトが得られず、所望の強度や焼付き硬化量(BH量)が得られない場合がある。一方、2次冷却速度が平均冷却速度で100℃/sを超えるとマルテンサイトが硬くなりすぎて延性が低下する。したがって、安定して良好なマルテンサイトを得る観点から、2次冷却速度は平均冷却速度で5~100℃/sとする。好ましくは10~100℃/sである。
 さらに、本発明においては、前記冷却後に形状矯正、表面粗度調整の目的で調質圧延またはレベラー加工を施すことも可能である。なお、調質圧延を行う場合、伸長率で0.3~1.5%程度とすることが好ましい。
 以下、本発明の実施例について説明する。
 [実施例1]
 表1に示す成分組成からなる溶鋼を転炉で溶製し、連続鋳造法で230mm厚のスラブとした。これら鋼スラブを1220℃に加熱後、熱間圧延し、コイルに巻き取って板厚:3.5mmの熱延板とした。なお、上記熱間圧延の仕上げ圧延における最終パスと最終パスの前パスの圧延温度および圧下率、仕上げ圧延終了後の冷却開始から720℃以下の温度域までの平均冷却速度、巻取り温度は表2に示す通りである。また、仕上げ圧延終了から冷却を開始するまでの時間は3秒以内とした。
 次いで、上記により得られた熱延板に対して、酸洗した後、表2に示す条件で冷間圧延を行い板厚:1.4mmの冷延鋼板とし、次いで、表2に示す条件にて連続焼鈍し、伸長率:0.7%の調質圧延を施し、溶融亜鉛めっき鋼板(製品)とした。ここで、溶融亜鉛めっき処理は付着量が片面あたり50g/m(両面めっき)となるように調整し、合金化処理はめっき層中のFe%が9~12%となるように調整した。
 以上により得られた溶融亜鉛めっき鋼板に対して、コイル長手方向の中央部(M部)の1/4幅位置からサンプルを採取し、下記の方法で組織観察、圧延方向に対して90°方向(C方向)を引張方向とする引張試験および焼付き硬化試験を行い、鋼板組織の特定、フェライト相およびマルテンサイト相の面積率、フェライトの平均粒径、降伏強度(YP)、引張強度(TS)、降伏比(YR=YP/TS)、全伸び(El)、焼付き硬化量(BH量)を測定した。また、製造したコイル内の長手方向の先端部(T部:コイル先端から10m位置)、中央部(M部)および尾端部(B部:コイル尾端から10m位置)にて、それぞれ幅方向中央位置、両エッジ1/4幅位置の9ヶ所から、圧延方向に対して90°方向(C方向)を引張方向とする引張試験を行い、降伏強度(YP)、引張強度(TS)および全伸び(El)を測定し、それぞれの最大値と最小値の差、すなわち、ΔTS、ΔYP、ΔElを評価した。以下、具体的に説明する。
 (i)組織観察
 得られた溶融亜鉛めっき鋼板に対して、コイル長手方向の中央部(M部)の1/4幅位置から組織観察用試験片を採取し、L断面(圧延方向に平行な垂直断面)を機械的に研磨し、ナイタールで腐食した後、走査電子顕微鏡(SEM)で倍率2000倍で撮影した組織写真(SEM写真)から、鋼板組織の特定とフェライトおよびマルテンサイトの面積率を測定した。なお、上記組織写真からの鋼板組織の特定は、フェライトはやや黒いコントラストの領域、パーライトは炭化物がラメラー状に生成している領域、ベイナイトは炭化物が点列状に生成している領域とし、マルテンサイトおよび残留オーステナイト(残留γ)は白いコントラストのついている粒子とした。さらに、上記試験片に、250℃で4hrの焼戻し処理を施した後、同様にして組織写真を得て、炭化物がラメラー状に生成している領域を熱処理前にパーライト、炭化物が点列状に生成している領域を熱処理前にベイナイトもしくはマルテンサイトであった領域として再度その面積率を求め、白いコントラストのまま残存している微粒子を残留γとして測定し、焼戻し処理前の白いコントラストがついている粒子(マルテンサイトおよび残留γ)の面積率との差から、マルテンサイトの面積率を求めた。なお、それぞれの相の面積率は、透明のOHPシートに各相ごとに層別して色付けし、画像を取り込み後、2値化を行い、画像解析ソフト(マイクロソフト社製Digital Image Pro Plus ver.4.0)にて求めた。また、フェライトの平均粒径はJIS G0522の規定に準拠し、切断法にて測定した。
