WO2013100124A1 - 外観検査装置及び外観検査方法 - Google Patents
外観検査装置及び外観検査方法 Download PDFInfo
- Publication number
- WO2013100124A1 WO2013100124A1 PCT/JP2012/084058 JP2012084058W WO2013100124A1 WO 2013100124 A1 WO2013100124 A1 WO 2013100124A1 JP 2012084058 W JP2012084058 W JP 2012084058W WO 2013100124 A1 WO2013100124 A1 WO 2013100124A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- image
- tire
- subject
- data
- Prior art date
Links
- 238000007689 inspection Methods 0.000 title claims abstract description 68
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000003384 imaging method Methods 0.000 claims description 53
- 230000007547 defect Effects 0.000 claims description 30
- 238000001514 detection method Methods 0.000 claims description 26
- 230000001678 irradiating effect Effects 0.000 claims description 11
- 238000011179 visual inspection Methods 0.000 claims description 2
- 238000005286 illumination Methods 0.000 description 35
- 238000012545 processing Methods 0.000 description 30
- 230000005856 abnormality Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000010606 normalization Methods 0.000 description 8
- 230000005484 gravity Effects 0.000 description 6
- 230000002159 abnormal effect Effects 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 239000003086 colorant Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 2
- 238000004073 vulcanization Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M17/00—Testing of vehicles
- G01M17/007—Wheeled or endless-tracked vehicles
- G01M17/02—Tyres
- G01M17/027—Tyres using light, e.g. infrared, ultraviolet or holographic techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/25—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/25—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
- G01B11/2509—Color coding
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/255—Details, e.g. use of specially adapted sources, lighting or optical systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/55—Specular reflectivity
- G01N21/57—Measuring gloss
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/9515—Objects of complex shape, e.g. examined with use of a surface follower device
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/952—Inspecting the exterior surface of cylindrical bodies or wires
Definitions
- the present invention relates to an appearance inspection apparatus and an appearance inspection method, and more particularly, to an appearance inspection apparatus and an appearance inspection method for detecting changes in the shape, surface unevenness, color tone, and the like of a subject such as a tire or a tire component.
- a tire shape inspection and a surface condition inspection are performed.
- the shape inspection is obtained by irradiating the surface of the rotating tire with a single-color slit light in the radial direction, and capturing the cross-sectional image of the tire over the entire circumference of the tire by capturing the slit light irradiation portion with an area camera.
- the cross-sectional image is subjected to image processing and compared with the master image to inspect for abnormalities in the shape.
- the surface condition inspection detects fine irregularities that cannot be detected by the shape inspection, so that the red light and the blue light having different wavelengths overlap each other from different directions on the surface of the rotating tire.
- the surface image over the entire circumference of the tire is acquired, and the red component and the blue component contained in the surface image are separated. Then, the presence or absence of unevenness on the tire surface is determined from the ratio of the intensity of the red component and the blue component, the inclination angle of the tire surface is calculated based on the intensity of the red component and the blue component, and the change in the inclination angle distribution and defects
- the surface condition is inspected by evaluating the degree of coincidence with the feature (eg, there is no abnormality when the tilt angle is less than or equal to the threshold, and there is irregularity when the inclination angle is greater than the threshold).
- the present invention detects “shape” and “color change” together with detection of the shape of the subject and fine irregularities on the surface of the subject in the shape inspection and surface state inspection of the appearance inspection.
- an appearance inspection apparatus and an appearance inspection method capable of detecting a surface state are provided.
- first light projecting means for irradiating a subject surface with slit light having an intermediate wavelength among three types of light having different wavelengths, and reflected light of the slit light
- the first imaging means for receiving the reflected luminance data of the subject surface and two lights having different wavelengths other than the intermediate wavelength from different directions at a position different from the position irradiated with the slit light on the subject surface.
- a second light projecting unit that irradiates the surface of the subject so as to overlap each other
- a second imaging unit that receives the reflected light of the portion where the two lights overlap and acquires the surface data of the subject surface
- Concavity and convexity defect detection means for detecting the presence or absence of unevenness on the surface of the subject from the ratio of the intensity of the two lights
- color foreign matter defect detection means for detecting a change in color tone of the subject surface by combining the reflected luminance data and the surface data And the presence or absence of irregularities, the structure and a gloss defect detecting means for detecting the gloss of the surface of the object based on the change in color tone.
- FIG. 1 shows schematic structure figure of an external appearance inspection apparatus. It is a figure which shows the other form of arrangement
- FIG. 1 is a configuration diagram of an appearance inspection apparatus 1.
- An appearance inspection apparatus 1 shown in FIG. 1 is an embodiment applied to an appearance inspection of a tire T.
- the appearance inspection apparatus 1 includes a rotation mechanism device 2 that rotates a tire T that is a subject, a shape acquisition device 3 that acquires the appearance shape of the tire T, a surface state acquisition device 4 that acquires the surface state of the tire T,
- the image processing apparatus 5 includes an inspection processing device 5 that inspects the shape and surface state of the tire T by performing image processing on images acquired by the shape acquisition device 3 and the surface state acquisition device 4, respectively.
- the external shape and surface state of the tire T are acquired as an image using three types of light having different wavelengths.
- the three types of light having different wavelengths are, for example, blue, green, and red, which are the three primary colors of light. In the following description, it is assumed that three types of light having different wavelengths are blue, green, and red light.
- the rotation mechanism device 2 includes a rotation table 21 on which a subject tire T is placed sideways, a motor 22 that rotates the rotation table 21, a rotation angle detection unit 23 that detects a rotation angle of the rotation table 21, and a motor.
- Motor control means 24 for driving and controlling the motor 22.
- the turntable 21 is formed in a flat disk shape, and has a guide portion (not shown) that guides the tire T and the turntable 21 to be concentric on the placement surface on which the tire T is placed.
- the motor 22 is connected to the motor control unit 24 and rotates based on a signal output from the motor control unit 24.
- the rotation angle detection unit 23 is connected to the motor control unit 24 and the inspection processing device 5 described later, and outputs the measured rotation angle of the rotary table 21.
- an encoder is used for the rotation angle detection means 23, for example, an encoder is used.
- the motor control unit 24 controls the rotation speed and driving time of the motor 22 based on the rotation angle signal output from the rotation angle detection unit 23.
- the shape acquisition device 3 includes a first light projecting means 31 that irradiates the surface S of the tire side surface as a subject with green slit light as an intermediate wavelength among three types of light having different wavelengths, and a first light projecting unit 31.
- the first imaging means 32 is configured to receive the reflected light of the light emitted from the light means 31 onto the surface S.
- the intermediate wavelength is a wavelength indicating an intermediate color of the color circle in the three primary colors of light. In the color circle, the color of light circulates in the order of red ⁇ green ⁇ blue ⁇ red, so red is an intermediate color between blue and green, green is an intermediate color between red and blue, and blue is It is an intermediate color between green and red.
- green light is used as light having an intermediate wavelength among three types of light having different wavelengths, but may be replaced with red or blue.
- the 1st light projection means 31 and the 1st imaging means 32 are arrange
- the first light projecting means 31 is applied with a green laser that irradiates the surface S of the tire side surface with a slit-shaped green laser beam.
- the green laser is provided in the irradiation portion of the surface S so that the extending direction of the slit light irradiates from the tire inner diameter to the outer diameter along the tire radial direction.
- the slit light emitted from the green laser is set to irradiate the surface S at a predetermined irradiation angle.
- the green laser for example, a laser beam having a center wavelength of about 532 nm is used.
- a plurality of 31 may be arranged in the tire radial direction, and irradiation from the tire inner diameter of the surface S to the tire outer diameter may be performed so that the green laser light emitted from the first light projecting means 31 is in a straight line.
- the plurality of first light projecting means 31 may be arranged so as to be displaced in the circumferential direction. However, in this case, it is necessary to arrange so that the slit light irradiated from the adjacent first light projecting means 31 overlaps.
- the slit light is applied to the subject surface even if the size of the tire as the subject is larger than the width of the slit light.
- the slit-shaped green laser in this embodiment is set so that the irradiation width W is 50 ⁇ m and the effective irradiation range L is 90 to 150 mm.
- FIG. 3 is a view showing the arrangement of the first light projecting means 31 and the first imaging means 32 with respect to the surface S of the tire side surface.
- an area camera is applied to the first imaging unit 32, and the first imaging unit 32 is disposed so as to receive light that is specularly reflected from the light irradiated on the surface S from the green laser.
- the irradiation angle of the slit light emitted from the green laser and the light receiving angle of the optical axis received by the first imaging means 32 are the same angle.
- the 1st imaging means 32 receives the reflected light of the slit light irradiated to the surface S from the 1st light projection means 31, and acquires the cross-sectional shape of the tire T in an irradiation part as cross-sectional shape data, and a cross section.
- the reflection luminance data in the shape data is acquired.
- the cross-sectional shape data and the reflected luminance data are acquired in each frame by imaging.
- the reflected light that is regularly reflected with the highest light intensity among the slit light reflected on the surface S of the tire that is the subject is obtained. Since light can be received by the first imaging means 32, the shape of the surface of the tire can be clearly obtained, and an accurate inspection can be performed. Imaging by the first imaging means 32 is performed every set time. The distance to be displaced is calculated from the rotation angle and rotation speed of the tire T detected by the rotation angle detection means 23.
- the first imaging means 32 By arranging the first imaging means 32 so that the direction of the optical axis received by the first imaging means 32 and the direction of the reflected light of the slit light emitted by the first light projecting means 31 are aligned, the first imaging means 32 Since the reflected light received by 32 receives regular reflection of the slit light reflected by the surface S, the brightness received by the first imaging means 32 can be set to the maximum, and the slit light irradiation unit The shape at can be obtained clearly.
- the surface state acquisition device 4 includes a second light projecting unit 41 that irradiates the surface S with two light beams having different wavelengths other than the intermediate wavelength among the three types of light beams having different wavelengths.
- the second imaging unit 43 that receives the reflected light of the light irradiated on the surface S from the light unit 41 is disposed at a position different from the shape acquisition device 3.
- the second light projecting means 41 employs blue and green light when the first light projecting means 31 uses red light, and the first light projecting means 31 uses blue light. If so, two lights, red and green, are employed.
- the second light projecting means 41 includes a red illumination 41A for irradiating light with a red wavelength and a blue illumination 41B for irradiating light with a blue wavelength. Are spaced apart from each other by a predetermined distance, and are fixed by fixing means (not shown).
- the red illumination 41A is an LED illumination that emits red light having a center wavelength of about 660 nm.
- the blue illumination 41B is LED illumination that emits blue light having a center wavelength of about 470 nm.
- FIG. 4A and 4B are diagrams showing the arrangement of the red illumination 41A, the blue illumination 41B, and the second imaging means 43.
- FIG. The red illumination 41A and the blue illumination 41B of the second light projecting unit 41 irradiate the surface S of the tire side surface with light at a position different from the irradiating unit irradiated by the first light projecting unit 31, and the light irradiation directions are opposed to each other.
- the red light and the blue light emitted by the red illumination 41A and the blue illumination 41B irradiate a range from the tire inner diameter to the tire outer diameter so that the lights overlap each other on the surface S. As shown in FIG.
