[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013180200A1 - 標的組織特異的抗原結合分子 - Google Patents

標的組織特異的抗原結合分子 Download PDF

Info

Publication number
WO2013180200A1
WO2013180200A1 PCT/JP2013/064975 JP2013064975W WO2013180200A1 WO 2013180200 A1 WO2013180200 A1 WO 2013180200A1 JP 2013064975 W JP2013064975 W JP 2013064975W WO 2013180200 A1 WO2013180200 A1 WO 2013180200A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
antigen
thr
tyr
leu
Prior art date
Application number
PCT/JP2013/064975
Other languages
English (en)
French (fr)
Inventor
智之 井川
茂郎 丹波
加奈子 辰巳
駿 清水
正次郎 門野
Original Assignee
中外製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014518713A priority Critical patent/JPWO2013180200A1/ja
Priority to KR1020207035121A priority patent/KR102413947B1/ko
Priority to KR1020247020260A priority patent/KR20240095484A/ko
Priority to EP20196633.0A priority patent/EP3795215A1/en
Priority to MX2014014678A priority patent/MX2014014678A/es
Priority to SG11201407963PA priority patent/SG11201407963PA/en
Priority to CA2874721A priority patent/CA2874721A1/en
Priority to CN201711126750.3A priority patent/CN107964042B/zh
Priority to CN201380040397.0A priority patent/CN104487457B/zh
Priority to DK13797450.7T priority patent/DK2857420T3/da
Priority to AU2013268418A priority patent/AU2013268418B2/en
Priority to US14/402,574 priority patent/US20150166654A1/en
Priority to KR1020147035750A priority patent/KR20150016579A/ko
Priority to KR1020227021187A priority patent/KR102677704B1/ko
Application filed by 中外製薬株式会社 filed Critical 中外製薬株式会社
Priority to RU2014154067A priority patent/RU2743463C2/ru
Priority to EP13797450.7A priority patent/EP2857420B1/en
Publication of WO2013180200A1 publication Critical patent/WO2013180200A1/ja
Priority to HK15105750.2A priority patent/HK1205149A1/xx
Priority to AU2018201358A priority patent/AU2018201358B2/en
Priority to US16/539,765 priority patent/US11673947B2/en
Priority to AU2020203710A priority patent/AU2020203710B2/en
Priority to US18/138,888 priority patent/US20230279099A1/en
Priority to AU2023229507A priority patent/AU2023229507A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/244Interleukins [IL]
    • C07K16/248IL-6
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/005Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies constructed by phage libraries
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2866Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/44Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material not provided for elsewhere, e.g. haptens, metals, DNA, RNA, amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/563Immunoassay; Biospecific binding assay; Materials therefor involving antibody fragments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6845Methods of identifying protein-protein interactions in protein mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6863Cytokines, i.e. immune system proteins modifying a biological response such as cell growth proliferation or differentiation, e.g. TNF, CNF, GM-CSF, lymphotoxin, MIF or their receptors
    • G01N33/6869Interleukin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/52Assays involving cytokines
    • G01N2333/54Interleukins [IL]
    • G01N2333/5412IL-6
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/20Screening for compounds of potential therapeutic value cell-free systems

Definitions

  • the present invention relates to an antigen-binding molecule containing an antigen-binding domain whose binding activity to an antigen varies depending on the concentration of a target tissue-specific compound, a method for producing and screening for the antigen-binding molecule, and a medicament containing the antigen-binding molecule A composition is provided.
  • Antibodies are attracting attention as pharmaceuticals because of their high stability in plasma and few side effects. Among them, many IgG-type antibody drugs are on the market, and many antibody drugs have been developed (Non-patent Documents 1 and 2).
  • Non-patent Document 3 As conventional cancer therapeutic agents using antibody drugs, Rituxan for CD20 antigen, cetuximab for EGFR antigen, Herceptin for HER2 antigen, etc. have been approved (Non-patent Document 3). These antibody molecules bind to antigens expressed in cancer cells and exert damaging activity against cancer cells by ADCC and the like. It is known that the cytotoxic activity by ADCC or the like depends on the number of antigens expressed in the target cells of the therapeutic antibody (Non-patent Document 4). Therefore, the expression level of the target antigen is high. From the viewpoint of the effect of the antibody for use, it is preferable.
  • the antigen targeted by the therapeutic antibody as a cancer therapeutic agent is specifically expressed in cancer cells.
  • an antibody molecule against EpCAM antigen known as a cancer antigen was considered promising as a cancer therapeutic agent, but EpCAM antigen is also known to be expressed in the pancreas. It has been reported that by administering an anti-EpCAM antibody, side effects of pancreatitis are observed due to cytotoxic activity against the pancreas (Non-patent Document 5).
  • Non-patent Document 6 In response to the success of antibody drugs that exert cytotoxic activity due to ADCC activity, enhancement of ADCC activity by removing the fucose of the N-type sugar chain in the Fc region of natural human IgG1 (Non-patent Document 6), natural human A second generation improved antibody molecule that exhibits strong cytotoxic activity by enhancing ADCC activity by enhancing the binding to Fc ⁇ RIIIa by amino acid substitution in the Fc region of IgG1 (Non-patent Document 7) has been reported.
  • ADC Antibody Drug Conjugate
  • a drug having potent cytotoxic activity is conjugated with an antibody as an antibody drug that exerts a cytotoxic activity on cancer cells by a mechanism other than the ADCC activity mediated by NK cells described above
  • improved antibody molecules that exhibit stronger cytotoxic activity such as low-molecular-weight antibodies (Non-patent Document 9) that exert cytotoxic activity against cancer cells by recruiting T cells to cancer cells have also been reported. .
  • Such antibody molecules that exert stronger cytotoxic activity can also exert cytotoxic activity against cancer cells that do not express much antigen, but also against normal tissues with less antigen expression. Similarly, it exerts cytotoxic activity.
  • cetuximab which is a natural human IgG1 against EGFR antigen
  • EGFR-BiTE a bispecific antibody against CD3 and EGFR
  • EGFR-BiTE a bispecific antibody against CD3 and EGFR
  • EGFR-BiTE a powerful cell against cancer cells by recruiting T cells to cancer cells It can exert an anti-tumor effect due to its damaging activity.
  • EGFR-BiTE since EGFR is also expressed in normal tissues, it has been recognized that serious side effects appear when EGFR-BiTE is administered to cynomolgus monkeys (Non-patent Document 10).
  • bivatuzumab mertansine an ADC that binds mertansine to an antibody against CD44v6 that is highly expressed in cancer cells
  • the target antigen when using an antibody that can exert strong cytotoxic activity against cancer cells with low antigen expression, the target antigen must be expressed in a very cancer-specific manner, It seems that the number of cancer antigens that are extremely cancer-specifically expressed is limited, such as HER2 that is the target antigen of Herceptin and EGFR that is the target antigen of cetuximab, which is also expressed in normal tissues. Therefore, although the cytotoxic activity against cancer can be enhanced, side effects due to the cytotoxic action on normal tissues can be problematic.
  • Non-patent Document 12 iplimumab, which enhances tumor immunity by inhibiting CTLA4, which contributes to immunosuppression in cancer, extends Overall survival to metastatic melanoma.
  • iplimumab inhibits CTLA4 systemically, it enhances tumor immunity, while it causes serious side effects like autoimmune diseases due to systemic immunity activation.
  • Non-patent Document 14 antibody drugs that exhibit therapeutic effects by inhibiting inflammatory cytokines in inflammatory and autoimmune diseases are known as antibody drugs against diseases other than cancer.
  • Remicade and Humira which target TNF
  • Actemra which targets IL-6R
  • side effects of symptom are observed (Non-patent Document 15).
  • Non-Patent Document 16 there is almost no report on a technique that enables an antibody drug to specifically act on a target tissue in order to solve the above-mentioned side effects. For example, regarding a lesion site such as a cancer tissue or an inflammatory tissue, a pH-dependent antibody utilizing the fact that the pH in these target tissues is an acidic condition has been reported (Patent Documents 1 and 2).
  • Patent Document 3 a method for producing an antibody that exhibits antigen-binding activity for the first time by being cleaved with a protease expressed at a lesion site such as cancer tissue or inflammatory tissue has been reported (Patent Document 3).
  • a protease expressed at a lesion site such as cancer tissue or inflammatory tissue
  • Patent Document 3 since the cleavage of the antibody by the protease is irreversible, it is a problem that the antibody cleaved at the lesion site can bind to the antigen even in the normal tissue by returning to the normal tissue in the bloodstream. it was thought. Moreover, it was thought that there was a problem also in the cancer specificity of such protease. For this reason, there is no known technique that does not act systemically in normal tissues or blood, but acts reversibly in cancerous or inflammatory sites, which are lesion sites, in order to exert drug efficacy while avoiding side effects.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a pharmaceutical composition useful for treatment of a disease caused by a target tissue, and an active ingredient thereof.
  • another object is to provide a screening method and a production method for the pharmaceutical composition and the active ingredient.
  • the present inventors have created an antigen-binding molecule containing an antigen-binding domain whose binding activity to an antigen changes depending on the concentration of a target tissue-specific compound. .
  • the present inventors have found that the antigen-binding molecule or the pharmaceutical composition containing the antigen-binding molecule is useful for the treatment of a disease caused by the target tissue, and that the antigen-binding molecule is administered. It was found that the antigen-binding molecule is useful in the treatment of a disease caused by a target tissue, and in the manufacture of a medicament for the treatment of a disease caused by a target tissue.
  • the present inventors have completed the present invention by creating a screening method and a production method of the antigen-binding molecule.
  • the present invention is as follows: (1) an antigen-binding molecule comprising an antigen-binding domain whose binding activity to an antigen varies depending on the concentration of a target tissue-specific compound; (2) The antigen-binding molecule according to (1), wherein the target tissue is a cancer tissue, (3) The cancer tissue-specific compound is a cancer cell-specific metabolite, an immune cell-specific metabolite infiltrating the cancer tissue, or a stromal cell-specific metabolite of the cancer tissue.
  • Antigen-binding molecules (4) The antigen-binding molecule according to (1), wherein the target tissue is an inflammatory tissue, (5) The antigen according to (4), wherein the inflammatory tissue-specific compound is an immune cell-specific metabolite infiltrating the inflammatory tissue or a normal cell-specific metabolite damaged in the inflammatory tissue.
  • Binding molecule (6) The target tissue-specific metabolite is at least one selected from nucleosides having a purine ring structure, amino acids and metabolites thereof, lipids and metabolites thereof, primary metabolites of sugar metabolism, nicotinamide and metabolites thereof.
  • the antigen-binding molecule according to (1) which is one compound, (7)
  • the target tissue-specific metabolite is selected from adenosine, adenosine triphosphate, inosine, alanine, glutamic acid, aspartic acid, kynurenine, prostaglandin E2, succinic acid, citric acid, or 1-methylnicotinamide
  • the antigen-binding molecule according to (6), which is at least one compound (8) The antigen-binding molecule according to any one of (1) to (7), wherein the antigen is a membrane-type molecule.
  • the antigen-binding molecule according to any one of (1) to (8) which is an antigen-binding molecule having neutralizing activity
  • the antigen-binding molecule according to any one of (1) to (9), which is an antigen-binding molecule having cytotoxic activity (11)
  • the amino acid at position 315 317 of the amino acid is Glu or Gln
  • 318 of the amino acid is His, Leu, Asn, Pro, Gln, Arg, Thr, one of Val or Tyr
  • the amino acid at position 320 is Asp, Phe, Gly, His, Ile, Leu, Asn, Pro, Ser, Thr, Val, one of Trp or Tyr
  • 322 of the amino acid is Ala, Asp, Phe, Gly, His, Ile, Pro, Ser, Thr, Val, one of Trp or Tyr
  • the amino acid at position 323 is Ile
  • 324 of the amino acid is Asp, Phe, Gly, His, Ile, Leu, Met, Pro, Arg, Thr, Val, one of Trp or Tyr
  • 325 of the amino acid is Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Pro, Gln, Arg, Ser, Thr, Val, Trp or Tyr,
  • the Fc region was added such that the composition of the sugar chain bound to the EU numbering position 297 of the Fc region was higher in the proportion of the Fc region bound to the fucose-deficient sugar chain, or bisecting N-acetylglucosamine was added
  • 288 of the amino acid is either Asn or Pro
  • 293 of the amino acid is Val
  • 307 of the amino acid is one of Ala, Glu, Gln, or Met
  • the amino acid at position 311 is Ala, Glu, Ile, Lys, Leu, Met, Ser, Val, or Trp
  • 309 amino acid is Pro
  • the amino acid at position 312 is either Ala, Asp, or Pro
  • 314 of the amino acid is either Ala or Leu
  • Lys for the amino acid at position 316 317 amino acid is Pro
  • 318 of the amino acid is either Asn or Thr
  • 332 of the amino acid is Phe
  • 339 of the amino acid is either Asn, Thr, or Trp
  • the amino acid at position 341 is Pro
  • 343 of the amino acid is Glu, His, Lys, Gln, Arg, Thr, or Tyr, Arg for the amino acid at position 375
  • the binding activity to FcRn under the acidic pH condition of the Fc region is enhanced from the binding activity to FcRn of the Fc region contained in the constant region described in SEQ ID NO: 5, 6, 7, or 8.
  • the antigen-binding molecule according to (29), which is an Fc region (32) Among the amino acid sequences of the Fc region contained in the constant region of SEQ ID NO: 5, 6, 7, or 8, the Fc region is represented by EU numbering at positions 238, 244, 245, 249, 250, 251, 252, 253, 254, 255, 255, 256, 257, 258, 260, 262, 265, 270, 272, 279, 283 285, 286, 288, 293, 303, 305, 307, 308, 309, 311, 312, 314, 316, 317, 318, 332, 332, 339 340, 341, 343, 356, 360, 362, 375, 376, 377, 377, 378, 380, 382, 385, 386, 387, 388, 3
  • 288 of the amino acid is either Asn or Pro
  • 293 of the amino acid is Val
  • 307 of the amino acid is one of Ala, Glu, Gln, or Met
  • the amino acid at position 311 is Ala, Glu, Ile, Lys, Leu, Met, Ser, Val, or Trp
  • 309 amino acid is Pro
  • the amino acid at position 312 is either Ala, Asp, or Pro
  • 314 of the amino acid is either Ala or Leu
  • Lys for the amino acid at position 316 317 amino acid is Pro
  • 318 of the amino acid is either Asn or Thr
  • 332 of the amino acid is Phe
  • 339 of the amino acid is either Asn, Thr, or Trp
  • the amino acid at position 341 is Pro
  • 343 of the amino acid is Glu, His, Lys, Gln, Arg, Thr, or Tyr, Arg for the amino acid at position 375
  • the Fc region is represented by EU numbering among the amino
  • the amino acid at position 248 250 of the amino acid is Ala, Phe, Ile, Met, Gln, Ser, Val, Trp, or Tyr, 252 of the amino acid is Phe, Trp, or Tyr, Thr, the amino acid at position 254 Glu for the 255th amino acid
  • the 256th amino acid is Asp, Asn, Glu, or Gln
  • 257 of the amino acid is one of Ala, Gly, Ile, Leu, Met, Asn, Ser, Thr, or Val
  • the amino acid at position 258 is His, Ala for the amino acid at position 265 286 of the amino acid is either Ala or Glu
  • numerator switch antibody (Small
  • FIG. 1 It is a figure which shows the result of binding ELISA with respect to human IL-6 of an antibody.
  • the vertical axis represents the absorbance value obtained by evaluating the binding activity of each antibody to human IL-6 depending on the presence or absence of each low molecule.
  • the vertical axis represents the change in response (RU) before and after IL-6 interaction, and the horizontal axis represents the concentration of kynurenine ( ⁇ mol / L) contained in the solution at that time. It is the graph which evaluated the response with respect to H01 fix
  • the vertical axis represents the change in response (RU) before and after IL-6 interaction, and the horizontal axis represents the concentration of kynurenine ( ⁇ mol / L) contained in the solution at that time.
  • the vertical axis in the figure represents the normalized value with the binding amount of A11 in the presence of 100 ⁇ mol / L kynurenine as 100, and the horizontal axis represents the elapsed time (seconds) after the start of the interaction. It is a sensorgram obtained when 800, 400, 200, 100, 50, 25 nmol / L kynurenine interacts with IL-6 immobilized on a sensor chip.
  • the vertical axis represents the change (RU) in the binding amount of kynurenine to IL-6 (the response at the start of the interaction experiment was 0), and the horizontal axis represents the elapsed time from the start of the interaction experiment.
  • 2 is a diagram showing the structure of a 2′-Adenosine-PEG- peptide, which is an adenosine analog used for immunization of rabbits. It is a figure which shows the structure of 5'-Adenosine-PEG- peptide which is an adenosine analog used for the immunization to a rabbit. It is a figure which shows the structure of 2'-Adenosine-PEG-biotin which substituted the peptide part of the adenosine analog used for the immunization to a rabbit with biotin.
  • N_binding_100 obtained by dividing the amount of binding when each antibody interacts with 2'-Adenosine-PEG-Biotin divided by the capture amount (RU) of each antibody is plotted on the vertical axis. It is a figure which represents on the horizontal axis the value (N_stability_100) which divided the value 60 seconds after 2'- Adenosine-PEG-Biotin dissociated from each antibody after interaction by the capture amount (RU) of each antibody.
  • the sensorgram represents the interaction between 7.81, 31.3, 125, and 500 nM antigen and SMB0002 in order from the bottom.
  • the sensorgram represents the interaction between SMB0002 and 78.1, 313, 1250, 5000 nM antigen in order from the bottom.
  • It is a sensorgram of surface plasmon resonance analysis which shows that clone SMB0089 binds to adenosine (interaction).
  • the sensorgram represents the interaction between 7.81, 31.3, 125, and 500 nM antigen and SMB0089 in order from the bottom. It is a sensorgram of surface plasmon resonance analysis showing that clone SMB0089 binds to ATP (interaction). The sensorgram represents the interaction between SMB00089 and 78.1, 313, 1250, 5000 nM antigen in order from the bottom. It is a sensorgram of surface plasmon resonance analysis which shows that clone SMB0104 binds to adenosine (interaction). The sensorgram represents the interaction between SMB0104 and 7.81, 31.3, 500 nM antigen in order from the bottom.
  • the sensorgram represents the interaction between 78.1, 313, 1250, and 5000 nM antigen and SMB0104 in order from the bottom.
  • the sensorgram represents the interaction between 5, 50 ⁇ M antigen and SMB0171 in order from the bottom.
  • I6NMSC1-3_ # depending on the presence or absence of each small molecule (ATP, adenosine, inosine, PGE2, succinic acid, lactic acid, kynurenine, small molecule cocktail), with the vertical axis representing the specific activity calculated from the absorbance at 450 nm wavelength 3 shows the binding activity of antibody 03 to human IL-6. It is a figure which shows the result of binding ELISA with respect to human IL-6 of an antibody.
  • I6NMSC1-3_ # depending on the presence or absence of each small molecule (ATP, adenosine, inosine, PGE2, succinic acid, lactic acid, kynurenine, small molecule cocktail), with the vertical axis representing the specific activity calculated from the absorbance at 450 nm wavelength 17 shows the binding activity of antibody 17 to human IL-6. It is a figure which shows the result of binding ELISA with respect to HSA of an antibody.
  • the vertical axis represents the absorbance value at 450 nm wavelength, and the binding of HSNMSC1-4_ # 22 antibody to HSA with or without each small molecule (ATP, adenosine, inosine, PGE2, succinic acid, lactic acid, kynurenine, small molecule cocktail) Shows activity. It is a figure which shows the result of ELISA in presence / absence of ATP and / or Adenosine 1 mM with respect to human IL-6 of clone I6DL2C5-4_076 obtained from the rational design antibody library.
  • the vertical axis represents the absorbance value obtained by evaluating the binding activity of the antibody to human IL-6.
  • Negative control represents the results when using M13KO7 Helper Phage. It is a figure which shows the result of ELISA in presence / absence of ATP and / or Adenosine 1 mM for Human Serum Albumin of clone HSDL3C5-4_015 obtained from the rational design antibody library. The vertical axis represents the absorbance value obtained by evaluating the binding activity of the antibody to human serum albumin. Negative control (Negative Control) represents the results when using M13KO7 Helper Phage.
  • Clone 6RAD2C1-4_011 and 6RAD2C1-4_076 obtained from the rational design antibody library in the presence or absence of ATP and / or Adenosine (described as ADO) 1 mM for human IL-6 Receptor and small molecule cocktail It is a figure which shows the result of ELISA in presence or absence of (SC). The vertical axis represents the absorbance value obtained by evaluating the binding activity of the antibody to human IL-6 receptor. Negative control (Negative Control) represents the results when using M13KO7 Helper Phage. It is a figure which shows the result of binding ELISA with respect to human IL-6R of clone 6RNMSC1-2_F02.
  • the vertical axis represents the absorbance value obtained by evaluating the binding activity of the antibody to human IL-6R depending on the presence or absence of each small molecule. It is a figure which shows the result of the binding ELISA with respect to human IL-6R of clone 6RNMSC1-3_G02.
  • the vertical axis represents the absorbance value obtained by evaluating the binding activity of the antibody to human IL-6R depending on the presence or absence of each small molecule. It is a figure which shows the result of the binding ELISA with respect to human IL-6R of an antibody.
  • the vertical axis represents the absorbance value obtained by evaluating the binding activity of the antibody to human IL-6R based on the presence or absence of each amino acid or amino acid metabolite.
  • IL-6R immobilized on sensor chip CM5 was allowed to interact with 6RNMSC1-2_F02 in the presence of 100 ⁇ mol / L kynurenine, and then 6RNMSC1-2_F02 under buffer conditions containing 100 ⁇ mol / L kynurenine or without kynurenine It is the graph which observed dissociation from IL-6R.
  • the vertical axis of the figure represents the normalized value with the binding amount of 6RNMSC1-2_F02 in the presence of 100 ⁇ mol / L kynurenine as 100, and the horizontal axis represents the elapsed time (seconds) after the start of the interaction.
  • the solid line represents the dissociation of 6RNMSC1-2_F02 from IL-6R in the presence of kynurenine
  • the dotted line represents the dissociation of 6RNMSC1-2_F02 from IL-6R in the absence of kynurenine.
  • the vertical axis represents the change in response (RU) before and after 6RNMSC1-2_F02 interacts, and the horizontal axis represents the concentration of kynurenine contained in the solution ( ⁇ mol / L).
  • FIG. 5 shows ADCC activity of clone 6RNMSC1-2_F02 against BaF cells expressing hIL-6R in the presence (triangle) or absence (circle) of clone 6RNMSC1-2_F02 that binds hIL-6R in the presence of kynurenine .
  • the horizontal axis represents kynurenine concentration, and the vertical axis represents ADCC activity (%).
  • ADCC activity represents mean and standard deviation. It is a figure which shows the result of the binding ELISA with respect to human IL-6R in the mouse
  • the vertical axis represents the absorbance value obtained by evaluating the binding activity of the antibody to human IL-6R based on the presence or absence of Kynurenine. It is a figure which shows the result of ELISA in the presence or absence of ATP and Adenosine 10 mM for human IL-6 of clone I6RLSA1-6_011 obtained from the rational design antibody library.
  • the vertical axis represents the absorbance value obtained by evaluating the binding activity of the antibody to human IL-6.
  • the positive control (Positive Control) represents the results when clones obtained from the rational design antibody library and showing binding activity to human IL-6 regardless of the presence or absence of small molecules are used.
  • Negative control represents the results when using M13KO7 Helper Phage. It is a figure which shows the result of ELISA in the presence or absence of ATP and Adenosine-10mM with respect to human IL-6 Receptor of clones 6RRLSA1-6_037 and 6RRLSA1-6_045 obtained from the rational design antibody library. The vertical axis represents the absorbance value obtained by evaluating the binding activity of the antibody to human IL-6 receptor. Negative control (Negative Control) represents the results when using M13KO7 Helper Phage.
  • the vertical axis represents the absorbance value obtained by evaluating the binding activity of the antibody to human -IgA-Fc in the absence of ATP and adenosine, and the horizontal axis represents the presence. It is a figure which shows the result of ELISA in presence or absence of ATP and Adenosine 1 mM for human IgA-Fc of clone IADL3C5-4_048 obtained from the rational design antibody library.
  • the vertical axis represents the absorbance value obtained by evaluating the binding activity of the antibody to human IgA-Fc.
  • the positive control represents the results when clones obtained from the rational design antibody library and showing binding activity to human IgA-Fc regardless of the presence or absence of small molecules are used.
  • Negative control represents the results when using M13KO7 Helper Phage.
  • White represents individual measured values and black represents the average value.
  • White represents individual measured values and black represents the average value.
  • White represents individual measured values and black represents the average value. It is a figure which shows the result of ELISA in presence or absence of ATP with respect to HSA of a clone HSADSA1-6_020 obtained from the rational design antibody library, and Adenosine 10 mM.
  • the vertical axis represents the absorbance value obtained by evaluating the binding activity of the antibody to HSA.
  • the positive control represents the results when clones obtained from the rational design antibody library and showing binding activity to HSA regardless of the presence or absence of small molecules are used.
  • Negative control represents the results when using M13KO7 Helper Phage.
  • Modification of amino acids For modification of amino acids in the amino acid sequence of an antigen-binding molecule, site-directed mutagenesis (Kunkel et al. (Proc. Natl. Acad. Sci. USA (1985) 82, 488-492)) or Overlap A known method such as extension PCR can be appropriately employed.
  • a method for modifying an amino acid to be substituted with an amino acid other than a natural amino acid a plurality of known methods can also be employed (Annu. Rev. Biophys. Biomol. Struct. (2006) 35, 225-249, Proc. Natl Acad. Sci. USA (2003) 100 (11), 6353-6357).
  • a cell-free translation system (Clover Direct (Protein Express) in which a tRNA in which an unnatural amino acid is bound to a complementary amber suppressor tRNA of a UAG codon (amber codon), which is one of the stop codons, is also suitable. Used.
  • the meaning of the term “and / or” used in representing an amino acid modification site includes any combination in which “and” and “or” are appropriately combined.
  • “the amino acid at positions 33, 55, and / or 96 is substituted” includes the following amino acid modification variations; (a) 33rd, (b) 55th, (c) 96th, (d) 33rd and 55th, (e) 33rd and 96th, (f) 55th and 96th, (g) 33rd And 55th and 96th.
  • an expression representing an amino acid modification an expression in which a one-letter code or a three-letter code of an amino acid before and after modification is written before and after a numeral representing a specific position may be used as appropriate.
  • the modification of N100bL or Asn100bLeu used when substitution of an amino acid contained in an antibody variable region represents substitution of Asn at position 100b represented by Kabat numbering to Leu. That is, the number represents the position of the amino acid represented by Kabat numbering, and the one-letter code or three-letter code of the amino acid described before is the amino acid before substitution, the one-letter code of the amino acid described thereafter or 3
  • the letter code represents the amino acid after substitution.
  • the modification of P238D or Pro238Asp used when adding an amino acid substitution to the Fc region contained in the antibody constant region represents substitution of Pro at position 238 represented by EU numbering to Asp. That is, the number represents the position of the amino acid represented by EU numbering, and the one-letter code or three-letter code of the amino acid described before it is the amino acid before substitution, the one-letter code of the amino acid described after that or 3 The letter code represents the amino acid after substitution.
  • Antigen is not limited to a specific structure as long as it includes an epitope to which an antigen-binding domain binds. In another sense, the antigen can be inorganic or organic. Antigens include the following molecules: 17-IA, 4-1BB, 4Dc, 6-keto-PGF1a, 8-iso-PGF2a, 8-oxo-dG, A1 adenosine receptor, A33, ACE, ACE-2, Activin, Activin A, Activin AB, Activin B, Activin C, Activin RIA, Activin RIA ALK-2, Activin RIB ALK-4, Activin RIIA, Activin RIIB, ADAM, ADAM10, ADAM12, ADAM15, ADAM17 / TACE, ADAM8, ADAM9 , ADAMTS, ADAMTS4, ADAMTS5, addressin, aFGF, ALCAM, ALK, ALK-1,
  • Receptors are also described in the above examples of antigens. However, even when these receptors are present in a soluble form in biological fluids, they can be used against antigens depending on the concentration of the target tissue-specific compound of the present invention. It can be used as an antigen to which an antigen-binding molecule comprising an antigen-binding domain whose binding activity varies.
  • a soluble receptor is, for example, soluble IL-6R as described by Mullberg et al. (J. Immunol. (1994) 152 (10), 4958-4968).
  • SEQ ID NO: 1 a protein consisting of amino acids 1 to 357 can be exemplified.
  • the antigen examples include membrane-type molecules expressed on the cell membrane and soluble-type molecules secreted extracellularly from the cells.
  • an antigen-binding molecule containing an antigen-binding domain whose binding activity to an antigen changes according to the concentration of the target tissue-specific compound of the present invention binds to a soluble molecule secreted from a cell, the antigen-binding molecule As described later, it is preferable to have a neutralizing activity.
  • the soluble molecule can be present in a biological fluid, that is, in all fluids that fill a space between a vascular vessel or a tissue / cell in the living organism.
  • the soluble molecule to which the antigen-binding molecule of the present invention binds can be present in the extracellular fluid.
  • extracellular fluid is a component of bone and cartilage, such as plasma, interstitial fluid, lymph, dense connective tissue, cerebrospinal fluid, spinal fluid, puncture fluid, or joint fluid, alveolar fluid (bronchopulmonary fluid)
  • Cell permeation fluid such as ascites fluid, ascites, pleural effusion, pericardial effusion, cyst fluid, or aqueous humor (aqueous humor), fluid in various glandular cavities resulting from active transport and secretion of cells, and digestive tract cavity This is a general term for other body cavity fluids).
  • an antigen-binding molecule containing an antigen-binding domain whose binding activity to an antigen varies depending on the concentration of the target tissue-specific compound of the present invention binds to a membrane-type molecule expressed on the cell membrane
  • the antigen-binding molecule is suitable.
  • Preferred examples include antigen-binding molecules that have cytotoxic activity, as described later, or that have the ability to bind or bind cytotoxic substances.
  • a binding molecule is also preferably exemplified as a non-limiting embodiment.
  • an epitope which refers to an antigenic determinant present in an epitope antigen, refers to a site on an antigen to which an antigen binding domain in an antigen binding molecule disclosed herein binds.
  • an epitope can be defined by its structure.
  • the epitope can also be defined by the binding activity to the antigen in the antigen-binding molecule that recognizes the epitope.
  • the antigen is a peptide or polypeptide
  • the epitope can be specified by the amino acid residues constituting the epitope.
  • the epitope is a sugar chain
  • the epitope can be specified by a specific sugar chain structure.
  • a linear epitope is an epitope including an epitope whose primary amino acid sequence is recognized.
  • Linear epitopes typically include at least 3, and most commonly at least 5, such as about 8 to about 10, 6 to 20 amino acids in a unique sequence.
  • a conformational epitope is, in contrast to a linear epitope, an epitope in which the primary sequence of the amino acid containing the epitope is not a single defining component of the recognized epitope (eg, the primary sequence of amino acids does not necessarily define the epitope).
  • a conformational epitope may include an increased number of amino acids relative to a linear epitope.
  • the antibody recognizes the three-dimensional structure of the peptide or protein. For example, when a protein molecule is folded to form a three-dimensional structure, certain amino acid and / or polypeptide backbones that form a conformational epitope are juxtaposed to allow the antibody to recognize the epitope.
  • Methods for determining the conformation of an epitope include, but are not limited to, for example, X-ray crystallography, two-dimensional nuclear magnetic resonance spectroscopy, and site-specific spin labeling and electromagnetic paramagnetic resonance spectroscopy. See, for example, Epitope® Mapping® Protocols in Methods Methods in Molecular Biology (1996), Vol. 66, Morris (ed.).
  • the structure of an antigen binding domain that binds to an epitope is called a paratope.
  • the epitope and paratope are stably bound by hydrogen bond, electrostatic force, van der Waals force, hydrophobic bond, etc. acting between the epitope and the paratope.
  • the binding force between this epitope and the paratope is called affinity.
  • the sum of binding forces when a plurality of antigens and a plurality of antigen-binding molecules bind is called avidity.
  • an antibody or the like containing a plurality of antigen-binding domains ie, multivalent
  • a test antigen-binding molecule containing an antigen-binding domain for IL-6R recognizes a linear epitope present in the IL-6R molecule.
  • a linear peptide comprising an amino acid sequence constituting the extracellular domain of IL-6R is synthesized.
  • the peptide can be chemically synthesized.
  • it can be obtained by genetic engineering techniques using a region encoding an amino acid sequence corresponding to the extracellular domain in IL-6R cDNA.
  • the binding activity between a linear peptide consisting of an amino acid sequence constituting the extracellular domain and a test antigen-binding molecule containing an antigen-binding domain for IL-6R is evaluated.
  • the binding activity of the antigen-binding molecule to the peptide can be evaluated by ELISA using an immobilized linear peptide as an antigen.
  • the binding activity to the linear peptide can be revealed based on the level of inhibition by the linear peptide in the binding of the antigen-binding molecule to IL-6R-expressing cells. These tests can reveal the binding activity of the antigen-binding molecule to the linear peptide.
  • test antigen-binding molecule containing an antigen-binding domain for IL-6R recognizes a three-dimensional epitope.
  • cells expressing IL-6R are prepared.
  • a test antigen-binding molecule containing an antigen-binding domain for IL-6R comes into contact with an IL-6R-expressing cell, it binds strongly to the cell, while the IL-6R extracellular domain to which the antigen-binding molecule is immobilized
  • substantially not binding means 80% or less, usually 50% or less, preferably 30% or less, particularly preferably 15% or less of the binding activity to human IL-6R-expressing cells.
  • a test antigen-binding molecule containing an antigen-binding domain to IL-6R to IL-6R-expressing cells for example, the method described in Antibodies A Laboratory Manual (Ed Harlow, David Lane, Cold Spring Harbor Laboratory ( 1988) 359-420). That is, it can be evaluated according to the principle of ELISA or FACS (fluorescence-activated cell sorting) using IL-6R-expressing cells as antigens.
  • the binding activity of a test antigen-binding molecule containing an antigen-binding domain to IL-6R to IL-6R-expressing cells is quantitatively evaluated by comparing the signal level generated by the enzyme reaction. That is, a test polypeptide aggregate is added to an ELISA plate on which IL-6R-expressing cells are immobilized, and a test antigen-binding molecule bound to the cell is detected using an enzyme-labeled antibody that recognizes the test antigen-binding molecule.
  • test antigen-binding molecule binding activity against IL-6R-expressing cells can be compared by preparing a dilution series of test antigen-binding molecules and determining the antibody binding titer (titer) against IL-6R-expressing cells. Can be done.
  • the binding of the test antigen-binding molecule to the antigen expressed on the cell surface suspended in a buffer or the like can be detected by a flow cytometer.
  • a flow cytometer For example, the following devices are known as flow cytometers.
  • EPICS XL-MCL ADC EPICS XL ADC Cell Lab Quanta / Cell Lab Quanta SC (both are trade names of Beckman Coulter)
  • the following method may be mentioned as an example of a suitable method for measuring the binding activity of an antigen-binding molecule containing an antigen-binding domain to IL-6R to an antigen.
  • staining is performed with a FITC-labeled secondary antibody that recognizes a test antigen-binding molecule reacted with cells expressing IL-6R.
  • the antigen-binding molecule is adjusted to a desired concentration and used. For example, it can be used at any concentration between 10 ⁇ g / ml and 10 ng / ml.
  • fluorescence intensity and cell number are measured by FACSCalibur (BD).
  • the amount of antibody bound to the cells is reflected in the fluorescence intensity obtained by analysis using CELL QUEST Software (BD), that is, the value of Geometric Mean. That is, by obtaining the value of Geometric Mean, the binding activity of the test antigen binding molecule represented by the binding amount of the test antigen binding molecule can be measured.
  • BD CELL QUEST Software
  • test antigen-binding molecule containing an antigen-binding domain for IL-6R shares an epitope with a certain antigen-binding molecule can be confirmed by competition for the same epitope.
  • Competition between antigen-binding molecules is detected by a cross-blocking assay or the like.
  • a competitive ELISA assay is a preferred cross-blocking assay.
  • the IL-6R protein coated on the wells of a microtiter plate is preincubated in the presence or absence of a candidate competitive antigen binding molecule and then the test antigen. A binding molecule is added.
  • the amount of test antigen binding molecule bound to the IL-6R protein in the well is indirectly correlated with the binding ability of candidate competitive antigen binding molecules that compete for binding to the same epitope. That is, the higher the affinity of the competitive antigen-binding molecule for the same epitope, the lower the binding activity of the test antigen-binding molecule to the well coated with IL-6R protein.
  • the amount of the test antigen binding molecule bound to the well via the IL-6R protein can be easily measured by labeling the antigen binding molecule in advance.
  • biotin labeled antigen binding molecules are measured by using an avidin peroxidase conjugate and an appropriate substrate.
  • a cross-blocking assay using an enzyme label such as peroxidase is particularly referred to as a competitive ELISA assay.
  • Antigen-binding molecules can be labeled with other labeling substances that can be detected or measured. Specifically, radiolabels or fluorescent labels are known.
  • the competitive antigen binding molecule binds the test antigen binding molecule containing the antigen binding domain to IL-6R. If the test antigen binding molecule can block at least 20%, preferably at least 20-50%, more preferably at least 50%, it binds to substantially the same epitope as the competitive antigen binding molecule or binds to the same epitope Antigen-binding molecule that competes for.
  • binding activity for example, it can be measured by comparing the binding activity of a test antigen-binding molecule and a control antigen-binding molecule against a linear peptide into which a mutation has been introduced in the above-mentioned ELISA format.
  • the binding activity to the mutant peptide bound to the column is quantified, and the antigen-binding molecule eluted in the eluate after the test antigen-binding molecule and the control antigen-binding molecule are allowed to flow through the column.
  • a method for adsorbing a mutant peptide on a column as a fusion peptide with GST, for example, is known.
  • the identified epitope is a steric epitope
  • cells that express IL-6R and cells that express IL-6R in which a mutation has been introduced into the epitope are prepared.
  • a test antigen-binding molecule and a control antigen-binding molecule are added to a cell suspension in which these cells are suspended in an appropriate buffer such as PBS.
  • an FITC-labeled antibody capable of recognizing the test antigen-binding molecule and the control antigen-binding molecule is added to the cell suspension washed with an appropriate buffer.
  • the fluorescence intensity and the number of cells stained with the labeled antibody are measured by FACSCalibur (BD).
  • the concentration of the test antigen-binding molecule and the control antigen-binding molecule is adjusted to a desired concentration by appropriately diluting with a suitable buffer and used. For example, it is used at any concentration between 10 ⁇ g / ml and 10 ng / ml.
  • the amount of the labeled antibody bound to the cells is reflected in the fluorescence intensity obtained by analysis using CELL
  • “substantially does not bind to mutant IL-6R-expressing cells” can be determined by the following method. First, a test antigen-binding molecule and a control antigen-binding molecule bound to a cell expressing mutant IL-6R are stained with a labeled antibody. The fluorescence intensity of the cells is then detected. When FACSCalibur is used as flow cytometry for fluorescence detection, the obtained fluorescence intensity can be analyzed using CELL QUEST Software.
  • Geometric Mean comparison value (mutated IL-6R molecule ⁇ Geo-Mean value) that reflects the amount of binding of the test antigen binding molecule to the mutant IL-6R expressing cell obtained by the analysis to the IL-6R expressing cell of the test antigen binding molecule Compare with the ⁇ Geo-Mean comparison value that reflects the amount of binding.
  • concentration of the test antigen-binding molecule used in determining the ⁇ Geo-Mean comparison value for the mutant IL-6R-expressing cell and the IL-6R-expressing cell may be prepared at the same or substantially the same concentration. Particularly preferred.
  • An antigen-binding molecule that has been confirmed in advance to recognize an epitope in IL-6R is used as a control antigen-binding molecule.
  • the ⁇ Geo-Mean comparison value of the test antigen-binding molecule for the mutant IL-6R-expressing cells is at least 80%, preferably 50%, more preferably 30% of the ⁇ Geo-Mean comparison value of the test antigen-binding molecule for the IL-6R-expressing cells. %, Particularly preferably less than 15%, “substantially does not bind to mutant IL-6R-expressing cells”.
  • the calculation formula for obtaining the Geo-Mean value (Geometric Mean) is described in CELL QUEST Software User's Guide (BD biosciences).
  • the epitope of the test antigen-binding molecule and the control antigen-binding molecule can be evaluated to be the same if it can be substantially equated by comparing the comparison values.
  • Target tissue refers to a tissue containing a cell containing an antigen to which the antigen-binding molecule of the present invention binds in a compound-dependent manner, and the cell of the antigen-binding molecule.
  • the “positive pharmacological action” refers to an action that reduces, alleviates, ameliorates, or cures a symptom caused by a pathological site including a target tissue on a living body including the tissue.
  • non-limiting mechanism that brings about such pharmacological action
  • a non-limiting mechanism for example, in the case of symptoms caused by malignant tumors such as cancer, cytotoxic activity against cancer cells and growth inhibition, and immune activation in cancer tissues
  • cytotoxic activity against cancer cells and growth inhibition for example, cytotoxic activity against cancer cells and growth inhibition
  • immune activation in cancer tissues are exemplified.
  • non-limiting mechanism for example, in the case of an inflammatory disease, blocking activity of inflammatory cytokine action in an inflamed tissue, immunosuppression, and the like are exemplified.
  • cancer tissue-specific compound refers to a compound that is differentially present in cancer tissue as compared to non-cancerous tissue.
  • cancer is generally used to describe a malignant neoplasm, which may be metastatic or non-metastatic.
  • carcinomas arising from epithelial tissues such as the digestive tract and skin include brain tumor, skin cancer, cervical head cancer, esophageal cancer, lung cancer, stomach cancer, duodenal cancer, breast cancer, prostate cancer, cervical cancer, Examples are endometrial cancer, pancreatic cancer, liver cancer, colon cancer, colon cancer, bladder cancer, and ovarian cancer.
  • Non-limiting examples of sarcomas arising from non-epithelial tissues (stroma) such as muscle include osteosarcoma, chondrosarcoma, rhabdomyosarcoma, leiomyosarcoma, liposarcoma, and angiosarcoma.
  • stroma non-epithelial tissues
  • hematopoietic-derived blood cancers include malignant lymphomas including Hodgkin's lymphoma and non-Hodgkin's lymphoma, acute myelocytic leukemia, or chronic myelocytic leukemia. leukemia), and leukemia including acute lymphatic leukemia or chronic lymphatic leukemia, as well as multiple myeloma.
  • Neoplasm as used broadly herein means any newly occurring pathological tissue tumor.
  • the neoplasm results in the formation of a tumor, which is partly characterized by angiogenesis.
  • Neoplasm is benign such as hemangioma, glioma, teratoma, or malignant such as carcinoma, sarcoma, glioma, astrocytoma, neuroblastoma, retinoblastoma sell.
  • cancer tissue means a tissue containing at least one cancer cell.
  • all cell types that contribute to the formation of tumor cells and tumor cells and endothelial cells such as cancerous tissue containing cancer cells and blood vessels.
  • a tumor refers to a tumor tissue nest (a foci of tumor tissue).
  • tumor is generally used to mean a benign or malignant neoplasm.
  • a cancer tissue-specific compound is qualitative, such as present in cancer tissue but not in non-cancerous tissue, or not present in cancer tissue but present in non-cancerous tissue. It may be a compound defined by specific cancer tissue specificity. In another embodiment, the cancer tissue specific compound is defined with quantitative cancer tissue specificity, such as being present in the cancer tissue at a different concentration (eg, high or low concentration) compared to non-cancerous tissue. Compound. For example, cancer tissue specific compounds are differentially present at any concentration.
  • cancer tissue specific compounds are at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, At least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 100%, at least 110%, at least 120%, at least 130 %, At least 140%, at least 150%, at least 2 times, at least 5 times, at least 10 times, at least 50 times, at least 100 times, at least 10 3 times, at least 10 4 times, at least 10 5 times, at least 10 6 times, Or greater and present at increasing concentrations up to infinity (ie when absent in non-cancerous tissue).
  • Cancer tissue specific compounds have a p-value less than 0.05 and / or q-value as determined using concentrations that are statistically significant (ie, either Welch's t test or Wilcoxon rank sum test). Less than 0.10), preferably present differentially.
  • cancer tissue-specific compound is a cancer tissue-specific metabolite produced by metabolic activity specific to cancer cells, immune cells, and stromal cells (cancer tissue) contained in the following cancer tissues.
  • Specific metabolites; cancer cell specific metabolites, immune cell specific metabolites infiltrating cancer tissue, cancer stromal cell specific metabolites) can be exemplified.
  • the cancer tissue-specific metabolite term “metabolism” refers to chemical changes that occur within the tissues of an organism, and includes “anabolic” and “catabolic”. Assimilation refers to the biosynthesis or accumulation of molecules, and catabolism refers to the degradation of molecules.
  • a “metabolite” is an intermediate or product resulting from substance metabolism. “Primary metabolite” refers to a metabolite directly involved in the process of growth or reproduction of a cell or organism, and “secondary metabolite” refers to a cell or organism regardless of the process of growth or reproduction. This refers to products such as antibiotics and pigments produced as a result of metabolism that biosynthesizes substances that are not directly involved in common biological phenomena.
  • the metabolite may be a “biopolymer” metabolite or a “small molecule” metabolite.
  • a “biopolymer” is a polymer composed of one or more types of repeating units. Biopolymers are generally found in biological systems, and are molecules having a molecular weight of approximately 5000 or more, particularly polysaccharides (such as carbohydrates) that form structures such as cells that organize living organisms and intercellular matrices attached to them, and intercellular matrices. ) And peptides (the term is used to include polypeptides and proteins) and polynucleotides, as well as analogs thereof, such as amino acid analogs or those compounds composed or comprised of non-amino acid groups.
  • “Small molecule” refers to a natural chemical substance other than “biopolymer” present in a living body.
  • One non-limiting embodiment of the cancer tissue-specific metabolite described herein is preferably a cancer cell-specific small molecule metabolite (Eva Gottfried, Katrin Peter and Marina P. Kreutz, From Molecular to Modular Tumor Therapy (2010) 3 (2), 111-132).
  • metabolites that are highly produced by immune cells that infiltrate cancer tissues and those that are highly produced by stromal cells (cancer stromal cells or cancer stromal fibroblasts (CAF)) that support the survival and / or growth of cancer cells. Products are also included.
  • infiltrating immune cells examples include dendritic cells, inhibitory dendritic cells, inhibitory T cells, exhausted T cells, myeloma derived suppressor cells (MDSC), and the like.
  • the metabolite in the present invention includes a compound that is released from the inside of a cell when a cell (cancer cell, immune cell, stromal cell) existing in a cancer tissue dies by apoptosis, necrosis, or the like. included.
  • a non-limiting embodiment of the cancer tissue-specific compound or cancer tissue-specific metabolite used in the present invention is preferably at least one compound selected from the following compounds.
  • the binding activity to the antigen by the same antigen-binding domain described later is dependent on one kind of cancer tissue-specific compound or cancer tissue-specific metabolite, and more than one kind of cancer tissue-specific It is meant to include those that are dependent on specific compounds or cancer tissue specific metabolites.
  • Glycolytic systems such as lactic acid, succinic acid, citric acid, etc., or primary metabolite of Krebs cycle
  • cancer tissue-specific compounds used in the present invention particularly cancer cell-specific metabolites
  • Preferable examples include primary metabolites generated as a result of glucose metabolism present in cancer tissues at a higher concentration than non-cancerous tissues existing around such as lactic acid, succinic acid, and citric acid.
  • the glycolytic phenotype characterized as the up-regulation of glycolytic (Embden-Myerhof pathway) enzymes such as pyruvate kinase, hexokinase, and lactate dehydrogenase (LDH), has the Warburg effect as a solid tumor. It is conventionally known to be a feature.
  • pyruvate kinase of M2 isoform which is necessary for glycolysis under anaerobic conditions instead of M1 isoform in tumor cells, is advantageous for the growth of tumor cells in vivo.
  • Pyruvate produced by pyruvate kinase is the result of an equilibrium reaction by lactate dehydrogenase (LDH) under anaerobic conditions. Lactic acid produced produces feedback inhibition that promotes respiration (Krebs circuit) in mitochondria and suppresses cell growth, so upregulation of LDH, hexokinase, and glucose transporter (GLUT) (Fantin et al.
  • Amino acids such as alanine, glutamic acid and aspartic acid
  • amino acids are used in tumor cells that require continuous supply of essential and non-essential amino acids necessary for biopolymer biosynthesis under anaerobic conditions. Metabolism is also known to change.
  • Glutamine is the most widely distributed amino acid in the body that acts as a nitrogen carrier that contains two nitrogens in its side chain. It is said that tumor cells in which the glutamine uptake rate is increasing function as a glutamine trap.
  • glutamate uptake and activity converted to glutamate and lactic acid is called “glutaminolysis” and is thought to be characteristic of transformed (tumor) cells (Mazurek and Eigenbrodt (Anticancer (2003) 23, 1149-1154, and Mazurek et al. (J. Cell. Physiol. (1999) 181, 136-146))
  • tumor transformed cells
  • cancer patients have reduced glutamate levels in plasma while glutamate shows an increase in concentration (Droge et al. (Immunobiology (1987) 174, 473-479 ).
  • 13 C-labeled succinic acid by metabolic studies of 13 C radiolabeled glucose lung cancer tissue, 13 C-labeled alanine, 13 C-labeled glutamic acid, and the 13 non-limiting aspect of C correlation between concentration of the labeled citrate was observed.
  • the present cancerous tissue specific compound employed in the invention a high concentration in cancer tissues by such glutamine decomposition
  • alanine, glutamic acid, aspartic acid is preferably exemplified.
  • IDO Metabolite indoleamine 2,3-dioxygenase
  • kynurenine is a tryptophan metabolizing enzyme that is highly expressed in many cancers such as melanoma, colon cancer, and kidney cancer
  • Uyttenhove et al. (Nat. Med. (2003) 9, 1269-127)
  • two isoforms are known to exist (Lob et al. (CancerImmunol. Immunother. (2009) 58, 153-157)) IDO.
  • nascent pathway of nicotinamide nucleotides catalyzing the conversion of tryptophan to kynurenine (represented by chemical formula 1), and hepatic tryptophan 2,3-diis in gliomas that do not express IDO.
  • Oxygenase (TDO) produces kynurenine from tryptophan (Opitz et al. (Nature (2011) 478, 7368, 197-203)), and IDO is also expressed in dendritic cells infiltrating cancer tissues, Dendritic cells are also Kinu (J. Immunol.
  • IDO is also expressed in myeloid-derived suppressor cells (MDSCs) in cancer tissues, and MDSC also produces kynurenine (Yu et al. ( J. Immunol. (2013) 190, 3783-3797)).
  • Kynurenin is known to suppress allogeneic T cell responses (Frumento et al. (J. Exp. Med. (2002) 196, 459-468), and through these suppressions, tumor cells penetrate the anti-tumor immune response, A mechanism that promotes the proliferation of glioma cells through an autocrine growth mechanism in which kynurenine acts as an endogenous ligand for the allyl hydrocarbon receptor expressed in glioma has been proposed (Opitz et al., Supra). Is converted to anthranilic acid (represented by [Chemical Formula 2]) and by kynurenine 3-hydroxylase to 3-hydroxykynurenine (Represented by [Chemical Formula 3]. Anthranilic acid and 3-hydroxykynurenine are Both are converted to 3-hydroxyanthranilic acid, which is the precursor of NAD.
  • Kynurenine is converted to kynurenic acid (represented by [Chemical Formula 4]) by kynurenine aminotransferase.
  • Non-limiting embodiments of cancer tissue-specific compounds used in the present invention particularly cancer cell-specific metabolites, such kynurenine, and its metabolites such as anthranilic acid, 3-hydroxykynurenine, and kynurenic acid, etc.
  • Preferred examples include amino acid metabolites.
  • Prostaglandin E2 Prostaglandin E2
  • PGE2 Prostaglandin E2
  • COX cyclooxygenase
  • plastinoid containing xanthine Warner and Mitchell (FASEB J. (2004) 18, 790-804)
  • Promotes the growth of PGE2 colon cancer cells and suppresses their apoptosis Sheng et al. (Cancer Res. (1998) 58, 362-366)). It is known that the expression of cyclooxygenase is changed in many cancer cells.
  • COX-1 is constitutively expressed in almost all tissues
  • COX-2 is mainly induced in tumors by certain inflammatory cytokines and oncogenes. (Warner and Mitchell (supra)).
  • Overexpression of COX-2 is associated with poor prognosis in breast cancer (Denkert et al. (Clin. Breast Cancer (2004) 4, 428-433), and rapid disease progression in ovarian cancer (Denker et al. (Mod. Pathol. (2006) 19, 1261-1269), and suppressor T cells infiltrating cancer tissues also produce prostaglandin E2 (Curr. Med. Chem.
  • Nucleoside having purine ring structure such as adenosine, adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), etc.
  • ATP adenosine triphosphate
  • ADP adenosine diphosphate
  • AMP adenosine monophosphate
  • Adenosine is a purine nucleoside that is constitutively present in the extracellular environment at low concentrations, but extracellular adenosine concentrations in hypoxic tissues found in solid cancers (Blay and Hoskin (Cancer Res. (1997) 57, 2602-2605)) CD73 is expressed on the surface of tumors and immune cells (Kobie et al. (J. Immunol. (2006 177, 6780-6786), breast cancer (Canbolat et al. (Breast Cancer Res. Treat. (1996) 37, 189-193), stomach cancer (Durak et al. (Cancer Lett.
  • pancreatic cancer Active in Flocke and Mannherz (Biochim. Biophys. Acta (1991) 1076, 273-281) and glioblastoma (Bardot et al. (Br. J. Cancer (1994) 70, 212-218))
  • adenosine accumulation in cancer tissue may be due to increased intracellular adenosine production by dephosphorylation of AMP by cytoplasmic 5'-nucleotidase. (Headrick and Willis (Biochem. J. (1989) 261, 541-550).
  • inhibitory T cells infiltrating cancer tissues also express ATP-degrading enzymes and produce adenosine ( Natl. Acad. Sci. (2006) 103 (35), 13132-13137, Curr. Med. Chem. (2011) 18, 5217-5223)
  • the produced adenosine is mediated by an adenosine receptor such as the A2A receptor.
  • A is accumulated in cancer tissue at a high concentration by metabolism of purine nucleotides such as ATP.
  • purine nucleotides such as ATP.
  • Preferable examples include TP, ADP, AMP, and adenosine.
  • adenosine is decomposed into inosine by adenosine deaminase, inosine accumulates at a high concentration.
  • uric acid is a product of the metabolic pathway of purine nucleoside in vivo, it is liberated into the extracellular blood or interstitial ⁇ . In recent years, it has been clarified that cells are released from dead cells existing in lesion sites such as cancer tissues (Nat. Med. (2007) 13, 851-856).
  • uric acid that accumulates in a high concentration in cancer tissue by metabolism of purine nucleotides such as ATP is also preferably exemplified.
  • 1-Methylnicotinamide It is known that the enzyme nikontinamide N-methyltransferase is highly expressed in a plurality of human cancer tissues. When this enzyme produces 1-methylnicotinamide, a stable metabolite from nicotinamide, it consumes the methyl group of S-adenosylmethionine (SAM), which is a methyl donor. It has been proposed that high expression of Nikontinamide N-methyltransferase contributes to tumorigenesis through a mechanism that impairs the DNA methylation ability associated with the decrease in urine (Ulanovskaya et al. (Nat. Chem. Biol. (2013) 9 (5) 300-306)).
  • SAM S-adenosylmethionine
  • 1-Methylnicotinamide a stable metabolite of this enzyme, is known to be secreted outside of cancer cells (Yamada et al. (J. Nutr. Sci. Vitaminol. (2010) 56, 83- 86)), as a non-limiting embodiment of the cancer tissue-specific compound used in the present invention, 1-methylnicotinamide that accumulates in a high concentration in cancer tissue due to metabolism of nicotinamide is also preferably mentioned.
  • Inflammatory tissue specific compound refers to a compound that is differentially present in inflamed tissue as compared to non-inflamed tissue.
  • “inflammatory tissue” Lungs (alveoli) in bronchial asthma and COPD in rheumatoid arthritis and osteoarthritis Respiratory tissue transplantation in fibrosis in the digestive organ liver, kidney, and lung in inflammatory bowel disease, Crohn's disease, and ulcerative colitis Tissue arteriosclerosis and blood vessels in heart failure, heart (myocardium) Preferred examples include visceral fat atopic dermatitis in metabolic syndrome and skin tissue intervertebral disc herniation in dermatitis and spinal nerve in chronic low back pain.
  • Inflammatory tissue-specific metabolites are highly produced by immune cells that infiltrate inflammatory tissues, and by normal cells that are damaged in inflammatory tissues. It is a metabolite. Examples of infiltrating immune cells include effector T cells, mature dendritic cells, neutrophils, granule cells (mast cells), basophils and the like.
  • the metabolite in the present invention includes a compound that is released from the inside of the cell to the outside when the cell (immune cell, normal cell) existing in the inflamed tissue dies by apoptosis, necrosis or the like.
  • a non-limiting embodiment of the inflammatory tissue-specific compound or inflammatory tissue-specific metabolite used in the present invention is preferably at least one compound selected from the following compounds.
  • the antigen-binding activity of the same antigen-binding domain which will be described later, is dependent on one kind of inflammatory tissue-specific compound or inflammatory tissue-specific metabolite, and more than one kind of inflammatory tissue-specific It is meant to include those that are dependent on chemical compounds or inflammatory tissue-specific metabolites.
  • PGE2 concentration is high in rheumatoid arthritis and osteoarthritis of metabolites of arachidonic acid such as Prostaglandin E2 (Eur. J. Clin. Pharmacol. (1994) 46, 3-7., Clin. Exp. Rheumatol. (1999) 17, 151-160, Am. J. Vet. Res. (2004) 65, 1269-1275.).
  • Non-limiting embodiments of inflammatory tissue-specific compounds used in the present invention, particularly inflammatory cell-specific metabolites and immune cell-specific metabolites that infiltrate the inflammatory tissue, metabolism of arachidonic acid such as prostaglandin E2 A product is preferably mentioned.
  • ATP in alveoli inflamed due to nucleoside bronchial asthma with purine ring structures such as adenosine, adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP)
  • concentration is known to be high (Nat. Med. (2007) 13, 913-919). It is also known that ATP concentration is high in alveoli in which inflammation caused by COPD occurs (Am. J. Respir. Crit. Care Med. (2010) 181, 928-934). It has also been observed that adenosine concentration is high in the synovial fluid of rheumatoid arthritis patients (Journal of Pharmaceutical and Biomedical Analysis (2004) 36 877-882).
  • ATP concentration is high in tissues in which GVHD has caused rejection (Nat. Med. (2010) 16, 1434-1438). It is also known that adenosine concentration is increased in fibrotic tissues in the lung, liver and kidney (FASEB J. (2008) 22, 2263-2272, J. Immunol. (2006) 176, 4449-4458 J. Am. Soc. Nephrol. (2011) 22 (5), 890-901, PLoS ONE J. (2010) 5 (2), e9242). It has also been observed that ATP levels are elevated in fibrotic tissues of patients with pulmonary fibrosis (Am. J. Respir. Crit. Care Med. (2010) 182, 774-783).
  • ATP As a non-limiting embodiment of the inflammatory tissue-specific compound used in the present invention, ATP, ADP, AMP, adenosine, or the like that accumulates at a high concentration in the inflamed tissue by metabolism of purine nucleotides such as ATP is preferable.
  • purine nucleotides such as ATP
  • adenosine is decomposed into inosine by adenosine deaminase, inosine accumulates at a high concentration.
  • uric acid Uric acid is a product of the metabolic pathway of purine nucleoside in vivo, it is liberated into the extracellular blood or interstitial ⁇ .
  • uric acid released from cells undergoing necrosis has been shown to promote an inflammatory response (J. Clin. Invest. (2010) 120 (6), 1939-1949 ).
  • uric acid that accumulates at a high concentration in the inflammatory tissue by metabolism of purine nucleotides such as ATP is also preferably exemplified.
  • Antigen-binding domain in the present specification, a domain having any structure can be used as long as it binds to an antigen of interest.
  • examples of such domains include, for example, a variable domain of antibody heavy and light chains, a module called an A domain of about 35 amino acids contained in Avimer, a cell membrane protein present in vivo (International Publication WO2004 / 044011, WO2005 / 040229), Adnectin (international publication WO2002 / 032925) containing 10Fn3 domain that binds to the protein in fibronectin, a glycoprotein expressed on the cell membrane, and a bundle of three helices consisting of 58 amino acids of ProteinA Affibody having IgG binding domain constituting scaffold as a scaffold (International Publication WO1995 / 001937), ankyrin repeat having a structure in which a subunit containing 33 amino acid residues and two antiparallel helices and loop subunits are repeatedly stacked.
  • DARPins Designed Ankyrin Repeat proteins
  • NGAL neutrophil gelatinase-associated lipocalin
  • VLR variable lymphocyte receptor
  • leucine leucine
  • LRR lampreys and eels -Rich-repeat
  • antigen-binding domain of the present invention include antigen-binding domains comprising antibody heavy and light chain variable regions.
  • antigen binding domains include “scFv (single chain Fv)”, “single chain antibody”, “Fv”, “scFv2 (single chain Fv 2)”, “Fab” or “F ( ab ′) 2 ”and the like are preferable.
  • the antigen-binding domain in the antigen-binding molecule of the present invention can bind to the same epitope.
  • the same epitope can be present in a protein consisting of the amino acid sequence set forth in SEQ ID NO: 1, for example.
  • the antigen binding domains in the antigen binding molecules of the present invention can bind to different epitopes.
  • different epitopes can exist in a protein consisting of the amino acid sequence set forth in SEQ ID NO: 1, for example.
  • Specific specific refers to a state in which one molecule of a molecule that specifically binds does not substantially bind to a molecule other than the one or more other molecules to which it binds. Moreover, it is used also when an antigen binding domain is specific with respect to a specific epitope among several epitopes contained in a certain antigen. When an epitope to which an antigen binding domain binds is contained in a plurality of different antigens, an antigen binding molecule having the antigen binding domain can bind to various antigens containing the epitope.
  • substantially not binding is determined according to the method described in the above-mentioned section of binding activity, and the binding activity of a specific binding molecule to a molecule other than the partner molecule is the binding activity of the partner molecule. . It means 80% or less, usually 50% or less, preferably 30% or less, particularly preferably 15% or less.
  • Cytotoxic activity in one non-limiting embodiment of the present invention, cytotoxic activity against a cell containing an antigen-binding domain whose binding activity to an antigen varies depending on the concentration of a cancer tissue-specific compound and expressing a membrane-type molecule on the cell membrane. And a pharmaceutical composition comprising the antigen-binding molecule as an active ingredient.
  • the cytotoxic activity refers to, for example, antibody-dependent cell-mediated cytotoxicity (ADCC) activity, complement-dependent cytotoxicity (CDC) activity, and T cell-dependent cytotoxicity. Examples thereof include cytotoxic activity.
  • ADCC antibody-dependent cell-mediated cytotoxicity
  • CDC activity complement-dependent cytotoxicity
  • T cell-dependent cytotoxicity examples thereof include cytotoxic activity.
  • CDC activity means cytotoxic activity by the complement system.
  • ADCC activity means that immune cells bind to the Fc region of an antigen-binding molecule containing an antigen-binding domain that binds to a membrane-type molecule expressed on the cell membrane of a target cell via the Fc ⁇ receptor expressed on the immune cell. Means the activity of the immune cells to damage target cells. Whether the antigen-binding molecule of interest has ADCC activity or CDC activity can be determined by a known method (for example, Current protocols in Immunology, Chapter 7. Immunologic studies in humans, edited by Coligan et al. (1993 )etc).
  • effector cells are prepared.
  • Spleen cells are isolated in RPMI1640 medium (Invitrogen) from the spleen extracted from CBA / N mice or the like. Effector cells can be prepared by adjusting the concentration of the spleen cells washed with the same medium containing 10% fetal bovine serum (FBS, HyClone) to 5 ⁇ 10 6 / mL.
  • FBS fetal bovine serum
  • HyClone fetal bovine serum
  • target cells are prepared by diluting Baby Rabbit Complement (CEDARLANE) 10-fold with a medium containing 10% FBS (Invitrogen).
  • the target cells can be radiolabeled by culturing cells expressing the antigen together with 0.2 mCi of 51 Cr-sodium chromate (GE Healthcare Bioscience) in DMEM medium containing 10% FBS at 37 ° C. for 1 hour. . After radiolabeling, the target cells can be prepared by adjusting the concentration of the cells washed 3 times with RPMI1640 medium containing 10% FBS to 2 ⁇ 10 5 / mL.
  • ADCC activity or CDC activity can be measured by the method described below.
  • 50 ⁇ l of each target cell added to a 96-well U-bottom plate (BectonickDickinson) and an antigen-binding molecule are reacted at room temperature for 15 minutes. Thereafter, the plate to which 100 ⁇ l of effector cells have been added is allowed to stand for 4 hours in a carbon dioxide incubator.
  • the final concentration of the antigen-binding molecule can be set to a concentration such as 0 or 10 ⁇ g / ml.
  • the radioactivity of 100 ⁇ l of the supernatant collected from each well is measured using a gamma counter (COBRAII AUTO-GAMMA, MODEL D5005, Packard Instrument Company).
  • the cytotoxic activity (%) can be calculated based on the formula of (A-C) / (B-C) x 100.
  • A represents radioactivity (cpm) in each sample
  • B represents radioactivity (cpm) in a sample to which 1% NP-40 (nacalaicaltesque) was added
  • C represents radioactivity (cpm) of a sample containing only target cells.
  • a modified antigen-binding molecule-modified product to which a cytotoxic substance such as a chemotherapeutic agent, a toxic peptide or a radioactive chemical substance, which will be described later, is bound can also be suitably used as the antigen-binding molecule having the cytotoxic activity of the present invention.
  • modified antigen-binding molecules (hereinafter referred to as antigen-binding molecule drug conjugates) can be obtained by chemically modifying the obtained antigen-binding molecules.
  • a method for modifying an antigen-binding molecule a method already established in the field of antibody drug conjugates and the like can be used as appropriate.
  • the modified antigen-binding molecule to which a toxic peptide is bound expresses a fusion gene in which the gene encoding the toxic peptide and the gene encoding the antigen-binding molecule of the present invention are linked in frame in an appropriate host cell. And then obtained by isolation from the culture medium of the cells.
  • an antigen-binding molecule comprising an antigen-binding domain whose antigen-binding activity changes depending on the concentration of a cancer tissue-specific compound, and having neutralizing activity against the membrane-type molecule.
  • a pharmaceutical composition for inducing an immune response comprising the active ingredient is provided.
  • the composition comprises an antigen-binding domain whose antigen-binding activity changes depending on the concentration of a cancer tissue-specific compound, and has cytotoxic activity against cells expressing a membrane-type molecule on the cell membrane.
  • a pharmaceutical composition for inducing an immune response comprising as an active ingredient an antigen-binding molecule having neutralizing activity against the membrane-type molecule.
  • neutralizing activity refers to an activity of inhibiting a biological activity of a ligand having biological activity on a cell, such as a virus or a toxin. That is, a substance having neutralizing activity refers to a substance that binds to the ligand or a receptor to which the ligand binds and inhibits the binding between the ligand and the receptor. A receptor that is blocked from binding to a ligand by neutralization activity cannot exhibit biological activity through the receptor.
  • an antibody having such neutralizing activity is generally called a neutralizing antibody.
  • the neutralizing activity of a test substance can be measured by comparing the biological activity in the presence of a ligand between conditions in the presence or absence of the test substance.
  • IL-6 represented by SEQ ID NO: 27 is preferably mentioned as a major ligand of IL-6 receptor.
  • the IL-6 receptor a type I membrane protein whose amino terminus forms the extracellular domain, forms a heterotetramer with the gp130 receptor that is dimerized by IL-6 (Heinrich et al. (Biochem. J. (1998) 334, 297-314)). Formation of the heterotetramer activates Jak associated with the gp130 receptor. Jak performs autophosphorylation and receptor phosphorylation. The receptor and Jak phosphorylation sites serve as binding sites for molecules belonging to the Stat family with SH2, such as Stat3, MAP kinases, PI3 / Akt, and other proteins and adapters with SH2.
  • Stat bound to the gp130 receptor is phosphorylated by Jak.
  • Phosphorylated Stat forms a dimer that enters the nucleus and regulates transcription of the target gene.
  • Jak or Stat can also participate in signal cascades through other classes of receptors.
  • Deregulated IL-6 signaling cascades are observed in autoimmune disease pathologies and inflammation, and in cancers such as multiple myeloma and prostate cancer.
  • Stat3, which can act as an oncogene is constitutively activated in many cancers.
  • EGFR epidermal growth factor receptor
  • target molecules can be appropriately set for each target cell, and are not limited to the above factors.
  • the neutralizing activity can be evaluated.
  • activation of in vivo signals can also be detected using the transcription inducing action on a target gene existing downstream of the in vivo signal cascade as an index. Changes in the transcription activity of the target gene can be detected by the principle of a reporter assay. Specifically, a reporter gene such as GFP (Green Fluorescence Protein) or luciferase is placed downstream of the transcription factor or promoter region of the target gene, and the change in the transcription activity is measured as the reporter activity by measuring the reporter activity. can do.
  • GFP Green Fluorescence Protein
  • luciferase is placed downstream of the transcription factor or promoter region of the target gene, and the change in the transcription activity is measured as the reporter activity by measuring the reporter activity. can do.
  • a commercially available kit for measuring in vivo signal activation can be used as appropriate (for example, Mercury® Pathway® Profiling® Luciferase® System (C
  • antigen-binding molecules are measured by measuring the proliferation activity of target cells.
  • the neutralizing activity can be evaluated.
  • the following method is suitable as a method for evaluating or measuring the inhibitory effect based on the neutralizing activity of anti-HB-EGF antibody on the proliferation of cells whose proliferation is promoted by growth factors of the EGF family such as HB-EGF. Used for.
  • a method for evaluating or measuring the cytostatic activity in a test tube a method is used in which the uptake of [ 3 H] -labeled thymidine added to the medium by living cells is used as an indicator of DNA replication ability.
  • a dye exclusion method in which the ability to exclude a dye such as trypan blue to the outside of cells is measured under a microscope, or an MTT method is used.
  • MTT tetrazolium salt
  • MTT solution is added to the culture solution and allowed to stand for a certain time so that MTT is taken into the cell. .
  • MTT which is a yellow compound
  • MTT is converted to a blue compound by succinate dehydrogenase in the mitochondria in the cell.
  • the blue product is dissolved and colored, and the absorbance is measured to obtain an index of the number of viable cells.
  • reagents such as MTS, XTT, WST-1, and WST-8 are also commercially available (such as nacalai tesque) and can be suitably used.
  • an anti-HB-EGF antibody that has the same isotype as the anti-HB-EGF antibody and has no cytostatic activity is used as a control antibody in the same manner as the anti-HB-EGF antibody.
  • the activity can be determined by the antibody exhibiting stronger cytostatic activity than the control antibody.
  • the RMG-1 cell line which is an ovarian cancer cell whose proliferation is promoted by HB-EGF
  • Mouse Ba / F3 cells transformed with a vector bound so as to express a gene encoding hEGFR / mG-CSFR, which is a fusion protein in which the intracellular domain is fused in frame can also be suitably used.
  • those skilled in the art can use the above-mentioned measurement of cell proliferation activity by appropriately selecting cells for evaluating the activity.
  • an antibody refers to an immunoglobulin that is naturally occurring or produced by partial or complete synthesis.
  • the antibody can be isolated from natural resources such as plasma and serum in which it naturally exists, or from the culture supernatant of hybridoma cells producing the antibody, or partially or completely by using techniques such as genetic recombination Can be synthesized.
  • Preferred examples of antibodies include immunoglobulin isotypes and subclasses of those isotypes.
  • Nine types (isotypes) of IgG1, IgG2, IgG3, IgG4, IgA1, IgA2, IgD, IgE, and IgM are known as human immunoglobulins.
  • the antibody of the present invention may include IgG1, IgG2, IgG3, and IgG4.
  • human IgG1, human IgG2, human IgG3, and human IgG4 constant regions multiple allotype sequences due to gene polymorphisms are described in Sequences of proteins of immunological interest, NIH Publication No.91-3242. Either of them may be used.
  • sequence of human IgG1 the amino acid sequence at positions 356 to 358 represented by EU numbering may be DEL or EEM.
  • human Ig ⁇ (Kappa) constant region and human Ig ⁇ (Lambda) constant region multiple allotype sequences due to gene polymorphism are described in Sequences of proteins of immunological interest, NIH Publication No.91-3242. Any of them may be used in the present invention.
  • a method for producing an antibody having a desired binding activity is known to those skilled in the art.
  • a method for producing an antibody that binds to IL-6R (anti-IL-6R antibody) is exemplified.
  • Antibodies that bind to antigens other than IL-6R can be appropriately prepared according to the following examples.
  • the anti-IL-6R antibody can be obtained as a polyclonal or monoclonal antibody using known means.
  • a monoclonal antibody derived from a mammal can be suitably prepared.
  • Mammal-derived monoclonal antibodies include those produced by hybridomas and those produced by host cells transformed with expression vectors containing antibody genes by genetic engineering techniques.
  • the monoclonal antibodies of the present invention include “humanized antibodies” and “chimeric antibodies”.
  • Monoclonal antibody-producing hybridomas can be prepared, for example, as follows by using known techniques. That is, a mammal is immunized according to a normal immunization method using IL-6R protein as a sensitizing antigen. The resulting immune cells are fused with known parental cells by conventional cell fusion methods. Next, hybridomas that produce anti-IL-6R antibodies can be selected by screening monoclonal antibody-producing cells by conventional screening methods.
  • the production of a monoclonal antibody is performed as follows, for example.
  • the desired human IL-6R protein is purified from the host cell or culture supernatant by a known method.
  • soluble forms as described by Mullberg et al. (J. J Immunol.
  • IL-6R polypeptide sequence represented by SEQ ID NO: 1 which is IL-6R
  • a protein consisting of amino acids 1 to 357 is expressed instead of the IL-6R protein represented by SEQ ID NO: 1. Is done. Purified natural IL-6R protein can also be used as a sensitizing antigen as well.
  • the purified IL-6R protein can be used as a sensitizing antigen used for immunization against mammals.
  • a partial peptide of IL-6R can also be used as a sensitizing antigen.
  • the partial peptide can also be obtained by chemical synthesis from the amino acid sequence of human IL-6R. It can also be obtained by incorporating a part of the IL-6R gene into an expression vector for expression.
  • the region and size of IL-6R peptide used as a partial peptide are not particularly limited to a specific embodiment.
  • any sequence can be selected from amino acid sequences corresponding to amino acids 20-357 in the amino acid sequence of SEQ ID NO: 1.
  • the number of amino acids constituting the peptide to be sensitized antigen is preferably at least 5 or more, for example 6 or more, or 7 or more. More specifically, a peptide having 8 to 50, preferably 10 to 30 residues can be used as a sensitizing antigen.
  • a fusion protein obtained by fusing a desired partial polypeptide or peptide of IL-6R protein with a different polypeptide can be used as a sensitizing antigen.
  • an antibody Fc fragment or a peptide tag can be suitably used.
  • a vector that expresses a fusion protein can be prepared by fusing genes encoding two or more desired polypeptide fragments in-frame and inserting the fusion gene into the expression vector as described above. The method for producing the fusion protein is described in Molecular® Cloning® 2nd® ed.
  • the mammal immunized with the sensitizing antigen is not limited to a specific animal, but is preferably selected in consideration of compatibility with the parent cell used for cell fusion.
  • rodent animals such as mice, rats, hamsters, rabbits, monkeys and the like are preferably used.
  • the above animals are immunized with a sensitizing antigen.
  • immunization is performed by administering a sensitizing antigen intraperitoneally or subcutaneously to a mammal.
  • a sensitized antigen diluted at an appropriate dilution ratio with PBS (Phosphate-Buffered Saline), physiological saline, or the like is mixed with a normal adjuvant, for example, Freund's complete adjuvant as necessary, and emulsified.
  • the sensitizing antigen is administered to the mammal several times every 4 to 21 days.
  • an appropriate carrier can be used during immunization with the sensitizing antigen.
  • a partial peptide having a low molecular weight when used as a sensitizing antigen, it may be desirable to immunize the sensitizing antigen peptide bound to a carrier protein such as albumin or keyhole limpet hemocyanin.
  • a carrier protein such as albumin or keyhole limpet hemocyanin.
  • a hybridoma that produces a desired antibody can be prepared as follows using DNA immunization.
  • DNA immunization a sensitized antigen is expressed in vivo in the immunized animal to which the vector DNA constructed in such a manner that the gene encoding the antigen protein can be expressed in the immunized animal.
  • This is an immunization method in which immune stimulation is given.
  • the following advantages are expected in DNA immunization. -Maintains the structure of membrane proteins such as IL-6R and can be given immune stimulation-No need to purify immune antigens
  • DNA expressing IL-6R protein is first administered to an immunized animal.
  • DNA encoding IL-6R can be synthesized by a known method such as PCR.
  • the obtained DNA is inserted into an appropriate expression vector and administered to an immunized animal.
  • the expression vector for example, a commercially available expression vector such as pcDNA3.1 can be suitably used.
  • a method for administering a vector to a living body a generally used method can be used.
  • DNA immunization is performed by introducing gold particles adsorbed with an expression vector into cells of an immunized animal with a gene gun.
  • an antibody recognizing IL-6R can also be produced using the method described in International Publication WO2003 / 104453.
  • immune cells are collected from the mammal and subjected to cell fusion. Spleen cells can be used as preferred immune cells.
  • Mammalian myeloma cells are used as the cells to be fused with the immune cells.
  • the myeloma cell is preferably provided with an appropriate selection marker for screening.
  • a selectable marker refers to a trait that can (or cannot) survive under certain culture conditions.
  • Known selection markers include hypoxanthine-guanine-phosphoribosyltransferase deficiency (hereinafter abbreviated as HGPRT deficiency) or thymidine kinase deficiency (hereinafter abbreviated as TK deficiency).
  • HGPRT deficiency hypoxanthine-guanine-phosphoribosyltransferase deficiency
  • TK deficiency thymidine kinase deficiency
  • Cells having HGPRT or TK deficiency have hypoxanthine-aminopterin-thymidine sensitivity (hereinafter abbreviated as HAT sensitivity).
  • HGPRT-deficient or TK-deficient cells can be selected in a medium containing 6 thioguanine, 8 azaguanine (hereinafter abbreviated as 8AG), or 5 'bromodeoxyuridine, respectively.
  • 8AG 8 azaguanine
  • 5 'bromodeoxyuridine normal cells that incorporate these pyrimidine analogs into DNA die.
  • cells deficient in these enzymes that cannot take up these pyrimidine analogs can survive in selective media.
  • G418 resistance confers resistance to 2-deoxystreptamine antibiotics (gentamicin analogs) by a neomycin resistance gene.
  • gentamicin analogs gentamicin analogs
  • myeloma cells suitable for cell fusion are known.
  • Examples of such myeloma cells include P3 (P3x63Ag8.653) (J.JImmunol. (1979) 123 (4), 1548-1550), P3x63Ag8U.1 (Current Topics in Microbiology and Immunology (1978) 81, 1- 7), NS-1 (C. Eur. J. Immunol. (1976) 6 (7), 511-519), MPC-11 (Cell (1976) 8 (3), 405-415), SP2 / 0 ( Nature (1978) 276 (5685), 269-270), FO (J. Immunol. Methods (1980) 35 (1-2), 1-21), S194 / 5.XX0.BU.1 (J. Exp. Med. (1978) 148 (1), 313-323), R210 (Nature (1979) 277 (5692), 131-133) and the like can be suitably used.
  • P3x63Ag8.653 J.JImmunol. (1979) 123 (4)
  • cell fusion between the immune cells and myeloma cells is performed according to a known method such as the method of Köhler and Milstein et al. (Methods Enzymol. (1981) 73, 3-46).
  • the cell fusion can be performed in a normal nutrient culture medium in the presence of a cell fusion promoter.
  • a cell fusion promoter for example, polyethylene glycol (PEG), Sendai virus (HVJ) or the like is used, and an auxiliary agent such as dimethyl sulfoxide is optionally added to increase the fusion efficiency.
  • the usage ratio of immune cells and myeloma cells can be set arbitrarily.
  • the number of immune cells is preferably 1 to 10 times that of myeloma cells.
  • the culture medium used for the cell fusion for example, RPMI1640 culture medium suitable for growth of the myeloma cell line, MEM culture medium, and other normal culture liquids used for this type of cell culture are used. Serum replacement fluid such as fetal serum (FCS) can be suitably added.
  • FCS fetal serum
  • a predetermined amount of the immune cells and myeloma cells are mixed well in the culture solution, and a PEG solution (for example, an average molecular weight of about 1000 to 6000) preheated to about 37 ° C. is usually 30 to 60%. It is added at a concentration of (w / v).
  • a desired fused cell is formed by gently mixing the mixture.
  • cell fusion agents and the like that are undesirable for the growth of hybridomas can be removed by repeating the operation of adding the appropriate culture solution listed above and removing the supernatant by centrifugation.
  • the hybridoma thus obtained can be selected by culturing in a normal selective culture solution, for example, a HAT culture solution (a culture solution containing hypoxanthine, aminopterin and thymidine).
  • a HAT culture solution a culture solution containing hypoxanthine, aminopterin and thymidine.
  • the culture using the HAT culture solution can be continued for a time sufficient for cells other than the desired hybridoma (non-fused cells) to die (usually, sufficient time is several days to several weeks).
  • screening and single cloning of hybridomas producing the desired antibody are performed by the usual limiting dilution method.
  • the hybridoma thus obtained can be selected by using a selective culture solution corresponding to the selection marker possessed by the myeloma used for cell fusion.
  • a selective culture solution corresponding to the selection marker possessed by the myeloma used for cell fusion.
  • cells having HGPRT or TK deficiency can be selected by culturing in a HAT culture solution (a culture solution containing hypoxanthine, aminopterin and thymidine). That is, when HAT-sensitive myeloma cells are used for cell fusion, cells that have succeeded in cell fusion with normal cells can selectively proliferate in the HAT medium.
  • the culture using the HAT culture solution is continued for a time sufficient for cells other than the desired hybridoma (non-fusion cells) to die.
  • a desired hybridoma can be selected by culturing for several days to several weeks. Subsequently, screening and single cloning of hybridomas producing the desired antibody can be performed by conventional limiting
  • Desired antibody screening and single cloning can be suitably performed by a screening method based on a known antigen-antibody reaction.
  • a monoclonal antibody that binds to IL-6R can bind to IL-6R expressed on the cell surface.
  • Such monoclonal antibodies can be screened, for example, by FACS (fluorescence-activated cell sorting).
  • FACS fluorescence-activated cell sorting
  • cells expressing IL-6R are prepared.
  • Preferred cells for screening are mammalian cells in which IL-6R is forcibly expressed.
  • the binding activity of the antibody to cell surface IL-6R can be selectively detected. That is, a hybridoma that produces an IL-6R monoclonal antibody can be obtained by selecting a hybridoma that produces an antibody that does not bind to host cells but binds to IL-6R forced expression cells.
  • the binding activity of the antibody to the immobilized IL-6R-expressing cells can be evaluated based on the principle of ELISA.
  • IL-6R-expressing cells are immobilized in the well of an ELISA plate.
  • the culture supernatant of the hybridoma is brought into contact with the immobilized cells in the well, and an antibody that binds to the immobilized cells is detected.
  • the monoclonal antibody is derived from a mouse
  • the antibody bound to the cell can be detected by an anti-mouse immunoglobulin antibody.
  • a hybridoma that produces a desired antibody having an ability to bind to an antigen selected by these screenings can be cloned by a limiting dilution method or the like.
  • the hybridoma producing the monoclonal antibody thus produced can be subcultured in a normal culture solution.
  • the hybridoma can be stored for a long time in liquid nitrogen.
  • the hybridoma is cultured according to a usual method, and a desired monoclonal antibody can be obtained from the culture supernatant.
  • a hybridoma can be administered to a mammal compatible therewith and allowed to proliferate, and a monoclonal antibody can be obtained from the ascites.
  • the former method is suitable for obtaining a highly pure antibody.
  • An antibody encoded by an antibody gene cloned from antibody-producing cells such as the hybridoma can also be suitably used.
  • An antibody encoded by the gene is expressed by incorporating the cloned antibody gene into a suitable vector and introducing it into a host. Methods for isolation of antibody genes, introduction into vectors, and transformation of host cells have already been established by, for example, Vandamme et al. (Eur. J. Biochem. (1990) 192 (3), 767 775). As described below, methods for producing recombinant antibodies are also known.
  • cDNA encoding a variable region (V region) of an anti-IL-6R antibody is obtained from a hybridoma cell that produces the anti-IL-6R antibody.
  • V region variable region
  • RNA is extracted from the hybridoma.
  • the following method can be used. -Guanidine ultracentrifugation (Biochemistry (1979) 18 (24), 5294-5299) -AGPC method (Anal. Biochem. (1987) 162 (1), 156-159)
  • Extracted mRNA can be purified using mRNA “Purification” Kit (manufactured by GE Healthcare Bioscience) or the like.
  • kits for extracting total mRNA directly from cells such as QuickPrep mRNA Purification Kit (manufactured by GE Healthcare Bioscience) are also commercially available.
  • mRNA can be obtained from the hybridoma.
  • CDNA encoding the antibody V region can be synthesized from the obtained mRNA using reverse transcriptase.
  • cDNA can be synthesized by AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (manufactured by Seikagaku Corporation).
  • the desired cDNA fragment is purified from the obtained PCR product and then ligated with vector DNA.
  • a desired recombinant vector can be prepared from Escherichia coli that has formed the colony. Then, whether or not the recombinant vector has the target cDNA base sequence is confirmed by a known method such as the dideoxynucleotide chain termination method.
  • cDNA is synthesized using RNA extracted from hybridoma cells as a template to obtain a 5′-RACE cDNA library.
  • a commercially available kit such as SMART® RACE® cDNA® amplification kit is appropriately used.
  • the antibody gene is amplified by PCR using the obtained 5′-RACE® cDNA library as a template.
  • Primers for amplifying mouse antibody genes can be designed based on known antibody gene sequences. These primers have different nucleotide sequences for each immunoglobulin subclass. Therefore, it is desirable to determine the subclass in advance using a commercially available kit such as IsoIStrip mouse monoclonal antibody isotyping kit (Roche Diagnostics).
  • primers capable of amplifying genes encoding ⁇ 1, ⁇ 2a, ⁇ 2b, ⁇ 3 as heavy chains and ⁇ chain and ⁇ chain as light chains are provided. Can be used.
  • a primer that anneals to a portion corresponding to a constant region close to the variable region is generally used as the 3 ′ primer.
  • the primer attached to the 5 ′ RACE cDNA library preparation kit is used as the 5 ′ primer.
  • an immunoglobulin comprising a combination of a heavy chain and a light chain
  • Desired antibodies can be screened using the reconstituted immunoglobulin binding activity to IL-6R as an index.
  • the binding of the antibody to IL-6R is more preferably specific.
  • Antibodies that bind to IL-6R can be screened, for example, as follows; (1) contacting an antibody containing a V region encoded by cDNA obtained from a hybridoma with IL-6R-expressing cells; (2) a step of detecting binding between an IL-6R-expressing cell and an antibody, and (3) a step of selecting an antibody that binds to the IL-6R-expressing cell.
  • a method for detecting the binding between an antibody and IL-6R-expressing cells is known. Specifically, the binding between the antibody and the IL-6R-expressing cell can be detected by a technique such as FACS described above. In order to evaluate the binding activity of the antibody, a fixed specimen of IL-6R-expressing cells can be appropriately used.
  • a panning method using a phage vector is also preferably used as an antibody screening method using binding activity as an index.
  • an antibody gene is obtained from a polyclonal antibody-expressing cell group as a heavy chain and light chain subclass library
  • a screening method using a phage vector is advantageous.
  • Genes encoding the variable regions of the heavy chain and the light chain can form a single chain Fv (scFv) by ligating with an appropriate linker sequence.
  • scFv single chain Fv
  • the phage encoding the antigen can be recovered to recover the DNA encoding scFv having the desired binding activity. By repeating this operation as necessary, scFv having a desired binding activity can be concentrated.
  • the cDNA is digested with a restriction enzyme that recognizes restriction enzyme sites inserted at both ends of the cDNA.
  • a preferred restriction enzyme recognizes and digests a base sequence that appears infrequently in the base sequence constituting the antibody gene.
  • An antibody expression vector can be obtained by inserting the cDNA encoding the V region of the anti-IL-6R antibody digested as described above into an appropriate expression vector.
  • a chimeric antibody is obtained.
  • the chimeric antibody means that the origin of the constant region and the variable region are different.
  • a heterologous chimeric antibody such as mouse-human
  • a human-human homologous chimeric antibody is also included in the chimeric antibody of the present invention.
  • a chimeric antibody expression vector can be constructed by inserting the V region gene into an expression vector having a constant region in advance. Specifically, for example, a restriction enzyme recognition sequence for a restriction enzyme that digests the V region gene can be appropriately arranged on the 5 ′ side of an expression vector holding DNA encoding a desired antibody constant region.
  • a chimeric antibody expression vector is constructed by fusing both digested with the same combination of restriction enzymes in-frame.
  • the antibody gene is incorporated into an expression vector so that it is expressed under the control of the expression control region.
  • An expression control region for expressing an antibody includes, for example, an enhancer and a promoter.
  • An appropriate signal sequence can also be added to the amino terminus so that the expressed antibody is secreted extracellularly.
  • a peptide having the amino acid sequence MGWSCIILFLVATATGVHS (SEQ ID NO: 3) is used as the signal sequence, but other suitable signal sequences are added.
  • the expressed polypeptide can be cleaved at the carboxyl terminal portion of the sequence, and the cleaved polypeptide can be secreted extracellularly as a mature polypeptide.
  • an appropriate host cell is transformed with this expression vector, whereby a recombinant cell expressing a DNA encoding an anti-IL-6R antibody can be obtained.
  • DNAs encoding antibody heavy chains (H chains) and light chains (L chains) are incorporated into separate expression vectors.
  • An antibody molecule having an H chain and an L chain can be expressed by co-transfecting the same host cell with a vector in which the H chain and the L chain are incorporated.
  • host cells can be transformed by incorporating DNAs encoding H and L chains into a single expression vector (see International Publication WO 1994/011523).
  • host cells and expression vectors for producing antibodies by introducing an isolated antibody gene into a suitable host are known. Any of these expression systems can be applied to isolate the antigen binding domain of the present invention.
  • animal cells, plant cells, or fungal cells can be used as appropriate. Specifically, the following cells can be exemplified as animal cells.
  • Mammalian cells CHO (Chinese hamster ovary cell line), COS (Monkey kidney cell line), myeloma (Sp2 / 0, NS0, etc.), BHK (baby hamster kidney cell line), Hela, Vero, HEK293 (human embryonic kidney cell line with sheared adenovirus (Ad) 5 DNA), PER.C6 cell (human embryonic retinal cell line transformed with the Adenovirus Type 5 (Ad5) E1A and E1B genes), etc. (Current Protocols in Protein Science (May, 2001, Unit 5.9, Table 5.9.1))
  • Amphibian cells Xenopus oocytes, etc.
  • Insect cells sf9, sf21, Tn5, etc.
  • Nicotiana such as Nicotiana tabacum
  • Callus cultured cells can be used as appropriate for transformation of plant cells.
  • -Yeast Saccharomyces genus such as Saccharomyces serevisiae, Pichia genus such as methanol-utilizing yeast (Pichia pastoris)-Filamentous fungi: Aspergillus genus such as Aspergillus niger
  • antibody gene expression systems using prokaryotic cells are also known.
  • bacterial cells such as E. coli (E. coli) and Bacillus subtilis can be used as appropriate.
  • An expression vector containing the target antibody gene is introduced into these cells by transformation. By culturing the transformed cells in vitro, a desired antibody can be obtained from the culture of the transformed cells.
  • transgenic animals can also be used for the production of recombinant antibodies. That is, the antibody can be obtained from an animal into which a gene encoding a desired antibody has been introduced.
  • an antibody gene can be constructed as a fusion gene by inserting it in-frame into a gene encoding a protein that is uniquely produced in milk.
  • a protein secreted in milk for example, goat ⁇ casein can be used.
  • the DNA fragment containing the fusion gene into which the antibody gene has been inserted is injected into a goat embryo, and the injected embryo is introduced into a female goat.
  • the desired antibody can be obtained as a fusion protein with milk protein from milk produced by a transgenic goat (or its progeny) born from a goat that has received the embryo.
  • hormones can be administered to the transgenic goats to increase the amount of milk containing the desired antibody produced from the transgenic goats (Bio / Technology (1994), 12 (7), 699-702). .
  • the recombinant type artificially modified for the purpose of, for example, reducing the heterologous antigenicity against human as an antigen-binding domain in the antigen-binding molecule
  • An antigen-binding domain derived from an antibody can be appropriately employed.
  • the recombinant antibody includes, for example, a humanized antibody. These modified antibodies are appropriately produced using known methods.
  • variable region of an antibody used to generate an antigen binding domain in an antigen binding molecule described herein is usually composed of three complementarity determining regions (complementarity) sandwiched between four framework regions (FR). -determining (region); (CDR).
  • CDRs are regions that substantially determine the binding specificity of an antibody.
  • the amino acid sequence of CDR is rich in diversity.
  • the amino acid sequences constituting FR often show high identity even among antibodies having different binding specificities. Therefore, it is generally said that the binding specificity of a certain antibody can be transplanted to another antibody by CDR grafting.
  • Humanized antibodies are also referred to as reshaped human antibodies.
  • non-human animals for example, humanized antibodies obtained by grafting mouse antibody CDRs to human antibodies are known.
  • General genetic recombination techniques for obtaining humanized antibodies are also known.
  • Overlap-Extension-PCR is known as a method for transplanting mouse antibody CDRs into human FRs.
  • PCR extension the base sequence which codes CDR of the mouse antibody which should be transplanted is added to the primer for synthesize
  • a human FR comprising an amino acid sequence having high identity with the FR amino acid sequence adjacent to the mouse CDR to be transplanted.
  • the base sequences to be linked are designed to be connected to each other in frame.
  • Human FRs are synthesized individually by each primer.
  • a product in which DNA encoding mouse CDR is added to each FR is obtained.
  • the base sequences encoding mouse CDRs of each product are designed to overlap each other.
  • the overlapping CDR portions of the products synthesized using the human antibody gene as a template are annealed with each other to perform a complementary chain synthesis reaction. By this reaction, human FRs are linked via the mouse CDR sequence.
  • a human-type antibody expression vector can be prepared by inserting the DNA obtained as described above and a DNA encoding the human antibody C region into an expression vector so as to be fused in frame. After introducing the integration vector into a host and establishing a recombinant cell, the recombinant cell is cultured, and a DNA encoding the humanized antibody is expressed, whereby the humanized antibody becomes a culture of the cultured cell. (See European Patent Publication EP239400, International Publication WO1996 / 002576).
  • the CDR forms a favorable antigen-binding site when linked via CDR.
  • a human antibody FR can be suitably selected.
  • FR amino acid residues can be substituted so that the CDR of the reshaped human antibody forms an appropriate antigen-binding site.
  • amino acid sequence mutations can be introduced into FRs by applying the PCR method used for transplantation of mouse CDRs into human FRs.
  • partial nucleotide sequence mutations can be introduced into primers that anneal to the FR.
  • a nucleotide sequence mutation is introduced into the FR synthesized by such a primer.
  • a mutant FR sequence having a desired property can be selected by measuring and evaluating the antigen-binding activity of a mutant antibody substituted with an amino acid by the above method (Cancer Res., (1993) 53, 851-856). .
  • transgenic animals having all repertoires of human antibody genes are used as immunized animals, and DNA immunization is performed. Desired human antibodies can be obtained.
  • the V region of a human antibody is expressed as a single chain antibody (scFv) on the surface of the phage by the phage display method.
  • Phages expressing scFv that bind to the antigen can be selected.
  • the DNA sequence encoding the V region of the human antibody that binds to the antigen can be determined.
  • the V region sequence is fused in-frame with the sequence of the desired human antibody C region, and then inserted into an appropriate expression vector, whereby an expression vector can be prepared.
  • the human antibody is obtained by introducing the expression vector into a suitable expression cell as described above and expressing the gene encoding the human antibody.
  • These methods are already known (see International Publications WO1992 / 001047, WO1992 / 020791, WO1993 / 006213, WO1993 / 011236, WO1993 / 019172, WO1995 / 001438, WO1995 / 015388).
  • the amino acid positions assigned to CDRs and FRs of antibodies are defined according to Kabat (Sequences of Proteins of Immunological Interest (National Institute of Health, Bethesda, Md. , 1987 and 1991.
  • Kabat Sequences of Proteins of Immunological Interest
  • the amino acids in the variable region are in accordance with Kabat numbering
  • the amino acids in the constant region are EU numbering according to the amino acid position of Kabat. It is expressed according to
  • Antigen-binding domain dependent on target tissue-specific compound Antigen-binding domain (or antigen-binding molecule containing the domain) whose antigen-binding activity varies depending on the concentration of target tissue-specific compound, ie, target tissue-specific
  • the methods described in the above-mentioned binding activity section and the like can be appropriately applied. As a non-limiting embodiment, some specific examples are illustrated below.
  • the antigen-binding domain in the presence of the compound rather than the binding activity of the antigen-binding domain (or the antigen-binding molecule containing the domain) to the antigen in the absence of the target tissue-specific compound
  • the antigen against the antigen in the absence and presence of the target tissue-specific compound or in the presence of low and high concentrations
  • the binding activities of the binding domains (or antigen binding molecules comprising the domains) are compared.
  • the antigen binding domain in the presence of a higher concentration of the compound than the binding activity of the antigen binding domain (or antigen-binding molecule comprising the domain) to the antigen in the presence of a low concentration of the target tissue-specific compound.
  • the antigen in the presence of a low concentration and a high concentration of the target tissue-specific compound is used. The binding activity of an antigen binding domain (or an antigen binding molecule containing the domain) is compared.
  • the expression “the binding activity to the antigen in the presence of the target tissue-specific compound is higher than the binding activity to the antigen in the absence of the compound” is expressed as “the antigen-binding domain (or the domain) It can also be expressed as “the binding activity to the antigen in the absence of the target tissue-specific compound) is lower than the binding activity to the antigen in the presence of the compound”.
  • “the binding activity of an antigen-binding domain (or an antigen-binding molecule containing the domain) to an antigen in the absence of a target tissue-specific compound is lower than the binding activity to the antigen in the presence of the compound.
  • the binding activity of the antigen-binding domain (or the antigen-binding molecule containing the domain) to the antigen in the absence of the target tissue-specific compound is weaker than the binding activity to the antigen in the presence of the compound” In some cases.
  • the expression “the binding activity to an antigen in the presence of a high concentration of a target tissue-specific compound is higher than the binding activity to an antigen in the presence of a low concentration of the compound” is expressed by “an antigen binding domain (or It can also be expressed as “the binding activity of the antigen-binding molecule containing the domain) to the antigen in the presence of a target tissue-specific compound at a low concentration is lower than the binding activity to the antigen in the presence of a high concentration of the compound”.
  • the binding activity of the antigen-binding domain (or antigen-binding molecule containing the domain) to the antigen in the presence of a target tissue-specific compound at a low concentration is the binding activity to the antigen in the presence of the compound at a high concentration. Is lower than the binding activity of the antigen-binding domain (or antigen-binding molecule containing the domain) to the antigen in the presence of a target tissue-specific compound at a low concentration than the binding activity to the antigen in the presence of a high concentration of the compound. May also be described as “Weak”.
  • Conditions other than the concentration of the target tissue-specific compound in measuring the binding activity to the antigen can be appropriately selected by those skilled in the art and are not particularly limited.
  • measurement can be performed under the conditions of HEPES buffer and 37 ° C.
  • it can be measured using Biacore (GE Healthcare).
  • Measurement of the binding activity between an antigen-binding domain (or an antigen-binding molecule containing the domain) and the antigen is carried out by immobilizing the antigen-binding domain (or the antigen-binding molecule containing the domain) when the antigen is a soluble molecule. It is possible to evaluate the binding activity to soluble molecules by flowing the antigen as an analyte to the prepared chip.
  • the antigen-binding domain is attached to the chip on which the antigen is immobilized. It is possible to evaluate the binding activity to membrane-type molecules by flowing as an analyte (or an antigen-binding molecule containing the domain).