 (ii)引張試験
 得られた溶融亜鉛めっき鋼板に対して、コイル長手方向の中央部(M部)の1/4幅位置から、圧延方向に対して90°方向(C方向)を引張方向とするJIS5号引張試験片(JIS Z 2201)を採取し、JIS Z 2241の規定に準拠した引張試験を行い、降伏強度(YP)、引張強度(TS)、降伏比(YR)、全伸び(El)を測定した。また、焼付き硬化量(BH量)は、2%の引張予歪を付与した後、170℃、20分の焼付け相当処理を行い、熱処理後の上降伏点から、予歪時の降伏応力を差し引いた量で評価した。
 さらに、コイル長手方向の先端部(T部:コイル先端から10m位置)、中央部(M部)および尾端部(B部:コイル尾端から10m位置)にて、それぞれ幅方向中央位置、両エッジ1/4幅位置の9ヶ所から、圧延方向に対して90°方向(C方向)を引張方向とする引張試験を行い、降伏強度(YP)、引張強度(TS)および全伸び(El)を測定し、それぞれの最大値と最小値の差、すなわち、ΔTS、ΔYP、ΔElを求めた。
 得られた結果を表3に示す。
 表3に示すように、No.5~19,21~24の鋼板は、鋼成分組成および製造方法が本発明に適合した本発明例であり、引張強度(TS)が590MPa以上、降伏比(YR)が0.70以上、焼付き硬化量(BH量)が60MPa以上を満足した溶融亜鉛めっき鋼板となっている。また、ΔYP、ΔTSが30MPa以下、ΔElが3.0%以下となっており、コイル長手方向の材質均一性に優れた溶融亜鉛めっき鋼板となっている。
 これに対して、比較例のNo.1の鋼板はC、Nb、Ti含有量および(Nb/93+Ti/48)/(C/12)で表される、Cに対するTi、Nbの原子比が本発明範囲を下回るため、マルテンサイトが過剰に生成し、マルテンサイトの周囲の応力場により連続降伏しやすくなるため、降伏比(YR)および焼付き硬化量(BH量)が低くなり、YR≧0.70およびBH≧60MPaを未達成となっている。さらにCに対するTi、Nbの原子比が低いため、熱延巻取り後に比較的冷却されやすいコイル先端部では、NbC、TiCなどの析出が不十分となり、コイル内材質バラツキが増大し、ΔYP≦30MPa、ΔTS≦30MPa、ΔEl≦3.0%を未達成となっている。
 また、比較例のNo.2の鋼板はMnおよびP含有量が本発明の範囲を下回るため、焼鈍後の冷却時あるいは合金化処理時にパーライトが多量に生成し、この結果、所望のマルテンサイト量が得られず、TS≧590MPa、BH≧60MPaを未達成となっている。比較例のNo.3の鋼板はNb、Ti含有量が本発明範囲を超えており、鋼中のCをNbCやTiCとして固定しマルテンサイトの形成を妨げるため、所望のマルテンサイト量が得られず、TS≧590MPa、BH≧60MPaを未達成となっている。比較例のNo.4の鋼板はMn含有量が本発明範囲を超えるため、マルテンサイトが過剰に生成し、YR≧0.70、BH≧60MPaを未達成となっている。また、No.4の鋼板はP含有量も本発明範囲を超えており、耐二次加工脆性の劣化が懸念され、さらにPの粒界偏析により、高焼付き硬化量(BH量)に有効とされる粒界偏析C量が低下するため、BH≧60MPaを未達成となっている。
 比較例のNo.20の鋼板はC量が本発明範囲を超え、Cに対するTi、Nbの原子比が本発明範囲を下回るため、マルテンサイトが過剰に生成し、降伏比(YR)および焼付き硬化量(BH量)が低くなり、YR≧0.70およびBH≧60MPaを未達成となっている。また、Cに対するTi、Nbの原子比が低いため、熱延巻取り後に比較的冷却されやすいコイル先端部では、NbC、TiCなどの析出が不十分となり、コイル内材質バラツキが増大し、ΔYP≦30MPa、ΔEl≦3.0%を未達成となっている。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
 [実施例2]