- the angles of the optical axes of the red light and the blue light emitted by the red illumination 41A and the blue illumination 41B are, for example, 45 °, the irradiation angle of the red illumination 41A with respect to the surface S, blue
- the illumination angle of the illumination 41B is set to the same angle of 45 °.
- the irradiation angles of the red illumination 41A and the blue illumination 41B are not limited to 45 °, and may be set to the same irradiation angle within a range of 30 ° to 70 °.
- the second imaging means 43 is provided between the red illumination 41A and the blue illumination 41B on the upper side of the tire side surface, and is fixed by a fixing means outside the drawing.
- the second imaging means 43 receives the reflected light of the portion where the red light and the blue light overlap on the surface S.
- a color line camera in which light receiving elements are arranged in a row is applied to the second imaging means 43.
- the second imaging means 43 has red light emitted from the red illumination 41A and blue light emitted from the blue illumination 41B so that the arrangement direction of the light receiving elements coincides with the tire radial direction. The reflected light which overlaps and the red component and the blue component are combined is received.
- the second imaging means 43 is set so that the direction of the optical axis for receiving light is 90 ° with respect to the surface S.
- the surface S has an inclination such as unevenness and undulation, the balance of the light reflected on the surface S is lost, and one of the light components is received by the second imaging means 43 stronger than the other light component. Is done.
- the imaging width W of the second imaging means 43 is 10 ⁇ m
- the imaging field of view L is 135 mm
- the tire T is displaced by about 50 ⁇ m in the circumferential direction (depending on the diameter of the measurement object because the angular velocity is constant).
- the distance to be displaced is calculated from the rotation angle and rotation speed of the tire T detected by the rotation angle detection means 23.
- the image picked up by the second image pickup means 43 is acquired as a surface image composed of a red component and a blue component of light, and is output to the inspection processing device 5.
- the inspection processing device 5 is, for example, a computer that executes processing in an appearance inspection of the tire T, and includes a CPU as arithmetic processing means, ROM, RAM and HDD as storage means, and an interface as communication means. Operates based on stored programs.
- the inspection processing device 5 is connected to input means such as a keyboard and a mouse and display means such as a monitor.
- the inspection processing device 5 includes a shape inspection unit 6 that inspects the three-dimensional shape of the tire T and a surface state inspection unit 7 that inspects the surface S.
- the shape inspection means 6 includes an image center of gravity calculation unit 61, an image alignment unit 62, a coordinate conversion unit 63, an image comparison / determination unit 64, and a plane data creation unit 65, and is based on the cross-sectional shape data and the surface image. Then, the shape and surface state of the tire T are inspected.
- the image center-of-gravity calculating unit 61 calculates the position of the center of gravity based on the brightness values of the plurality of cross-sectional shape data acquired by the second imaging unit 43 along the tire circumferential direction.
- the cross-sectional shape data acquired by imaging represents the cross-sectional shape of the surface S of the tire side surface by assigning luminance values such as color and brightness to the pixels constituting each frame in the frame for each imaging. Yes. Therefore, the image centroid calculation unit 61 calculates, for example, the centroid position of the cross-sectional shape data in the frame from the pixel position representing the shape when the upper left of the frame is the origin and the luminance value of the pixel.
- the image alignment unit 62 arranges the cross-sectional shape data so that the gravity center positions for each frame calculated by the image gravity center calculation unit 61 are aligned on a straight line. That is, the cross-sectional shape data acquired in each frame is aligned so that the barycentric positions match. Even if the tire T is placed in an eccentric state with respect to the rotary table 21 by aligning the cross-sectional shape data by the image aligning unit 62, the center of the tire T and the center of the rotary table 21 are acquired. Can be processed as if the cross-sectional shape data was acquired.
- the coordinate conversion unit 63 performs coordinate conversion from the orthogonal coordinate system to the cylindrical coordinate system on the cross-sectional shape data aligned by the image alignment unit 62. That is, since the cross-sectional shape data acquired by the second imaging means 43 is acquired on the orthogonal coordinates of the frame, it is captured to generate a three-dimensional tire-like inspection image using all the cross-sectional shape data. All the cross-sectional shape data must be coordinate-transformed. For this reason, the coordinate conversion unit 63 generates three-dimensional shape data by performing coordinate conversion on all cross-sectional shape data based on the imaged rotation angle.
- the image comparison / determination unit 64 compares the three-dimensional master data and the three-dimensional shape data of the tire T, which is the subject, stored in advance in the storage unit of the inspection processing device 5 and compares the three-dimensional shape data with respect to the master data. A difference is detected, and it is determined that there is no shape defect when the difference between the master data and the three-dimensional shape data is smaller than the threshold value, and it is determined that there is a shape defect when the error is larger than the threshold value.
- the plane data creation unit 65 creates plane data obtained by removing height information from the cross-sectional shape data aligned in the image alignment unit 62.
- the plane data is obtained by extracting only the reflected luminance data of the aligned cross-sectional shape data and aligning the reflected luminance data for each frame linearly. That is, the plane data is a green component image obtained by acquiring the surface S of the tire side surface with the light of the green component.
- the plane data is shown as a green component image.
- the surface condition inspection unit 7 includes a color component separation unit 16, a color foreign matter defect detection unit 17, an unevenness defect detection unit 18, and a gloss defect detection unit 19.
- FIG. 5 shows a conceptual diagram for separating a surface image into a red component image and a blue component image.
- 10 has shown the hollow detected by the detection of a back
- the color component separation unit 16 separates the two-dimensional surface image of the surface S imaged by the second imaging unit 43 into a red component and a blue component, thereby obtaining a red component image and a blue component image. Are separated into two images.
- the color foreign object defect detection means 17 includes a luminance component normalization unit 71, a color image composition unit 72, a color foreign material determination unit 73, and a color foreign material storage unit 74.
- FIG. 6A is a graph showing the standard deviation ⁇ of the luminance values of the green component image, red component image, and blue component image.
- FIG. 6B shows an arrangement in which the luminance values are scaled based on the standard deviation ⁇ so that the luminance values of the green component image, the red component image, and the blue component image are aligned.
- the luminance component normalization unit 71 normalizes the green component image captured by the first imaging unit 32 and the red component image and the blue component image created by the color component separation unit 16, respectively.
- the luminance component normalization unit 71 first performs alignment between a green component image that is displaced due to a difference in imaging start position, and a red component image and a blue component image. Next, as shown in FIG. 6A, the average m and the standard deviation ⁇ for each color component image of the pixels constituting the green component image, the red component image, and the blue component image are calculated. As shown, normalization is performed by aligning the green component image, the red component image, and the blue component image based on the average m and the standard deviation ⁇ .
- the green component image, the red component image, and the blue component image are different in brightness, the average m and the standard deviation ⁇ of each color component are different, so the average m and the standard deviation ⁇ of each color component image are different.
- the brightness of the green component image, red component image, and blue component image becomes uniform, and when the green component image, red component image, and blue component image are combined It is possible to generate a clear color image with no bias in color components.
- the color image combining unit 72 combines the green component image, the red component image, and the blue component image normalized by the luminance component normalizing unit 71 into a two-dimensional color image.
- the colored foreign matter determining unit 73 determines the presence or absence of colored foreign matter by comparing the color image synthesized by the color image synthesizing unit 72 with a preset threshold value. Specifically, the color foreign matter determination unit 73 performs an image processing filter calculation for extracting a defect feature amount from the color image, determines that there is a color foreign matter when the defect feature amount is larger than the threshold value, and is smaller than the threshold value. Sometimes it is determined that there is no colored foreign matter.
- the colored foreign matters are, for example, those in which the release agent used in the vulcanization molding process of the tire T has become a “tekari” adhered to the surface S of the tire T, or the rubber particles by heating in the vulcanization molding process. Indicates a color that has changed.
- the color foreign object determination unit 73 determines that there is a color foreign object when the luminance value of the pixels constituting the color image has a gradient greater than the threshold value of the adjacent pixels. If it is smaller than the threshold value, it is determined that there is no colored foreign matter.
- the colored foreign matter storage unit 74 stores the position and size of the colored foreign matter detected by the colored foreign matter determination unit 73 as a colored foreign matter.
- the unevenness defect detection means 18 includes a luminance distribution waveform calculation unit 81, a peak interval calculation unit 82, a peak interval determination unit 83, a surface inclination angle calculation unit 84, an unevenness determination unit 85, and an unevenness storage unit 86. Then, adhesion of fine foreign matters on the surface S, surface roughness or fine scratches at the time of molding are detected.
- FIG. 7 is a conceptual diagram of dividing a red component image and a blue component image into small regions.
- the luminance distribution waveform calculation unit 81 treats the luminance distribution included in each of the red component image and the blue component image as approximating a normal distribution, and averages the pixel values in the inspection target range for each of the red component image and the blue component image. And calculate the standard deviation.
- the peak interval calculation unit 82 detects the red peak of the luminance distribution waveform for each small region of the red component image and the blue peak for each small region of the blue component image, and corresponds to each other in the red component image and the blue component image. The interval between the red peak and the blue peak in the small region of the position is calculated.
- the peak interval determination unit 83 compares the peak interval for each small region calculated by the peak interval calculation unit 82 with a preset threshold value, determines that there is no unevenness when the peak interval is smaller than the threshold value, and the peak interval is equal to or greater than the threshold value. When it is, it is determined that there is an abnormality. That is, if the interval between the red component peak and the blue component peak is smaller than the threshold value, the peak interval determining unit 83 determines that the surface S has no fine scratches, irregularities, undulations, and the like. If the distance from the peak of the blue component is greater than or equal to the threshold value, either color component is blocked by scratches or irregularities or diffusely reflected in the light irradiation part, so the distribution of either color component is large. Therefore, it is determined that the surface S has fine scratches, irregularities, undulations, and the like. Thus, according to the present invention, it is possible to detect fine scratches, irregularities, undulations and the like on the surface S.
- FIG. 8A is a schematic diagram schematically showing the depression of the surface S on the tire side surface
- FIG. 8B is a conceptual diagram for calculating the surface inclination angle ⁇ of the depression of the surface S on the tire side surface.
- the surface inclination angle calculation unit 84 calculates the surface inclination angle ⁇ indicating the degree of inclination of the unevenness of the surface S.
- the surface inclination angle ⁇ is calculated as follows.
- the above p and q can be expressed by the following equations.
- the subscript B indicates that caused by blue light
- the subscript R indicates that caused by red light.
- p B indicates a blue light component along the inclination p
- p R indicates a red light component along the inclination p
- q B represents a blue light component along the slope q
- q R represents a red light component along the slope q.
- the normal vector n of the inspection target surface S can be expressed by the following equation using the above p and q.
- the incident light vector S B of the blue light red illumination 41A incident light vector S R and the blue illumination 41B of the red light is irradiated to the irradiation, the intensity of the red light and I R, the intensity of the blue light I When B , it can be expressed by the following formula.
- the intensity E R of the red light received by the second imaging means 43, the tire T is subject to orthogonal projection to the normal vector n of the incident light vector S R is obtained by multiplying the reflectance [rho
- strength E B of the blue light received by the second imaging means 43 is obtained by multiplying the reflectance [rho orthogonal projection of the normal vector n of the incident light vector S B is there.