  • the binding activity of the antigen-binding domain (or antigen-binding molecule containing the domain) contained in the antigen-binding molecule of the present invention to an antigen in the absence of the target tissue-specific compound is determined in the presence of the target tissue-specific compound.
  • the ratio of the binding activity to the antigen in the absence of the compound and the binding activity to the antigen in the presence of the compound is not particularly limited as long as it is weaker than the binding activity to the antigen in
  • the value of KD (in the absence of a compound) / KD (in the presence of a compound), which is the ratio of KD in the absence of (dissociation ⁇ constant) and KD in the presence, is 2 or more, and more preferably KD (compound In the absence of) / KD (in the presence of compound) is 10 or more, more preferably, the value of KD (in the absence of compound) / KD (in the presence of compound) is 40 or more A.
  • the upper limit of the value of KD (in the absence of a compound) / KD (in the presence of a compound) is not particularly limited, and may be any value such as 400, 1000, 10000, etc., as long as it can be produced by those skilled in the art. In the absence of a target tissue specific compound, this upper limit is an infinite value when no binding activity to the antigen is observed.
  • the antigen-binding domain (or antigen-binding molecule containing the domain) contained in the antigen-binding molecule of the present invention has a high binding activity to the antigen in the presence of a low concentration of the target tissue-specific compound.
  • the ratio of the binding activity to the antigen in the presence of a low concentration of the compound and the binding activity to the antigen in the presence of a high concentration of the compound is not particularly limited as long as it is weaker than the binding activity to the antigen in the presence of the concentration.
  • KD dissociation constant in the presence of low concentration of target tissue-specific compound and KD in the presence of high concentration KD (in the presence of low compound concentration) / KD (in the presence of high compound concentration) Is 2 or more, more preferably the value of KD (in the presence of a low concentration of compound) / KD (in the presence of a high concentration of compound) is 10 or more, and more preferably The value of KD (Compound low concentration presence) / KD (Compound high concentration presence) is 40 or more.
  • the upper limit of the value of KD (in the presence of a low concentration of compound) / KD (in the presence of a high concentration of compound) is not particularly limited, and may be any value such as 400, 1000, 10000, etc. as long as it can be produced by a person skilled in the art. If no binding activity to the antigen is observed in the presence of a low concentration of the target tissue-specific compound, this upper limit is an infinite value.
  • KD dissociation constant
  • apparent KD Apparent dissociation constant
  • KD dissociation constant
  • apparent KD apparent dissociation constant
  • kd Dissociation rate constant
  • kd dissociation rate constant
  • KD dissociation constant
  • kd dissociation rate constant
  • the ratio of kd (dissociation rate constant) below, kd (in the absence of compound) / kd (in the presence of compound) is preferably 2 or more, more preferably 5 or more, and even more preferably 10 Or more, more preferably 30 or more.
  • the upper limit of the value of Kd (in the absence of a compound) / kd (in the presence of a compound) is not particularly limited, and may be any value such as 50, 100, 200, etc., as long as it can be produced by the common general knowledge of those skilled in the art. In the absence of a target tissue-specific compound, dissociation does not occur when no binding activity to the antigen is observed, so this upper limit is an infinite value.
  • the ratio of the binding activity of the antigen-binding domain of the present invention (or an antigen-binding molecule containing the domain) to a target tissue-specific compound in the presence of a low concentration and the binding activity to the antigen in the presence of a high concentration is also shown.
  • kd Dissociation rate constant
  • kd dissociation rate constant
  • kd dissociation rate constant
  • KD dissociation constant
  • kd dissociation rate constant
  • the ratio of kd (dissociation rate constant) in the presence of high concentration, kd (in the presence of low compound concentration) / kd (in the presence of high compound concentration) is preferably 2 or more, more preferably 5 or more Yes, more preferably 10 or more, more preferably 30 or more.
  • the upper limit of the value of Kd (in the presence of a low concentration of compound) / kd (in the presence of a high concentration of compound) is not particularly limited, and may be any value such as 50, 100, 200, etc. as long as it can be prepared by the common general knowledge of those skilled in the art. In the presence of a low concentration of a target tissue-specific compound, dissociation does not occur when no binding activity to the antigen is observed, so this upper limit is an infinite value.
  • kd dissociation rate constant
  • apparent kd Apparent dissociation rate constant
  • Biacore GE healthcare
  • apparent kd apparent dissociation rate constant
  • an antigen-binding domain (or the domain) having a binding activity to an antigen in the absence of the target tissue-specific compound is lower than the binding activity to the antigen in the presence of the compound.
  • the antigen-binding molecule can be obtained by screening an antigen-binding domain (or antigen-binding molecule) including the following steps (a) to (c).
  • an antigen-binding domain (or a binding activity to an antigen in the presence of a target tissue-specific compound at a low concentration is lower than the binding activity to an antigen in the presence of a high concentration of the compound (or
  • the antigen-binding molecule containing the domain can be obtained by screening an antigen-binding domain (or antigen-binding molecule) containing the following steps (a) to (c).
  • an antigen-binding domain (or the domain) having a binding activity to an antigen in the absence of a target tissue-specific compound is lower than the binding activity to the antigen in the presence of the compound.
  • the antigen-binding molecule can be obtained by screening an antigen-binding domain (or antigen-binding molecule) or a library thereof including the following steps (a) to (c).
  • step (a) contacting an antigen-binding domain (or antigen-binding molecule) or a library thereof with an antigen in the presence of a target tissue-specific compound; (b) placing the antigen-binding domain (or antigen-binding molecule) bound to the antigen in the step (a) in the absence of the compound; (c) A step of isolating the antigen-binding domain (or antigen-binding molecule) dissociated in the step (b).
  • the antigen-binding domain (or the binding activity to the antigen in the presence of a low concentration of the target tissue-specific compound is lower than the binding activity to the antigen in the presence of the compound at a high concentration (or
  • the antigen-binding molecule containing the domain) can be obtained by screening an antigen-binding domain (or antigen-binding molecule) or a library thereof containing the following steps (a) to (c).
  • step (a) contacting an antigen-binding domain (or antigen-binding molecule) or a library thereof with an antigen in the presence of a high concentration of a target tissue-specific compound; (b) placing the antigen-binding domain (or antigen-binding molecule) bound to the antigen in step (a) in the presence of a low concentration of the compound; (c) A step of isolating the antigen-binding domain (or antigen-binding molecule) dissociated in the step (b).
  • an antigen-binding domain (or the domain) having a binding activity to an antigen in the absence of a target tissue-specific compound is lower than the binding activity to the antigen in the presence of the compound.
  • the antigen-binding molecule can be obtained by screening an antigen-binding domain (or antigen-binding molecule) or a library thereof including the following steps (a) to (d).
  • step (a) contacting a library of antigen binding domains (or antigen binding molecules) with an antigen in the absence of a target tissue specific compound; (b) selecting an antigen-binding domain (or antigen-binding molecule) that does not bind to an antigen in the step (a), (c) binding the antigen-binding domain (or antigen-binding molecule) selected in step (b) to an antigen in the presence of the compound, (d) A step of isolating the antigen-binding domain (or antigen-binding molecule) bound to the antigen in the step (c).
  • an antigen-binding domain (or a binding activity to an antigen in the presence of a target tissue-specific compound at a low concentration is lower than an antigen-binding activity in the presence of a high concentration of the compound (or
  • the antigen-binding molecule containing the domain can be obtained by screening an antigen-binding domain (or antigen-binding molecule) containing the following steps (a) to (d) or a library thereof.
  • step (a) contacting a library of antigen binding domains (or antigen binding molecules) with an antigen in the presence of a low concentration of a target tissue specific compound; (b) selecting an antigen-binding domain (or antigen-binding molecule) that does not bind to an antigen in the step (a), (c) binding the antigen-binding domain (or antigen-binding molecule) selected in step (b) to an antigen in the presence of a high concentration of the compound; (d) A step of isolating the antigen-binding domain (or antigen-binding molecule) bound to the antigen in the step (c).
  • an antigen-binding domain (or the domain) having a binding activity to an antigen in the absence of a target tissue-specific compound is lower than the binding activity to the antigen in the presence of the compound.
  • the antigen-binding molecule can be obtained by a screening method including the following steps (a) to (c).
  • step (a) contacting a library of antigen-binding domains (or antigen-binding molecules) with an antigen-immobilized column in the presence of a target tissue-specific compound; (b) eluting the antigen-binding domain (or antigen-binding molecule) bound to the column in step (a) from the column in the absence of the compound; (c) A step of isolating the antigen-binding domain (or antigen-binding molecule) eluted in the step (b).
  • the antigen-binding domain (or the binding activity to the antigen in the presence of a low concentration of the target tissue-specific compound is lower than the binding activity to the antigen in the presence of the compound at a high concentration (or
  • the antigen-binding molecule containing the domain) can be obtained by a screening method including the following steps (a) to (c).
  • step (a) contacting a library of antigen-binding domains (or antigen-binding molecules) with a column immobilized with an antigen in the presence of a high concentration of a target tissue-specific compound; (b) a step of eluting the antigen-binding domain (or antigen-binding molecule) bound to the column in the step (a) from the column in the presence of a low concentration of the compound; (c) A step of isolating the antigen-binding domain (or antigen-binding molecule) eluted in the step (b).
  • an antigen-binding domain (or the domain) having a binding activity to an antigen in the absence of a target tissue-specific compound is lower than the binding activity to the antigen in the presence of the compound.
  • the antigen-binding molecule can be obtained by a screening method including the following steps (a) to (d).
  • step (a) passing a library of antigen-binding domains (or antigen-binding molecules) through a column immobilized with an antigen in the absence of a target tissue-specific compound; (b) recovering the antigen-binding domain (or antigen-binding molecule) eluted in the step (a) without binding to the column; (c) binding the antigen-binding domain (or antigen-binding molecule) recovered in step (b) to an antigen in the presence of the compound, (d) A step of isolating the antigen-binding domain (or antigen-binding molecule) bound to the antigen in the step (c).
  • the antigen-binding domain (or the binding activity to the antigen in the presence of a low concentration of the target tissue-specific compound is lower than the binding activity to the antigen in the presence of the compound at a high concentration (or
  • the antigen-binding molecule containing the domain) can be obtained by a screening method comprising the following steps (a) to (d).
  • step (a) passing a library of antigen-binding domains (or antigen-binding molecules) through a column immobilized with an antigen in the presence of a low concentration of a target tissue-specific compound; (b) recovering the antigen-binding domain (or antigen-binding molecule) eluted in the step (a) without binding to the column; (c) binding the antigen-binding domain (or antigen-binding molecule) recovered in step (b) to an antigen in the presence of a high concentration of the compound; (d) A step of isolating the antigen-binding domain (or antigen-binding molecule) bound to the antigen in the step (c).
  • an antigen-binding domain (or the domain) having a binding activity to an antigen in the absence of a target tissue-specific compound is lower than the binding activity to the antigen in the presence of the compound.
  • the antigen-binding molecule can be obtained by a screening method including the following steps (a) to (d).
  • step (a) contacting a library of antigen binding domains (or antigen binding molecules) with an antigen in the presence of a target tissue specific compound; (b) obtaining an antigen-binding domain (or antigen-binding molecule) bound to the antigen in the step (a), (c) placing the antigen-binding domain (or antigen-binding molecule) obtained in step (b) in the absence of a compound; (d) A step of isolating an antigen-binding domain (or antigen-binding molecule) whose antigen-binding activity is weaker than the criterion selected in the step (b) in the step (c).
  • the antigen-binding domain (or the binding activity to the antigen in the presence of a low concentration of the target tissue-specific compound is lower than the binding activity to the antigen in the presence of the compound at a high concentration (or
  • the antigen-binding molecule containing the domain) can be obtained by a screening method comprising the following steps (a) to (d).
  • step (a) contacting the antigen-binding domain (or antigen-binding molecule) library with the antigen in the presence of a high concentration of the target tissue-specific compound; (b) obtaining an antigen-binding domain (or antigen-binding molecule) bound to the antigen in the step (a), (c) placing the antigen-binding domain (or antigen-binding molecule) obtained in step (b) in the presence of a low concentration of the compound, (d) A step of isolating an antigen-binding domain (or antigen-binding molecule) whose antigen-binding activity is weaker than the criterion selected in the step (b) in the step (c).
  • the target tissue-specific method obtained by the screening method further comprising the step of repeating the steps (a) to (c) or (a) to (d) twice or more.
  • an antigen-binding domain or an antigen-binding molecule containing the domain
  • an antigen-binding domain or an antigen-binding molecule containing the domain
  • the number of times the steps (a) to (c) or (a) to (d) are repeated is not particularly limited, but is usually within 10 times.
  • the target tissue specific compound has a quantitative target tissue specificity such as being present in the target tissue at a different concentration (eg, high concentration or low concentration) compared to the non-target tissue. It can be a defined compound.
  • the target tissue specific compound is differentially present at any concentration.
  • target tissue specific compounds are at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, At least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 100%, at least 110%, at least 120%, at least 130 %, At least 140%, at least 150%, at least 2 times, at least 5 times, at least 10 times, at least 50 times, at least 100 times, at least 10 3 times, at least 10 4 times, at least 10 5 times, at least 10 6 times, Or greater and present at increasing concentrations up to infinity (ie when absent in non-target tissues) It is possible.
  • the threshold value for distinguishing between a low concentration and a high concentration can be appropriately set according to the compound.
  • the low concentration condition can be appropriately set from a value of 10 nM, 1 nM, 100 pM, 10 pM, 1 pM or 0 M as the threshold value.
  • the high concentration condition is at least 110%, at least 120%, at least 130%, at least 140%, at least 150%, at least 2 times, at least 5 times, at least 10 times, at least 50 times each threshold. , At least 100 times, at least 10 3 times, at least 10 4 times, at least 10 5 times, and at least 10 6 times.
  • the low concentration condition can be appropriately set as a threshold value from values of 10 pM, 1 pM, 100 fM, 10 fM, 1 fM, or 0 M.
  • the high concentration condition is at least 110%, at least 120%, at least 130%, at least 140%, at least 150%, at least 2 times, at least 5 times, at least 10 times, at least 50 times each threshold. , At least 100 times, at least 10 3 times, at least 10 4 times, at least 10 5 times, and at least 10 6 times.
  • the low concentration condition can be appropriately set as a threshold value from values of 10 ⁇ M, 1 ⁇ M, 100 nM, 10 nM, 1 nM, or 0 M.
  • the high concentration condition is at least 110%, at least 120%, at least 130%, at least 140%, at least 150%, at least 2 times, at least 5 times, at least 10 times, at least 50 times each threshold.
  • the antigen-binding activity of the antigen-binding domain can be measured by a method known to those skilled in the art, and those skilled in the art can appropriately determine conditions other than the concentration of the target tissue-specific compound. Is possible.
  • the antigen-binding activity of an antigen-binding domain (or antigen-binding molecule) is KD (Dissociation constant), apparent KD (Apparent dissociation constant), and dissociation rate kd (Dissociation rate: dissociation rate constant) ), Or apparent kd (Apparent dissociation: apparent dissociation rate constant).
  • KD Dissociation constant
  • apparent KD Apparent dissociation constant
  • dissociation rate kd Dissociation rate: dissociation rate constant
  • apparent kd Apparent dissociation: apparent dissociation rate constant
  • the step of selecting an antigen-binding domain or antibody whose antigen-binding activity in the presence of a target tissue-specific compound is higher than the antigen-binding activity in the absence of the compound is the absence of a target tissue-specific compound. This is the same meaning as the step of selecting an antigen-binding domain or antibody whose antigen-binding activity is lower than the antigen-binding activity in the presence of the compound.
  • the step of selecting an antigen-binding domain or antibody that has an antigen-binding activity in the presence of a high concentration of a target tissue-specific compound higher than an antigen-binding activity in the presence of the compound at a low concentration is a target tissue-specific step. This is the same meaning as the step of selecting an antigen-binding domain or antibody whose antigen-binding activity in the absence of such a compound is lower than that in the presence of the compound.
  • the difference between the antigen binding activity in the presence of the compound and the antigen binding activity in the absence is not particularly limited, but the antigen binding activity in the presence of the compound is preferably 2 times or more of the antigen binding activity in the absence, more preferably 10 times or more, more preferably 40 times or more.
  • the upper limit of the difference in antigen binding activity is not particularly limited, and may be any value such as 400 times, 1000 times, 10000 times, etc. as long as it can be produced by a person skilled in the art. In the absence of a target tissue specific compound, this upper limit is an infinite value when no binding activity to the antigen is observed.
  • the antigen-binding domain (or antigen-binding molecule containing the domain) of the present invention to be screened by the above screening method may be any antigen-binding domain (or antigen-binding molecule), for example, the antigen-binding domain (or antigen-binding molecule) described above. Can be screened. For example, an antigen-binding domain (or antigen-binding molecule) having a natural sequence may be screened, or an antigen-binding domain (or antigen-binding molecule) with an amino acid sequence substituted may be screened.
  • the antigen-binding domain of the present invention (or an antigen-binding molecule comprising the domain) is at least one amino acid that alters the binding activity of the antigen-binding molecule to the antigen depending on the target tissue-specific compound. It can be obtained from a library mainly composed of a plurality of antigen-binding molecules having different sequences from each other, the residues of which are contained in the antigen-binding domain.
  • Examples of such compounds include (1) glycolytic systems such as lactic acid, succinic acid and citric acid, or primary metabolites of the Krebs cycle, (2) amino acids such as alanine, glutamic acid or aspartic acid, (3) kynurenine, and Metabolites of amino acids such as anthranilic acid, 3-hydroxykynurenine, and kynurenic acid, (4) metabolites of arachidonic acid such as prostaglandin E2, and (5) adenosine, adenosine triphosphate (ATP), adenosine diphosphate (ADP), nucleoside having a purine ring structure such as adenosine monophosphate (AMP), and the like are exemplified.
  • glycolytic systems such as lactic acid, succinic acid and citric acid, or primary metabolites of the Krebs cycle
  • amino acids such as alanine, glutamic acid or aspartic acid
  • kynurenine and Metabolites of amino acids such as anthrani
  • sequences such that at least one amino acid residue that alters the binding activity of the antigen-binding molecule to an antigen dependent on adenosine and / or ATP as such a target tissue-specific compound is contained in the antigen-binding domain are exemplified.
  • library refers to a plurality of antigen-binding molecules or a plurality of fusion polypeptides containing antigen-binding molecules, or nucleic acids and polynucleotides encoding these sequences.
  • sequences of a plurality of antigen-binding molecules or a plurality of fusion polypeptides comprising antigen-binding molecules contained in the library are not single sequences but are fusion polypeptides comprising antigen-binding molecules or antigen-binding molecules having different sequences from each other.
  • the term “different in sequence from each other” in the description of a plurality of antigen binding molecules having different sequences from each other means that the sequences of individual antigen binding molecules in the library are different from each other. That is, the number of different sequences in the library reflects the number of independent clones having different sequences in the library, and is sometimes referred to as “library size”. In a normal phage display library, the number is from 10 6 to 10 12 , and the library size can be increased to 10 14 by applying a known technique such as a ribosome display method. However, the actual number of phage particles used during phage library panning selection is typically 10 to 10,000 times larger than the library size.
  • the term “different from each other” in the present invention means that the sequences of individual antigen-binding molecules in the library from which the number of library equivalents is excluded are different from each other, more specifically, antigen-binding molecules having different sequences from each other.
  • the term “plurality” in the description of a library mainly composed of a plurality of antigen-binding molecules of the present invention is, for example, an antigen-binding molecule, a fusion polypeptide, a polynucleotide molecule, a vector or a virus of the present invention.
  • antigen-binding molecules of the invention there are two or more antigen-binding molecules of the invention that are substantially the same, preferably the same sequence, except for flexible residues or specific variant amino acids at very diverse amino acid positions exposed on the surface
  • antigen-binding molecules of the present invention there are a plurality of antigen-binding molecules of the present invention.
  • books that are substantially the same, preferably the same sequence, except for bases that encode flexible residues, or bases that encode specific variant amino acids at very diverse amino acid positions exposed on the surface. If there are two or more polynucleotide molecules of the invention, there are a plurality of polynucleotide molecules of the invention.
  • the term “consisting mainly of” in the description of a library mainly composed of a plurality of antigen-binding molecules of the present invention means the condition of the concentration of the target tissue-specific compound among the number of independent clones having different sequences in the library. Reflects the number of antigen-binding molecules that differ in the binding activity of the antigen-binding molecule to the antigen. Specifically, it is preferable that at least 10 4 antigen-binding molecules exhibiting such binding activity exist in the library. More preferably, the antigen-binding domain of the present invention can be obtained from a library having at least 10 5 antigen-binding molecules exhibiting such binding activity.
  • the antigen-binding domain of the present invention can be obtained from a library in which at least 10 6 antigen-binding molecules exhibiting such binding activity are present.
  • the antigen-binding domain of the present invention can be obtained from a library in which at least 10 7 antigen-binding molecules exhibiting such binding activity are present.
  • the antigen-binding domain of the present invention can be obtained from a library in which at least 10 8 antigen-binding molecules exhibiting such binding activity are present.
  • the antigen-binding domain of the present invention comprises 0.1% to 80%, preferably 0.5% to 60%, more preferably 0.5% to 60% of the number of independent clones having different binding sequences in the library. Preferably from 1% to 40%, more preferably from 2% to 20%, particularly preferably from 4% to 10%.
  • a polynucleotide molecule or a vector it can be expressed by the number of molecules or a ratio in the whole molecule as described above.
  • a virus it can be expressed by the number of virus individuals or the ratio of the whole individual as described above.
  • the antigen binding domain or antibody of the present invention screened by the above screening method may be prepared in any way, Appropriately linked to pre-existing antibodies, pre-existing libraries (such as phage libraries), antibodies or libraries prepared from hybridomas obtained from immunization of animals or B cells from immunized animals, adenosine or ATP It is possible to use antibodies or libraries made from immune cells such as B cells of animals immunized with a conjugate with an adjuvant agent such as a highly immunogenic T cell epitope peptide is there .
  • a preferred example of the T cell epitope peptide is a p30 helper peptide derived from Tetanus toxin (represented by SEQ ID NO: 4 and also referred to as Fragment C (FrC)).
  • amino acids that change the binding activity of an antigen-binding molecule to an antigen by the presence or absence of adenosine and / or ATP include amino acids that form an adenosine and / or ATP-binding motif.
  • the position of the amino acid in the antigen-binding domain containing the amino acid is not limited to a specific position, so long as the binding activity of the antigen-binding domain to the antigen is changed by the presence or absence of adenosine and / or ATP.
  • the antigen-binding domain of the present invention includes antigens having different sequences from each other, wherein amino acids that change the binding activity of the antigen-binding molecule to the antigen in the presence or absence of adenosine and / or ATP are contained in the antigen-binding domain of the heavy chain. It can be obtained from a library consisting primarily of binding molecules.
  • the antigen binding domain of the invention comprises a heavy chain CDR1, CDR2, and / or CDR3 amino acid that alters the binding activity of the antigen binding molecule to the antigen by the presence or absence of adenosine and / or ATP.
  • the antigen-binding domain of the present invention comprises FR1, FR2, FR3 and amino acids whose heavy chain is an amino acid that alters the binding activity of the antigen-binding molecule to the antigen by the presence or absence of adenosine and / or ATP. It can be obtained from a library mainly comprising antigen-binding molecules having different sequences contained in FR4.
  • the antigen-binding domain of the present invention is an antigen whose heavy chain and / or light chain is an amino acid that changes the binding activity of an antigen-binding molecule to an antigen by the presence or absence of adenosine and / or ATP. It can be obtained from a library mainly composed of antigen-binding molecules having different sequences contained in the binding domain.
  • the antigen-binding domain of the present invention has CDR1, CDR2 of heavy and / or light chain amino acids that alter the binding activity of the antigen-binding molecule to the antigen by the presence or absence of adenosine and / or ATP.
  • the antigen-binding domain of the present invention comprises FR1 whose heavy and / or light chain amino acids alter the binding activity of an antigen-binding molecule to an antigen by the presence or absence of adenosine and / or ATP.
  • FR2, FR3 and / or FR4 can be obtained from a library mainly composed of antigen-binding molecules having different sequences.
  • any one or more of the amino acids at positions 52, 52a, 53, 96, 100a, or 100c contained in the heavy chain variable region can be exemplified.
  • Ser at position 52, Ser at position 52a, Arg at position 53, Gly at position 96, Leu at position 100a, Trp at position 100c, etc. included in the heavy chain variable region Any one or more amino acids may be exemplified.
  • the framework sequence of the light chain and / or heavy chain variable region of the antigen binding molecule is a heavy chain and / or light chain amino acid that alters the binding activity of the antigen binding molecule to the antigen by the presence or absence of adenosine and / or ATP.
  • Any framework sequence can be used as long as it is contained in the antigen binding domain.
  • the origin of the framework sequence can be obtained from any organism or person, including but not limited to a non-human animal.
  • any organism suitably includes an organism selected from mice, rats, guinea pigs, hamsters, gerbils, cats, rabbits, dogs, goats, sheep, cows, horses, camels, and non-human primates. .
  • the framework sequence of the light chain and / or heavy chain variable region of the antigen binding molecule comprises a human germline framework sequence.
  • the antigen binding molecule of the invention will exhibit little or no immunogenic response when administered to a human (eg, treatment of disease). It is thought not to cause.
  • the phrase “an moth containing a germline sequence” of the present invention means that a part of the framework sequence of the present invention is identical to a part of any human germline framework sequence. Means.
  • the heavy chain FR2 sequence of the antigen-binding molecule of the present invention is a sequence in which the heavy chain FR2 sequences of a plurality of different human germline framework sequences are combined
  • the "germline sequence of the present invention” Is an antigen binding molecule.
  • the framework sequence of the antigen-binding molecule of the present invention is a substituted sequence, it is an “an anther containing a germline sequence” antigen-binding molecule of the present invention.
  • some amino acids of the human germline framework sequence alter the binding activity of the antigen-binding molecule to the antigen by the presence or absence of adenosine and / or ATP.
  • the sequence substituted by the amino acid to be made is mentioned.
  • V-Base http://vbase.mrc-cpe.cam.ac.uk/
  • a preferred arrangement is the work area.
  • These framework region sequences can be appropriately used as germline sequences contained in the antigen-binding molecule of the present invention. Germline sequences can be classified on the basis of their similarity (Tomlinson et al. (J. Mol. Biol. (1992) 227, 776-798) Williams and Winter (Eur. J. Immunol. (1993) 23, 1456 -1461) and Cox et al. (Nat. Genetics (1994) 7, 162-168)).
  • a suitable germline sequence can be appropriately selected from V ⁇ classified into 7 subgroups, V ⁇ classified into 10 subgroups, and VH classified into 7 subgroups.
  • VH1 subgroups eg, VH1-2, VH1-3, VH1-8, VH1-18, VH1-24, VH1-45).
  • VH1-46, VH1-58, VH1-69) VH2 subgroups (eg VH2-5, VH2-26, VH2-70)
  • VH3 subgroups VH3-7, VH3-9, VH3-11, VH3 -13, VH3-15, VH3-16, VH3-20, VH3-21, VH3-23, VH3-30, VH3-33, VH3-35, VH3-38, VH3-43, VH3-48, VH3-49 , VH3-53, VH3-64, VH3-66, VH3-72, VH3-73, VH3-74), VH4 subgroup (VH4-4, VH4-28, VH4-31, VH4-34, VH4-39,
  • the fully human V ⁇ sequence is not limited to the following, for example, A20, A30, L1, L4, L5, L8, L9, L11, L12, L14, L15, which are classified into the Vk1 subgroup, L1, L19, L22, L23, L24, O2, O4, O8, O12, O14, O18, Vk2 subgroup A1, A2, A3, A5, A7, A17, A18, A19, A23, O1, O11 A11, A27, L2, L6, L10, L16, L20, L25, B3 classified into Vk4 subgroup, B2 classified into Vk5 subgroup (in this specification, Vk5-2 A10, A14, A26 etc. (Kawasaki et al. (Eur. J.
  • the fully human V ⁇ sequence is not limited to the following, but for example, V1-2, V1-3, V1-4, V1-5, V1-7, V1- 9, V1-11, V1-13, V1-16, V1-17, V1-18, V1-19, V1-20, V1-22, VL1 subgroup V2-1, V2-6, V2 -7, V2-8, V2-11, V2-13, V2-14, V2-15, V2-17, V2-19, V3-2, V3-3, V3-4, classified into VL3 subgroup V4-1, V4-2, V4-3, V4-4, V4-6 classified into VL4 subgroup, V5-1, V5-2, V5-4, V5-6 etc. classified into VL5 subgroup (Kawasaki et al. (Genome Res. (1997) 7, 250-261)) is preferable.
  • these framework sequences differ from each other by differences in one or more amino acid residues.
  • These framework sequences can be used with the “at least one amino acid residue that alters the binding activity of an antigen binding domain to an antigen by the presence or absence of adenosine and / or ATP” of the present invention.
  • Other examples include, but are not limited to, KOL, NEWM, REI, EU, TUR, TEI, LAY, POM, etc. (for example, Kabat et al. (1991) and Wu et al. (J. Exp. Med ((1970) 132, 211-250)).
  • germline sequences are expected to eliminate adverse immune responses in most individuals. It has been. Affinity maturation steps that occur during normal immune responses frequently result in somatic mutations in the variable regions of immunoglobulins. These mutations occur mainly around CDRs whose sequences are hypervariable, but also affect residues in framework regions. These framework mutations are not present in germline genes and are unlikely to be immunogenic in patients. On the other hand, the normal human population is exposed to the majority of framework sequences expressed by germline genes, and as a result of immune tolerance, these germline frameworks are less immunogenic in patients Alternatively, it is expected to be non-immunogenic. In order to maximize the potential for immune tolerance, the gene encoding the variable region can be selected from a set of functional germline genes that normally exist.
  • the amino acid that changes the binding activity of the antigen-binding domain to the antigen by the presence or absence of adenosine and / or ATP according to the present invention is the variable region sequence, heavy chain variable region or light chain variable region sequence, or CDR.
  • Site-directed mutagenesis (Kunkel et al. (Proc. Natl. Acad. Sci. USA (1985) 82, 488-492)), Overlap extension PCR, etc. to generate antigen-binding molecules contained in sequences or framework sequences
  • a light chain selected as a CDR sequence and / or a framework sequence that contains in advance at least one amino acid residue that changes the binding activity of an antigen-binding domain to an antigen in the presence or absence of adenosine and / or ATP
  • a variable region and a heavy chain variable region prepared as a randomized variable region sequence library a library containing a plurality of antigen-binding molecules having different sequences can be prepared.
  • a heavy chain selected as a CDR sequence and / or a framework sequence that contains at least one amino acid residue that changes the binding activity of the antigen-binding domain to the antigen in the presence or absence of the adenosine or ATP. It is also possible to design the light chain variable region sequence to include various amino acids as residues other than the amino acid residues. In the present invention, such residues are referred to as flexible residues. As long as the binding activity of the antigen-binding molecule of the present invention to the antigen varies depending on the condition of the concentration of the tissue-specific compound, the number and position of the flexible residues are not limited to a specific embodiment.
  • the heavy and / or light chain CDR and / or FR sequences can include one or more flexible residues.
  • a flexible residue and which other amino acid can be substituted to form a library can be identified by crystal structure analysis or mutagenesis of a complex of adenosine and / or ATP and an antibody. For example, from a crystal structure analysis of a complex of adenosine and / or ATP and an antibody, antibody residues that are not involved in adenosine and / or ATP binding can be identified. Substituting other amino acids for residues identified as not involved in the binding of adenosine and / or ATP, one can select amino acids that can maintain an adequate degree of binding to the compound.
  • a library in which the selected amino acid appears in the selected residue can be designed.
  • a library mainly composed of a plurality of antigen-binding molecules is formed so that a group of antigen-binding molecules in which residues identified as not involved in adenosine and / or ATP binding are replaced with different amino acids. It is possible to design. That is, by combining individual flexible residues substituted with different amino acids, the diversity of the sequences of antigen-binding molecules containing the flexible residues is brought about.
  • At least one of the residues identified to be involved in the binding of adenosine and / or ATP may be any residue selected from the residue and a residue different from the residue.
  • Antigen binding molecules containing groups can be designed.
  • One non-limiting embodiment of amino acids identified to be involved in adenosine and / or ATP binding is the amino acid at positions 52, 52a, 53, 96, 100a, or 100c in the heavy chain variable region. Any one or more amino acids may be exemplified.
  • any one or more amino acids may be exemplified.
  • the amino acid residue at position 100a of the antigen-binding molecule contained in the library is His, Met, Leu, It can be an amino acid residue selected from any flexible residue of Arg, Trp, or Tyr.
  • the 31 position, 32 position, 33 position, 35 position, 50 position, 55 position, 56 position, 57 position, 58 position, 59 position included in the heavy chain variable region The amino acids at positions 95, 96, 97, 98, 99, 100, 100a, and 100b can be exemplified.
  • Another non-limiting embodiment of such amino acids includes positions 26, 27, 27a, 27b, 27c, 28, 29, 31, 31, 32, 50, 51, contained in the light chain variable region.
  • the amino acids at positions 52, 53, 54, 55, 89, 90, 91, 92, 93, 94, 95a, 96, and 97 can be exemplified.
  • the flexible residue is an amino acid contained in the heavy chain variable region; 31 of the amino acid is Asp, Gly, Asn, Ser, Arg, or Thr,
  • the amino acid at position 32 is one of Ala, Phe, His, Asn, Ser, or Tyr,
  • the amino acid at position 33 is Ala, Glu, Asp, Gly, Phe, Ile, His, Lys, Met, Leu, Asn, Gln, Pro, Ser, Arg, Trp, Val, Tyr, or Thr
  • the amino acid at position 35 is His, Ser, Thr, Tyr, or Asn
  • the amino acid at position 50 is Ala, Glu, Asp, Gly, Phe, Ile, His, Lys, Met, Leu, Asn, Gln, Pro, Arg, Thr, Trp, Val, Tyr, or Ser
  • the amino acid at position 55 is Ala, Glu, Asp, Gly, Leu, Thr, Ser, Arg, or Asn
  • the amino acid at position 56 is Al
  • the flexible residue is an amino acid contained in the light chain variable region;
  • the amino acid at position 26 is either Ala, Ser, or Thr, 27 of the amino acid is either Thr or Ser,
  • the amino acid at position 27a is one of Gly, Asn, Thr, or Ser;
  • the amino acid at position 27b is either Asn or Asp,
  • the amino acid at position 27c is either Ile or Val,
  • the amino acid at position 28 is either Asp or Gly,
  • the amino acid at position 29 is Ala, Asp, Phe, Ser, Arg, Thr, Tyr, or Gly, 31 of the amino acid is Glu, Asp, Lys, or Asn,
  • the amino acid at position 32 is either Ala, Asp, Ser, Thr, or Tyr,
  • the 50th amino acid is Asp, Gly, Lys, Asn, Gln, Ser, Arg, Tyr, or Glu, 51 of the amino acid is Asp, Gly, Lys, Asn, Thr, or Val, 52
  • flexible residues are light and heavy chains having several different amino acids that are presented at that position when comparing amino acid sequences of known and / or natural antibodies or antigen binding domains.
  • Kabat Sequences of Proteins of Immunological Interest (National Institute of Health Bethesda Md.) (1987 and 1991) provides in determining the highly diverse positions of known and / or natural antibodies. The data to be used is valid.
  • the amino acids are preferably from about 2 to about 20, preferably from about 3 to about 19, preferably from about 4 to about 18, preferably from 5 to 17, preferably from 6 to 16, preferably from 7 to 7 at certain positions. If it has a diversity of 15, preferably 8 to 14, preferably 9 to 13, preferably 10 to 12 possible different amino acid residues, the position is very diverse.
  • an amino acid position preferably has at least about 2, preferably at least about 4, preferably at least about 6, preferably at least about 8, preferably about 10, preferably about 12 possible different amino acids. Can have residue diversity.
  • a light chain variable region and a randomized variable region sequence library into which at least one amino acid residue that changes the binding activity of the antigen-binding domain to the antigen is introduced by the presence or absence of the adenosine and / or ATP are prepared.
  • a library containing a plurality of antigen-binding molecules having different sequences from each other in the present invention can also be prepared by combining with the heavy chain variable region.
  • at least one amino acid residue that changes the binding activity of the antigen-binding domain to the antigen is introduced by the presence or absence of the adenosine and / or ATP, and the other amino acid residues are designed as flexible residues.
  • a library containing a plurality of antigen-binding molecules having different sequences from each other in the present invention can also be prepared by combining the heavy chain variable regions.
  • a light chain variable region into which at least one amino acid residue that changes the binding activity of an antigen-binding molecule to an antigen is introduced according to the concentration condition of the target tissue-specific compound and a heavy chain prepared as a randomized variable region sequence library Even in the case of combining with a variable region, it is also possible to design so that a flexible residue is included in the sequence of the light chain variable region, as described above.
  • the binding activity of the antigen-binding molecule of the present invention to the antigen varies depending on the presence or absence of adenosine and / or ATP, the number and position of the flexible residues are not limited to a specific embodiment. That is, the heavy and / or light chain CDR and / or FR sequences can include one or more flexible residues.
  • a randomized variable region library is preferably mentioned.
  • Known methods are appropriately combined with the method for producing the randomized variable region library.
  • the originally constructed immune library can be suitably used as a randomized variable region library.
  • the V gene in genomic DNA ⁇ and the reconstructed functional V gene CDR sequence are replaced with a synthetic oligonucleotide set including a sequence encoding a codon set of an appropriate length.
  • the synthesized library can also be suitably used as a randomized variable region library. In this case, since the diversity of the heavy chain CDR3 gene sequence is observed, it is also possible to replace only the CDR3 sequence.
  • a criterion for generating amino acid diversity in the variable region of an antigen-binding molecule is to provide diversity at amino acid residues at positions exposed on the surface of the antigen-binding molecule.
  • a surface exposed position is a position that can be exposed and / or contacted with an antigen based on the structure, structural ensemble, and / or modeled structure of the antigen-binding molecule. Generally speaking, it is the CDR.
  • the position exposed on the surface is determined using coordinates from a three-dimensional model of the antigen binding molecule using a computer program such as the Insight II program (Accelrys).
  • the position exposed on the surface can be determined using algorithms known in the art (eg, Lee and Richards (J. Mol. Biol. (1971) 55, 379-400), Connolly (J. Appl. Cryst. (1983) 16, 548-558)).
  • the determination of the position exposed on the surface can be performed using software suitable for protein modeling and three-dimensional structural information obtained from antibodies.
  • SYBYL biopolymer module software (Tripos Associates) is preferably exemplified as software that can be used for such a purpose.
  • the “size” of the probe used in the calculation is set to a radius of about 1.4 angstroms or less.
  • Pacios Comput. Chem. (1994) 18 (4), 377-386 and J. Mol. Model. , 46-53).
  • amino acids in a variable region including a CDR region and / or a framework region can be appropriately modified.
  • amino acids at positions 1, 5, 10, 30, 30, 48, and 58 can be exemplified. More specifically, Gln at position 1, Gln at position 5, Asp at position 10, Asn at position 30, Leu at position 48, Asn at position 58 can be exemplified.
  • these amino acids can be substituted with the corresponding amino acids contained in the germline sequence.
  • the sequence of VH3-21 can be exemplified. In this case, Gln at position 1 is Glu, Gln at position 5 is Val, Asp at position 10 is Gly, Asn at position 30 is Ser, Leu at position 48 is Val, and Asn at position 58 is Tyr. Can be substituted.
  • a naive library consisting of a naive sequence that is an antibody sequence constructed from an antibody gene derived from a lymphocyte of a healthy person and having no bias in its repertoire is also a randomized variable region library.
  • a naive sequence that is an antibody sequence constructed from an antibody gene derived from a lymphocyte of a healthy person and having no bias in its repertoire is also a randomized variable region library.
  • Fc region Fc region comprises an amino acid sequence derived from the constant region of the antibody heavy chain.
  • the Fc region is a part of the heavy chain constant region of the antibody including the hinge, CH2 and CH3 domains from the N-terminus of the hinge region at the papain cleavage site at the approximately amino acid position 216 represented by EU numbering.
  • the Fc region can be obtained from human IgG1, but is not limited to a particular subclass of IgG.
  • Preferable examples of the Fc region include an Fc region having binding activity to FcRn in the acidic pH range as described later.
  • an Fc region having binding activity to Fc ⁇ receptor can be mentioned as described later.
  • Fc region is represented by human IgG1 (SEQ ID NO: 5), IgG2 (SEQ ID NO: 6), IgG3 (SEQ ID NO: 7), or IgG4 (SEQ ID NO: 8).
  • the Fc region is exemplified.
  • Fc ⁇ receptor Fc ⁇ receptor (Fc ⁇ R) Fc ⁇ receptor (also referred to as Fc ⁇ R) refers to a receptor that can bind to the Fc region of IgG1, IgG2, IgG3, and IgG4 monoclonal antibodies, and includes virtually any member of the protein family encoded by the Fc ⁇ receptor gene. means.
  • this family includes Fc ⁇ RI (CD64), including isoforms Fc ⁇ RIa, Fc ⁇ RIb and Fc ⁇ RIc; isoforms Fc ⁇ RIIa (including allotypes H131 and R131, ie Fc ⁇ RIIa (H) and Fc ⁇ RIIa (R)), Fc ⁇ RIIb (Fc ⁇ RIIb ⁇ 1 and Fc ⁇ RIIb-2) and Fc ⁇ RIIc containing Fc ⁇ RII (CD32); and isoforms Fc ⁇ RIIIa (including allotypes V158 and F158, ie Fc ⁇ RIIIa (V) and Fc ⁇ RIIIa (F)) and Fc ⁇ RIIIb (allotypes Fc ⁇ RIIIb-NA1 and Fc ⁇ R Including, but not limited to, Fc ⁇ RIII (CD16), including -NA2, as well as any undiscovered human Fc ⁇ Rs or Fc ⁇ R isoforms or allotypes.
  • Fc ⁇ RIIa including allotype
  • Fc ⁇ R may be derived from any organism, including but not limited to humans, mice, rats, rabbits and monkeys.
  • Mouse Fc ⁇ Rs include Fc ⁇ RI (CD64), Fc ⁇ RII (CD32), Fc ⁇ RIII (CD16) and Fc ⁇ RIII-2 (Fc ⁇ RIV, CD16-2), as well as any undiscovered mouse Fc ⁇ Rs or Fc ⁇ R isoforms or allotypes However, it is not limited to these.
  • Suitable examples of such Fc ⁇ receptors include human Fc ⁇ RI (CD64), Fc ⁇ RIIa (CD32), Fc ⁇ RIIb (CD32), Fc ⁇ RIIIa (CD16) and / or Fc ⁇ RIIIb (CD16).
  • the polynucleotide sequence and amino acid sequence of human Fc ⁇ RI are SEQ ID NO: 9 (NM_000566.3) and 10 (NP_000557.1), respectively.
  • the polynucleotide sequence and amino acid sequence of human Fc ⁇ RIIa are respectively SEQ ID NO: 11 (BC020823).
  • allotype R131 is a sequence in which the 166th amino acid of SEQ ID NO: 12 is substituted with Arg
  • the polynucleotide sequence and amino acid sequence of Fc ⁇ RIIb are respectively SEQ ID NO: 13 (BC146678.1) and 14 (AAI46679.1)
  • the polynucleotide sequence and amino acid sequence of Fc ⁇ RIIIa are SEQ ID NO: 15 (BC033678.1) and 16 (AAH33678.1), respectively
  • the polynucleotide sequence and amino acid sequence of Fc ⁇ RIIIb are SEQ ID NO: 15 (BC033678.1) and 16 (AAH33678.1
  • Fc ⁇ RIa including Fc ⁇ RIa, Fc ⁇ RIb and Fc ⁇ RIc (CD64) and isoforms Fc ⁇ RIIIa (including allotypes V158 and F158) and Fc ⁇ RIIIb (including allotypes Fc ⁇ RIIIb-NA1 and Fc ⁇ RIIIb-NA2) and Fc region of IgG and Fc ⁇ RIII (CD16)
  • the binding ⁇ chain associates with a common ⁇ chain having ITAM that transmits an activation signal into the cell.
  • ITAM is contained in its own cytoplasmic domain of isoforms Fc ⁇ RIIa (including allotypes H131 and R131) and Fc ⁇ RIIc (CD32) including Fc ⁇ RIIc.
  • Fc ⁇ receptors are expressed in many immune cells such as macrophages, mast cells, and antigen-presenting cells. Activation signals transmitted by the binding of these receptors to the Fc region of IgG promote phagocytic ability of macrophages, production of inflammatory cytokines, degranulation of mast cells, and enhancement of function of antigen-presenting cells.
  • An Fc ⁇ receptor having the ability to transmit an activation signal as described above is referred to herein as an active Fc ⁇ receptor.
  • the cytoplasmic domain of Fc ⁇ RIIb contains ITIM that transmits inhibitory signals.
  • the activation signal from BCR is suppressed by cross-linking of Fc ⁇ RIIb and B cell receptor (BCR), resulting in suppression of BCR antibody production.
  • BCR B cell receptor
  • macrophages phagocytic ability and ability to produce inflammatory cytokines are suppressed by cross-linking of Fc ⁇ RIII and Fc ⁇ RIIb.
  • An Fc ⁇ receptor having the ability to transmit an inhibitory signal as described above is referred to herein as an inhibitory Fc ⁇ receptor.
  • Fc region for Fc [gamma] R As avidity aforementioned Fc region for Fc [gamma] R, as the Fc region contained in the antigen-binding molecules of the present invention include Fc region with binding activity for Fc ⁇ receptor.
  • Fc region is represented by human IgG1 (SEQ ID NO: 5), IgG2 (SEQ ID NO: 6), IgG3 (SEQ ID NO: 7), or IgG4 (SEQ ID NO: 8).
  • the Fc region is exemplified.
  • Fc ⁇ receptor has binding activity to the Fc region of IgG1, IgG2, IgG3, or IgG4 monoclonal antibodies, in addition to the FACS and ELISA formats described above, ALPHA screen (Amplified Luminescent Proximity Homogeneous Assay) and surface plasmon It can be confirmed by the BIACORE method using the resonance (SPR) phenomenon (Proc. Natl. Acad. Sci. USA (2006) 103 (11), 4005-4010).
  • SPR resonance
  • ALPHA screen is implemented based on the following principle by ALPHA technology using two beads of donor and acceptor.
  • a molecule bound to the donor bead interacts biologically with the molecule bound to the acceptor bead, and a luminescent signal is detected only when the two beads are in close proximity.
  • a photosensitizer in the donor bead excited by the laser converts ambient oxygen into excited singlet oxygen. Singlet oxygen diffuses around the donor bead, and when it reaches the adjacent acceptor bead, it causes a chemiluminescence reaction in the bead, and finally light is emitted.
  • the chemiluminescence reaction does not occur because the singlet oxygen produced by the donor bead does not reach the acceptor bead.
  • an antigen-binding molecule containing a biotin-labeled Fc region is bound to a donor bead, and an Fc ⁇ receptor tagged with glutathione S-transferase (GST) is bound to an acceptor bead.
  • GST glutathione S-transferase
  • an antigen binding molecule having a native Fc region and an Fc ⁇ receptor interact to produce a signal of 520-620 nm.
  • Antigen binding molecules comprising untagged Fc region variants compete for interaction between an antigen binding molecule having a native Fc region and an Fc ⁇ receptor. Relative binding affinity can be determined by quantifying the decrease in fluorescence that results from competition.
  • biotinylate antigen-binding molecules such as antibodies using Sulfo-NHS-biotin or the like.
  • a method for tagging Fc ⁇ receptor with GST it is expressed in a cell or the like held in a vector in which a fusion gene in which a polynucleotide encoding Fc ⁇ receptor and a polynucleotide encoding GST are fused in frame is operably linked.
  • a purification method using a glutathione column can be appropriately employed.
  • the obtained signal is suitably analyzed by fitting to a one-site competition model using nonlinear regression analysis using software such as GRAPHPAD PRISM (GraphPad, San Diego).
  • the Biacore system takes the shift amount, that is, the mass change at the sensor chip surface on the vertical axis, and displays the time change of mass as measurement data (sensorgram).
  • Kinetics association rate constant (ka) and dissociation rate constant (kd) are obtained from the sensorgram curve, and affinity (KD) is obtained from the ratio of the constants.
  • an inhibition measurement method is also preferably used. Examples of inhibition measurement methods are described in Proc. Natl. Acad. Sci. U.S.A. (2006) 103 (11), 4005-4010.
  • Fc ⁇ receptor (Fc ⁇ R) binding modified Fc region As the Fc region included in the present invention, human IgG1 (SEQ ID NO: 5), IgG2 (SEQ ID NO: 6), IgG3 (SEQ ID NO: 7), or IgG4 (SEQ ID NO: 8)
  • an Fc ⁇ R-binding modified Fc region that has a higher binding activity to the Fc ⁇ receptor than the binding activity of the Fc region of natural human IgG to the Fc ⁇ receptor can be used as appropriate.
  • the “Fc region of natural human IgG” is bound to the EU numbering 297 of the Fc region of human IgG1, IgG2, IgG3 or IgG4 exemplified by SEQ ID NO: 5, 6, 7 or 8. It means the Fc region where the sugar chain is a fucose-containing sugar chain.
  • Such an Fc ⁇ R-binding modified Fc region can be produced by modifying amino acids in the Fc region of natural human IgG. Whether the binding activity of the Fc ⁇ R-binding modified Fc region to Fc ⁇ R is higher than the binding activity of the Fc region of natural human IgG to Fc ⁇ R can be appropriately determined using the method described in the above-mentioned section of binding activity.
  • “modification of amino acid” or “amino acid modification” of the Fc region includes modification to an amino acid sequence different from the amino acid sequence of the starting Fc region.
  • Any Fc region can be used as the starting Fc region so long as the modified variant of the starting Fc region can bind to the human Fc ⁇ receptor in the neutral pH range.
  • an Fc region that has been further modified with an Fc region that has already been modified as a starting Fc region can also be suitably used as the Fc region of the present invention.
  • the starting Fc region can mean the polypeptide itself, a composition comprising the starting Fc region, or the amino acid sequence encoding the starting Fc region.
  • the starting Fc region may include known Fc regions produced by recombination outlined in the antibody section.
  • the origin of the starting Fc region can be obtained from any organism or person, including but not limited to a non-human animal.
  • any organism suitably includes an organism selected from mice, rats, guinea pigs, hamsters, gerbils, cats, rabbits, dogs, goats, sheep, cows, horses, camels, and non-human primates.
  • the starting Fc region can also be obtained from a cynomolgus monkey, marmoset, rhesus monkey, chimpanzee, or human.
  • the starting Fc region can be obtained from human IgG1, but is not limited to a particular class of IgG.
  • the Fc region of any class or subclass of IgG from any of the aforementioned organisms can preferably be used as the starting Fc region. Examples of naturally occurring variants or engineered forms of IgG are known in the literature (Curr. Urr Opin. Biotechnol. (2009) 20 (6), 685-91, Curr. Opin. Immunol. (2008) 20 (4 ), 460-470, Protein Eng. Des. Sel. (2010) 23 (4), 195-202, International Publications WO2009 / 086320, WO2008 / 092117, WO2007 / 041635, and WO2006 / 105338) It is not limited to.
  • modifications include one or more mutations, for example, mutations substituted with amino acid residues different from the amino acids of the starting Fc region, or insertion of one or more amino acid residues relative to the amino acids of the starting Fc region or the starting Fc region. Deletion of one or more amino acids from these amino acids.
  • the amino acid sequence of the modified Fc region includes an amino acid sequence including at least a part of the Fc region that does not occur in nature.
  • Such variants necessarily have less than 100% sequence identity or similarity with the starting Fc region.
  • the variant has about 75% to less than 100% amino acid sequence identity or similarity with the amino acid sequence of the starting Fc region, more preferably about 80% to less than 100%, more preferably about 85% to 100%.
  • amino acid difference between the starting Fc region and the Fc ⁇ R binding modified Fc region of the invention there is at least one amino acid difference between the starting Fc region and the Fc ⁇ R binding modified Fc region of the invention.
  • the amino acid difference between the starting Fc region and the Fc ⁇ R-binding modified Fc region of the present invention can be suitably specified, particularly by the amino acid difference specified at the position of the amino acid residue specified by the aforementioned EU numbering.
  • a method for producing such variants is exemplified in the section “Amino acid modification”.
  • the Fc ⁇ R-binding modified Fc region (Fc ⁇ R-binding modified Fc region), which has higher Fc ⁇ receptor-binding activity than the Fc ⁇ -receptor binding activity of the natural human IgG Fc region contained in the antigen-binding molecule of the present invention, can be obtained by any method.
  • the Fc ⁇ R-binding modified Fc region can be obtained by modifying the amino acid of the human IgG type immunoglobulin used as the starting Fc region.
  • Preferred IgG immunoglobulin Fc regions for modification include, for example, human IgG (IgG1, IgG2, IgG3, or IgG4, and variants thereof) exemplified by SEQ ID NO: 5, 6, 7 or 8 Examples include the Fc region.
  • the amino acid at any position can be modified.
  • the antigen-binding molecule contains the Fc region of human IgG1 as the human Fc region, the binding to the Fc ⁇ receptor of the Fc region of natural human IgG whose sugar chain bound at position 297 of the EU number is a fucose-containing sugar chain It is preferable that a modification that brings about an effect of high binding activity to the Fc ⁇ receptor is also included.
  • Examples of such amino acid modifications include international publications WO2007 / 024249, WO2007 / 021841, WO2006 / 031370, WO2000 / 042072, WO2004 / 029207, WO2004 / 099249, WO2006 / 105338, WO2007 / 041635, WO2008 / 092117, WO2005 / 070963, It is reported in WO2006 / 020114, WO2006 / 116260, WO2006 / 023403 and the like.
  • amino acids that can be modified include, for example, EU positions, 221nd, 222th, 223rd, 224th, 225th, 227th, 228th, 230th, 231st, 232nd, 233th , 234, 235, 236, 237, 238, 239, 240, 241, 243, 244, 245, 246, 247, 249, 250, 251, 254 , 255, 256, 258, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 290, 291, 292, 293 , 294, 295, 296, 297, 298, 299, 299, 300, 301, 302, 303, 304, 305, 311, 313, 315, 315, 317, 318 , 320, 322, 323, 324, 325, 326, 327,
  • the amino acid at position 315 317 of the amino acid is Glu or Gln
  • 318 of the amino acid is His, Leu, Asn, Pro, Gln, Arg, Thr, one of Val or Tyr
  • the amino acid at position 320 is Asp, Phe, Gly, His, Ile, Leu, Asn, Pro, Ser, Thr, Val, one of Trp or Tyr
  • 322 of the amino acid is Ala, Asp, Phe, Gly, His, Ile, Pro, Ser, Thr, Val, one of Trp or Tyr
  • the amino acid at position 323 is Ile
  • 324 of the amino acid is Asp, Phe, Gly, His, Ile, Leu, Met, Pro, Arg, Thr, Val, one of Trp or Tyr
  • 325 of the amino acid is Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Pro, Gln, Arg, Ser, Thr, Val, Trp or Tyr,
  • Trp for the amino acid of position 434; 436th amino acid is Ile, or 440 of the amino acid is Gly, His, Ile, Leu or Tyr, Modification of at least one amino acid selected from the group of Further, the number of amino acids to be modified is not particularly limited, and only one amino acid can be modified, or two or more amino acids can be modified. Examples of combinations of amino acid modifications at two or more sites include combinations described in Table 1 (Table 1-1 to Table 1-3).
  • Table 1-2 is a continuation of Table 1-1.
  • Table 1-3 is a continuation of Table 1-2.
  • the pH conditions for measuring the binding activity between the Fc ⁇ receptor-binding domain and the Fc ⁇ receptor contained in the antigen-binding molecule of the present invention can be appropriately selected from pH acidic range to pH neutral range.
  • the pH acidic range to pH neutral range as conditions for measuring the binding activity between the Fc ⁇ receptor binding domain and the Fc ⁇ receptor contained in the antigen-binding molecule of the present invention usually means pH 5.8 to pH 8.0.
  • the binding affinity between the Fc ⁇ receptor binding domain and the human Fc ⁇ receptor can be evaluated at any temperature between 10 ° C and 50 ° C. Preferably, a temperature of 15 ° C. to 40 ° C.
  • ° C. is used to determine the binding affinity between the human Fc ⁇ receptor binding domain and the Fc ⁇ receptor. More preferably from 20 ° C. to 35 ° C., such as any one of 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, and 35 ° C. Is also used to determine the binding affinity between the Fc ⁇ receptor binding domain and the Fc ⁇ receptor.
  • a temperature of 25 ° C. is a non-limiting example of an embodiment of the present invention.
  • the binding activity of the Fc ⁇ R-binding modified Fc region to the Fc ⁇ receptor is higher than the binding activity of the native Fc region to the Fc ⁇ receptor.
  • the binding activity to any human Fc ⁇ receptor is higher than the binding activity of the natural Fc region to these human Fc ⁇ receptors.
  • the binding activity of an antigen-binding molecule containing an Fc ⁇ R-binding modified Fc region is 105% or more compared to the binding activity of an antigen-binding molecule containing a natural Fc region of human IgG as a control.
  • the natural Fc region a starting Fc region can be used, and a natural Fc region of an antibody of the same subclass can also be used.
  • an Fc region of natural human IgG in which the sugar chain bound to the amino acid at position 297 represented by EU numbering is a fucose-containing sugar chain is preferably used.
  • the technique described in Non-Patent Document 6 can be used to determine whether or not the sugar chain bonded to the amino acid at position 297 represented by EU numbering is a fucose-containing sugar chain. For example, it is possible to determine whether or not the sugar chain bound to the Fc region of natural human IgG is a fucose-containing sugar chain by the following method.
  • an antigen-binding molecule having an Fc region of an IgG monoclonal antibody can be used as appropriate.
  • the structure of the Fc region is as follows: SEQ ID NO: 5 (A is added to the N end of database registration number AAC82527.1), 6 (A is added to the N end of database registration number AAB59393.1), 7 (Database registration number CAA27268.1) ) And 8 (A is added to the N end of database registration number AAB59394.1).
  • an antigen-binding molecule containing an Fc region of an antibody of a specific isotype as a test substance
  • the antigen-binding molecule having the Fc region of the IgG monoclonal antibody of the specific isotype as a control
  • the effect of the binding activity on the Fc ⁇ receptor by the antigen-binding molecule containing the test Fc region is verified.
  • an antigen-binding molecule containing an Fc region verified to have a high binding activity to the Fc ⁇ receptor is appropriately selected.
  • an Fc region having selective Fc ⁇ receptor binding activity is higher than the binding activity to other Fc ⁇ receptors.
  • An Fc ⁇ receptor-binding domain having an Fc ⁇ receptor-binding domain having a selective Fc ⁇ receptor-binding activity is also preferred.
  • an antibody is used as an antigen-binding molecule (Fc region as an Fc ⁇ receptor-binding domain)
  • one molecule of antibody can only bind to one molecule of Fc ⁇ receptor, one molecule of antigen-binding molecule can act as an inhibitory Fc ⁇ receptor. It cannot bind to other active Fc ⁇ Rs in a bound state, and cannot bind to other active Fc ⁇ receptors or inhibitory Fc ⁇ receptors in a bound state to active Fc ⁇ receptors.
  • the active Fc ⁇ receptor includes Fc ⁇ RIa, Fc ⁇ RIb and Fc ⁇ RIc (CD64), Fc ⁇ RIIa and Fc ⁇ RIIIa (allotype V158).
  • Fc ⁇ RIIb (including Fc ⁇ RIIb-1 and Fc ⁇ RIIb-2) is a preferred example of the inhibitory Fc ⁇ receptor.
  • the binding activity to a specific Fc ⁇ receptor is higher than the binding activity to other Fc ⁇ receptors
  • the binding activity to an active Fc ⁇ receptor is higher than the binding activity to an inhibitory Fc ⁇ receptor. It is done.
  • the Fc ⁇ RIa, Fc ⁇ RIIa, Fc ⁇ RIIIa and / or Fc ⁇ RIIIb binding activity of the Fc region to the human Fc ⁇ receptor is higher than the binding activity to Fc ⁇ RIIb.
  • the binding activity of the Fc region-containing antigen-binding molecule Fc ⁇ RIa, Fc ⁇ RIIa, Fc ⁇ RIIIa and / or Fc ⁇ RIIIb to the human Fc ⁇ receptor is 105% or more of the binding activity to Fc ⁇ RIIb, preferably 110% or more, 120% or more, 130% or more, 140% or more, particularly preferably 150% or more, 160% or more, 170% or more, 180% or more, 190% or more, 200 %% or more, 250% or more, 300 %, 350%, 400%, 450%, 500%, 750%, 10x, 20x, 30x, 40x, 50x, 60x, 70x, 80x , 90-fold, 100-fold or more binding activity.
  • the Fc region whose binding activity to the active Fc ⁇ receptor is higher than the binding activity to the inhibitory Fc ⁇ receptor can be suitably included in the antigen-binding molecule of the present invention in which the antigen-binding domain binds to the membrane-type molecule. Since the IgG1 antibody containing such an Fc region is known to have enhanced ADCC activity described later, the antigen-binding molecule containing the Fc region is an antigen-binding molecule contained in the pharmaceutical composition of the present invention. Is also useful.
  • an example of an Fc region whose binding activity to an active Fc ⁇ receptor is higher than the binding activity to an inhibitory Fc ⁇ receptor is described above.
  • Table 1 shows examples of Fc regions that have a higher binding activity to an active Fc ⁇ receptor than a binding activity to an inhibitory Fc ⁇ receptor (having selective binding activity to an inhibitory Fc ⁇ receptor).
  • Preferable examples include Fc regions in which a plurality of amino acids described in -1 to 1-3 are modified to amino acids different from natural Fc regions.
  • the binding activity to a specific Fc ⁇ receptor is higher than the binding activity to other Fc ⁇ receptors.
  • the binding activity to the type Fc ⁇ receptor is higher than the binding activity to the active type Fc ⁇ receptor.
  • it means that the binding activity of the Fc region to Fc ⁇ RIIb is higher than the binding activity of any one of Fc ⁇ RIa, Fc ⁇ RIIa, Fc ⁇ RIIIa and / or Fc ⁇ RIIIb to the human Fc ⁇ receptor.
  • the binding activity of the antigen-binding molecule containing the Fc region to Fc ⁇ RIIb is 105% or more of the binding activity of any one of Fc ⁇ RIa, Fc ⁇ RIIa, Fc ⁇ RIIIa and / or Fc ⁇ RIIIb to the human Fc ⁇ receptor, preferably 110% or more, 120% or more, 130% or more, 140% or more, particularly preferably 150% or more, 160% or more, 170% or more, 180% or more, 190% or more, 200 %% or more, 250% or more, 300 %, 350%, 400%, 450%, 500%, 750%, 10x, 20x, 30x, 40x, 50x, 60x, 70x, 80x , 90-fold, 100-fold or more binding activity.
  • the Fc region whose binding activity to the inhibitory Fc ⁇ receptor is higher than the binding activity to the active Fc ⁇ receptor can be suitably included in the antigen-binding molecule of the present invention in which the antigen-binding domain binds to a soluble molecule.
  • the Fc region has a higher binding activity to the inhibitory Fc ⁇ receptor than the binding activity to the active Fc ⁇ receptor (having selective binding activity to the inhibitory Fc ⁇ receptor).
  • the amino acids in the region an Fc region in which 238 or 328 amino acids represented by EU numbering are modified to an amino acid different from the natural Fc region is preferable.
  • an Fc region having a binding activity to an inhibitory Fc ⁇ receptor higher than a binding activity to an active Fc ⁇ receptor having selective binding activity to an inhibitory Fc ⁇ receptor
  • Preferred examples include Fc regions that are amino acids represented by EU numbering of the Fc region, wherein 238 amino acids represented by EU numbering are modified to any one or more of Asp, and 328 amino acids to Glu.
  • the Fc region having selective binding activity to the inhibitory Fc ⁇ receptor the Fc region or modification described in US2009 / 0136485 can be appropriately selected.
  • the amino acid represented by EU numbering of the Fc region wherein 238 amino acids represented by EU numbering are Asp, or 328 amino acids are any one or more of Glu.
  • a modified Fc region is preferred.
  • substitution of Pro at position 238 represented by EU numbering to Asp, and amino acid at position 237 represented by EU numbering are exemplified by PCT / JP2012 / 054624.
  • the amino acid at position 237 represented by EU numbering is Phe
  • the amino acid at position 267 represented by EU numbering is Val
  • the amino acid at position 267 represented by EU numbering is Gln
  • amino acid at position 271 represented by EU numbering is Gly
  • amino acid at position 326 represented by EU numbering is Leu
  • amino acid at position 326 represented by EU numbering is Gln
  • position 326 represented by EU numbering is represented by EU numbering
  • the amino acid at position 326 represented by EU numbering is represented by Met
  • the amino acid at position 326 represented by EU numbering is Asp
  • the amino acid at position 267 represented by EU numbering is represented by Ala
  • the acid is Trp
  • the amino acid at position 323 represented by a ring is Ile, the amino acid at position 323 represented by EU numbering is Leu, the amino acid at position 323 represented by EU numbering is Met, and the amino acid at position 296 represented by EU numbering is Asp.
  • the amino acid at position 326 represented by EU numbering is modified to Ala, the amino acid at position 326 represented by EU numbering is Asn, and the amino acid at position 330 represented by EU numbering is modified to one or more of Preferred examples include Fc regions.
  • the composition of the sugar chain bound to the Fc region is such that the proportion of the Fc region bound to the fucose-deficient sugar chain is high.
  • an Fc region modified so that the proportion of the Fc region to which bisecting N-acetylglucosamine is added may be included. It is known that the affinity for Fc ⁇ RIIIa is enhanced by removing a fucose residue from N-acetylglucosamine at the N-glycoside-linked complex sugar chain reducing end that binds to the antibody Fc region (Non-patent Document 6).
  • the antigen-binding molecule containing the Fc region is an antigen-binding molecule contained in the pharmaceutical composition of the present invention. Is also useful.
  • the antibody in which the fucose residue is removed from N-acetylglucosamine at the N-glycoside-linked complex sugar chain reducing end that binds to the antibody Fc region include the following antibodies: Antibodies modified with glycosylation (such as International Publication WO1999 / 054342), Antibodies lacking fucose added to the sugar chain (International Publication WO2000 / 061739, WO2002 / 031140, WO2006 / 067913, etc.)
  • the fucose residue is removed from N -acetylglucosamine at the N ⁇ -glycoside-binding complex type sugar chain reducing end that binds to the antibody Fc region, it is added to the sugar chain.
  • modification of the activity of forming a sugar chain structure of a polypeptide subjected to sugar chain modification to produce an antibody lacking fucose International Publication WO2000 / 061739, WO2002 / 031140, WO2006 / 067913, etc.
  • a host cell with a low ability to add fucose to is produced.
  • the activity of forming a sugar chain structure of a polypeptide includes fucosyltransferase (EC 2.4.1.152), fucose transporter (SLC35C1), GMD (GDP-mannose 4,6-dehydratase) (EC 4.2.1.47), Fx (GDP- Selected from the group consisting of keto-6-deoxymannose 3,5-epimerase, 4-reductase (EC 1.1.1.271) and GPP (GDP- ⁇ -L-fucose pyrophosphorylase) (EC 2.7.7.30)
  • fucosyltransferase EC 2.4.1.152
  • fucose transporter SLC35C1
  • GMD GDP-mannose 4,6-dehydratase
  • Fx GDP- Selected from the group consisting of keto-6-deoxymannose 3,5-epimerase, 4-reductase (EC 1.1.1.271) and GPP (GDP- ⁇ -L-fucose pyrophosphorylase)
  • a protein capable of exhibiting these activities is referred to as a functional protein.
  • One non-limiting aspect of the method of modifying these activities is the loss of these activities.
  • a known method such as a method of disrupting the gene of these functional proteins can be appropriately employed (International Publication WO2000 / 061739, WO2002 / 031140, WO2006 / 067913 etc.).
  • Host cells lacking such activity are CHO cells, BHK cells, NS0 cells, SP2 / 0 cells, YO myeloma cells, P3X63 mouse myeloma cells, PER cells, PER.C6 cells, HEK293 cells, or hybridomas.
  • CHO cells BHK cells, NS0 cells, SP2 / 0 cells, YO myeloma cells, P3X63 mouse myeloma cells, PER cells, PER.C6 cells, HEK293 cells, or hybridomas.
  • Such a functional protein gene endogenous to cells or the like can be produced by a method of dysfunctionally destroying the gene.
  • GnTIII ⁇ -1,4-mannosyl-glycoprotein, 4- ⁇ -N-acetylglucosaminyltransferase
  • EC ⁇ -1,4-mannosyl-glycoprotein, 4- ⁇ -N-acetylglucosaminyltransferase
  • a host cell is produced that expresses a gene encoding a functional protein having activity or GalT ( ⁇ -1,4-galactosyltransferase) (EC (2.4.1.38) activity.
  • a gene encoding a functional protein having human ManII (mannosidase II) (3.2.1.114) activity, GnTI ( ⁇ -1,2- A gene encoding a functional protein having acetylglucosaminyltransferase I) (EC 2.4.1.94) activity, GnTII ( ⁇ -1,2-acetylglucosaminyltransferase II) (EC 2.4.1.143) activity Produces a host cell that co-expresses a gene encoding a protein, a gene encoding a functional protein having ManI (EC 3.2.1.113) activity, and ⁇ -1,6-fucosyltransferase (EC 2.4.1.68) (International publication WO2004 / 065540).
  • antibody Fc By transducing an expression vector containing an antibody gene into a host cell having a low ability to add fucose to a sugar chain as described above, and a host cell having an activity to form a sugar chain containing a bisecting GlcNAc structure, antibody Fc An antibody in which a fucose residue is removed from N -acetylglucosamine at the N ⁇ -glycoside-linked complex type sugar chain reducing end that binds to a region, and an antibody having a sugar chain having bisecting GlcNAc can be produced.
  • the production method of these antibodies is such that the composition of the sugar chain bound to the Fc region of the present invention is such that the proportion of the Fc region bound to the fucose-deficient sugar chain is high, or the Fc region added with bisecting N-acetylglucosamine.
  • the present invention can also be applied to a method for producing an antigen-binding molecule containing a modified Fc region that has been modified so that the ratio is high.
  • the composition of the sugar chain bound to the Fc region contained in the antigen-binding molecule of the present invention produced by such a production method can be confirmed by the method described in the above “Fc ⁇ receptor (Fc ⁇ R) binding modified Fc region”.
  • a multispecific antigen-binding molecule or a multiparatopic antigen-binding molecule at least one antigen-binding domain of which binds to a first epitope in the antigen molecule and whose at least one other antigen-binding domain is a second in the antigen molecule;
  • An antigen-binding molecule comprising at least two antigen-binding domains having the characteristic of binding to the epitope of is called a multispecific antigen-binding molecule from the viewpoint of the specificity of the reaction.
  • the antigen-binding molecule When the antigen-binding molecule binds to two different epitopes by two types of antigen-binding domains contained in a single antigen-binding molecule, the antigen-binding molecule is called a bispecific antigen-binding molecule. Further, when the antigen-binding molecule binds to three different epitopes by three kinds of antigen-binding domains contained in one molecule of the antigen-binding molecule, the antigen-binding molecule is called a trispecific antigen-binding molecule.
  • the paratope in the antigen-binding domain that binds to the first epitope in the antigen molecule and the paratope in the antigen-binding domain that binds to the second epitope that has a different structure from the first epitope have different structures.
  • at least two antigen-binding domains are characterized in that they bind to a first epitope in an antigen molecule and at least one other antigen-binding domain binds to a second epitope in the antigen molecule.
  • An antigen-binding molecule containing an antigen-binding domain is called a multiparatopic antigen-binding molecule from the viewpoint of its structural specificity.
  • the antigen-binding molecule When the antigen-binding molecule binds to two different epitopes by two types of antigen-binding domains contained in a single antigen-binding molecule, the antigen-binding molecule is called a double paratopic antigen-binding molecule. Further, when the antigen-binding molecule binds to three different epitopes by three types of antigen-binding domains contained in one molecule of the antigen-binding molecule, the antigen-binding molecule is called a triple paratopic antigen-binding molecule.
  • Multivalent multispecific or multiparatopic antigen binding molecules comprising one or more antigen binding domains and methods for their preparation are described in Conrath et al. (J. Biol. Chem. (2001) 276 (10) 7346-7350), Non-patent literature such as Muyldermans (Rev. Mol. Etc. are also described.
  • the multispecific or multiparatopic antigen-binding molecules described therein and the preparation method thereof it is possible to produce the antigen-binding molecules of the present invention.
  • Bispecific antibody and production method thereof As one embodiment of the multispecific or multiparatopic antigen-binding molecule and the preparation method thereof, the bispecific antibody and the production method thereof are exemplified below.
  • Bispecific antibodies are antibodies that contain two types of variable regions that specifically bind to different epitopes.
  • An IgG-type bispecific antibody can be secreted by hybrid hybridoma (quadroma) produced by fusing two hybridomas producing IgG antibody (Milstein et al. (Nature (1983) 305, 537-540)). .
  • a gene encoding a heavy chain containing the two variable regions of interest is introduced into the cell and the genes are shared.
  • a method of expression can be employed. However, just considering the combination of heavy chains in such a co-expression method, a pair of (i) heavy chain containing a variable region that binds to the first epitope and heavy chain containing a variable region that binds to the second epitope (Ii) a heavy chain combination in which only a heavy chain containing a variable region that binds to the first epitope is paired, and (iii) a heavy that contains a variable region that binds to the second epitope.
  • a combination of heavy chains in which only the chains are paired becomes a mixture present in a ratio of the number of molecules of 2: 1: 1. It is difficult to purify an antigen-binding molecule containing a desired heavy chain combination from a mixture of these three heavy chain combinations.
  • a bispecific antibody comprising a heavy chain of a heterogeneous combination is obtained by adding an appropriate amino acid substitution modification to the CH3 domain constituting the heavy chain. It can be preferentially secreted.
  • the amino acid side chain present in the CH3 domain of one heavy chain is replaced with a larger side chain (knob (meaning “protrusion”)), and the amino acid side present in the CH3 domain of the other heavy chain
  • Replacing a chain with a smaller side chain allows the protrusions to be placed in the gap, thereby promoting heterogeneous heavy chain formation and inhibiting homologous heavy chain formation (International Publication WO1996027011, Ridgway et al. (Protein Engineering (1996) 9, 617-621), Merchant et al. (Nat. Biotech. (1998) 16, 677-681)).
  • two polypeptides that form the Fc region originating from the above-described bispecific antibody can be used as appropriate. More specifically, two polypeptides forming an Fc region, wherein 349 amino acids represented by EU numbering in the amino acid sequence of one of the polypeptides are Cys, 366 amino acids are Trp, and the other Two polypeptides characterized in that 356 amino acids represented by EU numbering are Cys, 366 amino acids are Ser, 368 amino acids are Ala, and 407 amino acids are Val. Are preferably used.
  • the Fc region includes two polypeptides forming the Fc region, and 409 amino acids represented by EU numbering in the amino acid sequence of one of the polypeptides are Asp.
  • Two polypeptides characterized in that 399 amino acids represented by EU numbering in the amino acid sequence of the other polypeptide are Lys are preferably used.
  • 409 amino acids may be Glu instead of Asp
  • 399 amino acids may be Arg instead of Lys.
  • Asp may be suitably added as 360 amino acids or Asp as 392 amino acids.
  • the Fc region includes two polypeptides forming the Fc region, and 370 amino acids represented by EU numbering in the amino acid sequence of one of the polypeptides are Glu And two polypeptides characterized in that the 357 amino acids represented by EU numbering in the amino acid sequence of the other polypeptide are Lys.
  • the Fc region includes two polypeptides that form the Fc region, and the amino acid sequence of one of the polypeptides includes 439 amino acids represented by EU numbering.
  • Two polypeptides characterized in that 356 amino acids represented by EU numbering in the amino acid sequence of the other polypeptide are Lys are preferably used.
  • the Fc region is any of the following embodiments in which these are combined: (i) Two polypeptides forming an Fc region, wherein 409 amino acids represented by EU numbering are Asp, 370 amino acids are Glu, and the other polypeptide of one polypeptide Of the amino acid sequences of 399 amino acids represented by EU numbering is Lys, and 357 amino acids are Lys (in this embodiment, the Glu of 370 amino acids represented by EU numbering) Instead of Asp, it may be 392 amino acids Asp instead of 370 amino acids Glu represented by EU numbering), (ii) two polypeptides that form an Fc region, wherein 409 amino acids represented by EU numbering in the amino acid sequence of one polypeptide are Asp, 439 amino acids are Glu, and the other polypeptide Of the amino acid sequence of 399 amino acids represented by EU numbering is Lys, and 356 amino acids are Lys (in this embodiment, Glu of 439 amino acids represented by EU numbering) Instead of 360
  • two polypeptides forming the Fc region wherein 356 amino acids represented by EU numbering in the amino acid sequence of one of the polypeptides are Lys. Also, two polypeptides characterized in that 435 amino acids represented by EU numbering in the amino acid sequence of the other polypeptide are Arg and 439 amino acids are Glu are also preferably used.
  • two polypeptides forming the Fc region wherein 356 amino acids represented by EU numbering in the amino acid sequence of one of the polypeptides are Lys, 357 Two polypeptides, wherein the amino acid is Lys, 370 amino acids represented by EU numbering in the amino acid sequence of the other polypeptide are Glu, 435 amino acids are Arg, and 439 amino acids are Glu are also preferably used.
  • a light chain that forms a variable region that binds to the first epitope and a light chain that forms a variable region that binds to the second epitope are each represented by the first
  • the CrossMab technique (Scaefer et al. (Proc. Acad. Sci. USA (2011) 108, 11187-11192)) can also be used to make multispecific or multiparatopic antigen binding molecules provided by the present invention.
  • the heavy chain that forms the variable region that binds to the first epitope and the heavy chain that forms the variable region that binds to the second epitope are associated.
  • Fab-Arm Exchange (Labrijn et al. (Proc. Natl. Acad. Sci. USA (2013) 110, Or it can be used to make multiple paratopic antigen binding molecules.
  • effector cell means T cell (CD4 + (helper lymphocyte) T cell and / or CD8 + (cytotoxic) T cell), multinucleated leukocyte (neutrophil, eosinophil, Leukocytes such as basophils, mast cells), monocytes, macrophages, histocytes or natural killer cells (NK cells), NK-like T cells, Kupffer cells, Langerhans cells, or lymphokine-activated killer cells (LAK cells), B Although it can be used in the broadest sense including antigen-presenting cells such as lymphocytes or dendritic cells or macrophages, examples of suitable effector cells include CD8 + (cytotoxic) T cells, NK cells, or macrophages Is mentioned.
  • Any membrane-type molecule expressed on the cell membrane of effector cells can be used as an antigen to which at least one antigen-binding domain contained in the antigen-binding molecule of the present invention binds.
  • Non-limiting examples may include polypeptides, CD3, CD2, CD28, CD44, CD16, CD32, CD64, or NKG2D or NK cell activating ligand.
  • a cytotoxic substance may be bound to the antigen-binding molecule.
  • the cytotoxic substance may be a chemotherapeutic agent exemplified below, or may be a compound disclosed in Curr Opin Chem Biol (2010) 14, 529-37 or International Publication 2009/140242. Often, these compounds are bound to the antigen binding molecule by a suitable linker or the like.
  • the antigen-binding molecule of the present invention is used as a pharmaceutical composition, it is possible to bind these cytotoxic substances before administering the antigen-binding molecule to a subject (subject, patient, etc.) It is also possible to administer before, after or simultaneously with administration.
  • a modified antigen-binding molecule modified with a cytotoxic substance such as a chemotherapeutic agent, a toxic peptide or a radioactive chemical substance, which will be described later, can also be suitably used as the antigen-binding molecule having cytotoxic activity of the present invention.
  • a modified antigen-binding molecule drug conjugates can be obtained by chemically modifying the obtained antigen-binding molecules.
  • a method for modifying an antigen-binding molecule a method already established in the field of antibody drug conjugates and the like can be used as appropriate.
  • the modified antigen-binding molecule to which a toxic peptide is bound expresses a fusion gene in which the gene encoding the toxic peptide and the gene encoding the antigen-binding molecule of the present invention are linked in frame in an appropriate host cell. And then obtained by isolation from the culture medium of the cells.
  • Chemotherapeutic agents that are bound to the antigen-binding molecules of the present invention may be exemplified: azaribine, anastrozole, azacytidine, bleomycin, bortezomib, bryostatin-1 ( bryostatin-1), busulfan, camptothecin, 10-hydroxycamptothecin, carmustine, celebrex, chlorambucil, cisplatin, irinotecan , Carboplatin, cladribine, cyclophosphamide, cytarabine, dacarbazine, docetaxel, dactinomycin, daunomycin g lucuronide, daunorubicin, dexamethasone, dexamethasone, diethylstilbestrol, doxorubicin (doxorubicin), doxorubicin bruchronide (doxorubicin glucuronide), epirubicin (ol), ethin
  • a preferable chemotherapeutic agent is a low-molecular chemotherapeutic agent.
  • Small molecule chemotherapeutic agents are less likely to interfere with the function of the antigen-binding molecule after the antigen-binding molecule of the invention is bound.
  • the low-molecular chemotherapeutic agent usually has a molecular weight of 100 to 2000, preferably 200 to 1000.
  • the chemotherapeutic agents exemplified here are all low-molecular chemotherapeutic agents.
  • These chemotherapeutic agents in the present invention include a prodrug that is converted into an active chemotherapeutic agent in vivo. Activation of the prodrug can be enzymatic conversion or non-enzymatic conversion.
  • examples of the cytotoxic substance bound to the antigen-binding molecule of the present invention include toxic peptides (toxins) such as Pseudomonas exotoxin A, Saporin-s6, Diphtheria toxin, Cnidarian toxin, Radiodine, and Photosensitizer.
  • toxic peptides such as Pseudomonas exotoxin A, Saporin-s6, Diphtheria toxin, Cnidarian toxin, Radiodine, and Photosensitizer.
  • toxins toxic peptides
  • toxins such as Pseudomonas exotoxin A, Saporin-s6, Diphtheria toxin, Cnidarian toxin, Radiodine, and Photosensitizer.
  • a toxic peptide the following are mentioned suitably, for example. Diphtheria toxin A chain (Langone et al. (Methods in Enzymology (1983)
  • an antigen-binding molecule comprising an antigen-binding domain that has a higher binding activity to an antigen in the presence of a target tissue-specific compound than an antigen-binding activity in the absence of the compound has the broadest meaning.
  • various molecular types are included as long as they exhibit binding activity against an antigen.
  • an antibody is an example of a molecule in which an antigen-binding domain is bound to an Fc region.
  • Antibodies can include single monoclonal antibodies (including agonist and antagonist antibodies), human antibodies, humanized antibodies, chimeric antibodies, and the like.
  • an antigen-binding domain and an antigen-binding fragment for example, Fab, F (ab ′) 2, scFv and Fv
  • Fab, F (ab ′) 2, scFv and Fv can be preferably mentioned.
  • a scaffold molecule in which a three-dimensional structure such as an existing stable ⁇ / ⁇ barrel protein structure is used as a scaffold and only a part of the structure is made into a library for the construction of an antigen-binding domain is also an antigen of the present invention. It can be included in the binding molecule.
  • the antigen-binding molecule of the present invention can contain at least a part of an Fc region that mediates binding to Fc ⁇ receptor and / or binding to FcRn.
  • the antigen binding molecule can be an antibody or an Fc fusion protein.
  • a fusion protein refers to a chimeric polypeptide comprising a polypeptide comprising a first amino acid sequence linked to a polypeptide having a second amino acid sequence that is not naturally linked in nature.
  • the fusion protein comprises a polypeptide comprising an amino acid sequence encoding at least a portion of an Fc region (eg, a portion of an Fc region that confers binding to an Fc ⁇ receptor and / or a portion of an Fc region that confers binding to FcRn).
  • the amino acid sequences can be in separate proteins that are brought together into the fusion protein, or they can usually be in the same protein, but are put into a new rearrangement in the fusion polypeptide. Fusion proteins can be made, for example, by chemical synthesis or by recombinant techniques that produce and express a polynucleotide in which the peptide region is encoded in the desired relationship.
  • Each domain of the present invention can be directly linked by a polypeptide bond or linked via a linker.
  • the linker any peptide linker that can be introduced by genetic engineering, or a synthetic compound linker (for example, a linker disclosed in Holliger et al. (Protein Engineering (1996) 9 (3), 299-305)) can be used.
  • peptide linkers are preferred in the present invention.
  • the length of the peptide linker is not particularly limited and can be appropriately selected by those skilled in the art according to the purpose. However, the preferred length is 5 amino acids or more (the upper limit is not particularly limited, but usually 30 amino acids or less, preferably Is 20 amino acids or less), particularly preferably 15 amino acids.
  • Synthetic chemical linkers are commonly used for cross-linking peptides such as N-hydroxysuccinimide (NHS), disuccinimidyl suberate (DSS), bis (sulfosuccinimidyl) Suberate (BS3), dithiobis (succinimidyl propionate) (DSP), dithiobis (sulfosuccinimidyl propionate) (DTSSP), ethylene glycol bis (succinimidyl succinate) (EGS), ethylene Glycol bis (sulfosuccinimidyl succinate) (sulfo-EGS), disuccinimidyl tartrate (DST), disulfosuccinimidyl tartrate (sulfo-DST), bis [2- (succinimideoxycarbonyloxy ) Ethyl] sulfone (BSOCOES), bis [2- (sulfosuccinimidooxycarbonyloxy
  • linker When a plurality of linkers linking each domain are used, the same type of linker can be used, or different types of linkers can also be used.
  • a linker having a peptide tag such as a His tag, an HA tag, a myc tag, or a FLAG tag can be used as appropriate.
  • bonds together by a hydrogen bond, a disulfide bond, a covalent bond, an ionic interaction, or the combination of these bonds can also be utilized suitably.
  • the affinity between CH1 and CL of an antibody is used, or the Fc region originating from the above-mentioned bispecific antibody is used for the association of hetero Fc regions.
  • a disulfide bond formed between domains can also be suitably used.
  • the polynucleotides encoding the domains are linked in frame.
  • Methods for ligating polynucleotides in-frame include known methods such as ligation of restriction fragments, fusion PCR, and overlap PCR. These methods can be used alone or in combination as appropriate for the production of the antigen-binding molecule of the present invention. Can be used.
  • the terms “linked”, “fused”, “linked” or “fused” are used interchangeably. These terms refer to linking elements or components such as two or more polypeptides so as to form one structure by all means including the above-described chemical bonding means or recombinant techniques.
  • Fusion in frame means that when two or more elements or components are polypeptides, two or more open reading frames to form a continuous longer reading frame so as to maintain the correct reading frame of the polypeptide. This is the concatenation of units.
  • the antibody that is an antigen-binding molecule of the present invention in which the constant region including the antigen-binding domain and the Fc region is linked in-frame by a peptide bond without a linker. Can be used as a suitable antigen-binding molecule of the present invention.
  • the antibody used in the present invention is not limited to the full-length antibody molecule, and may be a low-molecular-weight antibody or a modified product thereof.
  • the low molecular weight antibody is not particularly limited as long as it includes an antibody fragment lacking a part of a full-length antibody (for example, whole antibody such as whole IgG) and has binding activity to an antigen.
  • the low molecular weight antibody of the present invention is not particularly limited as long as it is a part of a full-length antibody, but preferably contains a heavy chain variable region (VH) and / or a light chain variable region (VL).
  • VH heavy chain variable region
  • VL light chain variable region
  • the amino acid sequence of VH or VL may be substituted, deleted, added and / or inserted.
  • variable region may be chimerized or humanized.
  • antibody fragments include, for example, Fab, Fab ′, F (ab ′) 2, and Fv.
  • Specific examples of the low molecular weight antibody include, for example, Fab, Fab ′, F (ab ′) 2, Fv, scFv (single chain Fv), Diabody, sc (Fv) 2 (single chain (Fv) 2) And so on. Multimers of these antibodies (eg, dimer, trimer, tetramer, polymer) are also included in the low molecular weight antibody of the present invention.
  • Antibody fragments can be generated by treating the antibody with an enzyme such as papain or pepsin, or can be expressed in a suitable host cell after constructing genes encoding these antibody fragments and introducing them into expression vectors.
  • an enzyme such as papain or pepsin
  • Antibody fragments can be generated by treating the antibody with an enzyme such as papain or pepsin, or can be expressed in a suitable host cell after constructing genes encoding these antibody fragments and introducing them into expression vectors.
  • an enzyme such as papain or pepsin
  • Diabody refers to a bivalent low molecular weight antibody constructed by gene fusion (Holliger et al. (Proc. C Natl. Acad. Sci. USA 90, 6444-6448 1993 (1993), European publications EP404097 and PCT). Publications WO1993 / 011161, etc.) Diabody is a dimer composed of two polypeptide chains, and each polypeptide chain is usually short enough to prevent VL and VH from binding to each other in the same chain, for example, The VL and VH encoded on the same polypeptide chain cannot form a single-chain variable region fragment because the linker between them is short. To form, Diabody will have two antigen binding sites.
  • ScFv can be obtained by linking antibody H chain V region and L chain V region.
  • the H chain V region and the L chain V region are linked via a linker, preferably a peptide linker (Huston et al. (Proc. Natl. Acad. Sci. USA (1988) 85, 5879-5883)).
  • the H chain V region and the L chain V region in scFv may be derived from any antibody described as an antibody in the present specification, and there is no particular limitation as a peptide linker for linking the V region, for example, Any single-chain peptide consisting of about 3 to 25 residues, the peptide linker described later, etc.
  • the PCR method as described above can be used as a method of linking the V region.
  • the DNA sequence encoding the H chain V region, and the DNA sequence encoding the L chain or L chain V region, or the DNA portion encoding the desired amino acid sequence as a template and corresponding to the sequences at both ends Ply
  • the scFv-encoding DNA can be amplified by the PCR method using a pair of DNAs, and then the DNA encoding the peptide linker moiety and the sequence designed so that both ends thereof are linked to the H chain and L chain, respectively.
  • a DNA having a desired sequence can be obtained by performing a PCR reaction by combining a pair of primers, and once a DNA encoding scFv has been prepared, the expression vector containing them and the expression vector
  • the transformed recombinant cells can be obtained according to a conventional method, and the resulting recombinant cells can be cultured to express the scFv-encoding DNA, thereby obtaining the scFv.
  • sc (Fv) 2 is a low molecular weight antibody in which two VHs and two VLs are combined with a linker to form a single chain (Hudson et al. (J. Immunol. Methods (1999) 231, 177-189) Sc (Fv) 2 can be prepared, for example, by linking scFv with a linker.
  • Two VHs and two VLs are arranged in the order of VH, VL, VH, and VL ([VH] linker [VL] linker [VH] linker [VL]) starting from the N-terminal side of the single-chain polypeptide.
  • the order of the two VHs and the two VLs is not particularly limited to the above arrangement, and may be arranged in any order. For example, the following arrangements can also be mentioned.
  • linker that binds the variable region of the antibody a linker similar to the linker described in the section of the antigen-binding molecule can be used.
  • examples of sc (Fv) 2 that are particularly preferred in the present invention include the following sc (Fv) 2.
  • a non-limiting low molecular weight antibody is a paratope different from each other, wherein one paratope binds to an epitope present in a membrane-type molecule that binds to the cell membrane of cancer cells, and the other paratope is an effector.
  • Examples include Diabody or sc (Fv) 2 that binds to an epitope present in a membrane-type molecule expressed on the cell membrane of a cell.
  • the binding activity of one paratope to the epitope present in the membrane-type molecule that binds to the cell membrane of cancer cells can be dependent on the cancer tissue-specific compound, and the cell membrane of effector cells
  • the binding activity of one paratope to an epitope present in a membrane-type molecule that binds to can be dependent on a cancer tissue-specific compound, and the binding activity of both paratopes is dependent on a cancer tissue-specific compound obtain.
  • a non-reducing low molecular weight antibody is a paratope different from each other, wherein one paratope binds to an epitope present in a membrane-type molecule that binds to the cell membrane of a cancer cell, and the other paratope is a cell.
  • Diabody or sc (Fv) 2 that binds to an epitope present in a toxic substance can be exemplified.
  • the binding activity of one paratope to an epitope present in a membrane-type molecule that binds to the cell membrane of cancer cells can be dependent on a cancer tissue-specific compound, and a cytotoxic substance
  • the binding activity of one paratope to the epitope present in can be dependent on the cancer tissue-specific compound, and the binding activity of both paratopes can be dependent on the cancer tissue-specific compound.
  • the antibody is treated with an enzyme such as papain or pepsin to generate antibody fragments, or DNA encoding these antibody fragments or low molecular weight antibodies is constructed. Then, it is introduced into an expression vector and then expressed in an appropriate host cell (for example, Co, M. S. et al., J. Immunol. (1994) 152, 2968-2976; Better, M. and Horwitz, A. H., Methods Enzymol. (1989) 178, 476-496; Pluckthun, A. and Skerra, A., Methods Enzymol. (1989) 178, 497-515; Lamoyi, E. (1986) 121, 652-663; Rousseaux, J. et al., Methods Enzymol. (1986) 121, 663-669; Bird, R. E. and Walker, B. W., Trends Biotechnol. (1991) 9 , See 132-137).
  • an enzyme such as papain or pepsin
  • FcRn Unlike the Fc ⁇ receptor, which belongs to the immunoglobulin superfamily, human FcRn is structurally similar to a major tissue incompatibility complex (MHC) class I polypeptide, and has a class I MHC molecule and 22-29% sequence. Have identity (Ghetie et al., Immunol. Today (1997) 18 (12), 592-598). FcRn is expressed as a heterodimer consisting of a transmembrane ⁇ or heavy chain complexed with a soluble ⁇ or light chain ( ⁇ 2 microglobulin).
  • MHC tissue incompatibility complex
  • the ⁇ chain of FcRn consists of three extracellular domains ( ⁇ 1, ⁇ 2, ⁇ 3), and the short cytoplasmic domain tethers the protein to the cell surface.
  • the ⁇ 1 and ⁇ 2 domains interact with the FcRn binding domain in the Fc region of antibodies (Raghavan et al. (Immunity (1994) 1, 303-315).
  • FcRn is expressed in the maternal placenta or yolk sac of mammals, which is involved in the transfer of IgG from the mother to the fetus. In addition, in the small intestine of rodent neonates that express FcRn, it is involved in the movement of maternal IgG across the brush border epithelium from colostrum or milk ingested FcRn. FcRn is expressed in many other tissues as well as various endothelial cell lines across many species. It is also expressed on human adult vascular endothelium, muscle vasculature, and liver sinusoidal capillaries. FcRn is thought to play a role in maintaining the plasma concentration of IgG by binding to IgG and recycling it to serum. The binding of FcRn to IgG molecules is usually strictly pH dependent, with optimal binding observed in the acidic pH range below 7.0.
  • Human FcRn having a polypeptide containing the signal sequence represented by SEQ ID NO: 28 as a precursor is human ⁇ 2-microglobulin in vivo (SEQ ID NO: 29 describes the polypeptide containing the signal sequence). And form a complex. Soluble human FcRn forming a complex with ⁇ 2-microglobulin is produced by using ordinary recombinant expression techniques. The binding activity of the Fc region of the present invention to soluble human FcRn forming a complex with such ⁇ 2-microglobulin can be evaluated.
  • human FcRn refers to a form that can bind to the Fc region of the present invention, and examples include a complex of human FcRn and human ⁇ 2-microglobulin.
  • Binding activity of Fc region to FcRn, particularly human FcRn is determined by a method known to those skilled in the art as described in the above-mentioned binding activity section. It is possible to measure, and conditions other than pH can be appropriately determined by those skilled in the art.
  • Antigen binding activity and human FcRn binding activity of an antigen binding molecule are KD (Dissociation constant), apparent KD (Apparent dissociation constant), dissociation rate kd (Dissociation rate), Or it can be evaluated as apparent kd (Apparent dissociation). These can be measured by methods known to those skilled in the art. For example, Biacore (GE healthcare), Scatchard plot, flow cytometer, etc. can be used.
  • the conditions other than pH for measuring the binding activity of the Fc region of the present invention to human FcRn can be appropriately selected by those skilled in the art and are not particularly limited. For example, it can be measured under conditions of MES buffer and 37 ° C. as described in International Publication WO2009 / 125825.
  • the binding activity of the Fc region of the present invention to human FcRn can be measured by methods known to those skilled in the art, and can be measured using, for example, Biacore (GE Healthcare).
  • the measurement of the binding activity between the Fc region of the present invention and human FcRn was carried out by using the Fc region or Fc region containing the human FcRn, Fc region or Fc region, respectively. It can be evaluated by flowing the antigen-binding molecule of the invention as an analyte.
  • the pH neutral range as a condition having the binding activity between the Fc region and FcRn contained in the antigen-binding molecule of the present invention usually means pH 6.7 to pH 10.0.
  • the pH neutral range is preferably a range indicated by any pH value from pH 7.0 to pH 8.0, preferably pH 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, It is selected from 7.9 and 8.0, and particularly preferably has a pH of 7.4 which is close to the pH of plasma (blood) in vivo.
  • pH 7.0 can be used instead of pH 7.4.
  • the acidic pH range as a condition having binding activity between the Fc region and FcRn contained in the antigen-binding molecule of the present invention usually means pH 4.0 to pH 6.5. Preferably, it means pH 5.5 to pH 6.5, and particularly preferably means pH 5.8 to pH 6.0 which is close to the pH in the early endosome in vivo.
  • the temperature used for the measurement conditions the binding affinity between the human FcRn-binding domain and human FcRn may be evaluated at any temperature from 10 ° C to 50 ° C. Preferably, a temperature of 15 ° C. to 40 ° C. is used to determine the binding affinity between the human FcRn binding domain and human FcRn. More preferably from 20 ° C.
  • 35 ° C. such as any one of 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, and 35 ° C. are also used to determine the binding affinity between the human FcRn binding domain and human FcRn.
  • a temperature of 25 ° C. is a non-limiting example of an embodiment of the present invention.
  • the human FcRn binding activity of natural human IgG1 is KD 1.7 ⁇ M in the acidic pH range (pH 6.0), but almost no activity in the neutral pH range It cannot be detected. Therefore, in a preferred embodiment, an antigen-binding molecule containing an Fc region with a binding activity to human FcRn in the acidic pH range of KD 20 ⁇ M or stronger can be screened. In a more preferred embodiment, an antigen-binding molecule containing an Fc region with a binding activity to human FcRn in the acidic pH range of KD 2.0 ⁇ M or higher can be screened.
  • an antigen-binding molecule comprising an Fc region with a binding activity to human FcRn in the acidic pH range of KD 0.5 ⁇ M or stronger can be screened.
  • the KD value is determined by the method described in The Journal of Immunology (2009) 182: 7663-7671 (an antigen-binding molecule is immobilized on a chip and human FcRn is flowed as an analyte).
  • an Fc region having binding activity to FcRn under pH acidic region conditions is also preferably used. obtain.
  • IgG antibodies have a long plasma retention by binding to FcRn. The binding between IgG and FcRn is observed only under acidic conditions (pH 6.0), and almost no binding is observed under neutral conditions (pH 7.4). IgG antibodies are taken up non-specifically by cells, but return to the cell surface by binding to FcRn in endosomes under acidic conditions in endosomes, and dissociate from FcRn under neutral conditions in plasma.
  • the present invention is not limited to a specific theory.
  • the antigen-binding molecule provided by the present invention binds to a membrane-type antigen expressed in cancer cells contained in cancer tissue.
  • the following is performed.
  • cancer cells expressing a membrane-type molecule to which the antigen-binding molecule of the present invention is bound in the presence of a high concentration of a cancer tissue-specific compound are damaged by the cytotoxic activity mediated by the antigen-binding molecule, It is considered that the antigen is bound to the antigen-binding domain contained in the antigen-binding molecule.
  • the antigen-binding molecule liberated in the presence of a low concentration of a cancer tissue-specific compound from the antigen-binding molecule taken up nonspecifically into the cell binds to endocytic FcRn under acidic conditions in the endosome It returns to the cell surface and dissociates from FcRn under neutral conditions in plasma.
  • the recycled antigen-binding molecule of the present invention is considered to be able to bind again to the membrane-type molecule expressed in the cancer cell as the antigen in the presence of a high concentration of a cancer tissue-specific compound.
  • a ligand that regulates it is considered possible to suppress the proliferation of target cells or the activation of inflammatory cells as follows.
  • the antigen-binding molecule of the present invention bound to the soluble molecule that is the antigen is non-specifically taken up by the cell, and then the target tissue-specific compound
  • the antigen-binding molecule that has released the antigen in the presence of a low concentration returns to the cell surface by binding to FcRn in the endosome under acidic conditions in the endosome, and dissociates from FcRn under neutral conditions in plasma.