 表1に示す鋼GおよびPの成分組成を有する溶鋼を転炉で溶製し、連続鋳造法で230mm厚のスラブとした。これら鋼スラブを1220℃に加熱後、熱間圧延し、コイルに巻き取って板厚:3.5mmの熱延板とした。なお、上記熱間圧延の仕上げ圧延における最終パスと最終パスの前パスの圧延温度および圧下率、仕上げ圧延終了後の冷却開始から720℃以下の温度域までの平均冷却速度、巻取り温度は表4に示す通りである。また、仕上げ圧延終了から冷却を開始するまでの時間は3秒以内とした。
 次いで、上記により得られた熱延板に対して、酸洗した後、表4に示す条件で冷間圧延を行い板厚:1.4mmの冷延鋼板とし、次いで、表4に示す条件にて連続焼鈍し、伸長率:0.7%の調質圧延を施し、溶融亜鉛めっき鋼板(製品)とした。ここで、溶融亜鉛めっき処理は付着量が片面あたり50g/m(両面めっき)となるように調整し、合金化処理はめっき層中のFe%が9~12%となるように調整した。
 得られた溶融亜鉛めっき鋼板に対して、実施例1と同様に、フェライト相およびマルテンサイト相の面積率、フェライトの平均粒径、降伏強度(YP)、引張強度(TS)、降伏比(YR=YP/TS)、全伸び(El)、焼付き硬化量(BH量)を測定し、さらに、コイル長手および幅方向のTS、YP、Elの変動量、ΔTS、ΔYP、ΔElを評価した。
 上記測定の結果を表5に示す。
 表5から、本発明の製造条件を満たすNo.25~31、33、34、37~40の本発明例の鋼板は、鋼成分組成および製造方法が本発明に適合しており、引張強度(TS)が590MPa以上、降伏比(YR)が0.70以上、焼付き硬化量(BH量)が60MPa以上を満足した溶融亜鉛めっき鋼板となっている。また、ΔYP、ΔTSが30MPa以下、ΔElが3.0%以下となっており、コイル長手方向の材質均一性に優れた溶融亜鉛めっき鋼板となっている。
 上記本発明例のなかでも、熱延板組織の微細化により高BH値化を図る目的で仕上げ圧延終了後の平均冷却速度を40℃/s以上としたNo.25、27および28の鋼板は、仕上げ圧延終了後の平均冷却速度を40℃/s未満であるNo.29よりも高い焼付き硬化量(BH量)が得られている。また、熱延板段階でのNbCやTiCの析出促進効果によるコイル内材質均一化を高める目的で、仕上げ圧延の最終パスおよび最終パスの前パスの圧下率を、それぞれ13%以上、15%以上としたNo.25、27~29、31、33および34の鋼板は、最終パスおよび最終パスの前パスの圧下率がそれぞれ13%未満、15%未満であるNo.26および30よりもΔYP,ΔTSおよびΔElが小さく、コイル内の材質均一性に優れている。
 これに対して、比較例のNo.32の鋼板は、仕上げ圧延の最終パスおよび最終パスの前パスの圧下率および焼鈍温度から亜鉛めっき浴までの1次冷却速度が本発明の範囲を下回っているため、フェライト粒径が本発明範囲を超えて粗大となり、所望の焼付き硬化量(BH量)が得られず、さらにマルテンサイト分率が本発明範囲を超えたため、所望の降伏比(YR)≧0.70が得られない。さらに、熱延板段階でのNbCやTiCの析出促進効果が得られず、所望のΔYP≦30MPa,ΔTS≦30MPaおよびΔEl≦3.0が得られない。
 また、比較例のNo.35の鋼板は焼鈍温度が本発明の範囲を下回っているため、所望のマルテンサイト量が得られず、引張強度(TS)が590MPa未満であり、焼付き硬化量(BH量)も60MPa未満である。比較例のNo.36の鋼板は焼鈍温度が本発明の範囲を超えて、オーステナイト単相域での焼鈍となったため、フェライト中の固溶C量が低減し、かつオーステナイトの粒成長に伴い冷却後のフェライト粒径が本発明範囲を超えて粗大となったため、所望の焼付き硬化量(BH量)が得られない。また、パーライトやベイナイトが過剰に生成するため、延性の低下が顕著となる。
 さらに、比較例のNo.41の鋼板は、焼鈍加熱時の700~800℃における平均昇温速度が本発明の範囲を超えているため、フェライトの再結晶が不十分となり、ΔYPが30MPa超え、ΔElが3.0%超えとなっている。
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
 