- the inclination p of the tire circumferential direction of the surface S from the equation of strength E B of the formula and the blue light intensity of the red light E R is calculated by eliminating the inclination q in the tire radial direction.
- the surface inclination angle calculation unit 84 calculates the surface inclination angle ⁇ based on Equation 5.
- the unevenness determination unit 85 compares the surface inclination angle ⁇ with a preset threshold value to determine whether or not the cause of the peak interval being equal to or greater than the threshold value is due to unevenness. That is, when the surface inclination angle ⁇ is larger than the threshold value, it is determined that there is abnormal unevenness, and when the surface inclination angle ⁇ is smaller than the threshold value, it is determined that there is no unevenness.
- the unevenness storage unit 86 stores the position and surface inclination angle ⁇ in the tire T when the unevenness determination unit 85 determines that there is unevenness, and the position of the tire T when the unevenness determination unit 85 determines that there is no unevenness. The position on the tire T when the unevenness determination unit 85 determines that there is no unevenness is stored for use as a determination material in a subsequent process.
- the gloss defect detecting means 19 compares the image of the position where the surface inclination angle ⁇ is detected by the surface inclination angle calculation unit 84 and determined as having no unevenness by the unevenness determination unit 85 with the color image corresponding to the position, If there is no abnormality in the color foreign object defect detection means 17, that is, if there is no abnormality in the color image, it is determined that there is no abnormality, and if the color foreign object defect detection means 17 determines that there is an abnormality, the gloss defect is defective. Detect as being.
- the tire T which is the subject, is mounted on the turntable 21, and the shape acquisition device 3 including the first light projecting means 31 and the first imaging means 32, and the shape acquisition device 3 are directly above the tire side surface.
- the surface state acquisition device 4 composed of the red illumination 41A and the blue illumination 41B and the second imaging means 43 is set at a position shifted by a predetermined angle in the circumferential direction. Then, the tire T is rotated at a predetermined rotational speed by driving and controlling the motor 22 to rotationally drive the rotary table 21.
- the first imaging means 32 images the slit light irradiation part, and from the red illumination 41A and the blue illumination 41B.
- the second imaging unit 43 captures an image of the irradiation portion where the red light and the blue light overlap while irradiating the surface S so that the red light and the blue light overlap. And the cross-sectional shape data and surface image of a tire side surface are acquired over tire 1 round.
- the inspection processing device 5 After the surface image and the cross-sectional shape data for one round of the tire are input to the inspection processing device 5, the inspection processing device 5 starts the inspection processing. 9 to 10 show flowcharts of the inspection processing device 5. Hereinafter, a process of appearance inspection of the tire T by the inspection processing device 5 will be described with reference to FIGS. 9 to 10.
- the inspection processing device 5 calculates the image centroid of the plurality of cross-sectional shape data acquired by the image centroid calculation unit 61 (S101).
- the image alignment unit 62 aligns the cross-sectional shape data so that the image center of gravity is arranged at the same position in each frame (S102).
- the coordinate conversion unit 63 performs coordinate conversion of the cross-sectional shape data to convert it into tire shape three-dimensional shape data (S103). Further, the plane data of only luminance information is extracted from the cross-sectional shape data aligned by the plane data creation unit 65, excluding the height information included in each cross-sectional shape data, and a green component image of the surface S is created (S106). ).
- the image comparison / determination unit 64 compares the master data with the three-dimensional shape data to determine the presence / absence of the shape abnormality (S104). Specifically, the three-dimensional coordinates constituting the three-dimensional shape data are compared with the three-dimensional coordinates of the master data to calculate an error at each coordinate position. When the error is equal to or greater than a threshold value, it is determined that the shape is abnormal. When the error is less than or equal to the threshold value, it is determined that there is no abnormality in the shape (S105).
- the surface state inspection means 7 inspects the surface S of the tire T.
- the surface condition inspection unit 7 separates the surface image into a red component image and a blue component image by the color component separation unit 16 (S201).
- the color foreign matter inspection means 17 inspects the color foreign matter on the surface S. Specifically, the luminance component included in the green component image output from S106 by the color foreign object defect detection means 17 and the red component image and the blue component image separated in S201 is normalized (S202).
- the normalization of the luminance component in the present embodiment means that the information on the brightness of the luminance value included in the green component image, the red component image, and the blue component image is different in size, and therefore the green component image and the red component image In other words, the brightness is adjusted to be substantially the same for the blue component image. Further, the luminance component normalization unit 71 performs alignment of the green component image, the red component image, and the blue component image in addition to normalization of the luminance component of the green component image, the red component image, and the blue component image ( S203).
- the color component is normalized by the color image combining unit 72, and the green component image, the red component image, and the blue component image are combined into a color image (S204).
- the color image is subjected to image processing filter calculation as shown in, for example, S205 to S212 by the color foreign matter determination unit 73 to determine the presence or absence of the color foreign matter. If it is determined whether or not there is a colored foreign object, the process proceeds to S301. If all the small areas have not been processed, the process proceeds to S122, and S208 to S212 are repeated.