  • the recycled antigen-binding molecule of the present invention is considered to be able to bind again to the soluble molecule that is the antigen in the presence of a high concentration of the target tissue-specific compound.
  • the antigen released from the antigen-binding molecule in the presence of a low concentration of the target tissue-specific compound is degraded in lysosomes.
  • the concentration of the soluble antigen decreases as it goes through the above-described recycling stage, and thus it is possible to suppress the proliferation of cancer cells or the activation of inflammatory cells.
  • an Fc region having an activity of binding to FcRn under acidic pH conditions is preferable.
  • the domain can be used as it is as long as it is an Fc region having an activity of binding to FcRn in advance under acidic pH conditions. If the domain has no or weak binding activity to FcRn under acidic pH conditions, an Fc region having the desired binding activity to FcRn can be obtained by modifying the amino acid in the antigen-binding molecule. An Fc region having or enhanced binding activity to a desired FcRn under the acidic pH condition can be suitably obtained by modifying an amino acid in the region.
  • An amino acid modification of the Fc region that brings about such a desired binding activity can be found by comparing the binding activity to FcRn under conditions of acidic pH range before and after the amino acid modification.
  • Those skilled in the art can appropriately modify amino acids using a known technique similar to the technique used for modifying the binding activity to the Fc ⁇ receptor.
  • the Fc region having binding activity to FcRn under the acidic pH condition contained in the antigen-binding molecule of the present invention can be obtained by any method.
  • human IgG-type immunoglobulin used as the starting Fc region By modifying these amino acids, an FcRn-binding domain having or enhanced binding activity to FcRn under acidic pH conditions can be obtained.
  • Preferred Fc regions of IgG type immunoglobulin for modification include, for example, Fc regions of human IgG (IgG1, IgG2, IgG3, or IgG4, and variants thereof).
  • the amino acid at any position can be modified as long as it has binding activity to FcRn under acidic pH conditions, or can enhance binding activity to human FcRn under acidic conditions. If the antigen-binding molecule contains the Fc region of human IgG1 as the Fc region, modifications that have the effect of enhancing the binding to FcRn over the binding activity of the starting Fc region of human IgG1 under conditions of acidic pH It is preferable.
  • amino acids that can be modified for example, as described in International Publication WO1997 / 034631, 252 position, 254 position, 256 position, 309 position, 311 position, 311 position, 315 position, 433 represented by EU numbering.
  • amino acids at positions 253, 310, 435, and / or 426 combined with these amino acids.
  • Preferred examples include amino acids at positions 413, 415, 424, 433, 434, 435, 436, 439 and / or 447.
  • amino acids capable of such modification for example, as described in International Publication WO2002 / 060919, positions 251 252 254 255 255 256 308 represented by EU numbering , 309, 311, 312, 385, 386, 387, 389, 428, 433, 434 and / or 436 are also preferred. Furthermore, as described in International Publication WO2004 / 092219, amino acids at positions 250, 314, and 428 represented by EU numbering can also be mentioned as amino acids capable of such modification.
  • amino acids that can be modified as described in, for example, International Publication WO2006 / 020114, positions 238, 244, 245, 249, 252, 256, 257, 258, 258 260, 262, 270, 272, 279, 283, 285, 286, 288, 293, 307, 311, 312, 316, 317, 318, 332 , 339, 341, 343, 375, 376, 377, 378, 380, 380, 382, 423, 427, 430, 431, 434, 436, 438, Amino acids at positions 440 and / or 442 are also preferred.
  • amino acids that can be modified as described above, EU numbering 251 position, 252 position, 307 position, 308 position, 378 position, 428 position, Amino acids at positions 430, 434 and / or 436 are also preferred. By modification of these amino acids, the binding to FcRn is enhanced under the acidic pH range of the Fc region of IgG type immunoglobulin.
  • 251 of the amino acid is either Arg or Leu
  • 252 of the amino acid is Phe
  • 254 of the amino acid is either Ser or Thr
  • the 255th amino acid is Arg, Gly, Ile, or Leu
  • 256 of the amino acid is Ala
  • 308 of the amino acid is either Ile or Thr
  • 309 amino acid is Pro
  • the amino acid at position 311 is either Glu, Leu, or Ser
  • the amino acid at position 312 is either Ala or Asp
  • 314 of the amino acid is either Ala or Leu
  • 385 of the amino acid is Ala, Arg, Asp, G
  • one non-limiting embodiment of the modification that has the effect of enhancing the binding to FcRn over the binding activity of the starting Fc region of human IgG1 under conditions of acidic pH is as follows: It may be a modification represented by EU numbering in which the amino acid at position 308 is Ile, the amino acid at position 309 is Pro, and / or the amino acid at position 311 is Glu. Another non-limiting embodiment of the modification is that the amino acid at position 308 is Thr, the amino acid at position 309 is Pro, the amino acid at position 311 is Leu, the amino acid at position 312 is Ala, and / or the amino acid at position 314 is It can be a modification involving Ala.
  • the amino acid at position 308 is Ile or Thr
  • the amino acid at position 309 is Pro
  • the amino acid at position 311 is Glu, Leu, or Ser
  • the amino acid at position 312 is Ala
  • One non-limiting variation of the modification includes Thr at position 308, Pro at position 309, Ser at position 311, Asp at position 312 and / or Leu at position 314. It can be a modification.
  • one non-limiting embodiment of the modification that has the effect of enhancing the binding to FcRn over the binding activity of the starting Fc region of human IgG1 under conditions of acidic pH is as follows: EU numbering modification that includes Leu at amino acid position 251, Tyr at amino acid position 252, Ser at amino acid position 254, or Thr, Arg at amino acid position 255, and / or Glu at amino acid position 256 It can be.
  • one non-limiting embodiment of the modification that has the effect of enhancing the binding to FcRn over the binding activity of the starting Fc region of human IgG1 under conditions of acidic pH is as follows:
  • the amino acid at position 428 is either Leu, Met, Phe, Ser, or Thr
  • the amino acid at position 433 is Arg, Gln, His, Ile, Lys, Pro, or Ser, 434
  • the amino acid at position can be any of His, Phe, or Tyr
  • / or the amino acid at position 436 can be a modification containing any of Arg, Asn, His, Lys, Met, or Thr.
  • Another non-limiting embodiment of the modification may be a modification in which the amino acid at position 428 contains His or Met, and / or the amino acid at position 434 contains His or Met.
  • one non-limiting aspect of the modification that has the effect of enhancing the binding to FcRn over the binding activity of the starting Fc region of human IgG1 under conditions of acidic pH is as follows: It may be a modification represented by EU numbering in which the amino acid at position 385 is Arg, the amino acid at position 386 is Thr, the amino acid at position 387 is Arg, and / or the amino acid at position 389 is Pro.
  • Another non-limiting embodiment of the modification may be a modification in which the amino acid at position 385 includes Asp, the amino acid at position 386 includes Pro, and / or the amino acid at position 389 includes Ser.
  • a non-limiting embodiment of a modification that has the effect of enhancing the binding to FcRn over the binding activity of the starting Fc region of human IgG1 under conditions of acidic pH represented by EU numbering
  • the amino acid at position 250 is either Gln or Glu, or 428 of the amino acid is either Leu or Phe
  • Modification of at least one amino acid selected from the group of The number of amino acids to be modified is not particularly limited, and only one amino acid can be modified, or two amino acids can be modified.
  • the Fc region of human IgG1 When the Fc region of human IgG1 is included as the Fc region, one non-limiting embodiment of the modification that has the effect of enhancing the binding to FcRn over the binding activity of the starting Fc region of human IgG1 under conditions of acidic pH is as follows:
  • the amino acid at position 250 may be Gln, and / or the amino acid at position 428 may contain either Leu or Phe.
  • another non-limiting embodiment of the modification may be a modification in which the amino acid at position 250 includes Glu, and / or the amino acid at position 428 includes either Leu or Phe.
  • the Fc region of human IgG1 is included as the Fc region, in one non-limiting embodiment of the modification that has an effect of enhancing the binding to FcRn over the binding activity of the starting Fc region of human IgG1 under conditions of acidic pH range, Represented by EU numbering, 251 of the amino acid is either Asp or Glu, Tyr for the amino acid of position 252; Gln is the amino acid at position 307 The amino acid at position 308 is Pro, Val for the amino acid of position 378; 380th amino acid is Ala, Leu, the amino acid at position 428 430 of the amino acid is either Ala or Lys, 434 of the amino acid is one of Ala, His, Ser, or Tyr, or Ile, the amino acid at position 436 Modification of at least two or more amino acids selected from the group of The number of amino acids to be modified is not particularly limited, and only two amino acids can be modified, or three or more amino acids can be modified.
  • the modification represented by EU numbering may include an amino acid at position 307 containing Gln, and an amino acid at position 434 containing either Ala or Ser.
  • Another non-limiting embodiment of the modification may be a modification in which the amino acid at position 308 includes Pro and the amino acid at position 434 includes Ala.
  • Still another non-limiting embodiment of the modification may be a modification in which the amino acid at position 252 includes Tyr and the amino acid at position 434 includes Ala.
  • One non-limiting embodiment of the modification may be a modification in which the amino acid at position 378 includes Val and the amino acid at position 434 includes Ala.
  • Another different, non-limiting embodiment of the modification can be a modification in which the amino acid at position 428 contains Leu and the amino acid at position 434 contains Ala.
  • another different non-limiting embodiment of the modification may be a modification in which the amino acid at position 434 includes Ala and the amino acid at position 436 includes Ile.
  • another non-limiting embodiment of the modification may be a modification in which the amino acid at position 308 includes Pro and the amino acid at position 434 includes Tyr.
  • another non-limiting embodiment of the modification can be a modification in which the amino acid at position 307 contains Gln and the amino acid at position 436 contains Ile.
  • one non-limiting aspect of the modification that has the effect of enhancing the binding to FcRn over the binding activity of the starting Fc region of human IgG1 under conditions of acidic pH is as follows: It may be a modification represented by EU numbering, including any one of Gln at the 307th amino acid, Ala at the 380th amino acid, and Ser at the 434th amino acid.
  • Another non-limiting embodiment of the modification may be a modification in which the amino acid at position 307 includes Gln, the amino acid at position 380 includes Ala, and the amino acid at position 434 includes Ala.
  • another non-limiting embodiment of the modification may be a modification in which the amino acid at position 252 includes Tyr, the amino acid at position 308 includes Pro, and the amino acid at position 434 includes Tyr.
  • One non-limiting embodiment of the modification may be a modification in which the amino acid at position 251 includes Asp, the amino acid at position 307 includes Gln, and the amino acid at position 434 includes His.
  • the Fc region of human IgG1 is included as the Fc region, in one non-limiting embodiment of the modification that has an effect of enhancing the binding to FcRn over the binding activity of the starting Fc region of human IgG1 under conditions of acidic pH range, Represented by EU numbering, Leu for amino acid at position 238 Leu for the amino acid at position 244 Arg for the amino acid of position 245; 249 of the amino acid is Pro, Tyr for the amino acid of position 252; The 256th amino acid is Pro, 257 of the amino acid is Ala, Ile, Met, Asn, Ser, or Val, Asp for the amino acid at position 258 The amino acid at position 260 is Ser, Leu for the amino acid at position 262 Lys for amino acid at position 270 272 of the amino acid is either Leu or Arg, 279 of the amino acid is Ala, Asp, Gly, His, Met, Asn, Gln, Arg, Ser, Thr, Trp, or Tyr, 283 of the amino
  • 288 of the amino acid is either Asn or Pro
  • 293 of the amino acid is Val
  • 307 of the amino acid is one of Ala, Glu, or Met
  • the amino acid at position 311 is Ala, Ile, Lys, Leu, Met, Val, or Trp
  • the amino acid at position 312 is Pro
  • Lys for the amino acid at position 316 317 amino acid is Pro
  • 318 of the amino acid is either Asn or Thr
  • 332 of the amino acid is Phe
  • 339 of the amino acid is either Asn, Thr, or Trp
  • the amino acid at position 341 is Pro
  • 343 of the amino acid is Glu, His, Lys, Gln, Arg, Thr, or Tyr, Arg for the amino acid at position 375
  • 376 of the amino acid is Gly, Ile, Met, Pro, Thr, or Val
  • one non-limiting embodiment of the modification that has the effect of enhancing the binding to FcRn over the binding activity of the starting Fc region of human IgG1 under conditions of acidic pH is as follows:
  • the amino acid at position 257 may contain Ile and the amino acid at position 311 may contain Ile.
  • Another non-limiting embodiment of the modification may be a modification in which the amino acid at position 257 contains Ile and the amino acid at position 434 contains His.
  • Still another non-limiting embodiment of the modification may be a modification in which the amino acid at position 376 includes Val and the amino acid at position 434 includes His.
  • An Fc region having binding activity to FcRn under pH neutral conditions instead of the above-described characteristics of binding activity to human FcRn in the acidic pH range, pH neutrality is used.
  • Antigen-binding molecules comprising Fc regions with the characteristic of binding activity to human FcRn in the region can also be screened.
  • an antigen-binding molecule containing an Fc region having a human FcRn-binding activity in the neutral pH range of KD 40 ⁇ M or higher can be screened.
  • an antigen-binding molecule comprising an Fc region with a binding activity to human FcRn in the neutral pH range of KD 15 ⁇ M or stronger can be screened.
  • an antigen comprising an Fc region having characteristics of binding activity to human FcRn in the neutral pH range Binding molecules can also be screened.
  • an antigen-binding molecule containing an Fc region having a human FcRn binding activity in the neutral pH range of KD 40 ⁇ M or higher can be screened.
  • an antigen-binding molecule comprising an Fc region with a binding activity to human FcRn in the neutral pH range of KD 15 ⁇ M or stronger can be screened.
  • an Fc region having binding activity to human FcRn in the acidic pH range and / or neutral pH range is preferable.
  • the Fc region can be used as it is if it is an Fc region that has a binding activity to human FcRn in advance in the acidic pH range and / or neutral pH range.
  • the binding activity to the desired human FcRn is altered by modifying the amino acid in the Fc region contained in the antigen-binding molecule.
  • An antigen-binding molecule containing an Fc region can be obtained, but an Fc region having binding activity for a desired human FcRn in the acidic pH range and / or neutral pH range by modifying amino acids in the human Fc region is also suitable. Can be obtained.
  • an antigen-binding molecule containing an Fc region having a desired binding activity to human FcRn is obtained by modifying amino acids in the Fc region having human FcRn binding activity in the acidic pH range and / or neutral pH range in advance. Can be done.
  • the amino acid modification of the human Fc region that brings about such a desired binding activity can be found by comparing the binding activity to human FcRn in the acidic pH range and / or neutral pH range before and after the amino acid modification. Those skilled in the art can appropriately modify amino acids using known techniques.
  • “modification of amino acid” or “amino acid modification” of the Fc region includes modification to an amino acid sequence different from the amino acid sequence of the starting Fc region.
  • the modified variant of the starting Fc region can bind to human FcRn in the acidic pH range (thus, the starting Fc region does not necessarily require binding activity to human FcRn under pH neutral conditions)
  • Any Fc region can be used as the starting domain.
  • an Fc region of an IgG antibody that is, a natural type Fc region is preferably exemplified.
  • a modified Fc region further modified by using an Fc region that has already been modified as a starting Fc region can also be suitably used as the modified Fc region of the present invention.
  • the starting Fc region can mean the polypeptide itself, a composition comprising the starting Fc region, or the amino acid sequence encoding the starting Fc region.
  • the starting Fc region can include the Fc regions of known IgG antibodies produced recombinantly as outlined in the antibody section.
  • the origin of the starting Fc region can be obtained from any organism or person, including but not limited to a non-human animal.
  • any organism suitably includes an organism selected from mice, rats, guinea pigs, hamsters, gerbils, cats, rabbits, dogs, goats, sheep, cows, horses, camels, and non-human primates.
  • the starting Fc region can also be obtained from a cynomolgus monkey, marmoset, rhesus monkey, chimpanzee, or human.
  • the starting Fc region can be obtained from human IgG1, but is not limited to a particular subclass of IgG.
  • the Fc region represented by human IgG1 (SEQ ID NO: 5), IgG2 (SEQ ID NO: 6), IgG3 (SEQ ID NO: 7), or IgG4 (SEQ ID NO: 8) is appropriately used as the starting Fc region. Means that you can. Similarly, herein, it means that the Fc region of any class or subclass of IgG from any of the aforementioned organisms can preferably be used as the starting Fc region. Examples of naturally occurring variants or engineered forms of IgG are known in the literature (Curr. Urr Opin. Biotechnol. (2009) 20 (6), 685-91, Curr. Opin. Immunol. (2008) 20 (4 ), 460-470, Protein Eng. Des. Sel. (2010) 23 (4), 195-202, International Publications WO2009 / 086320, WO2008 / 092117, WO2007 / 041635, and WO2006 / 105338) It is not limited to.
  • modifications include one or more mutations, for example, mutations substituted with amino acid residues different from the amino acids of the starting Fc region, or insertion of one or more amino acid residues relative to the amino acids of the starting Fc region or the starting Fc region. Deletion of one or more amino acids from these amino acids.
  • the amino acid sequence of the modified Fc region includes an amino acid sequence including at least a part of the Fc region that does not occur in nature.
  • Such variants necessarily have less than 100% sequence identity or similarity with the starting Fc region.
  • the variant has about 75% to less than 100% amino acid sequence identity or similarity with the amino acid sequence of the starting Fc region, more preferably about 80% to less than 100%, more preferably about 85% to 100%.
  • amino acid difference between the starting Fc region and the modified Fc region of the invention there is at least one amino acid difference between the starting Fc region and the modified Fc region of the invention.
  • the amino acid difference between the starting Fc region and the modified Fc region can also be suitably specified by the amino acid difference in which the position of the amino acid residue represented by the EU numbering described above is specified.
  • a method for producing such variants is exemplified in the section “Amino acid modification”.
  • the Fc region having the binding activity to human FcRn in the neutral pH range contained in the antigen-binding molecule of the present invention can be obtained by any method. Specifically, the human IgG type immunoglobulin used as the starting Fc region can be obtained. Fc region having a binding activity to human FcRn in the neutral pH range of KD 20 ⁇ M or higher due to amino acid modification, and in a more preferred embodiment, an Fc region having a binding activity to human FcRn in the neutral pH range of KD 2.0 ⁇ M or higher In an even more preferred embodiment, an antigen-binding molecule containing an Fc region having a binding activity to human FcRn in the neutral pH range of KD 0.5 ⁇ M or higher can be screened.
  • IgG immunoglobulin Fc regions for modification include, for example, IgG1, IgG2, IgG3 or IgG4 represented by SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, or SEQ ID NO: 8, respectively.
  • Human IgG and their modified Fc regions include, for example, IgG1, IgG2, IgG3 or IgG4 represented by SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, or SEQ ID NO: 8, respectively.
  • the binding to FcRn under the neutral pH condition is caused by the modification of the amino acid of the human IgG type immunoglobulin used as the starting Fc region.
  • amino acids that can be modified to bring about a desired effect for example, as described in International Publication WO2000 / 042072, positions 238, 252, 253, 254, 255, 255, 256 represented by EU numbering, 265, 272, 286, 288, 303, 305, 307, 309, 311, 312, 317, 340, 356, 360, 362, 376, 378 , 380, 382, 386, 388, 400, 413, 415, 424, 433, 434, 435, 436, 439 and / or 447 amino acids are preferred. It is done.
  • amino acids capable of such modification for example, as described in International Publication WO2002 / 060919, positions 251 252 254 255 255 256 308 represented by EU numbering , 309, 311, 312, 385, 386, 387, 389, 428, 433, 434 and / or 436 are also preferred. Furthermore, as described in International Publication WO2004 / 092219, amino acids at positions 250, 314, and 428 represented by EU numbering can also be mentioned as amino acids capable of such modification.
  • amino acids that can be modified as described above EU numbering 251 position, 252 position, 307 position, 308 position, 378 position, 428 position, Amino acids at positions 430, 434 and / or 436 are also preferred. These amino acid modifications enhance binding to FcRn under pH neutral conditions of the Fc region of IgG type immunoglobulins.
  • an Fc region having binding activity to human FcRn in the neutral pH range can also be obtained.
  • Preferred IgG immunoglobulin Fc regions for modification include, for example, IgG1, IgG2, IgG3 or IgG4 represented by SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, or SEQ ID NO: 8, respectively.
  • Human IgG and their modified Fc regions As long as the modification to other amino acids has a binding activity to human FcRn in the neutral range of pH, or can enhance the binding activity to human FcRn in the neutral range, the amino acid at any position can be modified.
  • the antigen-binding molecule contains the Fc region of human IgG1 as the human Fc region, modifications that have the effect of enhancing the binding to human FcRn in the neutral pH range over the binding activity of the starting Fc region of human IgG1 are included. It is preferable.
  • amino acids that can be modified include EU numbering 221 to 225, 227, 228, 230, 232, 233 to 241, 243 to 252, 254 to 260, 262-272, 274, 276, 278-289, 291-312, 315-320, 324, 325, 327-339, 341, 343, 345 , 360, 362, 370, 375-378, 380, 382, 385-387, 389, 396, 414, 416, 423, 424, 426, 438 And amino acids at positions 440 and 442. These amino acid modifications enhance binding to human FcRn in the neutral pH range of the Fc region of IgG type immunoglobulins.
  • a modification that enhances binding to human FcRn even in the neutral pH range is appropriately selected.
  • Fc region variant amino acids for example, represented by EU numbering 237, 248, 250, 252, 254, 255, 256, 257, 258, 265, 265, 286, 289, 297, 298, 303, 305, 307, 308, 309, 311, 312, 314, 315, 317, 332, 334, 360, 360, 376 , 380, 382, 384, 385, 386, 386, 387, 389, 424, 428, 433, 434 and 436.
  • a particularly preferable modification is represented by, for example, EU numbering of the Fc region.
  • Met is the amino acid at position 237. Ile, the amino acid at position 248 250 of the amino acid is Ala, Phe, Ile, Met, Gln, Ser, Val, Trp, or Tyr, 252 of the amino acid is Phe, Trp, or Tyr, Thr, the amino acid at position 254 Glu for the 255th amino acid
  • the 256th amino acid is Asp, Asn, Glu, or Gln
  • 257 of the amino acid is one of Ala, Gly, Ile, Leu, Met, Asn, Ser, Thr, or Val
  • the amino acid at position 258 is His, Ala for the amino acid at position 265 286 of the amino acid is either Ala or Glu
  • Table 2-2 is a continuation of Table 2-1.
  • Table 2-3 is a continuation of Table 2-2.
  • Table 2-4 is a continuation table of Table 2-3.
  • Table 2-5 is a continuation table of Table 2-4.
  • Table 2-6 is a continuation table of Table 2-5.
  • Table 2-7 is a continuation of Table 2-6.
  • Table 2-8 is a continuation table of Table 2-7.
  • Table 2-9 is a continuation table of Table 2-8.
  • Table 2-10 is a continuation table of Table 2-9.
  • Table 2-11 is a continuation table of Table 2-10.
  • Table 2-12 is a continuation table of Table 2-11.
  • Table 2-13 is a continuation table of Table 2-12.
  • Table 2-14 is a continuation table of Table 2-13.
  • Table 2-15 is a continuation table of Table 2-14.
  • Table 2-16 is a continuation table of Table 2-15.
  • Table 2-17 is a continuation table of Table 2-16.
  • Table 2-18 is a continuation table of Table 2-17.
  • Table 2-19 is a continuation table of Table 2-18.
  • Table 2-20 is a continuation table of Table 2-19.
  • Table 2-21 is a continuation table of Table 2-20.
  • Table 2-22 is a continuation table of Table 2-21.
  • Table 2-23 is a continuation table of Table 2-22.
  • Table 2-24 is a continuation table of Table 2-23.
  • Table 2-25 is a continuation table of Table 2-24.
  • Table 2-26 is a continuation of Table 2-25.
  • Table 2-27 is a continuation of Table 2-26.
  • Table 2-28 is a continuation of Table 2-27.
  • Table 2-29 is a continuation of Table 2-28.
  • Table 2-30 is a continuation table of Table 2-29.
  • Table 2-31 is a continuation of Table 2-30.
  • Table 2-32 is a continuation table of Table 2-31.
  • Table 2-33 is a continuation table of Table 2-32.
  • the FcRn-IgG complex is one molecule of IgG against two molecules of FcRn. It is thought that bimolecular binding occurs near the contact surface of CH2 and CH3 domains located on both sides of the Fc region of IgG (Burmeister et al. (Nature (1994) 372, 336-343).
  • antigen binding can be achieved by the formation of a heterocomplex comprising an Fc region contained in an antigen-binding molecule, four molecules of FcRn and one molecule of active Fc ⁇ receptor.
  • pharmacokinetics retention in plasma
  • immune response immune response against the administered antigen-binding molecule as follows:
  • FcRn is expressed on immune cells, and the formation of such a quaternary complex on the immune cells improves the affinity for immune cells.
  • antigen-presenting cells it is suggested that the association of intracellular domains enhances internalization signals and promotes uptake into immune cells.
  • antigen-presenting cells it is suggested that the formation of a quaternary complex on the cell membrane of antigen-presenting cells may facilitate the incorporation of antigen-binding molecules into antigen-presenting cells.
  • antigen-binding molecules taken up by antigen-presenting cells are degraded in lysosomes within the antigen-presenting cells and presented to T cells.
  • formation of the above four-component complex on the cell membrane of the antigen-presenting cell may promote the uptake of the antigen-binding molecule into the antigen-presenting cell, thereby deteriorating the retention of the antigen-binding molecule in plasma.
  • an immune response can be induced (exacerbated).
  • an antigen-binding molecule with reduced ability to form such a four-component complex is administered to a living body, the retention of the antigen-binding molecule in plasma is improved, and induction of an immune response by the living body is suppressed. Can be considered.
  • the antigen-binding molecule that inhibits the formation of the complex on immune cells including such antigen-presenting cells the following three types may be mentioned.
  • Antigen binding molecules that inhibit the formation of heterocomplexes An antigen-binding molecule having an FcRn-binding activity under neutral pH conditions, and an Fc region that has a lower binding activity to the active Fc ⁇ R than to the active Fc ⁇ R of the natural Fc region
  • the antigen-binding molecule of Embodiment 1 forms a ternary complex by binding to two molecules of FcRn, but does not form a complex including active Fc ⁇ R.
  • the Fc region whose binding activity to the active Fc ⁇ R is lower than the binding activity to the active Fc ⁇ R of the natural Fc region can be produced by modifying the amino acid of the natural Fc region as described above. Whether or not the binding activity of the modified Fc region to the active Fc ⁇ R is lower than the binding activity of the natural Fc region to the active Fc ⁇ R can be appropriately performed using the method described in the above-mentioned section of binding activity.
  • Active Fc ⁇ receptors include Fc ⁇ RIa (including Fc ⁇ RIa, Fc ⁇ RIb and Fc ⁇ RIc (CD64), Fc ⁇ RIIa (including allotypes R131 and H131), and isoforms Fc ⁇ RIIIa (including allotypes V158 and F158) and Fc ⁇ RIIIb (allotypes Fc ⁇ RIIIb-III and Rc)
  • Fc ⁇ RIII CD16
  • NA2 containing NA2.
  • the binding activity of the Fc region variant to the active Fc ⁇ receptor is lower than the binding activity of the natural Fc region to the active Fc ⁇ receptor.
  • the binding activity to any of the human Fc ⁇ receptors is lower than the binding activity of the natural Fc region to these human Fc ⁇ receptors.
  • the binding activity of the antigen-binding molecule containing the Fc region variant is 95% or less, preferably 90%, compared to the binding activity of the antigen-binding molecule containing the natural Fc region as a control.
  • % Or less 85% or less, 80% or less, 75% or less, particularly preferably 70% or less, 65% or less, 60% or less, 55% or less, 50% or less, 45% or less, 40% or less, 35% or less, 30% or less, 25% or less, 20% or less, 15% or less, 10% or less, 9% or less, 8% or less, 7% or less, 6% or less, 5% or less, 4% or less, 3% or less, 2%
  • the binding activity is 1% or less.
  • the native Fc region the starting Fc region can be used, and the Fc regions of different isotypes of the wild-type antibody can also be used.
  • the binding activity to the natural active Fc ⁇ R is preferably the binding activity of human IgG1 to the Fc ⁇ receptor.
  • the binding activity to the Fc ⁇ receptor can be reduced by expressing an antigen-binding molecule containing an Fc region having binding activity to the Fc ⁇ receptor in a host to which no sugar chain is added, such as E. coli. Can do.
  • an antigen-binding molecule having an Fc region of an IgG monoclonal antibody can be used as appropriate.
  • the structure of the Fc region is SEQ ID NO: 5 (A is added to the N terminus of RefSeq registration number AAC82527.1), 6 (A is added to the N terminus of RefSeq registration number AAB59393.1), 7 (RefSeq registration number CAA27268.1) ), 8 (RefSeq registration number AAB59394.1, N added at the end of N).
  • an antigen-binding molecule containing the Fc region of an antibody of a specific isotype as a test substance, by using the antigen-binding molecule having the Fc region of the IgG monoclonal antibody of the specific isotype as a control, The effect of the binding activity on the Fc ⁇ receptor by the antigen-binding molecule containing the Fc region is verified. As described above, an antigen-binding molecule containing an Fc region verified to have a high binding activity to the Fc ⁇ receptor is appropriately selected.
  • the binding activity to active Fc ⁇ R is lower than the binding activity of the natural Fc region to active Fc ⁇ R.
  • amino acids in the Fc region any one or more of the amino acids 234, 235, 236, 237, 238, 239, 270, 297, 298, 325, 328, and 329 represented by EU numbering are naturally occurring Fc regions.
  • An Fc region modified with an amino acid different from that of the amino acid is preferably exemplified, but the modification of the Fc region is not limited to the above modification, and is described in, for example, Cur. Opin. In Biotech.
  • the amino acid represented by EU numbering of the Fc region 234 of amino acid Ala, Arg, Asn, Asp, Gln, Glu, Gly, His, Lys, Met, Phe, Pro, Ser, Thr or Trp, 235 of the amino acid Ala, Asn, Asp, Gln, Glu, Gly, His, Ile, Lys, Met, Pro, Ser, Thr, one of Val or Arg, 236 of the amino acid Arg, Asn, Gln, His, Leu, Lys, Met, Phe, Pro or Tyr, 237 of the amino acid Ala, Asn, Asp, Gln, Glu, His, Ile, Leu, Lys, Met, Pro, Ser, Thr, Val, Tyr or Arg, 238 of the amino acid Ala, Asn, Gln, Glu, Gly, His, Ile, Lys, Thr, any of Trp or Arg, 239th amino acid Gln,
  • Mode 2 An antigen-binding molecule that has an FcRn-binding activity under neutral pH conditions, and has an Fc region that has a higher binding activity to the inhibitory Fc ⁇ R than the binding activity to the active Fc ⁇ receptor.
  • the antigen-binding molecule of embodiment 2 can form a complex containing these four components by binding to two molecules of FcRn and one molecule of inhibitory Fc ⁇ R.
  • one antigen-binding molecule can bind only to one molecule of Fc ⁇ R, one molecule of antigen-binding molecule cannot bind to another active Fc ⁇ R in a state of binding to the inhibitory Fc ⁇ R.
  • antigen-binding molecules taken into cells while bound to inhibitory Fc ⁇ R are recycled onto the cell membrane, avoiding degradation in the cells (Immunity (2005) 23, 503-514). That is, it is considered that an antigen-binding molecule having a selective binding activity to the inhibitory Fc ⁇ R cannot form a hetero complex including the active Fc ⁇ R causing the immune response and two molecules of FcRn.
  • Active Fc ⁇ receptors include Fc ⁇ RIa (including Fc ⁇ RIa, Fc ⁇ RIb and Fc ⁇ RIc (CD64), Fc ⁇ RIIa (including allotypes R131 and H131), and isoforms Fc ⁇ RIIIa (including allotypes V158 and F158) and Fc ⁇ RIIIb (allotypes Fc ⁇ RIIIb-III and Rc) Preferred examples include Fc ⁇ RIII (CD16) containing NA2.
  • Fc ⁇ RIIb (including Fc ⁇ RIIb-1 and Fc ⁇ RIIb-2) is a preferred example of the inhibitory Fc ⁇ receptor.
  • the binding activity to the inhibitory Fc ⁇ R is higher than the binding activity to the active Fc ⁇ receptor means that the binding activity of the Fc region variant to Fc ⁇ RIIb is any one of Fc ⁇ RI, Fc ⁇ RIIa, Fc ⁇ RIIIa and / or Fc ⁇ RIIIb. It means higher than the binding activity to Fc ⁇ receptor.
  • the binding activity of an antigen-binding molecule containing an Fc region variant to Fc ⁇ RIIb is 105% or more of the binding activity of any of Fc ⁇ RI, Fc ⁇ RIIa, Fc ⁇ RIIIa and / or Fc ⁇ RIIIb to a human Fc ⁇ receptor.
  • the binding activity to Fc ⁇ RIIb is all higher than Fc ⁇ RIa, Fc ⁇ RIIa (including allotypes R131 and H131) and Fc ⁇ RIIIa (including allotypes V158 and F158). Since Fc ⁇ RIa has extremely high affinity for natural IgG1, it is considered that the binding is saturated by a large amount of endogenous IgG1 in vivo. However, it is considered possible to inhibit the formation of the complex.
  • an antigen-binding molecule having an Fc region of an IgG monoclonal antibody can be used as appropriate.
  • the structure of the Fc region is SEQ ID NO: 5 (A is added to the N terminus of RefSeq registration number AAC82527.1), 6 (A is added to the N terminus of RefSeq registration number AAB59393.1), 7 (RefSeq registration number CAA27268.1) ), 8 (RefSeq registration number AAB59394.1, N added at the end of N).
  • an antigen-binding molecule containing the Fc region of an antibody of a specific isotype as a test substance, by using the antigen-binding molecule having the Fc region of the IgG monoclonal antibody of the specific isotype as a control, The effect of the binding activity on the Fc ⁇ receptor by the antigen-binding molecule containing the Fc region is verified. As described above, an antigen-binding molecule containing an Fc region verified to have a high binding activity to the Fc ⁇ receptor is appropriately selected.
  • an Fc region having selective binding activity to inhibitory Fc ⁇ R 238 or 328 amino acids represented by EU numbering among the amino acids of the Fc region are natural Fc regions. Preferred examples include Fc regions that are modified to different amino acids. Further, as the Fc region having selective binding activity to the inhibitory Fc ⁇ receptor, the Fc region or modification described in US2009 / 0136485 can be appropriately selected.
  • the amino acid represented by EU numbering of the Fc region wherein 238 amino acids represented by EU numbering are Asp, or 328 amino acids are any one or more of Glu.
  • a modified Fc region is preferred.
  • substitution of Pro at position 238 represented by EU numbering with Asp, and amino acid at position 237 represented by EU numbering are at position 237 represented by Trp and EU numbering.
  • Amino acid is Phe
  • amino acid at position 267 represented by EU numbering is Val
  • amino acid at position 267 represented by EU numbering is Gln
  • amino acid at position 268 represented by EU numbering is Asn
  • 271 is represented by EU numbering
  • the amino acid at the position is Gly
  • the amino acid at position 326 represented by EU numbering is Leu
  • the amino acid at position 326 represented by EU numbering is Gln
  • the amino acid at position 326 represented by EU numbering is represented by Glu
  • EU numbering is represented by EU numbering.
  • the amino acid at position 237 represented by EU numbering is Leu, the amino acid at position 237 represented by EU numbering is Met, the amino acid at position 237 represented by EU numbering is Tyr, and the amino acid at position 330 represented by EU numbering is Lys, the amino acid at position 330 represented by EU numbering is Arg, the amino acid at position 233 represented by EU numbering is Asp, the amino acid at position 268 represented by EU numbering is Asp, and the amino acid at position 268 represented by EU numbering
  • the antigen-binding molecule of aspect 3 can form a ternary complex by binding to one molecule of FcRn and one molecule of Fc ⁇ R, but a heterocomplex containing two molecules of FcRn and one molecule of Fc ⁇ R is Do not form.
  • One of the two polypeptides constituting the Fc region contained in the antigen-binding molecule of this embodiment 3 has binding activity to FcRn under pH neutral conditions, and the other polypeptide has pH neutral pH range.
  • An Fc region originating from a bispecific antibody (bispecific antibody) can be used as appropriate as an Fc region that does not have an activity of binding to FcRn under conditions.
  • Bispecific antibodies are two types of antibodies that have specificity for different antigens.
  • An IgG-type bispecific antibody can be secreted by hybrid hybridoma (quadroma) produced by fusing two hybridomas producing IgG antibody (Milstein et al. (Nature (1983) 305, 537-540)) .
  • the antigen-binding molecule of the above-described embodiment 3 is produced using a recombinant technique as described in the above-mentioned antibody section, a gene encoding a polypeptide constituting the two types of target Fc regions is introduced into the cell. A method of co-expressing them can be employed.
  • the produced Fc region has one of the two polypeptides constituting the Fc region having binding activity to FcRn under pH neutral conditions, and the other polypeptide under pH neutral condition conditions.
  • the Fc region that does not have FcRn-binding activity and the two polypeptides that constitute the Fc region constitute an Fc region that has binding activity to FcRn under pH neutral conditions.
  • An Fc region in which both of the two polypeptides have no binding activity to FcRn under pH neutral conditions is a mixture having a ratio of the number of molecules of 2: 1: 1. It is difficult to purify antigen-binding molecules containing the desired combination of Fc regions from three types of IgG.
  • an antigen-binding molecule containing a heterogeneous Fc region is preferentially added by modifying the CH3 domain constituting the Fc region with an appropriate amino acid substitution.
  • the amino acid side chain present in the CH3 domain of one heavy chain is replaced with a larger side chain (knob (meaning “protrusion”)), and the amino acid side present in the CH3 domain of the other heavy chain
  • a larger side chain meaning “protrusion”
  • bispecific antibodies by using a method for controlling the association of polypeptides or heterogeneous multimers composed of polypeptides for the association of two polypeptides that constitute the Fc region.
  • a method for controlling the association of polypeptides or heterogeneous multimers composed of polypeptides for the association of two polypeptides that constitute the Fc region are known. That is, by altering the amino acid residues that form the interface in the two polypeptides constituting the Fc region, the association of the polypeptides constituting the Fc region having the same sequence is inhibited, and two Fc regions having different sequences
  • a method of controlling the formation of the polypeptide aggregates constituting the protein can be employed for the production of bispecific antibodies (International Publication WO2006 / 106905). Specifically, the method described in the above-mentioned bispecific antibody and the method for producing the same can be employed as a non-limiting embodiment in producing the antigen-binding molecule of aspect 3 of the present invention.
  • antigen-binding molecules of modes 1 to 3 can all reduce immunogenicity and improve plasma retention compared to antigen-binding molecules that can form a four-component complex. Be expected.
  • the present invention provides a method for producing an antigen-binding domain that has a higher binding activity to an antigen in the presence of a target tissue-specific compound than the binding activity to an antigen in the absence of the compound.
  • the present invention provides the following steps (a) to (e): (a) obtaining an antigen-binding activity of the antigen-binding domain in the absence of a target tissue-specific compound; (b) obtaining an antigen-binding activity of the antigen-binding domain in the presence of a target tissue-specific compound; (c) selecting an antigen binding domain whose antigen binding activity in the absence of the target tissue-specific compound is lower than the antigen binding activity in the presence of the compound; (d) culturing a cell into which a vector operably linked to a polynucleotide encoding the antigen-binding domain selected in (c) is introduced; and (e) recovering the antigen-binding domain from the culture medium of the cells cultured in (d), A method for producing an antigen-binding domain is provided.
  • the present invention also includes the following steps (a) to (e): (a) obtaining the antigen-binding activity of the antigen-binding domain in the presence of a low concentration of the target tissue-specific compound; (b) obtaining an antigen-binding activity of the antigen-binding domain in the presence of a high concentration of a target tissue-specific compound; (c) selecting an antigen-binding domain whose antigen-binding activity in the presence of a low concentration of a target tissue-specific compound is lower than the antigen-binding activity in the presence of a high concentration of the compound; (d) culturing a cell into which a vector operably linked to a polynucleotide encoding the antigen-binding domain selected in (c) is introduced; and (e) recovering the antigen-binding domain from the culture medium of the cells cultured in (d), A method for producing an antigen-binding domain is provided.
  • the present invention provides the following steps (a) to (e): (a) contacting an antigen-binding domain or a library thereof with an antigen in the presence of a target tissue-specific compound; (b) placing the antigen-binding domain bound to the antigen in step (a) in the absence of the compound; (c) isolating the antigen binding domain dissociated in the step (b), (d) culturing a cell into which a vector operably linked to a polynucleotide encoding the antigen-binding domain selected in (c) is introduced; and (e) recovering the antigen-binding domain from the culture medium of the cells cultured in (d), A method for producing an antigen-binding domain is provided.
  • the present invention provides the following steps (a) to (e): (a) contacting an antigen-binding domain or a library thereof with an antigen in the presence of a high concentration of a target tissue-specific compound; (b) placing the antigen-binding domain bound to the antigen in step (a) in the presence of a low concentration of the compound; (c) isolating the antigen binding domain dissociated in the step (b), (d) culturing a cell into which a vector operably linked to a polynucleotide encoding the antigen-binding domain selected in (c) is introduced; and (e) recovering the antigen-binding domain from the culture medium of the cells cultured in (d), A method for producing an antigen-binding domain is provided.
  • the present invention also includes the following steps (a) to (f): (a) contacting the antigen binding domain library with the antigen in the absence of the target tissue-specific compound; (b) selecting an antigen binding domain that does not bind to the antigen in step (a), (c) binding the antigen-binding domain selected in step (b) to an antigen in the presence of the compound, (d) isolating the antigen binding domain bound to the antigen in the step (c), (e) culturing a cell into which a vector operably linked with a polynucleotide encoding the antigen-binding domain selected in (d) is introduced; and (f) recovering the antigen-binding domain from the culture medium of the cells cultured in (e), A method for producing an antigen-binding domain is provided.
  • the present invention also includes the following steps (a) to (f): (a) contacting the antigen binding domain library with the antigen in the presence of a low concentration of the target tissue-specific compound; (b) selecting an antigen binding domain that does not bind to the antigen in step (a), (c) binding the antigen-binding domain selected in step (b) to an antigen in the presence of a high concentration of the compound; (d) isolating the antigen binding domain bound to the antigen in the step (c), (e) culturing a cell into which a vector operably linked with a polynucleotide encoding the antigen-binding domain selected in (d) is introduced; and (f) recovering the antigen-binding domain from the culture medium of the cells cultured in (e), A method for producing an antigen-binding domain is provided.
  • the present invention provides the following steps (a) to (e): (a) contacting the antigen-binding domain library with a target tissue-specific compound in the presence of a target tissue-specific compound; (b) a step of eluting the antigen-binding domain bound to the column in the step (a) from the column in the absence of the compound, (c) isolating the antigen binding domain eluted in the step (b), (d) culturing a cell into which a vector operably linked to a polynucleotide encoding the antigen-binding domain selected in (c) is introduced; and (e) recovering the antigen-binding domain from the culture medium of the cells cultured in (d), A method for producing an antigen-binding domain is provided.
  • the present invention provides the following steps (a) to (e): (a) contacting the antigen-binding domain library in the presence of a high concentration of a target tissue-specific compound with a column immobilized with an antigen; (b) a step of eluting the antigen-binding domain bound to the column in the step (a) from the column in the presence of a low concentration of the compound; (c) isolating the antigen binding domain eluted in the step (b), (d) culturing a cell into which a vector operably linked to a polynucleotide encoding the antigen-binding domain selected in (c) is introduced; and (e) recovering the antigen-binding domain from the culture medium of the cells cultured in (d), A method for producing an antigen-binding domain is provided.
  • the present invention provides the following steps (a) to (f): (a) passing a library of antigen-binding domains through a column immobilized with an antigen in the absence of a target tissue-specific compound; (b) collecting the antigen-binding domain eluted without binding to the column in the step (a), (c) binding the antigen-binding domain recovered in step (b) to an antigen in the presence of the compound, (d) isolating the antigen binding domain bound to the antigen in the step (c), (e) culturing a cell into which a vector operably linked with a polynucleotide encoding the antigen-binding domain selected in (d) is introduced; and (f) recovering the antigen-binding domain from the culture medium of the cells cultured in (e), A method for producing an antigen-binding domain is provided.
  • the present invention provides the following steps (a) to (f): (a) passing a library of antigen binding domains through a column immobilized with an antigen in the presence of a low concentration of a target tissue-specific compound; (b) collecting the antigen-binding domain eluted without binding to the column in the step (a), (c) binding the antigen-binding domain recovered in step (b) to an antigen in the presence of a high concentration of the compound, (d) isolating the antigen binding domain bound to the antigen in the step (c), (e) culturing a cell into which a vector operably linked with a polynucleotide encoding the antigen-binding domain selected in (d) is introduced; and (f) recovering the antigen-binding domain from the culture medium of the cells cultured in (e), A method for producing an antigen-binding domain is provided.
  • the present invention provides the following steps (a) to (f): (a) contacting a library of antigen binding domains with an antigen in the presence of a target tissue specific compound; (b) obtaining an antigen binding domain bound to an antigen in the step (a), (c) placing the antigen binding domain obtained in step (b) in the absence of a compound, (d) isolating an antigen-binding domain whose antigen-binding activity in step (c) is weaker than the criterion selected in step (b); (e) culturing a cell into which a vector operably linked with a polynucleotide encoding the antigen-binding domain selected in (d) is introduced; and (f) recovering the antigen-binding domain from the culture medium of the cells cultured in (e), A method for producing an antigen-binding domain is provided.
  • the present invention provides the following steps (a) to (f): (a) contacting the antigen-binding domain library with the antigen in the presence of a high concentration of the target tissue-specific compound; (b) obtaining an antigen binding domain bound to an antigen in the step (a), (c) placing the antigen binding domain obtained in step (b) in the presence of a low concentration of the compound, (d) isolating an antigen-binding domain whose antigen-binding activity in step (c) is weaker than the criterion selected in step (b); (e) culturing a cell into which a vector operably linked with a polynucleotide encoding the antigen-binding domain selected in (d) is introduced; and (f) recovering the antigen-binding domain from the culture medium of the cells cultured in (e), A method for producing an antigen-binding domain is provided.
  • Cell Cell line
  • cell culture are used interchangeably herein, and such designations may include all progeny of a cell or cell line.
  • terms such as “transformants” and “transformed cells” include primary target cells and cultures derived therefrom without regard for passage number. It is also understood that DNA content is not exactly the same in all offspring due to deliberate or accidental mutations. Variant progeny that have substantially the same function or biological activity as screened on the original transformed cell may also be included. In the case of a description intended to have a different designation, such intention will become apparent from the context of the description. As the cells to be used, appropriate ones are appropriately selected from the cells described in the aforementioned “antibody” section.
  • a control sequence when referring to the expression of a coding sequence refers to a DNA base sequence necessary for the expression of a coding sequence operably linked in a specific host organism.
  • suitable control sequences for prokaryotes include promoters, optionally operator sequences, ribosome binding sites, and possibly other sequences that are not yet well understood.
  • promoters In eukaryotic cells, it is known to utilize promoters, polyadenylation signals and enhancers for the expression of coding sequences.
  • “Operably linked” with respect to a nucleic acid means that the nucleic acid is in a functional relationship with another nucleic acid sequence.
  • a presequence or secretory leader DNA is operably linked to the polypeptide DNA when expressed as a precursor protein involved in the secretion of the polypeptide.
  • a promoter or enhancer is operably linked to a sequence if it affects the transcription of the coding sequence.
  • a ribosome binding site is operably linked to a coding sequence if it is in a position that facilitates translation.
  • “operably linked” means that the bound DNA sequences are contiguous and in the case of a secretory leader are contiguously in reading frame.
  • enhancers do not have to be contiguous. Ligation is accomplished by ligation at appropriate restriction sites. If such sites do not exist, synthetic oligonucleotide adapters or linkers are used in accordance with conventional practice. In addition, linked nucleic acids can also be prepared by the above-described Overlap-Extension-PCR method.
  • “Ligation” is a method of forming a phosphodiester bond between two nucleic acid fragments.
  • the ends of the fragments must be compatible with each other. In some cases, this end is compatible immediately after endonuclease digestion.
  • the sticky ends generally formed after endonuclease digestion must first be changed to blunt ends.
  • the DNA is treated with approximately 10 units of DNA polymerase I or Klenow fragment of T4 DNA polymerase in the presence of four deoxyribonucleotide triphosphates for at least 15 minutes at 15 ° C in an appropriate buffer. Is done.
  • the DNA is then purified by phenol chloroform extraction and ethanol precipitation or silica purification.
  • the DNA fragments to be ligated are added to the solution in equimolar amounts. In addition to ATP and ligase buffer, this solution contains about 10 units of ligase such as T4 DNA ligase per 0.5 ⁇ g of DNA.
  • the vector is first linearized by digestion with an appropriate restriction endonuclease. The linearized fragment is then treated with bacterial alkaline phosphatase or calf intestinal phosphatase to prevent self-ligation of the fragment during the ligation step.
  • an antigen binding domain is isolated that has a higher binding activity to the antigen in the absence of the compound.
  • the polynucleotide encoding the antigen-binding domain is usually derived from a virus such as a phage, as described in Examples below. Isolated by gene amplification.
  • the antibody gene from the cell is a normal gene as shown in the section of the antibody. Isolated by amplification.
  • the present invention provides a method for producing an antigen-binding molecule whose binding activity to an antigen in the presence of a target tissue-specific compound is higher than the binding activity to an antigen in the absence of the compound.
  • the present invention provides the following steps (a) to (f): (a) obtaining an antigen-binding activity of the antigen-binding domain in the absence of a target tissue-specific compound; (b) obtaining an antigen-binding activity of the antigen-binding domain in the presence of a target tissue-specific compound; (c) selecting an antigen binding domain whose antigen binding activity in the absence of the target tissue-specific compound is lower than the antigen binding activity in the presence of the compound; (d) linking a polynucleotide encoding the antigen-binding domain selected in (c) to a polynucleotide encoding a polypeptide comprising an Fc region, (e) culturing cells into which a vector operably linked to the polynucleotide obtained in (d) has been introduced; and (f) recovering the antigen-binding molecule from the culture medium of the cells cultured in (e), A method for producing an antigen-binding molecule is provided.
  • the present invention also includes the following steps (a) to (f): (a) obtaining the antigen-binding activity of the antigen-binding domain in the presence of a low concentration of the target tissue-specific compound; (b) obtaining an antigen-binding activity of the antigen-binding domain in the presence of a high concentration of a target tissue-specific compound; (c) selecting an antigen-binding domain whose antigen-binding activity in the presence of a low concentration of a target tissue-specific compound is lower than the antigen-binding activity in the presence of a high concentration of the compound; (d) linking a polynucleotide encoding the antigen-binding domain selected in (c) to a polynucleotide encoding a polypeptide comprising an Fc region, (e) culturing cells into which a vector operably linked to the polynucleotide obtained in (d) has been introduced; and (f) recovering the antigen-binding molecule from the culture medium of the cells culture
  • the present invention provides the following steps (a) to (f): (a) contacting an antigen-binding domain or a library thereof with an antigen in the presence of a target tissue-specific compound; (b) placing the antigen-binding domain bound to the antigen in step (a) in the absence of the compound; (c) isolating the antigen binding domain dissociated in the step (b), (d) linking a polynucleotide encoding the antigen-binding domain selected in (c) to a polynucleotide encoding a polypeptide comprising an Fc region, (e) culturing cells into which a vector operably linked to the polynucleotide obtained in (d) has been introduced; and (f) recovering the antigen-binding molecule from the culture medium of the cells cultured in (e), A method for producing an antigen-binding molecule is provided.
  • the present invention provides the following steps (a) to (f): (a) contacting an antigen-binding domain or a library thereof with an antigen in the presence of a high concentration of a target tissue-specific compound; (b) placing the antigen-binding domain bound to the antigen in step (a) in the presence of a low concentration of the compound; (c) isolating the antigen binding domain dissociated in the step (b), (d) linking a polynucleotide encoding the antigen-binding domain selected in (c) to a polynucleotide encoding a polypeptide comprising an Fc region, (e) culturing cells into which a vector operably linked to the polynucleotide obtained in (d) has been introduced; and (f) recovering the antigen-binding molecule from the culture medium of the cells cultured in (e), A method for producing an antigen-binding molecule is provided.
  • the present invention also includes the following steps (a) to (g): (a) contacting the antigen binding domain library with the antigen in the absence of the target tissue-specific compound; (b) selecting an antigen binding domain that does not bind to the antigen in step (a), (c) binding the antigen-binding domain selected in step (b) to an antigen in the presence of the compound, (d) isolating the antigen binding domain bound to the antigen in the step (c), (e) linking a polynucleotide encoding the antigen-binding domain selected in (d) to a polynucleotide encoding a polypeptide comprising an Fc region; (f) culturing a cell into which a vector operably linked to the polynucleotide obtained in (e) has been introduced; and (g) recovering the antigen-binding molecule from the culture medium of the cells cultured in (f), A method for producing an antigen-binding molecule is provided.
  • the present invention also includes the following steps (a) to (g): (a) contacting the antigen binding domain library with the antigen in the presence of a low concentration of the target tissue-specific compound; (b) selecting an antigen binding domain that does not bind to the antigen in step (a), (c) binding the antigen-binding domain selected in step (b) to an antigen in the presence of a high concentration of the compound; (d) isolating the antigen binding domain bound to the antigen in the step (c), (e) linking a polynucleotide encoding the antigen-binding domain selected in (d) to a polynucleotide encoding a polypeptide comprising an Fc region; (f) culturing a cell into which a vector operably linked to the polynucleotide obtained in (e) has been introduced; and (g) recovering the antigen-binding molecule from the culture medium of the cells cultured in (f), A method for producing an antigen-binding molecule is
  • the present invention provides the following steps (a) to (f): (a) contacting the antigen-binding domain library with a target tissue-specific compound in the presence of a target tissue-specific compound; (b) a step of eluting the antigen-binding domain bound to the column in the step (a) from the column in the absence of the compound, (c) isolating the antigen binding domain eluted in the step (b), (d) linking a polynucleotide encoding the antigen-binding domain selected in (c) to a polynucleotide encoding a polypeptide comprising an Fc region, (e) culturing cells into which a vector operably linked to the polynucleotide obtained in (d) has been introduced; and (f) recovering the antigen-binding molecule from the culture medium of the cells cultured in (e), A method for producing an antigen-binding molecule is provided.
  • the present invention provides the following steps (a) to (f): (a) contacting the antigen-binding domain library in the presence of a high concentration of a target tissue-specific compound with a column immobilized with an antigen; (b) a step of eluting the antigen-binding domain bound to the column in the step (a) from the column in the presence of a low concentration of the compound; (c) isolating the antigen binding domain eluted in the step (b), (d) linking a polynucleotide encoding the antigen-binding domain selected in (c) to a polynucleotide encoding a polypeptide comprising an Fc region, (e) culturing cells into which a vector operably linked to the polynucleotide obtained in (d) has been introduced; and (f) recovering the antigen-binding molecule from the culture medium of the cells cultured in (e), A method for producing an antigen-binding molecule is provided.
  • the present invention provides the following steps (a) to (g): (a) passing a library of antigen-binding domains through a column immobilized with an antigen in the absence of a target tissue-specific compound; (b) collecting the antigen-binding domain eluted without binding to the column in the step (a), (c) binding the antigen-binding domain recovered in step (b) to an antigen in the presence of the compound, (d) isolating the antigen binding domain bound to the antigen in the step (c), (e) linking a polynucleotide encoding the antigen-binding domain selected in (d) to a polynucleotide encoding a polypeptide comprising an Fc region; (f) culturing a cell into which a vector operably linked to the polynucleotide obtained in (e) has been introduced; and (g) recovering the antigen-binding molecule from the culture medium of the cells cultured in (f),
  • the present invention provides the following steps (a) to (g): (a) passing a library of antigen binding domains through a column immobilized with an antigen in the presence of a low concentration of a target tissue-specific compound; (b) collecting the antigen-binding domain eluted without binding to the column in the step (a), (c) binding the antigen-binding domain recovered in step (b) to an antigen in the presence of a high concentration of the compound, (d) isolating the antigen binding domain bound to the antigen in the step (c), (e) linking a polynucleotide encoding the antigen-binding domain selected in (d) to a polynucleotide encoding a polypeptide comprising an Fc region; (f) culturing a cell into which a vector operably linked to the polynucleotide obtained in (e) has been introduced; and (g) recovering the antigen-binding molecule from the culture medium of the cells cultured in (f),
  • the present invention provides the following steps (a) to (g): (a) contacting a library of antigen binding domains with an antigen in the presence of a target tissue specific compound; (b) obtaining an antigen binding domain bound to an antigen in the step (a), (c) placing the antigen binding domain obtained in step (b) in the absence of a compound, (d) isolating an antigen-binding domain whose antigen-binding activity in step (c) is weaker than the criterion selected in step (b); (e) linking a polynucleotide encoding the antigen-binding domain selected in (d) to a polynucleotide encoding a polypeptide comprising an Fc region; (f) culturing a cell into which a vector operably linked to the polynucleotide obtained in (e) has been introduced; and (g) recovering the antigen-binding molecule from the culture medium of the cells cultured in (f),
  • the present invention provides the following steps (a) to (g): (a) contacting the antigen-binding domain library with the antigen in the presence of a high concentration of the target tissue-specific compound; (b) obtaining an antigen binding domain bound to an antigen in the step (a), (c) placing the antigen binding domain obtained in step (b) in the presence of a low concentration of the compound, (d) isolating an antigen-binding domain whose antigen-binding activity in step (c) is weaker than the criterion selected in step (b); (e) linking a polynucleotide encoding the antigen-binding domain selected in (d) to a polynucleotide encoding a polypeptide comprising an Fc region; (f) culturing a cell into which a vector operably linked to the polynucleotide obtained in (e) has been introduced; and (g) recovering the antigen-binding molecule from the culture medium of the cells cultured in (f),
  • human IgG1 SEQ ID NO: 5
  • IgG2 SEQ ID NO: 6
  • IgG3 SEQ ID NO: 5
  • F F
  • the Fc region is a part of the heavy chain constant region of the antibody including the hinge, CH2 and CH3 domains from the N-terminus of the hinge region at the papain cleavage site at the approximately amino acid position 216 represented by EU numbering.
  • the Fc region can be obtained from human IgG1, but is not limited to a particular subclass of IgG.
  • the Fc region for example, among the amino acid residues of the Fc region contained in the constant region of the antibody represented by SEQ ID NO: 5, 6, 7, or 8, it is represented by EU numbering.
  • 221 of the amino acid is either Lys or Tyr
  • 222 of the amino acid is Phe, Trp, Glu or Tyr
  • 223 of the amino acid is Phe, Trp, either Glu or Lys
  • 224 of the amino acid is Phe, Trp, Glu or Tyr
  • 225 of the amino acid is Glu
  • one of the Lys or Trp 227 of the amino acid is Glu
  • Gly, one of Lys or Tyr, 228 of the amino acid is Glu
  • 230 of the amino acid is one of Ala
  • 231 of the amino acid is Glu, Gly, Lys, Pro or Tyr
  • 232 of the amino acid is Glu, Gly, one of Lys or Tyr, 233 of the amino acid is Al
  • the amino acid at position 315 317 of the amino acid is Glu or Gln
  • 318 of the amino acid is His, Leu, Asn, Pro, Gln, Arg, Thr, one of Val or Tyr
  • the amino acid at position 320 is Asp, Phe, Gly, His, Ile, Leu, Asn, Pro, Ser, Thr, Val, one of Trp or Tyr
  • 322 of the amino acid is Ala, Asp, Phe, Gly, His, Ile, Pro, Ser, Thr, Val, one of Trp or Tyr
  • the amino acid at position 323 is Ile
  • 324 of the amino acid is Asp, Phe, Gly, His, Ile, Leu, Met, Pro, Arg, Thr, Val, one of Trp or Tyr
  • 325 of the amino acid is Ala, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Pro, Gln, Arg, Ser, Thr, Val, Trp or Tyr,
  • Trp for the amino acid of position 434; 436th amino acid is Ile, or 440 of the amino acid is Gly, His, Ile, Leu or Tyr, And an Fc region containing at least one amino acid modification selected from the group consisting of:
  • the number of amino acids to be modified is not particularly limited, and only one amino acid can be modified, or two or more amino acids can be modified. Examples of combinations of amino acid modifications at two or more sites include combinations described in Table 1 (Table 1-1 to Table 1-3).
  • the Fc region to which the polynucleotide sequence is linked to a polynucleotide encoding an antigen binding domain there is an Fc region whose binding activity to the inhibitory Fc ⁇ receptor is higher than the binding activity to the active Fc ⁇ receptor. Illustrated. Specifically, as one non-limiting embodiment of such an Fc region, an Fc region whose binding activity to Fc ⁇ RIIb is higher than the binding activity of any one of Fc ⁇ RIa, Fc ⁇ RIIa, Fc ⁇ RIIIa and / or Fc ⁇ RIIIb to a human Fc ⁇ receptor is exemplified. Is done.
  • the Fc region for example, among the amino acid residues of the Fc region contained in the constant region of the antibody represented by SEQ ID NO: 5, 6, 7, or 8, it is represented by EU numbering.
  • Preferred examples include Fc regions in which 238 or 328 amino acids are modified to a different amino acid from the natural Fc region.
  • 238 amino acids represented by EU numbering of the Fc region are modified to any one or more of Asp, or 328 amino acids represented by EU numbering.
  • a preferred example is the Fc region.
  • substitution of Asp at position 238 represented by EU numbering to Asp and amino acid at position 237 represented by EU numbering exemplified by PCT / JP2012 / 054624 Trp amino acid at position 237 represented by EU numbering is Phe, amino acid at position 267 represented by EU numbering is Val, amino acid at position 267 represented by EU numbering is Gln, position 268 represented by EU numbering Amino acid is Asn, 271 amino acid represented by EU numbering is Gly, 326 amino acid represented by EU numbering is Leu, 326 amino acid represented by EU numbering is Gln, EU numbering 326
  • the amino acid at position is Glu
  • the amino acid at position 326 represented by EU numbering is Met
  • the amino acid at position 239 represented by EU numbering is Asp
  • the amino acid at position 267 represented by EU numbering is represented by Ala, EU numbering.
  • the amino acid at position 234 represented by Trp, EU numbering is Tyr, the amino acid at position 237 represented by EU numbering is Ala, the amino acid at position 237 represented by EU numbering is represented by Asp, and EU numbering
  • the amino acid at position 237 is represented by Glu, the amino acid at position 237 represented by EU numbering is Leu, the amino acid at position 237 represented by EU numbering is Met, the amino acid at position 237 represented by EU numbering is represented by Tyr, and EU numbering
  • the amino acid at position 330 represented by Lys the amino acid at position 330 represented by EU numbering is Arg, the amino acid at position 233 represented by EU numbering is Asp, the amino acid at position 268 represented by EU numbering is Asp, and EU numbering
  • the amino acid at position 268 represented by Glu, the amino acid at position 326 represented by EU numbering is Asp, the amino acid at position 326 represented by EU numbering is Ser, the amino acid at position 326 represented by EU numbering is Thr, EU The amino acid at
  • the amino acid at position 326 represented by EU numbering is modified to Ala
  • the amino acid at position 326 represented by EU numbering is Asn
  • the amino acid at position 330 represented by EU numbering is modified to one or more of Preferred examples include Fc regions.
  • an Fc region having binding activity to FcRn under acidic pH conditions is exemplified.
  • amino acids that can be modified, for example, as described in International Publication WO1997 / 034631, 252 position, 254 position, 256 position, 309 position, 311 position, 311 position, 315 position, 433 represented by EU numbering.
  • amino acids at positions 253, 310, 435, and / or 426 combined with these amino acids.
  • Preferred examples include amino acids at positions 413, 415, 424, 433, 434, 435, 436, 439 and / or 447.
  • amino acids capable of such modification for example, as described in International Publication WO2002 / 060919, positions 251 252 254 255 255 256 308 represented by EU numbering , 309, 311, 312, 385, 386, 387, 389, 428, 433, 434 and / or 436 are also preferred. Furthermore, as described in International Publication WO2004 / 092219, amino acids at positions 250, 314, and 428 represented by EU numbering can also be mentioned as amino acids capable of such modification.
  • amino acids that can be modified as described in, for example, International Publication WO2006 / 020114, positions 238, 244, 245, 249, 252, 256, 257, 258, 258 260, 262, 270, 272, 279, 283, 285, 286, 288, 293, 307, 311, 312, 316, 317, 318, 332 , 339, 341, 343, 375, 376, 377, 378, 380, 380, 382, 423, 427, 430, 431, 434, 436, 438, Amino acids at positions 440 and / or 442 are also preferred.
  • amino acids that can be modified as described above, EU numbering 251 position, 252 position, 307 position, 308 position, 378 position, 428 position, Amino acids at positions 430, 434 and / or 436 are also preferred.
  • the Fc region for example, among the amino acid residues of the Fc region contained in the constant region of the antibody represented by SEQ ID NO: 5, 6, 7, or 8, represented by EU numbering , 251 of the amino acid is either Arg or Leu, 252 of the amino acid is Phe, Ser, Thr, or Tyr, 254 of the amino acid is either Ser or Thr, The 255th amino acid is Arg, Gly, Ile, or Leu, 256 of the amino acid is Ala, Arg, Asn, Asp, Gln, Glu, or Thr, 308 of the amino acid is either Ile or Thr, 309 amino acid is Pro, The amino acid at position 311 is either Glu, Leu, or Ser, The amino acid at position 312 is either Ala or Asp, 314 of the amino acid is either Ala or Leu, 385 of the amino acid is Ala, Arg, Asp, Gly, His, Lys, Ser, or Thr, 386 of the amino acid is a, Arg, Asp,
  • the Fc region whose binding activity to FcRn is stronger than the binding activity of the starting Fc region of human IgG1 under the above acidic pH range conditions for example, SEQ ID NOs: 5, 6, 7, or Of the amino acid residues of the Fc region contained in the constant region of the antibody represented by 8, the amino acid at position 308 is Ile, the amino acid at position 309 is Pro, and / or the amino acid at position 311 is represented by EU numbering.
  • An Fc region that is Glu can be mentioned.
  • the Fc region is that the amino acid at position 308 is Thr, the amino acid at position 309 is Pro, the amino acid at position 311 is Leu, the amino acid at position 312 is Ala, and / or the amino acid at position 314. Include an Fc region containing Ala.
  • the amino acid at position 308 is Ile or Thr
  • the amino acid at position 309 is Pro
  • the amino acid at position 311 is Glu, Leu, or Ser
  • the amino acid at position 312 is Ala
  • One non-limiting variation of the modification includes Thr at amino acid position 308, Pro at amino acid position 309, Ser at amino acid position 311, Asp at amino acid position 312 and / or Leu at amino acid position 314. Examples include the Fc region.
  • the Fc region whose binding activity to FcRn is stronger than the binding activity of the starting Fc region of human IgG1 under the above acidic pH range condition for example, SEQ ID NO: 5, 6, 7, or Among the amino acid residues of the Fc region contained in the constant region of the antibody represented by 8, the amino acid at position 251 represented by EU numbering, represented by EU numbering, is Leu, the amino acid at position 252 is Tyr, 254 Examples include Fc regions in which the amino acid at position is Ser or Thr, the amino acid at position 255 is Arg, and / or the amino acid at position 256 is Glu.
  • Non-limiting different embodiments of the Fc region whose binding activity to FcRn is stronger than the binding activity of the starting Fc region of human IgG1 under the above acidic pH range conditions include, for example, SEQ ID NOs: 5, 6, 7, or 8.
  • the amino acid at position 428 represented by EU numbering is one of Leu, Met, Phe, Ser, or Thr
  • amino acid at position 434 is any of His, Phe, or Tyr
  • / or amino acid at position 436 is Arg, Asn, His, Lys
  • Another non-limiting embodiment of the modification includes an Fc region in which the amino acid at position 428 contains His or Met, and / or the amino acid at position 434 contains His or Met.
  • the Fc region whose binding activity to FcRn is stronger than the binding activity of the starting Fc region of human IgG1 under the above acidic pH range for example, SEQ ID NO: 5, 6, 7, or Of the amino acid residues of the Fc region contained in the constant region of the antibody represented by 8, the amino acid at position 385 is Arg, the amino acid at position 386 is Thr, the amino acid at position 387 is Arg, and expressed by EU numbering.
  • the amino acid at position 389 may be a modification containing Pro.
  • Another non-limiting embodiment of the modification includes an Fc region in which the amino acid at position 385 includes Asp, the amino acid at position 386 includes Pro, and / or the amino acid at position 389 includes Ser.
  • the Fc region whose binding activity to FcRn is stronger than the binding activity of the starting Fc region of human IgG1 under the above acidic pH range condition for example, SEQ ID NO: 5, 6, 7, or Of the amino acid residues of the Fc region contained in the constant region of the antibody represented by 8, represented by EU numbering,
  • the amino acid at position 250 is either Gln or Glu, or 428 of the amino acid is either Leu or Phe,
  • an Fc region containing at least one amino acid selected from the group for example, SEQ ID NO: 5, 6, 7, or Of the amino acid residues of the Fc region contained in the constant region of the antibody represented by 8, represented by EU numbering.
  • the Fc region whose binding activity to FcRn is stronger than the binding activity of the starting Fc region of human IgG1 under the above acidic pH range condition for example, SEQ ID NO: 5, 6, 7, or Among the amino acid residues of the Fc region contained in the constant region of the antibody represented by 8, the amino acid at position 250 represented by EU numbering is Gln, and / or the amino acid at position 428 is either Leu or Phe. Examples include the Fc region.
  • Another non-limiting embodiment of the modification includes an Fc region in which the amino acid at position 250 includes Glu and / or the amino acid at position 428 includes either Leu or Phe.
  • the Fc region whose binding activity to FcRn is stronger than the binding activity of the starting Fc region of human IgG1 under the above acidic pH range condition for example, SEQ ID NO: 5, 6, 7, or Of the amino acid residues of the Fc region contained in the constant region of the antibody represented by 8, represented by EU numbering, 251 of the amino acid is either Asp or Glu, Tyr for the amino acid of position 252; Gln is the amino acid at position 307
  • the amino acid at position 308 is Pro, Val for the amino acid of position 378; 380th amino acid is Ala, Leu, the amino acid at position 428 430 of the amino acid is either Ala or Lys, 434 of the amino acid is one of Ala, His, Ser, or Tyr, or Ile, the amino acid at position 436
  • an Fc region containing at least two amino acids selected from the group for example, SEQ ID NO: 5, 6, 7, or Of the amino acid residues of the Fc region contained in the constant region of the antibody represented by 8, represented by EU number
  • the Fc region whose binding activity to FcRn is stronger than the binding activity of the starting Fc region of human IgG1 under the above acidic pH range condition, for example, SEQ ID NO: 5, 6, 7, or Among the amino acid residues of the Fc region contained in the constant region of the antibody represented by 8, Fc containing Gln at the 307th amino acid and either Ala or Ser at the 434th amino acid represented by EU numbering Areas.
  • Another non-limiting embodiment of the Fc region includes an Fc region in which the amino acid at position 308 includes Pro and the amino acid at position 434 includes Ala.
  • another non-limiting embodiment of the Fc region includes an Fc region in which the amino acid at position 252 contains Tyr and the amino acid at position 434 contains Ala.
  • One non-limiting embodiment in which the Fc region is different includes an Fc region in which the amino acid at position 378 includes Val and the amino acid at position 434 includes Ala.
  • Another different non-limiting embodiment of the Fc region includes a modification in which the amino acid at position 428 contains Leu and the amino acid at position 434 contains Ala.
  • another different non-limiting embodiment of the Fc region includes an Fc region in which the amino acid at position 434 includes Ala and the amino acid at position 436 includes Ile.
  • another non-limiting embodiment of the modification includes an Fc region in which the amino acid at position 308 includes Pro and the amino acid at position 434 includes Tyr. Furthermore, another non-limiting embodiment of the modification includes an Fc region in which the amino acid at position 307 contains Gln and the amino acid at position 436 contains Ile.
  • the Fc region whose binding activity to FcRn is stronger than the binding activity of the starting Fc region of human IgG1 under the above acidic pH range condition for example, SEQ ID NO: 5, 6, 7, or Among the amino acid residues of the Fc region contained in the constant region of the antibody represented by 8, the amino acid at position 307 is Gln, the amino acid at position 380 is Ala, and the amino acid at position 434 is Ser, represented by EU numbering. An Fc region containing either of them can be mentioned.
  • Another non-limiting embodiment of the Fc region includes an Fc region in which the amino acid at position 307 contains Gln, the amino acid at position 380 contains Ala, and the amino acid at position 434 contains Ala.
  • another non-limiting embodiment of the Fc region includes an Fc region in which the amino acid at position 252 includes Tyr, the amino acid at position 308 includes Pro, and the amino acid at position 434 includes Tyr.
  • One non-limiting embodiment in which the Fc region is different includes an Fc region in which the amino acid at position 251 contains Asp, the amino acid at position 307 contains Gln, and the amino acid at position 434 contains His.
  • the Fc region whose binding activity to FcRn is stronger than the binding activity of the starting Fc region of human IgG1 under the above acidic pH range condition for example, SEQ ID NO: 5, 6, 7, or Of the amino acid residues of the Fc region contained in the constant region of the antibody represented by 8, represented by EU numbering, represented by EU numbering, Leu for amino acid at position 238 Leu for the amino acid at position 244 Arg for the amino acid of position 245; 249 of the amino acid is Pro, Tyr for the amino acid of position 252;
  • the 256th amino acid is Pro, 257 of the amino acid is Ala, Ile, Met, Asn, Ser, or Val, Asp for the amino acid at position 258
  • the amino acid at position 260 is Ser, Leu for the amino acid at position 262 Lys for amino acid at position 270 272 of the amino acid is either Leu or Arg, 279 of the amino acid is Ala, Asp, Gly, His, Met, Asn, Gln,
  • 288 of the amino acid is either Asn or Pro
  • 293 of the amino acid is Val
  • 307 of the amino acid is one of Ala, Glu, or Met
  • the amino acid at position 311 is Ala, Ile, Lys, Leu, Met, Val, or Trp
  • the amino acid at position 312 is Pro
  • Lys for the amino acid at position 316 317 amino acid is Pro
  • 318 of the amino acid is either Asn or Thr
  • 332 of the amino acid is Phe
  • 339 of the amino acid is either Asn, Thr, or Trp
  • the amino acid at position 341 is Pro
  • 343 of the amino acid is Glu, His, Lys, Gln, Arg, Thr, or Tyr, Arg for the amino acid at position 375
  • 376 of the amino acid is Gly, Ile, Met, Pro, Thr, or Val
  • the Fc region whose binding activity to FcRn is stronger than the binding activity of the starting Fc region of human IgG1 under the above acidic pH range condition, for example, SEQ ID NO: 5, 6, 7, or Among the amino acid residues of the Fc region contained in the constant region of the antibody represented by 8, there is an Fc region represented by EU numbering, wherein the amino acid at position 257 contains Ile and the amino acid at position 311 contains Ile.
  • Another non-limiting embodiment of the Fc region includes an Fc region in which the amino acid at position 257 contains Ile and the amino acid at position 434 contains His.
  • another non-limiting embodiment of the Fc region includes an Fc region in which the amino acid at position 376 contains Val and the amino acid at position 434 contains His.
  • a non-limiting embodiment of the Fc region to which the polynucleotide sequence is linked to a polynucleotide encoding an antigen binding domain is exemplified by an Fc region having binding activity to human FcRn under pH neutral conditions .
  • Examples of the Fc region having binding activity to human FcRn in the neutral pH range include amino acid residues of the Fc region contained in the constant region of the antibody represented by SEQ ID NO: 5, 6, 7, or 8.
  • An Fc region in which at least one amino acid selected from the group of positions is substituted is exemplified.
  • the Fc region having binding activity to FcRn under the above pH neutral condition for example, in the constant region of the antibody represented by SEQ ID NO: 5, 6, 7, or 8,
  • amino acid residues in the Fc region contained 237 position, 248 position, 250 position, 252 position, 254 position, 255 position, 256 position, 257 position, 258 position, 258 position, 265 position, 286 position represented by EU numbering, 289, 297, 298, 303, 305, 307, 308, 309, 311, 312, 314, 315, 317, 332, 334, 360, 360, 376 , 380, 382, 384, 385, 386, 387, 389, 389, 424, 428, 433, 434, and 436 amino acids are substituted.
  • the Fc region contained in the antigen-binding molecule can bind to human FcRn in the neutral pH range.
  • the Fc region having binding activity to FcRn under the above neutral pH condition it is represented by EU numbering.
  • Met is the amino acid at position 237. Ile, the amino acid at position 248 250 of the amino acid is Ala, Phe, Ile, Met, Gln, Ser, Val, Trp, or Tyr, 252 of the amino acid is Phe, Trp, or Tyr, Thr, the amino acid at position 254 Glu for the 255th amino acid
  • the 256th amino acid is Asp, Asn, Glu, or Gln
  • 257 of the amino acid is one of Ala, Gly, Ile, Leu, Met, Asn, Ser, Thr, or Val
  • the amino acid at position 258 is His, Ala for the amino acid at position 265 286 of the amino acid is either Ala or Glu
  • the amino acid at position 289 is His, 297 of the amino acid is Ala, Ala at position 303 Ala for the amino acid at position 305 307 of the amino acid is Ala,
  • the Fc binding activity to the active Fc ⁇ R is lower than the binding activity to the active Fc ⁇ R of the natural Fc region. Regions are illustrated.
  • EU numbering represented by EU numbering 234, 235, 236, 237, 238, 239, 270, 297, 298, 325, 328, and 329
  • SEQ ID NO: 5 6, 7, or 8 for example
  • deglycosylated chains (N297A, N297Q), IgG1-L234A / L235A, IgG1 described in Cur. Opin. In Biotech. -A325A / A330S / P331S, IgG1-C226S / C229S, IgG1-C226S / C229S / E233P / L234V / L235A, IgG1-L234F / L235E / P331S, IgG1-S267E / L328F, IgG2-V234A / G237A, IgG2-H268Q / V309L / A330S / A331S, IgG4-L235A / G237A / E318A, IgG4-L236E, etc. , And EU number Ring position 233, position 234, position 235, and EU number Ring position 233, position 234, position
  • the non-limiting Fc region whose binding activity to the active Fc ⁇ R is lower than the binding activity of the natural Fc region to the active Fc ⁇ R it is represented by EU numbering.
  • two polypeptides that form the Fc region originating from the above-described bispecific antibody can be used as appropriate. More specifically, two polypeptides forming an Fc region, wherein 349 amino acids represented by EU numbering in the amino acid sequence of one of the polypeptides are Cys, 366 amino acids are Trp, and the other Two polypeptides characterized in that 356 amino acids represented by EU numbering are Cys, 366 amino acids are Ser, 368 amino acids are Ala, and 407 amino acids are Val. Are preferably used.
  • the Fc region includes two polypeptides forming the Fc region, and 409 amino acids represented by EU numbering in the amino acid sequence of one of the polypeptides are Asp.
  • Two polypeptides characterized in that 399 amino acids represented by EU numbering in the amino acid sequence of the other polypeptide are Lys are preferably used.
  • 409 amino acids may be Glu instead of Asp
  • 399 amino acids may be Arg instead of Lys.
  • Asp may be suitably added as 360 amino acids or Asp as 392 amino acids.
  • the Fc region includes two polypeptides forming the Fc region, and 370 amino acids represented by EU numbering in the amino acid sequence of one of the polypeptides are Glu And two polypeptides characterized in that the 357 amino acids represented by EU numbering in the amino acid sequence of the other polypeptide are Lys.
  • the Fc region includes two polypeptides that form the Fc region, and the amino acid sequence of one of the polypeptides includes 439 amino acids represented by EU numbering.
  • Two polypeptides characterized in that 356 amino acids represented by EU numbering in the amino acid sequence of the other polypeptide are Lys are preferably used.
  • the Fc region is any of the following embodiments in which these are combined: (i) Two polypeptides forming an Fc region, wherein 409 amino acids represented by EU numbering are Asp, 370 amino acids are Glu, and the other polypeptide of one polypeptide Of the amino acid sequences of 399 amino acids represented by EU numbering is Lys, and 357 amino acids are Lys (in this embodiment, the Glu of 370 amino acids represented by EU numbering) Instead of Asp, it may be 392 amino acids Asp instead of 370 amino acids Glu represented by EU numbering), (ii) two polypeptides that form an Fc region, wherein 409 amino acids represented by EU numbering in the amino acid sequence of one polypeptide are Asp, 439 amino acids are Glu, and the other polypeptide Of the amino acid sequence of 399 amino acids represented by EU numbering is Lys, and 356 amino acids are Lys (in this embodiment, Glu of 439 amino acids represented by EU numbering) Instead of 360
  • two polypeptides forming the Fc region wherein 356 amino acids represented by EU numbering in the amino acid sequence of one of the polypeptides are Lys. Also, two polypeptides characterized in that 435 amino acids represented by EU numbering in the amino acid sequence of the other polypeptide are Arg and 439 amino acids are Glu are also preferably used.
  • two polypeptides forming the Fc region wherein 356 amino acids represented by EU numbering in the amino acid sequence of one of the polypeptides are Lys, 357 Two polypeptides, wherein the amino acid is Lys, 370 amino acids represented by EU numbering in the amino acid sequence of the other polypeptide are Glu, 435 amino acids are Arg, and 439 amino acids are Glu are also preferably used.
  • the antigen-binding molecule of the present invention is isolated from the culture medium.
  • the Fc region contained in the antigen-binding molecule of the present invention is added with bisecting N-acetylglucosamine so that the composition of the sugar chain bound to the Fc region is higher in the proportion of the Fc region bound to the fucose-deficient sugar chain.
  • the Fc region is modified so that the proportion of the Fc region is increased, the activity of forming the sugar chain structure of the polypeptide subjected to the sugar chain modification as the transformed cell is changed as a result of the modification.
  • a host cell having a low ability to add fucose to the chain is appropriately used (International Publication WO2000 / 061739, WO2002 / 031140, WO2006 / 067913, etc.).
  • Non-limiting embodiments of the host cell include fucosyltransferase (EC 2.4.1.152), fucose transporter (SLC35C1), GMD (GDP-mannose 4,6-dehydratase) (EC 4.2.1.47), Fx (GDP-keto Selected from the group consisting of -6-deoxymannose 3,5-epimerase, 4-reductase (EC ⁇ 1.1.1.271) and GGFP (GDP- ⁇ -L-fucose pyrophosphorylase) (EC 2.7.7.30) Host cells deficient in enzyme or transporter activity are appropriately used (International Publication WO2000 / 061739, WO2002 / 031140, WO2006 / 067913, etc.).
  • Host cells lacking such activity are CHO cells, BHK cells, NS0 cells, SP2 / 0 cells, YO myeloma cells, P3X63 mouse myeloma cells, PER cells, PER.C6 cells, HEK293 cells, or hybridomas.
  • CHO cells BHK cells, NS0 cells, SP2 / 0 cells, YO myeloma cells, P3X63 mouse myeloma cells, PER cells, PER.C6 cells, HEK293 cells, or hybridomas.
  • Such a functional protein gene endogenous to cells or the like can be produced by a method of dysfunctionally destroying the gene.
  • the Fc region contained in the antigen-binding molecule of the present invention is an Fc region having a sugar chain having bisecting GlcNAc
  • an antibody having a sugar chain having bisecting GlcNAc is produced as the transformed cell.
  • GnTIII ⁇ -1,4-mannosyl-glycoprotein, 4- ⁇ -N-acetylglucosaminyltransferase
  • GalT ⁇ -1,4-galactosyltransferase
  • a host cell that expresses a gene encoding a functional protein having activity is appropriately used (International Publication WO2002 / 079255, etc.).
  • a gene encoding a protein, a gene encoding a functional protein having ManI (EC 3.2.1.113) activity, and a host cell co-expressing with ⁇ -1,6-fucosyltransferase (EC 2.4.1.68) are appropriately used. Used (International Publication WO2004 / 065540).
  • the antigen-binding molecule of the present invention is produced using a method according to the antibody production method described in the above-mentioned antibody section, such as isolation from the above-mentioned cell culture solution.
  • the polypeptide containing the Fc region for example, the constant region of the antibody represented by SEQ ID NO: 5, 6, 7, or 8 is exemplified.
  • a non-limiting embodiment of the antigen-binding molecule of the present invention includes a full-length antibody molecule.
  • compositions comprising an antigen-binding molecule that does not act systemically in normal tissues or blood, but acts in a cancerous or inflammatory site, which is a lesion site, in order to exert a medicinal effect while avoiding side effects Things are provided.
  • the antigen-binding molecule contained in the pharmaceutical composition of the present invention is expressed in cancer cells, immune cells, stromal cells, etc. in cancer tissues, antigens secreted in cancer tissues, immune cells in inflammatory tissues, etc. It binds to antigens secreted by inflammatory tissues and cannot be bound to antigens expressed in normal tissues, while avoiding side effects due to cytotoxicity and neutralizing effects on normal tissues.
  • a bispecific antigen-binding molecule or dual parasite comprising an antigen-binding domain that binds to CD3 expressed on T cells depending on a cancer tissue-specific compound and an antigen-binding domain that binds to EGFR expressed on cancer cells.
  • the topical antigen-binding molecule does not bind to EGFR expressed in normal tissues but binds to EGFR expressed in cancer cells, and thus exerts a strong antitumor effect while avoiding side effects.
  • CD3 expressed in T cells in the vicinity of cancer cells binds to cancer tissue-specific compounds in a dependent manner, but does not bind to CD3 expressed in T cells in the vicinity of cancer cells. It activates T cells in the vicinity of cells and exerts a powerful antitumor effect while avoiding side effects.
  • an antigen-binding molecule that binds to an antigen in a target tissue and does not bind to an antigen in other normal tissues or blood exerts a medicinal effect while avoiding side effects.
  • the present invention provides an antigen-binding molecule that binds to an antigen using a small molecule present at a high concentration in a target tissue in a living body as a switch, that is, a small molecule switch antigen-binding molecule (Small molecule switch antigen binding molecule). In a normal environment where no molecule is present, it does not bind to the antigen, and in a target tissue in which the small molecule is present at a high concentration, it can bind to the antigen.
  • adenosine a cancer tissue or inflammatory tissue-specific compound that is present at a high concentration in cancer tissue or inflammatory tissue and can function as a switch
  • adenosine a cancer tissue or inflammatory tissue-specific compound that is present at a high concentration in cancer tissue or inflammatory tissue and can function as a switch
  • adenosine a cancer tissue or inflammatory tissue-specific compound that is present at a high concentration in cancer tissue or inflammatory tissue and can function as a switch
  • adenosine adenosine triphosphate (adenosine 5'-triphosphate; ATP), inosine, kynurenine, prostaglandin E2 (prostaglandin E2; PGE2), succinic acid (succinic acid), lactic acid (lactic acid)
  • a compound-dependent antigen-binding molecule specific to cancer tissue or inflammatory tissue which is sandwiched between the antigen-binding molecule (contained in the paratope) and the antigen (con
  • the antigen-binding molecule of the present invention cannot bind to the antigen. If present, the compound is bound between the paratope contained in the antigen-binding molecule of the present invention and the epitope contained in the antigen, so that the compound binds to the antigen in a target tissue such as cancer tissue or inflammatory tissue present at a high concentration.
  • the antigen-binding molecule can exert a medicinal effect on cells that express the antigen.
  • the control of the binding of the antigen-binding molecule of the present invention to the antigen by the switch of these compounds is considered to be reversible. In this way, it binds to pathological cells such as cancer cells and immune cells in cancer tissue or inflammatory tissue at a lesion site such as cancer tissue or inflammatory tissue, or binds to antigen secreted in cancer tissue or inflammatory tissue.
  • the antigen-binding molecule of the present invention capable of exhibiting medicinal effects is useful as a pharmaceutical composition.
  • the pharmaceutical composition of the present invention may include a pharmaceutically acceptable carrier.
  • the pharmaceutical composition usually refers to a drug for treatment or prevention of a disease, or examination / diagnosis.
  • the term “pharmaceutical composition containing an antigen-binding molecule whose binding activity to an antigen varies depending on the concentration of the target tissue-specific compound” refers to “an antigen depending on the concentration of the target tissue-specific compound”.
  • the pharmaceutical composition of the present invention can be formulated using methods known to those skilled in the art. For example, it can be used parenterally in the form of sterile solutions with water or other pharmaceutically acceptable liquids, or in the form of suspension injections.
  • a pharmacologically acceptable carrier or medium specifically, sterile water or physiological saline, vegetable oil, emulsifier, suspension, surfactant, stabilizer, flavoring agent, excipient, vehicle, preservative Or in combination with binders and the like as appropriate, and can be formulated by mixing in unit dosage forms generally required for accepted pharmaceutical practice.
  • the amount of the active ingredient in these preparations is set so as to obtain an appropriate volume within the indicated range.
  • a sterile composition for injection can be formulated according to normal pharmaceutical practice using a vehicle such as distilled water for injection.
  • a vehicle such as distilled water for injection.
  • the aqueous solution for injection include isotonic solutions containing physiological saline, glucose and other adjuvants (for example, D-sorbitol, D-mannose, D-mannitol, sodium chloride).
  • Appropriate solubilizers such as alcohol (ethanol, etc.), polyalcohol (propylene glycol, polyethylene glycol, etc.), nonionic surfactants (polysorbate 80 (TM), HCO-50, etc.) can be used in combination.
  • oily liquid examples include sesame oil and soybean oil, and benzyl benzoate and / or benzyl alcohol can be used in combination as a solubilizing agent. It can also be formulated with buffers (eg, phosphate buffer and sodium acetate buffer), soothing agents (eg, procaine hydrochloride), stabilizers (eg, benzyl alcohol and phenol), and antioxidants.
  • buffers eg, phosphate buffer and sodium acetate buffer
  • soothing agents eg, procaine hydrochloride
  • stabilizers eg, benzyl alcohol and phenol
  • antioxidants antioxidants.
  • the prepared injection solution is usually filled into an appropriate ampoule.
  • the pharmaceutical composition of the present invention is preferably administered by parenteral administration.
  • parenteral administration for example, an injection, nasal administration, pulmonary administration, or transdermal administration composition is administered.
  • it can be administered systemically or locally by intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection, and the like.
  • the administration method can be appropriately selected depending on the age and symptoms of the patient.
  • the dose of the pharmaceutical composition containing the antigen-binding molecule can be set, for example, in the range of 0.0001 mg to 1000 mg per kg of body weight per time. Alternatively, for example, a dose of 0.001 to 100,000 mg per patient can be set, but the present invention is not necessarily limited to these values.
  • the dose and administration method vary depending on the patient's weight, age, symptoms, etc., but those skilled in the art can set an appropriate dose and administration method in consideration of these conditions.
  • amino acids included in the amino acid sequences described in the present invention may be modified after translation (for example, modification to pyroglutamic acid by pyroglutamylation of N-terminal glutamine is a modification well known to those skilled in the art). However, even if such an amino acid is post-translationally modified, it is naturally included in the amino acid sequence described in the present invention.
  • Example 1 Concept of an antibody that binds to an antigen using a low molecule present in a high concentration in a target tissue as a switch In order to exert a drug effect while avoiding side effects, it does not act systemically in normal tissue or blood, There is a demand for drug discovery technology that acts on lesions such as cancer and inflammation.
  • An antibody molecule that binds to an antigen expressed in cancer cells after administration and cannot bind to an antigen expressed in normal tissue is effective against cancer while avoiding side effects due to cytotoxic effects on normal tissue. It is possible to exert a strong cytotoxic effect.
  • the EGFR-BiTE (Non-Patent Document 9) is a modified antigen-binding molecule that does not bind to EGFR expressed in normal tissue but can bind to EGFR expressed in cancer cells Can exert a strong antitumor effect while avoiding side effects.
  • BiTE exerts an antitumor effect by recruiting and activating T cells via CD3 (Non-patent Document 8), it is expressed in T cells in the vicinity of cancer cells relative to EGFR-BiTE.
  • modified EGFR-BiTE imparted with such properties is It is possible to activate cells and to exert a strong antitumor effect while avoiding side effects.
  • antibody molecules In addition to antibody drugs against cancer, antibody molecules bind to cytokines in the synovial fluid of inflamed joints in rheumatoid arthritis and inhibit its action. It was considered possible to exert a high therapeutic effect on inflammatory diseases and autoimmune diseases such as rheumatoid arthritis while avoiding an increase in the risk of infection due to harm.
  • an antibody that binds to an antigen in a cancer tissue and does not bind to the antigen in other normal tissues or blood can exert a medicinal effect while avoiding side effects.
  • no ideal antibody having such characteristics has been reported so far.
  • an antibody molecule that binds to an antigen using a small molecule present at a high concentration in a cancer tissue in vivo that is, a small molecule switch antibody (Small molecule switch antibody), as shown in FIG. In a non-environment environment, it does not bind to the antigen, and it can bind to the antigen in the target tissue where a small molecule exists at a high concentration.
  • adenosine adenosine
  • adenosine triphosphate adenosine 5'-triphosphate; ATP
  • inosine kynurenine
  • prostaglandin E2 prostaglandin E2; PGE2
  • succinic acid succinic acid
  • Lactic acid lactic acid
  • the small molecules can perform a switching function. In other words, if the small molecule is not present, the interaction between the antibody and the antigen is insufficient and the antibody cannot bind to the antigen, but if the small molecule is present, the antibody is bound to the antigen by being sandwiched between the antibody and the antigen. It becomes possible to combine.
  • Example 2 Acquisition of antibodies that bind to human IL-6 in the presence of small molecules from human antibody libraries using phage display technology (2-1) Preparation of naive human antibody phage display library Fab domains of human antibody sequences different from each other according to a method known to those skilled in the art using poly A RNA prepared from human PBMC or commercially available human poly A RNA as a template A human antibody phage display library consisting of a plurality of phages displaying the
  • the phages produced from E. coli retaining the constructed phagemid for phage display were purified by a general method. Thereafter, a phage library solution dialyzed with TBS was obtained. Next, BSA was added to the phage library solution to a final concentration of 4%. Panning with antigen immobilized on magnetic beads was performed. NeutrAvidin coated beads (Sera-Mag SpeedBeads NeutrAvidin-coated) or Streptavidin coated beads (Dynabeads M-280 Streptavidin) were used as magnetic beads.
  • small molecules to efficiently obtain small molecule switch antibodies that can act as a switch in cancer tissue ; ATP), inosine, kynurenine, prostaglandin E2 (prostaglandin E2; PGE2), succinic acid, lactic acid (lactic acid) mixture (hereinafter referred to as SC) Panning was performed to enrich for antibodies that bind to the antigen in the presence of) and not to the antigen in the absence of SC.
  • adenosine triphosphate sodium salt ATP-Na
  • adenosine Adenosine
  • inosine Inosine
  • SC composed of acid (Succinic acid) and lactic acid (Lactic acid)
  • prostaglandin E2 PGE2
  • kynurenine a final concentration of 100 ⁇ M and adjusted to pH 7.4 with NaOH
  • the phage library solution was contacted at room temperature for 60 minutes.
  • phages capable of binding in the presence of small molecules were collected, but in the second and subsequent pannings, phages capable of binding to the antigen were concentrated in the presence of SC.
  • phage library was brought into contact with the antigen and small molecules at room temperature for 60 minutes.
  • Magnetic beads blocked with BSA were added, and the antigen-phage complex was allowed to bind to the magnetic beads for 15 minutes at room temperature. The beads were washed with 1 mL of SC / TBST and SC / TBS.
  • the beads to which 0.5 mL of TBS was added were suspended at room temperature, and the phage solution was immediately recovered from the beads separated using a magnetic stand. After this operation was repeated again, the phage solution eluted in two portions was mixed. Further, 0.5 mL of TBS was added to the remaining beads, and the beads were stirred at room temperature for 5 minutes. The phage solution was recovered from the beads separated using a magnetic stand.
  • Phages were produced from E. coli that retained the constructed phagemid for phage display.
  • the produced phage was purified by a general method, and a phage library solution dialyzed against TBS was obtained. Next, BSA was added to the phage library solution to a final concentration of 4%.
  • As magnetic beads NeutrAvidin coated (beads (Sera-Mag SpeedBeads NeutrAvidin-coated) or Streptavidin coated beads (Dynabeads M-280 Streptavidin) was used, and panning using the antigen immobilized on the magnetic beads was performed.
  • phage library solution with 250 pmol of biotin-labeled antigen, 1TP mM ATP-Na, Adenosine, Inosine, Succinic acid, and Lactic acid, final concentration 1 ⁇ M PGE2, and final concentration 100 ⁇ M Kynurenine
  • SC whose pH was adjusted to 7.4 with NaOH
  • the phage library solution was contacted at room temperature for 60 minutes.
  • magnetic beads blocked with BSA were added to the phage library solution, and the complex of antigen and phage was bound to the magnetic beads at room temperature for 15 minutes. The beads were washed once with SC / TBS.
  • the beads to which 0.5 ⁇ mL of a 1 mg / mL trypsin solution was added were suspended at room temperature for 15 minutes, and then the phage solution was immediately recovered from the beads separated using a magnetic stand.
  • the recovered phage solution was added to 10 mL of E. coli strain ER2738 in the logarithmic growth phase (OD600 0.4-0.7).
  • E. coli was infected with phages by gently stirring the E. coli at 37 ° C. for 1 hour. Infected E. coli were seeded on a 225 mm x 225 mm plate.
  • a phage library solution was prepared by recovering the phage from the seeded E. coli culture solution.
  • phages capable of binding in the presence of SC were collected, but in the second and subsequent pannings, phages capable of binding to the antigen in the presence of SC were concentrated.
  • 250 pmol biotinylated antigen was added to Sera-Mag NeutrAvidin beads blocked with BSA and allowed to bind at room temperature for 15 minutes.
  • a phage library solution blocked with BSA was added and allowed to bind at room temperature for 1 hour. By separating the beads using a magnetic stand, antigens and phage that did not bind to the beads were recovered.
  • the phage library was brought into contact with the antigen and the small molecule contained in the SC for 60 minutes at room temperature by adding 40 pmol of biotin-labeled antigen and SC, NaOH to the recovered phage.
  • magnetic beads blocked with BSA were added to the mixed solution of labeled antigen, SC and phage library, and the complex of antigen and phage was bound to the magnetic beads for 15 minutes at room temperature.
  • the beads were washed with 1 mL of SC / TBST and SC / TBS. Thereafter, 0.5 mL of 1 mg / mL Trypsin solution was added to the mixture. The mixture was stirred at room temperature for 20 minutes, and then phages were recovered from the beads separated using a magnetic stand.
  • the recovered phage was added to 10 mL of E. coli strain ER2738 in the logarithmic growth phase (OD600 0.4-0.7).
  • E. coli was infected with phages by gently stirring the E. coli at 37 ° C. for 1 hour.
  • Infected E. coli were seeded on a 225 mm x 225 mm plate. Panning to obtain an antibody having binding activity to the antigen in the presence of SC was repeated three times.
  • the NucleoFast 96 with 100 ⁇ L of H 2 O added to each well was washed again by centrifugation (centrifuged at 4,500 g for 30 minutes). Finally, 100 ⁇ L of TBS was added, and the phage solution contained in the supernatant of each well of the NucleoFast 96 that was allowed to stand at room temperature for 5 minutes was recovered.
  • Purified phage added with TBS or SC / TBS was subjected to ELISA according to the following procedure. StreptaWell® 96 microtiter plates (Roche) were coated overnight with 100 ⁇ L TBS containing biotinylated antigen. Each well of the plate was washed with TBST to remove the antigen, and then the well was blocked with 250 ⁇ L of 2% SkimMilk-TBS for 1 hour or longer. After removing 2% SkimMilk-TBS, the plate with purified phage prepared in each well was allowed to stand at 37 ° C. for 1 hour, so that the antibody displaying the phage was transferred to the antigen present in each well. Binding was done in the absence / presence.
  • Example 3 Evaluation of antibody binding to antigen in the presence of small molecule (3-1) Expression and purification of antibody that binds to human IL-6 Specific primer from clone I6NMSC1-3_A11 judged to have antigen-binding activity in the presence of SC, as shown in Example 2 phage ELISA (SEQ ID NO: 110 and 112) were used to analyze the base sequence of the amplified gene (the heavy chain sequence is represented by SEQ ID NO: 30 and the light chain sequence is represented by SEQ ID NO: 31).
  • the gene encoding the variable region of I6NMSC1-3_A11 is transferred to a plasmid for animal expression of human IgG1 / Lambda, and the known anti-human IL-6 antibody CLB8-F1 (SEQ ID NO: 32 for the heavy chain and SEQ ID NO: 33 for the light chain)
  • the gene encoding the variable region of the anti-human glypican 3 antibody GC413 was inserted into a human IgG1 / kappa animal expression plasmid, respectively.