本発明の高強度鋼板は、自動車用部材に限定されるものではなく、高強度でかつ耐衝突性能が要求される他の用途においても好適に用いることができる。したがって、家電部品や鋼管等の素材としても好適である。

Claims (10)

  1.  質量%でC:0.060%超0.13%以下、Si:0.01%以上0.7%以下、Mn:1.0%以上3.0%以下、P:0.005%以上0.100%以下、S:0.010%以下、sol.Al:0.005%以上0.100%以下、N:0.0100%以下、Nb:0.005%以上0.10%以下、Ti:0.03%以上0.15%以下を含有し、かつ下記式(1)の関係を満足し、残部が鉄および不可避的不純物からなり、平均結晶粒径が15μm以下でかつ面積率が80%以上のフェライトと面積率が1%以上15%以下のマルテンサイトを含む組織を有することを特徴とする耐衝突性能およびコイル内の材質均一性に優れた高強度溶融亜鉛めっき鋼板。
     (Nb/93+Ti/48)/(C/12)>0.08・・・(1)
     ここで、Ti=Ti-(48/14)N-(48/32)Sで表され、C,Nb,Ti,N,Sは、それぞれ鋼中の各元素の含有量(質量%)を示す。
  2.  さらに、質量%で、V:0.10%以下含有することを特徴とする、請求項1に記載の耐衝突性能およびコイル内の材質均一性に優れた高強度溶融亜鉛めっき鋼板。
  3.  さらに、質量%で、Mo、Crの1種または2種を合計で0.50%以下含有することを特徴とする、請求項1または請求項2に記載の耐衝突性能およびコイル内の材質均一性に優れた高強度溶融亜鉛めっき鋼板。
  4.  さらに、質量%で、Cu:0.30%以下、Ni:0.30%以下の1種または2種を含有することを特徴とする、請求項1から請求項3のいずれか1項に記載の耐衝突性能およびコイル内の材質均一性に優れた高強度溶融亜鉛めっき鋼板。
  5.  さらに、質量%で、Sn:0.2%以下、Sb:0.2%以下のうちから選ばれる1種または2種を含有することを特徴とする、請求項1から請求項4のいずれか1項に記載の耐衝突性能およびコイル内の材質均一性に優れた高強度溶融亜鉛めっき鋼板。
  6.  さらに、質量%で、Ta:0.005%以上0.1%以下を含有することを特徴とする、請求項1から請求項5のいずれか1項に記載の耐衝突性能およびコイル内の材質均一性に優れた高強度溶融亜鉛めっき鋼板。
  7.  引張強度(TS)が590MPa以上、降伏比(YR)が0.70以上、焼付き硬化量(BH量)が60MPa以上であることを特徴とする、請求項1から請求項6のいずれか1項に記載の耐衝突性能およびコイル内の材質均一性に優れた高強度溶融亜鉛めっき鋼板。
  8.  請求項1から請求項6のいずれかの成分組成を有する鋼素材を熱間圧延し、冷間圧延し、焼鈍して高強度鋼板を製造するに際し、熱間圧延では、仕上圧延における最終パスの圧下率を10%以上、前記最終パスの前パスの圧下率を15%以上とし、焼鈍工程では、700~800℃の温度範囲を3℃/s未満の平均加熱速度で加熱し、800~900℃の焼鈍温度で焼鈍し、前記焼鈍温度から3~15℃/sの平均冷却速度で冷却し、亜鉛めっき浴に浸漬して溶融亜鉛めっきを施し、前記溶融亜鉛めっき後、5~100℃/sの平均冷却速度で冷却する、あるいは前記溶融亜鉛めっき後、さらに亜鉛めっきの合金化処理を施し、前記合金化処理後、5~100℃/sの平均冷却速度で冷却することを特徴とする、耐衝突性能およびコイル内の材質均一性に優れた高強度溶融亜鉛めっき鋼板の製造方法。
  9.  前記熱間圧延の仕上圧延終了後、3秒以内に冷却を開始し、平均冷却速度40℃/s以上で720℃以下まで冷却し、500~700℃の温度で巻取りした後、圧延率40%以上で冷間圧延することを特徴とする、請求項8に記載の耐衝突性能およびコイル内の材質均一性に優れた高強度溶融亜鉛めっき鋼板の製造方法。
  10.  請求項8または請求項9において製造された高強度溶融亜鉛めっき鋼板が、引張強度(TS)が590MPa以上、降伏比(YR)が0.70以上、焼付き硬化量(BH量)が60MPa以上であることを特徴とする、耐衝突性能およびコイル内の材質均一性に優れた高強度溶融亜鉛めっき鋼板の製造方法。
PCT/JP2013/000434 2012-01-31 2013-01-28 溶融亜鉛めっき鋼板およびその製造方法 WO2013114850A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147022936A KR101638719B1 (ko) 2012-01-31 2013-01-28 용융 아연 도금 강판 및 그 제조 방법
CN201380007595.7A CN104093873B (zh) 2012-01-31 2013-01-28 热镀锌钢板及其制造方法
US14/375,053 US9322091B2 (en) 2012-01-31 2013-01-28 Galvanized steel sheet
EP13742881.9A EP2811047B1 (en) 2012-01-31 2013-01-28 Hot-dip galvanized steel sheet and production method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-019312 2012-01-31
JP2012019312 2012-01-31
JP2012-266240 2012-12-05
JP2012266240A JP5884714B2 (ja) 2012-01-31 2012-12-05 溶融亜鉛めっき鋼板およびその製造方法