- the peak interval between the red peak and the blue peak is calculated (S305). Next, it is determined whether or not the peak interval is equal to or greater than the threshold value.
- the surface inclination angle is calculated (S307). Next, it is determined whether or not the calculated surface inclination angle is equal to or greater than a threshold value. When the surface inclination angle is equal to or greater than the threshold value, the process proceeds to S309, and when it is smaller than the threshold value, the process proceeds to S311 (S308). As a result of the transition to S309, the uneven position and the surface inclination angle where the surface inclination angle is abnormal are recorded in the uneven storage section 86 of the storage means (S309).
- the unevenness detecting unit 18 determines that there is no unevenness
- the unevenness detecting unit 18 outputs that there is no unevenness to the unevenness storage unit 86
- the surface inclination angle calculation unit 84 causes the inclination angle of the surface S on the tire side surface to be determined.
- ⁇ is calculated.
- the calculated surface inclination angle ⁇ is compared with a threshold value.
- the surface inclination angle ⁇ is smaller than the threshold value, it is determined that there is no abnormality, and when the surface inclination angle ⁇ is equal to or larger than the threshold value, it is determined that there is an abnormality.
- the surface inclination angle ⁇ is calculated, it is stored in the unevenness storage unit 86 regardless of whether the surface inclination angle ⁇ is abnormal.
- the unevenness position recorded in the unevenness storage unit 86 by the gloss defect detection means 19 is compared with the position stored in the colored foreign matter storage unit 74 corresponding to the position determined to have no abnormality in the surface inclination angle ⁇ , A gloss defect is detected (S401). That is, when it is determined that there is no abnormality in the surface inclination angle ⁇ and the position where it is determined that there is a colored foreign object overlaps, it is determined that there is an abnormality in the gloss defect. Further, when the surface inclination angle ⁇ is determined not to be abnormal and overlaps with the position determined to be no color foreign matter, it is determined that there is no abnormality in the gloss defect. That is, in this case, an inspection error has occurred. Thus, the processing process by the inspection processing apparatus 5 is completed.
- a green component image is created by extracting an image of the tire surface S from shape data acquired by a green slit-shaped laser beam, and a red component image and a blue component image are combined with the green component image.
- a color image By creating a color image in this way, the color tone of the tire surface S can be accurately obtained, and by processing the color image, it is possible to accurately determine “color tone change” and “light” on the tire surface S. Therefore, the inspection accuracy of the shape and surface state of the tire T can be improved.
- the tire is described as the subject.
- the present invention is not limited to the tire, and can be applied to inspection of a member constituting the tire and a molded product such as a hose or a pipe.
- the red illumination 41 ⁇ / b> A and the blue illumination 41 ⁇ / b> B of the second light projecting unit 41 are described as LED illumination.
- the present invention is not limited to LED illumination, and may be a light source that emits diffused light.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
被検体の形状及び被検体表面の微細な凹凸の検出、"てかり"や"色調変化"の表面状態を検出することを可能にする外観検査装置及び外観検査方法を提供するために、3種類の互いに波長の異なる光のうち中間の波長を有するスリット光を被検体表面に照射し、受光した反射光により被検体表面の反射輝度データを取得し、スリット光が照射される位置とは異なる位置において中間の波長以外の波長の異なる2つの光を異なる方向から互いに重なるように被検体表面に照射して受光した反射光により被検体表面の表面データを取得し、2つの光の強度の割合から被検体表面の凹凸の有無を検出するとともに、反射輝度データと表面データとを合成して被検体表面の色調の変化を検出して凹凸の有無と色調の変化とに基づき被検体表面の光沢を検出する。
Description
本発明は、外観検査装置及び外観検査方法に関し、特に、タイヤやタイヤ構成部品などの被検体の形状、表面の凹凸及び色調の変化等を検出する外観検査装置及び外観検査方法に関する。
従来、タイヤの外観検査では、タイヤの形状検査及び表面状態検査が行われている。形状検査は、回転するタイヤの表面に単色のスリット光を半径方向に照射し、エリアカメラでスリット光の照射部を撮像することでタイヤの断面画像をタイヤ1周分に亘り取得し、取得された断面画像を画像処理し、マスター画像と比較することで形状の異常の有無を検査している。また、表面状態検査は、形状検査では検出することができない微細な凹凸を検出するため、回転するタイヤの表面に波長の異なる赤色照明と青色照明とを異なる方向から互いの照射光が重なるように照射し、照射光の重なる照射部をラインカメラでタイヤ円周方向に沿って撮像することでタイヤ1周分に亘る表面画像を取得し、表面画像に含まれる赤色成分と青色成分とを分離して、赤色成分及び青色成分の強さの割合からタイヤ表面における凹凸の有無を判定し、赤色成分及び青色成分の強さに基づいてタイヤ表面の傾斜角を算出し、傾斜角分布の変化と欠陥の特徴との一致度を評価する(例:傾斜角が閾値以下のときには異常なし、閾値よりも大きいときには凹凸異常ありとする)ことで表面状態の検査をしている。
しかしながら、上記表面状態検査では、表面画像に含まれる赤色成分及び青色成分の強さの割合から凹凸有りと判定するようにしているため、凹凸以外の表面の状態、例えば“てかり”や“色調の変化”に起因する凹凸有りと誤検出してしまう場合がある。この赤色成分及び青色成分の強さの割合の違いは、成型時にタイヤ表面に付着した離型剤による“てかり”による正反射や、成型時に生じたゴムの“色調変化”による不良によって生じるものと考えられる。そこで、このような誤検出を防ぐために、“てかり”や“色調の変化”を画像処理により検出することも考えられるが、表面画像は色の3原色のうち赤色及び青色の成分しか有していないため、“てかり”や“色調変化”に緑色成分が含まれる場合には検出することができない虞がある。
本発明は、本発明は上記課題を解決すべく、外観検査の形状検査及び表面状態検査において、被検体の形状及び被検体表面の微細な凹凸の検出とともに“てかり”や“色調変化”の表面状態を検出することを可能とする外観検査装置及び外観検査方法を提供する。
上記課題を解決するための外観検査装置の構成として、3種類の互いに波長の異なる光のうち中間の波長を有するスリット光を被検体表面に照射する第1投光手段と、スリット光の反射光を受光して被検体表面の反射輝度データを取得する第1撮像手段と、被検体表面のスリット光が照射する位置とは異なる位置において中間の波長以外の波長の異なる2つの光を異なる方向から互いに重なるように被検体表面に照射する第2投光手段と、2つの光が重なる部分の反射光を受光して被検体表面の表面データを取得する第2撮像手段と、表面データに含まれる2つの光の強度の割合から被検体表面の凹凸の有無を検出する凹凸欠陥検出手段と、反射輝度データと表面データとを合成して被検体表面の色調の変化を検出する色異物欠陥検出手段と、凹凸の有無と、色調の変化とに基づき被検体表面の光沢を検出する光沢欠陥検出手段とを備える構成とした。
なお、上記発明の概要は、本発明の必要な全ての特徴を列挙したものではなく、これらの特徴群のサブコンビネーションもまた、発明となり得る。
以下、実施の形態を通じて本発明を詳説するが、以下の実施の形態は特許請求の範囲に係る発明を限定するものではなく、また、実施の形態の中で説明される特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
図1は、外観検査装置1の構成図である。図1に示す外観検査装置1は、タイヤTの外観検査に適用した一実施形態である。外観検査装置1は、被検体であるタイヤTを回転させる回転機構装置2と、タイヤTの外観形状を取得する形状取得装置3と、タイヤTの表面状態を取得する表面状態取得装置4と、形状取得装置3と表面状態取得装置4とによりそれぞれ取得された画像を画像処理することでタイヤTの形状と表面状態を検査する検査処理装置5とにより構成される。本実施形態では、3種類の互いに波長の異なる光を用いてタイヤTの外観形状と表面状態を画像として取得する。3種類の互いに波長の異なる光とは、例えば、光の3原色である青色、緑色、赤色である。以下の説明において3種類の互いに波長の異なる光には、青色、緑色、赤色の光を用いるものとして説明する。
回転機構装置2は、被検体であるタイヤTを横向きに載置する回転テーブル21と、回転テーブル21を回転させるモータ22と、回転テーブル21の回転角を検出する回転角検出手段23と、モータ22を駆動・制御するモータ制御手段24とを備える。回転テーブル21は、平板円板状に形成され、タイヤTを載置する載置面に、タイヤTと回転テーブル21とが同心となるようにガイドする図外のガイド部を有する。モータ22は、モータ制御手段24と接続され、モータ制御手段24から出力される信号に基づいて回転する。回転角検出手段23は、モータ制御手段24及び後述の検査処理装置5に接続され、測定した回転テーブル21の回転角を出力する。回転角検出手段23には、例えばエンコーダを用いる。モータ制御手段24は、回転角検出手段23から出力される回転角信号に基づいてモータ22の回転速度及び駆動時間を制御する。