  • Antibodies were expressed using the following method.
  • StreptaWell® 96 microtiter plates (Roche) were coated with 100 ⁇ L of PBS containing biotin-labeled antigen for 1 hour or more at room temperature. Each well of the plate was washed with Wash buffer to remove the antigen not bound to the plate, and then the well was blocked with 250 ⁇ L of Blocking buffer for 1 hour or more. Into each well from which Blocking Buffer has been removed, the plate containing 100 ⁇ L of purified IgG prepared at 2.5 ⁇ g / mL in Sample Buffer containing low molecules at the final concentration shown in Table 3 is allowed to stand at room temperature for 1 hour. This allowed each IgG to bind to the antigen present in each well.
  • Example 4 Evaluation of the effect of kynurenine on binding to human IL6 by surface plasmon resonance (4-1) Evaluation of kynurenine's switch function for human IL-6 binding Using Biacore T200 (GE Healthcare), the interaction between A11 and human IL-6 (Kamakura Technoscience ) was analyzed. . An antibody of interest was captured by Sensor chip CM5 (GE Healthcare) immobilized with an appropriate amount of protein A / G (Invitrogen) immobilized by amine coupling method, and IL-6 as an antigen was allowed to interact.
  • the running buffer includes 10 mmol / L ACES, 150 mmol / L NaCl, 0.05% (w / v) Tween 20, 100 ⁇ mol / L kynurenine, pH 7.4, or 10 mmol / L ACES, 150 mmol / L NaCl, 0.05% ( w / v) Two types of Tween 20, pH 7.4 were used. The interaction with the antigen IL-6 was measured at 37 ° C., and the same buffer as the running buffer was used for dilution of IL-6.
  • Human IL-6 diluent and blank running buffer were injected at a flow rate of 5 ⁇ L / min for 3 minutes to allow human IL-6 to interact with A11 captured on the sensor chip. Then, running buffer was run for 3 minutes at a flow rate of 5 ⁇ L / min, and after dissociation of human IL-6 from the antibody was observed, 10 mmol / L Glycine-HCl, pH 1.5 was injected for 30 seconds at a flow rate of 30 ⁇ L / min. Then the sensor chip was regenerated.
  • the dissociation constant of A11 for human IL-6 based on the association rate constant ka (1 / Ms) and the dissociation rate constant kd (1 / s), which are kinetic parameters calculated from the sensorgram obtained from the measurement. K D (M) was calculated. Biacore T200 Evaluation Software (GE Healthcare) was used for calculation of each parameter.
  • FIG. 4 A sensorgram of the interaction between A11 and 4 ⁇ mol / L human IL-6 in the presence or absence of 100 ⁇ mol / L kynurenine obtained by this measurement is shown in FIG.
  • A11 binds to IL-6 in the presence of 100 ⁇ mol / L kynurenine, but no binding to IL-6 was observed in the absence of kynurenine. From this, it was confirmed that A11 has the property of binding to IL-6 using kynurenine as a switch. Further, the dissociation constant, K D, the A11 in the presence of 100 [mu] mol / L kynurenine was 1.0E -6 mol / L.
  • A11 was immobilized on the sensor chip CM5 by amine coupling and diluted with 10 mmol / L ACES, 150 mmol / L NaCl, 0.05% (w / v) Tween 20, pH 7.4 containing kynurenine prepared at various concentrations 1 ⁇ mol / L of IL-6 was allowed to interact as an analyte for 60 seconds, and a change in the amount of binding was observed.
  • the results are shown in FIG. From this result, it became clear that the higher the concentration of kynurenine as a switch, the more IL-6 binds to A11.
  • H01 antibody that binds to human IL-6 derived from a library that is immobilized on the sensor chip CM5 and is a control of the kynurenine switch function of A11 SEQ ID NO: 36 for the heavy chain and SEQ ID NO: 37 for the light chain
  • H01 which is a control anti-IL-6 antibody derived from the library, does not change the binding to IL-6 even when the kynurenine concentration changes.
  • the running buffer used was 10 mmol / L ACES, 150 mmol / L NaCl, 0.05% (w / v) Tween 20, pH 7.4, and the antigen-antibody reaction between A11 and human IL-6 was measured at 25 ° C. .
  • IL-6 was immobilized on the sensor chip CM5 by amine coupling, and 10 mmol / L ACES, 150 mmol / L NaCl, 0.05% (w / v) Tween20, pH 7.4 containing kynurenine prepared at various concentrations
  • a change in the amount of A11 bound to IL-6 was observed when 0.1 ⁇ mol / L of A11 diluted in 1) was allowed to interact as an analyte for 60 seconds and bound bivalently.
  • the results are shown in FIG. In this evaluation system, since IL-6 is immobilized on the sensor chip, A11 is considered to bind bivalently.
  • a sensorgram showing the interaction between A11 and IL-6 after this standardization is shown in FIG. From the results shown in FIG. 8, it has been clarified that A11 has a property of rapidly dissociating IL-6 when it does not exist after binding to IL-6 in the presence of kynurenine. That is, it was confirmed that the control by kynuerenine on the binding of the antibody to human IL-6 is completely reversible.
  • A11 is an antibody that binds to IL-6 in the presence of kynuenenine and dissociates from IL-6 in the absence of kynurenine using kynurenine as a switch.
  • A11 has been confirmed to be capable of complete ON / OFF control without any binding activity to human IL-6 in the absence of kynurenine, and it can function as a switch as shown in FIG. Inferred.
  • IL-6 was immobilized at about 5000 RU. Since the molecular weight of IL-6 is about 20,000 g / mol and the molecular weight of kynurenine is about 200 g / mol, kynurenine was expected to interact at most about 50 RU. However, under the current measurement conditions, no clear interaction with IL-6 could be observed even when the maximum concentration of 800 nmol / L kynurenine was allowed to interact.
  • the KD of kynurenine in the formation of a complex containing A11, IL-6 and kynurenine is estimated to be several tens of nM to several nM. This also suggests that if kynurenine interacts directly with IL-6, a clear interaction can be observed by interacting kynurenine at 800 nmol / L. This result suggests that kynurenine does not interact directly with IL-6, but may interact with A11 or interact with A11 and IL-6 complex at several tens of nM. It was done.
  • Example 5 Acquisition of anti-adenosine antibody by rabbit B cell cloning (5-1) Design of immunogen for preparation of adenosine binding library 2′-Adenosine-PEG-Tetanus toxin p30 helper peptide (2′-Adenosine-PEG-peptide shown in FIG. 10) And 5′-Adenosine-PEG-Tetanus toxin p30 helper peptide (5′-Adenosine-PEG-peptide) shown in FIG. 11 was used.
  • Tetanus toxin p30 helper peptide consists of an amino acid sequence of FNNFTVSFWLRVPKVSASHLE (SEQ ID NO: 4), and is a peptide identified as an epitope of a T cell receptor expressed on helper T cells (Eur. J. Immunol. (1989) 19 , 2237-2242). It is known to activate antibody production (J. Immunol. (1992) 149, 717-721), and it is expected to act as an adjuvant by linking to adenosine and enhance antibody production against adenosine.
  • Adenosine is a metabolite of ATP, but since the phosphate group of ATP is added to the 5 'hydroxyl group of adenosine, antibodies that do not use the 5' hydroxyl group of adenosine as an epitope bind to ATP in addition to adenosine. There is a possibility.
  • FIG. 12 2′-Adenosine-PEG-biotin (FIG. 12) and 5′-Adenosine-PEG-biotin (FIG. 13) conjugated with biotin instead of Tetanus toxin p30 helper peptide were prepared as follows. . By verifying the binding to these two types of Adenosine-PEG-biotin, it is possible to determine that the antibody is not an antibody containing Tetanus toxin p30 helper peptide as an epitope.
  • the LCMS analysis conditions are as follows.
  • Peptide synthesis was performed by the Fmoc method using a peptide synthesizer (Multipep® RS; Intavis). All Fmoc amino acids were purchased from Watanabe Chemical. The detailed operation procedure was in accordance with the manual attached to the synthesizer.
  • 2-chlorotrityl resin 250 mg per column, 30 columns, 11.7 mmol
  • F-moc-Glu (tBu) -OH at the C-terminus attached to the synthesizer
  • various Fmoc amino acids 0.6 mol / L
  • 1-hydroxy Set N, N-dimethylformamide solution of -7-azabenzotriazole (0.375 mol / L)
  • N, N-dimethylformamide solution (10% v / v) of diisopropylcarbodiimide as the Fmoc deprotection solution.
  • the synthesis reaction was carried out using an N, N-dimethylformamide solution (20% v / v) of piperidine containing% (wt / v) urea.
  • N of compound 009 (255 mg, 0.460 mmol) with 1-hydroxybenzotriazole (75 mg, 0.553 mol) and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (106 mg, 0.553 mol) added , N-dimethylformamide (1.5 ml) solution was stirred at room temperature for 3 minutes.
  • the reaction solution to which O- (2-aminoethyl) -O′-2-azidoethyl) nonaethylene glycol (291 mg, 0.553 mmol) was added was stirred at room temperature for 3 hours.
  • 5′-Adenosine-PEG-peptide and 5′-Adenosine-PEG-biotin were also synthesized using the same reaction.
  • the ELISA method was also used to evaluate whether binding to Adenosine-PEG-biotin is suppressed when Adenosine is added 1000 times or more together with Adenosine-PEG-biotin.
  • PCR is performed from cells selected with the index that binding to Adenosine-PEG-biotin is inhibited and binding to Adenosine-PEG-biotin is suppressed when Adenosine is added together with Adenosine-PEG-biotin.
  • Example 6 Evaluation of clones obtained from rabbit B cell cloning (6-1) Evaluation of binding activity of clones obtained from rabbit B cell cloning to 2'-Adenosine-PEG-Biotin Evaluation of binding activity of clones obtained by rabbit B cell cloning method to adenosine using SPR method It was. Biacore 4000 using the (GE Healthcare), antigen-antibody reaction between the clones and 2 '-Adenosine-PEG-Biotin were analyzed kinetically. The antibody of interest was captured by Sensor chip CM5 (GE Healthcare) in which an appropriate amount of protein A / G (Invitrogen) had been immobilized by the amine coupling method.
  • Sensor chip CM5 GE Healthcare
  • the amount of binding when interacting with 2'-Adenosine-PEG-Biotin divided by the capture amount (RU) of each antibody (N_binding_100), and after each interaction with 2'-Adenosine-PEG-Biotin 2'-Adenosine-PEG-Biotin 2'-Adenosine-PEG-Biotin is obtained by dividing the value (N_stability_100) obtained by dividing the value 60 seconds after dissociation of 2'-Adenosine-PEG-Biotin by the capture amount (RU) of each antibody.
  • the binding activities against were compared. However, antibodies with a capture amount of 1500 RU or less were excluded from consideration because binding was not sufficiently observed. The results are shown in FIG. From the results of FIG. 14, it was revealed that clones that bind to adenosine with various affinity were obtained by the B cell cloning method.
  • running buffer 10 mmol / L ACES, 150 mmol / L NaCl, 0.05% (w / v) Tween 20, pH 7.4 was used. All measurements were performed at 25 ° C. and running buffer was used for antigen dilution.
  • the antigen diluted solution and blank running buffer were injected at a flow rate of 20 ⁇ L / min for 2 minutes, and each antigen interacted with the antibody captured on the sensor chip. Thereafter, a running buffer was passed for 3 minutes at a flow rate of 20 ⁇ L / min, and dissociation of the antigen from the antibody was observed. Thereafter, 10 mmol / L Glycine-HCl, pH 1.5 was injected at a flow rate of 30 ⁇ L / min for 30 seconds to regenerate the sensor chip.
  • the KD for adenosine of SMB0002, SMB0089, and SMB0104 is 9.3E- 9 , 6.9E- 9 , 4.1E- 8 (mol / L) and 1.0E- 5 (mol / L), respectively, and the ATP of SMB0002, SMB0089, SMB0104
  • the KD was 1.0E- 5 , 8.8E- 7 , and 1.4E- 7 (mol / L), respectively.
  • the antigen diluted solution and blank running buffer were injected at a flow rate of 10 ⁇ L / min for 1 minute, and each antigen interacted with the antibody captured on the sensor chip. Thereafter, a running buffer was passed for 3 minutes at a flow rate of 10 ⁇ L / min, and dissociation of the antigen from the antibody was observed. Thereafter, 10 mmol / L Glycine-HCl, pH 1.5 was injected at a flow rate of 30 ⁇ L / min for 30 seconds to regenerate the sensor chip. From the sensorgram obtained by the measurement, the association rate constant ka (1 / Ms) and the dissociation rate constant kd (1 / s), which are kinetic parameters, were calculated.
  • FIG. 16 shows a sensorgram observed when binding of each clone was evaluated at a concentration of ATP 50, 5 ⁇ M. As shown in FIG. 16, binding of SMB0171 to ATP was observed.
  • the KD of SMB0171 to ATP was 5.9E- 6 (mol / L).
  • Example 7 Acquisition of antibodies that bind to adenosine and / or ATP from a human antibody library using phage display technology (7-1) Preparation of Naive Human Antibody Phage Display Library Fab domains of human antibody sequences different from each other according to a method known to those skilled in the art using poly A RNA prepared from human PBMC or commercially available human poly A RNA as a template A human antibody phage display library consisting of a plurality of phages displaying the
  • the phages produced from E. coli retaining the constructed phagemid for phage display were purified by a general method. Thereafter, a phage library solution dialyzed with TBS was obtained. Next, BSA was added to the phage library solution to a final concentration of 4%. Panning with antigen immobilized on magnetic beads was performed. NeutrAvidin coated beads (Sera-Mag SpeedBeads NeutrAvidin-coated) or Streptavidin coated beads (Dynabeads M-280 Streptavidin) were used as magnetic beads.
  • phage library solution prepared above and 250 pmol biotinylated ATP, 2'-Adenosine-PEG-Biotin, and 5'-Adenosine-PEG-Biotin to bring the phage library solution, adenosine and ATP to room temperature. For 60 minutes. Next, magnetic beads blocked with BSA were added to the phage library solution, and a complex of adenosine and / or ATP and phage was allowed to bind to the magnetic beads at room temperature for 15 minutes. The beads were washed once with TBS.
  • the beads to which 0.5 ⁇ mL of a 1 mg / mL trypsin solution was added were suspended at room temperature for 15 minutes, and then the phage solution was immediately recovered from the beads separated using a magnetic stand.
  • the recovered phage solution was added to 10 mL of E. coli strain ER2738 in the logarithmic growth phase (OD600 0.4-0.7).
  • E. coli was infected with phages by gently stirring the E. coli at 37 ° C. for 1 hour. Infected E. coli were seeded on a 225 mm x 225 mm plate.
  • a phage library solution was prepared by recovering the phage from the seeded E. coli culture solution.
  • phages capable of binding to adenosine and / or ATP were concentrated.
  • biotinylated ATP 2′-Adenosine-PEG-Biotin
  • 5′-Adenosine-PEG-Biotin 5′-Adenosine-PEG-Biotin
  • the phage library solution was mixed with adenosine and ATP at room temperature.
  • contacted for 60 minutes magnetic beads blocked with BSA were added to the phage library solution, and a complex of adenosine and / or ATP and phage was allowed to bind to the magnetic beads at room temperature for 15 minutes.
  • the beads were washed 3 times with TBST and twice with TBS.
  • the beads to which 0.5 ⁇ mL of a 1 mg / mL trypsin solution was added were suspended at room temperature for 15 minutes, and then the phage solution was immediately recovered from the beads separated using a magnetic stand.
  • the collected phage solution is added to 10 mL of E. coli strain ER2738 in the logarithmic growth phase (OD600 is 0.4-0.7).
  • E. coli was infected with phages by gently stirring the E. coli at 37 ° C. for 1 hour. Infected E. coli were seeded on a 225 mm x 225 mm plate.
  • a phage library solution was prepared by recovering the phage from the seeded E. coli culture solution.
  • the panning for obtaining an antibody capable of binding to adenosine and / or ATP was repeated 3 times in the same procedure.
  • TBST and TBS were washed 5 times.
  • the purified phage to which TBS was added was subjected to ELISA according to the following procedure. StreptaWell 96 microtiter plate (Roche) in 100 ⁇ L TBS containing biotin-labeled antigen (2'-Adenosine-PEG-biotin, 5'-Adenosine-PEG-biotin, and ATP-PEG-biotin mixed in equal amounts) Coated for 1 hour at room temperature. Each well of the plate was washed with TBST (TBS containing 0.1% Tween20) to remove the antigen, and then the well was blocked with 250 ⁇ L of 2% SkimMilk-TBS for 1 hour or longer.
  • TBST TBS containing 0.1% Tween20
  • Each well of the plate was washed with TBST to remove the antigen, and then the well was blocked with 250 ⁇ L of 2% SkimMilk-TBS for 1 hour or longer.
  • the antibody displaying the phage was allowed to bind to the antigen present in each well by leaving the plate to which the purified phage prepared in each well was added after removing 2% SkimMilk-TBS for 1 hour at room temperature. .
  • Each well washed with TBST was incubated for 1 hour with a plate to which an HRP-conjugated anti-M13 antibody (Amersham Pharmacia Biotech) diluted with TBS was added.
  • This clone has a binding ability to 5′-Adenosine-PEG-biotin and ATP-PEG-biotin and was named ATNLSA1-4_D12.
  • the sequence of the heavy chain variable region of the ATNLSA1-4_D12 antibody is described in SEQ ID NO: 46, and the sequence of the light chain variable region is described in SEQ ID NO: 47.
  • ATNLSA1-4_D12 and IL-6R binding clone PF1 prepared as Negative control (heavy chain sequence: 48, light chain sequence: 49) are used to adenosine or It was confirmed by phage ELISA whether ATP inhibited the binding to the antigen.
  • ATNLSA1-4_D12 and PF1 were each diluted with TBS and subjected to ELISA according to the following procedure.
  • StreptaWell® 96 microtiter plates (Roche) were coated with 100 ⁇ L TBS containing biotin-labeled antigen (mixture of 5′-Adenosine-PEG-biotin and ATP-PEG-biotin) for 1 hour at room temperature.
  • TBS biotin-labeled antigen
  • Each well of the plate was washed with TBST to remove the antigen, and then the well was blocked with 250 ⁇ L of 2% SkimMilk-TBS for 1 hour or longer.
  • SkimMilk-TBS By removing the 2% SkimMilk-TBS and then allowing the plate containing purified phages prepared in each well to stand for 1 hour at room temperature, the antibody displayed by the phage was bound to the antigen present in each well. .
  • TBS containing no antigen and a dilution series of ATP from equal to 10,000 times the antigen was added to the wells.
  • the immobilized antigen and ATP were allowed to compete.
  • each well washed with TBST was incubated for 1 hour with a plate to which an HRP-conjugated anti-M13 antibody (Amersham Pharmacia Biotech) diluted with TBS was added.
  • an HRP-conjugated anti-M13 antibody Amersham Pharmacia Biotech
  • the color reaction of the solution in each well to which the TMB single solution (ZYMED) was added was stopped by the addition of sulfuric acid, and then the color development was measured by absorbance at 450 nm.
  • ATNLSA1-4_D12 increases in ATP concentration, it is confirmed that the color development value decreases in the presence of an excessive amount of ATP, and the binding between ATNLSA1-4_D12 and antigen is inhibited depending on the ATP concentration. confirmed.
  • PF1 which was subjected to a comparative experiment as a negative control, has not been confirmed to bind to an antigen regardless of the ATP concentration. From this, it was confirmed that ATNLSA1-4_D12 is an antibody having ATP binding ability and not a biotin tag or an antibody recognizing PEG.
  • variable region of clone ATNLSA1-4_D12 having ATP and Adenosine binding activity is IgG
  • the interaction of the antigen-antibody reaction of D12 linked to the constant region was analyzed.
  • the target antibody is captured by Sensor chip CM5 or CM4 (GE Healthcare) in which an appropriate amount of protein A (Life technologies) is immobilized by the amine coupling method, and antigens ATP (Wako), Adenosine (Wako), ADP (adenosine diphosphate) (Wako) was allowed to interact.
  • Tris-HCl As a running buffer, 50 mM Tris-HCl (Takara, T903), 500 mM NaCl, 0.01% (w / v) Tween20 was used. The antigen was allowed to interact for 30 seconds at a flow rate of 30 ⁇ L / min and dissociated for 30 seconds. Interaction with the antigen was measured at 15 ° C, and the same buffer as the running buffer was used for antigen dilution.
  • the dissociation constant K D (M) is calculated based on the association rate constant ka (1 / Ms) and dissociation rate constant kd (1 / s), which are kinetic parameters calculated from the sensorgram obtained from the measurement. It was done. Alternatively, the dissociation constant K D (M) was calculated using Steady state analysis. Biacore T200 Evaluation Software (GE Healthcare) was used for calculation of each parameter.
  • binding responses at adenosine presence of each concentration is obtained in 20 [mu] mol / L ADP presence and absence, also separately coupled response acquired in the presence of 20 [mu] mol / L ADP It was.
  • Specific binding response (R) to adenosine was obtained.
  • the K D values for adenosine by R calculated by the equation 2 is applied using the solver function of Office Excel2007 (Microsoft) a least squares method with respect to the plotted curve in the Y-axis It has been determined.
  • Equation 2 conc means adenosine concentration (mol / L), and Rmax means a response value expected when adenosine is most bound to the antibody. Scrubber2 (BioLogics. Inc) was used to extract the measured response values.
  • the KD of D12 obtained by this measurement for ATP was 8.5 ⁇ mol / L
  • the KD for ADP was 0.25 ⁇ mol / L
  • the KD for Adenosine was 1100 ⁇ mol / L. From this, it was considered that D12 has binding activity to ATP, ADP, and Adenosine, and also has binding activity to AMP (adenosinedenmonophosphate) and cAMP (cyclinc adenosine monophosphate).
  • Example 8 Design of library for obtaining ATP / adenosine switch antibody using anti-ATP / adenosine antibody It is known that not only adenosine but also ATP concentration is high in cancer tissue and inflammatory tissue. Therefore, not only antibodies that use either adenosine or ATP as switches, but also antibodies that can use both adenosine and ATP (described as ATP / adenosine in this example) as switches (ie, either adenosine or ATP). (Antibodies capable of binding to the antigen if they are present in high concentrations) are also useful.
  • ATNLSA1-4_D12 shown in Example 7-4 is an antibody that binds to ATP / adenosine.
  • the ATP / adenosine is sandwiched between the antibody and the target antigen as shown in FIG. It was thought to contain the antibody variable region. Therefore, by binding to the target antigen and making a library of antibody variable region parts that can retain the binding to ATP / adenosine in this way, binding to any antigen with or without ATP / adenosine It was thought that a synthetic antibody library could be prepared from which ATP / adenosine switch antibodies with varying activities could be obtained.
  • Example 7-4 the crystal structure of the complex of ATP / adenosine antibody ATNLSA1-4_D12 and ATP obtained from the human antibody library was analyzed. From the results of crystal structure analysis, the recognition mode of adenosine (and ATP) recognized by the antibody and the amino acid residues of the antibody variable region that are assumed not to be greatly involved in binding to adenosine (and ATP) are identified. It was done. The amino acid residues mainly involved in binding to adenosine (ATP) were identified as Ser52, Ser52a, Arg53, Gly96, Leu100a, Trp100c (Kabat numbering) in the heavy chain.
  • a site satisfying at least one of the following conditions was selected as a library-possible site.
  • Condition 1) A site that is not greatly involved in binding to ATP, or a site that contains amino acids other than the natural sequence that does not decrease binding to ATP even though it is involved in binding,
  • Condition 2) Sites with various amino acid appearance frequencies as human antibody repertoire,
  • Condition 3) A site that is not important for the formation of the Canonical structure.
  • the CDR1 and CDR2 sites have an appearance frequency of 2% or more in the germline.
  • germline occurrence frequency was comprehensively substituted with amino acids of 1% or more, and a plurality of variants of ATNLSA1_4_D12 were produced in which these substitutions were combined.
  • modified site the site represented by Kabat numbering described as “Kabat” in the table
  • amino acid before the modification at the site the amino acid described as “natural sequence” in the table
  • modified amino acids amino acids described as “modified amino acids” in the table
  • modified site site represented by Kabat numbering described as “Kabat” in the table
  • amino acid before modification at the site amino acid described as “natural sequence” in the table
  • modified amino acids amino acids described as “modified amino acids” in the table
  • the ATP binding ability is not less than 1/5 ⁇ of ATNLSA1-4_D12 by modification (ie, the KD value is less than 42.5 ⁇ mol / L), and the light chain site is ATNLSA1-4_D12 Those that exceed the binding ability of (that is, those with a KD value of less than 8.5 ⁇ mol / L) are determined to be modifiable sites, and the amino acids substituted at those sites can be libraryed (a flexible residue that appears in the library) It was determined.
  • a libraryable amino acid selected from the analysis of the above-mentioned variant (a flexible residue that causes an amino acid to appear in the library) and the amino acid before the modification to the amino acid (that is, the natural amino acid of ATNLSA1-4_D12)
  • a library for obtaining an ATP / adenosine switch antibody was constructed by designing an amino acid repertoire containing amino acids included in the sequence and a site containing the repertoire. The library was constructed so that the frequency of appearance of each amino acid contained in the amino acid repertoire was equal (for example, when there are 10 types of amino acid repertoire, 10% of each amino acid appears).
  • the site containing the amino acid repertoire in the heavy chain (in the table, the site represented by Kabat numbering described as “Kabat”) and the amino acid repertoire at that site are shown in Table 12.
  • the site containing the amino acid repertoire in the light chain (the site represented by Kabat numbering described as “Kabat” in the table) and the amino acid repertoire at that site are shown in Table 13.
  • ATNLSA1-4_D12 framework was derived from the VH3-21 germline. Therefore, in order to improve the stability of the antibody, Gln01Glu, Gln05Val, Asp10Gly, Asn30Ser, Leu48Val, Asn58Tyr (numbers indicate Kabat numbering) to convert the ATNLSA1-4_D12 framework sequence back to the VH3-21 germline sequence. Modifications were introduced into the ATNLSA1-4_D12 framework sequence.
  • the Tm of ATNLSA1-4_D12 variants expressed and purified by the method shown in Example 7-1 was measured by DSC. The measurement by DSC was performed by a method known to those skilled in the art.
  • the Tm of the ATNLSA1-4_D12 variant with these modifications was greatly improved from 74.37 ° C to 81.44 ° C, indicating that the structure was stabilized. Since it may be preferable to use a highly stable framework as an antibody library, the above-described modified framework sequence was used as the framework sequence of the library.
  • the framework used for the library is shown in Table 14.
  • Genes containing individual sequences contained in the library thus designed are synthesized (DNA2.0), and it is possible to amplify VH and VL, respectively, using a collection (library) of these individual genes as a template.
  • the gene library was amplified by the primers.
  • the sequences of the VL amplification primers are described in SEQ ID NOs: 102 and 103, and the sequences of the VH amplification primers are described in SEQ ID NOs: 104 and 105, respectively.
  • Amplified rational design human antibody heavy chain variable region gene library and human antibody light chain variable region gene library introduced into appropriate phagemid vectors with both human IgG derived CH1 sequences and human IgG derived light chain constant region sequences It was done.
  • This phagemid vector is introduced into Escherichia coli by electroporation to display a Fab domain consisting of human antibody variable region-constant region and to obtain an antibody that can bind to antigen using adenosine or ATP as a switch.
  • a rational design library composed of H and L chains having various adenosine or ATP-binding activities as described above has an adenosine or ATP sandwiched between an antibody and an antigen. / It was considered useful as a library containing human antibodies that can efficiently obtain adenosine switch antibodies.
  • ATNLSA1_4_D12 binds not only to adenosine and ATP but also to ADP, so that it was expected to have binding activity to AMP and cAMP having structures similar to ATP, ADP and adenosine. Therefore, we believe that this library is useful for obtaining switch antibodies whose binding activity to any target antigen changes depending on the presence or absence of one or more small molecules of ATP, ADP, AMP, cAMP, or adenosine. It was.
  • Example 9 Construction of immune library for obtaining adenosine / ATP / adenosine switch antibody containing anti-ATP / adenosine antibody repertoire
  • adenosine-PEG-biotin-conjugated antibody A plurality of rabbit antibody phage display libraries displaying Fab domains consisting of rabbit antibody sequences were constructed using mRNA recovered from the expressing B cell group as a template. As the construction method, Rader (Methods Mol. Biol. (2009) 525, 101-28) was referred.
  • cDNA was prepared by a reverse transcription reaction using mRNA collected from B cells of 600,000 cells selected from 9 immunized rabbits as a template. Using this cDNA as a template, the heavy chain variable region and the light chain variable region-constant region sequence were amplified by PCR under appropriate conditions by PCR using the primers shown in Table 15.
  • the combination of the amplified rabbit antibody heavy chain variable region gene library and the rabbit antibody light chain variable region-constant region gene library was introduced into an appropriate phagemid vector having a rabbit IgG-derived CH1 sequence.
  • a rabbit antibody phage that displays a Fab domain consisting of a rabbit antibody variable region-constant region and can obtain an antibody capable of binding to an antigen using adenosine or ATP as a switch.
  • a display library hereinafter adenosine immunized rabbit antibody library was constructed. As shown in FIG.
  • the adenosine immunity library composed of H and L chains exhibiting various adenosine binding properties has an adenosine (or ATP) sandwiched between an antibody and an antigen.
  • adenosine or ATP
  • Example 10 Acquisition of antibody binding to antigen in the presence of adenosine and ATP from antibody library using phage display technology (10-1) Obtaining an antibody that binds to an antigen in the presence of a small molecule from a library that uses a mixture of adenosine and ATP An antibody showing binding activity against an antigen in the presence of ATP was obtained. For acquisition, phage displaying antibodies that show the ability to bind to the antigen captured on the beads in the presence of adenosine and ATP are recovered and then eluted from the beads in the absence of adenosine and ATP Phages were recovered in the eluate.
  • Phages were produced from E. coli that retained the phage phage for phage display constructed.
  • a phage library solution was obtained by diluting a population of phage precipitated by adding 2.5M NaCl / 10% PEG to the culture solution of Escherichia coli where the phage was produced, with TBS. Next, BSA was added to the phage library solution to a final concentration of 4%. Panning was performed using antigen immobilized on magnetic beads. NeutrAvidin coated beads (Sera-Mag SpeedBeads NeutrAvidin-coated) or Streptavidin coated beads (Dynabeads M-280 Streptavidin) were used as magnetic beads.
  • the phage library solution is brought into contact with the antigen, adenosine, and ATP for 60 minutes at room temperature by adding 500 ⁇ mol biotin-labeled antigen and each final concentration of 1 ⁇ mM ATP-Na and adenosine to the prepared phage library solution. .
  • Magnetic beads blocked with BSA were added to the phage library solution, and the antigen / phage complex was bound to the magnetic beads at room temperature for 15 minutes. The beads were washed once with TBS in which ATP and adenosine were dissolved.
  • the beads to which 0.5 ⁇ mL of 1 ⁇ mg / mL trypsin was added were suspended at room temperature for 15 minutes, and then the phage solution was immediately recovered from the beads separated using a magnetic stand.
  • the recovered phage solution was added to 10 mL of E. coli strain ER2738 in the logarithmic growth phase (OD600 0.4-0.7).
  • E. coli was infected with phages by gently stirring the E. coli at 37 ° C. for 1 hour. Infected E. coli were seeded on a 225 mm x 225 mm plate.
  • a phage library solution was prepared by recovering the phage from the seeded E. coli culture solution.
  • phages capable of binding to the antigen in the presence of adenosine and ATP were collected, but in the second and subsequent pannings, the phage capable of binding to the antigen only in the presence of adenosine and ATP.
  • Concentration was performed. Specifically, the phage library was contacted with the antigen and adenosine and ATP at room temperature for 60 minutes by adding 40 ⁇ pmol of biotin-labeled antigen and each final concentration of 1 ⁇ mM adenosine and ATP to the prepared phage library solution. Magnetic beads blocked with BSA were added, and the antigen-phage complex was allowed to bind to the magnetic beads for 15 minutes at room temperature.
  • the beads are washed with TBST (hereinafter referred to as (adenosine + ATP) / TBST) in which 1 mL of adenosine and ATP® are dissolved and TBS (hereinafter referred to as (adenosine + ATP) / TBS) in which adenosine, adenosine and ATP are dissolved. It was. Thereafter, the beads to which 0.5 mL of TBS was added were suspended at room temperature, and the phage solution was immediately recovered from the beads separated using a magnetic stand. After this operation was repeated again, the phage solution eluted in two portions was mixed.
  • TBS hereinafter referred to as (adenosine + ATP) / TBS
  • coli were seeded on a 225 mm x 225 mm plate.
  • the phage library solution was recovered by recovering the phage from the seeded E. coli culture solution. Panning to obtain an antibody having an antigen-binding activity in the presence of adenosine and ATP was repeated three times.
  • Phages were produced from E. coli that retained the constructed phagemid for phage display.
  • a phage library solution was obtained by diluting a population of phage precipitated by adding 2.5M NaCl / 10% PEG to the culture solution of Escherichia coli in which phage production was performed, with TBS. Next, BSA was added to the phage library solution to a final concentration of 4%.
  • As magnetic beads NeutrAvidin coated beads (Sera-Mag SpeedBeads NeutrAvidin-coated) or Streptavidin coated beads (Dynabeads M-280 Streptavidin) was used, and panning was performed using an antigen immobilized on the magnetic beads.
  • the phage library solution and antigen, and adenosine and ATP are mixed at room temperature for 60 minutes. Made contact.
  • magnetic beads blocked with BSA were added to the phage library solution, and the complex of antigen and phage was bound to the magnetic beads at room temperature for 15 minutes. The beads were washed once with (adenosine + ATP) / TBS.
  • the beads to which 0.5 ⁇ mL of a 1 mg / mL trypsin solution was added were suspended at room temperature for 15 minutes, and then the phage solution was immediately recovered from the beads separated using a magnetic stand.
  • the recovered phage solution was added to 10 mL of E. coli strain ER2738 in the logarithmic growth phase (OD600 0.4-0.7).
  • E. coli was infected with phages by gently stirring the E. coli at 37 ° C. for 1 hour. Infected E. coli were seeded on a 225 mm x 225 mm plate.
  • a phage library solution was prepared by recovering the phage from the seeded E. coli culture solution.
  • phages that can bind in the presence of adenosine and ATP are collected, but in the second and subsequent pannings, phage that can bind to the antigen only in the presence of adenosine and ATP are concentrated. It was. Specifically, 250 ⁇ mol biotinylated antigen was added to Bera-blocked Sera-Mag® NeutrAvidin® beads and allowed to bind at room temperature for 15 minutes. To the beads washed three times with TBS, a phage library solution blocked with BSA was added and allowed to bind at room temperature for 1 hour. By separating the beads using a magnetic stand, antigens and phage that did not bind to the beads were recovered.
  • the phage library was contacted with antigen and adenosine and ATP for 60 minutes at room temperature by adding 40 pmol biotinylated antigen and each final concentration of 1 mM mM adenosine and ATP to the recovered phage.
  • magnetic beads blocked with BSA were added to the mixed solution of the labeled antigen and adenosine and ATP and the phage library, and the complex of antigen and phage was bound to the magnetic beads for 15 minutes at room temperature.
  • the beads were washed with 1 mL of adenosine + ATP) / TBST and (adenosine + ATP) / TBS.
  • E. coli was infected with phages by gently stirring the E. coli at 37 ° C. for 1 hour. Infected E. coli were seeded on a 225 mm x 225 mm plate. Panning to obtain an antibody having binding activity to the antigen in the presence of adenosine and ATP was repeated three times.
  • the antibody phage display library is then contacted with biotinylated antigen-streptavidin under conditions where adenosine and ATP are present, and antibodies that bind to the antigen in the presence of adenosine and ATP are recovered.
  • biotinylated antigen-streptavidin under conditions where adenosine and ATP are present, and antibodies that bind to the antigen in the presence of adenosine and ATP are recovered.
  • Phage is produced from E. coli that holds the phage display phagemid constructed.
  • a phage library solution is obtained by diluting a population of phage precipitated by adding 2.5 M NaCl / 10% PEG to the culture solution of Escherichia coli in which phage production has been performed, with TBS. Next, BSA is added to the phage library solution to a final concentration of 4%.
  • As the magnetic beads NeutrAvidin coatedSbeads (Sera-Mag SpeedBeads NeutrAvidin-coated) or Streptavidin coated beads (Dynabeads M-280 Streptavidin) is used, and panning using the antigen immobilized on the magnetic beads is performed.
  • the beads to which 0.5 ⁇ mL of 1 ⁇ mg / mL trypsin solution is added are suspended at room temperature for 15 minutes, and the phage solution is immediately recovered from the beads separated using a magnetic stand.
  • the collected phage solution is added to 10 mL of E. coli strain ER2738 in the logarithmic growth phase (OD600 is 0.4-0.7).
  • E. coli is infected with the phage by gently stirring the E. coli at 37 ° C. for 1 hour. Infected E. coli is seeded on a 225 mm x x 225 mm plate.
  • a phage library solution is prepared by collecting the phages from the seeded E. coli culture solution.
  • the second round of panning concentrates phage that can bind to biotinylated antigens in the presence of adenosine and ATP. Specifically, by adding 40 ⁇ pmol of biotinylated antigen and final concentration of 1 ⁇ mM adenosine and ATP to the prepared phage library solution, the phage library solution is contacted with the antigen and adenosine and ATP for 60 minutes at room temperature. . Next, magnetic beads blocked with BSA are added to the phage library solution, and the antigen and a complex of adenosine and / or ATP and phage are allowed to bind to the magnetic beads at room temperature for 15 minutes.
  • the beads are washed three times with TBST containing a final concentration of 1 ⁇ m adenosine and ATP and twice with TBS containing a final concentration of 1 ⁇ m adenosine and ATP. Thereafter, the beads to which 0.5 ⁇ mL of 1 ⁇ mg / mL trypsin solution is added are suspended at room temperature for 15 minutes, and the phage solution is immediately recovered from the beads separated using a magnetic stand. The collected phage solution is added to 10 mL of E. coli strain ER2738 in the logarithmic growth phase (OD600 is 0.4-0.7). E. coli is infected with the phage by gently stirring the E. coli at 37 ° C. for 1 hour. Infected E. coli is seeded on a 225 mm x x 225 mm plate. Next, a phage library solution is prepared by collecting the phages from the seeded E. coli culture solution.
  • phages that can bind to biotinylated adenosine and ATP are again concentrated in the presence of antigen. Specifically, by adding 250 pmol of biotinylated ATP, 2'-Adenosine-PEG-Biotin, and 5'-Adenosine-PEG-Biotin to the prepared phage library solution, 1000 pmol of unlabeled antigen is added. The phage library solution is contacted with the antigen and adenosine and ATP for 60 minutes at room temperature.
  • E. coli strain ER2738 in the logarithmic growth phase (OD600 is 0.4-0.7).
  • E. coli is infected with the phage by gently stirring the E. coli at 37 ° C. for 1 hour.
  • Infected E. coli is seeded on a 225 mm x x 225 mm plate.
  • a phage library solution is prepared by collecting the phages from the seeded E. coli culture solution.
  • panning under the same conditions as the third panning is repeated.
  • washing of beads with TBST containing antigen and TBS containing antigen is carried out by increasing the number of times to 5 in the fourth and subsequent panning.
  • the third and subsequent pannings are repeated repeatedly under the same conditions as the third panning, regardless of whether they are even or odd.
  • washing of beads with TBST containing antigen and TBS containing antigen is carried out by increasing the number of times to 5 in the fourth and subsequent panning.
  • the NucleoFast 96 with 100 ⁇ l H 2 O added to each well was washed again by centrifugation (4,500 g, 30 min). Finally, 100 ⁇ L of TBS was added, and the phage solution contained in the supernatant of each well of the NucleoFast 96 that was allowed to stand at room temperature for 5 minutes was recovered.
  • Purified phage added with TBS or (adenosine + ATP) / TBS was subjected to ELISA according to the following procedure. StreptaWell® 96 microtiter plates (Roche) were coated overnight with 100 ⁇ L TBS containing biotinylated antigen. Each well of the plate was washed with TBST to remove the antigen, and then the well was blocked with 250 ⁇ L of 2% SkimMilk-TBS for 1 hour or longer. After removing 2% SkimMilk-TBS, the plate with the purified phage prepared in each well was allowed to stand at 37 ° C. for 1 hour, so that the antibody-displayed phage was adenosine to the antigen present in each well.
  • Table 17 shows the amino acid sequences of I6DL2C1-4_076, an antibody against human IL6, HSDL3C5-4_015, an antibody against HSA, and 6RAD2C1-4_011 and 6RAD2C1-4_076, which are antibodies against human IL-6R.
  • a StreptaWell® 96 microtiter plate (Roche) was coated with 100 ⁇ L of TBS containing a biotin-labeled antigen for 1 hour or more at room temperature. Each well of the plate was washed with TBST to remove the biotin-labeled antigen not bound to the plate, and then the well was blocked with 2% Skimmilk / TBS-250 ⁇ L for 1 hour or longer.
  • the plate containing 50 ⁇ L of the phage displaying the antibody was allowed to stand at room temperature for 1 hour, whereby each phage was added to the biotin-labeled antigen present in each well with ATP and Binding was in the presence and / or absence of adenosine.
  • HBS-conjugated anti-M13 antibody (Amersham Pharmacia Biotech) diluted with TBS or (adenosine and / or ATP) / TBS is added to each well. The plate was incubated for 1 hour.
  • Example 11 The binding activity of the antibody obtained in Example 2 to human IL-6 in the presence of an amino acid metabolite other than kynurenine Human in the presence of the small molecule obtained in Example 2-4
  • the antibody I6NMSC1-3_A11 that binds to IL-6 is an antibody that binds to human IL-6 in the presence of kynurenine, as shown in Example 3-2.
  • Kynurenin is a tryptophan metabolite, and kynurenine is converted to anthranilic acid by kynurenase, 3-hydroxykynurenine by kynurenine 3-hydroxylase, and kynurenic acid by kynurenine aminotransferase (Stefan Lob et.
  • the antibody I6NMSC1-3_A11 having the binding activity to the antigen in the presence of kynurenine and the known anti-human IL-6 antibody CLB8-F1 shown in Example 3-2 and GC413 as a negative control are shown in Table 18 It was subjected to ELISA below. In addition, each amino acid and its metabolites were appropriately prepared in the buffers shown in Table 4 at the concentrations shown in Table 18. Human IL-6 labeled with biotin was used as an antigen.
  • StreptaWell® 96 microtiter plates (Roche) were coated with 100 ⁇ L of PBS containing biotin-labeled antigen for 1 hour or more at room temperature. Each well of the plate was washed with Wash buffer to remove the antigen not bound to the plate, and then the well was blocked with 250 ⁇ L of Blocking buffer for 1 hour or more. To each well from which Blocking Buffer has been removed, 100 ⁇ L each of purified IgG prepared at 2.5 ⁇ g / mL in Sample Buffer containing low molecules at the final concentration shown in Table 18 was added and left at room temperature for 1 hour. This allowed each IgG to bind to the antigen present in each well.
  • Example 12 Acquisition of antibodies that bind to human IL-6 in the presence of small molecules from human antibody libraries using phage display technology (12-1) Acquisition of antibodies that bind to human IL-6 in the presence of small molecules from the library using bead panning or negative selection methods From the naive human antibody phage display library constructed in Example 2-1, Screening for an antibody exhibiting an antigen-binding activity in the presence of a small molecule was carried out by the same method as shown in 2-2 and 2-3.
  • I6NMSC1-3_ # 03 and I6NMSC1-3_ # 17 determined to have antigen-binding activity in the presence of SC, as shown by purified phage ELISA
  • the base sequence of the gene amplified using specific primers (SEQ ID NOs: 110 and 112) was analyzed.
  • the heavy chain sequence of I6NMSC1-3_ # 03 was SEQ ID NO: 50 and the light chain sequence was SEQ ID NO: 51.
  • the heavy chain sequence of I6NMSC1-3_ # 17 was SEQ ID NO: 52 and the light chain sequence was SEQ ID NO: 53.
  • the gene sequence encoding the variable region of I6NMSC1-3_ # 17 was inserted into a human IgG1 / Lambda animal expression plasmid, and I6NMSC1-3_ # 03, a known anti-human IL-6 antibody CLB8-F1 (heavy chain is SEQ ID NO: 32, light chain is represented by SEQ ID NO: 33, respectively, and negative control anti-human glypican 3 antibody GC413 (heavy chain is represented by SEQ ID NO: 34, light chain is represented by SEQ ID NO: 35, respectively)
  • the gene sequence encoding the variable region was inserted into a human IgG1 / Kappa animal expression plasmid.
  • the expressed antibody was purified by the method described in Example 3.
  • StreptaWell® 96 microtiter plates (Roche) were coated with 100 ⁇ L of PBS containing biotin-labeled antigen for 1 hour or more at room temperature. Each well of the plate was washed with Wash buffer to remove the antigen not bound to the plate, and then the well was blocked with 250 ⁇ L of Blocking buffer for 1 hour or more. Into each well from which Blocking Buffer has been removed, the plate containing 100 ⁇ L of purified IgG prepared at 2.5 ⁇ g / mL in Sample Buffer containing low molecules at the final concentration shown in Table 3 is allowed to stand at room temperature for 1 hour. This allowed each IgG to bind to the antigen present in each well.
  • I6NMSC1-3_ # 03 showed lower absorbance in condition 9 (no small molecule) than in condition 8 (all small molecule cocktail solutions). From this result, it was confirmed that I6NMSC1-3_ # 03 has the property that the binding to the antigen changes depending on the presence or absence of a small molecule, as in the case of phage ELISA. Also, I6NMSC1-3_ # 03 showed the same absorbance as condition 8 in condition 7 (Kynurenine 100uM), and the result was low in other conditions, so it was the same as I6NMSC1-3_A11 described in Example 3 It was shown that the antibody binds to human IL-6 as an antigen in the presence of Kynurenine. I6NMSC1-3_ # 03 has a different amino acid sequence from I6NMSC1-3_A11, and by using such a method, it is possible to obtain multiple types of antibodies that bind to antigens in the presence of small molecules. It has been shown.
  • StreptaWell® 96 microtiter plates (Roche) were coated with 100 ⁇ L of PBS containing biotin-labeled antigen for 1 hour or more at room temperature. Each well of the plate was washed with Wash buffer to remove the antigen not bound to the plate, and then the well was blocked with 250 ⁇ L of Blocking buffer for 1 hour or more. Into each well from which Blocking Buffer has been removed, 100 ⁇ L each of purified IgG prepared at 0.15 ⁇ g / mL in Sample Buffer containing low molecules at the final concentration shown in Table 3 was added and left at room temperature for 1 hour. This allowed each IgG to bind to the antigen present in each well.
  • I6NMSC1-3_ # 17 has a condition 9 compared to the absorbance in condition 8 (all small molecule cocktail solutions). Absorbance at low molecular weight was low. From this result, it was confirmed that I6NMSC1-3_ # 17 has the property that the binding to the antigen changes depending on the presence or absence of a small molecule, as in the case of phage ELISA. I6NMSC1-3_ # 17 showed the same absorbance as condition 8 in condition 1 (ATP-Na 1mM) and condition 5 (Succinic acid 1mM).
  • Example 13 Acquisition of antibodies that bind to human serum albumin (hereinafter also referred to as HSA) in the presence of small molecules from human antibody libraries using phage display technology (13-1) Obtaining an antibody that binds to HSA from a library by bead panning in the presence of a small molecule From the naive human antibody phage display library constructed in Example 2, an antibody exhibiting binding activity to HSA in the presence of a small molecule Screening was conducted. That is, phages displaying antibodies showing binding activity in the presence of small molecules to HSA captured on beads were collected. Phages were recovered from the phage eluate eluted from the beads in the absence of small molecules. In this acquisition method, biotin-labeled HSA was used as an antigen.
  • HSA human serum albumin
  • the phages produced from E. coli retaining the constructed phagemid for phage display were purified by a general method. Thereafter, a phage library solution dialyzed with TBS was obtained. Next, skim milk was added to the phage library solution to a final concentration of 3%. Panning with antigen immobilized on magnetic beads was performed. NeutrAvidin coated beads (Sera-Mag SpeedBeads NeutrAvidin-coated) or Streptavidin coated beads (Dynabeads M-280 Streptavidin) were used as magnetic beads.
  • small molecules to efficiently obtain small molecule switch antibodies that can act as a switch in cancer tissue ; ATP), inosine, kynurenine, prostaglandin E2 (prostaglandin E2; PGE2), succinic acid, lactic acid (lactic acid) mixture (hereinafter referred to as SC) Panning was performed to enrich for antibodies that bind to the antigen in the presence of) and not to the antigen in the absence of SC.
  • the prepared phage library solution was mixed with 250 ⁇ pmol of biotin-labeled antigen and each final concentration of 1 ⁇ mM adenosine triphosphate sodium salt (ATP-Na), adenosine (Adenosine), inosine (Inosine), SC composed of acid (Succinic® acid) and lactic acid (Lactic® acid), prostaglandin E2 (PGE2) with a final concentration of 1 ⁇ M, and kynurenine with a final concentration of 100 ⁇ M and adjusted to pH 7.4 with NaOH And added for 60 minutes at room temperature.
  • ATP-Na adenosine triphosphate sodium salt
  • Adenosine adenosine
  • Inosine inosine
  • SC composed of acid (Succinic® acid) and lactic acid (Lactic® acid)
  • PGE2 prostaglandin E2
  • kynurenine with a final concentration of 100 ⁇ M and adjusted to pH 7.4 with
  • phages capable of binding in the presence of low molecules were collected, but in the second and subsequent pannings, phages capable of binding to antigens in the presence of low molecules were concentrated.
  • the phage library was brought into contact with the antigen and small molecules at room temperature for 60 minutes.
  • Magnetic beads blocked with skim milk were added and the complex of antigen and phage was allowed to bind to the magnetic beads for 15 minutes at room temperature. The beads were washed with 1 mL of SC / TBST and SC / TBS.
  • the beads to which 0.5 mL of TBS was added were suspended at room temperature, and the phage solution was immediately recovered from the beads separated using a magnetic stand. After this operation was repeated again, the phage solution eluted in two portions was mixed. Further, 0.5 mL of TBS was added to the remaining beads, and the beads were stirred at room temperature for 5 minutes. The phage solution was recovered from the beads separated using a magnetic stand.
  • Phages were produced from E. coli that retained the constructed phagemid for phage display.
  • the produced phage was purified by a general method, and a phage library solution dialyzed against TBS was obtained. Next, skim milk was added to the phage library solution to a final concentration of 3%.
  • As magnetic beads NeutrAvidin coated beads (Sera-Mag SpeedBeads NeutrAvidin-coated) or Streptavidin coated beads (Dynabeads M-280 Streptavidin) was used, and panning using biotin-labeled HSA immobilized on the magnetic beads was performed.
  • phage library solution with 250 ⁇ pmol biotinylated HSA, each final concentration from 1 ⁇ mM ATP-Na, Adenosine, Inosine, Succinic acid, and Lactic acid, final concentration 1 ⁇ M PGE2, and final concentration 100 ⁇ M Kynurenine
  • SC whose pH was adjusted to 7.4 with NaOH
  • the phage library solution was contacted at room temperature for 60 minutes.
  • magnetic beads blocked with skim milk were added to the phage library solution, and a complex of biotin-labeled HSA and phage was bound to the magnetic beads at room temperature for 15 minutes. The beads were washed once with SC / TBS.
  • the beads to which 0.5 ⁇ mL of a 1 mg / mL trypsin solution was added were suspended at room temperature for 15 minutes, and then the phage solution was immediately recovered from the beads separated using a magnetic stand.
  • the recovered phage solution was added to 10 mL of E. coli strain ER2738 in the logarithmic growth phase (OD600 0.4-0.7).
  • E. coli was infected with phages by gently stirring the E. coli at 37 ° C. for 1 hour. Infected E. coli were seeded on a 225 mm x 225 mm plate.
  • a phage library solution was prepared by recovering the phage from the seeded E. coli culture solution.
  • phages capable of binding in the presence of small molecules were collected, but in the second and subsequent pannings, phages capable of binding to biotin-labeled HSA were concentrated in the presence of low molecules. It was. Specifically, 250 pmol biotin-labeled HSA was added to Sera-Mag NeutrAvidin beads blocked with skim milk and allowed to bind at room temperature for 15 minutes. To the beads washed 3 times with TBS, a phage library solution blocked with skim milk was added and allowed to bind at room temperature for 1 hour. Biotin-labeled HSA and phage that did not bind to the beads were recovered by separating the beads using a magnetic stand.
  • the phage library was brought into contact with small molecules contained in biotin-labeled HSA and SC for 60 minutes at room temperature by adding 40 pmol of biotin-labeled HSA and SC, NaOH to the recovered phage.
  • magnetic beads blocked with skim milk were added to a mixture of biotin-labeled HSA, SC and phage library, and the biotin-labeled HSA / phage complex was bound to the magnetic beads for 15 minutes at room temperature.
  • the beads were washed with 1 mL of SC / TBST and SC / TBS. Thereafter, 0.5 mL of 1 mg / mL Trypsin solution was added to the mixture.