Publications (1)

Publication Number Publication Date
WO2013114850A1 true WO2013114850A1 (ja) 2013-08-08

Family

ID=48904897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000434 WO2013114850A1 (ja) 2012-01-31 2013-01-28 溶融亜鉛めっき鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US9322091B2 (ja)
EP (1) EP2811047B1 (ja)
JP (1) JP5884714B2 (ja)
KR (1) KR101638719B1 (ja)
CN (1) CN104093873B (ja)
TW (1) TWI465583B (ja)
WO (1) WO2013114850A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169869A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
WO2021020438A1 (ja) * 2019-07-31 2021-02-04 Jfeスチール株式会社 高強度鋼板、高強度部材及びそれらの製造方法
WO2021020439A1 (ja) * 2019-07-31 2021-02-04 Jfeスチール株式会社 高強度鋼板、高強度部材及びそれらの製造方法
US11008632B2 (en) * 2016-03-31 2021-05-18 Jfe Steel Corporation Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing heat-treated sheet, method for producing steel sheet, and method for producing coated steel sheet
CN114525452A (zh) * 2022-02-08 2022-05-24 邯郸钢铁集团有限责任公司 屈服强度700Mpa级热镀锌低合金高强钢及制备方法
WO2023153247A1 (ja) * 2022-02-08 2023-08-17 Jfeスチール株式会社 抵抗スポット溶接継手および抵抗スポット溶接方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5633594B2 (ja) * 2013-04-02 2014-12-03 Jfeスチール株式会社 打ち抜き性および耐熱ひずみ特性に優れた冷延鋼板およびその製造方法
JP6260198B2 (ja) * 2013-10-29 2018-01-17 新日鐵住金株式会社 伸びと穴拡げ性のバランスに優れた高強度熱延鋼板及びその製造方法
CN106661658B (zh) * 2014-07-25 2019-03-01 杰富意钢铁株式会社 高强度热浸镀锌钢板的制造方法
JP6032299B2 (ja) 2015-02-03 2016-11-24 Jfeスチール株式会社 高強度冷延鋼板、高強度めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP6032300B2 (ja) * 2015-02-03 2016-11-24 Jfeスチール株式会社 高強度冷延鋼板、高強度めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP6032298B2 (ja) 2015-02-03 2016-11-24 Jfeスチール株式会社 高強度冷延鋼板、高強度めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
CN104975226A (zh) * 2015-07-30 2015-10-14 武汉钢铁(集团)公司 一种抗拉强度440MPa级的汽车用合金化热镀锌钢及生产方法
CN105331887B (zh) * 2015-11-25 2017-03-22 武汉钢铁(集团)公司 一种320MPa级厚规格热镀锌钢及其生产方法
CN105401071B (zh) * 2015-12-22 2017-12-29 武汉钢铁有限公司 一种500MPa级轿车用镀锌双相钢及生产方法
JP6308333B2 (ja) * 2016-03-31 2018-04-11 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
US10920293B2 (en) 2016-03-31 2021-02-16 Jfe Steel Corporation Steel sheet and plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full-hard steel sheet, method for producing heat-treated sheet, method for producing steel sheet, and method for producing plated steel sheet
CN108884533B (zh) * 2016-03-31 2021-03-30 杰富意钢铁株式会社 薄钢板和镀覆钢板及其制造方法以及热轧钢板、冷轧全硬钢板、热处理板的制造方法
JP6394812B2 (ja) 2016-03-31 2018-09-26 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
EP3421632B1 (en) * 2016-03-31 2020-04-22 JFE Steel Corporation Thin steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full-hard steel sheet, method for producing thin steel sheet, and method for producing plated steel sheet
MX2018011889A (es) * 2016-03-31 2019-01-10 Jfe Steel Corp Chapa de acero, chapa de acero revestida, metodo para producir chapa de acero laminada en caliente, metodo para producir chapa de acero muy dura laminada en frio, metodo para producir chapa de acero y metodo para producir chapa de acero revestida.
KR102162777B1 (ko) * 2016-03-31 2020-10-07 제이에프이 스틸 가부시키가이샤 박 강판 및 도금 강판, 그리고, 열연 강판의 제조 방법, 냉연 풀 하드 강판의 제조 방법, 박 강판의 제조 방법 및 도금 강판의 제조 방법
JP6835046B2 (ja) * 2018-07-31 2021-02-24 Jfeスチール株式会社 薄鋼板及びその製造方法
CN109023054A (zh) * 2018-08-16 2018-12-18 攀钢集团攀枝花钢铁研究院有限公司 热镀锌钢板及其制造方法
CN111218620B (zh) * 2018-11-23 2021-10-22 宝山钢铁股份有限公司 一种高屈强比冷轧双相钢及其制造方法
WO2020245627A1 (en) * 2019-06-03 2020-12-10 Arcelormittal Cold rolled and coated steel sheet and a method of manufacturing thereof
US11926881B2 (en) 2019-08-20 2024-03-12 Jfe Steel Corporation High-strength cold-rolled steel sheet and method for manufacturing the same
CN110863149A (zh) * 2019-11-13 2020-03-06 浙江金洲管道科技股份有限公司 一种热镀锌钢管及其制造方法
CN113832386A (zh) * 2020-06-23 2021-12-24 宝山钢铁股份有限公司 一种高强度热轧基板、热镀锌钢及其制造方法
WO2022206915A1 (zh) * 2021-04-02 2022-10-06 宝山钢铁股份有限公司 抗拉强度≥590MPa的低碳低合金高成形性双相钢及热镀锌双相钢及其制造方法
CN113481438A (zh) * 2021-07-06 2021-10-08 攀钢集团攀枝花钢铁研究院有限公司 热镀锌高强低合金钢590bq及其冶炼方法
DE102022121780A1 (de) * 2022-08-29 2024-02-29 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines kaltgewalzten Stahlflachprodukts