形状取得装置3は、被検体であるタイヤ側面の表面Sに、互いに波長の異なる3種類の光のうち中間の波長としての緑色のスリット光を照射する第1投光手段31と、第1投光手段31から表面Sに照射された光の反射光を受光する第1撮像手段32とにより構成される。互いに波長の異なる3種類の光のうち中間の波長とは、光の3原色における色彩環の中間色を示す波長である。色彩環において光の色は、赤色→緑色→青色→赤色・・・のように循環することから、赤色が青色と緑色との中間色であり、緑色が赤色と青色との中間色であり、青色が緑色と赤色との中間色である。本実施形態では、緑色の光を互いに波長の異なる3種類の光のうち中間の波長を有する光として採用したが、赤色や青色で置き換えても良い。
第1投光手段31と第1撮像手段32は、回転テーブル21に載置されたタイヤTよりも上方に配置され、図外の固定手段により固定される。
第1投光手段31と第1撮像手段32は、回転テーブル21に載置されたタイヤTよりも上方に配置され、図外の固定手段により固定される。
第1投光手段31は、タイヤ側面の表面Sにスリット状の緑色のレーザ光を照射する緑色レーザが適用される。緑色レーザは、表面Sの照射部において、スリット光の延長方向がタイヤ半径方向に沿ってタイヤ内径から外径までを照射するように設けられる。また、緑色レーザから照射されるスリット光は、表面Sに対して所定の照射角度で照射するように設定される。緑色レーザには、例えば中心波長が約532nmのレーザ光のものが用いられる。
なお、タイヤ半径が大きく、1つの緑色レーザから照射されるスリット光では、タイヤ内径から外径までを照射することができない場合には、図2(a)に示すように、第1投光手段31をタイヤ半径方向に複数配置して、第1投光手段31から照射される緑色のレーザ光が一直線となるように表面Sのタイヤ内径からタイヤ外径までを照射するようにしても良い。或いは、図2(b)に示すように、複数の第1投光手段31を円周方向に位置ずれさせて配置しても良い。ただし、この場合、隣接する第1投光手段31から照射されるスリット光に重なりがあるように配置する必要がある。このように、中間の波長を有するスリット光を複数の第1投光手段により照射することで、被検体であるタイヤの大きさがスリット光の幅よりも大きくても被検体表面にスリット光を照射することができる。
なお、本実施形態におけるスリット状の緑色レーザは、照射幅Wが50μm、有効照射範囲Lが90~150mmとして設定されている。
なお、本実施形態におけるスリット状の緑色レーザは、照射幅Wが50μm、有効照射範囲Lが90~150mmとして設定されている。
図3は、タイヤ側面の表面Sに対する第1投光手段31及び第1撮像手段32の配置を示す図である。
第1撮像手段32は、例えばエリアカメラが適用され、緑色レーザから表面Sに照射した光の正反射する光を受光するように配置される。具体的には、図3に示すように、表面Sに対して、緑色レーザから照射されるスリット光の照射角と、第1撮像手段32の受光する光軸の受光角とが同一角度となるように配置される。つまり、スリット光の反射光の反射角と、第1撮像手段32の受光する光軸の受光角とが一致するように配置される。よって、第1撮像手段32は、第1投光手段31から表面Sに照射されたスリット光の反射光を受光することで、照射部におけるタイヤTの断面形状を断面形状データとして取得するとともに断面形状データにおける反射輝度データを取得する。断面形状データ及び反射輝度データは、撮像による各フレーム内に取得される。
すなわち、中間の波長を有するスリット光を傾斜して被検体の表面に照射することにより、被検体であるタイヤの表面Sで反射するスリット光のうち最も光の強度が大きい正反射した反射光を第1撮像手段32により受光することができるので、タイヤの表面の形状を鮮明に取得することができ、精度の良い検査を行うことができる。
第1撮像手段32による撮像は、設定時間毎に行われる。なお、位置ずれする距離は、回転角検出手段23で検出したタイヤTの回転角と回転速度とから算出される。
第1撮像手段32は、例えばエリアカメラが適用され、緑色レーザから表面Sに照射した光の正反射する光を受光するように配置される。具体的には、図3に示すように、表面Sに対して、緑色レーザから照射されるスリット光の照射角と、第1撮像手段32の受光する光軸の受光角とが同一角度となるように配置される。つまり、スリット光の反射光の反射角と、第1撮像手段32の受光する光軸の受光角とが一致するように配置される。よって、第1撮像手段32は、第1投光手段31から表面Sに照射されたスリット光の反射光を受光することで、照射部におけるタイヤTの断面形状を断面形状データとして取得するとともに断面形状データにおける反射輝度データを取得する。断面形状データ及び反射輝度データは、撮像による各フレーム内に取得される。
すなわち、中間の波長を有するスリット光を傾斜して被検体の表面に照射することにより、被検体であるタイヤの表面Sで反射するスリット光のうち最も光の強度が大きい正反射した反射光を第1撮像手段32により受光することができるので、タイヤの表面の形状を鮮明に取得することができ、精度の良い検査を行うことができる。
第1撮像手段32による撮像は、設定時間毎に行われる。なお、位置ずれする距離は、回転角検出手段23で検出したタイヤTの回転角と回転速度とから算出される。
第1撮像手段32が受光する光軸の方向と第1投光手段31が照射するスリット光の反射光の方向とが一致するように第1撮像手段32を配置することにより、第1撮像手段32が受光する反射光は、表面Sで反射したスリット光の正反射を受光することになるので、第1撮像手段32が受光する明るさを最大に設定することができ、スリット光の照射部における形状を鮮明に取得することができる。
図1に戻り、表面状態取得装置4は、表面Sに互いに波長の異なる3種類の光のうち中間の波長以外の波長の異なる2つの光を照射する第2投光手段41と、第2投光手段41から表面Sに照射された光の反射光を受光する第2撮像手段43とにより構成され、形状取得装置3とは異なる位置に配置される。なお、第2投光手段41は、第1投光手段31で赤色の光が用いられた場合には青色及び緑色の2つの光を採用し、第1投光手段31で青色の光が用いられた場合には赤色及び緑色の2つの光を採用する。
第2投光手段41は、赤色の波長の光を照射する赤色照明41Aと、青色の波長の光を照射する青色照明41Bとを備え、タイヤ側面の上方において、タイヤ円周の接線の延長上に位置するように互いに所定距離離間して配置され、図外の固定手段により固定される。赤色照明41Aは中心波長が約660nmの赤色光を発光するLED照明である。また、青色照明41Bは中心波長が約470nmの青色光を発光するLED照明である。
第2投光手段41は、赤色の波長の光を照射する赤色照明41Aと、青色の波長の光を照射する青色照明41Bとを備え、タイヤ側面の上方において、タイヤ円周の接線の延長上に位置するように互いに所定距離離間して配置され、図外の固定手段により固定される。赤色照明41Aは中心波長が約660nmの赤色光を発光するLED照明である。また、青色照明41Bは中心波長が約470nmの青色光を発光するLED照明である。
図4(a),(b)は、赤色照明41A及び青色照明41Bと第2撮像手段43の配置を示す図である。
第2投光手段41の赤色照明41A及び青色照明41Bは、第1投光手段31が照射する照射部とは異なる位置で光をタイヤ側面の表面Sに照射し、光の照射方向が互いに対向するように配置される。赤色照明41A及び青色照明41Bが照射する赤色光及び青色光は、互いの光が表面Sにおいて重なるようにタイヤ内径からタイヤ外径までの範囲を照射する。赤色照明41A及び青色照明41Bが照射する赤色光及び青色光の光軸の角度は、図4(a)に示すように、例えば、表面Sに対して赤色照明41Aの照射角が45°、青色照明41Bの照射角が45°の同一の角度に設定される。なお、赤色照明41A及び青色照明41Bの照射角は、45°に限らず、30°~70°の範囲で互いに同一の照射角に設定すれば良い。
第2投光手段41の赤色照明41A及び青色照明41Bは、第1投光手段31が照射する照射部とは異なる位置で光をタイヤ側面の表面Sに照射し、光の照射方向が互いに対向するように配置される。赤色照明41A及び青色照明41Bが照射する赤色光及び青色光は、互いの光が表面Sにおいて重なるようにタイヤ内径からタイヤ外径までの範囲を照射する。赤色照明41A及び青色照明41Bが照射する赤色光及び青色光の光軸の角度は、図4(a)に示すように、例えば、表面Sに対して赤色照明41Aの照射角が45°、青色照明41Bの照射角が45°の同一の角度に設定される。なお、赤色照明41A及び青色照明41Bの照射角は、45°に限らず、30°~70°の範囲で互いに同一の照射角に設定すれば良い。
図4(a)に示すように、第2撮像手段43は、タイヤ側面の上側において、赤色照明41Aと青色照明41Bとの間に設けられ、図外の固定手段により固定される。第2撮像手段43は、表面Sにおいて赤色光と青色光とが重なった部分の反射光を受光する。第2撮像手段43には、受光素子が一列に配列されたカラーラインカメラが適用される。図4(b)に示すように、第2撮像手段43は、受光素子の配列方向がタイヤ半径方向と一致するように赤色照明41Aの照射する赤色光と青色照明41Bの照射する青色光とが重なり、赤色成分と青色成分とが合成された反射光を受光する。本実施形態では、第2撮像手段43は、受光する光軸の方向が表面Sに対して90°となるように設定される。これにより、表面Sに凹凸やうねり等の傾斜が有る場合、表面Sにおいて反射する光のバランスが崩れ、いずれか一方の光の成分が他方の光の成分よりも強く第2撮像手段43により受光される。
本実施形態では、第2撮像手段43の撮影幅Wを10μm、撮影視野Lを135mmとし、タイヤTが円周方向に約50μm(角速度一定のため測定対象の径によって異なる)位置ずれする毎に撮像する。なお、位置ずれする距離は、回転角検出手段23で検出したタイヤTの回転角と回転速度から算出される。第2撮像手段43によって撮像される画像は、光の赤色成分と青色成分とにより構成される表面画像として取得され、検査処理装置5に出力される。
検査処理装置5は、例えば、タイヤTの外観検査における処理を実行するコンピュータであり、演算処理手段としてのCPU、記憶手段としてのROM,RAM及びHDD、通信手段としてのインターフェイスを含み、記憶手段に格納されたプログラムに基づいて動作する。検査処理装置5には、キーボードやマウス等の入力手段やモニタ等の表示手段が接続される。
図1に戻り、検査処理装置5は、タイヤTの立体的な形状を検査する形状検査手段6と、表面Sを検査する表面状態検査手段7とにより構成される。形状検査手段6は、画像重心算出部61と、画像整列部62と、座標変換部63と、画像比較判定部64と、平面データ作成部65とを備え、断面形状データと表面画像とに基づいてタイヤTの形状及び表面状態を検査する。
画像重心算出部61は、第2撮像手段43によりタイヤ円周方向に沿って撮像され、取得された複数の断面形状データの輝度値に基づいて重心位置を算出する。詳細には、撮像により取得された断面形状データは、撮像毎のフレームにおいて、各フレームを構成する画素に色や明るさ等の輝度値を割り当てることでタイヤ側面の表面Sの断面形状を表している。そこで、画像重心算出部61では、例えば、フレームの左上を原点としたときの形状を表す画素の位置と、当該画素の輝度値とからフレームにおける断面形状データの重心位置を算出する。
画像整列部62は、画像重心算出部61によって算出されたフレーム毎の重心位置が直線上に並ぶように断面形状データを配置する。つまり、各フレームにおいて取得された断面形状データの重心位置が一致するように整列させる。画像整列部62によって断面形状データを整列させることにより、回転テーブル21に対して偏心した状態でタイヤTが載置されて断面形状データを取得したとしても、タイヤTの中心と回転テーブル21の中心とが一致して断面形状データが取得されたもとのして処理することができる。
座標変換部63は、画像整列部62により整列された断面形状データを直交座標系から円筒座標系への座標変換を行う。即ち、第2撮像手段43により取得された断面形状データは、フレームの直交座標上に取得されているため、全ての断面形状データによって3次元のタイヤ状の検査画像を生成するには、撮像された全ての断面形状データを座標変換する必要がある。このため、座標変換部63では、全ての断面形状データを撮像された回転角度に基づいて座標変換することで3次元形状データを作成する。
画像比較判定部64は、検査処理装置5の記憶部にあらかじめ記憶させた被検体であるタイヤTの3次元のマスターデータと3次元形状データとを比較して、マスターデータに対する3次元形状データの差を検出し、マスターデータと3次元形状データとの差が閾値よりも小さいときには形状不良なしとして判定し、誤差が閾値よりも大きいときには形状不良ありとして判定する。
平面データ作成部65は、画像整列部62において整列した断面形状データから高さ情報を除いた平面データを作成する。平面データは、整列した断面形状データの反射輝度データのみを抽出し、フレーム毎の反射輝度データを直線状に整列させたものである。つまり、平面データは、タイヤ側面の表面Sを緑色成分の光によって取得した緑色成分画像である。以下、平面データを緑色成分画像として示す。
表面状態検査手段7は、色成分分離手段16と、色異物欠陥検出手段17と、凹凸欠陥検出手段18と、光沢欠陥検出手段19とにより構成される。
図5は、表面画像を赤色成分画像及び青色成分画像に分離する概念図を示す。なお、同図において10は、後段の検出により検出される窪みを示している。
色成分分離手段16は、図5に示すように、第2撮像手段43により撮像された表面Sの2次元の表面画像を赤色成分と青色成分とに分離して、赤色成分画像、青色成分画像の2枚の画像に分離する。
図5は、表面画像を赤色成分画像及び青色成分画像に分離する概念図を示す。なお、同図において10は、後段の検出により検出される窪みを示している。
色成分分離手段16は、図5に示すように、第2撮像手段43により撮像された表面Sの2次元の表面画像を赤色成分と青色成分とに分離して、赤色成分画像、青色成分画像の2枚の画像に分離する。
色異物欠陥検出手段17は、輝度成分正規化部71と、カラー画像合成部72と、色異物判定部73と、色異物記憶部74とを備える。
図6(a)は、緑色成分画像、赤色成分画像、青色成分画像の輝度値の標準偏差σをグラフにしたものである。図6(b)は、標準偏差σを元に輝度値をスケーリングして緑色成分画像、赤色成分画像、青色成分画像の輝度値の大きさを整列したものを示す。
輝度成分正規化部71は、第1撮像手段32によって撮像された緑色成分画像と、色成分分離手段16により作成された赤色成分画像と青色成分画像とをそれぞれ正規化する。具体的には、輝度成分正規化部71は、まず、撮像開始位置の違いにより位置ずれした状態の緑色成分画像と、赤色成分画像及び青色成分画像との位置合わせを行う。次に、図6(a)に示すように、緑色成分画像、赤色成分画像、青色成分画像を構成する画素の各色成分画像毎の平均mと標準偏差σを算出し、図6(b)に示すように、平均mと標準偏差σに基づいて、緑色成分画像、赤色成分画像、青色成分画像を揃えることで正規化を行う。