  • E. coli was infected with phages by gently stirring the E. coli at 37 ° C. for 1 hour. Infected E. coli were seeded on a 225 mm x 225 mm plate. Panning for obtaining an antibody having binding activity to biotin-labeled HSA in the presence of a small molecule was repeated three times.
  • the NucleoFast 96 with 100 ⁇ L of H 2 O added to each well was washed again by centrifugation (centrifuged at 4,500 g for 30 minutes). Finally, 100 ⁇ L of TBS was added, and the phage solution contained in the supernatant of each well of the NucleoFast 96 that was allowed to stand at room temperature for 5 minutes was recovered.
  • Purified phage added with TBS or SC / TBS was subjected to ELISA according to the following procedure. StreptaWell® 96 microtiter plates (Roche) were coated overnight with 100 ⁇ L TBS containing biotinylated HSA. Each well of the plate was washed with TBST to remove biotin-labeled HSA, and then the well was blocked with 250 ⁇ L of 2% skim milk-TBS for 1 hour or longer. After removing 2% skim milk-TBS, the plate containing the purified phage prepared in each well was allowed to stand at room temperature for 1 hour, whereby the antibody displaying the phage was transferred to the biotin-labeled HSA present in each well.
  • Binding was done in the absence / presence of SC. Each well washed with TBST or SC / TBST was incubated for 1 hour with a plate to which an HRP-conjugated anti-M13 antibody (Amersham Pharmacia Biotech) diluted with TBS or SC / TBS was added. After washing with TBST or SC / TBST, the color development reaction of the solution in each well to which the TMB single solution (ZYMED) was added was stopped by addition of sulfuric acid, and then the color development was measured by absorbance at 450 nm.
  • a clone HSNMSC1-4_ # 22 having a binding activity to the antigen HSA in the presence of a low molecular cocktail was obtained.
  • the gene encoding the variable region of the negative human anti-glypican 3 antibody GC413 (heavy chain is SEQ ID NO: 34, light chain is SEQ ID NO: 35) was inserted into a human IgG1 / Kappa animal expression plasmid.
  • the expressed antibody was purified by the method described in Example 3.
  • a StreptaWell® 96 microtiter plate (Roche) was coated with 100 ⁇ L of PBS containing biotin-labeled HSA for 1 hour or more at room temperature. By washing each well of the plate with Wash buffer, biotin-labeled HSA that was not bound to the plate was removed, and then the well was blocked with 250 ⁇ L of Blocking buffer for 1 hour or longer.
  • 100 ⁇ L each of purified IgG prepared at 2.5 ⁇ g / mL in Sample Buffer containing low molecules at the final concentration shown in Table 3 was added and left at room temperature for 1 hour. By doing so, each IgG was bound to biotin-labeled HSA present in each well.
  • HSNMSC1-4_ # 22 showed a significantly lower absorbance in condition 9 (no small molecule) than in condition 8 (all small molecule cocktail solutions). From this result, it was confirmed that HSNMSC1-4_ # 22 has the property that the binding to the antigen changes depending on the presence or absence of a small molecule, as in the case of phage ELISA. HSNMSC1-4_ # 22 showed the same absorbance as condition 8 in condition 2 (Adenosine 1mM), and the absorbance was significantly lower under other conditions. It was shown to be an antibody that binds. It has been shown that by using such a method, it is possible to obtain an antibody that binds to an antigen in the presence of a small molecule other than Kynurenine.
  • Example 14 Acquisition of antibody that binds to human IL-6 receptor (hIL-6R) in the presence of small molecules from a human antibody library using phage display technology (14-1) Obtaining an antibody that binds to hIL-6R in the presence of a small molecule from a naive human antibody library by bead panning From the naive human antibody phage display library constructed in Example 2, hIL- Antibodies showing binding activity against 6R were screened. That is, phages displaying antibodies exhibiting binding activity in the presence of small molecules to hIL-6R captured on beads were collected. Phages were recovered from the phage eluate eluted from the beads in the absence of small molecules. In this acquisition method, hIL-6R labeled with biotin was used as an antigen.
  • the phages produced from E. coli retaining the constructed phagemid for phage display were purified by a general method. Thereafter, a phage library solution dialyzed with TBS was obtained. Next, BSA was added to the phage library solution to a final concentration of 4%. Panning with antigen immobilized on magnetic beads was performed. NeutrAvidin coated beads (Sera-Mag SpeedBeads NeutrAvidin-coated) or Streptavidin coated beads (Dynabeads M-280 Streptavidin) were used as magnetic beads.
  • SC prepared as described in (2-2) was added to the prepared phage library solution together with 250 ⁇ m of biotin-labeled antigen, and contacted at room temperature for 60 minutes.
  • the phage library solution was added to the magnetic beads blocked with BSA, and the complex of antigen and phage was bound to the magnetic beads at room temperature for 15 minutes.
  • the beads were washed once with SC / TBS (TBS containing SC). Thereafter, the beads to which 0.5 ⁇ mL of a 1 mg / mL trypsin solution was added were suspended at room temperature for 15 minutes, and then the phage solution was immediately recovered from the beads separated using a magnetic stand. The recovered phage solution was added to 10 mL of E.
  • E. coli strain ER2738 in the logarithmic growth phase (OD600 0.4-0.7). E. coli was infected with phages by gently stirring the E. coli at 37 ° C. for 1 hour. Infected E. coli were seeded on a 225 mm x 225 mm plate. Next, a phage library solution was prepared by recovering the phage from the seeded E. coli culture solution.
  • Each well of the plate was washed with TBST to remove biotin-labeled hIL-6R, and then the well was blocked with 250 ⁇ L of 2% skim milk-TBS for 1 hour or longer. After removing 2% skim milk-TBS, the plate with purified phage prepared in each well was allowed to stand at room temperature for 1 hour, so that the antibody displaying the phage was biotinylated hIL- present in each well. 6R was bound in the absence / presence of SC.
  • clones 6RNMSC1-2_F02 and 6RNMSC1-3_G02 having binding activity to the antigen hIL-6R in the presence of a low molecular cocktail were obtained.
  • the nucleotide sequences of the genes amplified from clones 6RNMSC1-2_F02 and 6RNMSC1-3_G02 using specific primers were analyzed (6RNMSC1-2_F02: heavy chain sequence is SEQ ID NO: 86 and The light chain sequence is represented by SEQ ID NO: 87, 6RNMSC1-3_G02: the heavy chain sequence is represented by SEQ ID NO: 88, and the light chain sequence is represented by SEQ ID NO: 89).
  • the gene encoding the variable region of 6RNMSC1-2_F02, 6RNMSC1-3_G02 and the negative control anti-human glypican 3 antibody GC413 (SEQ ID NO: 34 for heavy chain and SEQ ID NO: 35 for light chain) is for animal expression of human IgG1 / Kappa Inserted into the plasmid.
  • the expressed antibody was purified by the method described in Example 3.
  • a StreptaWell® 96 microtiter plate (Roche) was coated with 100 ⁇ L of PBS containing biotin-labeled hIL-6R at room temperature for 1 hour or more. By washing each well of the plate with Wash buffer, biotin-labeled hIL-6R not bound to the plate was removed, and then the well was blocked with 250 ⁇ L of Blocking buffer for 1 hour or longer. Into each well from which Blocking Buffer has been removed, 100 ⁇ L each of purified IgG prepared at 2.5 ⁇ g / mL in Sample Buffer containing low molecules at the final concentration shown in Table 3 was added and left at room temperature for 1 hour.
  • each IgG was bound to biotin-labeled hIL-6R present in each well.
  • HRP-conjugated anti-human IgG antibody (BIOSOURCE) diluted with Sample Buffer containing the same small molecules was added to each well and incubated for 1 hour. It was done.
  • the color development reaction of the solution in each well to which TMB single solution (ZYMED) was added was stopped by the addition of sulfuric acid, and the color development was measured by absorbance at 450 nm. It was done.
  • As the buffer a buffer containing the composition shown in Table 19 was used.
  • 6RNMSC1-2_F02 was present in the presence of Kynurenine It was shown that the antibody binds to the antigen hIL-6R below (FIG. 28). In addition, when 6RNMSC1-3_G02 was used, the absorbance in condition 1 (ATP-Na 1 mM) was the same as that in condition 8, and the absorbance was significantly lower under other conditions. Therefore, 6RNMSC1-3_G02 was shown to be an antibody that binds to the antigen hIL-6R in the presence of ATP (FIG. 29). It has been shown that by using such a method, it is possible to obtain a plurality of antibodies whose antigen binding ability changes in the presence of different small molecules at a time.
  • Example 15 Characterization of 6RNMSC1-2_F02 antibody (15-1) Evaluation of binding activity to hIL6R in the presence of amino acids and amino acid metabolites other than kynurenine by ELISA
  • the antibody 6RNMSC1-2_F02 that binds to hIL-6R in the presence of the small molecule obtained in Example 14 is present in the presence of kynurenine. It is an antibody that binds to hIL-6R.
  • Verification whether amino acid metabolites such as the series of tryptophan metabolites described in Example 11 are suitable as a non-limiting embodiment of cancer tissue-specific compounds, particularly cancer cell-specific metabolites used in the present invention It was done.
  • Example 14 antibody 6RNMSC1-2_F02 having the binding activity to the antigen in the presence of kynurenine and GC413 as a negative control were subjected to ELISA under the seven conditions shown in Table 18. In addition, each amino acid and its metabolites were appropriately prepared in the buffers shown in Table 4 at the concentrations shown in Table 18. Biotin-labeled hIL-6R was used as an antigen. The ELISA described in Example 11 was used.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Virology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本発明者らは、標的組織特異的な化合物の濃度に依存して抗原に対する結合活性が変化する抗原結合ドメインを含む抗原結合分子を創作することで、上記課題を解決できることを見出した。本願発明の抗原結合分子を用ることにより、標的組織に起因する各種疾患を標的組織特異的に治療することが可能となる。

Description

標的組織特異的抗原結合分子
 本発明は、標的組織特異的な化合物の濃度に応じて抗原に対する結合活性が変化する抗原結合ドメインを含む抗原結合分子、当該抗原結合分子の製造方法およびスクリーニング方法、ならびに当該抗原結合分子を含む医薬組成物を提供する。
 抗体は血漿中での安定性が高く、副作用も少ないことから医薬品として注目されている。中でもIgG型の抗体医薬は多数上市されており、現在も数多くの抗体医薬が開発されている(非特許文献1、および非特許文献2)。
 抗体医薬を用いた癌治療薬として、これまでのCD20抗原に対するリツキサン、EGFR抗原に対するセツキシマブ、HER2抗原に対するハーセプチン等が承認されている(非特許文献3)。これらの抗体分子は、癌細胞に発現している抗原に対して結合し、ADCC等によって癌細胞に対する傷害活性を発揮する。こうしたADCC等による細胞傷害活性は、治療用抗体の標的細胞に発現する抗原の数に依存することが知られている(非特許文献4)ため、標的となる抗原の発現量が高いことが治療用抗体の効果の観点からは好ましい。しかし、抗原の発現量が高くても、正常組織に抗原が発現していると、正常細胞に対してADCC等の傷害活性を発揮してしまうため、副作用が大きな問題となる。そのため、癌治療薬として治療用抗体が標的とする抗原は、癌細胞に特異的に発現していることが好ましい。例えば、癌抗原として知られているEpCAM抗原に対する抗体分子は、癌治療薬として有望と考えられていたが、EpCAM抗原は膵臓にも発現していることが知られており、実際、臨床試験において、抗EpCAM抗体を投与することによって、膵臓に対する細胞傷害活性により膵炎の副作用がみられることが報告されている(非特許文献5)。
 ADCC活性による細胞傷害活性を発揮する抗体医薬の成功を受けて、天然型ヒトIgG1のFc領域のN型糖鎖のフコースを除去することによるADCC活性の増強(非特許文献6)、天然型ヒトIgG1のFc領域のアミノ酸置換によりFcγRIIIaへの結合を増強することによるADCC活性の増強(非特許文献7)等によって強力な細胞傷害活性を発揮する第二世代の改良抗体分子が報告されている。上述のNK細胞が介在するADCC活性以外のメカニズムで癌細胞に傷害活性を発揮する抗体医薬として、強力な細胞傷害活性のある薬物を抗体とコンジュゲートしたAntibody Drug Conjugate(ADC)(非特許文献8)、および、T細胞を癌細胞にリクルートすることによって癌細胞に対する傷害活性を発揮する低分子抗体(非特許文献9)等のより強力な細胞傷害活性を発揮する改良抗体分子も報告されている。
 こうしたより強力な細胞傷害活性を発揮する抗体分子は、抗原の発現が多くはない癌細胞に対しても細胞傷害活性を発揮することが出来る一方で、抗原の発現が少ない正常組織に対しても同様に細胞傷害活性を発揮してしまう。実際、EGFR抗原に対する天然型ヒトIgG1であるセツキシマブと比較して、CD3とEGFRに対する二重特異性抗体であるEGFR-BiTEはT細胞を癌細胞にリクルートすることによって癌細胞に対して強力な細胞傷害活性を発揮し抗腫瘍効果を発揮することができる。その一方で、EGFRは正常組織においても発現しているため、EGFR-BiTEをカニクイザルに投与した際に深刻な副作用が現れることも認められている(非特許文献10)。また、癌細胞で高発現しているCD44v6に対する抗体にmertansineを結合させたADCであるbivatuzumab mertansineは、CD44v6が正常組織においても発現していることから、臨床において重篤な皮膚毒性&肝毒性が認められている(非特許文献11)。
 このように抗原の発現が少ないような癌細胞に対しても強力な細胞傷害活性を発揮することが出来る抗体を用いた場合、標的抗原が極めて癌特異的に発現している必要があるが、ハーセプチンの標的抗原であるHER2やセツキシマブの標的抗原であるEGFRは正常組織にも発現しているように、極度に癌特異的に発現している癌抗原の数は限られていると考えられる。そのため、癌に対する細胞傷害活性を強化することはできるものの、正常組織に対する細胞傷害作用による副作用が問題となり得る。
 また、最近、癌における免疫抑制に寄与しているCTLA4を阻害することによって腫瘍免疫を増強するイプリムマブが転移性メラノーマに対してOverall survivalを延長させることが示された(非特許文献12)。しかしながら、イプリムマブはCTLA4を全身的に阻害するため、腫瘍免疫が増強される一方で、全身的に免疫が活性化されることによる自己免疫疾患様の重篤な副作用を示すことが問題となっている(非特許文献13)。
 一方、癌以外の疾患に対する抗体医薬として、炎症性・自己免疫疾患において炎症サイトカインを阻害することで治療効果を発揮する抗体医薬が知られている(非特許文献14)。例えばTNFを標的とするレミケードやヒュミラ、および、IL-6Rを標的とするアクテムラは、関節リウマチに対して高い治療効果を発揮するが、一方、これらのサイトカインを全身的に中和することにより感染症の副作用が見られることも知られている(非特許文献15)。
 第二世代の抗体医薬に適用可能な技術として様々な技術が開発されており、エフェクター機能、抗原結合能、薬物動態、安定性を向上させる、あるいは、免疫原性リスクを低減させる技術等が報告されているが(非特許文献16)、上記のような副作用を解決するための、抗体医薬を標的組織に特異的に作用可能とする技術はほとんど報告されていない。例えば、癌組織や炎症性組織のような病変部位については、これらの標的組織におけるpHが酸性条件であることを利用したpH依存性抗体が報告されている(特許文献1、および2)。しかしながら、癌組織や炎症性組織における正常組織と比較したpHの低下(すなわち水素イオン濃度の上昇)は僅かであり、分子量が極めて小さい水素イオン濃度の僅かな上昇を検知して作用する抗体を作製することは困難であると同時に、破骨細胞骨吸収窩領域等正常組織や対象とする病変以外の組織でもpHが酸性条件である場合もあり、pHの条件が病変部位に特異的な環境因子として利用するにはなお多くの課題があると考えられた。一方、癌組織や炎症性組織のような病変部位で発現するプロテアーゼで切断されることによって、初めて抗原結合活性を発揮する抗体を作製する方法が報告されている(特許文献3)。しかし、プロテアーゼによる抗体の切断は不可逆的であるため、当該病変部位で切断された抗体が、正常組織に血流に乗って戻ることで正常組織でも抗原に結合できてしまうことが課題であると考えられた。また、そのようなプロテアーゼの癌特異性にも課題があると考えられた。そのため、副作用を回避しつつ薬効を発揮するために、正常組織や血液中において全身的に作用せず、病変部位である癌や炎症部位において可逆的に作用するような技術は知られていない。
国際公開第WO2003/105757号 国際公開第WO2012/033953号 国際公開第WO2010/081173号
Monoclonal antibody successes in the clinic. Janice M Reichert, Clark J Rosensweig, Laura B Faden & Matthew C Dewitz, Nat. Biotechnol. (2005) 23, 1073 - 1078 The therapeutic antibodies market to 2008. Pavlou AK, Belsey MJ., Eur. J. Pharm. Biopharm. (2005) 59 (3), 389-396 Monoclonal antibodies: versatile platforms for cancer immunotherapy. Weiner LM, Surana R, Wang S., Nat. Rev. Immunol. (2010) 10 (5), 317-327 Differential responses of human tumor cell lines to anti-p185HER2 monoclonal antibodies. Lewis GD, Figari I, Fendly B, Wong WL, Carter P, Gorman C, Shepard HM, Cancer Immunol. Immunotherapy (1993) 37, 255-263 ING-1, a monoclonal antibody targeting Ep-CAM in patients with advanced adenocarcinomas. de Bono JS, Tolcher AW, Forero A, Vanhove GF, Takimoto C, Bauer RJ, Hammond LA, Patnaik A, White ML, Shen S, Khazaeli MB, Rowinsky EK, LoBuglio AF, Clin. Cancer Res. (2004) 10 (22), 7555-7565 Non-fucosylated therapeutic antibodies as next-generation therapeutic antibodies. Satoh M, Iida S, Shitara K., Expert Opin. Biol. Ther. (2006) 6 (11), 1161-1173 Optimizing engagement of the immune system by anti-tumor antibodies: an engineer's perspective. Desjarlais JR, Lazar GA, Zhukovsky EA, Chu SY., Drug Discov. Today (2007) 12 (21-22), 898-910 Antibody-drug conjugates: targeted drug delivery for cancer. Alley SC, Okeley NM, Senter PD., Curr. Opin. Chem. Biol. (2010) 14 (4), 529-537 BiTE: Teaching antibodies to engage T-cells for cancer therapy. Baeuerle PA, Kufer P, Bargou R., Curr. Opin. Mol. Ther. (2009) 11 (1), 22-30 T cell-engaging BiTE antibodies specific for EGFR potently eliminate KRAS- and BRAF-mutated colorectal cancer cells. Lutterbuese R, Raum T, Kischel R, Hoffmann P, Mangold S, Rattel B, Friedrich M, Thomas O, Lorenczewski G, Rau D, Schaller E, Herrmann I, Wolf A, Urbig T, Baeuerle PA, Kufer P., Proc. Natl. Acad. Sci. U.S.A. (2010) 107 (28), 12605-12610 Phase I trial with the CD44v6-targeting immunoconjugate bivatuzumab mertansine in head and neck squamous cell carcinoma. Riechelmann H, Sauter A, Golze W, Hanft G, Schroen C, Hoermann K, Erhardt T, Gronau S., Oral Oncol. (2008) 44 (9), 823-829 Ipilimumab in the treatment of melanoma. Trinh VA, Hwu WJ., Expert Opin. Biol. Ther., (2012) Apr 14 (doi:10.1517/14712598.2012.675325) IPILIMUMAB - A NOVEL IMMUNOMODULATING THERAPY CAUSING AUTOIMMUNE HYPOPHYSITIS: A CASE REPORT AND REVIEW. Juszczak A, Gupta A, Karavitaki N, Middleton MR, Grossman A., Eur. J. Endocrinol. (2012) Apr 10 (doi: 10.1530/EJE-12-0167) The Japanese experience with biologic therapies for rheumatoid arthritis. Takeuchi T, Kameda H., Nat. Rev. Rheumatol. (2010) 6 (11), 644-652 Current evidence for the management of rheumatoid arthritis with biological disease-modifying antirheumatic drugs: a systematic literature review informing the EULAR recommendations for the management of RA. Nam JL, Winthrop KL, van Vollenhoven RF, Pavelka K, Valesini G, Hensor EM, Worthy G, Landewe R, Smolen JS, Emery P, Buch MH., Ann. Rheum. Dis. (2010) 69 (6), 976-986 Antibody engineering for the development of therapeutic antibodies. Kim SJ, Park Y, Hong HJ., Mol. Cells. (2005) 20 (1), 17-29
 本発明は、このような情況に鑑みて為されたものであり、その目的は、標的組織に起因する疾患の治療に有用な医薬組成物、およびその有効成分を提供することにある。また、併せて、当該医薬組成物および当該有効成分のスクリーニング方法ならびに製造方法を提供することにある。
 本発明者らは、上記の目的を達成するために鋭意研究を進めたところ、標的組織特異的な化合物の濃度に応じて抗原に対する結合活性が変化する抗原結合ドメインを含む抗原結合分子を創作した。また、本発明者らは、当該抗原結合分子または当該抗原結合分子を含む医薬組成物が、標的組織に起因する疾患の治療に有用であることを見出すとともに、当該抗原結合分子を投与することを含む標的組織に起因する疾患の治療に有用であること、および標的組織に起因する疾患の治療のための医薬の製造において当該抗原結合分子が有用であることを見出した。また、本発明者らは、当該抗原結合分子のスクリーニング方法および製造方法を創作して本発明を完成させた。
 すなわち、本発明は以下;
(1)標的組織特異的な化合物の濃度に応じて抗原に対する結合活性が変化する抗原結合ドメインを含む抗原結合分子、
(2)標的組織が癌組織である(1)に記載の抗原結合分子、
(3)前記癌組織特異的な化合物が、癌細胞特異的代謝産物、癌組織に浸潤している免疫細胞特異的代謝産物、癌組織のストローマ細胞特異的代謝産物である(2)に記載の抗原結合分子、
(4)標的組織が炎症性組織である(1)に記載の抗原結合分子、
(5)前記炎症組織特異的な化合物が、炎症性組織に浸潤している免疫細胞特異的代謝産物、炎症組織において傷害を受けている正常細胞特異的代謝産物である(4)に記載の抗原結合分子、
(6)前記標的組織特異的代謝産物が、プリン環構造を有するヌクレオシド、アミノ酸とその代謝産物、脂質とその代謝産物、糖代謝の一次代謝産物、ニコチンアミドとその代謝産物から選択される少なくとも一つの化合物である(1)に記載の抗原結合分子、
(7)前記標的組織特異的代謝産物が、アデノシン、アデノシン3リン酸、イノシン、アラニン、グルタミン酸、アスパラギン酸、キヌレニン、プロスタグランジンE2、コハク酸、クエン酸、または1-メチルニコチンアミドから選択される少なくとも一つの化合物である(6)に記載の抗原結合分子、
(8)抗原が膜型分子である(1)から(7)のいずれかに記載の抗原結合分子。
(9)中和活性を有する抗原結合分子である(1)から(8)のいずれかに記載の抗原結合分子、
(10)細胞傷害活性を有する抗原結合分子である(1)から(9)のいずれかに記載の抗原結合分子、
(11)Fc領域を含む(1)から(10)のいずれかに記載の抗原結合分子、
(12)前記Fc領域が、配列番号:5、6、7、または8に記載の定常領域に含まれるFc領域である(11)に記載の抗原結合分子、
(13)前記Fc領域が、天然型ヒトIgGのFc領域のFcγレセプターに対する結合活性よりもFcγレセプターに対する結合活性が高いFcγR結合改変Fc領域を含む(11)に記載の抗原結合分子、
(14)前記FcγR結合改変Fc領域のアミノ酸配列のうち、EUナンバリングで表される221位、222位、223位、224位、225位、227位、228位、230位、231位、232位、233位、234位、235位、236位、237位、238位、239位、240位、241位、243位、244位、245位、246位、247位、249位、250位、251位、254位、255位、256位、258位、260位、262位、263位、264位、265位、266位、267位、268位、269位、270位、271位、272位、273位、274位、275位、276位、278位、279位、280位、281位、282位、283位、284位、285位、286位、288位、290位、291位、292位、293位、294位、295位、296位、297位、298位、299位、300位、301位、302位、303位、304位、305位、311位、313位、315位、317位、318位、320位、322位、323位、324位、325位、326位、327位、328位、329位、330位、331位、332位、333位、334位、335位、336位、337位、339位、376位、377位、378位、379位、380位、382位、385位、392位、396位、421位、427位、428位、429位、434位、436位または440位の群から選択される少なくとも一つ以上のアミノ酸が天然型ヒトIgGのFc領域のアミノ酸と異なるアミノ酸を含む(13)に記載の抗原結合分子、
(15)前記FcγR結合改変Fc領域のアミノ酸配列のうち、EUナンバリングで表される;
221位のアミノ酸がLysまたはTyrのいずれか、
222位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
223位のアミノ酸がPhe、Trp、GluまたはLysのいずれか、
224位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
225位のアミノ酸がGlu、LysまたはTrpのいずれか、
227位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
228位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
230位のアミノ酸がAla、Glu、GlyまたはTyrのいずれか、
231位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
232位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
233位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
234位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
235位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
236位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
237位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
238位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
239位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
240位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
241位のアミノ酸がAsp、Glu、Leu、Arg、TrpまたはTyrのいずれか、
243位のアミノ酸がLeu、Glu、Leu、Gln、Arg、TrpまたはTyrのいずれか、
244位のアミノ酸がHis、
245位のアミノ酸がAla、
246位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
247位のアミノ酸がAla、Phe、Gly、His、Ile、Leu、Met、Thr、ValまたはTyrのいずれか、
249位のアミノ酸がGlu、His、GlnまたはTyrのいずれか、
250位のアミノ酸がGluまたはGlnのいずれか、
251位のアミノ酸がPhe、
254位のアミノ酸がPhe、MetまたはTyrのいずれか、
255位のアミノ酸がGlu、LeuまたはTyrのいずれか、
256位のアミノ酸がAla、MetまたはProのいずれか、
258位のアミノ酸がAsp、Glu、His、SerまたはTyrのいずれか、
260位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
262位のアミノ酸がAla、Glu、Phe、IleまたはThrのいずれか、
263位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
264位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
265位のアミノ酸がAla、Leu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
266位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
267位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
268位のアミノ酸がAsp、Glu、Phe、Gly、Ile、Lys、Leu、Met、Pro、Gln、Arg、Thr、ValまたはTrpのいずれか、
269位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
270位のアミノ酸がGlu、Phe、Gly、His、Ile、Leu、Met、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
271位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
272位のアミノ酸がAsp、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
273位のアミノ酸がPheまたはIleのいずれか、
274位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
275位のアミノ酸がLeuまたはTrpのいずれか、
276位のアミノ酸が、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
278位のアミノ酸がAsp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
279位のアミノ酸がAla、
280位のアミノ酸がAla、Gly、His、Lys、Leu、Pro、Gln、TrpまたはTyrのいずれか、
281位のアミノ酸がAsp、Lys、ProまたはTyrのいずれか、
282位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
283位のアミノ酸がAla、Gly、His、Ile、Lys、Leu、Met、Pro、ArgまたはTyrのいずれか、
284位のアミノ酸がAsp、Glu、Leu、Asn、ThrまたはTyrのいずれか、
285位のアミノ酸がAsp、Glu、Lys、Gln、TrpまたはTyrのいずれか、
286位のアミノ酸がGlu、Gly、ProまたはTyrのいずれか、
288位のアミノ酸がAsn、Asp、GluまたはTyrのいずれか、
290位のアミノ酸がAsp、Gly、His、Leu、Asn、Ser、Thr、TrpまたはTyrのいずれか、
291位のアミノ酸がAsp、Glu、Gly、His、Ile、GlnまたはThrのいずれか、
292位のアミノ酸がAla、Asp、Glu、Pro、ThrまたはTyrのいずれか、
293位のアミノ酸がPhe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
294位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
295位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
296位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、ThrまたはValのいずれか、
297位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
298位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Met、Asn、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
299位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Val、TrpまたはTyrのいずれか、
300位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
301位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
302位のアミノ酸がIle、
303位のアミノ酸がAsp、GlyまたはTyrのいずれか、
304位のアミノ酸がAsp、His、Leu、AsnまたはThrのいずれか、
305位のアミノ酸がGlu、Ile、ThrまたはTyrのいずれか、
311位のアミノ酸がAla、Asp、Asn、Thr、ValまたはTyrのいずれか、
313位のアミノ酸がPhe、
315位のアミノ酸がLeu、
317位のアミノ酸がGluまたはGln、
318位のアミノ酸がHis、Leu、Asn、Pro、Gln、Arg、Thr、ValまたはTyrのいずれか、
320位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Asn、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
322位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
323位のアミノ酸がIle、
324位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
325位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
326位のアミノ酸がAla、Asp、Glu、Gly、Ile、Leu、Met、Asn、Pro、Gln、Ser、Thr、Val、TrpまたはTyrのいずれか、
327位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
328位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
329位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
330位のアミノ酸がCys、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
331位のアミノ酸がAsp、Phe、His、Ile、Leu、Met、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
332位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
333位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Ser、Thr、ValまたはTyrのいずれか、
334位のアミノ酸がAla、Glu、Phe、Ile、Leu、ProまたはThrのいずれか、
335位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Val、TrpまたはTyrのいずれか、
336位のアミノ酸がGlu、LysまたはTyrのいずれか、
337位のアミノ酸がGlu、HisまたはAsnのいずれか、
339位のアミノ酸がAsp、Phe、Gly、Ile、Lys、Met、Asn、Gln、Arg、SerまたはThrのいずれか、
376位のアミノ酸がAlaまたはValのいずれか、
377位のアミノ酸がGlyまたはLysのいずれか、
378位のアミノ酸がAsp、
379位のアミノ酸がAsn、
380位のアミノ酸がAla、AsnまたはSerのいずれか、
382位のアミノ酸がAlaまたはIleのいずれか、
385位のアミノ酸がGlu、
392位のアミノ酸がThr、
396位のアミノ酸がLeu、
421位のアミノ酸がLys、
427位のアミノ酸がAsn、
428位のアミノ酸がPheまたはLeuのいずれか、
429位のアミノ酸がMet、
434位のアミノ酸がTrp、
436位のアミノ酸がIle、もしくは
440位のアミノ酸がGly、His、Ile、LeuまたはTyrのいずれか、
の群から選択される少なくとも一つ以上のアミノ酸を含む(14)に記載の抗原結合分子、
(16)前記Fc領域が、Fc領域のEUナンバリング297位に結合した糖鎖の組成がフコース欠損糖鎖を結合したFc領域の割合が高くなるように、またはバイセクティングN-アセチルグルコサミンが付加したFc領域の割合が高くなるように修飾されたFc領域である(11)に記載の抗原結合分子、
(17)前記Fc領域のpH酸性域の条件下でのFcRnに対する結合活性が、配列番号:5、6、7、または8のいずれかで表されるFc領域の結合活性より増強されているFc領域である、(11)、(13)から(16)のいずれかに記載の抗原結合分子、
(18)前記Fc領域が、配列番号:5、6、7、または8に記載の定常領域に含まれるFc領域のアミノ酸配列のうち、EUナンバリングで表される238位、244位、245位、249位、250位、251位、252位、253位、254位、255位、256位、257位、258位、260位、262位、265位、270位、272位、279位、283位、285位、286位、288位、293位、303位、305位、307位、308位、309位、311位、312位、314位、316位、317位、318位、332位、339位、340位、341位、343位、356位、360位、362位、375位、376位、377位、378位、380位、382位、385位、386位、387位、388位、389位、400位、413位、415位、423位、424位、427位、428位、430位、431位、433位、434位、435位、436位、438位、439位、440位、442位または447位の群から選択される少なくとも一つ以上のアミノ酸が置換されているFc領域である(17)に記載の抗原結合分子、
(19)前記Fc領域が、配列番号:5、6、7、または8に記載の定常領域に含まれるFc領域のアミノ酸配列のうち、EUナンバリングで表される;
238位のアミノ酸がLeu、
244位のアミノ酸がLeu、
245位のアミノ酸がArg、
249位のアミノ酸がPro、
250位のアミノ酸がGlnまたはGluのいずれか、もしくは
251位のアミノ酸がArg、Asp、Glu、またはLeuのいずれか、
252位のアミノ酸がPhe、Ser、Thr、またはTyrのいずれか、
254位のアミノ酸がSerまたはThrのいずれか、
255位のアミノ酸がArg、Gly、Ile、またはLeuのいずれか、
256位のアミノ酸がAla、Arg、Asn、Asp、Gln、Glu、Pro、またはThrのいずれか、
257位のアミノ酸がAla、Ile、Met、Asn、Ser、またはValのいずれか、
258位のアミノ酸がAsp、
260位のアミノ酸がSer、
262位のアミノ酸がLeu、
270位のアミノ酸がLys、
272位のアミノ酸がLeu、またはArgのいずれか、
279位のアミノ酸がAla、Asp、Gly、His、Met、Asn、Gln、Arg、Ser、Thr、Trp、またはTyrのいずれか、
283位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Asn、Pro、Gln、Arg、Ser、Thr、Trp、またはTyrのいずれか、
285位のアミノ酸がAsn、
286位のアミノ酸がPhe、
288位のアミノ酸がAsn、またはProのいずれか、
293位のアミノ酸がVal、
307位のアミノ酸がAla、Glu、Gln、またはMetのいずれか、
311位のアミノ酸がAla、Glu、Ile、Lys、Leu、Met、Ser 、Val、またはTrpのいずれか、
309位のアミノ酸がPro、
312位のアミノ酸がAla、Asp、またはProのいずれか、
314位のアミノ酸がAlaまたはLeuのいずれか、
316位のアミノ酸がLys、
317位のアミノ酸がPro、
318位のアミノ酸がAsn、またはThrのいずれか、
332位のアミノ酸がPhe、His、Lys、Leu、Met、Arg、Ser、またはTrpのいずれか、
339位のアミノ酸がAsn、Thr、またはTrpのいずれか、
341位のアミノ酸がPro、
343位のアミノ酸がGlu、His、Lys、Gln、Arg、Thr、またはTyrのいずれか、
375位のアミノ酸がArg、
376位のアミノ酸がGly、Ile、Met、Pro、Thr、またはValのいずれか、
377位のアミノ酸がLys、
378位のアミノ酸がAsp、Asn、またはValのいずれか、
380位のアミノ酸がAla、Asn、Ser、またはThrのいずれか
382位のアミノ酸がPhe、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、Trp、またはTyrのいずれか、
385位のアミノ酸がAla、Arg、Asp、Gly、His、Lys、Ser、またはThrのいずれか、
386位のアミノ酸がArg、Asp、Ile、Lys、Met、Pro、Ser、またはThrのいずれか、
387位のアミノ酸がAla、Arg、His、Pro、Ser、またはThrのいずれか、
389位のアミノ酸がAsn、Pro、またはSerのいずれか、
423位のアミノ酸がAsn、
427位のアミノ酸がAsn、
428位のアミノ酸がLeu、Met、Phe、Ser、またはThrのいずれか
430位のアミノ酸がAla、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、またはTyrのいずれか、
431位のアミノ酸がHis、またはAsnのいずれか、
433位のアミノ酸がArg、Gln、His、Ile、Lys、Pro、またはSerのいずれか、
434位のアミノ酸がAla、Gly、His、Phe、Ser、Trp、またはTyrのいずれか、
436位のアミノ酸がArg、Asn、His、Ile、Leu、Lys、Met、またはThrのいずれか、
438位のアミノ酸がLys、Leu、Thr、またはTrpのいずれか、
440位のアミノ酸がLys、もしくは、
442位のアミノ酸がLys、308位のアミノ酸がIle、Pro、またはThrのいずれか、
の群から選択される少なくとも一つ以上のアミノ酸である、(18)に記載の抗原結合分子、
(20)前記抗原結合ドメインが多重特異性または多重パラトピックな抗原結合ドメインである(1)から(19)のいずれかに記載の抗原結合分子、
(21)前記抗原結合ドメインのうち、少なくとも一つの抗原結合ドメインが結合する抗原が癌細胞の細胞膜に発現する膜型分子、および少なくとも一つの抗原結合ドメインが結合する抗原がエフェクター細胞の細胞膜に発現する膜型分子である(20)に記載の抗原結合分子、
(22)前記エフェクター細胞がNK細胞、マクロファージ、またはT細胞である(21)に記載の抗原結合分子、
(23)前記エフェクター細胞の細胞膜に発現する膜型分子がTCRを構成するポリペプチド、CD2、CD3、CD28、CD44、CD16、CD32、CD64、またはNKG2Dである(21)または(22)に記載の抗原結合分子、
(24)前記抗原結合ドメインのうち、少なくとも一つの抗原結合ドメインが結合する抗原が癌細胞の細胞膜に発現する膜型分子、および少なくとも一つの抗原結合ドメインが結合する抗原が細胞傷害性物質である(20)に記載の抗原結合分子、
(25)前記抗原結合分子が抗体断片である(20)から(24)のいずれかに記載の抗原結合分子、
(26)前記抗原結合分子が抗体である(1)から(24)のいずれかに記載の意抗原結合分子、
(27)抗原が可溶型分子である(1)から(7)のいずれかに記載の抗原結合分子、
(28)中和活性を有する抗原結合分子である(27)に記載の抗原結合分子、
(29)Fc領域を含む(27)または(28)に記載の抗原結合分子、
(30)前記Fc領域が、配列番号:5、6、7、または8に記載の定常領域に含まれるFc領域である(29)に記載の抗原結合分子、
(31) 前記Fc領域のpH酸性域の条件下でのFcRnに対する結合活性が、配列番号:5、6、7、または8に記載の定常領域に含まれるFc領域のFcRnに対する結合活性より増強されているFc領域である、(29)に記載の抗原結合分子、
(32) 前記Fc領域が、配列番号:5、6、7、または8に記載の定常領域に含まれるFc領域のアミノ酸配列のうち、EUナンバリングで表される238位、244位、245位、249位、250位、251位、252位、253位、254位、255位、256位、257位、258位、260位、262位、265位、270位、272位、279位、283位、285位、286位、288位、293位、303位、305位、307位、308位、309位、311位、312位、314位、316位、317位、318位、332位、339位、340位、341位、343位、356位、360位、362位、375位、376位、377位、378位、380位、382位、385位、386位、387位、388位、389位、400位、413位、415位、423位、424位、427位、428位、430位、431位、433位、434位、435位、436位、438位、439位、440位、442位または447位の群から選択される少なくとも一つ以上のアミノ酸が置換されているFc領域である(31)に記載の抗原結合分子、
(33)前記Fc領域が、配列番号:5、6、7、または8に記載の定常領域に含まれるFc領域のアミノ酸配列のうち、EUナンバリングで表される;
238位のアミノ酸がLeu、
244位のアミノ酸がLeu、
245位のアミノ酸がArg、
249位のアミノ酸がPro、
250位のアミノ酸がGlnまたはGluのいずれか、もしくは
251位のアミノ酸がArg、Asp、Glu、またはLeuのいずれか、
252位のアミノ酸がPhe、Ser、Thr、またはTyrのいずれか、
254位のアミノ酸がSerまたはThrのいずれか、
255位のアミノ酸がArg、Gly、Ile、またはLeuのいずれか、
256位のアミノ酸がAla、Arg、Asn、Asp、Gln、Glu、Pro、またはThrのいずれか、
257位のアミノ酸がAla、Ile、Met、Asn、Ser、またはValのいずれか、
258位のアミノ酸がAsp、
260位のアミノ酸がSer、
262位のアミノ酸がLeu、
270位のアミノ酸がLys、
272位のアミノ酸がLeu、またはArgのいずれか、
279位のアミノ酸がAla、Asp、Gly、His、Met、Asn、Gln、Arg、Ser、Thr、Trp、またはTyrのいずれか、
283位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Asn、Pro、Gln、Arg、Ser、Thr、Trp、またはTyrのいずれか、
285位のアミノ酸がAsn、
286位のアミノ酸がPhe、
288位のアミノ酸がAsn、またはProのいずれか、
293位のアミノ酸がVal、
307位のアミノ酸がAla、Glu、Gln、またはMetのいずれか、
311位のアミノ酸がAla、Glu、Ile、Lys、Leu、Met、Ser 、Val、またはTrpのいずれか、
309位のアミノ酸がPro、
312位のアミノ酸がAla、Asp、またはProのいずれか、
314位のアミノ酸がAlaまたはLeuのいずれか、
316位のアミノ酸がLys、
317位のアミノ酸がPro、
318位のアミノ酸がAsn、またはThrのいずれか、
332位のアミノ酸がPhe、His、Lys、Leu、Met、Arg、Ser、またはTrpのいずれか、
339位のアミノ酸がAsn、Thr、またはTrpのいずれか、
341位のアミノ酸がPro、
343位のアミノ酸がGlu、His、Lys、Gln、Arg、Thr、またはTyrのいずれか、
375位のアミノ酸がArg、
376位のアミノ酸がGly、Ile、Met、Pro、Thr、またはValのいずれか、
377位のアミノ酸がLys、
378位のアミノ酸がAsp、Asn、またはValのいずれか、
380位のアミノ酸がAla、Asn、Ser、またはThrのいずれか
382位のアミノ酸がPhe、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、Trp、またはTyrのいずれか、
385位のアミノ酸がAla、Arg、Asp、Gly、His、Lys、Ser、またはThrのいずれか、
386位のアミノ酸がArg、Asp、Ile、Lys、Met、Pro、Ser、またはThrのいずれか、
387位のアミノ酸がAla、Arg、His、Pro、Ser、またはThrのいずれか、
389位のアミノ酸がAsn、Pro、またはSerのいずれか、
423位のアミノ酸がAsn、
427位のアミノ酸がAsn、
428位のアミノ酸がLeu、Met、Phe、Ser、またはThrのいずれか
430位のアミノ酸がAla、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、またはTyrのいずれか、
431位のアミノ酸がHis、またはAsnのいずれか、
433位のアミノ酸がArg、Gln、His、Ile、Lys、Pro、またはSerのいずれか、
434位のアミノ酸がAla、Gly、His、Phe、Ser、Trp、またはTyrのいずれか、
436位のアミノ酸がArg、Asn、His、Ile、Leu、Lys、Met、またはThrのいずれか、
438位のアミノ酸がLys、Leu、Thr、またはTrpのいずれか、
440位のアミノ酸がLys、もしくは、
442位のアミノ酸がLys、308位のアミノ酸がIle、Pro、またはThrのいずれか、
の群から選択される少なくとも一つ以上のアミノ酸である、(32)に記載の抗原結合分子、
(34)前記Fc領域のpH中性域の条件下でのFcRnに対する結合活性が、配列番号:5、6、7、または8に記載の定常領域に含まれるFc領域のFcRnに対する結合活性より増強されているFc領域である、(29)に記載の抗原結合分子、
(35)前記Fc領域が、配列番号:5、6、7、または8に記載の定常領域に含まれるFc領域のアミノ酸配列のうち、EUナンバリングで表される237位、248位、250位、252位、254位、255位、256位、257位、258位、265位、286位、289位、297位、298位、303位、305位、307位、308位、309位、311位、312位、314位、315位、317位、332位、334位、360位、376位、380位、382位、384位、385位、386位、387位、389位、424位、428位、433位、434位または436位の群から選択される少なくとも一つ以上のアミノ酸が置換されているFc領域である(34)に記載の抗原結合分子、
(36)前記Fc領域が、配列番号:5、6、7、または8に記載の定常領域に含まれるFc領域のアミノ酸配列のうち、EUナンバリングで表される;
237位のアミノ酸がMet、
248位のアミノ酸がIle、
250位のアミノ酸がAla、Phe、Ile、Met、Gln、Ser、Val、Trp、またはTyrのいずれか、
252位のアミノ酸がPhe、Trp、またはTyrのいずれか、
254位のアミノ酸がThr、
255位のアミノ酸がGlu、
256位のアミノ酸がAsp、Asn、Glu、またはGlnのいずれか、
257位のアミノ酸がAla、Gly、Ile、Leu、Met、Asn、Ser、Thr、またはValのいずれか、
258位のアミノ酸がHis、
265位のアミノ酸がAla、
286位のアミノ酸がAlaまたはGluのいずれか、
289位のアミノ酸がHis、
297位のアミノ酸がAla、
303位のアミノ酸がAla、
305位のアミノ酸がAla、
307位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Val、Trp、またはTyrのいずれか、
308位のアミノ酸がAla、Phe、Ile、Leu、Met、Pro、Gln、またはThrのいずれか、
309位のアミノ酸がAla、Asp、Glu、Pro、またはArgのいずれか、
311位のアミノ酸がAla、His、またはIleのいずれか、
312位のアミノ酸がAlaまたはHisのいずれか、
314位のアミノ酸がLysまたはArgのいずれか、
315位のアミノ酸がAla、AspまたはHisのいずれか、
317位のアミノ酸がAla、
332位のアミノ酸がVal、
334位のアミノ酸がLeu、
360位のアミノ酸がHis、
376位のアミノ酸がAla、
380位のアミノ酸がAla、
382位のアミノ酸がAla、
384位のアミノ酸がAla、
385位のアミノ酸がAspまたはHisのいずれか、
386位のアミノ酸がPro、
387位のアミノ酸がGlu、
389位のアミノ酸がAlaまたはSerのいずれか、
424位のアミノ酸がAla、
428位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Asn、Pro、Gln、Ser、Thr、Val、Trp、またはTyrのいずれか、
433位のアミノ酸がLys、
434位のアミノ酸がAla、Phe、His、Ser、Trp、またはTyrのいずれか、もしくは
436位のアミノ酸がHis 、Ile、Leu、Phe、Thr、またはVal、
の群から選択される少なくとも一つ以上のアミノ酸である、(35)に記載の抗原結合分子、
(37)前記Fc領域が、活性型Fcγレセプターに対する結合活性よりも抑制型Fcγレセプターに対する結合活性が高いFc領域である、(29)または(31)から(36)のいずれかに記載の抗原結合分子、
(38)前記抑制型FcγレセプターがヒトFcγRIIbである、(37)に記載の抗原結合分子、
(39)前記活性型FcγレセプターがヒトFcγRIa、ヒトFcγRIIa(R)、ヒトFcγRIIa(H)、ヒトFcγRIIIa(V)またはヒトFcγRIIIa(F)である、(37)または(38)に記載の抗原結合分子、
(40)前記Fc領域のEUナンバリングで表される238位または328位のアミノ酸が天然型ヒトIgGのFc領域のアミノ酸と異なるアミノ酸を含む、(37)から(39)のいずれかに記載の抗原結合分子、
(41)前記Fc領域のEUナンバリングで表される238位のアミノ酸がAsp、または328位のアミノ酸がGluである、(40)に記載の抗原結合分子、
(42)前記Fc領域のアミノ酸配列のうち、EUナンバリングで表される;
233位のアミノ酸がAsp、
234位のアミノ酸がTrp、またはTyrのいずれか、
237位のアミノ酸がAla、Asp、Glu、Leu、Met、Phe、TrpまたはTyrのいずれか、
239位のアミノ酸がAsp、
267位のアミノ酸がAla、GlnまたはValのいずれか、
268位のアミノ酸がAsn、Asp、またはGluのいずれか、
271位のアミノ酸がGly、
326位のアミノ酸がAla、Asn、Asp、Gln、Glu、Leu、Met、SerまたはThrのいずれか、
330位のアミノ酸がArg、Lys、またはMetのいずれか、
323位のアミノ酸がIle、Leu、またはMetのいずれか、もしくは
296位のアミノ酸がAsp、
の群から選択される少なくとも一つ以上のアミノ酸である、(40)または(41)に記載の抗原結合分子、
(43)前記抗原結合分子が抗体である(27)から(42)のいずれかに記載の抗原結合分子、
(44)標的組織特異的な化合物の濃度に応じて抗原に対する結合活性が変化する抗原結合ドメインを選択することを含む、(1)から(43)のいずれかに記載の抗原結合分子の製造方法、
(45)標的組織特異的な化合物の濃度に応じて抗原に対する結合活性が変化する抗原結合ドメインを選択することを含む、(1)から(43)のいずれかに記載の抗原結合分子のスクリーニング方法、
(46)(1)から(43)のいずれかに記載の抗原結合分子を含む医薬組成物、
を提供するものである。
低分子が存在しない正常の環境においては低分子スイッチ抗体(Small molecule switch antibody)が抗原に結合せず、低分子が高濃度で存在する標的組織では抗原に結合することを示す図である。 低分子抗体と抗原の複合体に挟まれることによって、低分子がスイッチ機能を果たすことを示す図である。低分子が存在しなければ抗体と抗原の相互作用が不十分となり抗体は抗原に結合することができないが、低分子が存在すれば抗体と抗原の間に挟まることによって、抗体は抗原に結合することが可能となる。 抗体のヒトIL-6に対する結合ELISAの結果を示す図である。縦軸は各低分子の有無により各抗体のヒトIL-6への結合活性を評価した吸光度の値である。 100μmol/L kynurenine存在下、非存在下におけるA11と4μmol/LヒトIL-6との相互作用のセンサーグラムである。 1μmol/LのIL-6をアナライトとして60秒間相互作用させた際の、センサーチップCM5上に固定化したA11に対する結合のレスポンスの変化を評価したグラフである。縦軸はIL-6相互作用前後でのレスポンスの変化(RU)、横軸はその時の溶液中に含まれるkynurenine濃度(μmol/L)を表す。 1μmol/LのIL-6をアナライトとして60秒間相互作用させた際の、センサーチップCM5上に固定化したH01に対するレスポンスを評価したグラフである。縦軸はIL-6相互作用前後でのレスポンスの変化(RU)、横軸はその時の溶液中に含まれるkynurenine濃度(μmol/L)を表す。 0.1μmol/LのA11をアナライトとして60秒間相互作用させ、センサーチップCM5上に固定化したIL-6に対するレスポンスを評価したグラフである。縦軸はA11相互作用前後でのレスポンスの変化(RU)、横軸は溶液中に含まれるkynurenine濃度(μmol/L)を表す。 センサーチップCM5に固定化したIL-6に対して、100μmol/L kynurenine存在下でA11を相互作用させ、その後100μmol/L kynurenineを含むバッファーまたはkynurenineを含まないバッファー条件下におけるA11のIL6からの解離を観察したグラフである。図の縦軸は100μmol/L kynurenine存在下でのA11の結合量を100としてnormalizeした値を、横軸は相互作用開始後からの経過時間(秒)を表す。 センサーチップ上に固定化したIL-6に対して、800, 400, 200, 100, 50, 25 nmol/Lのkynurenineを相互作用させた際に得られたセンサーグラムである。縦軸はkynurenineのIL-6に対する結合量の変化(RU)を表し(相互作用実験開始時のレスポンスを0とした)、横軸は相互作用実験開始時からの経過時間を表す。 ウサギへの免疫に使用したアデノシンアナログである2'-Adenosine-PEG- peptideの構造を示す図である。 ウサギへの免疫に使用したアデノシンアナログである5'-Adenosine-PEG- peptideの構造を示す図である。 ウサギへの免疫に使用したアデノシンアナログのペプチド部分をビオチンに置換した2'-Adenosine-PEG-biotinの構造を示す図である。 ウサギへの免疫に使用したアデノシンアナログのペプチド部分をビオチンに置換した5'-Adenosine-PEG-biotinの構造を示す図である。 各抗体を2'-Adenosine-PEG-Biotinと相互作用させた際の結合量を各抗体のキャプチャー量(RU)で割った値(N_binding_100)を縦軸に、2'-Adenosine-PEG-Biotinの相互作用後に各抗体から2'-Adenosine-PEG-Biotinが解離した60秒後の値を各抗体のキャプチャー量(RU)で割った値(N_stability_100)を横軸に表す図である。 クローンSMB0002がアデノシンに結合すること(相互作用)を示す表面プラズモン共鳴分析のセンサーグラムである。センサーグラムは下から順に7.81、31.3、125、500 nMの抗原とSMB0002との相互作用を表している。 クローンSMB0002がATPに結合すること(相互作用)を示す表面プラズモン共鳴分析のセンサーグラムである。センサーグラムは下から順に78.1、313、1250、5000 nMの抗原とSMB0002との相互作用を表している。 クローンSMB0089がアデノシンに結合すること(相互作用)を示す表面プラズモン共鳴分析のセンサーグラムである。センサーグラムは下から順に7.81、31.3、125、500 nMの抗原とSMB0089との相互作用を表している。 クローンSMB0089がATPに結合すること(相互作用)を示す表面プラズモン共鳴分析のセンサーグラムである。センサーグラムは下から順に78.1、313、1250、5000 nMの抗原とSMB00089との相互作用を表している。 クローンSMB0104がアデノシンに結合すること(相互作用)を示す表面プラズモン共鳴分析のセンサーグラムである。センサーグラムは下から順に7.81、31.3、500 nMの抗原とSMB0104との相互作用を表している。 クローンSMB0104がATPに結合すること(相互作用)を示す表面プラズモン共鳴分析のセンサーグラムである。センサーグラムは下から順に78.1、313、1250、5000 nMの抗原とSMB0104との相互作用を表している。 クローンSMB0171がATPに結合すること(相互作用)を示す表面プラズモン共鳴分析のセンサーグラムである。センサーグラムは下から順に5、50 μMの抗原とSMB0171との相互作用を表している。 クローンSMB0002がアデノシンおよびATPに結合することを示す競合ELISAの結果を示す図である。 ATNLSA1-4_D12のビオチン標識抗原(5'-Adenosine-PEG-biotin, ATP-PEG-biotinの混合)結合に対するATPによる阻害能を評価した図である。 アデノシンあるいはATPが抗体と抗原の間に挟まり、抗原と接する抗体可変領域部分をライブラリ化することで、任意の抗原に対してアデノシン/ATPスイッチ抗体を取得できるラショナルデザイン抗体ライブラリのコンセプトを示す図である。 アデノシンあるいはATPが抗体と抗原の間に挟まり、任意の抗原に対してアデノシン/ATPスイッチ抗体を取得できるアデノシン免疫ウサギ抗体ライブラリのコンセプトを示す図である。 抗体のヒトIL-6に対する結合ELISAの結果を示す図である。縦軸は450nm波長の吸光度の値で表される、アミノ酸およびアミノ酸代謝物(キヌレニン、トリプトファン、フェニルアラニン、アントラニル酸、および3-ヒドロキシキヌレニン、キヌレン酸)の有無による各抗体のヒトIL-6に対する結合活性を示す。 抗体のヒトIL-6に対する結合ELISAの結果を示す図である。縦軸は450nm波長の吸光度から算出された比活性の値で表される、各低分子(ATP、アデノシン、イノシン、PGE2、コハク酸、乳酸、キヌレニン、低分子カクテル)の有無によるI6NMSC1-3_#03抗体のヒトIL-6に対する結合活性を示す。 抗体のヒトIL-6に対する結合ELISAの結果を示す図である。縦軸は450nm波長の吸光度から算出された比活性の値で表される、各低分子(ATP、アデノシン、イノシン、PGE2、コハク酸、乳酸、キヌレニン、低分子カクテル)の有無によるI6NMSC1-3_#17抗体のヒトIL-6に対する結合活性を示す。 抗体のHSAに対する結合ELISAの結果を示す図である。縦軸は450nm波長の吸光度の値で表される、各低分子(ATP、アデノシン、イノシン、PGE2、コハク酸、乳酸、キヌレニン、低分子カクテル)の有無によるHSNMSC1-4_#22抗体のHSAに対する結合活性を示す。 ラショナルデザイン抗体ライブラリより得られたクローンI6DL2C5-4_076のヒトIL-6に対するATPおよび/またはAdenosine 1 mMの存在/非存在下におけるELISAの結果を示す図である。縦軸は抗体のヒトIL-6への結合活性を評価した吸光度の値である。陰性対照(Negative Control)は、M13KO7 Helper Phageを使用したときの結果を表す。 ラショナルデザイン抗体ライブラリより得られたクローンHSDL3C5-4_015のHuman Serum Albuminに対するATPおよび/またはAdenosine 1 mMの存在/非存在下におけるELISAの結果を示す図である。縦軸は抗体のHuman Serum Albuminへの結合活性を評価した吸光度の値である。陰性対照(Negative Control)は、M13KO7 Helper Phageを使用したときの結果を表す。 ラショナルデザイン抗体ライブラリより得られたクローン6RAD2C1-4_011、および6RAD2C1-4_076のヒトIL-6 Receptorに対するATP及び/またはAdenosine(ADOと記載されている) 1 mMの存在または非存在下、ならび低分子カクテル(SC)の存在または非存在下におけるELISAの結果を示す図である。縦軸は抗体のヒトIL-6 Receptorへの結合活性を評価した吸光度の値である。陰性対照(Negative Control)は、M13KO7 Helper Phageを使用したときの結果を表す。 クローン6RNMSC1-2_F02のヒトIL-6Rに対する結合ELISAの結果を示す図である。縦軸は各低分子の有無により抗体のヒトIL-6Rへの結合活性を評価した吸光度の値である。 クローン6RNMSC1-3_G02のヒトIL-6Rに対する結合ELISAの結果を示す図である。縦軸は各低分子の有無により抗体のヒトIL-6Rへの結合活性を評価した吸光度の値である。 抗体のヒトIL-6Rに対する結合ELISAの結果を示す図である。縦軸は各アミノ酸もしくはアミノ酸代謝物の有無により抗体のヒトIL-6Rへの結合活性を評価した吸光度の値である。 100μmol/L kynurenine存在下、10 mmol/L ATP存在下、kynurenine、ATP非存在下における6RNMSC1-2_F02と1μmol/L IL-6Rとの相互作用のセンサーグラムである。実線はkynurenine存在下の相互作用、点線はATP存在下の相互作用、および破線はこれらの非存在下の相互作用を示す。 センサーチップCM5に固定化したIL-6Rに対して、100μmol/L kynurenine存在下で6RNMSC1-2_F02を相互作用させ、その後100μmol/L kynurenineを含むバッファーまたはkynurenineを含まないバッファー条件下における6RNMSC1-2_F02のIL-6Rからの解離を観察したグラフである。図の縦軸は100 μmol/L kynurenine存在下での6RNMSC1-2_F02の結合量を100としてnormalizeした値を、横軸は相互作用開始後からの経過時間(秒)を表す。実線はkynurenine存在下における6RNMSC1-2_F02のIL-6Rからの解離、点線はkynurenine非存在下における6RNMSC1-2_F02のIL-6Rからの解離を表す。 5μg/Lの6RNMSC1-2_F02をアナライトとして180秒間相互作用させ、センサーチップCM5上に固定化したIL-6Rに対するレスポンスを評価したグラフである。縦軸は6RNMSC1-2_F02を相互作用させた前後でのレスポンスの変化(RU)、横軸は溶液中に含まれるkynurenine濃度(μmol/L)を表す。 抗体の膜型ヒトIL-6Rに対する結合をFCMで評価した図である。上段はKynurenine存在下、下段はKynurenine非存在下での結果である。横軸は蛍光強度を、縦軸は細胞数を示している。 低分子存在下で抗原に結合する抗体による抗原を発現する細胞に対するADCC活性を示す図である。kynurenine存在下でhIL-6Rに結合するクローン6RNMSC1-2_F02によるkynurenine存在下(三角)または非存在下(丸)でのhIL-6Rを発現するBaF細胞に対するADCC活性を示す図である。白が個別の測定値、黒が平均値を表す。 低分子存在下で抗原に結合する抗体による抗原を発現する細胞に対するADCC活性を示す図である。kynurenineの有無によらずhIL-6Rに結合するMRAによるkynurenine存在下(三角)または非存在下(丸)でのhIL-6Rを発現するBaF細胞に対するADCC活性を示す図である。白が個別の測定値、黒が平均値を表す。 低分子存在下で抗原に結合する抗体による抗原を発現する細胞に対するADCC活性を示す図である。kynurenine存在下でhIL-6Rに結合するクローン6RNMSC1-2_F02の存在下(三角)または非存在下(丸)でのhIL-6Rを発現するBaF細胞に対するクローン6RNMSC1-2_F02によるADCC活性を示す図である。横軸はキヌレニン濃度を表し、縦軸はADCC活性(%)を表す。ADCC活性は平均値と標準偏差を表す。 クローン6RNMSC1-2_F02のマウス血清中における、ヒトIL-6Rに対する結合ELISAの結果を示す図である。縦軸はKynurenineの有無により抗体のヒトIL-6Rへの結合活性を評価した吸光度の値である。 ラショナルデザイン抗体ライブラリより得られたクローンI6RLSA1-6_011のヒトIL-6に対するATPおよびAdenosine 10 mMの存在または非存在下におけるELISAの結果を示す図である。縦軸は抗体のヒトIL-6への結合活性を評価した吸光度の値である。陽性対照(Positive Control)はラショナルデザイン抗体ライブラリより得られた、低分子の有無に関わらずヒトIL-6に結合活性を示すクローンを使用したときの結果を表す。陰性対照(Negative Control)は、M13KO7 Helper Phageを使用したときの結果を表す。 ラショナルデザイン抗体ライブラリより得られたクローン6RRLSA1-6_037、6RRLSA1-6_045のヒトIL-6 Receptorに対するATPおよびAdenosine 10 mMの存在または非存在下におけるELISAの結果を示す図である。縦軸は抗体のヒトIL-6 Receptorへの結合活性を評価した吸光度の値である。陰性対照(Negative Control)は、M13KO7 Helper Phageを使用したときの結果を表す。 ラショナルデザイン抗体ライブラリについて、ヒトIgA-Fcに対して抗体多価提示ファージディスプレイによるパンニングを4回実施して得られた96クローンのELISAの結果を示す図である。縦軸はATPおよびアデノシン非存在下、横軸は存在下での抗体のヒト IgA-Fcへの結合活性を評価した吸光度の値である。 ラショナルデザイン抗体ライブラリについて、ヒトIgA-Fcに対して抗体一価提示ファージディスプレイによるパンニングを4回実施して得られた96クローンのELISAの結果を示す図である。縦軸はATPおよびアデノシン非存在下、横軸は存在下での抗体のヒト IgA-Fcへの結合活性を評価した吸光度の値である。 ラショナルデザイン抗体ライブラリより得られたクローンIADL3C5-4_048のヒトIgA-Fcに対するATPおよびAdenosine 1 mMの存在または非存在下におけるELISAの結果を示す図である。縦軸は抗体のヒトIgA-Fcへの結合活性を評価した吸光度の値である。陽性対照(Positive Control)はラショナルデザイン抗体ライブラリより得られた、低分子の有無に関わらずヒトIgA-Fcに結合活性を示すクローンを使用したときの結果を表す。陰性対照(Negative Control)は、M13KO7 Helper Phageを使用したときの結果を表す。 センサーチップCM5上に固定化したIL-6Rに対する、各低分子1 mM存在下・非存在下で各クローン1 μMを120秒間相互作用させた時の結合量(Binding response(RU))を示すグラフである。 低分子存在下で抗原に結合する抗体による抗原を発現する細胞に対するADCC活性を示す図である。ATP存在下でhIL-6Rに結合するクローン6RAD2C1-4_030によるATP存在下(三角)または非存在下(丸)でのhIL-6Rを発現するCHO細胞に対するADCC活性を示す図である。白が個別の測定値、黒が平均値を表す。 低分子存在下で抗原に結合する抗体による抗原を発現する細胞に対するADCC活性を示す図である。ATP存在下でhIL-6Rに結合するクローン6RAD2C1-4_011によるATP存在下(三角)または非存在下(丸)でのhIL-6Rを発現するCHO細胞に対するADCC活性を示す図である。白が個別の測定値、黒が平均値を表す。 低分子存在下で抗原に結合する抗体による抗原を発現する細胞に対するADCC活性を示す図である。ATPの有無によらずhIL-6Rに結合するMRAによるATP存在下(三角)または非存在下(丸)でのhIL-6Rを発現するCHO細胞に対するADCC活性を示す図である。白が個別の測定値、黒が平均値を表す。 ラショナルデザイン抗体ライブラリより得られたクローンHSADSA1-6_020のHSAに対するATPおよびAdenosine 10 mMの存在または非存在下におけるELISAの結果を示す図である。縦軸は抗体のHSAへの結合活性を評価した吸光度の値である。陽性対照(Positive Control)はラショナルデザイン抗体ライブラリより得られた、低分子の有無に関わらずHSAに結合活性を示すクローンを使用したときの結果を表す。陰性対照(Negative Control)は、M13KO7 Helper Phageを使用したときの結果を表す。
 以下の定義および詳細な説明は、本明細書において説明する本発明の理解を容易にするために提供される。
アミノ酸
 本明細書において、たとえば、Ala/A、Leu/L、Arg/R、Lys/K、Asn/N、Met/M、Asp/D、Phe/F、Cys/C、Pro/P、Gln/Q、Ser/S、Glu/E、Thr/T、Gly/G、Trp/W、His/H、Tyr/Y、Ile/I、Val/Vと表されるように、アミノ酸は1文字コードまたは3文字コード、またはその両方で表記されている。
アミノ酸の改変
 抗原結合分子のアミノ酸配列中のアミノ酸の改変のためには、部位特異的変異誘発法(Kunkelら(Proc. Natl. Acad. Sci. USA (1985) 82, 488-492))やOverlap extension PCR等の公知の方法が適宜採用され得る。また、天然のアミノ酸以外のアミノ酸に置換するアミノ酸の改変方法として、複数の公知の方法もまた採用され得る(Annu. Rev. Biophys. Biomol. Struct. (2006) 35, 225-249、Proc. Natl. Acad. Sci. U.S.A. (2003) 100 (11), 6353-6357)。例えば、終止コドンの1つであるUAGコドン(アンバーコドン)の相補的アンバーサプレッサーtRNAに非天然アミノ酸が結合されたtRNAが含まれる無細胞翻訳系システム(Clover Direct(Protein Express))等も好適に用いられる。
 本明細書において、アミノ酸の改変部位を表す際に用いられる「および/または」の用語の意義は、「および」と「または」が適宜組み合わされたあらゆる組合せを含む。具体的には、例えば「33位、55位、および/または96位のアミノ酸が置換されている」とは以下のアミノ酸の改変のバリエーションが含まれる;
(a) 33位、(b)55位、(c)96位、(d)33位および55位、(e)33位および96位、(f)55位および96位、(g)33位および55位および96位。
 本明細書において、また、アミノ酸の改変を表す表現として、特定の位置を表す数字の前後に改変前と改変後のアミノ酸の1文字コードまたは3文字コードを併記した表現が適宜使用され得る。例えば、抗体可変領域に含まれるアミノ酸の置換を加える際に用いられるN100bLまたはAsn100bLeuという改変は、Kabatナンバリングで表される100b位のAsnのLeuへの置換を表す。すなわち、数字はKabatナンバリングで表されるアミノ酸の位置を表し、その前に記載されるアミノ酸の1文字コード又は3文字コードは置換前のアミノ酸、そのあとに記載されるアミノ酸の1文字コードまたは3文字コードは置換後のアミノ酸を表す。同様に、抗体定常領域に含まれるFc領域にアミノ酸の置換を加える際に用いられるP238DまたはPro238Aspという改変は、EUナンバリングで表される238位のProのAspへの置換を表す。すなわち、数字はEUナンバリングで表されるアミノ酸の位置を表し、その前に記載されるアミノ酸の1文字コードまたは3文字コードは置換前のアミノ酸、そのあとに記載されるアミノ酸の1文字コードまたは3文字コードは置換後のアミノ酸を表す。
抗原
 本明細書において「抗原」は抗原結合ドメインが結合するエピトープを含む限りその構造は特定の構造に限定されない。別の意味では、抗原は無機物でもあり得るし有機物でもあり得る。抗原としては下記のような分子;17-IA、4-1BB、4Dc、6-ケト-PGF1a、8-イソ-PGF2a、8-オキソ-dG、A1 アデノシン受容体、A33、ACE、ACE-2、アクチビン、アクチビンA、アクチビンAB、アクチビンB、アクチビンC、アクチビンRIA、アクチビンRIA ALK-2、アクチビンRIB ALK-4、アクチビンRIIA、アクチビンRIIB、ADAM、ADAM10、ADAM12、ADAM15、ADAM17/TACE、ADAM8、ADAM9、ADAMTS、ADAMTS4、ADAMTS5、アドレシン、aFGF、ALCAM、ALK、ALK-1、ALK-7、アルファ-1-アンチトリプシン、アルファ-V/ベータ-1アンタゴニスト、ANG、Ang、APAF-1、APE、APJ、APP、APRIL、AR、ARC、ART、アルテミン、抗Id、ASPARTIC、心房性ナトリウム利尿因子、av/b3インテグリン、Axl、b2M、B7-1、B7-2、B7-H、B-リンパ球刺激因子(BlyS)、BACE、BACE-1、Bad、BAFF、BAFF-R、Bag-1、BAK、Bax、BCA-1、BCAM、Bcl、BCMA、BDNF、b-ECGF、bFGF、BID、Bik、BIM、BLC、BL-CAM、BLK、BMP、BMP-2 BMP-2a、BMP-3 オステオゲニン(Osteogenin)、BMP-4 BMP-2b、BMP-5、BMP-6 Vgr-1、BMP-7(OP-1)、BMP-8(BMP-8a、OP-2)、BMPR、BMPR-IA(ALK-3)、BMPR-IB(ALK-6)、BRK-2、RPK-1、BMPR-II(BRK-3)、BMP、b-NGF、BOK、ボンベシン、骨由来神経栄養因子、BPDE、BPDE-DNA、BTC、補体因子3(C3)、C3a、C4、C5、C5a、C10、CA125、CAD-8、カルシトニン、cAMP、癌胎児性抗原(CEA)、癌関連抗原、カテプシンA、カテプシンB、カテプシンC/DPPI、カテプシンD、カテプシンE、カテプシンH、カテプシンL、カテプシンO、カテプシンS、カテプシンV、カテプシンX/Z/P、CBL、CCI、CCK2、CCL、CCL1、CCL11、CCL12、CCL13、CCL14、CCL15、CCL16、CCL17、CCL18、CCL19、CCL2、CCL20、CCL21、CCL22、CCL23、CCL24、CCL25、CCL26、CCL27、CCL28、CCL3、CCL4、CCL5、CCL6、CCL7、CCL8、CCL9/10、CCR、CCR1、CCR10、CCR10、CCR2、CCR3、CCR4、CCR5、CCR6、CCR7、CCR8、CCR9、CD1、CD2、CD3、CD3E、CD4、CD5、CD6、CD7、CD8、CD10、CD11a、CD11b、CD11c、CD13、CD14、CD15、CD16、CD18、CD19、CD20、CD21、CD22、CD23、CD25、CD27L、CD28、CD29、CD30、CD30L、CD32、CD33(p67タンパク質)、CD34、CD38、CD40、CD40L、CD44、CD45、CD46、CD49a、CD52、CD54、CD55、CD56、CD61、CD64、CD66e、CD74、CD80(B7-1)、CD89、CD95、CD123、CD137、CD138、CD140a、CD146、CD147、CD148、CD152、CD164、CEACAM5、CFTR、cGMP、CINC、ボツリヌス菌毒素、ウェルシュ菌毒素、CKb8-1、CLC、CMV、CMV UL、CNTF、CNTN-1、COX、C-Ret、CRG-2、CT-1、CTACK、CTGF、CTLA-4、PD1、PDL1、LAG3、TIM3、galectin-9、CX3CL1、CX3CR1、CXCL、CXCL1、CXCL2、CXCL3、CXCL4、CXCL5、CXCL6、CXCL7、CXCL8、CXCL9、CXCL10、CXCL11、CXCL12、CXCL13、CXCL14、CXCL15、CXCL16、CXCR、CXCR1、CXCR2、CXCR3、CXCR4、CXCR5、CXCR6、サイトケラチン腫瘍関連抗原、DAN、DCC、DcR3、DC-SIGN、補体制御因子(Decay accelerating factor)、des(1-3)-IGF-I(脳IGF-1)、Dhh、ジゴキシン、DNAM-1、Dnase、Dpp、DPPIV/CD26、Dtk、ECAD、EDA、EDA-A1、EDA-A2、EDAR、EGF、EGFR(ErbB-1)、EMA、EMMPRIN、ENA、エンドセリン受容体、エンケファリナーゼ、eNOS、Eot、エオタキシン1、EpCAM、エフリンB2/EphB4、EPO、ERCC、E-セレクチン、ET-1、ファクターIIa、ファクターVII、ファクターVIIIc、ファクターIX、線維芽細胞活性化タンパク質(FAP)、Fas、FcR1、FEN-1、フェリチン、FGF、FGF-19、FGF-2、FGF3、FGF-8、FGFR、FGFR-3、フィブリン、FL、FLIP、Flt-3、Flt-4、卵胞刺激ホルモン、フラクタルカイン、FZD1、FZD2、FZD3、FZD4、FZD5、FZD6、FZD7、FZD8、FZD9、FZD10、G250、Gas6、GCP-2、GCSF、GD2、GD3、GDF、GDF-1、GDF-3(Vgr-2)、GDF-5(BMP-14、CDMP-1)、GDF-6(BMP-13、CDMP-2)、GDF-7(BMP-12、CDMP-3)、GDF-8(ミオスタチン)、GDF-9、GDF-15(MIC-1)、GDNF、GDNF、GFAP、GFRa-1、GFR-アルファ1、GFR-アルファ2、GFR-アルファ3、GITR、グルカゴン、Glut4、糖タンパク質IIb/IIIa(GPIIb/IIIa)、GM-CSF、gp130、gp72、GRO、成長ホルモン放出因子、ハプテン(NP-capまたはNIP-cap)、HB-EGF、HCC、HCMV gBエンベロープ糖タンパク質、HCMV gHエンベロープ糖タンパク質、HCMV UL、造血成長因子(HGF)、Hep B gp120、ヘパラナーゼ、Her2、Her2/neu(ErbB-2)、Her3(ErbB-3)、Her4(ErbB-4)、単純ヘルペスウイルス(HSV) gB糖タンパク質、HSV gD糖タンパク質、HGFA、高分子量黒色腫関連抗原(HMW-MAA)、HIV gp120、HIV IIIB gp 120 V3ループ、HLA、HLA-DR、HM1.24、HMFG PEM、HRG、Hrk、ヒト心臓ミオシン、ヒトサイトメガロウイルス(HCMV)、ヒト成長ホルモン(HGH)、HVEM、I-309、IAP、ICAM、ICAM-1、ICAM-3、ICE、ICOS、IFNg、Ig、IgA受容体、IgE、IGF、IGF結合タンパク質、IGF-1R、IGFBP、IGF-I、IGF-II、IL、IL-1、IL-1R、IL-2、IL-2R、IL-4、IL-4R、IL-5、IL-5R、IL-6、IL-6R、IL-8、IL-9、IL-10、IL-12、IL-13、IL-15、IL-18、IL-18R、IL-21、IL-23、IL-27、インターフェロン(INF)-アルファ、INF-ベータ、INF-ガンマ、インヒビン、iNOS、インスリンA鎖、インスリンB鎖、インスリン様増殖因子1、インテグリンアルファ2、インテグリンアルファ3、インテグリンアルファ4、インテグリンアルファ4/ベータ1、インテグリンアルファ4/ベータ7、インテグリンアルファ5(アルファV)、インテグリンアルファ5/ベータ1、インテグリンアルファ5/ベータ3、インテグリンアルファ6、インテグリンベータ1、インテグリンベータ2、インターフェロンガンマ、IP-10、I-TAC、JE、カリクレイン2、カリクレイン5、カリクレイン6、カリクレイン11、カリクレイン12、カリクレイン14、カリクレイン15、カリクレインL1、カリクレインL2、カリクレインL3、カリクレインL4、KC、KDR、ケラチノサイト増殖因子(KGF)、ラミニン5、LAMP、LAP、LAP(TGF-1)、潜在的TGF-1、潜在的TGF-1 bp1、LBP、LDGF、LECT2、レフティ、ルイス-Y抗原、ルイス-Y関連抗原、LFA-1、LFA-3、Lfo、LIF、LIGHT、リポタンパク質、LIX、LKN、Lptn、L-セレクチン、LT-a、LT-b、LTB4、LTBP-1、肺表面、黄体形成ホルモン、リンホトキシンベータ受容体、Mac-1、MAdCAM、MAG、MAP2、MARC、MCAM、MCAM、MCK-2、MCP、M-CSF、MDC、Mer、METALLOPROTEASES、MGDF受容体、MGMT、MHC(HLA-DR)、MIF、MIG、MIP、MIP-1-アルファ、MK、MMAC1、MMP、MMP-1、MMP-10、MMP-11、MMP-12、MMP-13、MMP-14、MMP-15、MMP-2、MMP-24、MMP-3、MMP-7、MMP-8、MMP-9、MPIF、Mpo、MSK、MSP、ムチン(Muc1)、MUC18、ミュラー管抑制物質、Mug、MuSK、NAIP、NAP、NCAD、N-Cアドヘリン、NCA 90、NCAM、NCAM、ネプリライシン、ニューロトロフィン-3、-4、または-6、ニュールツリン、神経成長因子(NGF)、NGFR、NGF-ベータ、nNOS、NO、NOS、Npn、NRG-3、NT、NTN、OB、OGG1、OPG、OPN、OSM、OX40L、OX40R、p150、p95、PADPr、副甲状腺ホルモン、PARC、PARP、PBR、PBSF、PCAD、P-カドヘリン、PCNA、PDGF、PDGF、PDK-1、PECAM、PEM、PF4、PGE、PGF、PGI2、PGJ2、PIN、PLA2、胎盤性アルカリホスファターゼ(PLAP)、PlGF、PLP、PP14、プロインスリン、プロレラキシン、プロテインC、PS、PSA、PSCA、前立腺特異的膜抗原(PSMA)、PTEN、PTHrp、Ptk、PTN、R51、RANK、RANKL、RANTES、RANTES、レラキシンA鎖、レラキシンB鎖、レニン、呼吸器多核体ウイルス(RSV)F、RSV Fgp、Ret、リウマイド因子、RLIP76、RPA2、RSK、S100、SCF/KL、SDF-1、SERINE、血清アルブミン、sFRP-3、Shh、SIGIRR、SK-1、SLAM、SLPI、SMAC、SMDF、SMOH、SOD、SPARC、Stat、STEAP、STEAP-II、TACE、TACI、TAG-72(腫瘍関連糖タンパク質-72)、TARC、TCA-3、T細胞受容体(例えば、T細胞受容体アルファ/ベータ)、TdT、TECK、TEM1、TEM5、TEM7、TEM8、TERT、睾丸PLAP様アルカリホスファターゼ、TfR、TGF、TGF-アルファ、TGF-ベータ、TGF-ベータ Pan Specific、TGF-ベータRI(ALK-5)、TGF-ベータRII、TGF-ベータRIIb、TGF-ベータRIII、TGF-ベータ1、TGF-ベータ2、TGF-ベータ3、TGF-ベータ4、TGF-ベータ5、トロンビン、胸腺Ck-1、甲状腺刺激ホルモン、Tie、TIMP、TIQ、組織因子、TMEFF2、Tmpo、TMPRSS2、TNF、TNF-アルファ、TNF-アルファベータ、TNF-ベータ2、TNFc、TNF-RI、TNF-RII、TNFRSF10A(TRAIL R1 Apo-2、DR4)、TNFRSF10B(TRAIL R2 DR5、KILLER、TRICK-2A、TRICK-B)、TNFRSF10C(TRAIL R3 DcR1、LIT、TRID)、TNFRSF10D(TRAIL R4 DcR2、TRUNDD)、TNFRSF11A(RANK ODF R、TRANCE R)、TNFRSF11B(OPG OCIF、TR1)、TNFRSF12(TWEAK R FN14)、TNFRSF13B(TACI)、TNFRSF13C(BAFF R)、TNFRSF14(HVEM ATAR、HveA、LIGHT R、TR2)、TNFRSF16(NGFR p75NTR)、TNFRSF17(BCMA)、TNFRSF18(GITR AITR)、TNFRSF19(TROY TAJ、TRADE)、TNFRSF19L(RELT)、TNFRSF1A(TNF RI CD120a、p55-60)、TNFRSF1B(TNF RII CD120b、p75-80)、TNFRSF26(TNFRH3)、TNFRSF3(LTbR TNF RIII、TNFC R)、TNFRSF4(OX40 ACT35、TXGP1 R)、TNFRSF5(CD40 p50)、TNFRSF6(Fas Apo-1、APT1、CD95)、TNFRSF6B(DcR3 M68、TR6)、TNFRSF7(CD27)、TNFRSF8(CD30)、TNFRSF9(4-1BB CD137、ILA)、TNFRSF21(DR6)、TNFRSF22(DcTRAIL R2 TNFRH2)、TNFRST23(DcTRAIL R1 TNFRH1)、TNFRSF25(DR3 Apo-3、LARD、TR-3、TRAMP、WSL-1)、TNFSF10(TRAIL Apo-2リガンド、TL2)、TNFSF11(TRANCE/RANKリガンド ODF、OPGリガンド)、TNFSF12(TWEAK Apo-3リガンド、DR3リガンド)、TNFSF13(APRIL TALL2)、TNFSF13B(BAFF BLYS、TALL1、THANK、TNFSF20)、TNFSF14(LIGHT HVEMリガンド、LTg)、TNFSF15(TL1A/VEGI)、TNFSF18(GITRリガンド AITRリガンド、TL6)、TNFSF1A(TNF-a コネクチン(Conectin)、DIF、TNFSF2)、TNFSF1B(TNF-b LTa、TNFSF1)、TNFSF3(LTb TNFC、p33)、TNFSF4(OX40リガンド gp34、TXGP1)、TNFSF5(CD40リガンド CD154、gp39、HIGM1、IMD3、TRAP)、TNFSF6(Fasリガンド Apo-1リガンド、APT1リガンド)、TNFSF7(CD27リガンド CD70)、TNFSF8(CD30リガンド CD153)、TNFSF9(4-1BBリガンド CD137リガンド)、TP-1、t-PA、Tpo、TRAIL、TRAIL R、TRAIL-R1、TRAIL-R2、TRANCE、トランスフェリン受容体、TRF、Trk、TROP-2、TLR(Toll-like receptor)1、TLR2、TLR3、TLR4、TLR5、TLR6、TLR7、TLR8、TLR9、TLR10、TSG、TSLP、腫瘍関連抗原CA125、腫瘍関連抗原発現ルイスY関連炭水化物、TWEAK、TXB2、Ung、uPAR、uPAR-1、ウロキナーゼ、VCAM、VCAM-1、VECAD、VE-Cadherin、VE-cadherin-2、VEFGR-1(flt-1)、VEGF、VEGFR、VEGFR-3(flt-4)、VEGI、VIM、ウイルス抗原、VLA、VLA-1、VLA-4、VNRインテグリン、フォン・ヴィレブランド因子、WIF-1、WNT1、WNT2、WNT2B/13、WNT3、WNT3A、WNT4、WNT5A、WNT5B、WNT6、WNT7A、WNT7B、WNT8A、WNT8B、WNT9A、WNT9A、WNT9B、WNT10A、WNT10B、WNT11、WNT16、XCL1、XCL2、XCR1、XCR1、XEDAR、XIAP、XPD、HMGB1、IgA、Aβ、CD81, CD97, CD98, DDR1, DKK1, EREG、Hsp90, IL-17/IL-17R、IL-20/IL-20R、酸化LDL, PCSK9, prekallikrein , RON, TMEM16F、SOD1, Chromogranin A, Chromogranin B、tau, VAP1、高分子キニノーゲン、IL-31、IL-31R、Nav1.1、Nav1.2、Nav1.3、Nav1.4、Nav1.5、Nav1.6、Nav1.7、Nav1.8、Nav1.9、EPCR、C1, C1q, C1r, C1s, C2, C2a, C2b, C3, C3a, C3b, C4, C4a, C4b, C5, C5a, C5b, C6, C7, C8, C9, factor B, factor D, factor H, properdin、sclerostin、fibrinogen, fibrin, prothrombin, thrombin, 組織因子, factor V, factor Va, factor VII, factor VIIa, factor VIII, factor VIIIa, factor IX, factor IXa, factor X, factor Xa, factor XI, factor XIa, factor XII, factor XIIa, factor XIII, factor XIIIa, TFPI, antithrombin III, EPCR, トロンボモデュリン、TAPI, tPA, plasminogen, plasmin, PAI-1, PAI-2、GPC3、Syndecan-1、Syndecan-2、Syndecan-3、Syndecan-4、LPA、S1Pならびにホルモンおよび成長因子のための受容体が例示され得る。抗原としては癌組織または炎症性組織における癌細胞・免疫細胞・ストローマ細胞等に発現する抗原が好ましい。
 上記の抗原の例示には受容体も記載されるが、これらの受容体が生体液中に可溶型で存在する場合にも、本発明の標的組織特異的な化合物の濃度に応じて抗原に対する結合活性が変化する抗原結合ドメインを含む抗原結合分子が結合する抗原として使用され得る。そのような可溶型受容体の非限定な一態様として、例えば、Mullbergら(J. Immunol. (1994) 152 (10), 4958-4968)によって記載されているような可溶型IL-6Rである、配列番号:1で表されるIL-6Rポリペプチド配列のうち、1から357番目のアミノ酸からなるタンパク質が例示され得る。
 上記の抗原の例示には、細胞膜に発現する膜型分子、および細胞から細胞外に分泌される可溶型分子が含まれる。本発明の標的組織特異的な化合物の濃度に応じて抗原に対する結合活性が変化する抗原結合ドメインを含む抗原結合分子が、細胞から分泌された可溶型分子に結合する場合、当該抗原結合分子としては、後述されるように中和活性を有していることが好適である。
 可溶型分子が存在する溶液に限定はなく生体液、すなわち生体内の脈管又は組織・細胞の間を満たす全ての液体に本可溶型分子は存在し得る。非限定な一態様では、本発明の抗原結合分子が結合する可溶型分子は、細胞外液に存在することができる。細胞外液とは、脊椎動物では血漿、組織間液、リンパ液、密な結合組織、脳脊髄液、髄液、穿刺液、または関節液等の骨および軟骨中の成分、肺胞液(気管支肺胞洗浄液)、腹水、胸水、心嚢水、嚢胞液、または眼房水(房水)等の細胞透過液(細胞の能動輸送・分泌活動の結果生じた各種腺腔内の液、および消化管腔その他の体腔内液)の総称をいう。
 本発明の標的組織特異的な化合物の濃度に応じて抗原に対する結合活性が変化する抗原結合ドメインを含む抗原結合分子が、細胞膜に発現する膜型分子に結合する場合、当該抗原結合分子の好適な例として、後述されるように細胞傷害活性を有している、もしくは細胞傷害性物質を結合するまたは結合する能力を有している抗原結合分子が好適に挙げられる。また、細胞傷害活性を有している、もしくは細胞傷害性物質を結合するまたは結合する能力を有しているという性質に代えて、または当該性質に加えて、中和活性を有している抗原結合分子もまた非限定な一態様として好適に挙げられる。
エピトープ
 抗原中に存在する抗原決定基を意味するエピトープは、本明細書において開示される抗原結合分子中の抗原結合ドメインが結合する抗原上の部位を意味する。よって、例えば、エピトープは、その構造によって定義され得る。また、当該エピトープを認識する抗原結合分子中の抗原に対する結合活性によっても当該エピトープが定義され得る。抗原がペプチド又はポリペプチドである場合には、エピトープを構成するアミノ酸残基によってエピトープを特定することも可能である。また、エピトープが糖鎖である場合には、特定の糖鎖構造によってエピトープを特定することも可能である。
 直線状エピトープは、アミノ酸一次配列が認識されたエピトープを含むエピトープである。直線状エピトープは、典型的には、少なくとも3つ、および最も普通には少なくとも5つ、例えば約8ないし約10個、6ないし20個のアミノ酸が固有の配列において含まれる。
 立体構造エピトープは、直線状エピトープとは対照的に、エピトープを含むアミノ酸の一次配列が、認識されたエピトープの単一の規定成分ではないエピトープ(例えば、アミノ酸の一次配列が、必ずしもエピトープを規定する抗体により認識されないエピトープ)である。立体構造エピトープは、直線状エピトープに対して増大した数のアミノ酸を包含するかもしれない。立体構造エピトープの認識に関して、抗体は、ペプチドまたはタンパク質の三次元構造を認識する。例えば、タンパク質分子が折り畳まれて三次元構造を形成する場合には、立体構造エピトープを形成するあるアミノ酸および/またはポリペプチド主鎖は、並列となり、抗体がエピトープを認識するのを可能にする。エピトープの立体構造を決定する方法には、例えばX線結晶学、二次元核磁気共鳴分光学並びに部位特異的なスピン標識および電磁常磁性共鳴分光学が含まれるが、これらには限定されない。例えば、Epitope Mapping Protocols in Methods in Molecular Biology (1996)、第66巻、Morris(編)を参照。
 エピトープに結合する抗原結合ドメインの構造はパラトープと呼ばれる。エピトープとパラトープの間に作用する、水素結合、静電気力、ファンデルワールス力、疎水結合等によりエピトープとパラトープは安定して結合する。このエピトープとパラトープの間の結合力はアフィニティー(affinity)と呼ばれる。複数の抗原と複数の抗原結合分子が結合するときの結合力の総和はアビディティ(avidity)と呼ばれる。複数の抗原結合ドメインを含む(すなわち多価の)抗体等が複数のエピトープに結合する際には、結合力(affinity)が相乗的に働くため、アビディティはアフィニティーよりも高くなる。
結合活性
 下記にIL-6Rに対する抗原結合ドメインを含む被験抗原結合分子によるエピトープへの結合の確認方法が例示されるが、IL-6R以外の抗原に対する抗原結合ドメインを含む被験抗原結合分子によるエピトープへの結合の確認方法も下記の例示に準じて適宜実施され得る。
 例えば、IL-6Rに対する抗原結合ドメインを含む被験抗原結合分子が、IL-6R分子中に存在する線状エピトープを認識することは、たとえば次のようにして確認することができる。上記の目的のためにIL-6Rの細胞外ドメインを構成するアミノ酸配列からなる線状のペプチドが合成される。当該ペプチドは、化学的に合成され得る。あるいは、IL-6RのcDNA中の、細胞外ドメインに相当するアミノ酸配列をコードする領域を利用して、遺伝子工学的手法により得られる。次に、細胞外ドメインを構成するアミノ酸配列からなる線状ペプチドと、IL-6Rに対する抗原結合ドメインを含む被験抗原結合分子との結合活性が評価される。たとえば、固定化された線状ペプチドを抗原とするELISAによって、当該ペプチドに対する当該抗原結合分子の結合活性が評価され得る。あるいは、IL-6R発現細胞に対する当該抗原結合分子の結合における、線状ペプチドによる阻害のレベルに基づいて、線状ペプチドに対する結合活性が明らかにされ得る。これらの試験によって、線状ペプチドに対する当該抗原結合分子の結合活性が明らかにされ得る。
 また、IL-6Rに対する抗原結合ドメインを含む被験抗原結合分子が立体構造エピトープを認識することは、次のようにして確認され得る。上記の目的のために、IL-6Rを発現する細胞が調製される。IL-6Rに対する抗原結合ドメインを含む被験抗原結合分子がIL-6R発現細胞に接触した際に当該細胞に強く結合する一方で、当該抗原結合分子が固定化されたIL-6Rの細胞外ドメインを構成するアミノ酸配列からなる線状ペプチドに対して実質的に結合しないとき等が挙げられる。ここで、実質的に結合しないとは、ヒトIL-6R発現細胞に対する結合活性の80%以下、通常50%以下、好ましくは30%以下、特に好ましくは15%以下の結合活性をいう。
 IL-6Rに対する抗原結合ドメインを含む被験抗原結合分子のIL-6R発現細胞に対する結合活性を測定する方法としては、例えば、Antibodies A Laboratory Manual記載の方法(Ed Harlow, David Lane, Cold Spring Harbor Laboratory (1988) 359-420)が挙げられる。即ちIL-6R発現細胞を抗原とするELISAやFACS(fluorescence activated cell sorting)の原理によって評価され得る。
 ELISAフォーマットにおいて、IL-6Rに対する抗原結合ドメインを含む被験抗原結合分子のIL-6R発現細胞に対する結合活性は、酵素反応によって生成するシグナルレベルを比較することによって定量的に評価される。すなわち、IL-6R発現細胞を固定化したELISAプレートに被験ポリペプチド会合体を加え、細胞に結合した被験抗原結合分子が、被験抗原結合分子を認識する酵素標識抗体を利用して検出される。あるいはFACSにおいては、被験抗原結合分子の希釈系列を作成し、IL-6R発現細胞に対する抗体結合力価(titer)を決定することにより、IL-6R発現細胞に対する被験抗原結合分子の結合活性が比較され得る。
 緩衝液等に懸濁した細胞表面上に発現している抗原に対する被験抗原結合分子の結合は、フローサイトメーターによって検出することができる。フローサイトメーターとしては、例えば、次のような装置が知られている。
FACSCantoTM II
FACSAriaTM
FACSArrayTM
FACSVantageTM SE
FACSCaliburTM (いずれもBD Biosciences社の商品名)
EPICS ALTRA HyPerSort
Cytomics FC 500
EPICS XL-MCL ADC EPICS XL ADC
Cell Lab Quanta / Cell Lab Quanta SC(いずれもBeckman Coulter社の商品名)
 例えば、IL-6Rに対する抗原結合ドメインを含む被験抗原結合分子の抗原に対する結合活性の好適な測定方法の一例として、次の方法が挙げられる。まず、IL-6Rを発現する細胞と反応させた被験抗原結合分子を認識するFITC標識した二次抗体で染色する。被験抗原結合分子を適宜好適な緩衝液によって希釈することによって、当該抗原結合分子が所望の濃度に調製して用いられる。例えば、10μg/mlから10 ng/mlまでの間のいずれかの濃度で使用され得る。次に、FACSCalibur(BD社)により蛍光強度と細胞数が測定される。当該細胞に対する抗体の結合量は、CELL QUEST Software(BD社)を用いて解析することにより得られた蛍光強度、すなわちGeometric Meanの値に反映される。すなわち、当該Geometric Meanの値を得ることにより、被験抗原結合分子の結合量によって表される被験抗原結合分子の結合活性が測定され得る。
 IL-6Rに対する抗原結合ドメインを含む被験抗原結合分子が、ある抗原結合分子とエピトープを共有することは、両者の同じエピトープに対する競合によって確認され得る。抗原結合分子間の競合は、交叉ブロッキングアッセイなどによって検出される。例えば競合ELISAアッセイは、好ましい交叉ブロッキングアッセイである。
 具体的には、交叉ブロッキングアッセイにおいては、マイクロタイタープレートのウェル上にコートしたIL-6Rタンパク質が、候補となる競合抗原結合分子の存在下、または非存在下でプレインキュベートされた後に、被験抗原結合分子が添加される。ウェル中のIL-6Rタンパク質に結合した被験抗原結合分子の量は、同じエピトープへの結合に対して競合する候補となる競合抗原結合分子の結合能に間接的に相関している。すなわち同一エピトープに対する競合抗原結合分子の親和性が大きくなればなる程、被験抗原結合分子のIL-6Rタンパク質をコートしたウェルへの結合活性は低下する。
 IL-6Rタンパク質を介してウェルに結合した被験抗原結合分子の量は、予め抗原結合分子を標識しておくことによって、容易に測定され得る。たとえば、ビオチン標識された抗原結合分子は、アビジンペルオキシダーゼコンジュゲートと適切な基質を使用することにより測定される。ペルオキシダーゼなどの酵素標識を利用した交叉ブロッキングアッセイは、特に競合ELISAアッセイといわれる。抗原結合分子は、検出あるいは測定が可能な他の標識物質で標識され得る。具体的には、放射標識あるいは蛍光標識などが公知である。
 候補の競合抗原結合分子会合体の非存在下で実施されるコントロール試験において得られる結合活性と比較して、競合抗原結合分子が、IL-6Rに対する抗原結合ドメインを含む被験抗原結合分子の結合を少なくとも20%、好ましくは少なくとも20-50%、さらに好ましくは少なくとも50%ブロックできるならば、当該被験抗原結合分子は競合抗原結合分子と実質的に同じエピトープに結合するか、又は同じエピトープへの結合に対して競合する抗原結合分子である。
 IL-6Rに対する抗原結合ドメインを含む被験抗原結合分子が結合するエピトープの構造が同定されている場合には、被験抗原結合分子と対照抗原結合分子とがエピトープを共有することは、当該エピトープを構成するペプチドにアミノ酸変異を導入したペプチドに対する両者の抗原結合分子の結合活性を比較することによって評価され得る。
 こうした結合活性を測定する方法としては、例えば、前記のELISAフォーマットにおいて変異を導入した線状のペプチドに対する被験抗原結合分子及び対照抗原結合分子の結合活性を比較することによって測定され得る。ELISA以外の方法としては、カラムに結合した当該変異ペプチドに対する結合活性を、当該カラムに被検抗原結合分子と対照抗原結合分子を流下させた後に溶出液中に溶出される抗原結合分子を定量することによっても測定され得る。変異ペプチドを例えばGSTとの融合ペプチドとしてカラムに吸着させる方法は公知である。
 また、同定されたエピトープが立体エピトープの場合には、被験抗原結合分子と対照抗原結合分子とがエピトープを共有することは、次の方法で評価され得る。まず、IL-6Rを発現する細胞とエピトープに変異が導入されたIL-6Rを発現する細胞が調製される。これらの細胞がPBS等の適切な緩衝液に懸濁された細胞懸濁液に対して被験抗原結合分子と対照抗原結合分子が添加される。次いで、適宜緩衝液で洗浄された細胞懸濁液に対して、被験抗原結合分子と対照抗原結合分子を認識することができるFITC標識された抗体が添加される。標識抗体によって染色された細胞の蛍光強度と細胞数がFACSCalibur(BD社)によって測定される。被験抗原結合分子と対照抗原結合分子の濃度は好適な緩衝液によって適宜希釈することによって所望の濃度に調製して用いられる。例えば、10μg/mlから10 ng/mlまでの間のいずれかの濃度で使用される。当該細胞に対する標識抗体の結合量は、CELL QUEST Software(BD社)を用いて解析することにより得られた蛍光強度、すなわちGeometric Meanの値に反映される。すなわち、当該Geometric Meanの値を得ることにより、標識抗体の結合量によって表される被験抗原結合分子と対照抗原結合分子の結合活性を測定することができる。
 本方法において、例えば「変異IL-6R発現細胞に実質的に結合しない」ことは、以下の方法によって判断することができる。まず、変異IL-6Rを発現する細胞に対して結合した被験抗原結合分子と対照抗原結合分子が、標識抗体で染色される。次いで細胞の蛍光強度が検出される。蛍光検出にフローサイトメトリーとしてFACSCaliburを用いた場合、得られた蛍光強度はCELL QUEST Softwareを用いて解析され得る。ポリペプチド会合体存在下および非存在下でのGeometric Meanの値から、この比較値(ΔGeo-Mean)を下記の式1に基づいて算出することにより、抗原結合分子の結合による蛍光強度の増加割合を求めることができる。
(式1)
 ΔGeo-Mean=Geo-Mean(ポリペプチド会合体存在下)/Geo-Mean(ポリペプチド会合体非存在下)
 解析によって得られる被験抗原結合分子の変異IL-6R発現細胞に対する結合量が反映されたGeometric Mean比較値(変異IL-6R分子ΔGeo-Mean値)を、被験抗原結合分子のIL-6R発現細胞に対する結合量が反映されたΔGeo-Mean比較値と比較する。この場合において、変異IL-6R発現細胞及びIL-6R発現細胞に対するΔGeo-Mean比較値を求める際に使用する被験抗原結合分子の濃度は互いに同一又は実質的に同一の濃度で調製されることが特に好ましい。予めIL-6R中のエピトープを認識していることが確認された抗原結合分子が、対照抗原結合分子として利用される。
 被験抗原結合分子の変異IL-6R発現細胞に対するΔGeo-Mean比較値が、被験抗原結合分子のIL-6R発現細胞に対するΔGeo-Mean比較値の、少なくとも80%、好ましくは50%、更に好ましくは30%、特に好ましくは15%より小さければ、「変異IL-6R発現細胞に実質的に結合しない」ものとする。Geo-Mean値(Geometric Mean)を求める計算式は、CELL QUEST Software User's Guide(BD biosciences社)に記載されている。比較値を比較することによってそれが実質的に同視し得る程度であれば、被験抗原結合分子と対照抗原結合分子のエピトープは同一であると評価され得る。
標的組織
 本明細書中で用いられる、用語「標的組織」とは、本発明の抗原結合分子が化合物依存的に結合する抗原が存在する細胞を含む組織であって、当該抗原結合分子の当該細胞に発現している膜型分子に対する結合、あるいは、当該組織に存在する可溶型分子に対する結合が当該組織を含む生体にとって正の薬理作用をもたらす組織をいう。この場合において、「正の薬理作用」とは、標的組織を含む病的部位が当該組織を含む生体に対してもたらす症状の軽減、緩和、寛解、または治癒をもたらす作用をいう。そうした薬理作用をもたらす非限定なメカニズムの一態様として、例えば、癌等の悪性腫瘍がもたらす症状の場合には、癌細胞に対する細胞傷害活性および増殖抑制および癌組織における免疫活性化等が例示される。こうした非限定なメカニズムの一態様として、例えば、炎症性疾患の場合には炎症組織における炎症性サイトカインの作用の遮断活性や免疫抑制等が例示される。
癌組織特異的化合物