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132375B2 (ja) 1981-12-22 1986-07-26 Nippon Steel Corp
JP2000303141A (ja) 1999-02-15 2000-10-31 Nkk Corp コイル内材質均一性に優れたプレス成形用高強度冷延鋼板およびその製造方法
JP3263143B2 (ja) 1992-08-27 2002-03-04 株式会社神戸製鋼所 加工性に優れた焼付硬化型高強度合金化溶融亜鉛めっき鋼板及びその製造方法
JP2004211126A (ja) * 2002-12-27 2004-07-29 Jfe Steel Kk 超微細粒組織を有し伸びフランジ性に優れる溶融亜鉛めっき冷延鋼板およびその製造方法
JP2004250774A (ja) * 2002-03-29 2004-09-09 Jfe Steel Kk 超微細粒組織を有する冷延鋼板およびその製造方法
JP3887235B2 (ja) 2002-01-11 2007-02-28 新日本製鐵株式会社 伸びフランジ性と耐衝突特性に優れた高強度鋼板、高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板とその製造方法
JP2011184788A (ja) * 2010-03-11 2011-09-22 Nippon Steel Corp 伸びと穴拡げ性のバランスに優れた鋼板及びその製造方法
JP2011219855A (ja) * 2010-03-24 2011-11-04 Jfe Steel Corp 深絞り性に優れた高強度冷延鋼板およびその製造方法
JP2011225955A (ja) * 2010-04-22 2011-11-10 Jfe Steel Corp 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2012043863A1 (ja) * 2010-09-30 2012-04-05 Jfeスチール株式会社 疲労特性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132375A (ja) 1984-07-24 1986-02-15 石川島播磨重工業株式会社 電気炉保護装置
JPH03263143A (ja) 1990-03-13 1991-11-22 Nec Corp 緩衝記憶装置
JP3858551B2 (ja) * 1999-02-09 2006-12-13 Jfeスチール株式会社 焼付硬化性、耐疲労性、耐衝撃性および耐常温時効性に優れた高張力熱延鋼板およびその製造方法
KR100949694B1 (ko) * 2002-03-29 2010-03-29 제이에프이 스틸 가부시키가이샤 초미세입자 조직을 갖는 냉연강판 및 그 제조방법
JP4881773B2 (ja) 2007-03-23 2012-02-22 株式会社神戸製鋼所 溶接熱影響部の低温靭性に優れた低降伏比高張力鋼板
CN100519058C (zh) * 2007-04-20 2009-07-29 攀枝花钢铁(集团)公司 深冲光整热镀锌钢板的生产方法
JP5264235B2 (ja) 2008-03-24 2013-08-14 日新製鋼株式会社 耐溶融金属脆化割れ性に優れた高降伏比型Zn−Al−Mg系めっき鋼板およびその製造方法
JP5182386B2 (ja) 2011-01-31 2013-04-17 Jfeスチール株式会社 加工性に優れた高降伏比を有する高強度冷延鋼板およびその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132375B2 (ja) 1981-12-22 1986-07-26 Nippon Steel Corp
JP3263143B2 (ja) 1992-08-27 2002-03-04 株式会社神戸製鋼所 加工性に優れた焼付硬化型高強度合金化溶融亜鉛めっき鋼板及びその製造方法
JP2000303141A (ja) 1999-02-15 2000-10-31 Nkk Corp コイル内材質均一性に優れたプレス成形用高強度冷延鋼板およびその製造方法