図6(a)は、緑色成分画像、赤色成分画像、青色成分画像の輝度値の標準偏差σをグラフにしたものである。図6(b)は、標準偏差σを元に輝度値をスケーリングして緑色成分画像、赤色成分画像、青色成分画像の輝度値の大きさを整列したものを示す。
輝度成分正規化部71は、第1撮像手段32によって撮像された緑色成分画像と、色成分分離手段16により作成された赤色成分画像と青色成分画像とをそれぞれ正規化する。具体的には、輝度成分正規化部71は、まず、撮像開始位置の違いにより位置ずれした状態の緑色成分画像と、赤色成分画像及び青色成分画像との位置合わせを行う。次に、図6(a)に示すように、緑色成分画像、赤色成分画像、青色成分画像を構成する画素の各色成分画像毎の平均mと標準偏差σを算出し、図6(b)に示すように、平均mと標準偏差σに基づいて、緑色成分画像、赤色成分画像、青色成分画像を揃えることで正規化を行う。
即ち、緑色成分画像、赤色成分画像、青色成分画像は、それぞれ輝度の明るさが異なるために各色成分における平均mと標準偏差σの大きさが異なるので、各色成分画像の平均mと標準偏差σが等しくなるように画素値のシフトとスケーリングすることで、緑色成分画像、赤色成分画像、青色成分画像の明るさが均等になり、緑色成分画像、赤色成分画像、青色成分画像を合成したときに、色成分に偏りのない鮮明なカラー画像を生成することができる。
カラー画像合成部72は、輝度成分正規化部71により正規化された緑色成分画像、赤色成分画像、青色成分画像を2次元のカラー画像に合成する。
色異物判定部73は、カラー画像合成部72により合成されたカラー画像と、あらかじめ設定された閾値とを比較することで色異物の有無を判定する。具体的には、色異物判定部73は、カラー画像に対し欠陥特徴量を抽出する画像処理フィルタ演算を行い、欠陥特徴量が閾値よりも大きいときに色異物ありと判定し、閾値よりも小さいときに色異物なしと判定する。なお、色異物とは、例えば、タイヤTの加硫成型工程において使用した離型剤がタイヤTの表面Sに付着した“てかり”となったものや、加硫成型工程における加熱によりゴムの色調が変化してしまったものを示す。
色異物判定部73は、カラー画像合成部72により合成されたカラー画像と、あらかじめ設定された閾値とを比較することで色異物の有無を判定する。具体的には、色異物判定部73は、カラー画像に対し欠陥特徴量を抽出する画像処理フィルタ演算を行い、欠陥特徴量が閾値よりも大きいときに色異物ありと判定し、閾値よりも小さいときに色異物なしと判定する。なお、色異物とは、例えば、タイヤTの加硫成型工程において使用した離型剤がタイヤTの表面Sに付着した“てかり”となったものや、加硫成型工程における加熱によりゴムの色調が変化してしまったものを示す。
また、色異物判定部73により色異物を判定する他の方法として、カラー画像を構成する画素の輝度値が、互いに隣接する画素の輝度値との勾配が閾値よりも大きいときには色異物ありと判定し、閾値よりも小さいときには色異物なしと判定する。
色異物記憶部74は、色異物判定部73において色異物として検出された色異物の位置と大きさとを記憶する。
色異物記憶部74は、色異物判定部73において色異物として検出された色異物の位置と大きさとを記憶する。
凹凸欠陥検出手段18は、輝度分布波形算出部81と、ピーク間隔算出部82と、ピーク間隔判定部83と、表面傾斜角算出部84と、凹凸判定部85と、凹凸記憶部86とを備え、表面Sにおける微細な異物の付着、成型時の表面のザラツキや微細なキズ等を検出する。
図7は、赤色成分画像及び青色成分画像を小領域に分割する概念図である。
輝度分布波形算出部81は、赤色成分画像及び青色成分画像のそれぞれに含まれる輝度の分布が正規分布に近似するものとして扱い、赤色成分画像、青色成分画像毎の検査対象範囲における画素値の平均と標準偏差を算出する。
輝度分布波形算出部81は、赤色成分画像及び青色成分画像のそれぞれに含まれる輝度の分布が正規分布に近似するものとして扱い、赤色成分画像、青色成分画像毎の検査対象範囲における画素値の平均と標準偏差を算出する。
ピーク間隔算出部82は、赤色成分画像の小領域毎の輝度分布波形の赤色ピークと、青色成分画像の小領域毎の青色ピークとを検出し、赤色成分画像と青色成分画像とにおいて互いに対応する位置の小領域の赤色ピークと青色ピークとの間隔を算出する。
ピーク間隔判定部83は、ピーク間隔算出部82によって算出された小領域毎のピーク間隔をあらかじめ設定した閾値と比較し、ピーク間隔が閾値よりも小さいときには凹凸なしと判定し、ピーク間隔が閾値以上のときには異常ありとして判定する。
即ち、ピーク間隔判定部83は、赤色成分のピークと青色成分のピークとの間隔が閾値よりも小さければ、表面Sに細かなキズ、凹凸、うねり等がないと判定し、赤色成分のピークと青色成分のピークとの間隔が閾値以上であれば、光の照射部においてどちらか一方の色成分が、キズや凹凸によって遮られたり、乱反射することから、どちらか一方の色成分の分布が大きくなるので、表面Sに細かなキズ、凹凸、うねり等があると判定する。
このように、本発明によれば、表面Sに細かなキズ、凹凸、うねり等を検出することが可能となる。
即ち、ピーク間隔判定部83は、赤色成分のピークと青色成分のピークとの間隔が閾値よりも小さければ、表面Sに細かなキズ、凹凸、うねり等がないと判定し、赤色成分のピークと青色成分のピークとの間隔が閾値以上であれば、光の照射部においてどちらか一方の色成分が、キズや凹凸によって遮られたり、乱反射することから、どちらか一方の色成分の分布が大きくなるので、表面Sに細かなキズ、凹凸、うねり等があると判定する。
このように、本発明によれば、表面Sに細かなキズ、凹凸、うねり等を検出することが可能となる。
図8(a)は、タイヤ側面における表面Sの窪みを模式的に示した模式図、図8(b)は、タイヤ側面における表面Sの窪みの表面傾斜角αを算出する概念図を示す。なお、窪み10の深さが深くかつ幅が広い場合には、形状検査において検出することができる。表面傾斜角算出部84は、ピーク間隔判定部83で、ピーク間隔に異常ありと判定されたときに、表面Sの凹凸の傾斜の度合いを示す表面傾斜角αを算出する。
表面傾斜角αは、次のように算出される。
表面Sの点P(x,y,z)におけるタイヤ円周方向の傾斜をp、タイヤ半径方向の傾斜をqとすると、上記p,qは次式で表わせる。なお、下付きのBは、青色の光によるものを示し、下付きのRは赤色の光によるものを示している。例えば、pBは傾斜pに沿った青色の光の成分を示し、pRは傾斜pに沿った赤色の光の成分を示している。同様に、qBは傾斜qに沿った青色の光の成分を示し、qRは傾斜qに沿った赤色の光の成分を示している。
表面傾斜角αは、次のように算出される。
表面Sの点P(x,y,z)におけるタイヤ円周方向の傾斜をp、タイヤ半径方向の傾斜をqとすると、上記p,qは次式で表わせる。なお、下付きのBは、青色の光によるものを示し、下付きのRは赤色の光によるものを示している。例えば、pBは傾斜pに沿った青色の光の成分を示し、pRは傾斜pに沿った赤色の光の成分を示している。同様に、qBは傾斜qに沿った青色の光の成分を示し、qRは傾斜qに沿った赤色の光の成分を示している。
また、以下の式に示すように、第2撮像手段43で受光される赤色光の強度ERは、上記入射光ベクトルSRの法線ベクトルnへの正射影に被検体であるタイヤTの反射率ρを乗算したものであり、第2撮像手段43で受光される青色光の強度EBは、入射光ベクトルSBの法線ベクトルnへの正射影に反射率ρを乗算したものである。
よって、表面Sのタイヤ円周方向の傾斜pは、赤色光の強度ERの式と青色光の強度EBの式とから、タイヤ半径方向の傾斜qを消去することにより算出される。なお、上記pは、図8(b)に示すように、タイヤ側面のx-z断面における凹凸10A(図8(a)参照)の内壁の傾斜の度合い、即ち、表面傾斜角αと、p=tanαの関係にある。したがって、表面傾斜角αは、次式で表わすことができる。
このように、表面傾斜角算出部84では、式5に基づいて表面傾斜角αを算出する。
凹凸判定部85は、表面傾斜角αとあらかじめ設定された閾値とを比較して、ピーク間隔が閾値以上となっている原因が凹凸に起因するかどうかを判定する。つまり、表面傾斜角αが閾値よりも大きいときには、異常な凹凸ありと判定し、表面傾斜角αが閾値よりも小さいときには凹凸なしと判定する。
凹凸記憶部86は、凹凸判定部85で凹凸ありと判定したときのタイヤTにおける位置及び表面傾斜角αと、凹凸判定部85で凹凸なしと判定したときのタイヤTの位置とを記憶する。なお、凹凸判定部85で凹凸なしと判定したときのタイヤTにおける位置は、後段の工程において判定材料として利用するために記憶しておく。
凹凸記憶部86は、凹凸判定部85で凹凸ありと判定したときのタイヤTにおける位置及び表面傾斜角αと、凹凸判定部85で凹凸なしと判定したときのタイヤTの位置とを記憶する。なお、凹凸判定部85で凹凸なしと判定したときのタイヤTにおける位置は、後段の工程において判定材料として利用するために記憶しておく。
光沢欠陥検出手段19は、表面傾斜角算出部84により表面傾斜角αが検出され、凹凸判定部85により凹凸なしとして判定された位置の画像と、当該位置に対応するカラー画像とを比較し、当該位置が色異物欠陥検出手段17で異常なし、即ち、カラー画像において異常がなければ、異常なしとして判定し、色異物欠陥検出手段17で異常ありと判定されていた場合には、光沢に欠陥有りとして検出する。
以下、外観検査装置によるタイヤTの外観検査の工程について説明する。
まず、被検体であるタイヤTを回転テーブル21上に搭載するとともに、タイヤ側面の直上に、第1投光手段31と、第1撮像手段32とからなる形状取得装置3と、形状取得装置3に対して円周方向に所定角度位置ずれした位置に赤色照明41A及び青色照明41Bと第2撮像手段43とからなる表面状態取得装置4とをセットする。そして、モータ22を駆動・制御して回転テーブル21を回転駆動することにより、タイヤTを所定の回転速度で回転させる。
まず、被検体であるタイヤTを回転テーブル21上に搭載するとともに、タイヤ側面の直上に、第1投光手段31と、第1撮像手段32とからなる形状取得装置3と、形状取得装置3に対して円周方向に所定角度位置ずれした位置に赤色照明41A及び青色照明41Bと第2撮像手段43とからなる表面状態取得装置4とをセットする。そして、モータ22を駆動・制御して回転テーブル21を回転駆動することにより、タイヤTを所定の回転速度で回転させる。
次に、第1投光手段31からスリット状の緑色レーザをタイヤTの表面Sに照射しながら、スリット光の照射部を第1撮像手段32により撮像するとともに、赤色照明41A及び青色照明41Bから表面Sにおいて赤色光と青色光とが重なるように照射しながら赤色光と青色光とが重なる照射部を第2撮像手段43により撮像する。
そして、タイヤ1周分に亘りタイヤ側面の断面形状データと表面画像とを取得する。
そして、タイヤ1周分に亘りタイヤ側面の断面形状データと表面画像とを取得する。
次に、タイヤ1周分に亘る表面画像と断面形状データとが検査処理装置5に入力された後に、検査処理装置5は、検査処理を開始する。
図9乃至図10は、検査処理装置5のフローチャートを示す。以下、図9乃至図10を用いて検査処理装置5によるタイヤTの外観検査の処理について説明する。
まず、検査処理装置5は、画像重心算出部61により取得された複数の断面形状データの画像重心を算出する(S101)。次に、画像整列部62により画像重心が各フレームにおいて同一位置に配置されるように断面形状データを整列させる(S102)。次に、座標変換部63により断面形状データを座標変換してタイヤ形状の3次元形状データに変換する(S103)。また、平面データ作成部65により整列した断面形状データから、各断面形状データに含まれる高さ情報を除いて、輝度情報のみの平面データを抽出し、表面Sの緑色成分画像を作成する(S106)。
図9乃至図10は、検査処理装置5のフローチャートを示す。以下、図9乃至図10を用いて検査処理装置5によるタイヤTの外観検査の処理について説明する。
まず、検査処理装置5は、画像重心算出部61により取得された複数の断面形状データの画像重心を算出する(S101)。次に、画像整列部62により画像重心が各フレームにおいて同一位置に配置されるように断面形状データを整列させる(S102)。次に、座標変換部63により断面形状データを座標変換してタイヤ形状の3次元形状データに変換する(S103)。また、平面データ作成部65により整列した断面形状データから、各断面形状データに含まれる高さ情報を除いて、輝度情報のみの平面データを抽出し、表面Sの緑色成分画像を作成する(S106)。
次に、画像比較判定部64によりマスターデータと3次元形状データとを比較し、形状の異常の有無を判定する(S104)。詳細には、3次元形状データを構成する3次元座標と、マスターデータの3次元座標とを比較して、各座標位置における誤差を算出し、誤差が閾値以上のときには形状に異常ありと判定し、誤差が閾値以下のときは形状に異常なしと判定する(S105)。
次に、表面状態検査手段7によりタイヤTの表面Sの検査を行う。
まず、表面状態検査手段7は、色成分分離手段16により表面画像を赤色成分画像と青色成分画像とに分離する(S201)。次に、色異物欠陥検出手段17により表面Sにおける色異物の検査を行う。具体的には、色異物欠陥検出手段17によりS106から出力された緑色成分画像と、S201で分離された赤色成分画像及び青色成分画像とに含まれる輝度成分の正規化を行う(S202)。本実施形態における輝度成分の正規化とは、緑色成分画像や赤色成分画像及び青色成分画像に含まれる輝度値の明るさに関する情報は、大きさが異なるため、緑色成分画像と、赤色成分画像と、青色成分画像とで明るさが略同一になるように調整することである。また、輝度成分正規化部71は、緑色成分画像と、赤色成分画像及び青色成分画像の輝度成分の正規化の他に、緑色成分画像と、赤色成分画像及び青色成分画像の位置合わせを行う(S203)。
まず、表面状態検査手段7は、色成分分離手段16により表面画像を赤色成分画像と青色成分画像とに分離する(S201)。次に、色異物欠陥検出手段17により表面Sにおける色異物の検査を行う。具体的には、色異物欠陥検出手段17によりS106から出力された緑色成分画像と、S201で分離された赤色成分画像及び青色成分画像とに含まれる輝度成分の正規化を行う(S202)。本実施形態における輝度成分の正規化とは、緑色成分画像や赤色成分画像及び青色成分画像に含まれる輝度値の明るさに関する情報は、大きさが異なるため、緑色成分画像と、赤色成分画像と、青色成分画像とで明るさが略同一になるように調整することである。また、輝度成分正規化部71は、緑色成分画像と、赤色成分画像及び青色成分画像の輝度成分の正規化の他に、緑色成分画像と、赤色成分画像及び青色成分画像の位置合わせを行う(S203)。
次に、カラー画像合成部72により、輝度成分が正規化されるとともに、緑色成分画像と、赤色成分画像及び青色成分画像をカラー画像に合成する(S204)。次に、カラー画像は、色異物判定部73による例えばS205~S212に示すような画像処理フィルタ演算を行うことによって、色異物の有無が判定される。色異物の有無の判定がなされるとS301に移行し、全ての小領域の処理が終了していないときにはS122に移行して、S208からS212までを繰り返す。