 本明細書中で用いられる、用語「癌組織特異的な化合物(癌組織特異的化合物)」とは、非癌組織と比較して癌組織中に差示的に存在する化合物をいう。本明細書において、「癌」という用語は、一般に、悪性新生物を表すために用いられ、それは、転移性または非転移性であってよい。例えば、消化管や皮膚等の上皮組織から発生した癌腫の非限定な例として、脳腫瘍、皮膚癌、頸頭部癌、食道癌、肺癌、胃癌、十二指腸癌、乳癌、前立腺癌、子宮頸癌、子宮体癌、膵臓癌、肝臓癌、大腸癌、結腸癌、膀胱癌、および卵巣癌等が例示される。また、筋肉等の非上皮性組織(間質)から発生した肉腫の非限定な例として、骨肉腫、軟骨肉腫、横紋筋肉腫、平滑筋肉腫、脂肪肉腫、および血管肉腫等が例示される。さらに、造血器由来の血液がんの非限定な例として、ホジキンリンパ腫(Hodgkin's lymphoma)および非ホジキンリンパ腫(non Hodgkin's lymphoma)を含む悪性リンパ腫、急性(acute myelocytic leukemia)または慢性骨髄性白血病(chronic myelocytic leukemia)、および急性(acute lymphatic leukemia)または慢性リンパ性白血病(chronic lymphatic leukemia)を含む白血病、ならびに多発性骨髄腫(multiple myeloma)が例示される。本明細書で広く用いられる「新生物」という用語は、新たに生じたいかなる病的組織腫瘍をも意味する。本発明においては、新生物は腫瘍の形成を生じ、それは部分的に血管形成を特徴とする。新生物は、例えば、血管腫、神経膠腫、奇形腫等の良性、あるいは、例えば、癌腫、肉腫、膠細胞腫、星状膠細胞腫、神経芽細胞腫、網膜芽腫等の悪性でありうる。
 用語「癌組織」とは、少なくとも一つの癌細胞を含む組織を意味する。したがって、例えば癌組織が癌細胞と血管を含んでいるように、癌細胞および内皮細胞を含む腫瘤(tumor mass)の形成に寄与するすべての細胞型をいう。本明細書において、腫瘤とは腫瘍組織巣(a foci of tumor tissue)をいう。「腫瘍」という用語は、一般に、良性新生物または悪性新生物を意味するために用いられる。
 例えば、いくつかの実施形態では、癌組織特異的化合物は、癌組織に存在するが非癌組織には存在しない、または癌組織には存在しないが非癌組織には存在している等の定性的な癌組織特異性で規定される化合物であり得る。別の実施形態では、癌組織特的化合物は、非癌組織と比較して異なる濃度(例えば、高濃度または低濃度)で癌組織に存在している等の定量的な癌組織特異性で規定される化合物であり得る。例えば、癌組織特異的化合物は任意の濃度で差示的に存在する。しかし、一般に癌組織特異的化合物は、少なくとも5%、少なくとも10%、少なくとも15%、少なくとも20%、少なくとも25%、少なくとも30%、少なくとも35%、少なくとも40%、少なくとも45%、少なくとも50%、少なくとも55%、少なくとも60%、少なくとも65%、少なくとも70%、少なくとも75%、少なくとも80%、少なくとも85%、少なくとも90%、少なくとも95%、少なくとも100%、少なくとも110%、少なくとも120%、少なくとも130%、少なくとも140%、少なくとも150%、少なくとも2倍、少なくとも5倍、少なくとも10倍、少なくとも50倍、少なくとも100倍、少なくとも103倍、少なくとも104倍、少なくとも105倍、少なくとも106倍、またはそれ以上であって、無限大(すなわち非癌組織に不存在である場合)までの増加する濃度で、存在することが可能であり、あるいは一般に、少なくとも5%、少なくとも10%、少なくとも15%、少なくとも20%、少なくとも25%、少なくとも30%、少なくとも35%、少なくとも40%、少なくとも45%、少なくとも50%、少なくとも60%、少なくとも65%、少なくとも70%、少なくとも75%、少なくとも80%、少なくとも85%、少なくとも90%、少なくとも95%、または少なくとも100%(すなわち、不存在を表す)まで減少する濃度で、存在することが可能である。癌組織特異的化合物は、統計的に有意である濃度(すなわち、ウェルチのt検定またはウィルコクソンの順位和検定のいずれかを用いて決定されるように、p値は0.05未満および/またはq値は0.10未満)で、好ましくは差示的に存在する。癌組織特異的化合物の非限定な一態様としては、以下のような癌組織に含まれる癌細胞、免疫細胞、ストローマ細胞に特有の代謝活性によって産生された癌組織特異的な代謝産物(癌組織特異的代謝産物;癌細胞特異的代謝産物、癌組織に浸潤している免疫細胞特異的な代謝産物、癌ストローマ細胞特異的代謝産物)である化合物が例示され得る。
癌組織特異的代謝産物
 用語「代謝」は、生物の組織内で生ずる化学変化のことをいい、「同化」および「異化」が含まれる。同化とは、分子の生合成または蓄積のことをいい、異化は分子の分解のことをいう。「代謝産物」は、物質代謝に起因する中間体または生成物である。「一次代謝産物」とは、細胞または生物の成長もしくは繁殖の過程に直接関わる代謝産物を指し、「二次代謝産物」とはそれらの成長もしくは繁殖の過程には直接関わらず、細胞または生物に共通の生命現象に直接関与しない物質を生合成する代謝の結果生じる抗生物質や色素等の生産物をいう。代謝産物は、「生体高分子」の代謝産物でもあり得るし、「低分子」の代謝産物でもあり得る。「生体高分子」は、一種類以上の反復単位からなる高分子である。生体高分子は、一般に生物系で見出され、生物を組織する細胞およびそれに付着する細胞間マトリックス、組織間マトリックス等の構造物を形成する分子量がおよそ5000以上の分子、特に多糖類(炭水化物等)およびペプチド(この用語はポリペプチドおよびタンパク質を含むようにして用いられる)およびポリヌクレオチド、同様にそれらの類似体、例えばアミノ酸類似体もしくは非アミノ酸基から構成もしくは含むそれらの化合物が挙げられる。「低分子」は、生体に存在する「生体高分子」以外の天然の化学物質をいう。本明細書に記載される非限定な一態様の癌組織特異的代謝産物として、癌細胞特異的な低分子代謝産物が好適に挙げられ(Eva Gottfried, Katrin Peter and Marina P. Kreutz, From Molecular to Modular Tumor Therapy (2010) 3 (2), 111-132)。さらには、癌組織に浸潤する免疫細胞が高く産生する代謝産物や癌細胞の生存および/または成長をサポートするストローマ細胞(癌ストローマ細胞または癌間質線維芽細胞(CAF))が高く産生する代謝産物も含まれる。浸潤する免疫細胞としては、樹状細胞、抑制性樹状細胞、抑制性T細胞、疲弊T細胞(exhausted T cell)、骨髄系由来抑制細胞(myeloma derived suppressor cell、MDSC)等が例示される。また、本発明における代謝産物には、癌組織に存在する細胞(癌細胞、免疫細胞、ストローマ細胞)が、アポトーシスやネクローシス等によって細胞死した際に、細胞内から細胞外に放出される化合物も含まれる。
 癌細胞特異的代謝産物を同定するため、トランスクリプトーム・レベルでの解析、(例えば、Dhanasekaranら(Nature (2001) 412, 822-826)、Lapointeら(Proc. Natl. Acad. Sci. U.S.A. (2004) 101, 811-816またはPerouら(Nature (2000) 406, 747-752等が例示される)もしくはプロテオーム・レベルでの解析(例えば、Ahramら(Mol. Carcinog. (2002) 33, 9-15、Hoodら(Mol. Cell. Proteomics (2005) 4, 1741-1753)のほか、代謝学的プロファイリングを中心とする代謝学(メタボロミックス)解析が、適宜使用される。すなわち、被験試料中の代謝産物を同定するために高圧液体クロトグラフィ(HPLC)、核磁気共鳴(NMR)(Brindleら(J. Mol. Recognit. (1997) 10, 182-187)、質量分析法(GatesおよびSweeley(Clin. Chem. (1978) 24, 1663-1673)(GC/MSおよび LC/MS))およびELISA等を単独でおよび/または組み合わせて用いる代謝学的プロファイリングが適宜使用され得る。
 これらの研究によって、癌細胞が低い酸素圧条件下で成育することを可能にする代謝産物(例えばブドウ糖または酸素)および生長因子の濃度勾配を変えることによって構成された腫瘍内の異質性が明らかにされた(DangおよびSemenza(Trends Biochem. Sci. (1999) 24, 68-72))。これらの研究においては、腫瘍の悪性度の異なる程度によるエネルギー利用経路の変化を理解するために細胞株モデルも使用されている(Vizanら(Cancer Res. (2005) 65, 5512-5515)。代謝学プラットフォームの技術的構成要素の非限定な一態様として、Lawtonら(Pharmacogenomics (2008) 9, 383)に記載された、試料抽出、分離、検出、分光分析、データ正規化、クラス特異的代謝産物の描写、経路マッピング、確認、および候補代謝産物の機能的特徴付けが例示される。これらの方法によって所望の癌組織における癌細胞特異的代謝産物を同定することが可能である。
 本発明で使用される癌組織特異的化合物、または癌組織特異的代謝産物の非限定な一態様として以下の化合物から選択される少なくとも一つの化合物が好適に挙げられる。少なくとも一つの化合物とは、後述する同一の抗原結合ドメインによる抗原に対する結合活性が、一種の癌組織特異的化合物、または癌組織特異的代謝産物に依存的であるほか、複数の種類の癌組織特異的化合物、または癌組織特異的代謝産物に依存的である場合を含むことを意味する。
(1)乳酸、コハク酸、クエン酸等の解糖系、またはクレブス回路の一次代謝産物
 本発明で使用される癌組織特異的化合物、とくに癌細胞特異的代謝産物の非限定な一態様として、乳酸、コハク酸、クエン酸等の周囲に存在する非癌部組織よりも癌組織において高濃度に存在するグルコース代謝の結果生成される一次代謝産物が好適に挙げられる。ピルビン酸キナーゼ、ヘキソキナーゼ、および乳酸脱水素酵素(LDH)等の解糖系(Embden-Myerhof経路)酵素の上方調節(アップレギュレーション)として特徴付けられる解糖系表現型は、Warburg効果として固形腫瘍の特徴であることが従来から知られている。
 すなわち、腫瘍細胞ではM1アイソ型ではなく嫌気条件下での解糖(erobic glycolysis)に必要なM2アイソ型のピルビン酸キナーゼが高発現していることが、生体内における腫瘍細胞の生育に有利に働いていると考えられている(Christofkら(Nature (2008) 452, 230-233)。ピルビン酸キナーゼによって生成されたピルビン酸は、嫌気条件下における乳酸脱水素酵素(LDH)による平衡反応の結果生成される、乳酸によってフィードバック阻害を受ける。当該フィードバック阻害によってミトコンドリアにおける呼吸(クレブス回路)の促進、および細胞増殖抑制が生じるため、LDH、ヘキソキナーゼ、およびグルコーストランスポーター(GLUT)の上方調節が腫瘍細胞の増殖に重要な役割を果たすといわれている(Fantinら(Cancer Cell (2006) 9, 425-434))。グルコースは解糖系で代謝され、その最終代謝産物である乳酸が腫瘍の周囲にプロトンとともに共輸送される結果、腫瘍の周辺組織のpHは酸性条件に変化するといわれている。解糖系の最終産物である乳酸、ミトコンドリアにおける呼吸の促進によって生成されるコハク酸およびクエン酸が、癌組織において蓄積していることが知られている(Teresaら(Mol. Cancer (2009) 8, 41-59))。本発明で使用される癌組織特異的化合物、とくに癌細胞特異的代謝産物の非限定な一態様として、こうした解糖系の代謝によって生成される一次代謝産物である、乳酸、コハク酸、クエン酸等が好適に挙げられる。また、細胞死により細胞内に高濃度で存在するコハク酸が細胞外に漏出することが知られている(Nature Immunology, (2008) 9, 1261-1269)。そのため、細胞死が頻繁に起こっている癌組織においてコハク酸の濃度が上昇していると考えられる。
(2)アラニン、グルタミン酸、アスパラギン酸等のアミノ酸
 上述されたグルコース代謝以外にも、嫌気条件下における生体高分子の生合成に必要な必須アミノ酸および非必須アミノ酸の連続供給が必要な腫瘍細胞ではアミノ酸代謝も変化していることが知られている。グルタミンはその側鎖に二つの窒素を含む窒素運搬体として作用する、生体においてもっとも広範に分布するアミノ酸である。グルタミンの細胞内への取込み速度が上昇している腫瘍細胞はグルタミントラップ(glutamine trap)として機能しているといわれている。こうしたグルタミンの取込みとグルタミン酸および乳酸へ変換される活性の上昇は「グルタミン分解(glutaminolysis)」と呼ばれ、形質転換された(腫瘍)細胞の特徴であると思われている(MazurekおよびEigenbrodt(Anticancer Res. (2003) 23, 1149-1154、ならびにMazurekら(J. Cell. Physiol. (1999) 181, 136-146))。その結果、癌患者は血漿中のグルタミンのレベルの減少の一方でグルタミン酸濃度の増大を示す(Drogeら(Immunobiology (1987) 174, 473-479)。そして、肺癌組織の13C放射標識されたグルコースの代謝研究によって13C標識コハク酸、 13C 標識アラニン、13C 標識グルタミン酸、および13C 標識クエン酸の濃度間で相関が観察された。本発明で使用される癌組織特異的化合物の非限定な一態様として、こうしたグルタミン分解等によって癌組織において高濃度に蓄積する、アラニン、グルタミン酸、アスパラギン酸等が好適に挙げられる。
(3)キヌレニン(kynurenine)等のアミノ酸の代謝産物
 インドールアミン2, 3-ジオキシゲナーゼ(IDO)はメラノーマ、結腸癌、および腎臓癌等の多くの癌で高発現しているトリプトファン代謝酵素であり(Uyttenhoveら(Nat. Med. (2003) 9, 1269-127)、二つのアイソフォームが存在することが知られている(Lobら(CancerImmunol. Immunother. (2009) 58, 153-157))。IDOはトリプトファンのキヌレニン(化1で表される)への変換を触媒しニコチンアミドヌクレオチド(NAD)の新生経路の最初の酵素である。また、IDOを発現しないグリオーマでは肝臓のトリプトファン2, 3-ジオキシゲナーゼ(TDO)によって、トリプトファンからキヌレニンが生成する(Opitzら(Nature (2011) 478, 7368, 197-203))。またIDOは癌組織に浸潤している樹状細胞にも発現しており、樹状細胞もキヌレニンを産生する(J. Immunol. (2008) 181, 5396-5404)。またIDOは癌組織の 骨髄系由来抑制細胞(MDSC)にも発現しており、MDSCもキヌレニンを産生する(Yuら(J. Immunol. (2013) 190, 3783-3797))。
Figure JPOXMLDOC01-appb-C000001
 キヌレニンは同種T細胞応答を抑制することが知られており(Frumentoら(J. Exp. Med. (2002) 196, 459-468)、こうした抑制を通じて腫瘍細胞が抗腫瘍免疫応答を潜り抜けるとともに、グリオーマに発現するアリル炭化水素受容体の内因性リガンドとしてキヌレニンが作用するオートクライン増殖機構を通じて、グリオーマ細胞の増殖が促進されるメカニズムが提唱されている(Opitzら(上掲))。キヌレニンはキヌレニダーゼによってアントラニル酸([化2]で表される)に、およびキヌレニン3-ヒドロキシラーゼによって3-ヒドロキシキヌレニン([化3]で表される)に変換される。アントラニル酸、および3-ヒドロキシキヌレニンはともにNADの前駆体となる3-ヒドロキシアントラニル酸に変換される。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 キヌレニンはキヌレニンアミノトランスフェラーゼによってキヌレン酸([化4]で表される)に変換される。本発明で使用される癌組織特異的化合物、とくに癌細胞特異的代謝産物の非限定な一態様として、こうしたキヌレニン、およびその代謝産物である、アントラニル酸、3-ヒドロキシキヌレニン、およびキヌレン酸等のアミノ酸の代謝産物が好適に挙げられる。
Figure JPOXMLDOC01-appb-C000004
(4)プロスタグランジンE2(Prostaglandin E2)等のアラキドン酸の代謝産物
 プロスタグランジンE2(PGE2)([化5])は、シクロオキシゲナーゼ(COX)-1/2によって合成されるプロスタグランジンおよびトロンボキサンを含むプラストノイドと呼ばれるアラキドン酸の代謝物である(WarnerおよびMitchell(FASEB J. (2004) 18, 790-804))。PGE2結腸癌細胞の増殖を促進し、そのアポトーシスを抑制する(Shengら(Cancer Res. (1998) 58, 362-366))。 多くの癌細胞ではシクロオキシゲナーゼの発現が変化していることが知られている。すなわち、COX-1はほぼすべての組織において構成的に発現しているのに対して、COX-2は腫瘍においてある種の炎症性サイトカインおよび癌遺伝子によって誘導されることが主に見出されている(WarnerおよびMitchell(前掲))。COX-2の過剰発現は乳癌の予後の悪さ(Denkertら(Clin. Breast Cancer (2004) 4, 428-433)、および卵巣癌の急速な疾患の進行(Denkerら(Mod. Pathol. (2006) 19, 1261-1269)と関連性があることも報告されている。また癌組織に浸潤している抑制性T細胞もプロスタグランジンE2を産生している(Curr. Med. Chem. (2011) 18, 5217-5223)。アラキドン酸の代謝物のプロスタグランジン、ロイコトリエン等の低分子が癌のオートクライン、および/またはパラクラインな増殖を制御する刺激因子として作用していることが知られている(Nat. Rev. Cancer (2012) 12 (11) 782-792)。本発明で使用される癌組織特異的化合物、とくに癌細胞特異的代謝産物や癌組織に浸潤している免疫細胞特異的代謝物の非限定な一態様として、こうしたプロスタグランジンE2等のアラキドン酸の代謝産物が好適に挙げられる。プロスタグランジンE2以外にも、トロンボキサンA2 (TXA2)が大腸癌等の癌組織で産生が亢進しており(J. Lab. Clin. Med. (1993) 122, 518-523)、本発明のアラキドン酸の代謝産物の非限定な一態様として好適に挙げられる。
Figure JPOXMLDOC01-appb-C000005
(5)アデノシン、アデノシン3リン酸(ATP)、アデノシン2リン酸(ADP)、アデノシン1リン酸(AMP)等のプリン環構造を有するヌクレオシド
癌細胞が細胞死すると細胞内の大量のATPが細胞外に漏出することが知られている。そのため、癌組織におけるATP濃度は正常組織と比較して著しく高い(PLoS One. (2008) 3, e2599)。複数の型の細胞がATP、ADPおよびAMPの型のアデニンヌクレオチドを遊離する。細胞外-5'-ヌクレオチダーゼ(eco-5'-nucleotidase)(CD73)のような細胞表面の細胞外酵素によって代謝される(RestaおよびThompson(Immunol. Rev. (1998) 161, 95-109)ならびにSadejら(Melanoma Res. (2006) 16, 213-222)。アデノシンは低濃度で細胞外環境に構成的に存在するプリンヌクレオシドであるが、固形癌で見出される低酸素組織では細胞外アデノシン濃度の顕著な増加が報告されている(BlayおよびHoskin(Cancer Res. (1997) 57, 2602-2605)。CD73は腫瘍および免疫細胞の表面に発現しており(Kobieら(J. Immunol. (2006) 177, 6780-6786)、乳癌(Canbolatら(Breast Cancer Res. Treat. (1996) 37, 189-193)、胃癌(Durakら(Cancer Lett. (1994) 84, 199-202)、膵臓癌(FlockeおよびMannherz(Biochim. Biophys. Acta (1991) 1076, 273-281)およびグリオブラストーマ(Bardotら(Br. J. Cancer (1994) 70, 212-218))において活性の上昇が見出されている。癌組織におけるアデノシンの蓄積は、細胞質の5'-ヌクレオチダーゼによるAMPの脱リン酸によって細胞内アデノシン生成が増加することに起因している可能性が提唱されている(HeadrickおよびWillis(Biochem. J. (1989) 261, 541-550)。さらに癌組織に浸潤している抑制性T細胞等もATP分解酵素を発現しており、アデノシンを産生している(Proc. Natl. Acad. Sci. (2006) 103 (35), 13132-13137、Curr. Med. Chem. (2011) 18, 5217-5223)。産生されたアデノシンは、A2Aレセプター等のアデノシンレセプターを介して癌組織を免疫抑制的な環境にしていると考えられている(Curr. Med. Chem. (2011),18,5217-23)。本発明で使用される癌組織特異的化合物の非限定な一態様として、こうしたATP等のプリンヌクレオチドの代謝によって癌組織において高濃度に蓄積する、ATP、ADP、AMP、またはアデノシン等が好適に挙げられる。さらにアデノシンは、adenosine deaminaseによってイノシンに分解されるため、イノシンが高濃度に蓄積する。
(6)尿酸
 尿酸は生体内におけるプリンヌクレオシドの代謝経路の産物であり、血液または間質腔等の細胞外に遊離される。また、近年では、癌組織等の病変部位に存在する死細胞から遊離されることが明らかとなっている(Nat. Med. (2007) 13, 851-856)。本発明で使用される癌組織特異的化合物の非限定な一態様として、こうしたATP等のプリンヌクレオチドの代謝によって癌組織において高濃度に蓄積する尿酸も好適に挙げられる。
(7)1-メチルニコチンアミド
 複数のヒト癌組織において酵素ニコンチンアミドN-メチルトランスフェラーゼが高発現していることが知られている。本酵素がニコチンアミドから安定的な代謝物である1-メチルニコチンアミドを産生する際、メチル供与体となるS-アデノシルメチオニン(SAM)のメチル基を消費するために、癌細胞におけるSAM濃度の減少に伴ったDNAのメチル化能を損ねる機構を通じて、ニコンチンアミドN-メチルトランスフェラーゼの高発現が腫瘍化(tumorigenesis)に寄与していることが提唱されている(Ulanovskayaら(Nat. Chem. Biol. (2013) 9 (5) 300-306))。本酵素の安定的な代謝産物である1-メチルニコチンアミドは、癌細胞の細胞外に分泌することが知られており(Yamadaら(J. Nutr. Sci. Vitaminol. (2010) 56, 83-86))、本発明で使用される癌組織特異的化合物の非限定な一態様として、こうしたニコチンアミドの代謝によって癌組織において高濃度に蓄積する1-メチルニコチンアミド等も好適に挙げられる。
炎症組織特異的化合物
 本明細書中で用いられる、用語「炎症組織特異的な化合物(炎症組織特異的化合物)」とは、非炎症組織と比較して炎症組織中に差示的に存在する化合物をいう。本明細書において、「炎症組織」とは、
関節リウマチや変形性関節症における関節
気管支喘息やCOPDにおける肺(肺胞)
炎症性腸疾患やクローン病や潰瘍性大腸炎における消化器官
肝臓、腎臓、肺における線維化症における線維化組織
臓器移植における拒絶反応が起こっている組織
動脈硬化や心不全における血管、心臓(心筋)
メタボリック症候群における内臓脂肪
アトピー性皮膚炎その他皮膚炎における皮膚組織
椎間板ヘルニアや慢性腰痛における脊髄神経
等が好適に例示される。
炎症組織特異的代謝産物
 炎症組織特異的代謝産物とは、炎症性組織に浸潤にしている免疫細胞が高く産生する代謝産物、および、炎症組織において傷害を受けている正常細胞特異的が高く産生する代謝産物である。浸潤する免疫細胞としては、エフェクターT細胞、成熟樹状細胞、好中球、顆粒細胞(肥満細胞)、好塩基球等が例示される。また、本発明における代謝産物には、炎症組織に存在する細胞(免疫細胞、正常細胞)が、アポトーシスやネクローシス等によって細胞死した際に、細胞内から細胞外に放出される化合物も含まれる。
 本発明で使用される炎症組織特異的化合物、または炎症組織特異的代謝産物の非限定な一態様として以下の化合物から選択される少なくとも一つの化合物が好適に挙げられる。少なくとも一つの化合物とは、後述する同一の抗原結合ドメインによる抗原に対する結合活性が、一種の炎症組織特異的化合物、または炎症組織特異的代謝産物に依存的であるほか、複数の種類の炎症組織特異的化合物、または炎症組織特異的代謝産物に依存的である場合を含むことを意味する。
(1)プロスタグランジンE2(Prostaglandin E2)等のアラキドン酸の代謝産物
 関節リウマチや変形性関節症においてPGE2濃度が高いことが知られている(Eur. J. Clin. Pharmacol. (1994) 46, 3-7.、Clin. Exp. Rheumatol. (1999) 17, 151-160、Am. J. Vet. Res. (2004) 65, 1269-1275.)。本発明で使用される炎症組織特異的化合物、とくに炎症細胞特異的代謝産物や炎症組織に浸潤する免疫細胞特異的代謝物の非限定な一態様として、こうしたプロスタグランジンE2等のアラキドン酸の代謝産物が好適に挙げられる。
(2)アデノシン、アデノシン3リン酸(ATP)、アデノシン2リン酸(ADP)、アデノシン1リン酸(AMP)等のプリン環構造を有するヌクレオシド
 気管支喘息に起因する炎症が起こっている肺胞においてATP濃度が高いことが知られている(Nat. Med. (2007) 13, 913-919)。また、COPDに起因する炎症が起こっている肺胞においてATP濃度が高いこともまた知られている(Am. J. Respir. Crit. Care Med. (2010) 181, 928-934)。また、関節リウマチ患者の関節液中でアデノシン濃度が高いことが観察されている(Journal of Pharmaceutical and Biomedical Analysis (2004) 36 877-882)。さらにGVHDにより拒絶反応が起こっている組織においてATP濃度が高いことが知られている(Nat. Med. (2010) 16, 1434-1438)。また、肺、肝臓、腎臓における線維化組織においてアデノシン濃度が亢進していることも知られている(FASEB J. (2008) 22, 2263-2272、J. Immunol. (2006) 176, 4449-4458、J. Am. Soc. Nephrol. (2011) 22 (5), 890-901、PLoS ONE J. (2010) 5 (2), e9242)。また肺線維症患者の線維化組織においてATP濃度が上昇していることが観察されている(Am. J. Respir. Crit. Care Med. (2010) 182, 774-783)。本発明で使用される炎症性組織特異的化合物の非限定な一態様として、こうしたATP等のプリンヌクレオチドの代謝によって炎症組織において高濃度に蓄積する、ATP、ADP、AMP、またはアデノシン等が好適に挙げられる。さらにアデノシンは、adenosine deaminaseによってイノシンに分解されるため、イノシンが高濃度に蓄積する。
(3)尿酸
 尿酸は生体内におけるプリンヌクレオシドの代謝経路の産物であり、血液または間質腔等の細胞外に遊離される。また、近年では、壊死(necrosis)を進行する細胞から遊離される尿酸が炎症性応答を促進することが明らかとなっている(J. Clin. Invest. (2010) 120 (6), 1939-1949)。本発明で使用される炎症組織特異的化合物の非限定な一態様として、こうしたATP等のプリンヌクレオチドの代謝によって炎症性組織において高濃度に蓄積する尿酸も好適に挙げられる。
抗原結合ドメイン
 本明細書において、「抗原結合ドメイン」は目的とする抗原に結合するかぎりどのような構造のドメインも使用され得る。そのようなドメインの例として、例えば、抗体の重鎖および軽鎖の可変領域、生体内に存在する細胞膜タンパクであるAvimerに含まれる35アミノ酸程度のAドメインと呼ばれるモジュール(国際公開WO2004/044011、WO2005/040229)、細胞膜に発現する糖たんぱく質であるfibronectin中のタンパク質に結合するドメインである10Fn3ドメインを含むAdnectin(国際公開WO2002/032925)、ProteinAの58アミノ酸からなる3つのヘリックスの束(bundle)を構成するIgG結合ドメインをscaffoldとするAffibody(国際公開WO1995/001937)、33アミノ酸残基を含むターンと2つの逆並行ヘリックスおよびループのサブユニットが繰り返し積み重なった構造を有するアンキリン反復(ankyrin repeat:AR)の分子表面に露出する領域であるDARPins(Designed Ankyrin Repeat proteins)(国際公開WO2002/020565)、好中球ゲラチナーゼ結合リポカリン(neutrophil gelatinase-associated lipocalin(NGAL))等のリポカリン分子において高度に保存された8つの逆並行ストランドが中央方向にねじれたバレル構造の片側を支える4つのループ領域であるAnticalin等(国際公開WO2003/029462)、ヤツメウナギ、ヌタウナギなど無顎類の獲得免疫システムとしてイムノグロブリンの構造を有さない可変性リンパ球受容体(variable lymphocyte receptor(VLR))のロイシン残基に富んだリピート(leucine-rich-repeat(LRR))モジュールが繰り返し積み重なった馬てい形の構造の内部の並行型シート構造のくぼんだ領域(国際公開WO2008/016854)が好適に挙げられる。本発明の抗原結合ドメインの好適な例として、抗体の重鎖および軽鎖の可変領域を含む抗原結合ドメインが挙げられる。こうした抗原結合ドメインの例としては、「scFv(single chain Fv)」、「単鎖抗体(single chain antibody)」、「Fv」、「scFv2(single chain Fv 2)」、「Fab」または「F(ab')2」等が好適に挙げられる。
 本発明の抗原結合分子における抗原結合ドメインは、同一のエピトープに結合することができる。ここで同一のエピトープは、例えば、配列番号:1に記載のアミノ酸配列からなるタンパク質中に存在することができる。あるいは、本発明の抗原結合分子における抗原結合ドメインは、互いに異なるエピトープに結合することができる。ここで異なるエピトープは、例えば、配列番号:1に記載のアミノ酸配列からなるタンパク質中に存在することができる。
特異的
 特異的とは、特異的に結合する分子の一方の分子がその一または複数の結合する相手方の分子以外の分子に対しては実質的に結合しない状態をいう。また、抗原結合ドメインが、ある抗原中に含まれる複数のエピトープのうち特定のエピトープに対して特異的である場合にも用いられる。また、抗原結合ドメインが結合するエピトープが複数の異なる抗原に含まれる場合には、当該抗原結合ドメインを有する抗原結合分子は当該エピトープを含む様々な抗原と結合することができる。ここで、実質的に結合しないとは上記結合活性の項で記載される方法に準じて決定され、前記相手方以外の分子に対する特異的結合分子の結合活性が、前記相手方の分子に対するの結合活性の。80%以下、通常50%以下、好ましくは30%以下、特に好ましくは15%以下の結合活性を示すことをいう。
細胞傷害活性
 本発明の非限定な一態様では、癌組織特異的化合物の濃度に応じて抗原に対する結合活性が変化する抗原結合ドメインを含み、膜型分子をその細胞膜に発現する細胞に対する細胞傷害活性を有する抗原結合分子、および当該抗原結合分子を有効成分として含む医薬組成物が提供される。本発明において細胞傷害活性とは、例えば抗体依存性細胞介在性細胞傷害(antibody-dependent cell-mediated cytotoxicity:ADCC)活性、補体依存性細胞傷害(complement-dependent cytotoxicity:CDC)活性およびT細胞による細胞傷害活性等が挙げられる。本発明において、CDC活性とは補体系による細胞傷害活性を意味する。一方ADCC活性とは、標的細胞の細胞膜に発現された膜型分子に結合する抗原結合ドメインを含む抗原結合分子のFc領域に、免疫細胞等が当該免疫細胞に発現したFcγレセプターを介して結合し、当該免疫細胞が標的細胞に傷害を与える活性を意味する。目的の抗原結合分子がADCC活性を有するか否か、又はCDC活性を有するか否かは公知の方法により測定され得る(例えば、Current protocols in Immunology, Chapter7. Immunologic studies in humans、Coliganら編(1993)等)。
 具体的には、まず、エフェクター細胞、補体溶液、標的細胞の調製が実施される。
 (1)エフェクター細胞の調製
 CBA/Nマウスなどから摘出された脾臓から、RPMI1640培地(Invitrogen)中で脾臓細胞が分離される。10%ウシ胎児血清(FBS、HyClone)を含む同培地で洗浄された当該脾臓細胞の濃度を5×106/mLに調製することによって、エフェクター細胞が調製され得る。
 (2)補体溶液の調製
 10% FBS含有培地(Invitrogen)によってBaby Rabbit Complement(CEDARLANE)を10倍に希釈することによって、補体溶液が調製され得る。
 (3)標的細胞の調製
 抗原を発現する細胞を0.2 mCiの51Cr-クロム酸ナトリウム(GEヘルスケアバイオサイエンス)とともに、10% FBS含有DMEM培地中で37℃にて1時間培養することにより該標的細胞が放射性標識され得る。放射性標識後、10% FBS含有RPMI1640培地にて3回洗浄された細胞の濃度を2×105/mLに調製することによって、当該標的細胞が調製され得る。
 ADCC活性、又はCDC活性は下記に述べる方法により測定され得る。ADCC活性の測定の場合は、96ウェルU底プレート(Becton Dickinson)に加えられた各50μlずつの標的細胞と抗原結合分子が室温にて15分間反応させられる。その後、エフェクター細胞100μlが加えられた当該プレートが、炭酸ガスインキュベーター内で4時間静置される。抗原結合分子の終濃度は例えば0または10μg/ml等の濃度が設定され得る。静置後、各ウェルから回収された100μlの上清の放射活性が、ガンマカウンター(COBRAII AUTO-GAMMA、MODEL D5005、Packard Instrument Company)を用いて測定される。測定値を用いて細胞傷害活性(%)が(A-C) / (B-C) x 100の計算式に基づいて計算され得る。Aは各試料における放射活性(cpm)、Bは1% NP-40(nacalai tesque)を加えた試料における放射活性(cpm)、Cは標的細胞のみを含む試料の放射活性(cpm)を表す。
 一方、CDC活性の測定の場合は、96ウェル平底プレート(Becton Dickinson)に加えられた各50μlずつの標的細胞と抗原結合分子が氷上にて15分間反応させられる。その後、補体溶液100μlが加えられた当該プレートが、炭酸ガスインキュベーター内で4時間静置される。抗原結合分子の終濃度は例えば0または3μg/mL等の濃度が設定され得る。静置後、各ウェルから回収された100μlの上清の放射活性が、ガンマカウンターを用いて測定される。細胞傷害活性はADCC活性の測定と同様に計算され得る。
 また、後述される、化学療法剤、毒性ペプチド或いは放射性化学物質などの細胞傷害性物質が結合された修飾抗原結合分子修飾物も本発明の細胞傷害活性を有する抗原結合分子として好適に使用され得る。このような修飾抗原結合分子(以下、抗原結合分子薬物コンジュゲートと称する。)は、得られた抗原結合分子を化学的に修飾することによって取得され得る。なお、抗原結合分子の修飾方法として、抗体薬物コンジュゲート等の分野においてすでに確立されている方法が適宜使用され得る。また、毒性ペプチドが結合された修飾抗原結合分子は、当該毒性ペプチドをコードする遺伝子と本発明の抗原結合分子をコードする遺伝子がインフレームで連結された融合遺伝子を、適切な宿主細胞中で発現させた後に、当該細胞の培養液から単離することによって、取得され得る。
中和活性
 本発明の非限定な一態様では、癌組織特異的化合物の濃度に応じて抗原に対する結合活性が変化する抗原結合ドメインを含み、当該膜型分子に対する中和活性を有する抗原結合分子を有効成分として含む免疫応答を誘導する医薬組成物が提供される。本発明の非限定な別の一態様では、癌組織特異的化合物の濃度に応じて抗原に対する結合活性が変化する抗原結合ドメインを含み、膜型分子をその細胞膜に発現する細胞に対する細胞傷害活性に加えて、当該膜型分子に対する中和活性を有する抗原結合分子を有効成分として含む免疫応答を誘導する医薬組成物が提供される。一般的に、中和活性とは、ウイルスや毒素など、細胞に対して生物学的活性を有するリガンドの当該生物学的活性を阻害する活性をいう。即ち、中和活性を有する物質とは、当該リガンド又は当該リガンドが結合するレセプターに結合し、当該リガンドとレセプターの結合を阻害する物質をさす。中和活性によりリガンドとの結合を阻止されたレセプターは、当該レセプターを通じた生物学的活性を発揮することができなくなる。抗原結合分子が抗体である場合、このような中和活性を有する抗体は一般に中和抗体と呼ばれる。ある被検物質の中和活性は、リガンドの存在下における生物学的活性をその被検物質の存在又は非存在下の条件の間で比較することにより測定され得る。
 例えば、IL-6レセプターの主要なリガンドとして考えられているものは配列番号:27で表されるIL-6が好適に挙げられる。そのアミノ末端が細胞外ドメインを形成するI型膜タンパク質であるIL-6レセプターは、IL-6によって二量体化が誘導されたgp130レセプターとともにヘテロ四量体を形成する(Heinrichら(Biochem. J. (1998) 334, 297-314))。当該ヘテロ四量体の形成によって、gp130レセプターに会合しているJakが活性化される。Jakは自己リン酸化とレセプターのリン酸化を行う。受容体及びJakのリン酸化部位は、Stat3のようなSH2を持つStatファミリーに属する分子や、MAPキナーゼ、PI3/Akt、そのほかのSH2を持つタンパク質やアダプターに対して、結合部位の役割を果たす。次に、gp130レセプターに結合したStatが、Jakによってリン酸化される。リン酸化されたStatは二量体を形成して核内に移行し、標的遺伝子の転写を調節する。JakまたはStatは他のクラスのレセプターを介してシグナルカスケードに関与することもできる。脱制御されたIL-6のシグナルカスケードは、自己免疫疾患の病態や炎症、多発性骨髄腫や前立腺癌などの癌で観察される。癌遺伝子として作用し得るStat3は、多くの癌において恒常的に活性化している。前立腺癌と多発性骨髄腫では、IL-6レセプターからのシグナルカスケードと、上皮成長因子受容体 (EGFR) ファミリーメンバーからのシグナルカスケードとの間にクロストークがある(Ishikawaら(J. Clin. Exp. Hematopathol. (2006) 46 (2), 55-66))。
 こうした細胞内のシグナルカスケードは細胞種毎に異なるため、目的とする標的細胞毎に適宜標的分子を設定することができ、上記の因子に限定されるものではない。生体内シグナルの活性化を測定することにより、中和活性を評価することができる。また、生体内シグナルカスケードの下流に存在する標的遺伝子に対する転写誘導作用を指標として、生体内シグナルの活性化を検出することもできる。標的遺伝子の転写活性の変化は、レポーターアッセイの原理によって検出することができる。具体的には、標的遺伝子の転写因子又はプロモーター領域の下流にGFP(Green Fluorescence Protein)やルシフェラーゼなどのレポーター遺伝子を配し、そのレポーター活性を測定することにより、転写活性の変化をレポーター活性として測定することができる。生体内シグナルの活性化の測定キットは市販のものを適宜使用することができる(例えば、Mercury Pathway Profiling Luciferase System(Clontech)等)。
 更に、通常は細胞増殖を促進する方向に働くシグナルカスケードに作用するEGFレセプターファミリー等のレセプターリガンドの中和活性を測定する方法として、標的とする細胞の増殖活性を測定することによって、抗原結合分子の中和活性を評価することができる。例えば、例えばHB-EGF等その増殖がEGFファミリーの成長因子によって促進される細胞の増殖に対する、抗HB-EGF抗体の中和活性に基づく抑制効果を評価又は測定する方法として、以下の方法が好適に使用される。試験管内において当該細胞増殖抑制活性を評価又は測定する方法としては、培地中に添加した[3H]ラベルしたチミジンの生細胞による取り込みをDNA複製能力の指標として測定する方法が用いられる。より簡便な方法としてトリパンブルー等の色素を細胞外に排除する能力を顕微鏡下で計測する色素排除法や、MTT法が用いられる。後者は、生細胞がテトラゾリウム塩であるMTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide)を青色のホルマザン産物へ転換する能力を有することを利用している。より具体的には、被検細胞の培養液にリガンドと共に被検抗体を添加して一定時間を経過した後に、MTT溶液を培養液に加えて一定時間静置することによりMTTを細胞に取り込ませる。その結果、黄色の化合物であるMTTが細胞内のミトコンドリア内のコハク酸脱水素酵素により青色の化合物に変換される。この青色生成物を溶解し呈色させた後にその吸光度を測定することにより生細胞数の指標とするものである。MTT以外に、MTS、XTT、WST-1、WST-8等の試薬も市販されており(nacalai tesqueなど)好適に使用することができる。活性の測定に際しては、対照抗体として抗HB-EGF抗体と同一のアイソタイプを有する抗体で当該細胞増殖抑制活性を有しない結合抗体を、抗HB-EGF抗体と同様に使用して、抗HB-EGF抗体が対照抗体よりも強い細胞増殖抑制活性を示すことにより活性を判定することができる。
 活性を評価するための細胞として、例えば、その増殖がHB-EGFによって促進される細胞である、卵巣癌細胞であるRMG-1細胞株や、ヒトEGFRの細胞外ドメインとマウスG-CSF受容体の細胞内ドメインをインフレームで融合した融合タンパク質であるhEGFR/mG-CSFRをコードする遺伝子を発現する様に結合したベクターによって形質転換されたマウスBa/F3細胞等も好適に使用され得る。このように、当業者は、活性を評価するための細胞を適宜選択することによって前記の細胞増殖活性の測定に使用することが可能である。
抗体
 本明細書において、抗体とは、天然のものであるかまたは部分的もしくは完全合成により製造された免疫グロブリンをいう。抗体はそれが天然に存在する血漿や血清等の天然資源や抗体を産生するハイブリドーマ細胞の培養上清から単離され得るし、または遺伝子組換え等の手法を用いることによって部分的にもしくは完全に合成され得る。抗体の例としては免疫グロブリンのアイソタイプおよびそれらのアイソタイプのサブクラスが好適に挙げられる。ヒトの免疫グロブリンとして、IgG1、IgG2、IgG3、IgG4、IgA1、IgA2、IgD、IgE、IgMの9種類のクラス(アイソタイプ)が知られている。本発明の抗体には、これらのアイソタイプのうちIgG1、IgG2、IgG3、IgG4が含まれ得る。ヒトIgG1、ヒトIgG2、ヒトIgG3、ヒトIgG4定常領域としては、遺伝子多型による複数のアロタイプ配列がSequences of proteins of immunological interest, NIH Publication No.91-3242 に記載されているが、本発明においてはそのいずれであっても良い。特にヒトIgG1の配列としては、EUナンバリングで表される356-358位のアミノ酸配列がDELであってもEEMであってもよい。また、ヒトIgκ(Kappa)定常領域とヒトIgλ (Lambda)定常領域としては、遺伝子多型による複数のアロタイプ配列がSequences of proteins of immunological interest, NIH Publication No.91-3242に記載されているが、本発明においてはそのいずれであっても良い。
 所望の結合活性を有する抗体を作製する方法は当業者において公知である。以下に、IL-6Rに結合する抗体(抗IL-6R抗体)を作製する方法が例示される。IL-6R以外の抗原に結合する抗体も下記の例示に準じて適宜作製され得る。
 抗IL-6R抗体は、公知の手段を用いてポリクローナルまたはモノクローナル抗体として取得され得る。抗IL-6R抗体としては、哺乳動物由来のモノクローナル抗体が好適に作製され得る。哺乳動物由来のモノクローナル抗体には、ハイブリドーマにより産生されるもの、および遺伝子工学的手法により抗体遺伝子を含む発現ベクターで形質転換した宿主細胞によって産生されるもの等が含まれる。なお本願発明のモノクローナル抗体には、「ヒト化抗体」や「キメラ抗体」が含まれる。
 モノクローナル抗体産生ハイブリドーマは、公知技術を使用することによって、例えば以下のように作製され得る。すなわち、IL-6Rタンパク質を感作抗原として使用して、通常の免疫方法にしたがって哺乳動物が免疫される。得られる免疫細胞が通常の細胞融合法によって公知の親細胞と融合される。次に、通常のスクリーニング法によって、モノクローナルな抗体産生細胞をスクリーニングすることによって抗IL-6R抗体を産生するハイブリドーマが選択され得る。
 具体的には、モノクローナル抗体の作製は例えば以下に示すように行われる。まず、配列番号:2にそのヌクレオチド配列が開示されたIL-6R遺伝子を発現することによって、抗体取得の感作抗原として使用される配列番号:1で表されるIL-6Rタンパク質が取得され得る。すなわち、IL-6Rをコードする遺伝子配列を公知の発現ベクターに挿入することによって適当な宿主細胞が形質転換される。当該宿主細胞中または培養上清中から所望のヒトIL-6Rタンパク質が公知の方法で精製される。培養上清中から可溶型のIL-6Rを取得するためには、例えば、Mullbergら(J. Immunol. (1994) 152 (10), 4958-4968)によって記載されているような可溶型IL-6Rである、配列番号:1で表されるIL-6Rポリペプチド配列のうち、1から357番目のアミノ酸からなるタンパク質が、配列番号:1で表されるIL-6Rタンパク質の代わりに発現される。また、精製した天然のIL-6Rタンパク質もまた同様に感作抗原として使用され得る。
 哺乳動物に対する免疫に使用する感作抗原として当該精製IL-6Rタンパク質が使用できる。IL-6Rの部分ペプチドもまた感作抗原として使用できる。この際、当該部分ペプチドはヒトIL-6Rのアミノ酸配列より化学合成によっても取得され得る。また、IL-6R遺伝子の一部を発現ベクターに組込んで発現させることによっても取得され得る。さらにはタンパク質分解酵素を用いてIL-6Rタンパク質を分解することによっても取得され得るが、部分ペプチドとして用いるIL-6Rペプチドの領域および大きさは特に特別の態様に限定されない。好ましい領域は配列番号:1のアミノ酸配列において20-357番目のアミノ酸に相当するアミノ酸配列から任意の配列が選択され得る。感作抗原とするペプチドを構成するアミノ酸の数は少なくとも5以上、例えば6以上、或いは7以上であることが好ましい。より具体的には8~50、好ましくは10~30残基のペプチドが感作抗原として使用され得る。
 また、IL-6Rタンパク質の所望の部分ポリペプチドやペプチドを異なるポリペプチドと融合した融合タンパク質が感作抗原として利用され得る。感作抗原として使用される融合タンパク質を製造するために、例えば、抗体のFc断片やペプチドタグなどが好適に利用され得る。融合タンパク質を発現するベクターは、所望の二種類又はそれ以上のポリペプチド断片をコードする遺伝子がインフレームで融合され、当該融合遺伝子が前記のように発現ベクターに挿入されることにより作製され得る。融合タンパク質の作製方法はMolecular Cloning 2nd ed. (Sambrook, J et al., Molecular Cloning 2nd ed., 9.47-9.58(1989)Cold Spring Harbor Lab. press)に記載されている。感作抗原として用いられるIL-6Rの取得方法及びそれを用いた免疫方法は、国際公開WO2003/000883、WO2004/022754、WO2006/006693等にも具体的に記載されている。
 当該感作抗原で免疫される哺乳動物としては、特定の動物に限定されるものではないが、細胞融合に使用する親細胞との適合性を考慮して選択するのが好ましい。一般的にはげっ歯類の動物、例えば、マウス、ラット、ハムスター、あるいはウサギ、サル等が好適に使用される。
 公知の方法にしたがって上記の動物が感作抗原により免疫される。例えば、一般的な方法として、感作抗原が哺乳動物の腹腔内または皮下に注射によって投与されることにより免疫が実施される。具体的には、PBS(Phosphate-Buffered Saline)や生理食塩水等で適当な希釈倍率で希釈された感作抗原が、所望により通常のアジュバント、例えばフロイント完全アジュバントと混合され、乳化された後に、該感作抗原が哺乳動物に4から21日毎に数回投与される。また、感作抗原の免疫時には適当な担体が使用され得る。特に分子量の小さい部分ペプチドが感作抗原として用いられる場合には、アルブミン、キーホールリンペットヘモシアニン等の担体タンパク質と結合した該感作抗原ペプチドを免疫することが望ましい場合もある。
 また、所望の抗体を産生するハイブリドーマは、DNA免疫を使用し、以下のようにしても作製され得る。DNA免疫とは、免疫動物中で抗原タンパク質をコードする遺伝子が発現され得るような態様で構築されたベクターDNAが投与された当該免疫動物中で、感作抗原が当該免疫動物の生体内で発現されることによって、免疫刺激が与えられる免疫方法である。蛋白質抗原が免疫動物に投与される一般的な免疫方法と比べて、DNA免疫には、次のような優位性が期待される。
-IL-6Rのような膜蛋白質の構造を維持して免疫刺激が与えられ得る
-免疫抗原を精製する必要が無い
 DNA免疫によって本発明のモノクローナル抗体を得るために、まず、IL-6Rタンパク質を発現するDNAが免疫動物に投与される。IL-6RをコードするDNAは、PCRなどの公知の方法によって合成され得る。得られたDNAが適当な発現ベクターに挿入され、免疫動物に投与される。発現ベクターとしては、たとえばpcDNA3.1などの市販の発現ベクターが好適に利用され得る。ベクターを生体に投与する方法として、一般的に用いられている方法が利用され得る。たとえば、発現ベクターが吸着した金粒子が、gene gunで免疫動物個体の細胞内に導入されることによってDNA免疫が行われる。さらに、IL-6Rを認識する抗体の作製は国際公開WO2003/104453に記載された方法を用いても作製され得る。
 このように哺乳動物が免疫され、血清中におけるIL-6Rに結合する抗体力価の上昇が確認された後に、哺乳動物から免疫細胞が採取され、細胞融合に供される。好ましい免疫細胞としては、特に脾細胞が使用され得る。
 前記免疫細胞と融合される細胞として、哺乳動物のミエローマ細胞が用いられる。ミエローマ細胞は、スクリーニングのための適当な選択マーカーを備えていることが好ましい。選択マーカーとは、特定の培養条件の下で生存できる(あるいはできない)形質を指す。選択マーカーには、ヒポキサンチン-グアニン-ホスホリボシルトランスフェラーゼ欠損(以下HGPRT欠損と省略する)、あるいはチミジンキナーゼ欠損(以下TK欠損と省略する)などが公知である。HGPRTやTKの欠損を有する細胞は、ヒポキサンチン-アミノプテリン-チミジン感受性(以下HAT感受性と省略する)を有する。HAT感受性の細胞はHAT選択培地中でDNA合成を行うことができず死滅するが、正常な細胞と融合すると正常細胞のサルベージ回路を利用してDNAの合成を継続することができるためHAT選択培地中でも増殖するようになる。
 HGPRT欠損やTK欠損の細胞は、それぞれ6チオグアニン、8アザグアニン(以下8AGと省略する)、あるいは5'ブロモデオキシウリジンを含む培地で選択され得る。これらのピリミジンアナログをDNA中に取り込む正常な細胞は死滅する。他方、これらのピリミジンアナログを取り込めないこれらの酵素を欠損した細胞は、選択培地の中で生存することができる。この他G418耐性と呼ばれる選択マーカーは、ネオマイシン耐性遺伝子によって2-デオキシストレプタミン系抗生物質(ゲンタマイシン類似体)に対する耐性を与える。細胞融合に好適な種々のミエローマ細胞が公知である。
 このようなミエローマ細胞として、例えば、P3(P3x63Ag8.653)(J. Immunol.(1979)123 (4), 1548-1550)、P3x63Ag8U.1(Current Topics in Microbiology and Immunology(1978)81, 1-7)、NS-1(C. Eur. J. Immunol.(1976)6 (7), 511-519)、MPC-11(Cell(1976)8 (3), 405-415)、SP2/0(Nature(1978)276 (5685), 269-270)、FO(J. Immunol. Methods(1980)35 (1-2), 1-21)、S194/5.XX0.BU.1(J. Exp. Med.(1978)148 (1), 313-323)、R210(Nature(1979)277 (5692), 131-133)等が好適に使用され得る。
 基本的には公知の方法、たとえば、ケーラーとミルステインらの方法(Methods Enzymol.(1981)73, 3-46)等に準じて、前記免疫細胞とミエローマ細胞との細胞融合が行われる。
 より具体的には、例えば細胞融合促進剤の存在下で通常の栄養培養液中で、前記細胞融合が実施され得る。融合促進剤としては、例えばポリエチレングリコール(PEG)、センダイウイルス(HVJ)等が使用され、更に融合効率を高めるために所望によりジメチルスルホキシド等の補助剤が添加されて使用される。
 免疫細胞とミエローマ細胞との使用割合は任意に設定され得る。例えば、ミエローマ細胞に対して免疫細胞を1から10倍とするのが好ましい。前記細胞融合に用いる培養液としては、例えば、前記ミエローマ細胞株の増殖に好適なRPMI1640培養液、MEM培養液、その他、この種の細胞培養に用いられる通常の培養液が使用され、さらに、牛胎児血清(FCS)等の血清補液が好適に添加され得る。
 細胞融合は、前記免疫細胞とミエローマ細胞との所定量を前記培養液中でよく混合し、予め37℃程度に加温されたPEG溶液(例えば平均分子量1000から6000程度)が通常30から60%(w/v)の濃度で添加される。混合液が緩やかに混合されることによって所望の融合細胞(ハイブリドーマ)が形成される。次いで、上記に挙げた適当な培養液が逐次添加され、遠心して上清を除去する操作を繰り返すことによりハイブリドーマの生育に好ましくない細胞融合剤等が除去され得る。
 このようにして得られたハイブリドーマは、通常の選択培養液、例えばHAT培養液(ヒポキサンチン、アミノプテリンおよびチミジンを含む培養液)で培養することにより選択され得る。所望のハイブリドーマ以外の細胞(非融合細胞)が死滅するのに十分な時間(通常、係る十分な時間は数日から数週間である)上記HAT培養液を用いた培養が継続され得る。次いで、通常の限界希釈法によって、所望の抗体を産生するハイブリドーマのスクリーニングおよび単一クローニングが実施される。
 このようにして得られたハイブリドーマは、細胞融合に用いられたミエローマが有する選択マーカーに応じた選択培養液を利用することによって選択され得る。例えばHGPRTやTKの欠損を有する細胞は、HAT培養液(ヒポキサンチン、アミノプテリンおよびチミジンを含む培養液)で培養することにより選択され得る。すなわち、HAT感受性のミエローマ細胞を細胞融合に用いた場合、HAT培養液中で、正常細胞との細胞融合に成功した細胞が選択的に増殖し得る。所望のハイブリドーマ以外の細胞(非融合細胞)が死滅するのに十分な時間、上記HAT培養液を用いた培養が継続される。具体的には、一般に、数日から数週間の培養によって、所望のハイブリドーマが選択され得る。次いで、通常の限界希釈法によって、所望の抗体を産生するハイブリドーマのスクリーニングおよび単一クローニングが実施され得る。
 所望の抗体のスクリーニングおよび単一クローニングが、公知の抗原抗体反応に基づくスクリーニング方法によって好適に実施され得る。例えば、IL-6Rに結合するモノクローナル抗体は、細胞表面に発現したIL-6Rに結合することができる。このようなモノクローナル抗体は、たとえば、FACS(fluorescence activated cell sorting)によってスクリーニングされ得る。FACSは、蛍光抗体と接触させた細胞をレーザー光で解析し、個々の細胞が発する蛍光を測定することによって細胞表面への抗体の結合を測定することを可能にするシステムである。
 FACSによって本発明のモノクローナル抗体を産生するハイブリドーマをスクリーニングするためには、まずIL-6Rを発現する細胞を調製する。スクリーニングのための好ましい細胞は、IL-6Rを強制発現させた哺乳動物細胞である。宿主細胞として使用した形質転換されていない哺乳動物細胞を対照として用いることによって、細胞表面のIL-6Rに対する抗体の結合活性が選択的に検出され得る。すなわち、宿主細胞に結合せず、IL-6R強制発現細胞に結合する抗体を産生するハイブリドーマを選択することによって、IL-6Rモノクローナル抗体を産生するハイブリドーマが取得され得る。
 あるいは固定化したIL-6R発現細胞に対する抗体の結合活性がELISAの原理にもとづいて評価され得る。たとえば、ELISAプレートのウェルにIL-6R発現細胞が固定化される。ハイブリドーマの培養上清をウェル内の固定化細胞に接触させ、固定化細胞に結合する抗体が検出される。モノクローナル抗体がマウス由来の場合、細胞に結合した抗体は、抗マウスイムノグロブリン抗体によって検出され得る。これらのスクリーニングによって選択された、抗原に対する結合能を有する所望の抗体を産生するハイブリドーマは、限界希釈法等によりクローニングされ得る。
 このようにして作製されるモノクローナル抗体を産生するハイブリドーマは通常の培養液中で継代培養され得る。また、当該ハイブリドーマは液体窒素中で長期にわたって保存され得る。
 当該ハイブリドーマを通常の方法に従い培養し、その培養上清から所望のモノクローナル抗体が取得され得る。あるいはハイブリドーマをこれと適合性がある哺乳動物に投与して増殖せしめ、その腹水からモノクローナル抗体が取得され得る。前者の方法は、高純度の抗体を得るのに好適なものである。
 当該ハイブリドーマ等の抗体産生細胞からクローニングされる抗体遺伝子によってコードされる抗体も好適に利用され得る。クローニングした抗体遺伝子を適当なベクターに組み込んで宿主に導入することによって、当該遺伝子によってコードされる抗体が発現する。抗体遺伝子の単離と、ベクターへの導入、そして宿主細胞の形質転換のための方法は例えば、Vandammeらによって既に確立されている(Eur. J. Biochem.(1990)192 (3), 767-775)。下記に述べるように組換え抗体の製造方法もまた公知である。
 たとえば、抗IL-6R抗体を産生するハイブリドーマ細胞から、抗IL-6R抗体の可変領域(V領域)をコードするcDNAが取得される。そのために、通常、まずハイブリドーマから全RNAが抽出される。細胞からmRNAを抽出するための方法として、たとえば次のような方法を利用することができる。
-グアニジン超遠心法(Biochemistry (1979) 18 (24), 5294-5299)
-AGPC法(Anal. Biochem. (1987) 162 (1), 156-159)
 抽出されたmRNAは、mRNA Purification Kit (GEヘルスケアバイオサイエンス製)等を使用して精製され得る。あるいは、QuickPrep mRNA Purification Kit (GEヘルスケアバイオサイエンス製)などのように、細胞から直接全mRNAを抽出するためのキットも市販されている。このようなキットを用いて、ハイブリドーマからmRNAが取得され得る。得られたmRNAから逆転写酵素を用いて抗体V領域をコードするcDNAが合成され得る。cDNAは、AMV Reverse Transcriptase First-strand cDNA Synthesis Kit(生化学工業社製)等によって合成され得る。また、cDNAの合成および増幅のために、SMART RACE cDNA 増幅キット(Clontech製)およびPCRを用いた5'-RACE法(Proc. Natl. Acad. Sci. U.S.A. (1988) 85 (23), 8998-9002、Nucleic Acids Res. (1989) 17 (8), 2919-2932)が適宜利用され得る。更にこうしたcDNAの合成の過程においてcDNAの両末端に後述する適切な制限酵素サイトが導入され得る。
 得られたPCR産物から目的とするcDNA断片が精製され、次いでベクターDNAと連結される。このように組換えベクターが作製され、大腸菌等に導入されコロニーが選択された後に、該コロニーを形成した大腸菌から所望の組換えベクターが調製され得る。そして、当該組換えベクターが目的とするcDNAの塩基配列を有しているか否かについて、公知の方法、例えば、ジデオキシヌクレオチドチェインターミネーション法等により確認される。
 可変領域をコードする遺伝子を取得するためには、可変領域遺伝子増幅用のプライマーを使った5'-RACE法を利用するのが簡便である。まずハイブリドーマ細胞より抽出されたRNAを鋳型としてcDNAが合成され、5'-RACE cDNAライブラリが得られる。5'-RACE cDNAライブラリの合成にはSMART RACE cDNA 増幅キットなど市販のキットが適宜用いられる。
 得られた5'-RACE cDNAライブラリを鋳型として、PCR法によって抗体遺伝子が増幅される。公知の抗体遺伝子配列をもとにマウス抗体遺伝子増幅用のプライマーがデザインされ得る。これらのプライマーは、イムノグロブリンのサブクラスごとに異なる塩基配列である。したがって、サブクラスは予めIso Stripマウスモノクローナル抗体アイソタイピングキット(ロシュ・ダイアグノスティックス)などの市販キットを用いて決定しておくことが望ましい。
 具体的には、たとえばマウスIgGをコードする遺伝子の取得を目的とするときには、重鎖としてγ1、γ2a、γ2b、γ3、軽鎖としてκ鎖とλ鎖をコードする遺伝子の増幅が可能なプライマーが利用され得る。IgGの可変領域遺伝子を増幅するためには、一般に3'側のプライマーには可変領域に近い定常領域に相当する部分にアニールするプライマーが利用される。一方5'側のプライマーには、5' RACE cDNAライブラリ作製キットに付属するプライマーが利用される。
 こうして増幅されたPCR産物を利用して、重鎖と軽鎖の組み合せからなるイムノグロブリンが再構成され得る。再構成されたイムノグロブリンの、IL-6Rに対する結合活性を指標として、所望の抗体がスクリーニングされ得る。たとえばIL-6Rに対する抗体の取得を目的とするとき、抗体のIL-6Rへの結合は、特異的であることがさらに好ましい。IL-6Rに結合する抗体は、たとえば次のようにしてスクリーニングされ得る;
(1)ハイブリドーマから得られたcDNAによってコードされるV領域を含む抗体をIL-6R発現細胞に接触させる工程、
(2)IL-6R発現細胞と抗体との結合を検出する工程、および
(3)IL-6R発現細胞に結合する抗体を選択する工程。
 抗体とIL-6R発現細胞との結合を検出する方法は公知である。具体的には、先に述べたFACSなどの手法によって、抗体とIL-6R発現細胞との結合が検出され得る。抗体の結合活性を評価するためにIL-6R発現細胞の固定標本が適宜利用され得る。
 結合活性を指標とする抗体のスクリーニング方法として、ファージベクターを利用したパニング法も好適に用いられる。ポリクローナルな抗体発現細胞群より抗体遺伝子を重鎖と軽鎖のサブクラスのライブラリとして取得した場合には、ファージベクターを利用したスクリーニング方法が有利である。重鎖と軽鎖の可変領域をコードする遺伝子は、適当なリンカー配列で連結することによってシングルチェインFv(scFv)を形成することができる。scFvをコードする遺伝子をファージベクターに挿入することにより、scFvを表面に発現するファージが取得され得る。このファージと所望の抗原との接触の後に、抗原に結合したファージを回収することによって、目的の結合活性を有するscFvをコードするDNAが回収され得る。この操作を必要に応じて繰り返すことにより、所望の結合活性を有するscFvが濃縮され得る。
 目的とする抗IL-6R抗体のV領域をコードするcDNAが得られた後に、当該cDNAの両末端に挿入した制限酵素サイトを認識する制限酵素によって該cDNAが消化される。好ましい制限酵素は、抗体遺伝子を構成する塩基配列に出現する頻度が低い塩基配列を認識して消化する。更に1コピーの消化断片をベクターに正しい方向で挿入するためには、付着末端を与える制限酵素の挿入が好ましい。上記のように消化された抗IL-6R抗体のV領域をコードするcDNAを適当な発現ベクターに挿入することによって、抗体発現ベクターが取得され得る。このとき、抗体定常領域(C領域)をコードする遺伝子と、前記V領域をコードする遺伝子とがインフレームで融合されれば、キメラ抗体が取得される。ここで、キメラ抗体とは、定常領域と可変領域の由来が異なることをいう。したがって、マウス-ヒトなどの異種キメラ抗体に加え、ヒト-ヒト同種キメラ抗体も、本発明におけるキメラ抗体に含まれる。予め定常領域を有する発現ベクターに、前記V領域遺伝子を挿入することによって、キメラ抗体発現ベクターが構築され得る。具体的には、たとえば、所望の抗体定常領域をコードするDNAを保持した発現ベクターの5'側に、前記V領域遺伝子を消化する制限酵素の制限酵素認識配列が適宜配置され得る。同じ組み合わせの制限酵素で消化された両者がインフレームで融合されることによって、キメラ抗体発現ベクターが構築される。
 抗IL-6Rモノクローナル抗体を製造するために、抗体遺伝子が発現制御領域による制御の下で発現するように発現ベクターに組み込まれる。抗体を発現するための発現制御領域とは、例えば、エンハンサーやプロモーターを含む。また、発現した抗体が細胞外に分泌されるように、適切なシグナル配列がアミノ末端に付加され得る。後に記載される実施例ではシグナル配列として、アミノ酸配列MGWSCIILFLVATATGVHS(配列番号:3)を有するペプチドが使用されているが、これ以外にも適したシグナル配列が付加される。発現されたポリペプチドは上記配列のカルボキシル末端部分で切断され、切断されたポリペプチドが成熟ポリペプチドとして細胞外に分泌され得る。次いで、この発現ベクターによって適当な宿主細胞が形質転換されることによって、抗IL-6R抗体をコードするDNAを発現する組換え細胞が取得され得る。
 抗体遺伝子の発現のために、抗体重鎖(H鎖)および軽鎖(L鎖)をコードするDNAは、それぞれ別の発現ベクターに組み込まれる。H鎖とL鎖が組み込まれたベクターによって、同じ宿主細胞に同時に形質転換(co-transfect)されることによって、H鎖とL鎖を備えた抗体分子が発現され得る。あるいはH鎖およびL鎖をコードするDNAが単一の発現ベクターに組み込まれることによって宿主細胞が形質転換され得る(国際公開WO 1994/011523を参照のこと)。
 単離された抗体遺伝子を適当な宿主に導入することによって抗体を作製するための宿主細胞と発現ベクターの多くの組み合わせが公知である。これらの発現系は、いずれも本発明の抗原結合ドメインを単離するのに応用され得る。真核細胞が宿主細胞として使用される場合、動物細胞、植物細胞、あるいは真菌細胞が適宜使用され得る。具体的には、動物細胞としては、次のような細胞が例示され得る。
(1)哺乳類細胞、:CHO(Chinese hamster ovary cell line)、COS(Monkey kidney cell line)、ミエローマ(Sp2/0、NS0等)、BHK (baby hamster kidney cell line)、Hela、Vero、HEK293(human embryonic kidney cell line with sheared adenovirus (Ad)5 DNA)、PER.C6 cell (human embryonic retinal cell line transformed with the Adenovirus Type 5 (Ad5) E1A and E1B genes)など(Current Protocols in Protein Science (May, 2001, Unit 5.9, Table 5.9.1))
(2)両生類細胞:アフリカツメガエル卵母細胞など
(3)昆虫細胞:sf9、sf21、Tn5など
 あるいは植物細胞としては、ニコティアナ・タバカム(Nicotiana tabacum)などのニコティアナ(Nicotiana)属由来の細胞による抗体遺伝子の発現系が公知である。植物細胞の形質転換には、カルス培養した細胞が適宜利用され得る。
 更に真菌細胞としては、次のような細胞を利用することができる。
-酵母:サッカロミセス・セレビシエ(Saccharomyces serevisiae)などのサッカロミセス(Saccharomyces )属、メタノール資化酵母(Pichia pastoris)などのPichia属
-糸状菌:アスペスギルス・ニガー(Aspergillus niger)などのアスペルギルス(Aspergillus )属
 また、原核細胞を利用した抗体遺伝子の発現系も公知である。たとえば、細菌細胞を用いる場合、大腸菌(E. coli )、枯草菌などの細菌細胞が適宜利用され得る。これらの細胞中に、目的とする抗体遺伝子を含む発現ベクターが形質転換によって導入される。形質転換された細胞をin vitroで培養することにより、当該形質転換細胞の培養物から所望の抗体が取得され得る。
 組換え抗体の産生には、上記宿主細胞に加えて、トランスジェニック動物も利用され得る。すなわち所望の抗体をコードする遺伝子が導入された動物から、当該抗体を得ることができる。例えば、抗体遺伝子は、乳汁中に固有に産生されるタンパク質をコードする遺伝子の内部にインフレームで挿入することによって融合遺伝子として構築され得る。乳汁中に分泌されるタンパク質として、たとえば、ヤギβカゼインなどを利用され得る。抗体遺伝子が挿入された融合遺伝子を含むDNA断片はヤギの胚へ注入され、当該注入された胚が雌のヤギへ導入される。胚を受容したヤギから生まれるトランスジェニックヤギ(またはその子孫)が産生する乳汁からは、所望の抗体が乳汁タンパク質との融合タンパク質として取得され得る。また、トランスジェニックヤギから産生される所望の抗体を含む乳汁量を増加させるために、ホルモンがトランスジェニックヤギに対して投与され得る(Bio/Technology (1994), 12 (7), 699-702)。
 本明細書において記載される抗原結合分子がヒトに投与される場合、当該抗原結合分子における抗原結合ドメインとして、ヒトに対する異種抗原性を低下させること等を目的として人為的に改変した遺伝子組換え型抗体由来の抗原結合ドメインが適宜採用され得る。遺伝子組換え型抗体には、例えば、ヒト化(Humanized)抗体等が含まれる。これらの改変抗体は、公知の方法を用いて適宜製造される。
 本明細書において記載される抗原結合分子における抗原結合ドメインを作製するために用いられる抗体の可変領域は、通常、4つのフレームワーク領域(FR)にはさまれた3つの相補性決定領域(complementarity-determining region ; CDR)で構成されている。CDRは、実質的に、抗体の結合特異性を決定している領域である。CDRのアミノ酸配列は多様性に富む。一方FRを構成するアミノ酸配列は、異なる結合特異性を有する抗体の間でも、高い同一性を示すことが多い。そのため、一般に、CDRの移植によって、ある抗体の結合特異性を、他の抗体に移植することができるとされている。
 ヒト化抗体は、再構成(reshaped)ヒト抗体とも称される。具体的には、ヒト以外の動物、たとえばマウス抗体のCDRをヒト抗体に移植したヒト化抗体などが公知である。ヒト化抗体を得るための一般的な遺伝子組換え手法も知られている。具体的には、マウスの抗体のCDRをヒトのFRに移植するための方法として、たとえばOverlap Extension PCRが公知である。Overlap Extension PCRにおいては、ヒト抗体のFRを合成するためのプライマーに、移植すべきマウス抗体のCDRをコードする塩基配列が付加される。プライマーは4つのFRのそれぞれについて用意される。一般に、マウスCDRのヒトFRへの移植においては、マウスのFRと同一性の高いヒトFRを選択するのが、CDRの機能の維持において有利であるとされている。すなわち、一般に、移植すべきマウスCDRに隣接しているFRのアミノ酸配列と同一性の高いアミノ酸配列からなるヒトFRを利用するのが好ましい。
 また連結される塩基配列は、互いにインフレームで接続されるようにデザインされる。それぞれのプライマーによってヒトFRが個別に合成される。その結果、各FRにマウスCDRをコードするDNAが付加された産物が得られる。各産物のマウスCDRをコードする塩基配列は、互いにオーバーラップするようにデザインされている。続いて、ヒト抗体遺伝子を鋳型として合成された産物のオーバーラップしたCDR部分を互いにアニールさせて相補鎖合成反応が行われる。この反応によって、ヒトFRがマウスCDRの配列を介して連結される。
 最終的に3つのCDRと4つのFRが連結されたV領域遺伝子は、その5'末端と3'末端にアニールし適当な制限酵素認識配列を付加されたプライマーによってその全長が増幅される。上記のように得られたDNAとヒト抗体C領域をコードするDNAとをインフレームで融合するように発現ベクター中に挿入することによって、ヒト型抗体発現用ベクターが作成できる。当該組込みベクターを宿主に導入して組換え細胞を樹立した後に、当該組換え細胞を培養し、当該ヒト化抗体をコードするDNAを発現させることによって、当該ヒト化抗体が当該培養細胞の培養物中に産生される(欧州特許公開EP239400、国際公開WO1996/002576参照)。
 上記のように作製されたヒト化抗体の抗原への結合活性を定性的又は定量的に測定し、評価することによって、CDRを介して連結されたときに該CDRが良好な抗原結合部位を形成するようなヒト抗体のFRが好適に選択できる。必要に応じ、再構成ヒト抗体のCDRが適切な抗原結合部位を形成するようにFRのアミノ酸残基を置換することもできる。たとえば、マウスCDRのヒトFRへの移植に用いたPCR法を応用して、FRにアミノ酸配列の変異を導入することができる。具体的には、FRにアニーリングするプライマーに部分的な塩基配列の変異を導入することができる。このようなプライマーによって合成されたFRには、塩基配列の変異が導入される。アミノ酸を置換した変異型抗体の抗原への結合活性を上記の方法で測定し評価することによって所望の性質を有する変異FR配列が選択され得る(Cancer Res., (1993) 53, 851-856)。
 また、ヒト抗体遺伝子の全てのレパートリーを有するトランスジェニック動物(国際公開WO1993/012227、WO1992/003918、WO1994/002602、WO1994/025585、WO1996/034096、WO1996/033735参照)を免疫動物とし、DNA免疫により所望のヒト抗体が取得され得る。
 さらに、ヒト抗体ライブラリを用いて、パンニングによりヒト抗体を取得する技術も知られている。例えば、ヒト抗体のV領域が一本鎖抗体(scFv)としてファージディスプレイ法によりファージの表面に発現される。抗原に結合するscFvを発現するファージが選択され得る。選択されたファージの遺伝子を解析することにより、抗原に結合するヒト抗体のV領域をコードするDNA配列が決定できる。抗原に結合するscFvのDNA配列を決定した後、当該V領域配列を所望のヒト抗体C領域の配列とインフレームで融合させた後に適当な発現ベクターに挿入することによって発現ベクターが作製され得る。当該発現ベクターを上記に挙げたような好適な発現細胞中に導入し、該ヒト抗体をコードする遺伝子を発現させることにより当該ヒト抗体が取得される。これらの方法は既に公知である(国際公開WO1992/001047、WO1992/020791、WO1993/006213、WO1993/011236、WO1993/019172、WO1995/001438、WO1995/015388参照)。
 また、抗体遺伝子を取得する方法としてBernasconiら(Science (2002) 298, 2199-2202)または国際公開WO2008/081008に記載のようなB細胞クローニング(それぞれの抗体のコード配列の同定およびクローニング、その単離、およびそれぞれの抗体(特に、IgG1、IgG2、IgG3またはIgG4)の作製のための発現ベクター構築のための使用等)の手法が、上記のほか適宜使用され得る。
EUナンバリングおよびKabatナンバリング
 本発明で使用されている方法によると、抗体のCDRとFRに割り当てられるアミノ酸位置はKabatにしたがって規定される(Sequences of Proteins of Immunological Interest(National Institute of Health, Bethesda, Md., 1987年および1991年)。本明細書において、抗原結合分子が抗体または抗原結合断片である場合、可変領域のアミノ酸はKabatナンバリングにしたがい、定常領域のアミノ酸はKabatのアミノ酸位置に準じたEUナンバリングにしたがって表される。
標的織特異的化合物に依存的な抗原結合ドメイン
 標的組織特異的な化合物の濃度に応じて、抗原に対する結合活性が変化する抗原結合ドメイン(または当該ドメインを含む抗原結合分子)、すなわち、標的組織特異的な化合物依存的な抗原結合ドメイン(または当該ドメインを含む抗原結合分子)を取得するために、上記の結合活性の項で示された手法等が適宜適用され得る。非限定な一態様として、以下にその具体例がいくつか例示される。例えば、標的組織特異的な化合物の非存在下における抗原に対する抗原結合ドメイン(または当該ドメインを含む抗原結合分子)の結合活性よりも当該化合物の存在下における抗原に対する抗原結合ドメイン(または当該ドメインを含む抗原結合分子)の結合活性の方が高く変化することを確認するためには、標的組織特異的な化合物の非存在下および存在下における、または低濃度存在下および高濃度存在下における抗原に対する抗原結合ドメイン(または当該ドメインを含む抗原結合分子)の結合活性が比較される。異なる非限定な一態様では、例えば、標的組織特異的な化合物の低濃度存在下における抗原に対する抗原結合ドメイン(または当該ドメインを含む抗原結合分子)の結合活性よりも当該化合物の高濃度存在下における抗原に対する抗原結合ドメイン(または当該ドメインを含む抗原結合分子)の結合活性の方が高く変化することを確認するためには、標的組織特異的な化合物の低濃度存在下および高濃度存在下における抗原に対する抗原結合ドメイン(または当該ドメインを含む抗原結合分子)の結合活性が比較される。
 さらに本発明において、「標的組織特異的な化合物の存在下における抗原に対する結合活性が、当該化合物の非存在下における抗原に対する結合活性よりも高い」という表現は、「抗原結合ドメイン(または当該ドメインを含む抗原結合分子)の標的組織特異的な化合物の非存在下における抗原に対する結合活性が当該化合物の存在下における抗原に対する結合活性よりも低い」と表現することもできる。なお本発明においては、「抗原結合ドメイン(または当該ドメインを含む抗原結合分子)の標的組織特異的な化合物の非存在下における抗原に対する結合活性が当該化合物の存在下における抗原に対する結合活性よりも低い」を「抗原結合ドメイン(または当該ドメインを含む抗原結合分子)の標的組織特異的な化合物の非存在下における抗原に対する結合活性が当該化合物の存在下における抗原に対する結合活性よりも弱い」と記載する場合もある。
 さらに本発明において、「標的組織特異的な化合物の高濃度存在下における抗原に対する結合活性が、当該化合物の低濃度存在下における抗原に対する結合活性よりも高い」という表現は、「抗原結合ドメイン(または当該ドメインを含む抗原結合分子)の標的組織特異的な化合物の低濃度存在下における抗原に対する結合活性が当該化合物の高濃度存在下における抗原に対する結合活性よりも低い」と表現することもできる。なお本発明においては、「抗原結合ドメイン(または当該ドメインを含む抗原結合分子)の標的組織特異的な化合物の低濃度存在下における抗原に対する結合活性が当該化合物の高濃度存在下における抗原に対する結合活性よりも低い」を「抗原結合ドメイン(または当該ドメインを含む抗原結合分子)の標的組織特異的な化合物の低濃度存在下における抗原に対する結合活性が当該化合物の高濃度存在下における抗原に対する結合活性よりも弱い」と記載する場合もある。
 抗原に対する結合活性を測定する際の標的組織特異的な化合物の濃度以外の条件は、当業者が適宜選択することが可能であり、特に限定されない。例えば、HEPESバッファー、37℃の条件において測定することが可能である。例えば、Biacore(GE Healthcare)などを用いて測定することが可能である。抗原結合ドメイン(または当該ドメインを含む抗原結合分子)と抗原との結合活性の測定は、抗原が可溶型分子である場合は、抗原結合ドメイン(または当該ドメインを含む抗原結合分子)を固定化したチップへ、抗原をアナライトとして流すことで可溶型分子に対する結合活性を評価することが可能であり、抗原が膜型分子である場合は、抗原を固定化したチップへ、抗原結合ドメインを(または当該ドメインを含む抗原結合分子)アナライトとして流すことで膜型分子に対する結合活性を評価することが可能である。
 本発明の抗原結合分子に含まれる抗原結合ドメイン(または当該ドメインを含む抗原結合分子)の、標的組織特異的な化合物の非存在下における抗原に対する結合活性が、標的組織特異的な化合物の存在下における抗原に対する結合活性よりも弱い限り、当該化合物の非存在下における抗原に対する結合活性と当該化合物の存在下における抗原に対する結合活性の比は特に限定されないが、好ましくは抗原に対する標的組織特異的な化合物の非存在下におけるKD(Dissociation constant:解離定数)と存在下におけるKDの比であるKD(化合物非存在下)/KD(化合物存在下)の値が2以上であり、さらに好ましくはKD(化合物非存在下)/KD(化合物存在下)の値が10以上であり、さらに好ましくはKD(化合物非存在下)/KD(化合物存在下)の値が40以上である。KD(化合物非存在下)/KD(化合物存在下)の値の上限は特に限定されず、当業者の技術において作製可能な限り、400、1000、10000等、いかなる値でもよい。標的組織特異的な化合物の非存在下において、抗原に対する結合活性が観察されない場合には、この上限は無限大の数値となる。
 本発明の抗原結合分子に含まれる抗原結合ドメイン(または当該ドメインを含む抗原結合分子)の、標的組織特異的な化合物の低濃度存在下における抗原に対する結合活性が、標的組織特異的な化合物の高濃度存在下における抗原に対する結合活性よりも弱い限り、当該化合物の低濃度存在下における抗原に対する結合活性と当該化合物の高濃度存在下における抗原に対する結合活性の比は特に限定されないが、好ましくは抗原に対する標的組織特異的な化合物の低濃度存在下におけるKD(Dissociation constant:解離定数)と高濃度存在下におけるKDの比であるKD(化合物低濃度存在下)/KD(化合物高濃度存在下)の値が2以上であり、さらに好ましくはKD(化合物低濃度存在下)/KD(化合物高濃度存在下)の値が10以上であり、さらに好ましくはKD(化合物低濃度存在下)/KD(化合物高濃度存在下)の値が40以上である。KD(化合物低濃度存在下)/KD(化合物高濃度存在下)の値の上限は特に限定されず、当業者の技術において作製可能な限り、400、1000、10000等、いかなる値でもよい。標的組織特異的な化合物の低濃度存在下において、抗原に対する結合活性が観察されない場合には、この上限は無限大の数値となる。
 抗原に対する結合活性の値として、抗原が可溶型分子の場合はKD(解離定数)を用いることが可能であるが、抗原が膜型分子の場合は見かけのKD(Apparent dissociation constant:見かけの解離定数)を用いることが可能である。KD(解離定数)、および、見かけのKD(見かけの解離定数)は、当業者公知の方法で測定することが可能であり、例えばBiacore(GE healthcare)、スキャッチャードプロット、フローサイトメーター等を用いることが可能である。
 また、本発明の抗原結合ドメイン(または当該ドメインを含む抗原結合分子)の標的組織特異的な化合物の非存在下における抗原に対する結合活性と存在下における抗原に対する結合活性の比を示す他の指標として、例えば、解離速度定数であるkd(Dissociation rate constant:解離速度定数)もまた好適に用いられ得る。結合活性の比を示す指標としてKD(解離定数)の代わりにkd(解離速度定数)を用いる場合、標的組織特異的な化合物の非存在下における抗原に対するkd(解離速度定数)と当該化合物の存在下におけるkd(解離速度定数)の比である、kd(化合物非存在下)/kd(化合物存在下)の値は、好ましくは2以上であり、さらに好ましくは5以上であり、さらに好ましくは10以上であり、より好ましくは30以上である。Kd(化合物非存在下)/kd(化合物存在下)の値の上限は特に限定されず、当業者の技術常識において作製可能な限り、50、100、200等、いかなる値でもよい。標的組織特異的な化合物の非存在下において、抗原に対する結合活性が観察されない場合には解離も生じないため、この上限は無限大の数値となる。
 また、本発明の抗原結合ドメイン(または当該ドメインを含む抗原結合分子)の標的組織特異的な化合物の低濃度存在下における抗原に対する結合活性と高濃度存在下における抗原に対する結合活性の比を示す他の指標として、例えば、解離速度定数であるkd(Dissociation rate constant:解離速度定数)もまた好適に用いられ得る。結合活性の比を示す指標としてKD(解離定数)の代わりにkd(解離速度定数)を用いる場合、標的組織特異的な化合物の低濃度存在下における抗原に対するkd(解離速度定数)と当該化合物の高濃度存在下におけるkd(解離速度定数)の比である、kd(化合物低濃度存在下)/kd(化合物高濃度存在下)の値は、好ましくは2以上であり、さらに好ましくは5以上であり、さらに好ましくは10以上であり、より好ましくは30以上である。Kd(化合物低濃度存在下)/kd(化合物高濃度存在下)の値の上限は特に限定されず、当業者の技術常識において作製可能な限り、50、100、200等、いかなる値でもよい。標的組織特異的な化合物の低濃度存在下において、抗原に対する結合活性が観察されない場合には解離も生じないため、この上限は無限大の数値となる。
 抗原結合活性の値として、抗原が可溶型分子の場合はkd(解離速度定数)を用いることが可能であり、抗原が膜型分子の場合は見かけのkd(Apparent dissociation rate constant:見かけの解離速度定数)を用いることが可能である。kd(解離速度定数)、および、見かけのkd(見かけの解離速度定数)は、当業者公知の方法で測定することが可能であり、例えばBiacore(GE healthcare)、フローサイトメーター等を用いることが可能である。なお本発明において、標的組織特異的な化合物のある濃度における抗原結合ドメイン(または当該ドメインを含む抗原結合分子)の抗原に対する結合活性を測定する際は、当該化合物の濃度以外の条件は同一とすることが好ましい。
 例えば、本発明が提供する一つの態様である、標的組織特異的な化合物の非存在下における抗原に対する結合活性が当該化合物の存在下における抗原に対する結合活性よりも低い抗原結合ドメイン(または当該ドメインを含む抗原結合分子)は、以下の工程(a)~(c)を含む抗原結合ドメイン(または抗原結合分子)のスクリーニングによって取得され得る。
(a) 標的組織特異的な化合物の非存在下における抗原結合ドメイン(または抗原結合分子)の抗原結合活性を得る工程、
(b) 標的組織特異的な化合物の存在下における抗原結合ドメイン(または抗原結合分子)の抗原結合活性を得る工程、
(c) 標的組織特異的な化合物の非存在下における抗原結合活性が、当該化合物の存在下における抗原結合活性より低い抗原結合ドメイン(または抗原結合分子)を選択する工程。
 例えば、本発明が提供する一つの態様である、標的組織特異的な化合物の低濃度存在下における抗原に対する結合活性が当該化合物の高濃度存在下における抗原に対する結合活性よりも低い抗原結合ドメイン(または当該ドメインを含む抗原結合分子)は、以下の工程(a)~(c)を含む抗原結合ドメイン(または抗原結合分子)のスクリーニングによって取得され得る。
(a) 標的組織特異的な化合物の低濃度存在下における抗原結合ドメイン(または抗原結合分子)の抗原結合活性を得る工程、
(b) 標的組織特異的な化合物の高濃度存在下における抗原結合ドメイン(または抗原結合分子)の抗原結合活性を得る工程、
(c) 標的組織特異的な化合物の低濃度存在下における抗原結合活性が、当該化合物の高濃度存在下における抗原結合活性より低い抗原結合ドメイン(または抗原結合分子)を選択する工程。
 さらに、本発明が提供する一つの態様である、標的組織特異的な化合物の非存在下における抗原に対する結合活性が当該化合物の存在下における抗原に対する結合活性よりも低い抗原結合ドメイン(または当該ドメインを含む抗原結合分子)は、以下の工程(a)~(c)を含む抗原結合ドメイン(または抗原結合分子)もしくはそれらのライブラリのスクリーニングによって取得され得る。
(a) 標的組織特異的な化合物の存在下における抗原結合ドメイン(または抗原結合分子)もしくはそれらのライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗原結合ドメイン(または抗原結合分子)を当該化合物の非存在下に置く工程、
(c) 前記工程(b)で解離した抗原結合ドメイン(または抗原結合分子)を単離する工程。
 さらに、本発明が提供する一つの態様である、標的組織特異的な化合物の低濃度存在下における抗原に対する結合活性が当該化合物の高濃度存在下における抗原に対する結合活性よりも低い抗原結合ドメイン(または当該ドメインを含む抗原結合分子)は、以下の工程(a)~(c)を含む抗原結合ドメイン(または抗原結合分子)もしくはそれらのライブラリのスクリーニングによって取得され得る。
(a) 標的組織特異的な化合物の高濃度存在下における抗原結合ドメイン(または抗原結合分子)もしくはそれらのライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗原結合ドメイン(または抗原結合分子)を当該化合物の低濃度存在下に置く工程、
(c) 前記工程(b)で解離した抗原結合ドメイン(または抗原結合分子)を単離する工程。
 また、本発明が提供する一つの態様である、標的組織特異的な化合物の非存在下における抗原に対する結合活性が当該化合物の存在下における抗原に対する結合活性よりも低い抗原結合ドメイン(または当該ドメインを含む抗原結合分子)は、以下の工程(a)~(d)を含む抗原結合ドメイン(または抗原結合分子)若しくはそれらのライブラリのスクリーニングによって取得され得る。
(a) 標的組織特異的な化合物の非存在下で抗原結合ドメイン(または抗原結合分子)のライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合しない抗原結合ドメイン(または抗原結合分子)を選択する工程、
(c) 前記工程(b)で選択された抗原結合ドメイン(または抗原結合分子)を当該化合物の存在下で抗原に結合させる工程、
(d) 前記工程(c)で抗原に結合した抗原結合ドメイン(または抗原結合分子)を単離する工程。
 また、本発明が提供する一つの態様である、標的組織特異的な化合物の低濃度存在下における抗原に対する結合活性が当該化合物の高濃度存在下における抗原に対する結合活性よりも低い抗原結合ドメイン(または当該ドメインを含む抗原結合分子)は、以下の工程(a)~(d)を含む抗原結合ドメイン(または抗原結合分子)若しくはそれらのライブラリのスクリーニングによって取得され得る。
(a) 標的組織特異的な化合物の低濃度存在下で抗原結合ドメイン(または抗原結合分子)のライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合しない抗原結合ドメイン(または抗原結合分子)を選択する工程、
(c) 前記工程(b)で選択された抗原結合ドメイン(または抗原結合分子)を当該化合物の高濃度存在下で抗原に結合させる工程、
(d) 前記工程(c)で抗原に結合した抗原結合ドメイン(または抗原結合分子)を単離する工程。
 さらに、本発明が提供する一つの態様である、標的組織特異的な化合物の非存在下における抗原に対する結合活性が当該化合物の存在下における抗原に対する結合活性よりも低い抗原結合ドメイン(または当該ドメインを含む抗原結合分子)は、以下の工程(a)~(c)を含むスクリーニング方法によって取得され得る。
(a) 抗原を固定したカラムに標的組織特異的な化合物の存在下で抗原結合ドメイン(または抗原結合分子)のライブラリを接触させる工程、
(b) 前記工程(a)でカラムに結合した抗原結合ドメイン(または抗原結合分子)を当該化合物の非存在下でカラムから溶出する工程、
(c) 前記工程(b)で溶出された抗原結合ドメイン(または抗原結合分子)を単離する工程。
 さらに、本発明が提供する一つの態様である、標的組織特異的な化合物の低濃度存在下における抗原に対する結合活性が当該化合物の高濃度存在下における抗原に対する結合活性よりも低い抗原結合ドメイン(または当該ドメインを含む抗原結合分子)は、以下の工程(a)~(c)を含むスクリーニング方法によって取得され得る。
(a) 抗原を固定したカラムに標的組織特異的な化合物の高濃度存在下で抗原結合ドメイン(または抗原結合分子)のライブラリを接触させる工程、
(b) 前記工程(a)でカラムに結合した抗原結合ドメイン(または抗原結合分子)を当該化合物の低濃度存在下でカラムから溶出する工程、
(c) 前記工程(b)で溶出された抗原結合ドメイン(または抗原結合分子)を単離する工程。
 さらに、本発明が提供する一つの態様である、標的組織特異的な化合物の非存在下における抗原に対する結合活性が当該化合物の存在下における抗原に対する結合活性よりも低い抗原結合ドメイン(または当該ドメインを含む抗原結合分子)は、以下の工程(a)~(d)を含むスクリーニング方法によって取得され得る。
(a) 抗原を固定したカラムに標的組織特異的な化合物の非存在下で抗原結合ドメイン(または抗原結合分子)のライブラリを通過させる工程、
(b) 前記工程(a)でカラムに結合せずに溶出した抗原結合ドメイン(または抗原結合分子)を回収する工程、
(c) 前記工程(b)で回収された抗原結合ドメイン(または抗原結合分子)を当該化合物の存在下で抗原に結合させる工程、
(d) 前記工程(c)で抗原に結合した抗原結合ドメイン(または抗原結合分子)を単離する工程。
 さらに、本発明が提供する一つの態様である、標的組織特異的な化合物の低濃度存在下における抗原に対する結合活性が当該化合物の高濃度存在下における抗原に対する結合活性よりも低い抗原結合ドメイン(または当該ドメインを含む抗原結合分子)は、以下の工程(a)~(d)を含むスクリーニング方法によって取得され得る。
(a) 抗原を固定したカラムに標的組織特異的な化合物の低濃度存在下で抗原結合ドメイン(または抗原結合分子)のライブラリを通過させる工程、
(b) 前記工程(a)でカラムに結合せずに溶出した抗原結合ドメイン(または抗原結合分子)を回収する工程、
(c) 前記工程(b)で回収された抗原結合ドメイン(または抗原結合分子)を当該化合物の高濃度存在下で抗原に結合させる工程、
(d) 前記工程(c)で抗原に結合した抗原結合ドメイン(または抗原結合分子)を単離する工程。
 さらに、本発明が提供する一つの態様である、標的組織特異的な化合物の非存在下における抗原に対する結合活性が当該化合物の存在下における抗原に対する結合活性よりも低い抗原結合ドメイン(または当該ドメインを含む抗原結合分子)は、以下の工程(a)~(d)を含むスクリーニング方法によって取得され得る。
(a) 標的組織特異的な化合物の存在下で抗原結合ドメイン(または抗原結合分子)のライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗原結合ドメイン(または抗原結合分子)を取得する工程、
(c) 前記工程(b)で取得した抗原結合ドメイン(または抗原結合分子)を化合物の非存在下に置く工程、
(d) 前記工程(c)で抗原結合活性が、前記工程(b)で選択した基準より弱い抗原結合ドメイン(または抗原結合分子)を単離する工程。
 さらに、本発明が提供する一つの態様である、標的組織特異的な化合物の低濃度存在下における抗原に対する結合活性が当該化合物の高濃度存在下における抗原に対する結合活性よりも低い抗原結合ドメイン(または当該ドメインを含む抗原結合分子)は、以下の工程(a)~(d)を含むスクリーニング方法によって取得され得る。
(a) 標的組織特異的な化合物の高濃度存在下で抗原結合ドメイン(または抗原結合分子)のライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗原結合ドメイン(または抗原結合分子)を取得する工程、
(c) 前記工程(b)で取得した抗原結合ドメイン(または抗原結合分子)を化合物の低濃度存在下に置く工程、
(d) 前記工程(c)で抗原結合活性が、前記工程(b)で選択した基準より弱い抗原結合ドメイン(または抗原結合分子)を単離する工程。
 なお、前記の工程は2回以上繰り返されてもよい。従って、本発明によって、上述のスクリーニング方法において、(a)~(c)あるいは(a)~(d)の工程を2回以上繰り返す工程をさらに含むスクリーニング方法によって取得された、標的組織特異的な化合物の非存在下における抗原に対する結合活性が当該化合物の存在下における抗原に対する結合活性よりも低い抗原結合ドメイン(または当該ドメインを含む抗原結合分子)または標的組織特異的な化合物の低濃度存在下における抗原に対する結合活性が当該化合物の高濃度存在下における抗原に対する結合活性よりも低い抗原結合ドメイン(または当該ドメインを含む抗原結合分子)が提供される。(a)~(c)あるいは(a)~(d)の工程が繰り返される回数は特に限定されないが、通常10回以内である。
 本発明のスクリーニング方法において、標的組織特的化合物は、非標的組織と比較して異なる濃度(例えば、高濃度または低濃度)で標的組織に存在している等の定量的な標的組織特異性で規定される化合物であり得る。例えば、標的組織特異的化合物は任意の濃度で差示的に存在する。しかし、一般に標的組織特異的化合物は、少なくとも5%、少なくとも10%、少なくとも15%、少なくとも20%、少なくとも25%、少なくとも30%、少なくとも35%、少なくとも40%、少なくとも45%、少なくとも50%、少なくとも55%、少なくとも60%、少なくとも65%、少なくとも70%、少なくとも75%、少なくとも80%、少なくとも85%、少なくとも90%、少なくとも95%、少なくとも100%、少なくとも110%、少なくとも120%、少なくとも130%、少なくとも140%、少なくとも150%、少なくとも2倍、少なくとも5倍、少なくとも10倍、少なくとも50倍、少なくとも100倍、少なくとも103倍、少なくとも104倍、少なくとも105倍、少なくとも106倍、またはそれ以上であって、無限大(すなわち非標的組織に不存在である場合)までの増加する濃度で、存在することが可能である。   
 低濃度および高濃度を区別する閾値は化合物に応じて適宜設定することが可能である。例えば、ATPまたはアデノシンの閾値の非限定な一態様では、閾値として、低濃度条件は10 nM、1 nM、100 pM、10 pM、1 pMまたは0 Mの値から適宜設定され得る。設定された閾値に応じて、高濃度条件は各閾値の少なくとも110%、少なくとも120%、少なくとも130%、少なくとも140%、少なくとも150%、少なくとも2倍、少なくとも5倍、少なくとも10倍、少なくとも50倍、少なくとも100倍、少なくとも103倍、少なくとも104倍、少なくとも105倍、少なくとも106倍の値から適宜設定され得る。また、PGE2の非限定な一態様では、閾値として、低濃度条件は10 pM、1 pM、100 fM、10 fM、1 fMまたは0 Mの値から適宜設定され得る。設定された閾値に応じて、高濃度条件は各閾値の少なくとも110%、少なくとも120%、少なくとも130%、少なくとも140%、少なくとも150%、少なくとも2倍、少なくとも5倍、少なくとも10倍、少なくとも50倍、少なくとも100倍、少なくとも103倍、少なくとも104倍、少なくとも105倍、少なくとも106倍の値から適宜設定され得る。さらに、Kynurenineの非限定な一態様では、閾値として、低濃度条件は10μM、1μM、100 nM、10 nM、1 nMまたは0 Mの値から適宜設定され得る。設定された閾値に応じて、高濃度条件は各閾値の少なくとも110%、少なくとも120%、少なくとも130%、少なくとも140%、少なくとも150%、少なくとも2倍、少なくとも5倍、少なくとも10倍、少なくとも50倍、少なくとも100倍、少なくとも103倍、少なくとも104倍、少なくとも105倍、少なくとも106倍の値から適宜設定され得る。
 抗原結合ドメイン(または抗原結合分子)の抗原結合活性は当業者に公知の方法により測定することが可能であり、標的組織特異的な化合物の濃度以外の条件については当業者が適宜決定することが可能である。抗原結合ドメイン(または抗原結合分子)の抗原結合活性は、KD(Dissociation constant:解離定数)、見かけのKD(Apparent dissociation constant:見かけの解離定数)、解離速度であるkd(Dissociation rate:解離速度定数)、又は見かけのkd(Apparent dissociation:見かけの解離速度定数)等として評価することが可能である。これらは当業者公知の方法で測定することが可能であり、例えばBiacore(GE healthcare)、スキャッチャードプロット、FACS等を用いることが可能である。
 本発明において、標的組織特異的な化合物の存在下における抗原結合活性が当該化合物の非存在下における抗原結合活性より高い抗原結合ドメイン又は抗体を選択する工程は、標的組織特異的な化合物の非存在下における抗原結合活性が当該化合物の存在下における抗原結合活性より低い抗原結合ドメイン又は抗体を選択する工程と同じ意味である。
 また、本発明において、標的組織特異的な化合物の高濃度存在下における抗原結合活性が当該化合物の低濃度存在下における抗原結合活性より高い抗原結合ドメイン又は抗体を選択する工程は、標的組織特異的な化合物の非存在下における抗原結合活性が当該化合物の存在下における抗原結合活性より低い抗原結合ドメイン又は抗体を選択する工程と同じ意味である。
 標的組織特異的な化合物の非存在下における抗原に対する結合活性が当該化合物の存在下における抗原に対する結合活性よりも低い限り、当該化合物の存在下における抗原結合活性と非存在下における抗原結合活性の差は特に限定されないが、好ましくは当該化合物の存在下における抗原結合活性が非存在下における抗原結合活性の2倍以上であり、さらに好ましくは10倍以上であり、より好ましくは40倍以上である。当該抗原結合活性の差の上限は特に限定されず、当業者の技術において作製可能な限り、400倍、1000倍、10000倍等、いかなる値でもよい。標的組織特異的な化合物の非存在下において、抗原に対する結合活性が観察されない場合には、この上限は無限大の数値となる。
 前記のスクリーニング方法によりスクリーニングされる本発明の抗原結合ドメイン(または当該ドメインを含む抗原結合分子)はいかなる抗原結合ドメイン(または抗原結合分子)でもよく、例えば上述の抗原結合ドメイン(または抗原結合分子)をスクリーニングすることが可能である。例えば、天然の配列を有する抗原結合ドメイン(または抗原結合分子)をスクリーニングしてもよいし、アミノ酸配列が置換された抗原結合ドメイン(または抗原結合分子)をスクリーニングしてもよい。
ライブラリ
 ある一態様によれば、本発明の抗原結合ドメイン(または当該ドメインを含む抗原結合分子)は、標的組織特異的化合物に依存的な抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基が抗原結合ドメインに含まれている互いに配列の異なる複数の抗原結合分子から主としてなるライブラリから取得され得る。当該化合物の例としては(1)乳酸、コハク酸、クエン酸等の解糖系、またはクレブス回路の一次代謝産物、(2)アラニン、グルタミン酸、またはアスパラギン酸等のアミノ酸、(3)キヌレニン、およびその代謝産物である、アントラニル酸、3-ヒドロキシキヌレニン、およびキヌレン酸等のアミノ酸の代謝産物、(4)プロスタグランジンE2等のアラキドン酸の代謝産物、ならびに(5)アデノシン、アデノシン3リン酸(ATP)、アデノシン2リン酸(ADP)、アデノシン1リン酸(AMP)等のプリン環構造を有するヌクレオシド、等が例示される。以下では、そのような標的組織特異的化合物としてアデノシン、および/またはATPに依存的な抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基が抗原結合ドメインに含まれている互いに配列の異なる複数の抗原結合分子から主としてなるライブラリについて例示される。
 本明細書において「ライブラリ」とは複数の抗原結合分子または抗原結合分子を含む複数の融合ポリペプチド、もしくはこれらの配列をコードする核酸、ポリヌクレオチドをいう。ライブラリ中に含まれる複数の抗原結合分子または抗原結合分子を含む複数の融合ポリペプチドの配列は単一の配列ではなく、互いに配列の異なる抗原結合分子または抗原結合分子を含む融合ポリペプチドである。
 本明細書においては、互いに配列の異なる複数の抗原結合分子という記載における「互いに配列の異なる」との用語は、ライブラリ中の個々の抗原結合分子の配列が相互に異なることを意味する。すなわち、ライブラリ中における互いに異なる配列の数は、ライブラリ中の配列の異なる独立クローンの数が反映され、「ライブラリサイズ」と指称される場合もある。通常のファージディスプレイライブラリでは106から1012であり、リボゾームディスプレイ法等の公知の技術を適用することによってライブラリサイズを1014まで拡大することが可能である。しかしながら、ファージライブラリのパンニング選択時に使用されるファージ粒子の実際の数は、通常、ライブラリサイズよりも10ないし10,000倍大きい。この過剰倍数は、「ライブラリ当量数」とも呼ばれるが、同じアミノ酸配列を有する個々のクローンが10ないし10,000存在し得ることを表す。よって本発明における「互いに配列の異なる」との用語はライブラリ当量数が除外されたライブラリ中の個々の抗原結合分子の配列が相互に異なること、より具体的には互いに配列の異なる抗原結合分子が106から1014分子、好ましくは107から1012分子、さらに好ましくは108から1011、特に好ましくは108から1010存在することを意味する。
 また、本発明の、複数の抗原結合分子から主としてなるライブラリという記載における「複数の」との用語は、例えば本発明の抗原結合分子、融合ポリペプチド、ポリヌクレオチド分子、ベクターまたはウイルスは、通常、その物質の2つ以上の種類の集合を指す。例えば、ある2つ以上の物質が特定の形質に関して互いに異なるならば、その物質には2種類以上が存在することを表す。例としては、アミノ酸配列中の特定のアミノ酸位置で観察される変異体アミノ酸が挙げられ得る。例えば、フレキシブル残基以外、または表面に露出した非常に多様なアミノ酸位置の特定の変異体アミノ酸以外は実質的に同じ、好ましくは同一の配列である本発明の2つ以上の抗原結合分子がある場合、本発明の抗原結合分子は複数個存在する。他の例では、フレキシブル残基をコードする塩基以外、または表面に露出した非常に多様なアミノ酸位置の特定の変異体アミノ酸をコードする塩基以外は実質的に同じ、好ましくは同一の配列である本発明の2つ以上のポリヌクレオチド分子があるならば、本発明のポリヌクレオチド分子は複数個存在する。
 さらに、本発明の、複数の抗原結合分子から主としてなるライブラリという記載における「から主としてなる」との用語は、ライブラリ中の配列の異なる独立クローンの数のうち、標的組織特異的化合物の濃度の条件によって抗原に対する抗原結合分子の結合活性が異なっている抗原結合分子の数が反映される。具体的には、そのような結合活性を示す抗原結合分子がライブラリ中に少なくとも104分子存在することが好ましい。また、より好ましくは、本発明の抗原結合ドメインはそのような結合活性を示す抗原結合分子が少なくとも105分子存在するライブラリから取得され得る。さらに好ましくは、本発明の抗原結合ドメインはそのような結合活性を示す抗原結合分子が少なくとも106分子存在するライブラリから取得され得る。特に好ましくは、本発明の抗原結合ドメインはそのような結合活性を示す抗原結合分子が少なくとも107分子存在するライブラリから取得され得る。また、好ましくは、本発明の抗原結合ドメインはそのような結合活性を示す抗原結合分子が少なくとも108分子存在するライブラリから取得され得る。別の表現では、ライブラリ中の配列の異なる独立クローンの数のうち、アデノシン、および/またはATPの存在または非存在によって抗原に対する抗原結合ドメインの結合活性が異なっている抗原結合分子の割合としても好適に表現され得る。具体的には、本発明の抗原結合ドメインは、そのような結合活性を示す抗原結合分子がライブラリ中の配列の異なる独立クローンの数の0.1%から80%、好ましくは0.5%から60%、より好ましくは1%から40%、さらに好ましくは2%から20%、特に好ましくは4%から10% 含まれるライブラリから取得され得る。融合ポリペプチド、ポリヌクレオチド分子またはベクターの場合も、上記と同様、分子の数や分子全体における割合で表現され得る。また、ウイルスの場合も、上記と同様、ウイルス個体の数や個体全体における割合で表現され得る。
アデノシン、および/またはATPの存在もしくは非存在によって抗原に対する抗原結合ドメインの結合活性を変化させるアミノ酸
 前記のスクリーニング方法によってスクリーニングされる本発明の抗原結合ドメイン又は抗体はどのように調製されてもよく、あらかじめ存在している抗体、あらかじめ存在しているライブラリ(ファージライブラリ等)、動物への免疫から得られたハイブリドーマや免疫動物からのB細胞から作製された抗体又はライブラリ、アデノシンまたはATPと適切に連結された免疫原性が高いT細胞エピトープペプチドのようなアジュバント作用剤との連結剤(conjugate)によって免疫された動物のB細胞等の免疫細胞から作製された抗体またはライブラリ等を用いることが可能である 。当該T細胞エピトープペプチドの非限定な一例として、Tetanus toxin由来のp30ヘルパーペプチド(配列番号:4で表され、Fragment C(FrC)とも指称される)等が好適に挙げられる。
 前記のようにアデノシンおよび/またはATPの存在もしくは非存在によって抗原に対する抗原結合分子の結合活性を変化させるアミノ酸としては、アデノシンおよび/またはATP結合モチーフを形成するアミノ酸が例示され得る。前記のアミノ酸が含まれる抗原結合ドメイン中のアミノ酸の位置は特定の位置に限定されず、アデノシンおよび/またはATPの存在もしくは非存在によって抗原に対する抗原結合ドメインの結合活性を変化させる限り、抗原結合ドメインを形成する重鎖可変領域または軽鎖可変領域中のいずれの位置でもあり得る。すなわち、本発明の抗原結合ドメインは、アデノシンおよび/またはATPの存在もしくは非存在によって抗原に対する抗原結合分子の結合活性を変化させるアミノ酸が重鎖の抗原結合ドメインに含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。非限定な一態様では、本発明の抗原結合ドメインは、アデノシンおよび/またはATPの存在もしくは非存在によって抗原に対する抗原結合分子の結合活性を変化させるアミノ酸が重鎖のCDR1、CDR2、および/またはCDR3に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。非限定な別の一態様では、本発明の抗原結合ドメインは、アデノシンおよび/またはATPの存在もしくは非存在によって抗原に対する抗原結合分子の結合活性を変化させるアミノ酸が重鎖のFR1、FR2、FR3および/またはFR4に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。
 また、本発明の一態様では、本発明の抗原結合ドメインは、アデノシンおよび/またはATPの存在もしくは非存在によって抗原に対する抗原結合分子の結合活性を変化させるアミノ酸が重鎖および/または軽鎖の抗原結合ドメインに含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。非限定な一態様では、本発明の抗原結合ドメインは、アデノシンおよび/またはATPの存在もしくは非存在によって抗原に対する抗原結合分子の結合活性を変化させるアミノ酸が重鎖および/または軽鎖のCDR1、CDR2、および/またはCDR3に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。非限定な別の一態様では、本発明の抗原結合ドメインは、アデノシンおよび/またはATPの存在もしくは非存在によって抗原に対する抗原結合分子の結合活性を変化させるアミノ酸が重鎖および/または軽鎖のFR1、FR2、FR3および/またはFR4に含まれている互いに配列の異なる抗原結合分子から主としてなるライブラリから取得され得る。
 そうしたアミノ酸の非限定の一態様として、重鎖可変領域に含まれる52位、52a位、53位、96位、100a位、または100c位のアミノ酸のうちいずれかひとつ以上のアミノ酸等が例示され得る。またこのようなアミノ酸の非限定の一態様として、重鎖可変領域に含まれる52位のSer、52a位のSer、53位のArg、96位のGly、100a位のLeu、100c位のTrp等のアミノ酸のうちいずれかひとつ以上のアミノ酸が例示され得る。
 抗原結合分子の軽鎖および/または重鎖可変領域のフレームワーク配列はアデノシンおよび/またはATPの存在もしくは非存在によって抗原に対する抗原結合分子の結合活性を変化させるアミノ酸が重鎖および/または軽鎖の抗原結合ドメインに含まれている限り、どのようなフレームワーク配列も使用され得る。フレームワーク配列の起源は、限定されないが非ヒト動物の任意の生物またはヒトから取得され得る。好ましくは、任意の生物としては、マウス、ラット、モルモット、ハムスター、アレチネズミ、ネコ、ウサギ、イヌ、ヤギ、ヒツジ、ウシ、ウマ、ラクダ、および非ヒト霊長類から選択される生物が好適に挙げられる。特に好適な実施形態では、抗原結合分子の軽鎖および/または重鎖可変領域のフレームワーク配列は、ヒトの生殖細胞系フレームワーク配列を有していることが望ましい。したがって、本発明の一態様においてフレームワーク配列が完全にヒトの配列であるならば、ヒトに投与(例えば疾病の治療)された場合、本発明の抗原結合分子は免疫原性反応を殆どあるいは全く引き起こさないと考えられる。上記の意味から、本発明の「生殖細胞系列の配列を含む 」とは、本発明のフレームワーク配列の一部が、いずれかのヒトの生殖細胞系フレームワーク配列の一部と同一であることを意味する。例えば、本発明の抗原結合分子の重鎖FR2の配列が複数の異なるヒトの生殖細胞系フレームワーク配列の重鎖FR2配列が組み合わされた配列である場合も、本発明の「生殖細胞系列の配列を含む 」抗原結合分子である。また、本発明の抗原結合分子のフレームワーク配列が、置換されている配列である場合も、本発明の「生殖細胞系列の配列を含む 」抗原結合分子である。そのような置換されている配列の例として、とくに、ヒトの生殖細胞系フレームワーク配列の一部のアミノ酸が、アデノシンおよび/またはATPの存在もしくは非存在によって抗原に対する抗原結合分子の結合活性を変化させるアミノ酸に置換されている配列が挙げられる。
 フレームワークの例としては、例えばV-Base(http://vbase.mrc-cpe.cam.ac.uk/)等のウェブサイトに含まれている、現在知られている完全にヒト型のフレームワーク領域の配列が好適に挙げられる。 これらのフレームワーク領域の配列が本発明の抗原結合分子に含まれる生殖細胞系列の配列として適宜使用され得る。生殖細胞系列の配列はその類似性にもとづいて分類され得る(Tomlinsonら(J. Mol. Biol. (1992) 227, 776-798)WilliamsおよびWinter(Eur. J. Immunol. (1993) 23, 1456-1461)およびCoxら(Nat. Genetics (1994) 7, 162-168))。 7つのサブグループに分類されるVκ、10のサブグループに分類されるVλ、7つのサブグループに分類されるVHから好適な生殖細胞系列の配列が適宜選択され得る。
 完全にヒト型のVH配列は、下記のみに限定されるものではないが、例えばVH1サブグループ(例えば、VH1-2、VH1-3、VH1-8、VH1-18、VH1-24、VH1-45、VH1-46、VH1-58、VH1-69)、VH2サブグループ(例えば、VH2-5、VH2-26、VH2-70)、VH3サブグループ(VH3-7、VH3-9、VH3-11、VH3-13、VH3-15、VH3-16、VH3-20、VH3-21、VH3-23、VH3-30、VH3-33、VH3-35、VH3-38、VH3-43、VH3-48、VH3-49、VH3-53、VH3-64、VH3-66、VH3-72、VH3-73、VH3-74)、VH4サブグループ(VH4-4、VH4-28、VH4-31、VH4-34、VH4-39、VH4-59、VH4-61)、VH5サブグループ(VH5-51)、VH6サブグループ(VH6-1)、VH7サブグループ(VH7-4、VH7-81)のVH配列等が好適に挙げられる。これらは公知文献(Matsudaら(J. Exp. Med. (1998) 188, 1973-1975))等にも記載されており、当業者はこれらの配列情報をもとに本発明の抗原結合分子を適宜設計することが可能である。これら以外の完全にヒト型のフレームワークまたはフレームワークの準領域も好適に使用され得る。
 完全にヒト型のVκ配列は、下記のみに限定されるものではないが、例えばVk1サブグループに分類されるA20、A30、L1、L4、L5、L8、L9、L11、L12、L14、L15、L18、L19、L22、L23、L24、O2、O4、O8、O12、O14、O18、Vk2サブグループに分類されるA1、A2、A3、A5、A7、A17、A18、A19、A23、O1、O11、Vk3サブグループに分類されるA11、A27、L2、L6、L10、L16、L20、L25、Vk4サブグループに分類されるB3、Vk5サブグループに分類されるB2(本明細書においてはVk5-2とも指称される))、Vk6サブグループに分類されるA10、A14、A26等(Kawasakiら(Eur. J. Immunol. (2001) 31, 1017-1028)、SchableおよびZachau(Biol. Chem. Hoppe Seyler (1993) 374, 1001-1022)およびBrensing-Kuppersら(Gene (1997) 191, 173-181))が好適に挙げられる。
 完全にヒト型のVλ配列は、下記のみに限定されるものではないが、例えばVL1サブグループに分類されるV1-2、V1-3、V1-4、V1-5、V1-7、V1-9、V1-11、V1-13、V1-16、V1-17、V1-18、V1-19、V1-20、V1-22、VL1サブグループに分類されるV2-1、V2-6、V2-7、V2-8、V2-11、V2-13、V2-14、V2-15、V2-17、V2-19、VL3サブグループに分類されるV3-2、V3-3、V3-4、VL4サブグループに分類されるV4-1、V4-2、V4-3、V4-4、V4-6、VL5サブグループに分類されるV5-1、V5-2、V5-4、V5-6等(Kawasakiら(Genome Res. (1997) 7, 250-261))が好適に挙げられる。
 通常これらのフレームワーク配列は一またはそれ以上のアミノ酸残基の相違により互いに異なっている。これらのフレームワーク配列は本発明の「アデノシンおよび/またはATPの存在もしくは非存在によって抗原に対する抗原結合ドメインの結合活性を変化させる少なくとも一つのアミノ酸残基」と共に使用され得る。本発明の「アデノシンおよび/またはATPの存在もしくは非存在によって抗原に対する抗原結合ドメインの結合活性を変化させる少なくとも一つのアミノ酸残基」と共に使用される完全にヒト型のフレームワークの例としては、これだけに限定されるわけではないが、ほかにもKOL、NEWM、REI、EU、TUR、TEI、LAY、POM等が挙げられる(例えば、前記のKabatら (1991)およびWuら(J. Exp. Med. (1970) 132, 211-250))。
 本発明は特定の理論に拘束されるものではないが、生殖細胞系の配列の使用がほとんどの個人において有害な免疫反応を排除すると期待されている一つの理由は、以下の通りであると考えられている。通常の免疫反応中に生じる親和性成熟ステップの結果、免疫グロブリンの可変領域に体細胞の突然変異が頻繁に生じる。これらの突然変異は主にその配列が超可変的であるCDRの周辺に生じるが、フレームワーク領域の残基にも影響を及ぼす。これらのフレームワークの突然変異は生殖細胞系の遺伝子には存在せず、また患者の免疫原性になる可能性は少ない。一方、通常のヒトの集団は生殖細胞系の遺伝子によって発現されるフレームワーク配列の大多数にさらされており、免疫寛容の結果、これらの生殖細胞系のフレームワークは患者において免疫原性が低いあるいは非免疫原性であると予想される。免疫寛容の可能性を最大にするため、可変領域をコード化する遺伝子が普通に存在する機能的な生殖細胞系遺伝子の集合から選択され得る。
 本発明の、アデノシンおよび/またはATPの存在もしくは非存在によって抗原に対する抗原結合ドメインの結合活性を変化させるアミノ酸が前記の可変領域配列の配列、重鎖可変領域または軽鎖可変領域の配列、もしくはCDR配列またはフレームワーク配列に含まれる抗原結合分子を作製するために部位特異的変異誘発法(Kunkelら(Proc. Natl. Acad. Sci. U.S.A. (1985) 82, 488-492))やOverlap extension PCR等の公知の方法が適宜採用され得る。
 例えば、アデノシンおよび/またはATPの存在もしくは非存在によって抗原に対する抗原結合ドメインの結合活性を変化させる少なくとも一つのアミノ酸残基が予め含まれているCDR配列および/またはフレームワーク配列として選択された軽鎖可変領域と、ランダム化可変領域配列ライブラリとして作製された重鎖可変領域とを組み合わせることによって本発明の複数の互いに配列の異なる抗原結合分子を含むライブラリが作製され得る。
 また、前記のアデノシンまたはATPの存在もしくは非存在によって抗原に対する抗原結合ドメインの結合活性を変化させる少なくとも一つのアミノ酸残基が予め含まれているCDR配列および/またはフレームワーク配列として選択された重鎖および/または軽鎖可変領域の配列に、当該アミノ酸残基以外の残基として多様なアミノ酸が含まれるように設計することも可能である。本発明においてそのような残基は、フレキシブル残基と指称される。本発明の抗原結合分子の抗原に対する結合活性が、組織特異的化合物の濃度の条件によって変化する限り、当該フレキシブル残基の数および位置は特定の態様に限定されることはない。すなわち、重鎖および/または軽鎖のCDR配列および/またはFR配列に一つまたはそれ以上のフレキシブル残基が含まれ得る。フレキシブル残基およびその残基を他のどのアミノ酸に置換してライブラリ化することができるかは、アデノシンおよび/またはATPと抗体の複合体の結晶構造解析や変異導入によって同定することができる。例えば、アデノシンおよび/またはATPと抗体の複合体の結晶構造解析から、アデノシンおよび/またはATPの結合に関与していない抗体の残基を同定することができる。アデノシンおよび/またはATPの結合に関与していないと同定された残基を他のアミノ酸を置換しても、化合物への結合を適切な程度に維持できるアミノ酸を選択することができる。これにより、選択された残基において選択されたアミノ酸が出現するライブラリを設計することができる。この場合において、アデノシンおよび/またはATPの結合に関与していないと同定された残基が互いに異なるアミノ酸に置換された抗原結合分子の集合となるように、複数の抗原結合分子から主としてなるライブラリを設計することが可能である。すなわち、互いに異なるアミノ酸に置換された個々のフレキシブル残基を組み合わせることにより、当該フレキシブル残基が含まれる抗原結合分子の配列の多様性がもたらされる。
 また、アデノシンおよび/またはATPの結合に関与すると同定された残基の少なくとも一つは、当該残基および当該残基と異なる残基から選択される任意の残基になるように、これらの残基を含む抗原結合分子がデザインされ得る。アデノシンおよび/またはATPの結合に関与すると同定されるアミノ酸の非限定の一態様として、重鎖可変領域に含まれる52位、52a位、53位、96位、100a位、または100c位のアミノ酸のうちいずれかひとつ以上のアミノ酸等が例示され得る。またこのようなアミノ酸の非限定の一態様として、重鎖可変領域に含まれる52位のSer、52a位のSer、53位のArg、96位のGly、100a位のLeu、100c位のTrp等のアミノ酸のうちいずれかひとつ以上のアミノ酸が例示され得る。例えば、前記の100a位のLeuがアデノシンおよび/またはATPの結合に関与すると同定される場合、ライブラリに含まれる抗原結合分子の100a位のアミノ酸残基は、Leuに加え、His、Met、Leu、Arg、Trp、またはTyrのいずれかのフレキシブル残基から選択されるアミノ酸残基であり得る。
 前記のフレキシブル残基の非限定の一態様として、重鎖可変領域に含まれる31位、32位、33位、35位、50位、55位、56位、57位、58位、59位、95位、96位、97位、98位、99位、100位、100a位、および100b位のアミノ酸が例示され得る。そうしたアミノ酸の別の非限定の一態様として、軽鎖可変領域に含まれる26位、27位、27a位、27b位、27c位、28位、29位、31位、32位、50位、51位、52位、53位、54位、55位、89位、90位、91位、92位、93位、94位、95a位、96位、および97位のアミノ酸が例示され得る。
 前記のフレキシブル残基の非限定の一態様として、重鎖可変領域に含まれるアミノ酸であって;
31位のアミノ酸がAsp、Gly、Asn、Ser、Arg、またはThrのいずれか、
32位のアミノ酸がAla、Phe、His、Asn、Ser、またはTyrのいずれか、