JP3887235B2 (ja) 2002-01-11 2007-02-28 新日本製鐵株式会社 伸びフランジ性と耐衝突特性に優れた高強度鋼板、高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板とその製造方法
JP2004250774A (ja) * 2002-03-29 2004-09-09 Jfe Steel Kk 超微細粒組織を有する冷延鋼板およびその製造方法
JP2004211126A (ja) * 2002-12-27 2004-07-29 Jfe Steel Kk 超微細粒組織を有し伸びフランジ性に優れる溶融亜鉛めっき冷延鋼板およびその製造方法
JP2011184788A (ja) * 2010-03-11 2011-09-22 Nippon Steel Corp 伸びと穴拡げ性のバランスに優れた鋼板及びその製造方法
JP2011219855A (ja) * 2010-03-24 2011-11-04 Jfe Steel Corp 深絞り性に優れた高強度冷延鋼板およびその製造方法
JP2011225955A (ja) * 2010-04-22 2011-11-10 Jfe Steel Corp 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2012043863A1 (ja) * 2010-09-30 2012-04-05 Jfeスチール株式会社 疲労特性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169869A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP6278162B1 (ja) * 2016-03-31 2018-02-14 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
US11008632B2 (en) * 2016-03-31 2021-05-18 Jfe Steel Corporation Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing heat-treated sheet, method for producing steel sheet, and method for producing coated steel sheet
US11254995B2 (en) 2016-03-31 2022-02-22 Jfe Steel Corporation Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing full hard cold-rolled steel sheet, method for producing steel sheet, and method for producing coated steel sheet
WO2021020438A1 (ja) * 2019-07-31 2021-02-04 Jfeスチール株式会社 高強度鋼板、高強度部材及びそれらの製造方法
WO2021020439A1 (ja) * 2019-07-31 2021-02-04 Jfeスチール株式会社 高強度鋼板、高強度部材及びそれらの製造方法
JPWO2021020439A1 (ja) * 2019-07-31 2021-09-13 Jfeスチール株式会社 高強度鋼板、高強度部材及びそれらの製造方法
JPWO2021020438A1 (ja) * 2019-07-31 2021-09-13 Jfeスチール株式会社 高強度鋼板、高強度部材及びそれらの製造方法
CN114525452A (zh) * 2022-02-08 2022-05-24 邯郸钢铁集团有限责任公司 屈服强度700Mpa级热镀锌低合金高强钢及制备方法
WO2023153247A1 (ja) * 2022-02-08 2023-08-17 Jfeスチール株式会社 抵抗スポット溶接継手および抵抗スポット溶接方法
JP7347716B1 (ja) * 2022-02-08 2023-09-20 Jfeスチール株式会社 抵抗スポット溶接継手および抵抗スポット溶接方法