次に、凹凸欠陥検出手段18により、形状検査手段6では検出することができない表面Sの微細な凹凸の検出をさらに行う。まず、輝度分布波形算出部81により赤色成分画像と青色成分画像における輝度分布波形をそれぞれ算出する。詳細には、色異物判定部73により分割した大きさと同じ大きさの小領域に赤色成分画像と青色成分画像を分割する(S301)。小領域(k=1)から輝度平均を算出する(S302)。次に、赤色成分画像及び青色成分画像それぞれの小領域の輝度分布波形を算出する(S303)。次に、赤色成分画像及び青色成分画像それぞれの赤色ピークと青色ピークとを検出する(S304)。次に、赤色ピークと青色ピークとのピーク間隔を算出する(S305)。次に、ピーク間隔が閾値以上かどうかを判定し、閾値以上のときにはS307に移行し、閾値よりも小さいときにはS311に移行する(S306)。S307では、表面傾斜角の算出を行う(S307)。次に、算出された表面傾斜角が閾値以上かどうかの判定を行い、表面傾斜角が閾値以上のときにはS309に移行し、閾値よりも小さいときにはS311に移行する(S308)。S309への移行により表面傾斜角に異常のあった凹凸位置と表面傾斜角とが記憶手段の凹凸記憶部86に記録される(S309)。次に、小領域全ての領域について処理が終了したかどうかの判定を行い(S310)、全ての小領域の処理が終了したときには、S401に移行し、全ての小領域の処理が終了していないときにはS311に移行して、S303からS310までを繰り返す。
そして、凹凸欠陥検出手段18において、凹凸なしと判定されたときには凹凸記憶部86に凹凸なしと出力し、凹凸ありと判定されたときには、表面傾斜角算出部84によりタイヤ側面における表面Sの傾斜角度αを算出する。そして、算出された表面傾斜角αを閾値と比較し、表面傾斜角αが閾値よりも小さいときには異常なしと判定し、表面傾斜角αが閾値以上のときには異常ありとして判定する。なお、表面傾斜角αの算出を行った場合には、表面傾斜角αの異常の有無に関わらず凹凸記憶部86に記憶される。
次に、光沢欠陥検出手段19により凹凸記憶部86に記録された凹凸位置と表面傾斜角αに異常なしと判定された位置に対応する色異物記憶部74に記憶された位置とを比較し、光沢欠陥を検出する(S401)。つまり、表面傾斜角αに異常なしと判定され、色異物有りと判定された位置とが重なるときには光沢欠陥に異常ありと判定する。また、表面傾斜角αに異常なしと判定され、色異物なしと判定された位置とが重なるときには光沢欠陥に異常なしと判定する。つまり、この場合は検査エラーが発生したことを示している。以上で検査処理装置5による処理工程が終了する。
以上説明したように、緑色のスリット状のレーザ光によって取得した形状データからタイヤ表面Sの画像を抽出することで緑色成分画像を作成し、緑色成分画像に赤色成分画像及び青色成分画像を合成してカラー画像を作成することによりタイヤ表面Sの色調が正確に得られるようになり、当該カラー画像を画像処理することでタイヤ表面Sにおける“色調の変化”や“てかり”等を精度良く判定することができるので、タイヤTの形状や表面状態の検査精度を向上させることができる。
なお、上記実施形態では、タイヤを被検体として説明したがタイヤに限らず、タイヤを構成する部材や、ホースやパイプ等の成形品の検査にも適用することができる。
なお、上記実施形態では、タイヤを被検体として説明したがタイヤに限らず、タイヤを構成する部材や、ホースやパイプ等の成形品の検査にも適用することができる。
また、上記実施形態では、第2投光手段41の赤色照明41A及び青色照明41BをLED照明として説明したが、LED照明に限らず、拡散光を照射する光源であっても良い。
1 外観検査装置、5 検査処理装置、6 形状検査手段、
7 表面状態検査手段、16 色成分分離手段、
17 色異物欠陥検出手段、18 凹凸欠陥検出手段、
19 光沢欠陥検出手段、31 第1投光手段、32 第1撮像手段、
41 第2投光手段、43 第2撮像手段、61 画像重心算出部、
62 画像整列部、63 座標変換部、64 画像比較判定部、
65 平面データ作成部、71 輝度成分正規化部、
72 カラー画像合成部、73 色異物判定部、74 色異物記憶部、
81 輝度分布波形算出部、82 ピーク間隔算出部、
83 ピーク間隔判定部、84 表面傾斜角算出部、85 凹凸判定部、
86 凹凸記憶部。
7 表面状態検査手段、16 色成分分離手段、
17 色異物欠陥検出手段、18 凹凸欠陥検出手段、
19 光沢欠陥検出手段、31 第1投光手段、32 第1撮像手段、
41 第2投光手段、43 第2撮像手段、61 画像重心算出部、
62 画像整列部、63 座標変換部、64 画像比較判定部、
65 平面データ作成部、71 輝度成分正規化部、
72 カラー画像合成部、73 色異物判定部、74 色異物記憶部、
81 輝度分布波形算出部、82 ピーク間隔算出部、
83 ピーク間隔判定部、84 表面傾斜角算出部、85 凹凸判定部、
86 凹凸記憶部。
Claims (4)
- 3種類の互いに波長の異なる光のうち中間の波長を有するスリット光を被検体表面に照射する第1投光手段と、前記スリット光の反射光を受光して被検体表面の反射輝度データを取得する第1撮像手段と、被検体表面の前記スリット光が照射する位置とは異なる位置において中間の波長以外の波長の異なる2つの光を異なる方向から互いに重なるように被検体表面に照射する第2投光手段と、前記2つの光が重なる部分の反射光を受光して被検体表面の表面データを取得する第2撮像手段と、前記表面データに含まれる2つの光の強度の割合から被検体表面の凹凸の有無を検出する凹凸欠陥検出手段と、反射輝度データと前記表面データとを合成して被検体表面の色調の変化を検出する色異物欠陥検出手段と、凹凸の有無と、色調の変化とに基づき被検体表面の光沢を検出する光沢欠陥検出手段とを備える外観検査装置。
- 前記中間の波長を有するスリット光が前記被検体表面に対して傾斜して照射されることを特徴とする請求項1記載の外観検査装置。
- 前記中間の波長を有するスリット光が複数の第1投光手段により構成されることを特徴とする請求項1及び請求項2記載の外観検査装置。
- 3種類の互いに波長の異なる光のうち中間の波長を有するスリット光を被検体表面に照射するとともに、前記スリット光の反射光を第1撮像手段により受光して被検体表面の反射輝度データを取得する工程と、
前記被検体表面の前記スリット光が照射する位置とは異なる位置において中間の波長以外の波長の異なる2つの光を異なる方向から互いに重なるように被検体表面に照射するとともに、前記2つの光が重なる部分の反射光を第2撮像手段により受光して被検体表面の表面データを取得する工程と、
前記第2撮像手段により取得された表面データに含まれる前記2つの光の強度の割合から前記被検体表面の凹凸の有無を検出する工程と、
前記第1撮像手段により取得された反射輝度データと表面データとを合成して前記被検体表面の色調の変化を検出する工程と、
前記凹凸の有無と、前記色調の変化とに基づき前記被検体表面の光沢を検出する工程と、
を含む外観検査方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/365,668 US9310278B2 (en) | 2011-12-28 | 2012-12-28 | Appearance inspection apparatus and appearance inspection method with uneveness detecting |
CN201280065630.6A CN104040324B (zh) | 2011-12-28 | 2012-12-28 | 外观检查设备和外观检查方法 |
EP12863785.7A EP2799848B1 (en) | 2011-12-28 | 2012-12-28 | Appearance inspection apparatus and appearance inspection method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-288373 | 2011-12-28 | ||
JP2011288373A JP5882730B2 (ja) | 2011-12-28 | 2011-12-28 | 外観検査装置及び外観検査方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013100124A1 true WO2013100124A1 (ja) | 2013-07-04 |
Family
ID=48697601
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/084058 WO2013100124A1 (ja) | 2011-12-28 | 2012-12-28 | 外観検査装置及び外観検査方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9310278B2 (ja) |
EP (1) | EP2799848B1 (ja) |
JP (1) | JP5882730B2 (ja) |
CN (1) | CN104040324B (ja) |
WO (1) | WO2013100124A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103439347A (zh) * | 2013-08-12 | 2013-12-11 | 安徽省科亿信息科技有限公司 | 一种瓶盖边缘缺陷检测方法与检测系统 |
JPWO2018216495A1 (ja) * | 2017-05-26 | 2020-03-26 | 新東工業株式会社 | 検査装置及び鋳造システム |
CN111024718A (zh) * | 2020-01-08 | 2020-04-17 | 苏州德龙激光股份有限公司 | 用于不同产品灰度值识别的线扫光源装置 |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9835524B2 (en) * | 2012-07-31 | 2017-12-05 | Pirelli Tyre S.P.A. | Method for segmenting the surface of a tyre and apparatus operating according to said method |
ES2890649T3 (es) * | 2013-05-23 | 2022-01-21 | Rina Consulting Centro Sviluppo Mat S P A | Método para la inspección de superficie de productos largos y aparato adecuado para llevar a cabo dicho método |
PL2860515T3 (pl) * | 2013-10-09 | 2021-12-13 | Hinterkopf Gmbh | Urządzenie inspekcyjne, sposób kontroli optycznej powierzchni przedmiotu cylindrycznego i cyfrowe atramentowe urządzenie drukujące |
JP5775132B2 (ja) * | 2013-11-01 | 2015-09-09 | 株式会社ブリヂストン | タイヤの検査装置 |
EP3065941B1 (en) * | 2013-11-08 | 2019-04-24 | Compagnie Générale des Etablissements Michelin | Tire uniformity improvement through modified sampling of uniformity parameters |
JP6614137B2 (ja) * | 2014-04-07 | 2019-12-04 | 横浜ゴム株式会社 | タイヤモールドの刻印検査方法および装置 |
JP6289283B2 (ja) * | 2014-06-20 | 2018-03-07 | 株式会社ブリヂストン | 円環状回転体の表面形状データの補正方法、及び、円環状回転体の外観検査装置 |
JP6746578B2 (ja) | 2014-12-22 | 2020-08-26 | ピレリ・タイヤ・ソチエタ・ペル・アツィオーニ | 製造ラインでタイヤをチェックする装置 |
BR112017013327B1 (pt) * | 2014-12-22 | 2022-05-24 | Pirelli Tyre S.P.A. | Método e aparelho para verificar pneus em uma linha de produção de pneu. |
KR20170107952A (ko) * | 2015-01-29 | 2017-09-26 | 가부시키가이샤 데크시스 | 광학식 외관 검사 장치 및 이를 이용한 광학식 외관 검사 시스템 |
JP6576059B2 (ja) | 2015-03-10 | 2019-09-18 | キヤノン株式会社 | 情報処理、情報処理方法、プログラム |
EP3315951A4 (en) * | 2015-06-25 | 2018-12-26 | JFE Steel Corporation | Surface defect detection apparatus and surface defect detection method |
EP3391011B1 (en) * | 2015-12-16 | 2020-02-19 | Pirelli Tyre S.p.A. | Method and apparatus for checking tyres |
JP6384507B2 (ja) * | 2016-03-31 | 2018-09-05 | トヨタ紡織株式会社 | エネルギー吸収体 |
FR3049709B1 (fr) * | 2016-04-05 | 2019-08-30 | Areva Np | Procede de detection d'un defaut sur une surface par eclairage multidirectionnel et dispositif associe |
JP2017198612A (ja) * | 2016-04-28 | 2017-11-02 | キヤノン株式会社 | 検査装置、検査システム、および物品製造方法 |
CN106500627B (zh) * | 2016-10-19 | 2019-02-01 | 杭州思看科技有限公司 | 含有多个不同波长激光器的三维扫描方法及扫描仪 |
IT201700016046A1 (it) | 2017-02-14 | 2018-08-14 | Tekna Automazione E Controllo S R L | Apparato per il rilevamento e la verifica di difetti superficiali di un pneumatico al termine di un processo di produzione |