33位のアミノ酸がAla、Glu、Asp、Gly、Phe、Ile、His、Lys、Met、Leu、Asn、Gln、Pro、Ser、Arg、Trp、Val、Tyr、またはThrのいずれか、
35位のアミノ酸がHis、Ser、Thr、Tyr、またはAsnのいずれか、
50位のアミノ酸がAla、Glu、Asp、Gly、Phe、Ile、His、Lys、Met、Leu、Asn、Gln、Pro、Arg、Thr、Trp、Val、Tyr、またはSerのいずれか、
55位のアミノ酸がAla、Glu、Asp、Gly、Leu、Thr、Ser、Arg、またはAsnのいずれか、
56位のアミノ酸がAla、Glu、Asp、Gly、Phe、Ile、His、Lys、Met、Leu、Gln、Pro、Ser、Thr、Trp、Val、またはTyrのいずれか、
57位のアミノ酸がAla、Lys、Arg、Thr、またはIleのいずれか、
58位のアミノ酸がAsp、Gly、Phe、His、Ser、Thr、Tyr、またはAsnのいずれか、
59位のアミノ酸がLeu、またはTyrのいずれか、
95位のアミノ酸がAla、Ile、Lys、Met、Leu、Arg、Trp、Val、Tyr、またはPheのいずれか、
96位のアミノ酸がAla、Asp、Asn、またはSerのいずれか、
97位のアミノ酸がAla、Asp、Gly、Ile、His、Lys、Met、Leu、Asn、Ser、Val、Tyr、またはArgのいずれか、
98位のアミノ酸がAla、Glu、Asp、Gly、Phe、Ile、His、Met、Leu、Asn、Gln、Pro、Ser、Arg、Thr、Trp、Val、Tyr、またはLysのいずれか、
99位のアミノ酸がAla、Glu、Asp、Phe、His、Lys、Asn、Gln、Ser、Arg、Trp、Val、Tyr、またはGlyのいずれか、
100位のアミノ酸がAla、Glu、Gly、Phe、Ile、His、Lys、Met、Leu、Asn、Gln、Pro、Ser、Arg、Thr、Trp、Val、Tyr、またはAspのいずれか、
100a位のアミノ酸がAla、Phe、Ile、His、Lys、Met、Arg、Trp、Val、またはTyrのいずれか、もしくは
100b位のアミノ酸がAla、Glu、Asp、Gly、Phe、Ile、His、Lys、Met、Leu、Gln、Pro、Ser、Arg、Thr、Trp、Val、Tyr、またはAsnのいずれか、
のアミノ酸が例示され得る。
 前記のフレキシブル残基の非限定の一態様として、軽鎖可変領域に含まれるアミノ酸であって;
26位のアミノ酸がAla、Ser、またはThrのいずれか、
27位のアミノ酸がThr、またはSerのいずれか、
27a位のアミノ酸がGly、Asn、Thr、またはSerのいずれか、
27b位のアミノ酸がAsn、またはAspのいずれか、
27c位のアミノ酸がIle、またはValのいずれか、
28位のアミノ酸がAsp、またはGlyのいずれか、
29位のアミノ酸がAla、Asp、Phe、Ser、Arg、Thr、Tyr、またはGlyのいずれか、
31位のアミノ酸がGlu、Asp、Lys、またはAsnのいずれか、
32位のアミノ酸がAla、Asp、Ser、Thr、またはTyrのいずれか、
50位のアミノ酸がAsp、Gly、Lys、Asn、Gln、Ser、Arg、Tyr、またはGluのいずれか、
51位のアミノ酸がAsp、Gly、Lys、Asn、Thr、またはValのいずれか、
52位のアミノ酸がAla、Asp、Asn、Thr、またはSerのいずれか、
53位のアミノ酸がGlu、Asp、His、Asn、Gln、Ser、Tyr、またはLysのいずれか、
54位のアミノ酸がLys、またはArgのいずれか、
55位のアミノ酸がLeu、またはProのいずれか、
89位のアミノ酸がAla、Gly、Phe、Leu、Asn、Gln、Thr、Val、Tyr、またはSerのいずれか、
90位のアミノ酸がAla、Leu、Thr、Val、またはSerのいずれか、
91位のアミノ酸がAla、Asp、Phe、His、Lys、Asn、Ser、Arg、Thr、Trp、Val、またはTyrのいずれか、
92位のアミノ酸がGlu、Asp、Ser、Arg、Thr、Val、Tyr、またはAlaのいずれか、
93位のアミノ酸がAla、Asp、Ile、Asn、Ser、Arg、Thr、Val、Tyr、またはGlyのいずれか、
94位のアミノ酸がAla、Asp、Gly、Ile、Asn、Arg、Thr、またはSerのいずれか、
95位のアミノ酸がAla、Glu、Asp、Gly、Phe、Ile、His、Lys、Met、Leu、Gln、Pro、Ser、Arg、Thr、Trp、Val、Tyr、またはAsnのいずれか、
95a位のアミノ酸がAla、Glu、Asp、Gly、Ile、His、Lys、Leu、Gln、Pro、Ser、Arg、Thr、Tyr、またはAsnのいずれか、
96位のアミノ酸がAla、Asp、Gly、Phe、His、Lys、Leu、Asn、Gln、Pro、Ser、Thr、Trp、Tyr、またはValのいずれか、もしくは
97位のアミノ酸がAla、Gly、Ile、Met、Leu、Ser、またはValのいずれか
のアミノ酸が例示され得る。
 本明細書においては、フレキシブル残基とは、公知のかつ/または天然抗体または抗原結合ドメインのアミノ酸配列を比較した場合に、その位置で提示されるいくつかの異なるアミノ酸を持つ軽鎖および重鎖可変領域上のアミノ酸が非常に多様である位置に存在するアミノ酸残基のバリエーションをいう。非常に多様である位置は一般的にCDR領域に存在する。一態様では、公知のかつ/または天然抗体の非常に多様な位置を決定する際には、Kabat, Sequences of Proteins of Immunological Interest (National Institute of Health Bethesda Md.) (1987年および1991年)が提供するデータが有効である。また、インターネット上の複数のデータベース(http://vbase.mrc-cpe.cam.ac.uk/、http://www.bioinf.org.uk/abs/index.html)では収集された多数のヒト軽鎖および重鎖の配列とその配置が提供されており、これらの配列とその配置の情報は本発明における非常に多様な位置の決定に有用である。本発明によると、アミノ酸がある位置で好ましくは約2から約20、好ましくは約3から約19、好ましくは約4から約18、好ましくは5から17、好ましくは6から16、好ましくは7から15、好ましくは8から14、好ましくは9から13、好ましくは10から12個の可能な異なるアミノ酸残基の多様性を有する場合は、その位置は非常に多様といえる。いくつかの実施形態では、あるアミノ酸位置は、好ましくは少なくとも約2、好ましくは少なくとも約4、好ましくは少なくとも約6、好ましくは少なくとも約8、好ましくは約10、好ましくは約12の可能な異なるアミノ酸残基の多様性を有し得る。
 また、前記のアデノシンおよび/またはATPの存在もしくは非存在によって抗原に対する抗原結合ドメインの結合活性を変化させる少なくとも一つのアミノ酸残基が導入された軽鎖可変領域とランダム化可変領域配列ライブラリとして作製された重鎖可変領域とを組み合わせることによっても、本発明における、複数の互いに配列の異なる抗原結合分子を含むライブラリが作製され得る。同様に、前記のアデノシンおよび/またはATPの存在もしくは非存在によって抗原に対する抗原結合ドメインの結合活性を変化させる少なくとも一つのアミノ酸残基が導入され、それ以外のアミノ酸残基をフレキシブル残基として設計された重鎖可変領域とを組み合わせることによっても、本発明における複数の互いに配列の異なる抗原結合分子を含むライブラリが作製され得る。
 前記の標的組織特異的化合物の濃度の条件によって抗原に対する抗原結合分子の結合活性を変化させる少なくとも一つのアミノ酸残基が導入された軽鎖可変領域とランダム化可変領域配列ライブラリとして作製された重鎖可変領域とを組み合わせる場合でも、前記と同様に、フレキシブル残基が当該軽鎖可変領域の配列に含まれるように設計することも可能である。本発明の抗原結合分子の抗原に対する結合活性が、アデノシンおよび/またはATPの存在もしくは非存在によって変化する限り、当該フレキシブル残基の数および位置は特定の態様に限定されることはない。すなわち、重鎖および/または軽鎖のCDR配列および/またはFR配列に一つまたはそれ以上のフレキシブル残基が含まれ得る。
 組み合わされる重鎖可変領域の例として、ランダム化可変領域ライブラリが好適に挙げられる。ランダム化可変領域ライブラリの作製方法は公知の方法が適宜組み合わされる。本発明の非限定な一態様では、特定の抗原で免疫された動物、感染症患者やワクチン接種して血中抗体価が上昇したヒト、癌患者、自己免疫疾患のリンパ球由来の抗体遺伝子をもとに構築された免疫ライブラリが、ランダム化可変領域ライブラリとして好適に使用され得る。
 また、本発明の非限定な一態様では、ゲノムDNA におけるV 遺伝子や再構築され機能的なV遺伝子のCDR配列が、適当な長さのコドンセットをコードする配列を含む合成オリゴヌクレオチドセットで置換された合成ライブラリもまた、ランダム化可変領域ライブラリとして好適に使用され得る。この場合、重鎖のCDR3の遺伝子配列の多様性が観察されることから、CDR3の配列のみを置換することもまた可能である。抗原結合分子の可変領域においてアミノ酸の多様性を生み出す基準は、抗原結合分子の表面に露出した位置のアミノ酸残基に多様性を持たせることである。表面に露出した位置とは、抗原結合分子の構造、構造アンサンブル、および/またはモデル化された構造にもとづいて、表面露出が可能、かつ/または抗原との接触が可能と判断される位置のことをいうが、一般的にはそのCDRである。好ましくは、表面に露出した位置は、InsightIIプログラム(Accelrys)のようなコンピュータプログラムを用いて、抗原結合分子の3次元モデルからの座標を使って決定される。表面に露出した位置は、当技術分野で公知のアルゴリズム(例えば、LeeおよびRichards(J. Mol. Biol. (1971) 55, 379-400)、Connolly(J. Appl. Cryst. (1983) 16, 548-558))を使用して決定され得る。表面に露出した位置の決定は、タンパク質モデリングに適したソフトウェアおよび抗体から得られる三次元構造情報を使って行われ得る。このような目的のために利用できるソフトウェアとして、SYBYL生体高分子モジュールソフトウェア(Tripos Associates)が好適に挙げられる。一般的に、また好ましくは、アルゴリズムがユーザーの入力サイズパラメータを必要とする場合は、計算において使われるプローブの「サイズ」は半径約1.4オングストローム以下に設定される。さらに、パーソナルコンピュータ用のソフトウェアを使用した表面に露出した領域およびエリアの決定法が、Pacios(Comput. Chem. (1994) 18 (4), 377-386およびJ. Mol. Model. (1995) 1, 46-53)に記載されている。
 また、本発明の非限定な一態様では、抗体の安定性を向上させるために、CDR領域および/またはフレームワーク領域を含む可変領域のアミノ酸を適宜改変することも可能である。そのようなアミノ酸の非限定の一態様として、1位、5位、10位、30位、48位、58位のアミノ酸が例示され得る。より具体的には1位のGln、5位のGln、10位のAsp、30位のAsn、48位のLeu、58位のAsnが例示され得る。抗体の安定性を向上させるために、これらのアミノ酸を生殖細胞系列の配列に含まれている対応するアミノ酸に置換することが可能である。そのような生殖細胞系列の非限定な一態様の配列としてVH3-21の配列が例示され得る。この場合において、1位のGlnがGluに、5位のGlnがValに、10位のAspがGlyに、30位のAsnがSerに、48位のLeuがValに、58位のAsnがTyrに置換され得る。
 さらに、本発明の非限定な一態様では、健常人のリンパ球由来の抗体遺伝子から構築され、そのレパートリーにバイアスを含まない抗体配列であるナイーブ配列からなるナイーブライブラリもまた、ランダム化可変領域ライブラリとして特に好適に使用され得る(Gejimaら(Human Antibodies (2002) 11,121-129)およびCardosoら(Scand. J. Immunol. (2000) 51, 337-344))。本発明で記載されるナイーブ配列を含むアミノ酸配列とは、このようなナイーブライブラリから取得されるアミノ酸配列をいう。
Fc領域
 Fc領域は、抗体重鎖の定常領域に由来するアミノ酸配列を含む。Fc領域は、EUナンバリングで表されるおよそ216位のアミノ酸における、パパイン切断部位のヒンジ領域のN末端から、当該ヒンジ、CH2およびCH3ドメインを含める抗体の重鎖定常領域の部分である。Fc領域は、ヒトIgG1から取得され得るが、IgGの特定のサブクラスに限定されるものでもない。当該Fc領域の好適な例として、後述されるようにpH酸性域におけるFcRnに対する結合活性を有するFc領域が挙げられる。また当該Fc領域の好適な例として、後述されるようにFcγレセプターに対する結合活性を有するFc領域が挙げられる。そのようなFc領域の非限定な一態様として、ヒトIgG1(配列番号:5)、IgG2(配列番号:6)、IgG3(配列番号:7)、またはIgG4(配列番号:8)で表されるFc領域が例示される。
Fcγレセプター(FcγR)
 Fcγレセプター(FcγRとも記載される)とは、IgG1、IgG2、IgG3、IgG4モノクローナル抗体のFc領域に結合し得るレセプターをいい、実質的にFcγレセプター遺伝子にコードされるタンパク質のファミリーのいかなるメンバーをも意味する。ヒトでは、このファミリーには、アイソフォームFcγRIa、FcγRIbおよびFcγRIcを含むFcγRI(CD64);アイソフォームFcγRIIa(アロタイプH131およびR131を含む。即ち、FcγRIIa (H)およびFcγRIIa (R))、FcγRIIb(FcγRIIb-1およびFcγRIIb-2を含む)およびFcγRIIcを含むFcγRII(CD32);およびアイソフォームFcγRIIIa(アロタイプV158およびF158を含む。即ち、FcγRIIIa (V)およびFcγRIIIa (F))およびFcγRIIIb(アロタイプFcγRIIIb-NA1およびFcγRIIIb-NA2を含む)を含むFcγRIII(CD16)、並びにいかなる未発見のヒトFcγR類またはFcγRアイソフォームまたはアロタイプも含まれるが、これらに限定されるものではない。FcγRは、ヒト、マウス、ラット、ウサギおよびサルを含むが、これらに限定されるものではない、いかなる生物由来でもよい。マウスFcγR類には、FcγRI(CD64)、FcγRII(CD32)、FcγRIII(CD16)およびFcγRIII-2(FcγRIV、CD16-2)、並びにいかなる未発見のマウスFcγR類またはFcγRアイソフォームまたはアロタイプも含まれるが、これらに限定されない。こうしたFcγレセプターの好適な例としてはヒトFcγRI(CD64)、FcγRIIa(CD32)、FcγRIIb(CD32)、FcγRIIIa(CD16)及び/又はFcγRIIIb(CD16)が挙げられる。ヒトFcγRIのポリヌクレオチド配列及びアミノ酸配列はそれぞれ配列番号:9(NM_000566.3)及び10(NP_000557.1)に、ヒトFcγRIIa(アロタイプH131)のポリヌクレオチド配列及びアミノ酸配列はそれぞれ配列番号:11(BC020823.1)及び12(AAH20823.1)に(アロタイプR131は配列番号:12の166番目のアミノ酸がArgに置換されている配列である)、FcγRIIbのポリヌクレオチド配列及びアミノ酸配列はそれぞれ配列番号:13(BC146678.1)及び14(AAI46679.1)に、FcγRIIIaのポリヌクレオチド配列及びアミノ酸配列はそれぞれ配列番号:15(BC033678.1)及び16(AAH33678.1)に、及びFcγRIIIbのポリヌクレオチド配列及びアミノ酸配列は、それぞれ配列番号:17(BC128562.1)及び18(AAI28563.1)に記載されている(カッコ内はRefSeq等のデータベース登録番号を示す)。Fcγレセプターが、IgG1、IgG2、IgG3、IgG4モノクローナル抗体のFc領域に結合活性を有するか否かは、上記に記載されるFACSやELISAフォーマットのほか、ALPHAスクリーン(Amplified Luminescent Proximity Homogeneous Assay)や表面プラズモン共鳴(SPR)現象を利用したBIACORE法等によって確認され得る(Proc. Natl. Acad. Sci. U.S.A. (2006) 103 (11), 4005-4010)。
 FcγRIa、FcγRIbおよびFcγRIcを含むFcγRI(CD64)ならびにアイソフォームFcγRIIIa(アロタイプV158およびF158を含む)およびFcγRIIIb(アロタイプFcγRIIIb-NA1およびFcγRIIIb-NA2を含む)を含むFcγRIII(CD16)は、IgGのFc領域と結合するα鎖と細胞内に活性化シグナルを伝達するITAMを有する共通γ鎖が会合する。一方、アイソフォームFcγRIIa(アロタイプH131およびR131を含む)およびFcγRIIcを含むFcγRII(CD32)の自身の細胞質ドメインにはITAMが含まれている。これらのレセプターは、マクロファージやマスト細胞、抗原提示細胞等の多くの免疫細胞に発現している。これらのレセプターがIgGのFc領域に結合することによって伝達される活性化シグナルによって、マクロファージの貪食能や炎症性サイトカインの産生、マスト細胞の脱顆粒、抗原提示細胞の機能亢進が促進される。上記のように活性化シグナルを伝達する能力を有するFcγレセプターは、本明細書において活性型Fcγレセプターと呼ばれる。
 一方、FcγRIIb(FcγRIIb-1およびFcγRIIb-2を含む)の自身の細胞質内ドメインには抑制型シグナルを伝達するITIMが含まれている。B細胞ではFcγRIIbとB細胞レセプター(BCR)との架橋によってBCRからの活性化シグナルが抑制される結果BCRの抗体産生が抑制される。マクロファージでは、FcγRIIIとFcγRIIbとの架橋によって貪食能や炎症性サイトカインの産生能が抑制される。上記のように抑制化シグナルを伝達する能力を有するFcγレセプターは、本明細書において抑制型Fcγレセプターと呼ばれる。
FcγRに対するFc領域の結合活性
 前述されるように、本発明の抗原結合分子に含まれるFc領域として、Fcγレセプターに対する結合活性を有するFc領域が挙げられる。そのようなFc領域の非限定な一態様として、ヒトIgG1(配列番号:5)、IgG2(配列番号:6)、IgG3(配列番号:7)、またはIgG4(配列番号:8)で表されるFc領域が例示される。Fcγレセプターが、IgG1、IgG2、IgG3、IgG4モノクローナル抗体のFc領域に結合活性を有するか否かは、上記に記載されるFACSやELISAフォーマットのほか、ALPHAスクリーン(Amplified Luminescent Proximity Homogeneous Assay)や表面プラズモン共鳴(SPR)現象を利用したBIACORE法等によって確認され得る(Proc. Natl. Acad. Sci. U.S.A. (2006) 103 (11), 4005-4010)。
 ALPHAスクリーンは、ドナーとアクセプターの2つのビーズを使用するALPHAテクノロジーによって下記の原理に基づいて実施される。ドナービーズに結合した分子が、アクセプタービーズに結合した分子と生物学的に相互作用し、2つのビーズが近接した状態の時にのみ、発光シグナルを検出される。レーザーによって励起されたドナービーズ内のフォトセンシタイザーは、周辺の酸素を励起状態の一重項酸素に変換する。一重項酸素はドナービーズ周辺に拡散し、近接しているアクセプタービーズに到達するとビーズ内の化学発光反応を引き起こし、最終的に光が放出される。ドナービーズに結合した分子とアクセプタービーズに結合した分子が相互作用しないときは、ドナービーズの産生する一重項酸素がアクセプタービーズに到達しないため、化学発光反応は起きない。
 例えば、ドナービーズにビオチン標識されたFc領域を含む抗原結合分子が結合され、アクセプタービーズにはグルタチオンSトランスフェラーゼ(GST)でタグ化されたFcγレセプターが結合される。競合するFc領域改変体を含む抗原結合分子の非存在下では、天然型Fc領域を有する抗原結合分子とFcγレセプターは相互作用し520-620 nmのシグナルを生ずる。タグ化されていないFc領域改変体を含む抗原結合分子は、天然型Fc領域を有する抗原結合分子とFcγレセプター間の相互作用と競合する。競合の結果表れる蛍光の減少を定量することによって相対的な結合親和性が決定され得る。抗体等の抗原結合分子をSulfo-NHS-ビオチン等を用いてビオチン化することは公知である。FcγレセプターをGSTでタグ化する方法としては、FcγレセプターをコードするポリヌクレオチドとGSTをコードするポリヌクレオチドをインフレームで融合した融合遺伝子が作動可能に連結されたベクターに保持した細胞等において発現し、グルタチオンカラムを用いて精製する方法等が適宜採用され得る。得られたシグナルは例えばGRAPHPAD PRISM(GraphPad社、San Diego)等のソフトウェアを用いて非線形回帰解析を利用する一部位競合(one-site competition)モデルに適合させることにより好適に解析される。
 相互作用を観察する物質の一方(リガンド)をセンサーチップの金薄膜上に固定し、センサーチップの裏側から金薄膜とガラスの境界面で全反射するように光を当てると、反射光の一部に反射強度が低下した部分(SPRシグナル)が形成される。相互作用を観察する物質の他方(アナライト)をセンサーチップの表面に流しリガンドとアナライトが結合すると、固定化されているリガンド分子の質量が増加し、センサーチップ表面の溶媒の屈折率が変化する。この屈折率の変化により、SPRシグナルの位置がシフトする(逆に結合が解離するとシグナルの位置は戻る)。Biacoreシステムは上記のシフトする量、すなわちセンサーチップ表面での質量変化を縦軸にとり、質量の時間変化を測定データとして表示する(センサーグラム)。センサーグラムのカーブからカイネティクス:結合速度定数(ka)と解離速度定数(kd)が、当該定数の比からアフィニティー(KD)が求められる。BIACORE法では阻害測定法も好適に用いられる。阻害測定法の例はProc. Natl. Acad. Sci. U.S.A. (2006) 103 (11), 4005-4010において記載されている。
Fcγレセプター(FcγR)結合改変Fc領域
 本発明が含むFc領域として、ヒトIgG1(配列番号:5)、IgG2(配列番号:6)、IgG3(配列番号:7)、またはIgG4(配列番号:8)で表されるFc領域のほかに、天然型ヒトIgGのFc領域のFcγレセプターに対する結合活性よりもFcγレセプターに対する結合活性が高いFcγR結合改変Fc領域も適宜使用され得る。本明細書において、「天然型ヒトIgGのFc領域」とは、配列番号:5、6、7または8で例示されるヒトIgG1、IgG2、IgG3またはIgG4のFc領域のEUナンバリング297位に結合した糖鎖がフコース含有糖鎖であるFc領域を意味する。そのようなFcγR結合改変Fc領域は、天然型ヒトIgGのFc領域のアミノ酸を改変することによって作製され得る。FcγR結合改変Fc領域のFcγRに対する結合活性が、天然型ヒトIgGのFc領域のFcγRに対する結合活性より高いか否かは、前記の結合活性の項で記載された方法を用いて適宜実施され得る。
 本発明において、Fc領域の「アミノ酸の改変」または「アミノ酸改変」とは、出発Fc領域のアミノ酸配列とは異なるアミノ酸配列に改変することを含む。出発Fc領域の修飾改変体がpH中性域においてヒトFcγレセプターに結合することができる限り、いずれのFc領域も出発Fc領域として使用され得る。また、既に改変が加えられたFc領域を出発Fc領域としてさらなる改変が加えられたFc領域も本発明のFc領域として好適に使用され得る。出発Fc領域とは、ポリペプチドそのもの、出発Fc領域を含む組成物、または出発Fc領域をコードするアミノ酸配列を意味し得る。出発Fc領域には、抗体の項で概説された組換えによって産生された公知のFc領域が含まれ得る。出発Fc領域の起源は、限定されないが非ヒト動物の任意の生物またはヒトから取得され得る。好ましくは、任意の生物としては、マウス、ラット、モルモット、ハムスター、アレチネズミ、ネコ、ウサギ、イヌ、ヤギ、ヒツジ、ウシ、ウマ、ラクダ、および非ヒト霊長類から選択される生物が好適に挙げられる。別の態様において、出発Fc領域はまた、カニクイザル、マーモセット、アカゲザル、チンパンジー、またはヒトから取得され得る。好ましくは、出発Fc領域は、ヒトIgG1から取得され得るが、IgGの特定のクラスに限定されるものでもない。このことは、ヒトIgG1、IgG2、IgG3、またはIgG4のFc領域を出発Fc領域として適宜用いることができることを意味する。同様に、本明細書において、前記の任意の生物からのIgGの任意のクラスまたはサブクラスのFc領域を、好ましくは出発Fc領域として用いることができることを意味する。天然に存在するIgGのバリアントまたは操作された型の例は、公知の文献(Curr. Opin. Biotechnol. (2009) 20 (6), 685-91、Curr. Opin. Immunol. (2008) 20 (4), 460-470、Protein Eng. Des. Sel. (2010) 23 (4), 195-202、国際公開WO2009/086320、WO2008/092117、WO2007/041635、およびWO2006/105338)に記載されるがそれらに限定されない。
 改変の例としては一以上の変異、例えば、出発Fc領域のアミノ酸とは異なるアミノ酸残基に置換された変異、あるいは出発Fc領域のアミノ酸に対して一以上のアミノ酸残基の挿入または出発Fc領域のアミノ酸から一以上のアミノ酸の欠失等が含まれる。好ましくは、改変後のFc領域のアミノ酸配列には、天然に生じないFc領域の少なくとも部分を含むアミノ酸配列を含む。そのような変種は必然的に出発Fc領域と100%未満の配列同一性または類似性を有する。好ましい実施形態において、変種は出発Fc領域のアミノ酸配列と約75%~100%未満のアミノ酸配列同一性または類似性、より好ましくは約80%~100%未満、より好ましくは約85%~100%未満の、より好ましくは約90%~100%未満、最も好ましくは約95%~100%未満の同一性または類似性のアミノ酸配列を有する。本発明の非限定の一態様において、出発Fc領域および本発明のFcγR結合改変Fc領域の間には少なくとも1つのアミノ酸の差がある。出発Fc領域と本発明のFcγR結合改変Fc領域のアミノ酸の違いは、特に前述のEUナンバリングで特定されるアミノ酸残基の位置の特定されたアミノ酸の違いによっても好適に特定可能である。そのような変種の作製方法は「アミノ酸の改変」の項に例示されている。
 本発明の抗原結合分子に含まれる、天然型ヒトIgGのFc領域のFcγレセプターに対する結合活性よりもFcγレセプターに対する結合活性が高いFcγR結合改変Fc領域(FcγR結合改変Fc領域)はいかなる方法によっても取得され得るが、具体的には、出発Fc領域として用いられるヒトIgG型免疫グロブリンのアミノ酸の改変によって当該FcγR結合改変Fc領域が取得され得る。改変のための好ましいIgG型免疫グロブリンのFc領域としては、例えば、配列番号:5、6、7または8で例示されるヒトIgG(IgG1、IgG2、IgG3、またはIgG4、およびそれらの改変体)のFc領域が挙げられる。
 他のアミノ酸への改変は、天然型ヒトIgGのFc領域のFcγレセプターに対する結合活性よりもFcγレセプターに対する結合活性が高いかぎり、いかなる位置のアミノ酸も改変され得る。抗原結合分子が、ヒトFc領域としてヒトIgG1のFc領域を含んでいる場合、EUナンバリング297位に結合した糖鎖がフコース含有糖鎖である天然型ヒトIgGのFc領域のFcγレセプターに対する結合活性よりもFcγレセプターに対する結合活性が高い効果をもたらす改変が含まれていることが好ましい。こうしたアミノ酸の改変としては、例えば国際公開WO2007/024249、WO2007/021841、WO2006/031370、WO2000/042072、WO2004/029207、WO2004/099249、WO2006/105338、WO2007/041635、WO2008/092117、WO2005/070963、WO2006/020114、WO2006/116260およびWO2006/023403などにおいて報告されている。
 そのような改変が可能なアミノ酸として、例えば、EUナンバリングで表される221位、222位、223位、224位、225位、227位、228位、230位、231位、232位、233位、234位、235位、236位、237位、238位、239位、240位、241位、243位、244位、245位、246位、247位、249位、250位、251位、254位、255位、256位、258位、260位、262位、263位、264位、265位、266位、267位、268位、269位、270位、271位、272位、273位、274位、275位、276位、278位、279位、280位、281位、282位、283位、284位、285位、286位、288位、290位、291位、292位、293位、294位、295位、296位、297位、298位、299位、300位、301位、302位、303位、304位、305位、311位、313位、315位、317位、318位、320位、322位、323位、324位、325位、326位、327位、328位、329位、330位、331位、332位、333位、334位、335位、336位、337位、339位、376位、377位、378位、379位、380位、382位、385位、392位、396位、421位、427位、428位、429位、434位、436位および440位の群から選択される少なくとも一つ以上のアミノ酸が挙げられる。これらのアミノ酸の改変によって、天然型ヒトIgGのFc領域のFcγレセプターに対する結合活性よりもFcγレセプターに対する結合活性が高いFc領域(FcγR結合改変Fc領域)を取得することができる。
 本発明に使用するために、特に好ましい改変としては、例えば、Fc領域のEUナンバリングで表される;
221位のアミノ酸がLysまたはTyrのいずれか、
222位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
223位のアミノ酸がPhe、Trp、GluまたはLysのいずれか、
224位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
225位のアミノ酸がGlu、LysまたはTrpのいずれか、
227位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
228位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
230位のアミノ酸がAla、Glu、GlyまたはTyrのいずれか、
231位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
232位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
233位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
234位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
235位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
236位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
237位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
238位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
239位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
240位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
241位のアミノ酸がAsp、Glu、Leu、Arg、TrpまたはTyrのいずれか、
243位のアミノ酸がLeu、Glu、Leu、Gln、Arg、TrpまたはTyrのいずれか、
244位のアミノ酸がHis、
245位のアミノ酸がAla、
246位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
247位のアミノ酸がAla、Phe、Gly、His、Ile、Leu、Met、Thr、ValまたはTyrのいずれか、
249位のアミノ酸がGlu、His、GlnまたはTyrのいずれか、
250位のアミノ酸がGluまたはGlnのいずれか、
251位のアミノ酸がPhe、
254位のアミノ酸がPhe、MetまたはTyrのいずれか、
255位のアミノ酸がGlu、LeuまたはTyrのいずれか、
256位のアミノ酸がAla、MetまたはProのいずれか、
258位のアミノ酸がAsp、Glu、His、SerまたはTyrのいずれか、
260位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
262位のアミノ酸がAla、Glu、Phe、IleまたはThrのいずれか、
263位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
264位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
265位のアミノ酸がAla、Leu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
266位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
267位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
268位のアミノ酸がAsp、Glu、Phe、Gly、Ile、Lys、Leu、Met、Pro、Gln、Arg、Thr、ValまたはTrpのいずれか、
269位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
270位のアミノ酸がGlu、Phe、Gly、His、Ile、Leu、Met、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
271位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
272位のアミノ酸がAsp、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
273位のアミノ酸がPheまたはIleのいずれか、
274位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
275位のアミノ酸がLeuまたはTrpのいずれか、
276位のアミノ酸が、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
278位のアミノ酸がAsp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
279位のアミノ酸がAla、
280位のアミノ酸がAla、Gly、His、Lys、Leu、Pro、Gln、TrpまたはTyrのいずれか、
281位のアミノ酸がAsp、Lys、ProまたはTyrのいずれか、
282位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
283位のアミノ酸がAla、Gly、His、Ile、Lys、Leu、Met、Pro、ArgまたはTyrのいずれか、
284位のアミノ酸がAsp、Glu、Leu、Asn、ThrまたはTyrのいずれか、
285位のアミノ酸がAsp、Glu、Lys、Gln、TrpまたはTyrのいずれか、
286位のアミノ酸がGlu、Gly、ProまたはTyrのいずれか、
288位のアミノ酸がAsn、Asp、GluまたはTyrのいずれか、
290位のアミノ酸がAsp、Gly、His、Leu、Asn、Ser、Thr、TrpまたはTyrのいずれか、
291位のアミノ酸がAsp、Glu、Gly、His、Ile、GlnまたはThrのいずれか、
292位のアミノ酸がAla、Asp、Glu、Pro、ThrまたはTyrのいずれか、
293位のアミノ酸がPhe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
294位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
295位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
296位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、ThrまたはValのいずれか、
297位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
298位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Met、Asn、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
299位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Val、TrpまたはTyrのいずれか、
300位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
301位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
302位のアミノ酸がIle、
303位のアミノ酸がAsp、GlyまたはTyrのいずれか、
304位のアミノ酸がAsp、His、Leu、AsnまたはThrのいずれか、
305位のアミノ酸がGlu、Ile、ThrまたはTyrのいずれか、
311位のアミノ酸がAla、Asp、Asn、Thr、ValまたはTyrのいずれか、
313位のアミノ酸がPhe、
315位のアミノ酸がLeu、
317位のアミノ酸がGluまたはGln、
318位のアミノ酸がHis、Leu、Asn、Pro、Gln、Arg、Thr、ValまたはTyrのいずれか、
320位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Asn、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
322位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
323位のアミノ酸がIle、
324位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
325位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
326位のアミノ酸がAla、Asp、Glu、Gly、Ile、Leu、Met、Asn、Pro、Gln、Ser、Thr、Val、TrpまたはTyrのいずれか、
327位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
328位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
329位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
330位のアミノ酸がCys、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
331位のアミノ酸がAsp、Phe、His、Ile、Leu、Met、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
332位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
333位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Ser、Thr、ValまたはTyrのいずれか、
334位のアミノ酸がAla、Glu、Phe、Ile、Leu、ProまたはThrのいずれか、
335位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Val、TrpまたはTyrのいずれか、
336位のアミノ酸がGlu、LysまたはTyrのいずれか、
337位のアミノ酸がGlu、HisまたはAsnのいずれか、
339位のアミノ酸がAsp、Phe、Gly、Ile、Lys、Met、Asn、Gln、Arg、SerまたはThrのいずれか、
376位のアミノ酸がAlaまたはValのいずれか、
377位のアミノ酸がGlyまたはLysのいずれか、
378位のアミノ酸がAsp、
379位のアミノ酸がAsn、
380位のアミノ酸がAla、AsnまたはSerのいずれか、
382位のアミノ酸がAlaまたはIleのいずれか、
385位のアミノ酸がGlu、
392位のアミノ酸がThr、
396位のアミノ酸がLeu、
421位のアミノ酸がLys、
427位のアミノ酸がAsn、
428位のアミノ酸がPheまたはLeuのいずれか、
429位のアミノ酸がMet、
434位のアミノ酸がTrp、
436位のアミノ酸がIle、もしくは
440位のアミノ酸がGly、His、Ile、LeuまたはTyrのいずれか、
の群から選択される少なくとも一つ以上のアミノ酸の改変が挙げられる。また、改変されるアミノ酸の数は特に限定されず、一箇所のみのアミノ酸が改変され得るし、二箇所以上のアミノ酸が改変され得る。二箇所以上のアミノ酸の改変の組合せとしては、例えば表1(表1-1~表1-3)に記載されるような組合せが挙げられる。
Figure JPOXMLDOC01-appb-T000006
 表1-2は表1-1の続きの表である。
Figure JPOXMLDOC01-appb-T000007
 表1-3は表1-2の続きの表である。 
Figure JPOXMLDOC01-appb-T000008
 本発明の抗原結合分子に含まれるFcγレセプター結合ドメインとFcγレセプターとの結合活性を測定するpHの条件はpH酸性域乃至pH中性域の条件が適宜使用され得る。本発明の抗原結合分子に含まれるFcγレセプター結合ドメインとFcγレセプターとの結合活性を測定する条件としてのpH酸性域乃至pH中性域とは、通常pH5.8~pH8.0を意味する。好ましくはpH6.0 ~pH7.4の任意のpH値によって示される範囲であり、好ましくはpH6.0、6.1、6.2、6.3、6.4、6.5、6.6、6.7、6.8、6.9、7.0、7.1、7.2、7.3、および7.4から選択され、特に好ましくは癌組織のpHに近いpH6.15~7.4である(Vaupelら(Cancer Res. (1989) 49, 6449-6665))。測定条件に使用される温度として、Fcγレセプター結合ドメインとヒトFcγレセプターとの結合アフィニティーは、10℃~50℃の任意の温度で評価され得る。好ましくは、ヒトFcγレセプター結合ドメインとFcγレセプターとの結合アフィニティーを決定するために、15℃~40℃の温度が使用される。より好ましくは、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、および35℃のいずれか1つのような20℃から35℃までの任意の温度も同様に、Fcγレセプター結合ドメインとFcγレセプターとの結合アフィニティーを決定するために使用される。25℃という温度は本発明の態様の非限定な一例である。
 本明細書において、FcγR結合改変Fc領域のFcγレセプターに対する結合活性が天然型Fc領域のFcγレセプターに対する結合活性よりも高いとは、FcγR結合改変Fc領域のFcγRI、FcγRIIa、FcγRIIb、FcγRIIIa及び/又はFcγRIIIbのいずれかのヒトFcγレセプターに対する結合活性が、これらのヒトFcγレセプターに対する天然型Fc領域の結合活性よりも高いことをいう。例えば、上記の解析方法にもとづいて、対照とするヒトIgGの天然型Fc領域を含む抗原結合分子の結合活性に比較してFcγR結合改変Fc領域を含む抗原結合分子の結合活性が、105%以上、好ましくは110%以上、115%以上、120%以上、125%以上、特に好ましくは130%以上、135%以上、140%以上、145%以上、150%以上、155%以上、160%以上、165%以上、170%以上、175%以上、180%以上、185%以上、190%以上、195%以上、2倍以上、2.5倍以上、3倍以上、3.5倍以上、4倍以上、4.5倍以上、5倍以上、7.5倍以上、10倍以上、20倍以上、30倍以上、40倍以上、50倍以上、60倍以上、70倍以上、80倍以上、90倍以上、100倍以上の結合活性を示すことをいう。天然型Fc領域としては、出発Fc領域も使用され得るし、同じサブクラスの抗体の天然型Fc領域も使用され得る。
 本発明では、対照とするヒトIgGの天然型Fc領域として、EUナンバリングで表される297位のアミノ酸に結合した糖鎖がフコース含有糖鎖である天然型ヒトIgGのFc領域が好適に用いられる。EUナンバリングで表される297位のアミノ酸に結合した糖鎖がフコース含有糖鎖であるか否かは、非特許文献6に記載された手法が用いられ得る。例えば、下記のような方法によって、天然型ヒトIgGのFc領域に結合した糖鎖がフコース含有糖鎖であるか否かを判定することが可能である。被験天然型ヒトIgGにN-Glycosidase F(Roche diagnostics)を反応させることによって、被験天然型ヒトIgGから糖鎖が遊離される(Weitzhandlerら(J. Pharma. Sciences (1994) 83, 12, 1670-1675)。次に、エタノールを反応させてタンパク質が除かれた反応液(Schenkら(J. Clin. Investigation (2001) 108 (11) 1687-1695)の濃縮乾固物が、2-アミノピリジンによって蛍光標識される(Biggeら(Anal. Biochem. (1995) 230 (2) 229-238)。セルロースカートリッジを用いた固相抽出により脱試薬された、蛍光標識された2-AB化糖鎖が、順相クロマトグラフィによって解析される。検出されるクロマトグラムのピークを観察することによって、ヒトIgGの天然型Fc領域に結合した糖鎖がフコース含有糖鎖であるか否かを判定することが可能である。
 対照とする同じサブクラスの抗体の天然型Fc領域を含む抗原結合分子としては、IgGモノクローナル抗体のFc領域を有する抗原結合分子が適宜使用され得る。当該Fc領域の構造は、配列番号:5(データベース登録番号AAC82527.1のN末にA付加)、6(データベース登録番号AAB59393.1のN末にA付加)、7(データベース登録番号CAA27268.1)、および8(データベース登録番号AAB59394.1のN末にA付加)に記載する。また、ある特定のアイソタイプの抗体のFc領域を含む抗原結合分子を被検物質として使用する場合には、当該特定のアイソタイプのIgGモノクローナル抗体のFc領域を有する抗原結合分子を対照として用いることによって、被験Fc領域を含む抗原結合分子によるFcγレセプターに対する結合活性の効果が検証される。上記のようにして、Fcγレセプターに対する結合活性が高いことが検証されたFc領域を含む抗原結合分子が適宜選択される。
選択的なFcγレセプターに対する結合活性を有するFc領域
 また、本発明において好適に用いられる、Fcγレセプター結合ドメインの例として、特定のFcγレセプターに対する結合活性がそのほかのFcγレセプターに対する結合活性よりも高い性質を有するFcγレセプター結合ドメイン(選択的なFcγレセプターに対する結合活性を有するFcγレセプター結合ドメイン)もまた好適に挙げられる。抗原結合分子として抗体が(Fcγレセプター結合ドメインとしてFc領域が)用いられる場合には、一分子の抗体は一分子のFcγレセプターとしか結合できないため、一分子の抗原結合分子は抑制型Fcγレセプターに結合した状態で他の活性型FcγRに結合することはできないし、活性型Fcγレセプターに結合した状態で他の活性型Fcγレセプターや抑制型Fcγレセプターに結合することはできない。
活性型Fcγレセプターに対する結合活性が抑制型Fcγレセプターに対する結合活性よりも高いFc領域
 前記したように、活性型Fcγレセプターとしては、FcγRIa、FcγRIbおよびFcγRIcを含むFcγRI(CD64)、FcγRIIaならびにFcγRIIIa(アロタイプV158およびF158を含む)およびFcγRIIIb(アロタイプFcγRIIIb-NA1およびFcγRIIIb-NA2を含む)を含むFcγRIII(CD16)が好適に挙げられる。また、FcγRIIb(FcγRIIb-1およびFcγRIIb-2を含む)が抑制型Fcγレセプターの好適な例として挙げられる。
 本明細書において、特定のFcγレセプターに対する結合活性がそれ以外のFcγレセプターに対する結合活性よりも高い例として、例えば、活性型Fcγレセプターに対する結合活性が抑制型Fcγレセプターに対する結合活性よりも高い場合が挙げられる。この場合、Fc領域のFcγRIa、FcγRIIa、FcγRIIIa及び/又はFcγRIIIbのいずれかのヒトFcγレセプターに対する結合活性が、FcγRIIbに対する結合活性よりも高いことをいう。例えば、上記の解析方法にもとづいて、Fc領域を含む抗原結合分子のFcγRIa、FcγRIIa、FcγRIIIa及び/又はFcγRIIIbのいずれかのヒトFcγレセプターに対する結合活性が、FcγRIIbに対する結合活性の、105%以上、好ましくは110%以上、120%以上、130%以上、140%以上、特に好ましくは150%以上、160%以上、170%以上、180%以上、190%以上、200%%以上、250%以上、300%以上、350%以上、400%以上、450%以上、500%以上、750%以上、10倍以上、20倍以上、30倍以上、40倍以上、50倍、60倍、70倍、80倍、90倍、100倍以上の結合活性を示すことをいう。活性型Fcγレセプターに対する結合活性が抑制型Fcγレセプターに対する結合活性よりも高いFc領域は、抗原結合ドメインが膜型分子に結合する本発明の抗原結合分子に好適に含まれ得る。こうしたFc領域を含むIgG1抗体は、後述するADCC活性が増強されていることが知られていることから、当該Fc領域を含む抗原結合分子は、本発明の医薬組成物に含まれる抗原結合分子としても有用である。
 本発明の非限定な一態様では、活性型Fcγレセプターに対する結合活性が抑制型Fcγレセプターに対する結合活性よりも高い(抑制型Fcγレセプターに対する選択的な結合活性を有する)Fc領域の例として、前述されたEUナンバリングで表される221位、222位、223位、224位、225位、227位、228位、230位、231位、232位、233位、234位、235位、236位、237位、238位、239位、240位、241位、243位、244位、245位、246位、247位、249位、250位、251位、254位、255位、256位、258位、260位、262位、263位、264位、265位、266位、267位、268位、269位、270位、271位、272位、273位、274位、275位、276位、278位、279位、280位、281位、282位、283位、284位、285位、286位、288位、290位、291位、292位、293位、294位、295位、296位、297位、298位、299位、300位、301位、302位、303位、304位、305位、311位、313位、315位、317位、318位、320位、322位、323位、324位、325位、326位、327位、328位、329位、330位、331位、332位、333位、334位、335位、336位、337位、339位、376位、377位、378位、379位、380位、382位、385位、392位、396位、421位、427位、428位、429位、434位、436位および440位の群から選択される少なくとも一つ以上のアミノ酸が天然型Fc領域と異なるアミノ酸に改変されているFc領域が好適に挙げられる。
 本発明の非限定な一態様では、活性型Fcγレセプターに対する結合活性が抑制型Fcγレセプターに対する結合活性よりも高い(抑制型Fcγレセプターに対する選択的な結合活性を有する)Fc領域の例として、表1-1から1-3に記載される複数のアミノ酸が天然型Fc領域と異なるアミノ酸に改変されているFc領域が好適に挙げられる。
抑制型Fcγレセプターに対する結合活性が活性型Fcγレセプターに対する結合活性よりも高いFc領域
 本明細書において、特定のFcγレセプターに対する結合活性がそれ以外のFcγレセプターに対する結合活性よりも高い例として、例えば、抑制型Fcγレセプターに対する結合活性が活性型Fcγレセプターに対する結合活性よりも高い場合が挙げられる。この場合、Fc領域のFcγRIIbに対する結合活性が、FcγRIa、FcγRIIa、FcγRIIIa及び/又はFcγRIIIbのいずれかのヒトFcγレセプターに対する結合活性よりも高いことをいう。例えば、上記の解析方法にもとづいて、Fc領域を含む抗原結合分子のFcγRIIbに対する結合活性が、FcγRIa、FcγRIIa、FcγRIIIa及び/又はFcγRIIIbのいずれかのヒトFcγレセプターに対する結合活性の、105%以上、好ましくは110%以上、120%以上、130%以上、140%以上、特に好ましくは150%以上、160%以上、170%以上、180%以上、190%以上、200%%以上、250%以上、300%以上、350%以上、400%以上、450%以上、500%以上、750%以上、10倍以上、20倍以上、30倍以上、40倍以上、50倍、60倍、70倍、80倍、90倍、100倍以上の結合活性を示すことをいう。抑制型Fcγレセプターに対する結合活性が活性型Fcγレセプターに対する結合活性よりも高いFc領域は、抗原結合ドメインが可溶型分子に結合する本発明の抗原結合分子に好適に含まれ得る。
 本発明の非限定な一態様では、抑制型Fcγレセプターに対する結合活性が活性型Fcγレセプターに対する結合活性よりも高い(抑制型Fcγレセプターに対する選択的な結合活性を有する)Fc領域の例として、前記Fc領域のアミノ酸のうちEUナンバリングで表される238または328のアミノ酸が天然型Fc領域と異なるアミノ酸に改変されているFc領域が好適に挙げられる。
 また本発明の非限定な一態様では、抑制型Fcγレセプターに対する結合活性が活性型Fcγレセプターに対する結合活性よりも高い(抑制型Fcγレセプターに対する選択的な結合活性を有する)Fc領域の例として、前記Fc領域のEUナンバリングで表されるアミノ酸であってEUナンバリングで表される238のアミノ酸がAsp、または328のアミノ酸がGluのいずれか一つ以上に改変されているFc領域が好適に挙げられる。また、抑制型Fcγレセプターに対する選択的な結合活性を有するFc領域として、US2009/0136485に記載されているFc領域あるいは改変も適宜選択することができる。
 また本発明の非限定の一態様では、前記Fc領域のEUナンバリングで表されるアミノ酸であってEUナンバリングで表される238のアミノ酸がAsp、または328のアミノ酸がGluのいずれか一つ以上に改変されているFc領域が好適に挙げられる。
 さらに本発明の非限定の一態様では、PCT/JP2012/054624で例示される、EUナンバリングで表される238位のProのAspへの置換、およびEUナンバリングで表される237位のアミノ酸がTrp、EUナンバリングで表される237位のアミノ酸がPhe、EUナンバリングで表される267位のアミノ酸がVal、EUナンバリングで表される267位のアミノ酸がGln、EUナンバリングで表される268位のアミノ酸がAsn、EUナンバリングで表される271位のアミノ酸がGly、EUナンバリングで表される326位のアミノ酸がLeu、EUナンバリングで表される326位のアミノ酸がGln、EUナンバリングで表される326位のアミノ酸がGlu、EUナンバリングで表される326位のアミノ酸がMet、EUナンバリングで表される239位のアミノ酸がAsp、EUナンバリングで表される267位のアミノ酸がAla、EUナンバリングで表される234位のアミノ酸がTrp、EUナンバリングで表される234位のアミノ酸がTyr、EUナンバリングで表される237位のアミノ酸がAla、EUナンバリングで表される237位のアミノ酸がAsp、EUナンバリングで表される237位のアミノ酸がGlu、EUナンバリングで表される237位のアミノ酸がLeu、EUナンバリングで表される237位のアミノ酸がMet、EUナンバリングで表される237位のアミノ酸がTyr、EUナンバリングで表される330位のアミノ酸がLys、EUナンバリングで表される330位のアミノ酸がArg、EUナンバリングで表される233位のアミノ酸がAsp、EUナンバリングで表される268位のアミノ酸がAsp、EUナンバリングで表される268位のアミノ酸がGlu、EUナンバリングで表される326位のアミノ酸がAsp、EUナンバリングで表される326位のアミノ酸がSer、EUナンバリングで表される326位のアミノ酸がThr、EUナンバリングで表される323位のアミノ酸がIle、EUナンバリングで表される323位のアミノ酸がLeu、EUナンバリングで表される323位のアミノ酸がMet、EUナンバリングで表される296位のアミノ酸がAsp、EUナンバリングで表される326位のアミノ酸がAla、EUナンバリングで表される326位のアミノ酸がAsn、EUナンバリングで表される330位のアミノ酸がMet、のいずれか一つ以上に改変されているFc領域が好適に挙げられる。
糖鎖が修飾されたFc領域
 本発明が提供する抗原結合分子に含まれるFc領域として、Fc領域に結合した糖鎖の組成がフコース欠損糖鎖を結合したFc領域の割合が高くなるように、またはバイセクティングN-アセチルグルコサミンが付加したFc領域の割合が高くなるように修飾されたFc領域も含まれ得る。抗体Fc領域に結合するN -グリコシド結合複合型糖鎖還元末端のN -アセチルグルコサミンからフコース残基を除去すると、FcγRIIIaに対する親和性が増強されることが知られている(非特許文献6)。こうしたFc領域を含むIgG1抗体は、後述するADCC活性が増強されていることが知られていることから、当該Fc領域を含む抗原結合分子は、本発明の医薬組成物に含まれる抗原結合分子としても有用である。抗体Fc領域に結合するN -グリコシド結合複合型糖鎖還元末端のN -アセチルグルコサミンからフコース残基が除去された抗体としては、例えば、次のような抗体;
 グリコシル化が修飾された抗体(国際公開WO1999/054342等)、
 糖鎖に付加するフコースが欠損した抗体(国際公開WO2000/061739、WO2002/031140、WO2006/067913等)、
 より具体的には、抗体Fc領域に結合するN -グリコシド結合複合型糖鎖還元末端のN -アセチルグルコサミンからフコース残基が除去された抗体の異なる非限定の一態様として、糖鎖に付加するフコースが欠損した抗体(国際公開WO2000/061739、WO2002/031140、WO2006/067913等)を作製するために、糖鎖修飾を受けるポリペプチドの糖鎖構造を形成する活性が改変された結果、糖鎖にフコースを付加する能力が低い宿主細胞が作製される。当該宿主細胞において所望の抗体遺伝子を発現することによって、当該宿主細胞の培養液からその糖鎖中のフコースが欠損した当該抗体が回収され得る。ポリペプチドの糖鎖構造を形成する活性として、フコシルトランスフェラーゼ(EC 2.4.1.152)、フコーストランスポーター(SLC35C1)、GMD(GDP-マンノース4,6-デヒドラターゼ)(EC 4.2.1.47)、Fx(GDP-ケト-6-デオキシマンノース3,5-エピメラーゼ,4-レダクターゼ)(EC 1.1.1.271)、およびGFPP(GDP-β-L-フコースピロフォスフォリラーゼ)(EC 2.7.7.30)からなる群から選択される酵素またはトランスポーターの活性が非限定の好適な例として挙げられ得る。これらの酵素またはトランスポーターは、その活性を発揮することができれば必ずしもその構造は特定されない。本明細書においては、これらの活性を発揮することが可能なタンパク質を機能性タンパク質という。これらの活性を改変する方法の非限定の一態様として、これらの活性の欠失が挙げられる。これらの活性が欠失した宿主細胞を作製するために、これらの機能性タンパク質の遺伝子を機能不能に破壊する方法等公知の方法が適宜採用され得る(国際公開WO2000/061739、WO2002/031140、WO2006/067913等)。そのような活性が欠失した宿主細胞は、CHO細胞、BHK細胞、NS0細胞、SP2/0細胞、YO骨髄腫細胞、P3X63マウス骨髄腫細胞、PER細胞、PER.C6細胞、HEK293細胞、またはハイブリドーマ細胞等に内在性であるこれらの機能性タンパク質の遺伝子を機能不能に破壊する方法等によって作製され得る。
 バイセクティングGlcNAcを有する糖鎖を有する抗体(国際公開WO2002/079255等)が公知である。非限定な一態様では、バイセクティングGlcNAcを有する糖鎖を有する抗体を作製するために、GnTIII(β-1,4-マンノシル-グリコプロテイン,4-β-N-アセチルグルコサミニルトランスフェラーゼ)(EC 2.4.1.144)活性またはGalT(β-1,4-ガラクトシルトランスフェラーゼ)(EC 2.4.1.38)活性を有する機能性タンパク質をコードする遺伝子を発現する宿主細胞が作製される。別の非限定の好適な一態様では、前記の機能性タンパク質に加えて、ヒトManII(マンノシダーゼII)(3.2.1.114)活性を有する機能性タンパク質をコードする遺伝子、GnTI(β-1,2-アセチルグルコサミニルトランスフェラーゼI)(EC 2.4.1.94)活性を有する機能性タンパク質をコードする遺伝子、GnTII(β-1,2-アセチルグルコサミニルトランスフェラーゼII)(EC 2.4.1.143)活性を有する機能性タンパク質をコードする遺伝子、ManI(マンノシダーゼ)(EC 3.2.1.113)活性を有する機能性タンパク質をコードする遺伝子、およびα-1,6-フコシルトランスフェラーゼ(EC 2.4.1.68)と共発現する宿主細胞が作製される(国際公開WO2004/065540)。
 前記のような糖鎖にフコースを付加する能力が低い宿主細胞、およびバイセクティングGlcNAc構造を含む糖鎖を形成する活性を有する宿主細胞に抗体遺伝子を含む発現ベクターを形質導入することによって、抗体Fc領域に結合するN -グリコシド結合複合型糖鎖還元末端のN -アセチルグルコサミンからフコース残基が除去された抗体、およびバイセクティングGlcNAcを有する糖鎖を有する抗体がそれぞれ作製され得る。これらの抗体の製造方法は本発明のFc領域に結合した糖鎖の組成がフコース欠損糖鎖を結合したFc領域の割合が高くなるように、またはバイセクティングN-アセチルグルコサミンが付加したFc領域の割合が高くなるように修飾された改変Fc領域を含む抗原結合分子の製造方法にも適用することが可能である。こうした製造方法によって作製された本発明の抗原結合分子に含まれるFc領域に結合した糖鎖の組成は、前記の「Fcγレセプター(FcγR)結合改変Fc領域」で記載された方法によって確認され得る。
多重特異性抗原結合分子または多重パラトピックな抗原結合分子
 その少なくとも一つの抗原結合ドメインが抗原分子中の第一のエピトープに結合し、その少なくとも一つの別の抗原結合ドメインが抗原分子中の第二のエピトープに結合する特徴を有する、少なくとも二つの抗原結合ドメインを含む抗原結合分子は、その反応の特異性という観点から多重特異性抗原結合分子と呼ばれる。一分子の抗原結合分子に含まれる二種類の抗原結合ドメインによって当該抗原結合分子が、二つの異なるエピトープに結合する場合、当該抗原結合分子は二重特異性抗原結合分子と呼ばれる。また、一分子の抗原結合分子に含まれる三種類の抗原結合ドメインによって当該抗原結合分子が、三つの異なるエピトープに結合する場合、当該抗原結合分子は三重特異性抗原結合分子と呼ばれる。
 抗原分子中の第一のエピトープに結合する抗原結合ドメイン中のパラトープと、第一のエピトープと構造の異なる第二のエピトープに結合する抗原結合ドメイン中のパラトープとはその構造が互いに異なる。ゆえに、その少なくとも一つの抗原結合ドメインが抗原分子中の第一のエピトープに結合し、その少なくとも一つの別の抗原結合ドメインが抗原分子中の第二のエピトープに結合する特徴を有する、少なくとも二つの抗原結合ドメインを含む抗原結合分子は、その構造の特異性という観点から多重パラトピック抗原結合分子と呼ばれる。一分子の抗原結合分子に含まれる二種類の抗原結合ドメインによって当該抗原結合分子が、二つの異なるエピトープに結合する場合、当該抗原結合分子は二重パラトピック抗原結合分子と呼ばれる。また、一分子の抗原結合分子に含まれる三種類の抗原結合ドメインによって当該抗原結合分子が、三つの異なるエピトープに結合する場合、当該抗原結合分子は三重パラトピック抗原結合分子と呼ばれる。
 一つまたは複数の抗原結合ドメインを含む多価の多重特異性または多重パラトピック抗原結合分子とその調製方法は、Conrathら(J.Biol.Chem. (2001) 276 (10) 7346-7350)、Muyldermans(Rev. Mol. Biotech. (2001) 74, 277-302)およびKontermann R.E. (2011) Bispecific Antibodies(Springer-Verlag)等の非特許文献、ならびに国際公開WO1996/034103またはWO1999/023221等の特許文献等にも記載されている。これらに記載された多重特異性または多重パラトピック抗原結合分子とその調製方法を用いることによって、本発明の抗原結合分子を作製することが可能である
二重特異性抗体とその作製方法
 前記のような多重特異性または多重パラトピック抗原結合分子とその調製方法の一態様として、二重特異性抗体とその作製方法が下記に例示される。二重特異性抗体とは、異なるエピトープに対して特異的に結合する二種類の可変領域を含む抗体である。IgG型の二重特異性抗体はIgG抗体を産生するハイブリドーマ二種を融合することによって生じるhybrid hybridoma(quadroma)によって分泌させることが可能である(Milsteinら(Nature (1983) 305, 537-540)。
 二重特異性抗体を前記の抗体の項で記載されたような組換え手法を用いて製造する場合、目的の二種の可変領域を含む重鎖をコードする遺伝子を細胞に導入しそれらを共発現させる方法が採用され得る。しかしながら、こうした共発現させる方法における重鎖の組合せを考慮するだけでも、(i) 第一のエピトープに結合する可変領域を含む重鎖と第二のエピトープに結合する可変領域を含む重鎖が一対となった重鎖の組合せ、(ii) 第一のエピトープに結合する可変領域を含む重鎖のみが一対となった重鎖の組合せ、(iii) 第二のエピトープに結合する可変領域を含む重鎖のみが一対となった重鎖の組合せが、2:1:1の分子数の割合で存在する混合物となる。これら三種類の重鎖の組合せの混合物から目的の重鎖の組合せを含む抗原結合分子を精製することは困難である。
 こうした組換え手法を用いて二重特異性抗体を製造する際に、重鎖を構成するCH3ドメインに適当なアミノ酸置換の改変を加えることによってヘテロな組合せの重鎖を含む二重特異性抗体が優先的に分泌され得る。具体的には、一方の重鎖のCH3ドメインに存在するアミノ酸側鎖をより大きい側鎖(knob(「突起」の意))に置換し、もう一方の重鎖のCH3ドメインに存在するアミノ酸側鎖をより小さい側鎖(hole(「空隙」の意))に置換することによって、突起が空隙内に配置され得るようにして異種の重鎖形成の促進および同種の重鎖形成の阻害を引き起こす方法である(国際公開WO1996027011、Ridgwayら(Protein Engineering (1996) 9, 617-621)、Merchantら(Nat. Biotech. (1998) 16, 677-681))。
 また、ポリペプチドの会合、またはポリペプチドによって構成される異種多量体の会合の制御方法を、重鎖の会合に利用することによって二重特異性抗体を作製する技術も知られている。即ち、重鎖内の界面を形成するアミノ酸残基を改変することによって、同一配列を有する重鎖の会合が阻害され、配列の異なる二つの重鎖が形成されるように制御する方法が二重特異性抗体の作製に採用され得る(国際公開WO2006/106905)。このような方法も二重特異性抗体を製造する際に、採用され得る。
 本発明の非限定な一態様における抗原結合分子に含まれるFc領域としては、上記の二重特異性抗体を起源とするFc領域を形成する二つのポリペプチドが適宜使用され得る。より具体的には、Fc領域を形成する二つのポリペプチドであって、その一方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される349のアミノ酸がCys、366のアミノ酸がTrpであり、他方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される356のアミノ酸がCys、366のアミノ酸がSerに、368のアミノ酸がAlaに、407のアミノ酸がValであることを特徴とする二つのポリペプチドが好適に用いられる。
 そのほかの本発明の非限定な一態様におけるFc領域としては、Fc領域を形成する二つのポリペプチドであって、その一方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される409のアミノ酸がAspであり、他方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される399のアミノ酸がLysであることを特徴とする二つのポリペプチドが好適に用いられる。上記態様では、409のアミノ酸はAspに代えてGlu、399のアミノ酸はLysに代えてArgでもあり得る。また、399のアミノ酸のLysに加えて360のアミノ酸としてAsp又は392のアミノ酸としてAspも好適に追加され得る。
 本発明の別の非限定な一態様におけるFc領域としては、Fc領域を形成する二つのポリペプチドであって、その一方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される370のアミノ酸がGluであり、他方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される357のアミノ酸がLysであることを特徴とする二つのポリペプチドが好適に用いられる。
 本発明のさらに別の非限定な一態様におけるFc領域としては、Fc領域を形成する二つのポリペプチドであって、その一方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される439のアミノ酸がGluであり、他方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される356のアミノ酸がLysであることを特徴とする二つのポリペプチドが好適に用いられる。
 本発明の別の非限定な一態様におけるFc領域としては、これらが組み合わされた以下の態様のいずれか;
(i) Fc領域を形成する二つのポリペプチドであって、その一方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される409のアミノ酸がAsp、370のアミノ酸がGluであり、他方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される399のアミノ酸がLys、357のアミノ酸がLysであることを特徴とする二つのポリペプチド(本態様では、EUナンバリングで表される370のアミノ酸のGluに代えてAspであってもよく、EUナンバリングで表される370のアミノ酸のGluに代えて392のアミノ酸のAspであってもよい)、
(ii) Fc領域を形成する二つのポリペプチドであって、その一方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される409のアミノ酸がAsp、439のアミノ酸がGluであり、他方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される399のアミノ酸がLys、356のアミノ酸がLysであることを特徴とする二つのポリペプチド(本態様では、EUナンバリングで表される439のアミノ酸のGluに代えて360のアミノ酸のAsp、EUナンバリングで表される392のアミノ酸のAsp又は439のアミノ酸のAspであってもよい)、
(iii) Fc領域を形成する二つのポリペプチドであって、その一方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される370のアミノ酸がGlu、439のアミノ酸がGluであり、他方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される357のアミノ酸がLys、356のアミノ酸がLysであることを特徴とする二つのポリペプチド、または、
Fc領域を形成する二つのポリペプチドであって、その一方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される409のアミノ酸がAsp、370のアミノ酸がGlu、439のアミノ酸がGluであり、他方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される399のアミノ酸がLys、357のアミノ酸がLys、356のアミノ酸がLysであることを特徴とする二つのポリペプチド(本態様では、EUナンバリングで表される370のアミノ酸をGluに置換しなくてもよく、更に、370のアミノ酸をGluに置換しない上で、439のアミノ酸のGluに代えてAsp又は439のアミノ酸のGluに代えて392のアミノ酸のAspであってもよい)、
が好適に用いられる。
 さらに、本発明の別の非限定な一態様において、Fc領域を形成する二つのポリペプチドであって、その一方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される356のアミノ酸がLysであり、他方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される435のアミノ酸がArg、439のアミノ酸がGluであることを特徴とする二つのポリペプチドも好適に用いられる。
 さらに、本発明の別の非限定な一態様において、Fc領域を形成する二つのポリペプチドであって、その一方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される356のアミノ酸がLys、357のアミノ酸がLysであり、他方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される370のアミノ酸がGlu、435のアミノ酸がArg、439のアミノ酸がGluであることを特徴とする二つのポリペプチドも好適に用いられる。
 また、上記の異種の重鎖の会合技術のほか、第一のエピトープに結合する可変領域を形成する軽鎖、および第二のエピトープに結合する可変領域を形成する軽鎖を、各々、第一のエピトープに結合する可変領域を形成する重鎖、および第二のエピトープに結合する可変領域を形成する重鎖に会合させる異種の軽鎖の会合技術として知られるCrossMab技術(Scaeferら(Proc.Natl.Acad.Sci.U.S.A. (2011) 108, 11187-11192))も、本発明が提供する多重特異性または多重パラトピック抗原結合分子を作製するために使用され得る。また、異なるIgG4の重鎖同士の交換が起きることを利用して、第一のエピトープに結合する可変領域を形成する重鎖、および第二のエピトープに結合する可変領域を形成する重鎖を会合させる異種の重鎖の会合技術として知られるFab-Arm Exchange(Labrijnら(Proc. Natl. Acad. Sci. U.S.A. (2013) 110, 5145-5150)、WO2008119353)も、本発明が提供する多重特異性または多重パラトピック抗原結合分子を作成するために使用され得る。
エフェクター細胞
 本発明において、「エフェクター細胞」とは、T細胞(CD4+(ヘルパーリンパ球)T細胞および/またはCD8+(細胞傷害性)T細胞)、多核白血球(好中球、好酸球、好塩基球、肥満細胞)、単球、マクロファージ、組織球またはナチュラルキラー細胞(NK細胞)、NK様T細胞、クッパー細胞、ランゲルハンス細胞、またはリンフォカイン活性化キラー細胞(LAK細胞)等の白血球、Bリンパ球、もしくは樹状細胞またはマクロファージ等の抗原提示細胞をふくむ最も広義な意味で使用され得るが、好適なエフェクター細胞の例としては、CD8+(細胞傷害性)T細胞、NK細胞、またはマクロファージが挙げられる。エフェクター細胞の細胞膜に発現する膜型分子であれば、本発明の抗原結合分子に含まれる少なくとも1つの抗原結合ドメインが結合する抗原として使用され得るが、好適な膜型分子としては、TCRを構成するポリペプチド、CD3、CD2、CD28、CD44、CD16、CD32、CD64、またはNKG2DもしくはNK細胞活性化リガンドが非限定な例として例示され得る。
細胞傷害性物質
 本発明の抗原結合分子が癌細胞に結合し、細胞傷害活性を発揮するために、抗原結合分子に細胞傷害性物質が結合されていてもよい。細胞傷害性物質としては、以下に例示される化学療法剤であってもよく、またCurr Opin Chem Biol (2010) 14, 529-37や国際公開2009/140242に開示されている化合物であってもよく、これらの化合物が適切なリンカー等で抗原結合分子に結合される。本発明の抗原結合分子が医薬組成物として使用される場合、対象(被験者、患者、等)に当該抗原結合分子を投与する前にこれらの細胞傷害性物質を結合させることも可能であるし、投与の前後または同時に投与することも可能である。
 また、後述される、化学療法剤、毒性ペプチド或いは放射性化学物質などの細胞傷害性物質が結合された修飾抗原結合分子修飾物も本発明の細胞傷害活性を有する抗原結合分子として好適に使用され得る。このような修飾抗原結合分子(以下、抗原結合分子薬物コンジュゲートと称する。)は、得られた抗原結合分子を化学的に修飾することによって取得され得る。なお、抗原結合分子の修飾方法として、抗体薬物コンジュゲート等の分野においてすでに確立されている方法が適宜使用され得る。また、毒性ペプチドが結合された修飾抗原結合分子は、当該毒性ペプチドをコードする遺伝子と本発明の抗原結合分子をコードする遺伝子がインフレームで連結された融合遺伝子を、適切な宿主細胞中で発現させた後に、当該細胞の培養液から単離することによって、取得され得る。
 本発明の抗原結合分子に結合される化学療法剤が例示され得る:アザリビン(azaribine)、アナストロゾール(anastrozole)、アザシチジン(azacytidine)、ブレオマイシン(bleomycin)、ボルテゾミブ(bortezomib)、ブリオスタチン-1(bryostatin-1)、ブスルファン(busulfan)、カンプトテシン(camptothecin)、10-ヒドロキシカンプトテシン(10-hydroxycamptothecin)、カルムスチン(carmustine)、セレブレックス(celebrex)、クロラムブシル(chlorambucil)、シスプラチン(cisplatin)、イリノテカン(irinotecan)、カルボプラチン(carboplatin)、クラドリビン(cladribine)、シクロホスファミド(cyclophosphamide)、シタラビン(cytarabine)、ダカルバジン(dacarbazine)、ドセタキセル(docetaxel)、ダクチノマイシン(dactinomycin)、ダウノマイシングルクロニド(daunomycin glucuronide)、ダウノルビシン(daunorubicin)、デキサメタゾン(dexamethasone)、ジエチルスチルベストロール(diethylstilbestrol)、ドキソルビシン(doxorubicin)、ドキソルビシンブルクロニド(doxorubicin glucuronide)、エピルビシン(epirubicin)、エチニルエストラジオール(ethinyl estradiol)、エストラムスチン(estramustine)、エトポシド(etoposide)、エトポシドグルクロニド(etoposide glucuronide)、フロキシウリジン(floxuridine)、フルダラビン(fludarabine)、フルタミド(flutamide)、フルオロウラシル(fluorouracil)、フルオキシメステロン(fluoxymesterone)、ゲムシタビン(gemcitabine)、ヒドロキシプロゲステロンカプロエート(hydroxyprogesterone caproate)、ヒドロキシウレア(hydroxyurea)、イダルビシン(idarubicin)、イフォスファミド(ifosfamide)、ロイコボリン(leucovorin)、ロムスチン(lomustine)、マイタンシノイド(maytansinoid)、メクロレタミン(mechlorethamine)、メドロキシプロゲステロンアセテート(medroxyprogesterone acetate)、メゲストロールアセテート(megestrol acetate)、メルファラン(melphalan)、メルカプトプリン(mercaptopurine)、メトトレキセート(methotrexate)、ミトキサントロン(mitoxantrone)、ミトラマイシン(mithramycin)、ミトマイシン(mitomycin)、ミトタン(mitotane)、フェニルブチレート(phenylbutyrate)、プレドニゾン(prednisone)、プロカルバジン(procarbazine)、パクリタキセル(paclitaxel)、ペントスタチン(pentostatin)、セムスチン(semustine)、ストレプトゾシン(streptozocin)、タモキシフェン(tamoxifen)、タキサン類(taxanes)、タキソール(taxol)、テストステロンプロピオネート(testosterone propionate)、サリドマイド(thalidomide)、チオグアニン(thioguanine)、チオテパ(thiotepa)、テニポシド(teniposide)、トポテカン(topotecan)、ウラシルマスタード(uracil mustard)、ビンブラスチン(vinblastine)、ビノレルビン(vinorelbine)、ビンクリスチン(vincristine)。
 本発明において、好ましい化学療法剤は、低分子の化学療法剤である。低分子の化学療法剤は、本発明の抗原結合分子が結合した後も、抗原結合分子の機能に干渉する可能性が低い。本発明において、低分子の化学療法剤は、通常100~2000、好ましくは200~1000の分子量を有する。ここに例示した化学療法剤は、いずれも低分子の化学療法剤である。これらの本発明における化学療法剤は、生体内で活性な化学療法剤に変換されるプロドラッグを含む。プロドラッグの活性化は酵素的な変換であり得るし、非酵素的な変換でもあり得る。
 また、本発明の抗原結合分子に結合される細胞傷害物質としては、Pseudomonas exotoxin A、Saporin-s6、Diphtheria toxin、Cnidarian toxin等の毒性ペプチド(トキシン)やRadioiodine、Photosensitizerも例示され得る。毒性ペプチドの例としては、例えば、次のものが好適に挙げられる。
ジフテリアトキシンA鎖(Diphtheria toxin A Chain)(Langoneら(Methods in Enzymology (1983) 93, 307-308));
シュードモナスエンドトキシン(Pseudomonas Exotoxin)(Nature Medicine (1996) 2, 350-353);
リシン鎖(Ricin A Chain)(Fultonら(J. Biol. Chem. (1986) 261, 5314-5319)、Sivamら(Cancer Res. (1987) 47, 3169-3173)、Cumberら、(J. Immunol. Methods (1990) 135,15-24、Wawrzynczakら(Cancer Res. (1990) 50, 7519-7562)、およびGheeite ら(J. Immunol.Methods (1991) 142,223-230));
無糖鎖リシンA鎖(Deglicosylated Ricin A Chain)(Thorpeら(Cancer Res. (1987) 47, 5924-5931));
アブリンA鎖(Abrin A Chain)(Wawrzynczakら(Br. J. Cancer (1992) 66, 361-366)、Wawrzynczakら(Cancer Res. (1990) 50, 7519-7562)、Sivamら(Cancer Res. (1987) 47, 3169-3173)、およびThorpeら(Cancer Res. (1987) 47, 5924-5931));
ゲロニン(Gelonin)(Sivamら(Cancer Res. (1987) 47, 3169-3173)、Cumberら(J. Immunol. Methods (1990) 135, 15-24)、Wawrzynczakら(Cancer Res., (1990) 50, 7519-7562)、およびBolognesiら(Clin. exp. Immunol. (1992) 89, 341-346));
ポークウイード抗ウィルス蛋白(PAP-s; Pokeweed anti-viral protein fromseeds)(Bolognesiら(Clin. exp. Immunol. (1992) 89, 341-346));
ブリオジン(Briodin)(Bolognesiら(Clin. exp. Immunol. (1992) 89, 341-346));
サポリン(Saporin)(Bolognesiら(Clin. exp. Immunol. (1992) 89, 341-346));
モモルジン(Momordin)(Cumberら(J. Immunol. Methods (1990) 135, 15-24);Wawrzynczakら(Cancer Res. (1990) 50, 7519-7562)、およびBolognesiら(Clin. exp. Immunol. (1992) 89, 341-346));
モモルコキン(Momorcochin)(Bolognesiら(Clin. exp. Immunol. (1992) 89, 341-346));
ジアンシン32(Dianthin 32)(Bolognesiら(Clin. exp. Immunol. (1992) 89, 341-346));
ジアンシン30(Dianthin 30)(Stirpe F., Barbieri L.(FEBS letter (1986) 195, 1-8));
モデッシン(Modeccin)(Stirpe F., Barbieri L.(FEBS letter (1986) 195, 1-8));
ビスカミン(Viscumin)(Stirpe F., Barbieri L.(FEBS letter (1986) 195, 1-8));
ボルケシン(Volkesin)(Stirpe F., Barbieri L.(FEBS letter (1986) 195, 1-8));
ドデカンドリン(Dodecandrin)(Stirpe F., Barbieri L.(FEBS letter (1986) 195, 1-8));
トリチン(Tritin)(Stirpe F., Barbieri L.(FEBS letter (1986) 195, 1-8));
ルフィン(Luffin)(Stirpe F., Barbieri L.(FEBS letter (1986) 195, 1-8));および
トリコキリン(Trichokirin)(Casellasら(Eur. J. Biochem. (1988) 176, 581-588)、およびBolognesiら(Clin. exp. Immunol., (1992) 89, 341-346))。
抗原結合分子
 本発明において、標的組織特異的な化合物の存在下における抗原に対する結合活性が、当該化合物の非存在下における抗原に対する結合活性よりも高い抗原結合ドメインを含む抗原結合分子は最も広義な意味として使用されており、具体的には、それらが抗原に対する結合活性を示す限り、様々な分子型が含まれる。例えば、抗原結合ドメインがFc領域と結合した分子の例として、抗体が挙げられる。抗体には、単一のモノクローナル抗体(アゴニストおよびアンタゴニスト抗体を含む)、ヒト抗体、ヒト化抗体、キメラ抗体等が含まれ得る。また抗体の断片として使用される場合としては、抗原結合ドメインおよび抗原結合断片(例えば、Fab、F(ab')2、scFvおよびFv)が好適に挙げられ得る。既存の安定なα/βバレルタンパク質構造等の立体構造が scaffold(土台)として用いられ、その一部分の構造のみが抗原結合ドメインの構築のためにライブラリ化されたスキャフォールド分子も、本発明の抗原結合分子に含まれ得る 。
 本発明の抗原結合分子は、Fcγレセプターに対する結合、および/またはFcRnに対する結合を媒介するFc領域の少なくとも部分を含むことができる。例えば、非限定な一態様では、抗原結合分子は抗体またはFc融合タンパク質であり得る。融合タンパク質とは、天然ではそれが自然に連結しない第二のアミノ酸配列を有するポリペプチドに連結された第一のアミノ酸配列を含むポリペプチドを含むキメラポリペプチドをいう。例えば、融合タンパク質は、Fc領域の少なくとも部分(例えば、Fcγレセプターに対する結合を付与するFc領域の部分および/またはFcRnに対する結合を付与するFc領域の部分)をコードするアミノ酸配列を含むポリペプチド、を含むことができる。アミノ酸配列は、一緒に融合タンパク質に運ばれる別々のタンパク質に存在できるか、あるいはそれらは通常は同一タンパク質に存在できるが、融合ポリペプチド中の新しい再編成に入れられる。融合タンパク質は、例えば、化学合成によって、またはペプチド領域が所望の関係でコードされたポリヌクレオチドを作成し、それを発現する遺伝子組換えの手法によって作製され得る。
 本発明の各ドメインはポリペプチド結合によって直接連結され得るし、リンカーを介して連結され得る。リンカーとしては、遺伝子工学により導入し得る任意のペプチドリンカー、又は合成化合物リンカー(例えば、Holligerら(Protein Engineering (1996) 9 (3), 299-305))に開示されるリンカー等が使用され得るが、本発明においてはペプチドリンカーが好ましい。ペプチドリンカーの長さは特に限定されず、目的に応じて当業者が適宜選択することが可能であるが、好ましい長さは5アミノ酸以上(上限は特に限定されないが、通常、30アミノ酸以下、好ましくは20アミノ酸以下)であり、特に好ましくは15アミノ酸である。
 例えば、ペプチドリンカーの場合:
Ser
Gly・Ser
Gly・Gly・Ser
Ser・Gly・Gly
Gly・Gly・Gly・Ser(配列番号:19)
Ser・Gly・Gly・Gly(配列番号:20)
Gly・Gly・Gly・Gly・Ser(配列番号:21)
Ser・Gly・Gly・Gly・Gly(配列番号:22)
Gly・Gly・Gly・Gly・Gly・Ser(配列番号:23)
Ser・Gly・Gly・Gly・Gly・Gly(配列番号:24)
Gly・Gly・Gly・Gly・Gly・Gly・Ser(配列番号:25)
Ser・Gly・Gly・Gly・Gly・Gly・Gly(配列番号:26)
(Gly・Gly・Gly・Gly・Ser(配列番号:21))n
(Ser・Gly・Gly・Gly・Gly(配列番号:22))n
[nは1以上の整数である]等が好適に挙げられる。但し、ペプチドリンカーの長さや配列は目的に応じて当業者が適宜選択することができる。
 合成化学物リンカー(化学架橋剤)は、ペプチドの架橋に通常用いられている架橋剤、例えばN-ヒドロキシスクシンイミド(NHS)、ジスクシンイミジルスベレート(DSS)、ビス(スルホスクシンイミジル)スベレート(BS3)、ジチオビス(スクシンイミジルプロピオネート)(DSP)、ジチオビス(スルホスクシンイミジルプロピオネート)(DTSSP)、エチレングリコールビス(スクシンイミジルスクシネート)(EGS)、エチレングリコールビス(スルホスクシンイミジルスクシネート)(スルホ-EGS)、ジスクシンイミジル酒石酸塩(DST)、ジスルホスクシンイミジル酒石酸塩(スルホ-DST)、ビス[2-(スクシンイミドオキシカルボニルオキシ)エチル]スルホン(BSOCOES)、ビス[2-(スルホスクシンイミドオキシカルボニルオキシ)エチル]スルホン(スルホ-BSOCOES)等であり、これらの架橋剤は市販されている。
 各ドメインを連結するリンカーが複数用いられる場合には、全て同種のリンカーが用いられ得るし、異種のリンカーも用いられ得る。また、上記記載で例示されるリンカーのほか、例えばHisタグ、HAタグ、mycタグ、FLAGタグ等のペプチドタグを有するリンカーも適宜使用され得る。また、水素結合、ジスルフィド結合、共有結合、イオン性相互作用またはこれらの結合の組合せにより互いに結合する性質もまた好適に利用され得る。例えば、抗体のCH1とCL間の親和性が利用されたり、ヘテロFc領域の会合に際して前述の二重特異性抗体を起源とするFc領域が用いられたりする。さらに、ドメイン間に形成されるジスルフィド結合もまた好適に利用され得る。
 各ドメインをペプチド結合で連結するために、当該ドメインをコードするポリヌクレオチドがインフレームで連結される。ポリヌクレオチドをインフレームで連結する方法としては、制限断片のライゲーションやフュージョンPCR、オーバーラップPCR等の手法が公知であり、本発明の抗原結合分子の作製にも適宜これらの方法が単独または組合せで使用され得る。本発明では、用語「連結され」、「融合され」、「連結」または「融合」は相互交換的に用いられる。これらの用語は、上記の化学結合手段または組換え手法を含めた全ての手段によって、二以上のポリペプチド等のエレメントまたは成分を一つの構造を形成するように連結することをいう。インフレームで融合するとは、二以上のエレメントまたは成分がポリペプチドである場合に、当該ポリペプチドのの正しい読み取り枠を維持するように連続したより長い読み取り枠を形成するための二以上の読取り枠の単位の連結をいう。二分子のFabが抗原結合ドメインとして用いられた場合、当該抗原結合ドメインとFc領域を含む定常領域がリンカーを介することなくペプチド結合によってインフレームで連結された本発明の抗原結合分子である抗体は、本発明の好適な抗原結合分子として使用され得る。
低分子化抗体
 本発明で使用される抗体は、抗体の全長分子に限られず、低分子化抗体またはその修飾物であってもよい。低分子化抗体は、全長抗体(例えば、whole IgG等のwhole antibody)の一部分が欠損している抗体断片を含み、抗原に対する結合活性を有していれば特に限定されない。本発明の低分子化抗体は、全長抗体の一部分であれば特に限定されないが、重鎖可変領域(VH)又は/及び軽鎖可変領域(VL)を含んでいることが好ましい。VHまたはVLのアミノ酸配列は、置換、欠失、付加及び/又は挿入がされていてもよい。さらに抗原に対する結合活性を有する限り、VH又は/及びVLの一部を欠損させてもよい。又、可変領域はキメラ化やヒト化されていてもよい。抗体断片の具体例としては、例えば、Fab、Fab'、F(ab')2、Fvなどを挙げることができる。また、低分子化抗体の具体例としては、例えば、Fab、Fab'、F(ab')2、Fv、scFv(single chain Fv)、Diabody、sc(Fv)2(single chain (Fv)2)などを挙げることができる。これら抗体の多量体(例えば、ダイマー、トリマー、テトラマー、ポリマー)も、本発明の低分子化抗体に含まれる。
 抗体断片は、抗体を酵素、例えばパパイン、ペプシンで処理することによって生成され得るし、または、これら抗体断片をコードする遺伝子を構築し、これを発現ベクターに導入した後、適当な宿主細胞で発現され得る(例えば、Coら(J. Immunol.(1994)152, 2968-2976)、BetterおよびHorwitz(Methods in Enzymology(1989)178, 476-496)、PlueckthunおよびSkerraら(Methods in Enzymology(1989)178, 476-496)、Lamoyi(Methods in Enzymology(1989)121, 652-663)、Rousseauxら(Methods in Enzymology(1989)121, 663-669)およびBirdら(TIBTECH(1991)9, 132-137)を参照)。
 Diabodyは、遺伝子融合により構築された二価(bivalent)の低分子化抗体を指す(Holligerら(Proc. Natl. Acad. Sci. U.S.A. 90, 6444-6448 (1993)、欧州公開公報EP404097、およびPCT公開公報WO1993/011161等)。Diabodyは、2本のポリペプチド鎖から構成されるダイマーであり、通常、ポリペプチド鎖は各々、同じ鎖中でVL及びVHが、互いに結合できない位に短い、例えば、5残基程度のリンカーにより結合されている。同一ポリペプチド鎖上にコードされるVLとVHとは、その間のリンカーが短いため単鎖可変領域フラグメントを形成することが出来ず二量体を形成するため、Diabodyは2つの抗原結合部位を有することとなる。
 scFvは、抗体のH鎖V領域とL鎖V領域とを連結することにより得られる。このscFvにおいて、H鎖V領域とL鎖V領域は、リンカー、好ましくはペプチドリンカーを介して連結される(Hustonら(Proc. Natl. Acad. Sci. U.S.A. (1988) 85, 5879-5883)。scFvにおけるH鎖V領域およびL鎖V領域は、本明細書に抗体として記載されたもののいずれの抗体由来であってもよい。V領域を連結するペプチドリンカーとしては、特に制限はないが、例えば3から25残基程度からなる任意の一本鎖ペプチド、また、後述のペプチドリンカー等を用いることができる。V領域の連結方法としては上記のようなPCR法が利用できる。前記抗体のH鎖またはH鎖V領域をコードするDNA配列、およびL鎖またはL鎖V領域をコードするDNA配列のうち、全部又は所望のアミノ酸配列をコードするDNA部分を鋳型として、及び、その両端の配列に対応する配列を有するプライマーの一対を用いたPCR法によってscFvをコードするDNAが増幅できる。次いで、ペプチドリンカー部分をコードするDNA、およびその両端が各々H鎖、L鎖と連結されるように設計された配列を有するプライマーの一対を組み合わせてPCR反応を行うことによって、所望の配列を有するDNAが取得できる。また、一旦scFvをコードするDNAが作製されると、それらを含有する発現ベクター、および当該発現ベクターにより形質転換された組換え細胞が常法に従って取得でき、また、その結果得られる組換え細胞を培養して当該scFvをコードするDNAを発現させることにより、当該scFvが取得できる。
 sc(Fv)2は、2つのVH及び2つのVLをリンカー等で結合して一本鎖にした低分子化抗体である(Hudsonら(J. Immunol. Methods (1999) 231, 177-189)。sc(Fv)2は、例えば、scFvをリンカーで結ぶことによって作製できる。
 また2つのVH及び2つのVLが、一本鎖ポリペプチドのN末端側を基点としてVH、VL、VH、VL([VH]リンカー[VL]リンカー[VH]リンカー[VL])の順に並んでいることを特徴とする抗体が好ましい。2つのVHと2つのVLの順序は特に上記配置に限定されず、どのような順序で並べられていてもよい。例えば以下のような配置も挙げることができる。
-[VL]リンカー[VH]リンカー[VH]リンカー[VL]
-[VH]リンカー[VL]リンカー[VL]リンカー[VH]
-[VH]リンカー[VH]リンカー[VL]リンカー[VL]
-[VL]リンカー[VL]リンカー[VH]リンカー[VH]
-[VL]リンカー[VH]リンカー[VL]リンカー[VH]
 抗体の可変領域を結合するリンカーとしては、前記の抗原結合分子の項で記載されたリンカーと同様のリンカーが使用され得る。例えば、本発明において特に好ましいsc(Fv)2の態様としては、例えば、以下のsc(Fv)2を挙げることができる。
-[VH]ペプチドリンカー(15アミノ酸)[VL]ペプチドリンカー(15アミノ酸)[VH]ペプチドリンカー(15アミノ酸)[VL]
 4つの抗体可変領域を結合する場合には、通常、3つのリンカーが必要となるが、全て同じリンカーを用いてもよいし、異なるリンカーを用いてもよい。本発明において非限定な低分子化抗体の一態様として、互いに異なるパラトープであって、一方のパラトープが癌細胞の細胞膜に結合する膜型分子に存在するエピトープに結合し、もう一方のパラトープがエフェクター細胞の細胞膜に発現する膜型分子中に存在するエピトープに結合するDiabody又はsc(Fv)2が例示され得る。上記のDiabody又はsc(Fv)2では、癌細胞の細胞膜に結合する膜型分子に存在するエピトープに対する一方のパラトープの結合活性が癌組織特異的化合物に依存的であり得るし、エフェクター細胞の細胞膜に結合する膜型分子に存在するエピトープに対する一方のパラトープの結合活性が癌組織特異的化合物に依存的であり得るし、また、双方のパラトープの結合活性が癌組織特異的化合物に依存的であり得る。
 本発明において非限定な低分子化抗体の一態様として、互いに異なるパラトープであって、一方のパラトープが癌細胞の細胞膜に結合する膜型分子に存在するエピトープに結合し、もう一方のパラトープが細胞傷害性物質に存在するエピトープに結合するDiabody又はsc(Fv)2が例示され得る。上記のDiabody又はsc(Fv)2では、癌細胞の細胞膜に結合する膜型分子に存在するエピトープに対する一方のパラトープの結合活性が癌組織特異的化合物に依存的であり得るし、細胞傷害性物質に存在するエピトープに対する一方のパラトープの結合活性が癌組織特異的化合物に依存的であり得るし、また、双方のパラトープの結合活性が癌組織特異的化合物に依存的であり得る。
 このような低分子化抗体を得るには、抗体を酵素、例えば、パパイン、ペプシンなどで処理し、抗体断片を生成させるか、もしくはこれらの抗体断片または低分子化抗体をコードするDNAを構築し、これを発現ベクターに導入した後、適当な宿主細胞で発現させればよい(例えば、Co, M. S. et al., J. Immunol. (1994) 152, 2968-2976 ; Better, M. and Horwitz, A. H., Methods Enzymol. (1989) 178, 476-496 ; Pluckthun, A. and Skerra, A., Methods Enzymol. (1989) 178, 497-515 ; Lamoyi, E., Methods Enzymol. (1986) 121, 652-663 ; Rousseaux, J. et al., Methods Enzymol. (1986) 121, 663-669 ; Bird, R. E. and Walker, B. W., Trends Biotechnol. (1991) 9, 132-137参照)。
FcRn
 免疫グロブリンスーパーファミリーに属するFcγレセプターと異なり、ヒトFcRnは構造的には主要組織不適合性複合体(MHC)クラスIのポリペプチドに構造的に類似しクラスIのMHC分子と22から29%の配列同一性を有する(Ghetieら,Immunol. Today (1997) 18 (12), 592-598)。FcRnは、可溶性βまたは軽鎖(β2マイクログロブリン)と複合体化された膜貫通αまたは重鎖よりなるヘテロダイマーとして発現される。MHCのように、FcRnのα鎖は3つの細胞外ドメイン(α1、α2、α3)よりなり、短い細胞質ドメインはタンパク質を細胞表面に繋留する。α1およびα2ドメインが抗体のFc領域中のFcRn結合ドメインと相互作用する(Raghavanら(Immunity (1994) 1, 303-315)。
 FcRnは、哺乳動物の母性胎盤または卵黄嚢で発現され、それは母親から胎児へのIgGの移動に関与する。加えてFcRnが発現するげっ歯類新生児の小腸では、FcRnが摂取された初乳または乳から母性IgGの刷子縁上皮を横切る移動に関与する。FcRnは多数の種にわたって多数の他の組織、並びに種々の内皮細胞系において発現している。それはヒト成人血管内皮、筋肉血管系、および肝臓洞様毛細血管でも発現される。FcRnは、IgGに結合し、それを血清にリサイクルすることによって、IgGの血漿中濃度を維持する役割を演じていると考えられている。FcRnのIgG分子への結合は、通常、厳格にpHに依存的であり、最適結合は7.0未満のpH酸性域において認められる。
 配列番号:28で表されたシグナル配列を含むポリペプチドを前駆体とするヒトFcRnは、生体内で(配列番号:29にシグナル配列を含むそのポリペプチドが記載されている)ヒトβ2-ミクログロブリンとの複合体を形成する。β2-ミクログロブリンと複合体を形成している可溶型ヒトFcRnが通常の組換え発現手法を用いることによって製造される。このようなβ2-ミクログロブリンと複合体を形成している可溶型ヒトFcRnに対する本発明のFc領域の結合活性が評価され得る。本発明において、特に記載のない場合は、ヒトFcRnは本発明のFc領域に結合し得る形態であるものを指し、例としてヒトFcRnとヒトβ2-ミクログロブリンとの複合体が挙げられる。
FcRn、特にヒトFcRnに対するFc領域の結合活性
 本発明により提供されるFc領域のFcRn、特にヒトFcRnに対する結合活性は、前記結合活性の項で述べられているように、当業者に公知の方法により測定することが可能であり、pH以外の条件については当業者が適宜決定することが可能である。抗原結合分子の抗原結合活性とヒトFcRn結合活性は、KD(Dissociation constant:解離定数)、見かけのKD(Apparent dissociation constant:見かけの解離定数)、解離速度であるkd(Dissociation rate:解離速度)、又は見かけのkd(Apparent dissociation:見かけの解離速度)等として評価され得る。これらは当業者公知の方法で測定され得る。例えばBiacore(GE healthcare)、スキャッチャードプロット、フローサイトメーター等が使用され得る。
 本発明のFc領域のヒトFcRnに対する結合活性を測定する際のpH以外の条件は当業者が適宜選択することが可能であり、特に限定されない。例えば、国際公開WO2009/125825に記載されているようにMESバッファー、37℃の条件において測定され得る。また、本発明のFc領域のヒトFcRnに対する結合活性の測定は当業者公知の方法により行うことが可能であり、例えば、Biacore(GE Healthcare)などを用いて測定され得る。本発明のFc領域とヒトFcRnの結合活性の測定は、Fc領域またはFc領域を含む本発明の抗原結合分子あるいはヒトFcRnを固定化したチップへ、それぞれヒトFcRnあるいはFc領域またはFc領域を含む本発明の抗原結合分子をアナライトとして流すことによって評価され得る。
 本発明の抗原結合分子に含まれるFc領域とFcRnとの結合活性を有する条件としてのpH中性域とは、通常pH6.7~pH10.0を意味する。pH中性域とは、好ましくはpH7.0~pH8.0の任意のpH値によって示される範囲であり、好ましくはpH7.0、7.1、7.2、7.3、7.4、7.5、7.6、7.7、7.8、7.9、および8.0から選択され、特に好ましくは生体内の血漿中(血中)のpHに近いpH7.4である。pH7.4でのヒトFcRn結合ドメインとヒトFcRnとの結合アフィニティーが低いためにその結合アフィニティーを評価することが難しい場合には、pH7.4の代わりにpH7.0を用いることができる。本発明において、本発明の抗原結合分子に含まれるFc領域とFcRnとの結合活性を有する条件としてのpH酸性域とは、通常pH4.0~pH6.5を意味する。好ましくはpH5.5~pH6.5を意味し、特に好ましくは、生体内の早期エンドソーム内のpHに近いpH5.8~pH6.0を意味する。測定条件に使用される温度として、ヒトFcRn結合ドメインとヒトFcRnとの結合アフィニティーは、10℃~50℃の任意の温度で評価してもよい。好ましくは、ヒトFcRn結合ドメインとヒトFcRnとの結合アフィニティーを決定するために、15℃~40℃の温度が使用される。より好ましくは、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、および35℃のいずれか1つのような20℃から35℃までの任意の温度も同様に、ヒトFcRn結合ドメインとヒトFcRnとの結合アフィニティーを決定するために使用される。25℃という温度は本発明の態様の非限定な一例である。
 The Journal of Immunology (2009) 182, 7663-7671によれば、天然型ヒトIgG1のヒトFcRn結合活性はpH酸性域(pH6.0)でKD 1.7μMであるが、pH中性域では活性をほとんど検出できていない。よって、好ましい態様においては、pH酸性域におけるヒトFcRnに対する結合活性がKD 20μMまたはそれより強いFc領域を含む抗原結合分子がスクリーニングされ得る。より好ましい態様においては、pH酸性域におけるヒトFcRnに対する結合活性がKD 2.0μMまたはそれより強いFc領域を含む抗原結合分子がスクリーニングされ得る。さらにより好ましい態様においては、pH酸性域におけるヒトFcRnに対する結合活性がKD 0.5μMまたはそれより強いFc領域を含む抗原結合分子がスクリーニングされ得る。上記のKD値は、The Journal of Immunology (2009) 182: 7663-7671に記載された方法(抗原結合分子をチップに固定し、アナライトとしてヒトFcRnを流す)によって決定される。
pH酸性域の条件下でFcRnに対する結合活性を有するFc領域
 本発明が提供する抗原結合分子に含まれるFc領域として、pH酸性域の条件下でFcRnに対する結合活性を有するFc領域も好適に使用され得る。一般的にIgG抗体はFcRnに結合することで長い血漿中滞留性を有することが知られている。IgGとFcRnの結合は酸性条件下(pH6.0)においてのみ認められ、中性条件下(pH7.4)においてほとんど結合は認められない。IgG抗体は非特異的に細胞に取り込まれるが、エンドソーム内の酸性条件下においてエンドソーム内のFcRnに結合することで細胞表面上に戻り、血漿中の中性条件下においてFcRnから解離する。IgGのFc領域に変異を導入し、pH酸性域の条件下におけるFcRnに対する結合を失わせると、エンドソーム内から血漿中にリサイクルされなくなるため、抗体の血漿中滞留性は著しく損なわれる。IgG抗体の血漿中滞留性を改善する方法として、pH酸性域の条件下におけるFcRnに対する結合を向上させる方法が報告されている。IgG抗体のFc領域にアミノ酸置換を導入し、pH酸性域の条件下におけるFcRnに対する結合を向上させることで、エンドソーム内から血漿中へのリサイクル効率が上昇し、その結果、血漿中滞留性が改善する。
 本発明は特定の理論に拘束されるものではないが、例えば、本発明が提供する抗原結合分子が癌組織に含まれる癌細胞に発現する膜型抗原に結合する場合等には、以下のように癌細胞の増殖を持続的に抑制することが可能であるとも考えられる。癌組織特異的な化合物の高濃度存在下において本発明の抗原結合分子が結合した膜型分子が発現する癌細胞が、当該抗原結合分子によって介在される細胞傷害活性によって傷害された後も、当該抗原結合分子に含まれる抗原結合ドメインにその抗原が結合した状態であることが考えられる。非特異的に細胞に取り込まれた当該抗原結合分子から、癌組織特異的な化合物の低濃度存在下で抗原を遊離した当該抗原結合分子はエンドソーム内の酸性条件下においてエンドソーム内のFcRnに結合することで細胞表面上に戻り、血漿中の中性条件下においてFcRnから解離する。このようにして、リサイクルされた本発明の抗原結合分子は、癌組織特異的な化合物の高濃度存在下においてその抗原である癌細胞に発現する膜型分子に再度結合することができると考えられる。
 本発明は特定の理論に拘束されるものではないが、例えば、本発明が提供する抗原結合分子が結合する可溶型抗原が標的組織に含まれる標的細胞の増殖または炎症細胞の活性化を正に調節するリガンドの場合等には以下のように標的細胞の増殖または炎症細胞の活性化を抑制することが可能であるとも考えられる。これらの標的組織特異的な化合物の高濃度存在下においてその抗原である可溶型分子に結合した本発明の抗原結合分子が非特異的に細胞に取り込まれた後、標的組織特異的な化合物の低濃度存在下で抗原を遊離した当該抗原結合分子はエンドソーム内の酸性条件下においてエンドソーム内のFcRnに結合することで細胞表面上に戻り、血漿中の中性条件下においてFcRnから解離する。このようにして、リサイクルされた本発明の抗原結合分子は、標的組織特異的な化合物の高濃度存在下においてその抗原である可溶型分子に再度結合することができると考えられる。一方、標的組織特異的な化合物の低濃度存在下で抗原結合分子から遊離した抗原は、ライソゾーム中で分解される。その結果、可溶型抗原の濃度は上記のリサイクルの段階を経るにしたがって減少することから癌細胞の増殖または炎症細胞の活性化を抑制することができると考えられる。
 本発明においては、pH酸性域の条件下でFcRnに対する結合活性を有するFc領域が好ましい。当該ドメインは、あらかじめpH酸性域の条件下でFcRnに対する結合活性を有しているFc領域であればそのまま用いられ得る。当該ドメインがpH酸性域の条件下でFcRnに対する結合活性がない若しくは弱い場合には、抗原結合分子中のアミノ酸を改変することによって所望のFcRnに対する結合活性を有するFc領域が取得され得るが、Fc領域中のアミノ酸を改変することによってpH酸性域の条件下で所望のFcRnに対する結合活性を有する、または増強されたFc領域も好適に取得され得る。そのような所望の結合活性をもたらすFc領域のアミノ酸改変は、アミノ酸改変前と改変後のpH酸性域の条件下でFcRnに対する結合活性を比較することによって見出され得る。前記のFcγレセプターに対する結合活性を改変するために用いられる手法と同様の公知の手法を用いて当業者は適宜アミノ酸の改変を実施することができる。
 本発明の抗原結合分子に含まれるpH酸性域の条件下でFcRnに対する結合活性を有するFc領域はいかなる方法によっても取得され得るが、具体的には、出発Fc領域として用いられるヒトIgG型免疫グロブリンのアミノ酸の改変によってpH酸性域の条件下でFcRnに対する結合活性を有する、または増強されたFcRn結合ドメインが取得され得る。改変のための好ましいIgG型免疫グロブリンのFc領域としては、例えばヒトIgG(IgG1、IgG2、IgG3、またはIgG4、およびそれらの改変体)のFc領域が挙げられる。他のアミノ酸への改変は、pH酸性域の条件下でFcRnに対する結合活性を有する、もしくは酸性域の条件下でヒトFcRnに対する結合活性を高められるかぎり、いかなる位置のアミノ酸も改変され得る。抗原結合分子が、Fc領域としてヒトIgG1のFc領域を含んでいる場合、pH酸性域の条件下でFcRnに対する結合が、ヒトIgG1の出発Fc領域の結合活性より増強する効果をもたらす改変が含まれていることが好ましい。そのような改変が可能なアミノ酸として、例えば、国際公開WO1997/034631に記載されているように、EUナンバリングで表される252位、254位、256位、309位、311位、315位、433位、および/または434位ならびにこれらのアミノ酸に組み合わせる253位、310位、435位、および/または426位のアミノ酸が挙げられる。国際公開WO2000/042072に記載されるように、EUナンバリングで表される238位、252位、253位、254位、255位、256位、265位、272位、286位、288位、303位、305位、307位、309位、311位、312位、317位、340位、356位、360位、362位、376位、378位、380位、382位、386位、388位、400位、413位、415位、424位、433位、434位、435位、436位、439位および/または447位のアミノ酸が好適に挙げられる。同様に、そのような改変が可能なアミノ酸として、例えば国際公開WO2002/060919に記載されているように、EUナンバリングで表される251位、252位、254位、255位、256位、308位、309位、311位、312位、385位、386位、387位、389位、428位、433位、434位および/または436位のアミノ酸も好適に挙げられる。さらに、そのような改変が可能なアミノ酸として、国際公開WO2004/092219に記載されているように、EUナンバリングで表される250位、314位および428位のアミノ酸も挙げられる。加えて、そのような改変が可能なアミノ酸として、例えば国際公開WO2006/020114に記載されているように、238位、244位、245位、249位、252位、256位、257位、258位、260位、262位、270位、272位、279位、283位、285位、286位、288位、293位、307位、311位、312位、316位、317位、318位、332位、339位、341位、343位、375位、376位、377位、378位、380位、382位、423位、427位、430位、431位、434位、436位、438位、440位、および/または442位のアミノ酸も好適に挙げられる。また、そのような改変が可能なアミノ酸として、例えば国際公開WO2010/045193に記載されているように、EUナンバリングで表される251位、252位、307位、308位、378位、428位、430位、434位および/または436位のアミノ酸も好適に挙げられる。これらのアミノ酸の改変によって、IgG型免疫グロブリンのFc領域のpH酸性域の条件下でFcRnに対する結合が増強される。
 Fc領域としてヒトIgG1のFc領域を含んでいる場合、pH酸性域の条件下でFcRnに対する結合が、ヒトIgG1の出発Fc領域の結合活性より増強する効果をもたらす改変の非限定な一態様では、EUナンバリングで表される、
251位のアミノ酸がArgまたはLeuのいずれか、
252位のアミノ酸がPhe、Ser、Thr、またはTyrのいずれか、
254位のアミノ酸がSerまたはThrのいずれか、
255位のアミノ酸がArg、Gly、Ile、またはLeuのいずれか、
256位のアミノ酸がAla、Arg、Asn、Asp、Gln、Glu、またはThrのいずれか、
308位のアミノ酸がIleまたはThrのいずれか、
309位のアミノ酸がPro、
311位のアミノ酸がGlu、Leu、またはSerのいずれか、
312位のアミノ酸がAlaまたはAspのいずれか、
314位のアミノ酸がAlaまたはLeuのいずれか、
385位のアミノ酸がAla、Arg、Asp、Gly、His、Lys、Ser、またはThrのいずれか、
386位のアミノ酸がArg、Asp、Ile、Lys、Met、Pro、Ser、またはThrのいずれか、
387位のアミノ酸がAla、Arg、His、Pro、Ser、またはThrのいずれか、
389位のアミノ酸がAsn、Pro、またはSerのいずれか、
428位のアミノ酸がLeu、Met、Phe、Ser、またはThrのいずれか
433位のアミノ酸がArg、Gln、His、Ile、Lys、Pro、またはSerのいずれか、
434位のアミノ酸がHis、Phe、またはTyrのいずれか、もしくは
436位のアミノ酸がArg、Asn、His、Lys、Met、またはThrのいずれか、
の群から選択される少なくとも一つ以上のアミノ酸の改変が挙げられる。また、改変されるアミノ酸の数は特に限定されず、一箇所のみのアミノ酸が改変され得るし、二箇所以上のアミノ酸が改変され得る。
 Fc領域としてヒトIgG1のFc領域を含んでいる場合、pH酸性域の条件下でFcRnに対する結合が、ヒトIgG1の出発Fc領域の結合活性より増強する効果をもたらす改変の非限定な一態様は、EUナンバリングで表される、308位のアミノ酸がIle、309位のアミノ酸がPro、および/または311位のアミノ酸がGluを含む改変であり得る。また、当該改変の別の非限定な一態様は、308位のアミノ酸がThr、309位のアミノ酸がPro、311位のアミノ酸がLeu、312位のアミノ酸がAla、および/または314位のアミノ酸がAlaを含む改変であり得る。また、当該改変のさらに別の非限定な一態様は、308位のアミノ酸がIleまたはThr、309位のアミノ酸がPro、311位のアミノ酸がGlu、Leu、またはSer、312位のアミノ酸がAla、および/または314位のアミノ酸がAlaまたはLeuを含む改変であり得る。当該改変の異なる非限定な一態様は、308位のアミノ酸がThr、309位のアミノ酸がPro、311位のアミノ酸がSer、312位のアミノ酸がAsp、および/または314位のアミノ酸がLeuを含む改変であり得る。
 Fc領域としてヒトIgG1のFc領域を含んでいる場合、pH酸性域の条件下でFcRnに対する結合が、ヒトIgG1の出発Fc領域の結合活性より増強する効果をもたらす改変の非限定な一態様は、EUナンバリングで表される、251位のアミノ酸がLeu、252位のアミノ酸がTyr、254位のアミノ酸がSer、またはThr、255位のアミノ酸がArg、および/または256位のアミノ酸がGluを含む改変であり得る。
 Fc領域としてヒトIgG1のFc領域を含んでいる場合、pH酸性域の条件下でFcRnに対する結合が、ヒトIgG1の出発Fc領域の結合活性より増強する効果をもたらす改変の非限定な一態様は、EUナンバリングで表される、428位のアミノ酸がLeu、Met、Phe、Ser、またはThrのいずれか、433位のアミノ酸がArg、Gln、His、Ile、Lys、Pro、またはSerのいずれか、434位のアミノ酸がHis、Phe、またはTyrのいずれか、および/または436位のアミノ酸がArg、Asn、His、Lys、Met、またはThrのいずれかを含む改変であり得る。また、当該改変の別の非限定な一態様は、428位のアミノ酸がHisまたはMet、および/または434位のアミノ酸がHisまたはMetを含む改変であり得る。
 Fc領域としてヒトIgG1のFc領域を含んでいる場合、pH酸性域の条件下でFcRnに対する結合が、ヒトIgG1の出発Fc領域の結合活性より増強する効果をもたらす改変の非限定な一態様は、EUナンバリングで表される、385位のアミノ酸がArg、386位のアミノ酸がThr、387位のアミノ酸がArg、および/または389位のアミノ酸がProを含む改変であり得る。また、当該改変の別の非限定な一態様は、385位のアミノ酸がAsp、386位のアミノ酸がProおよび/または389位のアミノ酸がSerを含む改変であり得る。
 さらに、Fc領域としてヒトIgG1のFc領域を含んでいる場合、pH酸性域の条件下でFcRnに対する結合が、ヒトIgG1の出発Fc領域の結合活性より増強する効果をもたらす改変の非限定な一態様では、EUナンバリングで表される、
250位のアミノ酸がGlnまたはGluのいずれか、もしくは
428位のアミノ酸がLeuまたはPheのいずれか、
の群から選択される少なくとも一つ以上のアミノ酸の改変が挙げられる。また、改変されるアミノ酸の数は特に限定されず、一箇所のみのアミノ酸が改変され得るし、二箇所のアミノ酸が改変され得る。
 Fc領域としてヒトIgG1のFc領域を含んでいる場合、pH酸性域の条件下でFcRnに対する結合が、ヒトIgG1の出発Fc領域の結合活性より増強する効果をもたらす改変の非限定な一態様は、EUナンバリングで表される、250位のアミノ酸がGln、および/または428位のアミノ酸がLeuまたはPheのいずれかを含む改変であり得る。また、当該改変の別の非限定な一態様は、250位のアミノ酸がGlu、および/または428位のアミノ酸がLeuまたはPheのいずれかを含む改変であり得る。
 Fc領域としてヒトIgG1のFc領域を含んでいる場合、pH酸性域の条件下でFcRnに対する結合が、ヒトIgG1の出発Fc領域の結合活性より増強する効果をもたらす改変の非限定な一態様では、EUナンバリングで表される、
251位のアミノ酸がAspまたはGluのいずれか、
252位のアミノ酸がTyr、
307位のアミノ酸がGln、
308位のアミノ酸がPro、
378位のアミノ酸がVal、
380位のアミノ酸がAla、
428位のアミノ酸がLeu、
430位のアミノ酸がAla、またはLysのいずれか、
434位のアミノ酸がAla、His、Ser、またはTyrのいずれか、もしくは
436位のアミノ酸がIle、
の群から選択される少なくとも二つ以上のアミノ酸の改変が挙げられる。また、改変されるアミノ酸の数は特に限定されず、二箇所のみのアミノ酸が改変され得るし、三箇所以上のアミノ酸が改変され得る。
 Fc領域としてヒトIgG1のFc領域を含んでいる場合、pH酸性域の条件下でFcRnに対する結合が、ヒトIgG1の出発Fc領域の結合活性より増強する効果をもたらす改変の非限定な一態様は、EUナンバリングで表される、307位のアミノ酸がGln、および434位のアミノ酸がAlaまたはSerのいずれかを含む改変であり得る。また、当該改変の別の非限定な一態様は、308位のアミノ酸がPro、および434位のアミノ酸がAlaを含む改変であり得る。また、当該改変のさらに別の非限定な一態様は、252位のアミノ酸がTyr、および434位のアミノ酸がAlaを含む改変であり得る。当該改変の異なる非限定な一態様は、378位のアミノ酸がVal、および434位のアミノ酸がAlaを含む改変であり得る。当該改変の別の異なる非限定な一態様は、428位のアミノ酸がLeu、および434位のアミノ酸がAlaを含む改変であり得る。また、当該改変のさらに別の異なる非限定な一態様は、434位のアミノ酸がAla、および436位のアミノ酸がIleを含む改変であり得る。さらに、当該改変のもう一つの非限定な一態様は、308位のアミノ酸がPro、および434位のアミノ酸がTyrを含む改変であり得る。さらに、当該改変の別のもう一つの非限定な一態様は、307位のアミノ酸がGln、および436位のアミノ酸がIleを含む改変であり得る。
 Fc領域としてヒトIgG1のFc領域を含んでいる場合、pH酸性域の条件下でFcRnに対する結合が、ヒトIgG1の出発Fc領域の結合活性より増強する効果をもたらす改変の非限定な一態様は、EUナンバリングで表される、307位のアミノ酸がGln、380位のアミノ酸がAla、および434位のアミノ酸がSerのいずれかを含む改変であり得る。また、当該改変の別の非限定な一態様は、307位のアミノ酸がGln、380位のアミノ酸がAla、および434位のアミノ酸がAlaを含む改変であり得る。また、当該改変のさらに別の非限定な一態様は、252位のアミノ酸がTyr、308位のアミノ酸がPro、および434位のアミノ酸がTyrを含む改変であり得る。当該改変の異なる非限定な一態様は、251位のアミノ酸がAsp、307位のアミノ酸がGln、および434位のアミノ酸がHisを含む改変であり得る。