Also Published As

Publication number Publication date
TWI465583B (zh) 2014-12-21
KR20140116936A (ko) 2014-10-06
KR101638719B1 (ko) 2016-07-11
CN104093873A (zh) 2014-10-08
EP2811047B1 (en) 2017-03-08
EP2811047A1 (en) 2014-12-10
JP5884714B2 (ja) 2016-03-15
US20150017472A1 (en) 2015-01-15
EP2811047A4 (en) 2015-11-11
JP2013177673A (ja) 2013-09-09
US9322091B2 (en) 2016-04-26
TW201335386A (zh) 2013-09-01
CN104093873B (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
JP5884714B2 (ja) 溶融亜鉛めっき鋼板およびその製造方法
KR101923327B1 (ko) 고강도 용융 아연 도금 강판 및 그 제조 방법
JP6179461B2 (ja) 高強度鋼板の製造方法
JP5971434B2 (ja) 伸びフランジ性、伸びフランジ性の面内安定性および曲げ性に優れた高強度溶融亜鉛めっき鋼板ならびにその製造方法
JP5983895B2 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP5839152B1 (ja) 高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板の製造方法
JP5408314B2 (ja) 深絞り性およびコイル内材質均一性に優れた高強度冷延鋼板およびその製造方法
WO2016013144A1 (ja) 高強度溶融亜鉛めっき鋼板の製造方法
JP5765116B2 (ja) 深絞り性および伸びフランジ性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5532088B2 (ja) 深絞り性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP6079726B2 (ja) 高強度鋼板の製造方法
WO2013160928A1 (ja) 高強度鋼板およびその製造方法
JP4752522B2 (ja) 深絞り用高強度複合組織型冷延鋼板の製造方法
JP5251207B2 (ja) 深絞り性に優れた高強度鋼板及びその製造方法
JP5853884B2 (ja) 溶融亜鉛めっき鋼板およびその製造方法
WO2016157257A1 (ja) 高強度鋼板およびその製造方法
JP5310920B2 (ja) 耐時効性と焼付き硬化性に優れた高強度冷延鋼板
JP5678695B2 (ja) 高強度鋼板およびその製造方法
JP4415579B2 (ja) 溶融亜鉛めっき鋼板の製造方法
JP5251206B2 (ja) 深絞り性、耐時効性及び焼き付け硬化性に優れた高強度鋼板並びにその製造方法
WO2020110795A1 (ja) 高強度鋼板およびその製造方法
JP2019059963A (ja) 低降伏比を有する鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13742881

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14375053

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013742881

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013742881

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147022936

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201405107

Country of ref document: ID