DK3367054T3 (da) | 2017-02-28 | 2020-07-13 | Phenospex B V | System til optisk registrering af objekter |
US20190012782A1 (en) * | 2017-07-05 | 2019-01-10 | Integrated Vision Systems LLC | Optical inspection apparatus and method |
CN107894429A (zh) * | 2018-01-10 | 2018-04-10 | 南京火眼猴信息科技有限公司 | 一种用于隧道检测图像捕获装置的补光装置 |
CN109115773A (zh) * | 2018-07-20 | 2019-01-01 | 苏州光图智能科技有限公司 | 轮胎信息验证方法、装置及存储介质 |
US11238303B2 (en) * | 2019-05-15 | 2022-02-01 | Getac Technology Corporation | Image scanning method for metallic surface and image scanning system thereof |
JP7363217B2 (ja) * | 2019-09-03 | 2023-10-18 | 住友ゴム工業株式会社 | 外観検査装置 |
JP7367408B2 (ja) * | 2019-09-06 | 2023-10-24 | 住友ゴム工業株式会社 | 外観検査方法及び外観検査装置 |
FR3112385B1 (fr) * | 2020-07-07 | 2023-06-09 | Michelin & Cie | Dispositif et procédé de caractérisation d’un pneumatique en uniformité |
US11562472B2 (en) * | 2020-09-30 | 2023-01-24 | Uveye Ltd. | System of tread depth estimation and method thereof |
KR20220090651A (ko) * | 2020-12-22 | 2022-06-30 | 현대자동차주식회사 | 자율 주행 제어 장치, 그를 포함하는 차량 시스템, 및 그 방법 |
JP7339589B2 (ja) * | 2021-05-28 | 2023-09-06 | 横浜ゴム株式会社 | タイヤの形状測定装置および方法 |
CN113720854B (zh) * | 2021-08-20 | 2023-07-11 | 东风汽车集团股份有限公司 | 一种低光泽度车身油漆涂层外观检测方法 |
NL2030196B1 (en) * | 2021-12-20 | 2023-06-28 | Ind Physics Inks & Coatings B V | Method of analysing optical properties of material. |
WO2023210313A1 (ja) * | 2022-04-28 | 2023-11-02 | パナソニックIpマネジメント株式会社 | 測定方法、測定システム、および情報処理方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5892904A (ja) * | 1981-11-30 | 1983-06-02 | Hitachi Ltd | 面方向の検出方法及び同装置 |
JPS5952735A (ja) * | 1982-09-20 | 1984-03-27 | Kawasaki Steel Corp | 熱間鋼片の表面欠陥検出方法 |
JP2009216485A (ja) * | 2008-03-10 | 2009-09-24 | Toppan Printing Co Ltd | 微小物体の形状不良判定検査装置 |
WO2010024254A1 (ja) | 2008-08-26 | 2010-03-04 | 株式会社ブリヂストン | 被検体の凹凸検出方法とその装置 |
JP2011247639A (ja) * | 2010-05-24 | 2011-12-08 | Bridgestone Corp | タイヤ検査装置及びタイヤ検査方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2153150T3 (es) | 1997-08-22 | 2001-02-16 | Fraunhofer Ges Forschung | Metodo y aparato para la inspeccion automatica de superficies en movimiento. |
JP3949796B2 (ja) * | 1997-11-06 | 2007-07-25 | 株式会社ブリヂストン | タイヤ形状判定装置 |
AT406528B (de) * | 1998-05-05 | 2000-06-26 | Oesterr Forsch Seibersdorf | Verfahren und einrichtung zur feststellung, insbesondere zur visualisierung, von fehlern auf der oberfläche von gegenständen |
JP4514007B2 (ja) * | 1999-12-28 | 2010-07-28 | 株式会社ブリヂストン | 被検体の外観形状検査方法及び装置 |
FI20000032A0 (fi) * | 2000-01-07 | 2000-01-07 | Spectra Physics Visiontech Oy | Järjestely ja menetelmä pinnan tarkistamiseksi |
JP2003240521A (ja) * | 2002-02-21 | 2003-08-27 | Bridgestone Corp | 被検体の外観・形状検査方法とその装置、及び、被検体の外観・形状検出装置 |
EP1620712A1 (en) * | 2003-04-29 | 2006-02-01 | Surfoptic Limited | Measuring a surface characteristic |
US7177740B1 (en) * | 2005-11-10 | 2007-02-13 | Beijing University Of Aeronautics And Astronautics | Method and apparatus for dynamic measuring three-dimensional parameters of tire with laser vision |
JP5019849B2 (ja) * | 2006-11-02 | 2012-09-05 | 株式会社ブリヂストン | タイヤの表面検査方法および装置 |
JP5014003B2 (ja) * | 2007-07-12 | 2012-08-29 | キヤノン株式会社 | 検査装置および方法 |
FR2925706B1 (fr) * | 2007-12-19 | 2010-01-15 | Soc Tech Michelin | Dispositif d'evaluation de la surface d'un pneumatique. |
US7797133B2 (en) | 2008-09-10 | 2010-09-14 | 3M Innovative Properties Company | Multi-roller registered repeat defect detection of a web process line |
FR2938330A1 (fr) * | 2008-11-07 | 2010-05-14 | Michelin Soc Tech | Evaluation du relief de la surface d'un pneumatique par stereovision active |
JP5318657B2 (ja) * | 2009-05-13 | 2013-10-16 | 株式会社ブリヂストン | タイヤの検査装置 |
-
2011
- 2011-12-28 JP JP2011288373A patent/JP5882730B2/ja not_active Expired - Fee Related
-
2012
- 2012-12-28 US US14/365,668 patent/US9310278B2/en active Active
- 2012-12-28 EP EP12863785.7A patent/EP2799848B1/en not_active Not-in-force
- 2012-12-28 CN CN201280065630.6A patent/CN104040324B/zh not_active Expired - Fee Related
- 2012-12-28 WO PCT/JP2012/084058 patent/WO2013100124A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5892904A (ja) * | 1981-11-30 | 1983-06-02 | Hitachi Ltd | 面方向の検出方法及び同装置 |
JPS5952735A (ja) * | 1982-09-20 | 1984-03-27 | Kawasaki Steel Corp | 熱間鋼片の表面欠陥検出方法 |
JP2009216485A (ja) * | 2008-03-10 | 2009-09-24 | Toppan Printing Co Ltd | 微小物体の形状不良判定検査装置 |
WO2010024254A1 (ja) | 2008-08-26 | 2010-03-04 | 株式会社ブリヂストン | 被検体の凹凸検出方法とその装置 |
JP2011247639A (ja) * | 2010-05-24 | 2011-12-08 | Bridgestone Corp | タイヤ検査装置及びタイヤ検査方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103439347A (zh) * | 2013-08-12 | 2013-12-11 | 安徽省科亿信息科技有限公司 | 一种瓶盖边缘缺陷检测方法与检测系统 |
CN103439347B (zh) * | 2013-08-12 | 2016-01-20 | 安徽省科亿信息科技有限公司 | 一种瓶盖边缘缺陷检测方法 |
JPWO2018216495A1 (ja) * | 2017-05-26 | 2020-03-26 | 新東工業株式会社 | 検査装置及び鋳造システム |
CN111024718A (zh) * | 2020-01-08 | 2020-04-17 | 苏州德龙激光股份有限公司 | 用于不同产品灰度值识别的线扫光源装置 |
Also Published As
Publication number | Publication date |
---|---|
JP5882730B2 (ja) | 2016-03-09 |
EP2799848A4 (en) | 2015-08-12 |
CN104040324B (zh) | 2016-06-29 |
EP2799848B1 (en) | 2019-03-06 |
EP2799848A1 (en) | 2014-11-05 |
US20150002847A1 (en) | 2015-01-01 |
CN104040324A (zh) | 2014-09-10 |
US9310278B2 (en) | 2016-04-12 |
JP2013137239A (ja) | 2013-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5882730B2 (ja) | 外観検査装置及び外観検査方法 | |
JP6370177B2 (ja) | 検査装置および検査方法 | |
JP5436431B2 (ja) | 被検体の凹凸検出方法とその装置 | |
JP5014003B2 (ja) | 検査装置および方法 | |
JP5559840B2 (ja) | 画像センサのチルトを求めるための方法 | |
TWI471542B (zh) | Tire shape inspection device and tire shape inspection method | |
WO2003071224A1 (fr) | Procede et dispositif de detection d'un objet, procede et dispositif d'examen d'un objet | |
JP6834174B2 (ja) | 外観検査方法および外観検査装置 | |
JP6317892B2 (ja) | 外観検査装置及び外観検査方法 | |
TWI636234B (zh) | 外形量測方法、外形量測設備及形變檢測設備 | |
JP5837283B2 (ja) | タイヤの外観検査方法および外観検査装置 | |
US10697857B2 (en) | Method and apparatus for checking tyres in a production line | |
CN107727665B (zh) | 外观检查装置及外观检查方法 | |
JP6605772B1 (ja) | 欠陥検査装置および欠陥検査方法 | |
JP2014240766A (ja) | 表面検査方法および表面検査装置 | |
JP2010014670A (ja) | 外観検査装置、外観検査方法、画像処理方法及びこれを利用した外観検査装置 | |
JP2010249700A (ja) | 表面状態検出方法とその装置 | |
JP5570890B2 (ja) | タイヤの外観検査方法および外観検査装置 | |
KR101168399B1 (ko) | 타이어 휠 검사방법 | |
JP2008203168A (ja) | ベルトの外観検査方法 | |
CN112683790B (zh) | 物件表面可能缺陷的影像检测扫描方法及其系统 | |
JP2002214155A (ja) | 被検査物の欠陥検査装置 | |
JP2024119510A (ja) | タイヤ外観検査装置 | |
CN112683788A (zh) | 物件表面可能缺陷的影像检测扫描方法及其系统 | |
JP2012093139A (ja) | 表面検査装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12863785 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14365668 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012863785 Country of ref document: EP |