 Fc領域としてヒトIgG1のFc領域を含んでいる場合、pH酸性域の条件下でFcRnに対する結合が、ヒトIgG1の出発Fc領域の結合活性より増強する効果をもたらす改変の非限定な一態様では、EUナンバリングで表される、
238位のアミノ酸がLeu、
244位のアミノ酸がLeu、
245位のアミノ酸がArg、
249位のアミノ酸がPro、
252位のアミノ酸がTyr、
256位のアミノ酸がPro、
257位のアミノ酸がAla、Ile、Met、Asn、Ser、またはValのいずれか、
258位のアミノ酸がAsp、
260位のアミノ酸がSer、
262位のアミノ酸がLeu、
270位のアミノ酸がLys、
272位のアミノ酸がLeu、またはArgのいずれか、
279位のアミノ酸がAla、Asp、Gly、His、Met、Asn、Gln、Arg、Ser、Thr、Trp、またはTyrのいずれか、
283位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Asn、Pro、Gln、Arg、Ser、Thr、Trp、またはTyrのいずれか、
285位のアミノ酸がAsn、
286位のアミノ酸がPhe、
288位のアミノ酸がAsn、またはProのいずれか、
293位のアミノ酸がVal、
307位のアミノ酸がAla、Glu、またはMetのいずれか、
311位のアミノ酸がAla、Ile、Lys、Leu、Met、Val、またはTrpのいずれか、
312位のアミノ酸がPro、
316位のアミノ酸がLys、
317位のアミノ酸がPro、
318位のアミノ酸がAsn、またはThrのいずれか、
332位のアミノ酸がPhe、His、Lys、Leu、Met、Arg、Ser、またはTrpのいずれか、
339位のアミノ酸がAsn、Thr、またはTrpのいずれか、
341位のアミノ酸がPro、
343位のアミノ酸がGlu、His、Lys、Gln、Arg、Thr、またはTyrのいずれか、
375位のアミノ酸がArg、
376位のアミノ酸がGly、Ile、Met、Pro、Thr、またはValのいずれか、
377位のアミノ酸がLys、
378位のアミノ酸がAsp、またはAsnのいずれか、
380位のアミノ酸がAsn、Ser、またはThrのいずれか、
382位のアミノ酸がPhe、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、Trp、またはTyrのいずれか、
423位のアミノ酸がAsn、
427位のアミノ酸がAsn、
430位のアミノ酸がAla、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、またはTyrのいずれか、
431位のアミノ酸がHis、またはAsnのいずれか、
434位のアミノ酸がPhe、Gly、His、Trp、またはTyrのいずれか、
436位のアミノ酸がIle、Leu、またはThrのいずれか、
438位のアミノ酸がLys、Leu、Thr、またはTrpのいずれか、
440位のアミノ酸がLys、もしくは、
442位のアミノ酸がLys、
の群から選択される少なくとも二つ以上のアミノ酸の改変が挙げられる。また、改変されるアミノ酸の数は特に限定されず、二箇所のみのアミノ酸が改変され得るし、三箇所以上のアミノ酸が改変され得る。
 Fc領域としてヒトIgG1のFc領域を含んでいる場合、pH酸性域の条件下でFcRnに対する結合が、ヒトIgG1の出発Fc領域の結合活性より増強する効果をもたらす改変の非限定な一態様は、EUナンバリングで表される、257位のアミノ酸がIle、および311位のアミノ酸がIleを含む改変であり得る。また、当該改変の別の非限定な一態様は、257位のアミノ酸がIle、および434位のアミノ酸がHisを含む改変であり得る。また、当該改変のさらに別の非限定な一態様は、376位のアミノ酸がVal、および434位のアミノ酸がHisを含む改変であり得る。
pH中性域の条件下でFcRnに対する結合活性を有するFc領域
 また、別の非限定な一態様では、上記に記載されたpH酸性域におけるヒトFcRnに対する結合活性という特徴に代えて、pH中性域におけるヒトFcRnに対する結合活性という特徴を有するFc領域を含む抗原結合分子もまたスクリーニングされ得る。より好ましい態様においては、pH中性域におけるヒトFcRn結合活性がKD 40μMまたはそれより強いFc領域を含む抗原結合分子がスクリーニングされ得る。さらにより好ましい態様においては、pH中性域におけるヒトFcRnに対する結合活性がKD 15μMまたはそれより強いFc領域を含む抗原結合分子がスクリーニングされ得る。
 また、別の非限定な一態様では、上記に記載されたpH酸性域におけるヒトFcRnに対する結合活性という特徴に加えて、pH中性域におけるヒトFcRnに対する結合活性という特徴を有するFc領域を含む抗原結合分子もまたスクリーニングされ得る。より好ましい態様においては、pH中性域におけるヒトFcRn結合活性がKD 40μMまたはそれより強いFc領域を含む抗原結合分子がスクリーニングされ得る。さらにより好ましい態様においては、pH中性域におけるヒトFcRnに対する結合活性がKD 15μMまたはそれより強いFc領域を含む抗原結合分子がスクリーニングされ得る。
 本発明において、pH酸性域および/またはpH中性域においてヒトFcRnに対する結合活性を有するFc領域が好ましい。当該Fc領域は、あらかじめpH酸性域および/またはpH中性域においてヒトFcRnに対する結合活性を有しているFc領域であればそのまま用いられ得る。当該Fc領域がpH酸性域および/またはpH中性域においてヒトFcRn結合活性がない若しくは弱い場合には、抗原結合分子に含まれるFc領域中のアミノ酸を改変することによって所望のヒトFcRnに対する結合活性を有するFc領域を含む抗原結合分子が取得され得るが、ヒトFc領域中のアミノ酸を改変することによってpH酸性域および/またはpH中性域における所望のヒトFcRnに対する結合活性を有するFc領域も好適に取得され得る。また、あらかじめpH酸性域および/またはpH中性域においてヒトFcRn結合活性を有しているFc領域中のアミノ酸の改変によって、所望のヒトFcRnに対する結合活性を有するFc領域を含む抗原結合分子も取得され得る。そのような所望の結合活性をもたらすヒトFc領域のアミノ酸改変は、アミノ酸改変前と改変後のpH酸性域および/またはpH中性域におけるヒトFcRnに対する結合活性を比較することによって見出され得る。公知の手法を用いて当業者は適宜アミノ酸の改変を実施することができる。
 本発明において、Fc領域の「アミノ酸の改変」または「アミノ酸改変」とは、出発Fc領域のアミノ酸配列とは異なるアミノ酸配列に改変することを含む。出発Fc領域の修飾改変体がpH酸性域においてヒトFcRnに結合することができる限り(ゆえに、出発Fc領域はpH中性域の条件下におけるヒトFcRnに対する結合活性を必ずしも必要とするわけではない)いずれのFc領域も出発ドメインとして使用され得る。出発Fc領域の例としては、IgG抗体のFc領域、すなわち天然型のFc領域が好適に挙げられる。また、既に改変が加えられたFc領域を出発Fc領域としてさらなる改変が加えられた改変Fc領域も本発明の改変Fc領域として好適に使用され得る。出発Fc領域とは、ポリペプチドそのもの、出発Fc領域を含む組成物、または出発Fc領域をコードするアミノ酸配列を意味し得る。出発Fc領域には、抗体の項で概説された組換えによって産生された公知のIgG抗体のFc領域が含まれ得る。出発Fc領域の起源は、限定されないが非ヒト動物の任意の生物またはヒトから取得され得る。好ましくは、任意の生物としては、マウス、ラット、モルモット、ハムスター、アレチネズミ、ネコ、ウサギ、イヌ、ヤギ、ヒツジ、ウシ、ウマ、ラクダ、および非ヒト霊長類から選択される生物が好適に挙げられる。別の態様において、出発Fc領域はまた、カニクイザル、マーモセット、アカゲザル、チンパンジー、またはヒトから取得され得る。好ましくは、出発Fc領域は、ヒトIgG1から取得され得るが、IgGの特定のサブクラスに限定されるものでもない。このことは、ヒトIgG1(配列番号:5)、IgG2(配列番号:6)、IgG3(配列番号:7)、またはIgG4(配列番号:8)で表されるFc領域を出発Fc領域として適宜用いることができることを意味する。同様に、本明細書において、前記の任意の生物からのIgGの任意のクラスまたはサブクラスのFc領域を、好ましくは出発Fc領域として用いることができることを意味する。天然に存在するIgGのバリアントまたは操作された型の例は、公知の文献(Curr. Opin. Biotechnol. (2009) 20 (6), 685-91、Curr. Opin. Immunol. (2008) 20 (4), 460-470、Protein Eng. Des. Sel. (2010) 23 (4), 195-202、国際公開WO2009/086320、WO2008/092117、WO2007/041635、およびWO2006/105338)に記載されるがそれらに限定されない。
 改変の例としては一以上の変異、例えば、出発Fc領域のアミノ酸とは異なるアミノ酸残基に置換された変異、あるいは出発Fc領域のアミノ酸に対して一以上のアミノ酸残基の挿入または出発Fc領域のアミノ酸から一以上のアミノ酸の欠失等が含まれる。好ましくは、改変後のFc領域のアミノ酸配列には、天然に生じないFc領域の少なくとも部分を含むアミノ酸配列を含む。そのような変種は必然的に出発Fc領域と100%未満の配列同一性または類似性を有する。好ましい実施形態において、変種は出発Fc領域のアミノ酸配列と約75%~100%未満のアミノ酸配列同一性または類似性、より好ましくは約80%~100%未満、より好ましくは約85%~100%未満の、より好ましくは約90%~100%未満、最も好ましくは約95%~100%未満の同一性または類似性のアミノ酸配列を有する。本発明の非限定な一態様において、出発Fc領域および本発明の改変されたFc領域の間には少なくとも1つのアミノ酸の差がある。出発Fc領域と改変Fc領域のアミノ酸の違いは、特に前述のEUナンバリングで表されるアミノ酸残基の位置の特定されたアミノ酸の違いによっても好適に特定可能である。そのような変種の作製方法は「アミノ酸の改変」の項に例示されている。
 本発明の抗原結合分子に含まれるpH中性域におけるヒトFcRnに対する結合活性を有するFc領域はいかなる方法によっても取得され得るが、具体的には、出発Fc領域として用いられるヒトIgG型免疫グロブリンのアミノ酸の改変によってpH中性域におけるヒトFcRnに対する結合活性がKD 20μMまたはそれより強いFc領域、より好ましい態様においては、pH中性域におけるヒトFcRnに対する結合活性がKD 2.0μMまたはそれより強いFc領域、さらにより好ましい態様においては、pH中性域におけるヒトFcRnに対する結合活性がKD 0.5μMまたはそれより強いFc領域、を含む抗原結合分子がスクリーニングされ得る。改変のための好ましいIgG型免疫グロブリンのFc領域としては、例えば、配列番号:5、配列番号:6、配列番号:7、または配列番号:8でそれぞれ表されるIgG1、IgG2、IgG3またはIgG4等のヒトIgG、およびそれらの改変体のFc領域が挙げられる。
 抗原結合分子が、Fc領域としてヒトIgG1のFc領域を含んでいる場合、pH中性域の条件下でFcRnに対する結合が、出発Fc領域として用いられるヒトIgG型免疫グロブリンのアミノ酸の改変によって上記の所望の効果をもたらす改変が可能なアミノ酸として、例えば、国際公開WO2000/042072に記載されるように、EUナンバリングで表される238位、252位、253位、254位、255位、256位、265位、272位、286位、288位、303位、305位、307位、309位、311位、312位、317位、340位、356位、360位、362位、376位、378位、380位、382位、386位、388位、400位、413位、415位、424位、433位、434位、435位、436位、439位および/または447位のアミノ酸が好適に挙げられる。同様に、そのような改変が可能なアミノ酸として、例えば国際公開WO2002/060919に記載されているように、EUナンバリングで表される251位、252位、254位、255位、256位、308位、309位、311位、312位、385位、386位、387位、389位、428位、433位、434位および/または436位のアミノ酸も好適に挙げられる。さらに、そのような改変が可能なアミノ酸として、国際公開WO2004/092219に記載されているように、EUナンバリングで表される250位、314位および428位のアミノ酸も挙げられる。また、そのような改変が可能なアミノ酸として、例えば国際公開WO2010/045193に記載されているように、EUナンバリングで表される251位、252位、307位、308位、378位、428位、430位、434位および/または436位のアミノ酸も好適に挙げられる。これらのアミノ酸の改変によって、IgG型免疫グロブリンのFc領域のpH中性域の条件下におけるFcRnに対する結合が増強される。
 出発Fc領域として用いられるヒトIgG型免疫グロブリンのアミノ酸の改変によって、pH中性域におけるヒトFcRnに対する結合活性を有するFc領域もまた取得され得る。改変のための好ましいIgG型免疫グロブリンのFc領域としては、例えば、配列番号:5、配列番号:6、配列番号:7、または配列番号:8でそれぞれ表されるIgG1、IgG2、IgG3またはIgG4等のヒトIgG、およびそれらの改変体のFc領域が挙げられる。他のアミノ酸への改変は、pH中性域におけるヒトFcRnに対する結合活性を有する、もしくは中性域におけるヒトFcRnに対する結合活性を高められるかぎり、いかなる位置のアミノ酸も改変され得る。抗原結合分子が、ヒトFc領域としてヒトIgG1のFc領域を含んでいる場合、pH中性域におけるヒトFcRnに対する結合が、ヒトIgG1の出発Fc領域の結合活性より増強する効果をもたらす改変が含まれていることが好ましい。そのような改変が可能なアミノ酸として、例えば、EUナンバリング221位~225位、227位、228位、230位、232位、233位~241位、243位~252位、254位~260位、262位~272位、274位、276位、278位~289位、291位~312位、315位~320位、324位、325位、327位~339位、341位、343位、345位、360位、362位、370位、375位~378位、380位、382位、385位~387位、389位、396位、414位、416位、423位、424位、426位~438位、440位および442位の位置のアミノ酸が挙げられる。これらのアミノ酸の改変によって、IgG型免疫グロブリンのFc領域のpH中性域におけるヒトFcRnに対する結合が増強される。
 本発明に使用するために、これらの改変のうち、pH中性域においてもヒトFcRnに対する結合を増強する改変が適宜選択される。特に好ましいFc領域改変体のアミノ酸として、例えばEUナンバリングで表される237位、248位、250位、252位、254位、255位、256位、257位、258位、265位、286位、289位、297位、298位、303位、305位、307位、308位、309位、311位、312位、314位、315位、317位、332位、334位、360位、376位、380位、382位、384位、385位、386位、387位、389位、424位、428位、433位、434位および436位のアミノ酸が挙げられる。これらのアミノ酸から選択される少なくとも1つのアミノ酸を他のアミノ酸に置換することによって、抗原結合分子に含まれるFc領域のpH中性域におけるヒトFcRnに対する結合活性を増強することができる。
 特に好ましい改変としては、例えば、Fc領域のEUナンバリングで表される
237位のアミノ酸がMet、
248位のアミノ酸がIle、
250位のアミノ酸がAla、Phe、Ile、Met、Gln、Ser、Val、Trp、またはTyrのいずれか、
252位のアミノ酸がPhe、Trp、またはTyrのいずれか、
254位のアミノ酸がThr、
255位のアミノ酸がGlu、
256位のアミノ酸がAsp、Asn、Glu、またはGlnのいずれか、
257位のアミノ酸がAla、Gly、Ile、Leu、Met、Asn、Ser、Thr、またはValのいずれか、
258位のアミノ酸がHis、
265位のアミノ酸がAla、
286位のアミノ酸がAlaまたはGluのいずれか、
289位のアミノ酸がHis、
297位のアミノ酸がAla、
303位のアミノ酸がAla、
305位のアミノ酸がAla、
307位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Val、Trp、またはTyrのいずれか、
308位のアミノ酸がAla、Phe、Ile、Leu、Met、Pro、Gln、またはThrのいずれか、
309位のアミノ酸がAla、Asp、Glu、Pro、またはArgのいずれか、
311位のアミノ酸がAla、His、またはIleのいずれか、
312位のアミノ酸がAlaまたはHisのいずれか、
314位のアミノ酸がLysまたはArgのいずれか、
315位のアミノ酸がAla、AspまたはHisのいずれか、
317位のアミノ酸がAla、
332位のアミノ酸がVal、
334位のアミノ酸がLeu、
360位のアミノ酸がHis、
376位のアミノ酸がAla、
380位のアミノ酸がAla、
382位のアミノ酸がAla、
384位のアミノ酸がAla、
385位のアミノ酸がAspまたはHisのいずれか、
386位のアミノ酸がPro、
387位のアミノ酸がGlu、
389位のアミノ酸がAlaまたはSerのいずれか、
424位のアミノ酸がAla、
428位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Asn、Pro、Gln、Ser、Thr、Val、Trp、またはTyrのいずれか、
433位のアミノ酸がLys、
434位のアミノ酸がAla、Phe、His、Ser、Trp、またはTyrのいずれか、もしくは
436位のアミノ酸がHis 、Ile、Leu、Phe、Thr、またはVal、
が挙げられる。また、改変されるアミノ酸の数は特に限定されず、一箇所のみのアミノ酸が改変され得るし、二箇所以上のアミノ酸が改変され得る。これらのアミノ酸の改変の組合せとしては、例えば表2-1~2-33に示すアミノ酸の改変が挙げられる。
Figure JPOXMLDOC01-appb-T000009
表2-2は表2-1の続きの表である。
表2-3は表2-2の続きの表である。
Figure JPOXMLDOC01-appb-T000011
表2-4は表2-3の続きの表である。
Figure JPOXMLDOC01-appb-T000012
表2-5は表2-4の続きの表である。
Figure JPOXMLDOC01-appb-T000013
表2-6は表2-5の続きの表である。
Figure JPOXMLDOC01-appb-T000014
表2-7は表2-6の続きの表である。
Figure JPOXMLDOC01-appb-T000015
表2-8は表2-7の続きの表である。
Figure JPOXMLDOC01-appb-T000016
表2-9は表2-8の続きの表である。
Figure JPOXMLDOC01-appb-T000017
表2-10は表2-9の続きの表である。
Figure JPOXMLDOC01-appb-T000018
表2-11は表2-10の続きの表である。
Figure JPOXMLDOC01-appb-T000019
表2-12は表2-11の続きの表である。
Figure JPOXMLDOC01-appb-T000020
表2-13は表2-12の続きの表である。
Figure JPOXMLDOC01-appb-T000021
表2-14は表2-13の続きの表である。
Figure JPOXMLDOC01-appb-T000022
表2-15は表2-14の続きの表である。
Figure JPOXMLDOC01-appb-T000023
表2-16は表2-15の続きの表である。
Figure JPOXMLDOC01-appb-T000024
表2-17は表2-16の続きの表である。
Figure JPOXMLDOC01-appb-T000025
表2-18は表2-17の続きの表である。
Figure JPOXMLDOC01-appb-T000026
表2-19は表2-18の続きの表である。
Figure JPOXMLDOC01-appb-T000027
表2-20は表2-19の続きの表である。
Figure JPOXMLDOC01-appb-T000028
表2-21は表2-20の続きの表である。
Figure JPOXMLDOC01-appb-T000029
表2-22は表2-21の続きの表である。
Figure JPOXMLDOC01-appb-T000030
表2-23は表2-22の続きの表である。
Figure JPOXMLDOC01-appb-T000031
表2-24は表2-23の続きの表である。
Figure JPOXMLDOC01-appb-T000032
表2-25は表2-24の続きの表である。
Figure JPOXMLDOC01-appb-T000033
表2-26は表2-25の続きの表である。
Figure JPOXMLDOC01-appb-T000034
表2-27は表2-26の続きの表である。
Figure JPOXMLDOC01-appb-T000035
表2-28は表2-27の続きの表である。
Figure JPOXMLDOC01-appb-T000036
表2-29は表2-28の続きの表である。
Figure JPOXMLDOC01-appb-T000037
表2-30は表2-29の続きの表である。
Figure JPOXMLDOC01-appb-T000038
表2-31は表2-30の続きの表である。
Figure JPOXMLDOC01-appb-T000039
表2-32は表2-31の続きの表である。
Figure JPOXMLDOC01-appb-T000040
表2-33は表2-32の続きの表である。
Figure JPOXMLDOC01-appb-T000041
二分子のFcRnおよび一分子の活性型Fcγレセプターの四者を含むヘテロ複合体
 FcRnとIgG抗体との結晶学的研究によって、FcRn-IgG複合体は、二分子のFcRnに対して一分子のIgGから構成され、IgGのFc領域の両側に位置するCH2およびCH3ドメインの接触面付近において、二分子の結合が起こると考えられている(Burmeisterら(Nature (1994) 372, 336-343)。一方、PCT/JP2012/058603の実施例3において確認されたように、抗体のFc領域が二分子のFcRnおよび一分子の活性型Fcγレセプターの四者を含む複合体を形成できることが明らかとなった(PCT/JP2012/058603)。このヘテロ複合体の形成は、pH中性域の条件下でFcRnに対する結合活性を有するFc領域を含む抗原結合分子の性質について解析を進めた結果明らかとなった現象である。
 本発明は特定の理論に拘束されるわけではないが、抗原結合分子に含まれるFc領域と二分子のFcRnおよび一分子の活性型Fcγレセプターの四者を含むヘテロ複合体の形成によって、抗原結合分子が生体内に投与されたときの抗原結合分子の当該生体内における薬物動態(血漿中滞留性)、および、投与された抗原結合分子に対する免疫応答(免疫原性)に対して以下のような影響がもたらされることも考えられる。免疫細胞上には各種活性型Fcγレセプターに加えFcRnが発現しており、抗原結合分子が免疫細胞上でこのような四者複合体を形成することは、免疫細胞に対する親和性を向上させ、さらに細胞内ドメインを会合化させることにより内在化シグナルを増強させ、免疫細胞への取り込みが促進されることが示唆される。抗原提示細胞においても同様であり、抗原提示細胞の細胞膜上で四者複合体を形成することにより、抗原結合分子が抗原提示細胞へ取り込まれやすくなる可能性が示唆される。一般的に、抗原提示細胞に取り込まれた抗原結合分子は、抗原提示細胞内のリソソームにおいて分解され、T細胞へと提示される。結果として、抗原提示細胞の細胞膜上で上記の四者複合体を形成することにより、抗原結合分子に対する抗原提示細胞への取り込みが促進されことによって抗原結合分子の血漿中滞留性が悪化する可能性もある。また、同様にして、免疫応答が誘起される(増悪する)可能性がある。
 そのため、このような四者複合体を形成する能力が低下した抗原結合分子が生体に投与された場合、当該抗原結合分子の血漿中滞留性が向上し、当該生体による免疫応答の誘起が抑制されると考えられ得る。このような抗原提示細胞を含む免疫細胞上における当該複合体の形成を阻害する抗原結合分子の好ましい様態として、以下の三種類が挙げられ得る。
ヘテロ複合体の形成を阻害する抗原結合分子
(様態1) pH中性域の条件下でのFcRnに対する結合活性を有し、活性型FcγRに対する結合活性が天然型Fc領域の活性型FcγRに対する結合活性より低いFc領域を含む抗原結合分子
 様態1の抗原結合分子は、二分子のFcRnに結合することによって三者複合体を形成するが、活性型FcγRを含めた複合体は形成しない。活性型FcγRに対する結合活性が天然型Fc領域の活性型FcγRに対する結合活性より低いFc領域は、前記のように天然型Fc領域のアミノ酸を改変することによって作製され得る。改変Fc領域の活性型FcγRに対する結合活性が、天然型Fc領域の活性型FcγRに対する結合活性より低いか否かは、前記の結合活性の項で記載された方法を用いて適宜実施され得る。
 活性型Fcγレセプターとしては、FcγRIa、FcγRIbおよびFcγRIcを含むFcγRI(CD64)、FcγRIIa(アロタイプR131およびH131を含む)ならびにアイソフォームFcγRIIIa(アロタイプV158およびF158を含む)およびFcγRIIIb(アロタイプFcγRIIIb-NA1およびFcγRIIIb-NA2を含む)を含むFcγRIII(CD16)が好適に挙げられる。
 本明細書において、Fc領域改変体の活性型Fcγレセプターに対する結合活性が天然型Fc領域の活性型Fcγレセプターに対する結合活性よりも低いとは、Fc領域改変体のFcγRI、FcγRIIa、FcγRIIIa及び/又はFcγRIIIbのいずれかのヒトFcγレセプターに対する結合活性が、これらのヒトFcγレセプターに対する天然型Fc領域の結合活性よりも低いことをいう。例えば、上記の解析方法にもとづいて、対照とする天然型Fc領域を含む抗原結合分子の結合活性に比較してFc領域改変体を含む抗原結合分子の結合活性が、95%以下、好ましくは90%以下、85%以下、80%以下、75%以下、特に好ましくは70%以下、65%以下、60%以下、55%以下、50%以下、45%以下、40%以下、35%以下、30%以下、25%以下、20%以下、15%以下、10%以下、9%以下、8%以下、7%以下、6%以下、5%以下、4%以下、3%以下、2%以下、1%以下の結合活性を示すことをいう。天然型Fc領域としては、出発Fc領域も使用され得るし、野生型抗体の異なるアイソタイプのFc領域も使用され得る。
 また、天然型の活性型FcγRに対する結合活性とは、ヒトIgG1のFcγレセプターに対する結合活性であることが好ましく、Fcγレセプターに対する結合活性を低減させるには上記改変以外にも、ヒトIgG2、ヒトIgG3、ヒトIgG4にアイソタイプを変更することでも達成し得る。また、Fcγレセプターに対する結合活性を低下させるのは上記改変以外にも、Fcγレセプターに対する結合活性を有するFc領域を含む抗原結合分子を大腸菌等の糖鎖を付加しない宿主で発現させることによっても得ることができる。
 対照とするFc領域を含む抗原結合分子としては、IgGモノクローナル抗体のFc領域を有する抗原結合分子が適宜使用され得る。当該Fc領域の構造は、配列番号:5(RefSeq登録番号AAC82527.1のN末にA付加)、6(RefSeq登録番号AAB59393.1のN末にA付加)、7(RefSeq登録番号CAA27268.1)、8(RefSeq登録番号AAB59394.1のN末にA付加)に記載されている。また、ある特定のアイソタイプの抗体のFc領域を含む抗原結合分子を被検物質として使用する場合には、当該特定のアイソタイプのIgGモノクローナル抗体のFc領域を有する抗原結合分子を対照として用いることによって、当該Fc領域を含む抗原結合分子によるFcγレセプターに対する結合活性の効果が検証される。上記のようにして、Fcγレセプターに対する結合活性が高いことが検証されたFc領域を含む抗原結合分子が適宜選択される。
 本発明の非限定の一態様では、活性型FcγRに対する結合活性が天然型Fc領域の活性型FcγRに対する結合活性より低いFc領域の例として、
前記Fc領域のアミノ酸のうちEUナンバリングで表される234、235、236、237、238、239、270、297、298、325、328、および329のいずれか一つ以上のアミノ酸が天然型Fc領域と異なるアミノ酸に改変されているFc領域が好適に挙げられるが、Fc領域の改変は上記改変に限定されず、例えばCur. Opin. in Biotech. (2009) 20 (6), 685-691に記載されている脱糖鎖(N297A, N297Q)、IgG1-L234A/L235A、IgG1-A325A/A330S/P331S、IgG1-C226S/C229S、IgG1-C226S/C229S/E233P/L234V/L235A、IgG1-L234F/L235E/P331S、IgG1-S267E/L328F、IgG2-V234A/G237A、IgG2-H268Q/V309L/A330S/A331S、IgG4-L235A/G237A/E318A、IgG4-L236E等の改変、および、国際公開WO2008/092117に記載されているG236R/L328R、L235G/G236R、N325A/L328R、N325L/L328R等の改変、および、EUナンバリング233位、234位、235位、237位におけるアミノ酸の挿入、国際公開WO2000/042072に記載されている個所の改変であってもよい。
 また本発明の非限定の一態様では、前記Fc領域のEUナンバリングで表されるアミノ酸であって;
234位のアミノ酸をAla、Arg、Asn、Asp、Gln、Glu、Gly、His、Lys、Met、Phe、Pro、Ser、ThrまたはTrpのいずれか、
235位のアミノ酸をAla、Asn、Asp、Gln、Glu、Gly、His、Ile、Lys、Met、Pro、Ser、Thr、ValまたはArgのいずれか、
236位のアミノ酸をArg、Asn、Gln、His、Leu、Lys、Met、Phe、ProまたはTyrのいずれか、
237位のアミノ酸をAla、Asn、Asp、Gln、Glu、His、Ile、Leu、Lys、Met、Pro、Ser、Thr、Val、TyrまたはArgのいずれか、
238位のアミノ酸をAla、Asn、Gln、Glu、Gly、His、Ile、Lys、Thr、TrpまたはArgのいずれか、
239位のアミノ酸をGln、His、Lys、Phe、Pro、Trp、TyrまたはArgのいずれか、
265位のアミノ酸をAla、Arg、Asn、Gln、Gly、His、Ile、Leu、Lys、Met、Phe、Ser、Thr、Trp、TyrまたはValのいずれか、
266位のアミノ酸をAla、Arg、Asn、Asp、Gln、Glu、Gly、His、Lys、Phe、Pro、Ser、Thr、TrpまたはTyrのいずれか、
267位のアミノ酸をArg、His、Lys、Phe、Pro、TrpまたはTyrのいずれか、
269位のアミノ酸をAla、Arg、Asn、Gln、Gly、His、Ile、Leu、Lys、Met、Phe、Pro、Ser、Thr、Trp、TyrまたはValのいずれか、
270位のアミノ酸をAla、Arg、Asn、Gln、Gly、His、Ile、Leu、Lys、Met、Phe、Pro、Ser、Thr、Trp、TyrまたはValのいずれか、
271位のアミノ酸をArg、His、Phe、Ser、Thr、TrpまたはTyrのいずれか、
295位のアミノ酸をArg、Asn、Asp、Gly、His、Phe、Ser、TrpまたはTyrのいずれか、
296位のアミノ酸をArg、Gly、LysまたはProのいずれか、
297位のアミノ酸をAla、
298位のアミノ酸をArg、Gly、Lys、Pro、TrpまたはTyrのいずれか、
300位のアミノ酸をArg、LysまたはProのいずれか、
324位のアミノ酸をLysまたはProのいずれか、
325位のアミノ酸をAla、Arg、Gly、His、Ile、Lys、Phe、Pro、Thr、TrpTyr、もしくはValのいずれか、
327位のアミノ酸をArg、Gln、His、Ile、Leu、Lys、Met、Phe、Pro、Ser、Thr、Trp、TyrまたはValのいずれか、
328位のアミノ酸をArg、Asn、Gly、His、LysまたはProのいずれか、
329位のアミノ酸をAsn、Asp、Gln、Glu、Gly、His、Ile、Leu、Lys、Met、Phe、Ser、Thr、Trp、Tyr、ValまたはArgのいずれか、
330位のアミノ酸をProまたはSerのいずれか、
331位のアミノ酸をArg、GlyまたはLysのいずれか、もしくは
332位のアミノ酸をArg、LysまたはProのいずれか、
のいずれか一つ以上に改変されているFc領域が好適に挙げられる。
(様態2) pH中性域の条件下でのFcRnに対する結合活性を有し、抑制型FcγRに対する結合活性が活性型Fcγレセプターに対する結合活性よりも高いFc領域を含む抗原結合分子
 様態2の抗原結合分子は、二分子のFcRnと一分子の抑制型FcγRに結合することによってこれら四者を含む複合体を形成し得る。しかしながら、一分子の抗原結合分子は一分子のFcγRとしか結合できないため、一分子の抗原結合分子は抑制型FcγRに結合した状態で他の活性型FcγRに結合することはできない。さらに、抑制型FcγRに結合した状態で細胞内へと取り込まれた抗原結合分子は、細胞膜上へとリサイクルされ、細胞内での分解を回避することが報告されている(Immunity (2005) 23, 503-514)。すなわち、抑制型FcγRに対する選択的結合活性を有する抗原結合分子は、免疫応答の原因となる活性型FcγRおよび二分子のFcRnを含めたヘテロ複合体を形成することができないと考えられる。
 活性型Fcγレセプターとしては、FcγRIa、FcγRIbおよびFcγRIcを含むFcγRI(CD64)、FcγRIIa(アロタイプR131およびH131を含む)ならびにアイソフォームFcγRIIIa(アロタイプV158およびF158を含む)およびFcγRIIIb(アロタイプFcγRIIIb-NA1およびFcγRIIIb-NA2を含む)を含むFcγRIII(CD16)が好適に挙げられる。また、FcγRIIb(FcγRIIb-1およびFcγRIIb-2を含む)が抑制型Fcγレセプターの好適な例として挙げられる。
 本明細書において、抑制型FcγRに対する結合活性が活性型Fcγレセプターに対する結合活性よりも高いとは、Fc領域改変体のFcγRIIbに対する結合活性が、FcγRI、FcγRIIa、FcγRIIIa及び/又はFcγRIIIbのいずれかのヒトFcγレセプターに対する結合活性よりも高いことをいう。例えば、上記の解析方法にもとづいて、Fc領域改変体を含む抗原結合分子のFcγRIIbに対する結合活性が、FcγRI、FcγRIIa、FcγRIIIa及び/又はFcγRIIIbのいずれかのヒトFcγレセプターに対する結合活性の、105%以上、好ましくは110%以上、120%以上、130%以上、140%以上、特に好ましくは150%以上、160%以上、170%以上、180%以上、190%以上、200%%以上、250%以上、300%以上、350%以上、400%以上、450%以上、500%以上、750%以上、10倍以上、20倍以上、30倍以上、40倍以上、50倍以上の結合活性を示すことをいう。
 FcγRIIbに対する結合活性が、FcγRIa、FcγRIIa(アロタイプR131およびH131を含む)およびFcγRIIIa(アロタイプV158およびF158を含む)よりもすべて高いことがもっとも好ましい。FcγRIa は天然型IgG1に対するアフィニティーが極めて高いことから、生体内においては大量の内因性IgG1によって結合が飽和されていると考えられるため、FcγRIIbに対する結合活性はFcγRIIaおよびFcγRIIIaよりも高く、FcγRIaよりは低くても当該複合体の形成阻害は可能であると考えられる。
 対照とするFc領域を含む抗原結合分子としては、IgGモノクローナル抗体のFc領域を有する抗原結合分子が適宜使用され得る。当該Fc領域の構造は、配列番号:5(RefSeq登録番号AAC82527.1のN末にA付加)、6(RefSeq登録番号AAB59393.1のN末にA付加)、7(RefSeq登録番号CAA27268.1)、8(RefSeq登録番号AAB59394.1のN末にA付加)に記載されている。また、ある特定のアイソタイプの抗体のFc領域を含む抗原結合分子を被検物質として使用する場合には、当該特定のアイソタイプのIgGモノクローナル抗体のFc領域を有する抗原結合分子を対照として用いることによって、当該Fc領域を含む抗原結合分子によるFcγレセプターに対する結合活性の効果が検証される。上記のようにして、Fcγレセプターに対する結合活性が高いことが検証されたFc領域を含む抗原結合分子が適宜選択される。
 本発明の非限定の一態様では、抑制型FcγRに対する選択的な結合活性を有するFc領域の例として、前記Fc領域のアミノ酸のうちEUナンバリングで表される238または328のアミノ酸が天然型Fc領域と異なるアミノ酸に改変されているFc領域が好適に挙げられる。また、抑制型Fcγレセプターに対する選択的な結合活性を有するFc領域として、US2009/0136485に記載されているFc領域あるいは改変も適宜選択することができる。
 また本発明の非限定の一態様では、前記Fc領域のEUナンバリングで表されるアミノ酸であってEUナンバリングで表される238のアミノ酸がAsp、または328のアミノ酸がGluのいずれか一つ以上に改変されているFc領域が好適に挙げられる。
 さらに本発明の非限定の一態様では、EUナンバリングで表される238位のProのAspへの置換、およびEUナンバリングで表される237位のアミノ酸がTrp、EUナンバリングで表される237位のアミノ酸がPhe、EUナンバリングで表される267位のアミノ酸がVal、EUナンバリングで表される267位のアミノ酸がGln、EUナンバリングで表される268位のアミノ酸がAsn、EUナンバリングで表される271位のアミノ酸がGly、EUナンバリングで表される326位のアミノ酸がLeu、EUナンバリングで表される326位のアミノ酸がGln、EUナンバリングで表される326位のアミノ酸がGlu、EUナンバリングで表される326位のアミノ酸がMet、EUナンバリングで表される239位のアミノ酸がAsp、EUナンバリングで表される267位のアミノ酸がAla、EUナンバリングで表される234位のアミノ酸がTrp、EUナンバリングで表される234位のアミノ酸がTyr、EUナンバリングで表される237位のアミノ酸がAla、EUナンバリングで表される237位のアミノ酸がAsp、EUナンバリングで表される237位のアミノ酸がGlu、EUナンバリングで表される237位のアミノ酸がLeu、EUナンバリングで表される237位のアミノ酸がMet、EUナンバリングで表される237位のアミノ酸がTyr、EUナンバリングで表される330位のアミノ酸がLys、EUナンバリングで表される330位のアミノ酸がArg、EUナンバリングで表される233位のアミノ酸がAsp、EUナンバリングで表される268位のアミノ酸がAsp、EUナンバリングで表される268位のアミノ酸がGlu、EUナンバリングで表される326位のアミノ酸がAsp、EUナンバリングで表される326位のアミノ酸がSer、EUナンバリングで表される326位のアミノ酸がThr、EUナンバリングで表される323位のアミノ酸がIle、EUナンバリングで表される323位のアミノ酸がLeu、EUナンバリングで表される323位のアミノ酸がMet、EUナンバリングで表される296位のアミノ酸がAsp、EUナンバリングで表される326位のアミノ酸がAla、EUナンバリングで表される326位のアミノ酸がAsn、EUナンバリングで表される330位のアミノ酸がMet、のいずれか一つ以上に改変されているFc領域が好適に挙げられる。
(様態3) Fc領域を構成する二つのポリペプチドの一方がpH中性域の条件下でのFcRnに対する結合活性を有し、他方がpH中性域の条件下でのFcRnに対する結合能活性を有しないFc領域を含む抗原結合分子
 様態3の抗原結合分子は、一分子のFcRnと一分子のFcγRに結合することによって三者複合体を形成しうるが、二分子のFcRnと一分子のFcγRの四者を含むヘテロ複合体は形成しない。本様態3の抗原結合分子に含まれる、Fc領域を構成する二つのポリペプチドの一方がpH中性域の条件下でのFcRnに対する結合活性を有し、他方のポリペプチドがpH中性域の条件下でのFcRnに対する結合能活性を有しないFc領域として、二重特異性抗体(bispecific抗体)を起源とするFc領域も適宜使用され得る。二重特異性抗体とは、異なる抗原に対して特異性を有する二種類の抗体である。IgG型の二重特異性抗体はIgG抗体を産生するハイブリドーマ二種を融合することによって生じるhybrid hybridoma(quadroma)によって分泌させることが可能である(Milsteinら(Nature (1983) 305, 537-540)。
 上記の様態3の抗原結合分子を前記の抗体の項で記載されたような組換え手法を用いて製造する場合、目的の二種のFc領域を構成するポリペプチドをコードする遺伝子を細胞に導入しそれらを共発現させる方法が採用され得る。しかしながら、製造されるFc領域は、Fc領域を構成する二つのポリペプチドの一方がpH中性域の条件下でのFcRnに対する結合活性を有し、他方のポリペプチドがpH中性域の条件下でのFcRnに対する結合能活性を有しないFc領域と、Fc領域を構成する二つのポリペプチドの双方がpH中性域の条件下でのFcRnに対する結合活性を有するFc領域と、Fc領域を構成する二つのポリペプチドの双方がpH中性域の条件下でのFcRnに対する結合活性を有しないFc領域が、2:1:1の分子数の割合で存在する混合物となる。3種類のIgGから目的の組合せのFc領域を含む抗原結合分子を精製することは困難である。
 こうした組換え手法を用いて様態3の抗原結合分子を製造する際に、Fc領域を構成するCH3ドメインに適当なアミノ酸置換の改変を加えることによってヘテロな組合せのFc領域を含む抗原結合分子が優先的に分泌され得る。具体的には、一方の重鎖のCH3ドメインに存在するアミノ酸側鎖をより大きい側鎖(knob(「突起」の意))に置換し、もう一方の重鎖のCH3ドメインに存在するアミノ酸側鎖をより小さい側鎖(hole(「空隙」の意))に置換することによって、突起が空隙内に配置され得るようにして異種H鎖形成の促進および同種H鎖形成の阻害を引き起こす方法である(国際公開WO1996027011、Ridgwayら(Protein Engineering (1996) 9, 617-621)、Merchantら(Nat. Biotech. (1998) 16, 677-681))。
 また、ポリペプチドの会合、またはポリペプチドによって構成される異種多量体の会合の制御方法を、Fc領域を構成する二つのポリペプチドの会合に利用することによって二重特異性抗体を作製する技術も知られている。即ち、Fc領域を構成する二つのポリペプチド内の界面を形成するアミノ酸残基を改変することによって、同一配列を有するFc領域を構成するポリペプチドの会合が阻害され、配列の異なる二つのFc領域を構成するポリペプチド会合体が形成されるように制御する方法が二重特異性抗体の作製に採用され得る(国際公開WO2006/106905)。具体的には前記の二重特異性抗体とその作製方法の項で記載された方法が本発明の様態3の抗原結合分子を製造する際に、非限定な一態様として採用され得る。
 これら様態1~3の抗原結合分子は、四者複合体を形成しうる抗原結合分子に比較して、いずれも免疫原性を低下させ、また血漿中滞留性を向上させることが可能であると期待される。
抗原結合ドメインの製造方法
 本発明は、標的組織特異的な化合物の存在下における抗原に対する結合活性が、当該化合物の非存在下における抗原に対する結合活性よりも高い抗原結合ドメインの製造方法を提供する。
 すなわち、本発明は、以下の(a)~(e)の工程;
(a) 標的組織特異的な化合物の非存在下における抗原結合ドメインの抗原結合活性を得る工程、
(b) 標的組織特異的な化合物の存在下における抗原結合ドメインの抗原結合活性を得る工程、
(c) 標的組織特異的な化合物の非存在下における抗原結合活性が、当該化合物の存在下における抗原結合活性より低い抗原結合ドメインを選択する工程、
(d) (c)で選択された抗原結合ドメインをコードするポリヌクレオチドが作動可能に連結されたベクターが導入された細胞を培養する工程、および
(e) (d)で培養された細胞の培養液から抗原結合ドメインを回収する工程、
を含む抗原結合ドメインの製造方法を提供する。
 また、本発明は、以下の(a)~(e)の工程;
(a) 標的組織特異的な化合物の低濃度存在下における抗原結合ドメインの抗原結合活性を得る工程、
(b) 標的組織特異的な化合物の高濃度存在下における抗原結合ドメインの抗原結合活性を得る工程、
(c) 標的組織特異的な化合物の低濃度存在下における抗原結合活性が、当該化合物の高濃度存在下における抗原結合活性より低い抗原結合ドメインを選択する工程、
(d) (c)で選択された抗原結合ドメインをコードするポリヌクレオチドが作動可能に連結されたベクターが導入された細胞を培養する工程、および
(e) (d)で培養された細胞の培養液から抗原結合ドメインを回収する工程、
を含む抗原結合ドメインの製造方法を提供する。
 さらに、本発明は、以下の(a)~(e)の工程;
(a) 標的組織特異的な化合物の存在下における抗原結合ドメインもしくはそれらのライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗原結合ドメインを当該化合物の非存在下に置く工程、
(c) 前記工程(b)で解離した抗原結合ドメインを単離する工程、
(d) (c)で選択された抗原結合ドメインをコードするポリヌクレオチドが作動可能に連結されたベクターが導入された細胞を培養する工程、および
(e) (d)で培養された細胞の培養液から抗原結合ドメインを回収する工程、
を含む抗原結合ドメインの製造方法を提供する。
 さらに、本発明は、以下の(a)~(e)の工程;
(a) 標的組織特異的な化合物の高濃度存在下における抗原結合ドメインもしくはそれらのライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗原結合ドメインを当該化合物の低濃度存在下に置く工程、
(c) 前記工程(b)で解離した抗原結合ドメインを単離する工程、
(d) (c)で選択された抗原結合ドメインをコードするポリヌクレオチドが作動可能に連結されたベクターが導入された細胞を培養する工程、および
(e) (d)で培養された細胞の培養液から抗原結合ドメインを回収する工程、
を含む抗原結合ドメインの製造方法を提供する。
 また、本発明は、以下の (a)~(f)の工程; 
(a) 標的組織特異的な化合物の非存在下で抗原結合ドメインのライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合しない抗原結合ドメインを選択する工程、
(c) 前記工程(b)で選択された抗原結合ドメインを当該化合物の存在下で抗原に結合させる工程、
(d) 前記工程(c)で抗原に結合した抗原結合ドメインを単離する工程、
(e) (d)で選択された抗原結合ドメインをコードするポリヌクレオチドが作動可能に連結されたベクターが導入された細胞を培養する工程、および
(f) (e)で培養された細胞の培養液から抗原結合ドメインを回収する工程、
を含む抗原結合ドメインの製造方法を提供する。
 また、本発明は、以下の (a)~(f)の工程; 
(a) 標的組織特異的な化合物の低濃度存在下で抗原結合ドメインのライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合しない抗原結合ドメインを選択する工程、
(c) 前記工程(b)で選択された抗原結合ドメインを当該化合物の高濃度存在下で抗原に結合させる工程、
(d) 前記工程(c)で抗原に結合した抗原結合ドメインを単離する工程、
(e) (d)で選択された抗原結合ドメインをコードするポリヌクレオチドが作動可能に連結されたベクターが導入された細胞を培養する工程、および
(f) (e)で培養された細胞の培養液から抗原結合ドメインを回収する工程、
を含む抗原結合ドメインの製造方法を提供する。
 さらに、本発明は、以下の(a)~(e)の工程;
(a) 抗原を固定したカラムに標的組織特異的な化合物の存在下で抗原結合ドメインのライブラリを接触させる工程、
(b) 前記工程(a)でカラムに結合した抗原結合ドメインを当該化合物の非存在下でカラムから溶出する工程、
(c) 前記工程(b)で溶出された抗原結合ドメインを単離する工程、
(d) (c)で選択された抗原結合ドメインをコードするポリヌクレオチドが作動可能に連結されたベクターが導入された細胞を培養する工程、および
(e) (d)で培養された細胞の培養液から抗原結合ドメインを回収する工程、
を含む抗原結合ドメインの製造方法を提供する。
 さらに、本発明は、以下の(a)~(e)の工程;
(a) 抗原を固定したカラムに標的組織特異的な化合物の高濃度存在下で抗原結合ドメインのライブラリを接触させる工程、
(b) 前記工程(a)でカラムに結合した抗原結合ドメインを当該化合物の低濃度存在下でカラムから溶出する工程、
(c) 前記工程(b)で溶出された抗原結合ドメインを単離する工程、
(d) (c)で選択された抗原結合ドメインをコードするポリヌクレオチドが作動可能に連結されたベクターが導入された細胞を培養する工程、および
(e) (d)で培養された細胞の培養液から抗原結合ドメインを回収する工程、
を含む抗原結合ドメインの製造方法を提供する。
 さらに、本発明は、以下の(a)~(f)の工程;
(a) 抗原を固定したカラムに標的組織特異的な化合物の非存在下で抗原結合ドメインのライブラリを通過させる工程、
(b) 前記工程(a)でカラムに結合せずに溶出した抗原結合ドメインを回収する工程、
(c) 前記工程(b)で回収された抗原結合ドメインを当該化合物の存在下で抗原に結合させる工程、
(d) 前記工程(c)で抗原に結合した抗原結合ドメインを単離する工程、
(e) (d)で選択された抗原結合ドメインをコードするポリヌクレオチドが作動可能に連結されたベクターが導入された細胞を培養する工程、および
(f) (e)で培養された細胞の培養液から抗原結合ドメインを回収する工程、
を含む抗原結合ドメインの製造方法を提供する。
 さらに、本発明は、以下の(a)~(f)の工程;
(a) 抗原を固定したカラムに標的組織特異的な化合物の低濃度存在下で抗原結合ドメインのライブラリを通過させる工程、
(b) 前記工程(a)でカラムに結合せずに溶出した抗原結合ドメインを回収する工程、
(c) 前記工程(b)で回収された抗原結合ドメインを当該化合物の高濃度存在下で抗原に結合させる工程、
(d) 前記工程(c)で抗原に結合した抗原結合ドメインを単離する工程、
(e) (d)で選択された抗原結合ドメインをコードするポリヌクレオチドが作動可能に連結されたベクターが導入された細胞を培養する工程、および
(f) (e)で培養された細胞の培養液から抗原結合ドメインを回収する工程、
を含む抗原結合ドメインの製造方法を提供する。
 さらに、本発明は、以下の(a)~(f)の工程;
(a) 標的組織特異的な化合物の存在下で抗原結合ドメインのライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗原結合ドメインを取得する工程、
(c) 前記工程(b)で取得した抗原結合ドメインを化合物の非存在下に置く工程、
(d) 前記工程(c)で抗原結合活性が、前記工程(b)で選択した基準より弱い抗原結合ドメインを単離する工程、
(e) (d)で選択された抗原結合ドメインをコードするポリヌクレオチドが作動可能に連結されたベクターが導入された細胞を培養する工程、および
(f) (e)で培養された細胞の培養液から抗原結合ドメインを回収する工程、
を含む抗原結合ドメインの製造方法を提供する。
 さらに、本発明は、以下の(a)~(f)の工程;
(a) 標的組織特異的な化合物の高濃度存在下で抗原結合ドメインのライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗原結合ドメインを取得する工程、
(c) 前記工程(b)で取得した抗原結合ドメインを化合物の低濃度存在下に置く工程、
(d) 前記工程(c)で抗原結合活性が、前記工程(b)で選択した基準より弱い抗原結合ドメインを単離する工程、
(e) (d)で選択された抗原結合ドメインをコードするポリヌクレオチドが作動可能に連結されたベクターが導入された細胞を培養する工程、および
(f) (e)で培養された細胞の培養液から抗原結合ドメインを回収する工程、
を含む抗原結合ドメインの製造方法を提供する。
 「細胞」、「細胞系」および「細胞培養」は本明細書では同義で使われ、そのような呼称には細胞または細胞系のすべての子孫が含まれ得る。このように、例えば、「形質転換体」および「形質転換細胞」のような用語には、継代数に関係なくそれらに由来する一次対象細胞および培養物が含まれる。また、故意または偶発的な突然変異によって、すべての子孫においてDNAの内容が正確に同一であるというわけではないこともまた理解される。当初の形質転換細胞でスクリーニングされたような、実質的に同じ機能または生物学的活性を有する変異体の子孫も含まれ得る。異なった呼称を意図する記載である場合は、当該記載の前後関係からそのような意図は明白となるであろう。使用される細胞としては、前述の「抗体」の項で記載された細胞の内から適切なものが適宜選択される。
 コード配列の発現に言及する場合の制御配列とは、特定の宿主生物で作動可能に連結したコード配列の発現のために必要なDNA塩基配列をいう。例えば原核生物に好適な制御配列には、プロモーター、場合によってはオペレーター配列、リボソーム結合部位、およびおそらくはまだよく理解されていない他の配列が含まれる。真核細胞ではコード配列の発現のために、プロモーター、ポリアデニル化シグナルおよびエンハンサーを利用することが公知である。
 核酸に関して「作動可能に連結した」は、その核酸が他の核酸配列と機能的な関係にあることを意味する。例えば、プレシーケンス(presequence)または分泌リーダーのDNAは、あるポリペプチドの分泌に関わっている前駆体タンパク質として発現する場合は、そのポリペプチドのDNAと作動可能的に結合している。プロモーターまたはエンハンサーは、それがあるコード配列の転写に影響する場合はその配列と作動可能に連結している。または、リボソーム結合部は、それが翻訳を容易にする位置にある場合は作動可能にコード配列と連結している。通常、「作動可能に連結した」は、結合したDNA配列が連続しており、分泌リーダーの場合は連続して読取り枠内にあることを意味する。しかし、エンハンサーは連続する必要はない。連結は適切な制限部位でライゲーションによって達成される。このような部位が存在しない場合、合成オリゴヌクレオチドアダプターまたはリンカーが、従来の慣行に従って使用される。また前記のOverlap Extension PCRの手法によっても連結された核酸が作製され得る。
 「ライゲーション」は、2つの核酸断片の間でリン酸ジエステル結合を形成する方法である。2つの断片のライゲーションのために、断片の末端は互いに適合していなければならない。場合によっては、この末端はエンドヌクレアーゼ消化の後に直ちに適合性を有する。しかし、ライゲーションに適合させるために、まずエンドヌクレアーゼ消化の後に一般的に形成される付着末端は平滑末端に変えられる必要がある。平滑末端にするためには、DNAが適切な緩衝液中で15℃にて少なくとも15分間、4つのデオキシリボヌクレオチド三リン酸の存在下でDNAポリメラーゼIまたはT4DNAポリメラーゼのクレノー断片の約10単位で処理される。次にDNAがフェノールクロロホルム抽出とエタノール沈殿、またはシリカ精製によって精製される。連結すべきDNA断片が溶液に等モル量加えられる。この溶液には、ATP、リガーゼ緩衝に加え、T4DNAリガーゼのようなリガーゼがDNA0.5μgにつき約10単位含まれる。DNAをベクターに連結する場合は、ベクターは適当な制限エンドヌクレアーゼによる消化作用によってまず線状にされる。線状にされた断片を次に細菌のアルカリホスファターゼまたは仔ウシ腸管のホスファターゼで処理することによって、ライゲーションのステップの間の当該断片のセルフライゲーションが予防される。
 本発明の製造方法においては、上記の「標的組織特異的化合物に依存的な抗原結合ドメイン」の項で説明される方法によって選択された、標的組織特異的な化合物の存在下における抗原に対する結合活性が、当該化合物の非存在下における抗原に対する結合活性よりも高い抗原結合ドメインが単離される。たとえば、このように単離された抗原結合ドメインがライブラリから選択された場合には、後述する実施例に記載されているように、当該抗原結合ドメインをコードするポリヌクレオチドはファージ等のウイルスから通常の遺伝子増幅によって単離される。また、このように単離された抗原結合ドメインまたは抗体がハイブリドーマ等の細胞の培養液から選択された場合には、前記の抗体の項で示したように当該細胞から抗体遺伝子等が通常の遺伝子増幅によって単離される。
抗原結合分子の製造方法
 本発明は、標的組織特異的な化合物の存在下における抗原に対する結合活性が、当該化合物の非存在下における抗原に対する結合活性よりも高い抗原結合分子の製造方法を提供する。
 すなわち、本発明は、以下の(a)~(f)の工程;
(a) 標的組織特異的な化合物の非存在下における抗原結合ドメインの抗原結合活性を得る工程、
(b) 標的組織特異的な化合物の存在下における抗原結合ドメインの抗原結合活性を得る工程、
(c) 標的組織特異的な化合物の非存在下における抗原結合活性が、当該化合物の存在下における抗原結合活性より低い抗原結合ドメインを選択する工程、
(d) (c)で選択された抗原結合ドメインをコードするポリヌクレオチドを、Fc領域を含むポリペプチドをコードするポリヌクレオチドに連結させる工程、
(e) (d)で得られたポリヌクレオチドが作動可能に連結されたベクターが導入された細胞を培養する工程、および
(f) (e)で培養された細胞の培養液から抗原結合分子を回収する工程、
を含む抗原結合分子の製造方法を提供する。
 また、本発明は、以下の(a)~(f)の工程;
(a) 標的組織特異的な化合物の低濃度存在下における抗原結合ドメインの抗原結合活性を得る工程、
(b) 標的組織特異的な化合物の高濃度存在下における抗原結合ドメインの抗原結合活性を得る工程、
(c) 標的組織特異的な化合物の低濃度存在下における抗原結合活性が、当該化合物の高濃度存在下における抗原結合活性より低い抗原結合ドメインを選択する工程、
(d) (c)で選択された抗原結合ドメインをコードするポリヌクレオチドを、Fc領域を含むポリペプチドをコードするポリヌクレオチドに連結させる工程、
(e) (d)で得られたポリヌクレオチドが作動可能に連結されたベクターが導入された細胞を培養する工程、および
(f) (e)で培養された細胞の培養液から抗原結合分子を回収する工程、
を含む抗原結合分子の製造方法を提供する。
 さらに、本発明は、以下の(a)~(f)の工程;
(a) 標的組織特異的な化合物の存在下における抗原結合ドメインもしくはそれらのライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗原結合ドメインを当該化合物の非存在下に置く工程、
(c) 前記工程(b)で解離した抗原結合ドメインを単離する工程、
(d) (c)で選択された抗原結合ドメインをコードするポリヌクレオチドを、Fc領域を含むポリペプチドをコードするポリヌクレオチドに連結させる工程、
(e) (d)で得られたポリヌクレオチドが作動可能に連結されたベクターが導入された細胞を培養する工程、および
(f) (e)で培養された細胞の培養液から抗原結合分子を回収する工程、
を含む抗原結合分子の製造方法を提供する。
 さらに、本発明は、以下の(a)~(f)の工程;
(a) 標的組織特異的な化合物の高濃度存在下における抗原結合ドメインもしくはそれらのライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗原結合ドメインを当該化合物の低濃度存在下に置く工程、
(c) 前記工程(b)で解離した抗原結合ドメインを単離する工程、
(d) (c)で選択された抗原結合ドメインをコードするポリヌクレオチドを、Fc領域を含むポリペプチドをコードするポリヌクレオチドに連結させる工程、
(e) (d)で得られたポリヌクレオチドが作動可能に連結されたベクターが導入された細胞を培養する工程、および
(f) (e)で培養された細胞の培養液から抗原結合分子を回収する工程、
を含む抗原結合分子の製造方法を提供する。
 また、本発明は、以下の (a)~(g)の工程; 
(a) 標的組織特異的な化合物の非存在下で抗原結合ドメインのライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合しない抗原結合ドメインを選択する工程、
(c) 前記工程(b)で選択された抗原結合ドメインを当該化合物の存在下で抗原に結合させる工程、
(d) 前記工程(c)で抗原に結合した抗原結合ドメインを単離する工程、
(e) (d)で選択された抗原結合ドメインをコードするポリヌクレオチドを、Fc領域を含むポリペプチドをコードするポリヌクレオチドに連結させる工程、
(f) (e)で得られたポリヌクレオチドが作動可能に連結されたベクターが導入された細胞を培養する工程、および
(g) (f)で培養された細胞の培養液から抗原結合分子を回収する工程、
を含む抗原結合分子の製造方法を提供する。
 また、本発明は、以下の (a)~(g)の工程; 
(a) 標的組織特異的な化合物の低濃度存在下で抗原結合ドメインのライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合しない抗原結合ドメインを選択する工程、
(c) 前記工程(b)で選択された抗原結合ドメインを当該化合物の高濃度存在下で抗原に結合させる工程、
(d) 前記工程(c)で抗原に結合した抗原結合ドメインを単離する工程、
(e) (d)で選択された抗原結合ドメインをコードするポリヌクレオチドを、Fc領域を含むポリペプチドをコードするポリヌクレオチドに連結させる工程、
(f) (e)で得られたポリヌクレオチドが作動可能に連結されたベクターが導入された細胞を培養する工程、および
(g) (f)で培養された細胞の培養液から抗原結合分子を回収する工程、
を含む抗原結合分子の製造方法を提供する。
 さらに、本発明は、以下の(a)~(f)の工程;
(a) 抗原を固定したカラムに標的組織特異的な化合物の存在下で抗原結合ドメインのライブラリを接触させる工程、
(b) 前記工程(a)でカラムに結合した抗原結合ドメインを当該化合物の非存在下でカラムから溶出する工程、
(c) 前記工程(b)で溶出された抗原結合ドメインを単離する工程、
(d) (c)で選択された抗原結合ドメインをコードするポリヌクレオチドを、Fc領域を含むポリペプチドをコードするポリヌクレオチドに連結させる工程、
(e) (d)で得られたポリヌクレオチドが作動可能に連結されたベクターが導入された細胞を培養する工程、および
(f) (e)で培養された細胞の培養液から抗原結合分子を回収する工程、
を含む抗原結合分子の製造方法を提供する。
 さらに、本発明は、以下の(a)~(f)の工程;
(a) 抗原を固定したカラムに標的組織特異的な化合物の高濃度存在下で抗原結合ドメインのライブラリを接触させる工程、
(b) 前記工程(a)でカラムに結合した抗原結合ドメインを当該化合物の低濃度存在下でカラムから溶出する工程、
(c) 前記工程(b)で溶出された抗原結合ドメインを単離する工程、
(d) (c)で選択された抗原結合ドメインをコードするポリヌクレオチドを、Fc領域を含むポリペプチドをコードするポリヌクレオチドに連結させる工程、
(e) (d)で得られたポリヌクレオチドが作動可能に連結されたベクターが導入された細胞を培養する工程、および
(f) (e)で培養された細胞の培養液から抗原結合分子を回収する工程、
を含む抗原結合分子の製造方法を提供する。
 さらに、本発明は、以下の(a)~(g)の工程;
(a) 抗原を固定したカラムに標的組織特異的な化合物の非存在下で抗原結合ドメインのライブラリを通過させる工程、
(b) 前記工程(a)でカラムに結合せずに溶出した抗原結合ドメインを回収する工程、
(c) 前記工程(b)で回収された抗原結合ドメインを当該化合物の存在下で抗原に結合させる工程、
(d) 前記工程(c)で抗原に結合した抗原結合ドメインを単離する工程、
(e) (d)で選択された抗原結合ドメインをコードするポリヌクレオチドを、Fc領域を含むポリペプチドをコードするポリヌクレオチドに連結させる工程、
(f) (e)で得られたポリヌクレオチドが作動可能に連結されたベクターが導入された細胞を培養する工程、および
(g) (f)で培養された細胞の培養液から抗原結合分子を回収する工程、
を含む抗原結合分子の製造方法を提供する。
 さらに、本発明は、以下の(a)~(g)の工程;
(a) 抗原を固定したカラムに標的組織特異的な化合物の低濃度存在下で抗原結合ドメインのライブラリを通過させる工程、
(b) 前記工程(a)でカラムに結合せずに溶出した抗原結合ドメインを回収する工程、
(c) 前記工程(b)で回収された抗原結合ドメインを当該化合物の高濃度存在下で抗原に結合させる工程、
(d) 前記工程(c)で抗原に結合した抗原結合ドメインを単離する工程、
(e) (d)で選択された抗原結合ドメインをコードするポリヌクレオチドを、Fc領域を含むポリペプチドをコードするポリヌクレオチドに連結させる工程、
(f) (e)で得られたポリヌクレオチドが作動可能に連結されたベクターが導入された細胞を培養する工程、および
(g) (f)で培養された細胞の培養液から抗原結合分子を回収する工程、
を含む抗原結合分子の製造方法を提供する。
 さらに、本発明は、以下の(a)~(g)の工程;
(a) 標的組織特異的な化合物の存在下で抗原結合ドメインのライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗原結合ドメインを取得する工程、
(c) 前記工程(b)で取得した抗原結合ドメインを化合物の非存在下に置く工程、
(d) 前記工程(c)で抗原結合活性が、前記工程(b)で選択した基準より弱い抗原結合ドメインを単離する工程、
(e) (d)で選択された抗原結合ドメインをコードするポリヌクレオチドを、Fc領域を含むポリペプチドをコードするポリヌクレオチドに連結させる工程、
(f) (e)で得られたポリヌクレオチドが作動可能に連結されたベクターが導入された細胞を培養する工程、および
(g) (f)で培養された細胞の培養液から抗原結合分子を回収する工程、
を含む抗原結合分子の製造方法を提供する。
 さらに、本発明は、以下の(a)~(g)の工程;
(a) 標的組織特異的な化合物の高濃度存在下で抗原結合ドメインのライブラリを抗原に接触させる工程、
(b) 前記工程(a)で抗原に結合した抗原結合ドメインを取得する工程、
(c) 前記工程(b)で取得した抗原結合ドメインを化合物の低濃度存在下に置く工程、
(d) 前記工程(c)で抗原結合活性が、前記工程(b)で選択した基準より弱い抗原結合ドメインを単離する工程、
(e) (d)で選択された抗原結合ドメインをコードするポリヌクレオチドを、Fc領域を含むポリペプチドをコードするポリヌクレオチドに連結させる工程、
(f) (e)で得られたポリヌクレオチドが作動可能に連結されたベクターが導入された細胞を培養する工程、および
(g) (f)で培養された細胞の培養液から抗原結合分子を回収する工程、
を含む抗原結合分子の製造方法を提供する。
 抗原結合ドメインをコードするポリヌクレオチドに対してそのポリヌクレオチド配列が連結されるFc領域の非限定な一態様として、ヒトIgG1(配列番号:5)、IgG2(配列番号:6)、IgG3(配列番号:7)、またはIgG4(配列番号:8)で表される抗体の定常領域に含まれるFc領域が例示される。Fc領域は、EUナンバリングで表されるおよそ216位のアミノ酸における、パパイン切断部位のヒンジ領域のN末端から、当該ヒンジ、CH2およびCH3ドメインを含める抗体の重鎖定常領域の部分である。Fc領域は、ヒトIgG1から取得され得るが、IgGの特定のサブクラスに限定されるものでもない。
 また、抗原結合ドメインをコードするポリヌクレオチドに対してそのポリヌクレオチド配列が連結されるFc領域の非限定な一態様として、天然型ヒトIgGのFc領域のFcγレセプターに対する結合活性よりもFcγレセプターに対する結合活性が高いFc領域も例示される。そのようなFc領域として、EUナンバリングで表される221位、222位、223位、224位、225位、227位、228位、230位、231位、232位、233位、234位、235位、236位、237位、238位、239位、240位、241位、243位、244位、245位、246位、247位、249位、250位、251位、254位、255位、256位、258位、260位、262位、263位、264位、265位、266位、267位、268位、269位、270位、271位、272位、273位、274位、275位、276位、278位、279位、280位、281位、282位、283位、284位、285位、286位、288位、290位、291位、292位、293位、294位、295位、296位、297位、298位、299位、300位、301位、302位、303位、304位、305位、311位、313位、315位、317位、318位、320位、322位、323位、324位、325位、326位、327位、328位、329位、330位、331位、332位、333位、334位、335位、336位、337位、339位、376位、377位、378位、379位、380位、382位、385位、392位、396位、421位、427位、428位、429位、434位、436位および440位の群から選択される少なくとも一つ以上のアミノ酸が、配列番号:5、6、7、または8で表される抗体の定常領域に含まれるFc領域の対応するEUナンバリングのアミノ酸残基と異なるFc領域も例示される。
 また、前記Fc領域の非限定な一態様として、例えば、配列番号:5、6、7、または8で表される抗体の定常領域に含まれるFc領域のアミノ酸残基のうち、EUナンバリングで表される;
221位のアミノ酸がLysまたはTyrのいずれか、
222位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
223位のアミノ酸がPhe、Trp、GluまたはLysのいずれか、
224位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
225位のアミノ酸がGlu、LysまたはTrpのいずれか、
227位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
228位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
230位のアミノ酸がAla、Glu、GlyまたはTyrのいずれか、
231位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
232位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
233位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
234位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
235位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
236位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
237位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
238位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
239位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
240位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
241位のアミノ酸がAsp、Glu、Leu、Arg、TrpまたはTyrのいずれか、
243位のアミノ酸がLeu、Glu、Leu、Gln、Arg、TrpまたはTyrのいずれか、
244位のアミノ酸がHis、
245位のアミノ酸がAla、
246位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
247位のアミノ酸がAla、Phe、Gly、His、Ile、Leu、Met、Thr、ValまたはTyrのいずれか、
249位のアミノ酸がGlu、His、GlnまたはTyrのいずれか、
250位のアミノ酸がGluまたはGlnのいずれか、
251位のアミノ酸がPhe、
254位のアミノ酸がPhe、MetまたはTyrのいずれか、
255位のアミノ酸がGlu、LeuまたはTyrのいずれか、
256位のアミノ酸がAla、MetまたはProのいずれか、
258位のアミノ酸がAsp、Glu、His、SerまたはTyrのいずれか、
260位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
262位のアミノ酸がAla、Glu、Phe、IleまたはThrのいずれか、
263位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
264位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
265位のアミノ酸がAla、Leu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
266位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
267位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
268位のアミノ酸がAsp、Glu、Phe、Gly、Ile、Lys、Leu、Met、Pro、Gln、Arg、Thr、ValまたはTrpのいずれか、
269位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
270位のアミノ酸がGlu、Phe、Gly、His、Ile、Leu、Met、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
271位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
272位のアミノ酸がAsp、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
273位のアミノ酸がPheまたはIleのいずれか、
274位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
275位のアミノ酸がLeuまたはTrpのいずれか、
276位のアミノ酸が、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
278位のアミノ酸がAsp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
279位のアミノ酸がAla、
280位のアミノ酸がAla、Gly、His、Lys、Leu、Pro、Gln、TrpまたはTyrのいずれか、
281位のアミノ酸がAsp、Lys、ProまたはTyrのいずれか、
282位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
283位のアミノ酸がAla、Gly、His、Ile、Lys、Leu、Met、Pro、ArgまたはTyrのいずれか、
284位のアミノ酸がAsp、Glu、Leu、Asn、ThrまたはTyrのいずれか、
285位のアミノ酸がAsp、Glu、Lys、Gln、TrpまたはTyrのいずれか、
286位のアミノ酸がGlu、Gly、ProまたはTyrのいずれか、
288位のアミノ酸がAsn、Asp、GluまたはTyrのいずれか、
290位のアミノ酸がAsp、Gly、His、Leu、Asn、Ser、Thr、TrpまたはTyrのいずれか、
291位のアミノ酸がAsp、Glu、Gly、His、Ile、GlnまたはThrのいずれか、
292位のアミノ酸がAla、Asp、Glu、Pro、ThrまたはTyrのいずれか、
293位のアミノ酸がPhe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
294位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
295位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
296位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、ThrまたはValのいずれか、
297位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
298位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Met、Asn、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
299位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Val、TrpまたはTyrのいずれか、
300位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
301位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
302位のアミノ酸がIle、
303位のアミノ酸がAsp、GlyまたはTyrのいずれか、
304位のアミノ酸がAsp、His、Leu、AsnまたはThrのいずれか、
305位のアミノ酸がGlu、Ile、ThrまたはTyrのいずれか、
311位のアミノ酸がAla、Asp、Asn、Thr、ValまたはTyrのいずれか、
313位のアミノ酸がPhe、
315位のアミノ酸がLeu、
317位のアミノ酸がGluまたはGln、
318位のアミノ酸がHis、Leu、Asn、Pro、Gln、Arg、Thr、ValまたはTyrのいずれか、
320位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Asn、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
322位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
323位のアミノ酸がIle、
324位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
325位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
326位のアミノ酸がAla、Asp、Glu、Gly、Ile、Leu、Met、Asn、Pro、Gln、Ser、Thr、Val、TrpまたはTyrのいずれか、
327位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
328位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
329位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
330位のアミノ酸がCys、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
331位のアミノ酸がAsp、Phe、His、Ile、Leu、Met、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
332位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
333位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Ser、Thr、ValまたはTyrのいずれか、
334位のアミノ酸がAla、Glu、Phe、Ile、Leu、ProまたはThrのいずれか、
335位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Val、TrpまたはTyrのいずれか、
336位のアミノ酸がGlu、LysまたはTyrのいずれか、
337位のアミノ酸がGlu、HisまたはAsnのいずれか、
339位のアミノ酸がAsp、Phe、Gly、Ile、Lys、Met、Asn、Gln、Arg、SerまたはThrのいずれか、
376位のアミノ酸がAlaまたはValのいずれか、
377位のアミノ酸がGlyまたはLysのいずれか、
378位のアミノ酸がAsp、
379位のアミノ酸がAsn、
380位のアミノ酸がAla、AsnまたはSerのいずれか、
382位のアミノ酸がAlaまたはIleのいずれか、
385位のアミノ酸がGlu、
392位のアミノ酸がThr、
396位のアミノ酸がLeu、
421位のアミノ酸がLys、
427位のアミノ酸がAsn、
428位のアミノ酸がPheまたはLeuのいずれか、
429位のアミノ酸がMet、
434位のアミノ酸がTrp、
436位のアミノ酸がIle、もしくは
440位のアミノ酸がGly、His、Ile、LeuまたはTyrのいずれか、
の群から選択される少なくとも一つ以上のアミノ酸の改変を含むFc領域が挙げられる。また、改変されるアミノ酸の数は特に限定されず、一箇所のみのアミノ酸が改変され得るし、二箇所以上のアミノ酸が改変され得る。二箇所以上のアミノ酸の改変の組合せとしては、例えば表1(表1-1~表1-3)に記載されるような組合せが挙げられる。
 抗原結合ドメインをコードするポリヌクレオチドに対してそのポリヌクレオチド配列が連結されるFc領域の非限定な一態様として、抑制型Fcγレセプターに対する結合活性が活性型Fcγレセプターに対する結合活性よりも高いFc領域が例示される。具体的には、そのようなFc領域の非限定な一態様として、FcγRIIbに対する結合活性が、FcγRIa、FcγRIIa、FcγRIIIa及び/又はFcγRIIIbのいずれかのヒトFcγレセプターに対する結合活性よりも高いFc領域が例示される。
 また、前記Fc領域の非限定な一態様として、例えば、配列番号:5、6、7、または8で表される抗体の定常領域に含まれるFc領域のアミノ酸残基のうち、EUナンバリングで表される238または328のアミノ酸が天然型Fc領域と異なるアミノ酸に改変されているFc領域が好適に挙げられる。そうしたFc領域の例として、前記Fc領域のEUナンバリングで表されるアミノ酸であってEUナンバリングで表される238のアミノ酸がAsp、または328のアミノ酸がGluのいずれか一つ以上に改変されているFc領域が好適に挙げられる。
 さらに前記Fc領域の非限定の一態様では、PCT/JP2012/054624で例示される、EUナンバリングで表される238位のProのAspへの置換、およびEUナンバリングで表される237位のアミノ酸がTrp、EUナンバリングで表される237位のアミノ酸がPhe、EUナンバリングで表される267位のアミノ酸がVal、EUナンバリングで表される267位のアミノ酸がGln、EUナンバリングで表される268位のアミノ酸がAsn、EUナンバリングで表される271位のアミノ酸がGly、EUナンバリングで表される326位のアミノ酸がLeu、EUナンバリングで表される326位のアミノ酸がGln、EUナンバリングで表される326位のアミノ酸がGlu、EUナンバリングで表される326位のアミノ酸がMet、EUナンバリングで表される239位のアミノ酸がAsp、EUナンバリングで表される267位のアミノ酸がAla、EUナンバリングで表される234位のアミノ酸がTrp、EUナンバリングで表される234位のアミノ酸がTyr、EUナンバリングで表される237位のアミノ酸がAla、EUナンバリングで表される237位のアミノ酸がAsp、EUナンバリングで表される237位のアミノ酸がGlu、EUナンバリングで表される237位のアミノ酸がLeu、EUナンバリングで表される237位のアミノ酸がMet、EUナンバリングで表される237位のアミノ酸がTyr、EUナンバリングで表される330位のアミノ酸がLys、EUナンバリングで表される330位のアミノ酸がArg、EUナンバリングで表される233位のアミノ酸がAsp、EUナンバリングで表される268位のアミノ酸がAsp、EUナンバリングで表される268位のアミノ酸がGlu、EUナンバリングで表される326位のアミノ酸がAsp、EUナンバリングで表される326位のアミノ酸がSer、EUナンバリングで表される326位のアミノ酸がThr、EUナンバリングで表される323位のアミノ酸がIle、EUナンバリングで表される323位のアミノ酸がLeu、EUナンバリングで表される323位のアミノ酸がMet、EUナンバリングで表される296位のアミノ酸がAsp、EUナンバリングで表される326位のアミノ酸がAla、EUナンバリングで表される326位のアミノ酸がAsn、EUナンバリングで表される330位のアミノ酸がMet、のいずれか一つ以上に改変されているFc領域が好適に挙げられる。
 抗原結合ドメインをコードするポリヌクレオチドに対してそのポリヌクレオチド配列が連結されるFc領域の非限定な一態様として、pH酸性域の条件下でFcRnに対する結合活性を有するFc領域が例示される。そのような改変が可能なアミノ酸として、例えば、国際公開WO1997/034631に記載されているように、EUナンバリングで表される252位、254位、256位、309位、311位、315位、433位、および/または434位ならびにこれらのアミノ酸に組み合わせる253位、310位、435位、および/または426位のアミノ酸が挙げられる。国際公開WO2000/042072に記載されるように、EUナンバリングで表される238位、252位、253位、254位、255位、256位、265位、272位、286位、288位、303位、305位、307位、309位、311位、312位、317位、340位、356位、360位、362位、376位、378位、380位、382位、386位、388位、400位、413位、415位、424位、433位、434位、435位、436位、439位および/または447位のアミノ酸が好適に挙げられる。同様に、そのような改変が可能なアミノ酸として、例えば国際公開WO2002/060919に記載されているように、EUナンバリングで表される251位、252位、254位、255位、256位、308位、309位、311位、312位、385位、386位、387位、389位、428位、433位、434位および/または436位のアミノ酸も好適に挙げられる。さらに、そのような改変が可能なアミノ酸として、国際公開WO2004/092219に記載されているように、EUナンバリングで表される250位、314位および428位のアミノ酸も挙げられる。加えて、そのような改変が可能なアミノ酸として、例えば国際公開WO2006/020114に記載されているように、238位、244位、245位、249位、252位、256位、257位、258位、260位、262位、270位、272位、279位、283位、285位、286位、288位、293位、307位、311位、312位、316位、317位、318位、332位、339位、341位、343位、375位、376位、377位、378位、380位、382位、423位、427位、430位、431位、434位、436位、438位、440位、および/または442位のアミノ酸も好適に挙げられる。また、そのような改変が可能なアミノ酸として、例えば国際公開WO2010/045193に記載されているように、EUナンバリングで表される251位、252位、307位、308位、378位、428位、430位、434位および/または436位のアミノ酸も好適に挙げられる。
 前記Fc領域の非限定な一態様として、例えば、配列番号:5、6、7、または8で表される抗体の定常領域に含まれるFc領域のアミノ酸残基のうち、EUナンバリングで表される、
251位のアミノ酸がArgまたはLeuのいずれか、
252位のアミノ酸がPhe、Ser、Thr、またはTyrのいずれか、
254位のアミノ酸がSerまたはThrのいずれか、
255位のアミノ酸がArg、Gly、Ile、またはLeuのいずれか、
256位のアミノ酸がAla、Arg、Asn、Asp、Gln、Glu、またはThrのいずれか、
308位のアミノ酸がIleまたはThrのいずれか、
309位のアミノ酸がPro、
311位のアミノ酸がGlu、Leu、またはSerのいずれか、
312位のアミノ酸がAlaまたはAspのいずれか、
314位のアミノ酸がAlaまたはLeuのいずれか、
385位のアミノ酸がAla、Arg、Asp、Gly、His、Lys、Ser、またはThrのいずれか、
386位のアミノ酸がArg、Asp、Ile、Lys、Met、Pro、Ser、またはThrのいずれか、
387位のアミノ酸がAla、Arg、His、Pro、Ser、またはThrのいずれか、
389位のアミノ酸がAsn、Pro、またはSerのいずれか、
428位のアミノ酸がLeu、Met、Phe、Ser、またはThrのいずれか
433位のアミノ酸がArg、Gln、His、Ile、Lys、Pro、またはSerのいずれか、
434位のアミノ酸がHis、Phe、またはTyrのいずれか、もしくは
436位のアミノ酸がArg、Asn、His、Lys、Met、またはThrのいずれか、
の群から選択される少なくとも一つ以上のアミノ酸の改変を含むFc領域が挙げられる。上記の改変されるアミノ酸の数は特に限定されず、一箇所のみのアミノ酸が改変され得るし、二箇所以上のアミノ酸が改変され得る。
 前記のpH酸性域の条件下でFcRnに対する結合活性が、ヒトIgG1の出発Fc領域の結合活性より強いFc領域の非限定な別の一態様として、例えば、配列番号:5、6、7、または8で表される抗体の定常領域に含まれるFc領域のアミノ酸残基のうち、EUナンバリングで表される、308位のアミノ酸がIle、309位のアミノ酸がPro、および/または311位のアミノ酸がGluであるFc領域が挙げられる。また、当該Fc領域の別の非限定な一態様は、308位のアミノ酸がThr、309位のアミノ酸がPro、311位のアミノ酸がLeu、312位のアミノ酸がAla、および/または314位のアミノ酸がAlaを含むFc領域が挙げられる。また、当該改変のさらに別の非限定な一態様は、308位のアミノ酸がIleまたはThr、309位のアミノ酸がPro、311位のアミノ酸がGlu、Leu、またはSer、312位のアミノ酸がAla、および/または314位のアミノ酸がAlaまたはLeuを含むFc領域が挙げられる。当該改変の異なる非限定な一態様は、308位のアミノ酸がThr、309位のアミノ酸がPro、311位のアミノ酸がSer、312位のアミノ酸がAsp、および/または314位のアミノ酸がLeuを含むFc領域が挙げられる。
 前記のpH酸性域の条件下でFcRnに対する結合活性が、ヒトIgG1の出発Fc領域の結合活性より強いFc領域の非限定な別の一態様として、例えば、配列番号:5、6、7、または8で表される抗体の定常領域に含まれるFc領域のアミノ酸残基のうち、EUナンバリングで表される、EUナンバリングで表される、251位のアミノ酸がLeu、252位のアミノ酸がTyr、254位のアミノ酸がSer、またはThr、255位のアミノ酸がArg、および/または256位のアミノ酸がGluを含むFc領域が挙げられる。
 前記のpH酸性域の条件下でFcRnに対する結合活性が、ヒトIgG1の出発Fc領域の結合活性より強いFc領域の非限定な異なる一態様として、例えば、配列番号:5、6、7、または8で表される抗体の定常領域に含まれるFc領域のアミノ酸残基のうち、EUナンバリングで表される、428位のアミノ酸がLeu、Met、Phe、Ser、またはThrのいずれか、433位のアミノ酸がArg、Gln、His、Ile、Lys、Pro、またはSerのいずれか、434位のアミノ酸がHis、Phe、またはTyrのいずれか、および/または436位のアミノ酸がArg、Asn、His、Lys、Met、またはThrのいずれかを含むFc領域が挙げられる。また、当該改変の別の非限定な一態様は、428位のアミノ酸がHisまたはMet、および/または434位のアミノ酸がHisまたはMetを含むFc領域が挙げられる。
 前記のpH酸性域の条件下でFcRnに対する結合活性が、ヒトIgG1の出発Fc領域の結合活性より強いFc領域の非限定な別に異なる一態様として、例えば、配列番号:5、6、7、または8で表される抗体の定常領域に含まれるFc領域のアミノ酸残基のうち、EUナンバリングで表される、385位のアミノ酸がArg、386位のアミノ酸がThr、387位のアミノ酸がArg、および/または389位のアミノ酸がProを含む改変であり得る。また、当該改変の別の非限定な一態様は、385位のアミノ酸がAsp、386位のアミノ酸がProおよび/または389位のアミノ酸がSerを含むFc領域が挙げられる。
 前記のpH酸性域の条件下でFcRnに対する結合活性が、ヒトIgG1の出発Fc領域の結合活性より強いFc領域の非限定な別の一態様として、例えば、配列番号:5、6、7、または8で表される抗体の定常領域に含まれるFc領域のアミノ酸残基のうち、EUナンバリングで表される、
250位のアミノ酸がGlnまたはGluのいずれか、もしくは
428位のアミノ酸がLeuまたはPheのいずれか、
の群から選択される少なくとも一つ以上のアミノ酸を含むFc領域が挙げられる。
 前記のpH酸性域の条件下でFcRnに対する結合活性が、ヒトIgG1の出発Fc領域の結合活性より強いFc領域の非限定な別の一態様として、例えば、配列番号:5、6、7、または8で表される抗体の定常領域に含まれるFc領域のアミノ酸残基のうち、EUナンバリングで表される、250位のアミノ酸がGln、および/または428位のアミノ酸がLeuまたはPheのいずれかを含むFc領域が挙げられる。また、当該改変の別の非限定な一態様として、250位のアミノ酸がGlu、および/または428位のアミノ酸がLeuまたはPheのいずれかを含むFc領域が挙げられる。
 前記のpH酸性域の条件下でFcRnに対する結合活性が、ヒトIgG1の出発Fc領域の結合活性より強いFc領域の非限定な別の一態様として、例えば、配列番号:5、6、7、または8で表される抗体の定常領域に含まれるFc領域のアミノ酸残基のうち、EUナンバリングで表される、
251位のアミノ酸がAspまたはGluのいずれか、
252位のアミノ酸がTyr、
307位のアミノ酸がGln、
308位のアミノ酸がPro、
378位のアミノ酸がVal、
380位のアミノ酸がAla、
428位のアミノ酸がLeu、
430位のアミノ酸がAla、またはLysのいずれか、
434位のアミノ酸がAla、His、Ser、またはTyrのいずれか、もしくは
436位のアミノ酸がIle、
の群から選択される少なくとも二つ以上のアミノ酸を含むFc領域が挙げられる。
 前記のpH酸性域の条件下でFcRnに対する結合活性が、ヒトIgG1の出発Fc領域の結合活性より強いFc領域の非限定な別の一態様として、例えば、配列番号:5、6、7、または8で表される抗体の定常領域に含まれるFc領域のアミノ酸残基のうち、EUナンバリングで表される、307位のアミノ酸がGln、および434位のアミノ酸がAlaまたはSerのいずれかを含むFc領域が挙げられる。また、当該Fc領域の別の非限定な一態様として、308位のアミノ酸がPro、および434位のアミノ酸がAlaを含むFc領域が挙げられる。また、当該Fc領域のさらに別の非限定な一態様として、252位のアミノ酸がTyr、および434位のアミノ酸がAlaを含むFc領域が挙げられる。当該Fc領域の異なる非限定な一態様として、378位のアミノ酸がVal、および434位のアミノ酸がAlaを含むFc領域が挙げられる。当該Fc領域の別の異なる非限定な一態様として、428位のアミノ酸がLeu、および434位のアミノ酸がAlaを含む改変が挙げられる。また、当該Fc領域のさらに別の異なる非限定な一態様として、434位のアミノ酸がAla、および436位のアミノ酸がIleを含むFc領域が挙げられる。さらに、当該改変のもう一つの非限定な一態様として、308位のアミノ酸がPro、および434位のアミノ酸がTyrを含むFc領域が挙げられる。さらに、当該改変の別のもう一つの非限定な一態様として、307位のアミノ酸がGln、および436位のアミノ酸がIleを含むFc領域が挙げられる。
 前記のpH酸性域の条件下でFcRnに対する結合活性が、ヒトIgG1の出発Fc領域の結合活性より強いFc領域の非限定な別の一態様として、例えば、配列番号:5、6、7、または8で表される抗体の定常領域に含まれるFc領域のアミノ酸残基のうち、EUナンバリングで表される、307位のアミノ酸がGln、380位のアミノ酸がAla、および434位のアミノ酸がSerのいずれかを含むFc領域が挙げられる。また、当該Fc領域の別の非限定な一態様として、307位のアミノ酸がGln、380位のアミノ酸がAla、および434位のアミノ酸がAlaを含むFc領域が挙げられる。また、当該Fc領域のさらに別の非限定な一態様として、252位のアミノ酸がTyr、308位のアミノ酸がPro、および434位のアミノ酸がTyrを含むFc領域が挙げられる。当該Fc領域の異なる非限定な一態様として、251位のアミノ酸がAsp、307位のアミノ酸がGln、および434位のアミノ酸がHisを含むFc領域が挙げられる。
 前記のpH酸性域の条件下でFcRnに対する結合活性が、ヒトIgG1の出発Fc領域の結合活性より強いFc領域の非限定な別の一態様として、例えば、配列番号:5、6、7、または8で表される抗体の定常領域に含まれるFc領域のアミノ酸残基のうち、EUナンバリングで表される、EUナンバリングで表される、
238位のアミノ酸がLeu、
244位のアミノ酸がLeu、
245位のアミノ酸がArg、
249位のアミノ酸がPro、
252位のアミノ酸がTyr、
256位のアミノ酸がPro、
257位のアミノ酸がAla、Ile、Met、Asn、Ser、またはValのいずれか、
258位のアミノ酸がAsp、
260位のアミノ酸がSer、
262位のアミノ酸がLeu、
270位のアミノ酸がLys、
272位のアミノ酸がLeu、またはArgのいずれか、
279位のアミノ酸がAla、Asp、Gly、His、Met、Asn、Gln、Arg、Ser、Thr、Trp、またはTyrのいずれか、
283位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Asn、Pro、Gln、Arg、Ser、Thr、Trp、またはTyrのいずれか、
285位のアミノ酸がAsn、
286位のアミノ酸がPhe、
288位のアミノ酸がAsn、またはProのいずれか、
293位のアミノ酸がVal、
307位のアミノ酸がAla、Glu、またはMetのいずれか、
311位のアミノ酸がAla、Ile、Lys、Leu、Met、Val、またはTrpのいずれか、
312位のアミノ酸がPro、
316位のアミノ酸がLys、
317位のアミノ酸がPro、
318位のアミノ酸がAsn、またはThrのいずれか、
332位のアミノ酸がPhe、His、Lys、Leu、Met、Arg、Ser、またはTrpのいずれか、
339位のアミノ酸がAsn、Thr、またはTrpのいずれか、
341位のアミノ酸がPro、
343位のアミノ酸がGlu、His、Lys、Gln、Arg、Thr、またはTyrのいずれか、
375位のアミノ酸がArg、
376位のアミノ酸がGly、Ile、Met、Pro、Thr、またはValのいずれか、
377位のアミノ酸がLys、
378位のアミノ酸がAsp、またはAsnのいずれか、
380位のアミノ酸がAsn、Ser、またはThrのいずれか、
382位のアミノ酸がPhe、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、Trp、またはTyrのいずれか、
423位のアミノ酸がAsn、
427位のアミノ酸がAsn、
430位のアミノ酸がAla、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、またはTyrのいずれか、
431位のアミノ酸がHis、またはAsnのいずれか、
434位のアミノ酸がPhe、Gly、His、Trp、またはTyrのいずれか、
436位のアミノ酸がIle、Leu、またはThrのいずれか、
438位のアミノ酸がLys、Leu、Thr、またはTrpのいずれか、
440位のアミノ酸がLys、もしくは、
442位のアミノ酸がLys、
の群から選択される少なくとも一つ以上のアミノ酸の改変が挙げられる。また、改変されるアミノ酸の数は特に限定されず、二箇所のみのアミノ酸が改変され得るし、三箇所以上のアミノ酸が改変され得る。
 前記のpH酸性域の条件下でFcRnに対する結合活性が、ヒトIgG1の出発Fc領域の結合活性より強いFc領域の非限定な別の一態様として、例えば、配列番号:5、6、7、または8で表される抗体の定常領域に含まれるFc領域のアミノ酸残基のうち、EUナンバリングで表される、257位のアミノ酸がIle、および311位のアミノ酸がIleを含むFc領域が挙げられる。また、当該Fc領域の別の非限定な一態様として、257位のアミノ酸がIle、および434位のアミノ酸がHisを含むFc領域が挙げられる。また、当該Fc領域のさらに別の非限定な一態様は、376位のアミノ酸がVal、および434位のアミノ酸がHisを含むFc領域が挙げられる。
 抗原結合ドメインをコードするポリヌクレオチドに対してそのポリヌクレオチド配列が連結されるFc領域の非限定な一態様として、pH中性域の条件下でヒトFcRnに対する結合活性を有するFc領域が例示される。pH中性域におけるヒトFcRnに対する結合活性を有しているFc領域として、例えば、配列番号:5、6、7、または8で表される抗体の定常領域に含まれるFc領域のアミノ酸残基のうち、EUナンバリングで表される221位~225位、227位、228位、230位、232位、233位~241位、243位~252位、254位~260位、262位~272位、274位、276位、278位~289位、291位~312位、315位~320位、324位、325位、327位~339位、341位、343位、345位、360位、362位、370位、375位~378位、380位、382位、385位~387位、389位、396位、414位、416位、423位、424位、426位~438位、440位および442位の群から選択される少なくとも一つ以上のアミノ酸が置換されているFc領域が例示される。
 前記のpH中性域の条件下でFcRnに対する結合活性を有するFc領域の非限定な別の一態様として、例えば、配列番号:5、6、7、または8で表される抗体の定常領域に含まれるFc領域のアミノ酸残基のうち、EUナンバリングで表される237位、248位、250位、252位、254位、255位、256位、257位、258位、265位、286位、289位、297位、298位、303位、305位、307位、308位、309位、311位、312位、314位、315位、317位、332位、334位、360位、376位、380位、382位、384位、385位、386位、387位、389位、424位、428位、433位、434位および436位のアミノ酸が置換されているFc領域が例示される。これらのアミノ酸から選択される少なくとも1つのアミノ酸を他のアミノ酸に置換することによって、抗原結合分子に含まれるFc領域がpH中性域においてヒトFcRnに対して結合することができる。
 前記のpH中性域の条件下でFcRnに対する結合活性を有するFc領域の非限定な別の一態様として、EUナンバリングで表される、
237位のアミノ酸がMet、
248位のアミノ酸がIle、
250位のアミノ酸がAla、Phe、Ile、Met、Gln、Ser、Val、Trp、またはTyrのいずれか、
252位のアミノ酸がPhe、Trp、またはTyrのいずれか、
254位のアミノ酸がThr、
255位のアミノ酸がGlu、
256位のアミノ酸がAsp、Asn、Glu、またはGlnのいずれか、
257位のアミノ酸がAla、Gly、Ile、Leu、Met、Asn、Ser、Thr、またはValのいずれか、
258位のアミノ酸がHis、
265位のアミノ酸がAla、
286位のアミノ酸がAlaまたはGluのいずれか、
289位のアミノ酸がHis、
297位のアミノ酸がAla、
303位のアミノ酸がAla、
305位のアミノ酸がAla、
307位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Val、Trp、またはTyrのいずれか、
308位のアミノ酸がAla、Phe、Ile、Leu、Met、Pro、Gln、またはThrのいずれか、
309位のアミノ酸がAla、Asp、Glu、Pro、またはArgのいずれか、
311位のアミノ酸がAla、His、またはIleのいずれか、
312位のアミノ酸がAlaまたはHisのいずれか、
314位のアミノ酸がLysまたはArgのいずれか、
315位のアミノ酸がAla、AspまたはHisのいずれか、
317位のアミノ酸がAla、
332位のアミノ酸がVal、
334位のアミノ酸がLeu、
360位のアミノ酸がHis、
376位のアミノ酸がAla、
380位のアミノ酸がAla、
382位のアミノ酸がAla、
384位のアミノ酸がAla、
385位のアミノ酸がAspまたはHisのいずれか、
386位のアミノ酸がPro、
387位のアミノ酸がGlu、
389位のアミノ酸がAlaまたはSerのいずれか、
424位のアミノ酸がAla、
428位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Asn、Pro、Gln、Ser、Thr、Val、Trp、またはTyrのいずれか、
433位のアミノ酸がLys、
434位のアミノ酸がAla、Phe、His、Ser、Trp、またはTyrのいずれか、もしくは
436位のアミノ酸がHis 、Ile、Leu、Phe、Thr、またはVal、
の群から選択される少なくとも一つ以上のアミノ酸を含むFc領域が挙げられる。また、改変されるアミノ酸の数は特に限定されず、一箇所のみのアミノ酸が改変され得るし、二箇所以上のアミノ酸が改変され得る。これらのアミノ酸の改変の組合せとしては、例えば表2-1~2-33に示すアミノ酸の改変が挙げられる。
 抗原結合ドメインをコードするポリヌクレオチドに対してそのポリヌクレオチド配列が連結されるFc領域の非限定な一態様として、活性型FcγRに対する結合活性が天然型Fc領域の活性型FcγRに対する結合活性より低いFc領域が例示される。当該Fc領域の非限定な別の一態様として、EUナンバリングで表される、EUナンバリングで表される234、235、236、237、238、239、270、297、298、325、328、および329のいずれか一つ以上のアミノ酸が、例えば、配列番号:5、6、7、または8で表される天然型Fc領域と異なるアミノ酸に改変されているFc領域が好適に挙げられるが、Fc領域の改変は上記改変に限定されず、例えばCur. Opin. in Biotech. (2009) 20 (6), 685-691に記載されている脱糖鎖(N297A, N297Q)、IgG1-L234A/L235A、IgG1-A325A/A330S/P331S、IgG1-C226S/C229S、IgG1-C226S/C229S/E233P/L234V/L235A、IgG1-L234F/L235E/P331S、IgG1-S267E/L328F、IgG2-V234A/G237A、IgG2-H268Q/V309L/A330S/A331S、IgG4-L235A/G237A/E318A、IgG4-L236E等の改変、および、国際公開WO2008/092117に記載されているG236R/L328R、L235G/G236R、N325A/L328R、N325L/L328R等の改変、および、EUナンバリング233位、234位、235位、237位におけるアミノ酸の挿入、国際公開WO2000/042072に記載されている個所の改変であってもよい。
 前記の活性型FcγRに対する結合活性が天然型Fc領域の活性型FcγRに対する結合活性より低いFc領域の非限定な別の一態様として、EUナンバリングで表される、
234位のアミノ酸をAla、Arg、Asn、Asp、Gln、Glu、Gly、His、Lys、Met、Phe、Pro、Ser、ThrまたはTrpのいずれか、
235位のアミノ酸をAla、Asn、Asp、Gln、Glu、Gly、His、Ile、Lys、Met、Pro、Ser、Thr、ValまたはArgのいずれか、
236位のアミノ酸をArg、Asn、Gln、His、Leu、Lys、Met、Phe、ProまたはTyrのいずれか、
237位のアミノ酸をAla、Asn、Asp、Gln、Glu、His、Ile、Leu、Lys、Met、Pro、Ser、Thr、Val、TyrまたはArgのいずれか、
238位のアミノ酸をAla、Asn、Gln、Glu、Gly、His、Ile、Lys、Thr、TrpまたはArgのいずれか、
239位のアミノ酸をGln、His、Lys、Phe、Pro、Trp、TyrまたはArgのいずれか、
265位のアミノ酸をAla、Arg、Asn、Gln、Gly、His、Ile、Leu、Lys、Met、Phe、Ser、Thr、Trp、TyrまたはValのいずれか、
266位のアミノ酸をAla、Arg、Asn、Asp、Gln、Glu、Gly、His、Lys、Phe、Pro、Ser、Thr、TrpまたはTyrのいずれか、
267位のアミノ酸をArg、His、Lys、Phe、Pro、TrpまたはTyrのいずれか、
269位のアミノ酸をAla、Arg、Asn、Gln、Gly、His、Ile、Leu、Lys、Met、Phe、Pro、Ser、Thr、Trp、TyrまたはValのいずれか、
270位のアミノ酸をAla、Arg、Asn、Gln、Gly、His、Ile、Leu、Lys、Met、Phe、Pro、Ser、Thr、Trp、TyrまたはValのいずれか、
271位のアミノ酸をArg、His、Phe、Ser、Thr、TrpまたはTyrのいずれか、
295位のアミノ酸をArg、Asn、Asp、Gly、His、Phe、Ser、TrpまたはTyrのいずれか、
296位のアミノ酸をArg、Gly、LysまたはProのいずれか、
297位のアミノ酸をAla、
298位のアミノ酸をArg、Gly、Lys、Pro、TrpまたはTyrのいずれか、
300位のアミノ酸をArg、LysまたはProのいずれか、
324位のアミノ酸をLysまたはProのいずれか、
325位のアミノ酸をAla、Arg、Gly、His、Ile、Lys、Phe、Pro、Thr、TrpTyr、もしくはValのいずれか、
327位のアミノ酸をArg、Gln、His、Ile、Leu、Lys、Met、Phe、Pro、Ser、Thr、Trp、TyrまたはValのいずれか、
328位のアミノ酸をArg、Asn、Gly、His、LysまたはProのいずれか、
329位のアミノ酸をAsn、Asp、Gln、Glu、Gly、His、Ile、Leu、Lys、Met、Phe、Ser、Thr、Trp、Tyr、ValまたはArgのいずれか、
330位のアミノ酸をProまたはSerのいずれか、
331位のアミノ酸をArg、GlyまたはLysのいずれか、もしくは
332位のアミノ酸をArg、LysまたはProのいずれか、
の群から選択される少なくとも一つ以上のアミノ酸を含むFc領域が挙げられる。また、改変されるアミノ酸の数は特に限定されず、一箇所のみのアミノ酸が改変され得るし、二箇所以上のアミノ酸が改変され得る。
 本発明の非限定な一態様における抗原結合分子に含まれるFc領域としては、上記の二重特異性抗体を起源とするFc領域を形成する二つのポリペプチドが適宜使用され得る。より具体的には、Fc領域を形成する二つのポリペプチドであって、その一方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される349のアミノ酸がCys、366のアミノ酸がTrpであり、他方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される356のアミノ酸がCys、366のアミノ酸がSerに、368のアミノ酸がAlaに、407のアミノ酸がValであることを特徴とする二つのポリペプチドが好適に用いられる。
 そのほかの本発明の非限定な一態様におけるFc領域としては、Fc領域を形成する二つのポリペプチドであって、その一方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される409のアミノ酸がAspであり、他方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される399のアミノ酸がLysであることを特徴とする二つのポリペプチドが好適に用いられる。上記態様では、409のアミノ酸はAspに代えてGlu、399のアミノ酸はLysに代えてArgでもあり得る。また、399のアミノ酸のLysに加えて360のアミノ酸としてAsp又は392のアミノ酸としてAspも好適に追加され得る。
 本発明の別の非限定な一態様におけるFc領域としては、Fc領域を形成する二つのポリペプチドであって、その一方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される370のアミノ酸がGluであり、他方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される357のアミノ酸がLysであることを特徴とする二つのポリペプチドが好適に用いられる。
 本発明のさらに別の非限定な一態様におけるFc領域としては、Fc領域を形成する二つのポリペプチドであって、その一方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される439のアミノ酸がGluであり、他方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される356のアミノ酸がLysであることを特徴とする二つのポリペプチドが好適に用いられる。
 本発明の別の非限定な一態様におけるFc領域としては、これらが組み合わされた以下の態様のいずれか;
(i) Fc領域を形成する二つのポリペプチドであって、その一方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される409のアミノ酸がAsp、370のアミノ酸がGluであり、他方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される399のアミノ酸がLys、357のアミノ酸がLysであることを特徴とする二つのポリペプチド(本態様では、EUナンバリングで表される370のアミノ酸のGluに代えてAspであってもよく、EUナンバリングで表される370のアミノ酸のGluに代えて392のアミノ酸のAspであってもよい)、
(ii) Fc領域を形成する二つのポリペプチドであって、その一方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される409のアミノ酸がAsp、439のアミノ酸がGluであり、他方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される399のアミノ酸がLys、356のアミノ酸がLysであることを特徴とする二つのポリペプチド(本態様では、EUナンバリングで表される439のアミノ酸のGluに代えて360のアミノ酸のAsp、EUナンバリングで表される392のアミノ酸のAsp又は439のアミノ酸のAspであってもよい)、
(iii) Fc領域を形成する二つのポリペプチドであって、その一方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される370のアミノ酸がGlu、439のアミノ酸がGluであり、他方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される357のアミノ酸がLys、356のアミノ酸がLysであることを特徴とする二つのポリペプチド、または、
Fc領域を形成する二つのポリペプチドであって、その一方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される409のアミノ酸がAsp、370のアミノ酸がGlu、439のアミノ酸がGluであり、他方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される399のアミノ酸がLys、357のアミノ酸がLys、356のアミノ酸がLysであることを特徴とする二つのポリペプチド(本態様では、EUナンバリングで表される370のアミノ酸をGluに置換しなくてもよく、更に、370のアミノ酸をGluに置換しない上で、439のアミノ酸のGluに代えてAsp又は439のアミノ酸のGluに代えて392のアミノ酸のAspであってもよい)、
が好適に用いられる。
 さらに、本発明の別の非限定な一態様において、Fc領域を形成する二つのポリペプチドであって、その一方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される356のアミノ酸がLysであり、他方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される435のアミノ酸がArg、439のアミノ酸がGluであることを特徴とする二つのポリペプチドも好適に用いられる。
 さらに、本発明の別の非限定な一態様において、Fc領域を形成する二つのポリペプチドであって、その一方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される356のアミノ酸がLys、357のアミノ酸がLysであり、他方のポリペプチドのアミノ酸配列のうちEUナンバリングで表される370のアミノ酸がGlu、435のアミノ酸がArg、439のアミノ酸がGluであることを特徴とする二つのポリペプチドも好適に用いられる。
 上記に記載したように連結された、抗原結合ドメインをコードするポリヌクレオチドおよび、Fc領域を含むポリペプチドをコードするポリヌクレオチドが、作動可能に連結された所望の発現ベクターによって形質転換された細胞の培養液から、本発明の抗原結合分子が単離される。
 本発明の抗原結合分子に含まれるFc領域が、当該Fc領域に結合した糖鎖の組成がフコース欠損糖鎖を結合したFc領域の割合が高くなるように、またはバイセクティングN-アセチルグルコサミンが付加したFc領域の割合が高くなるように修飾されたFc領域である場合、前記の形質転換された細胞として、糖鎖修飾を受けるポリペプチドの糖鎖構造を形成する活性が改変された結果、糖鎖にフコースを付加する能力が低い宿主細胞が適宜使用される(国際公開WO2000/061739、WO2002/031140、WO2006/067913等)。当該宿主細胞の非限定な一態様として、フコシルトランスフェラーゼ(EC 2.4.1.152)、フコーストランスポーター(SLC35C1)、GMD(GDP-マンノース4,6-デヒドラターゼ)(EC 4.2.1.47)、Fx(GDP-ケト-6-デオキシマンノース3,5-エピメラーゼ,4-レダクターゼ)(EC 1.1.1.271)、およびGFPP(GDP-β-L-フコースピロフォスフォリラーゼ)(EC 2.7.7.30)からなる群から選択される酵素またはトランスポーターの活性がが欠失した宿主細胞が適宜使用される(国際公開WO2000/061739、WO2002/031140、WO2006/067913等)。そのような活性が欠失した宿主細胞は、CHO細胞、BHK細胞、NS0細胞、SP2/0細胞、YO骨髄腫細胞、P3X63マウス骨髄腫細胞、PER細胞、PER.C6細胞、HEK293細胞、またはハイブリドーマ細胞等に内在性であるこれらの機能性タンパク質の遺伝子を機能不能に破壊する方法等によって作製され得る。
 本発明の抗原結合分子に含まれるFc領域が、バイセクティングGlcNAcを有する糖鎖を有するFc領域である場合、前記の形質転換された細胞として、バイセクティングGlcNAcを有する糖鎖を有する抗体を作製するために、GnTIII(β-1,4-マンノシル-グリコプロテイン,4-β-N-アセチルグルコサミニルトランスフェラーゼ)(EC 2.4.1.144)活性またはGalT(β-1,4-ガラクトシルトランスフェラーゼ)(EC 2.4.1.38)活性を有する機能性タンパク質をコードする遺伝子を発現する宿主細胞が適宜使用される(国際公開WO2002/079255等)。別の非限定の好適な一態様では、前記の機能性タンパク質に加えて、ヒトManII(マンノシダーゼII)(3.2.1.114)活性を有する機能性タンパク質をコードする遺伝子、GnTI(β-1,2-アセチルグルコサミニルトランスフェラーゼI)(EC 2.4.1.94)活性を有する機能性タンパク質をコードする遺伝子、GnTII(β-1,2-アセチルグルコサミニルトランスフェラーゼII)(EC 2.4.1.143)活性を有する機能性タンパク質をコードする遺伝子、ManI(マンノシダーゼ)(EC 3.2.1.113)活性を有する機能性タンパク質をコードする遺伝子、およびα-1,6-フコシルトランスフェラーゼ(EC 2.4.1.68)と共発現する宿主細胞が適宜使用される(国際公開WO2004/065540)。
 上記の細胞の培養液から単離する等の上記の抗体の項で記載された抗体の製造方法に準じた方法を用いて、本発明の抗原結合分子が製造される。前記のFc領域を含むポリペプチドの非限定な一態様として、例えば、配列番号:5、6、7、または8で表される抗体の定常領域が例示される。また、本発明の抗原結合分子の非限定な一態様として、全長抗体分子が挙げられる。
医薬組成物
 本発明によって、副作用を回避しつつ薬効を発揮するために、正常組織や血液中において全身的に作用せず、病変部位である癌や炎症部位において作用する抗原結合分子を含む医薬組成物が提供される。本発明の医薬組成物に含まれる抗原結合分子は癌組織における癌細胞・免疫細胞・ストローマ細胞等に発現する抗原、癌組織に分泌されている抗原、あるいは、炎症性組織における免疫細胞等に発現する抗原、炎症性組織に分泌されている抗原に結合し、正常組織に発現している抗原に結合することが出来ないため、正常組織に対する細胞傷害作用や中和作用等による副作用を回避しつつ、癌に対する強力な細胞傷害作用や増殖抑制作用、免疫亢進作用等、あるいは、炎症性組織における炎症性細胞に対する免疫抑制効果等を発揮する。例えば、癌組織特異的化合物に依存的にT細胞に発現するCD3に結合する抗原結合ドメインと、癌細胞に発現するEGFRに結合する抗原結合ドメインを含む二重特異性抗原結合分子または二重パラトピックな抗原結合分子は、正常組織に発現するEGFRに結合せず、癌細胞に発現しているEGFRに結合するため、副作用を回避しつつ強力な抗腫瘍効果を発揮する。すなわち、癌細胞近傍にいるT細胞に発現しているCD3には癌組織特異的化合物に依存的に結合するが、癌細胞近傍以外にいるT細胞に発現しているCD3に結合しないため、癌細胞近傍にいるT細胞を活性化し副作用を回避しつつ強力な抗腫瘍効果を発揮する。
 このように標的組織において抗原に結合し、それ以外の正常組織や血液中では抗原に結合しない抗原結合分子は、副作用を回避しつつ薬効を発揮する。本発明が提供する、生体内の標的組織において高濃度で存在する低分子をスイッチとして抗原に結合する抗原結合分子、すなわち、低分子スイッチ抗原結合分子(Small molecule switch antigen binding molecule)は、当該低分子が存在しない正常の環境では抗原に結合せず、当該低分子が高濃度で存在する標的組織では抗原に結合することが可能である。
 このような低分子スイッチ抗原結合分子の非限定な一態様として、まず癌組織や炎症性組織において高濃度に存在し、スイッチとして機能し得る癌組織あるいは炎症性組織特異的化合物である、アデノシン(adenosine)、アデノシン3リン酸(adenosine 5'-triphosphate; ATP)、イノシン(inosine)、キヌレニン(kynurenine)、プロスタグランジンE2(prostaglandin E2; PGE2)、コハク酸(succinic acid)、乳酸(lactic acid)が、本発明の抗原結合分子(に含まれるパラトープ)と抗原(に含まれるエピトープ)に挟まれて、スイッチ機能を果たす癌組織あるいは炎症性組織特異的な化合物依存的な抗原結合分子が例示される。当該化合物が存在しなければ本発明の抗原結合分子に含まれるパラトープと抗原に含まれるエピトープとの相互作用が不十分となり本発明の抗原結合分子は抗原に結合することができないが、当該化合物が存在すれば本発明の抗原結合分子に含まれるパラトープと抗原に含まれるエピトープとの間に挟まることによって、当該化合物が高濃度で存在する癌組織あるいは炎症性組織等の標的組織において抗原に結合した当該抗原結合分子が、当該抗原を発現する細胞に対して薬効を発揮することができる。また、このスイッチとなる化合物の結合は可逆的であるため、これらの化合物のスイッチによる本発明の抗原結合分子の抗原に対する結合の制御は可逆的であると考えられる。このように癌組織あるいは炎症性組織等の病変部位において癌組織あるいは炎症性組織における癌細胞や免疫細胞等の病的細胞に結合し、あるいは、癌組織あるいは炎症性組織において分泌された抗原に結合し、薬効を発揮することが可能な本発明の抗原結合分子は医薬組成物として有用である。本発明の医薬組成物には医薬的に許容される担体が含まれ得る。
 本発明において医薬組成物とは、通常、疾患の治療もしくは予防、あるいは検査・診断のための薬剤をいう。また、本発明において、「標的組織特異的化合物の濃度に応じて抗原に対する結合活性が変化する抗原結合分子を含む医薬組成物」との用語は、「標的組織特異的化合物の濃度に応じて抗原に対する結合活性が変化する抗原結合分子を治療対象に投与することを含む疾患の治療方法」と言い換えることも可能であるし、「疾患を治療するための医薬の製造における標的組織特異的化合物の濃度に応じて抗原に対する結合活性が変化する抗原結合分子の使用」と言い換えることも可能である。また、「標的組織特異的化合物の濃度に応じて抗原に対する結合活性が変化する抗原結合分子を含む医薬組成物」との用語を、「疾患を治療するための標的組織特異的化合物の濃度に応じて抗原に対する結合活性が変化する抗原結合分子の使用」と言い換えることも可能である。
 本発明の医薬組成物は、当業者に公知の方法を用いて製剤化され得る。例えば、水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、又は懸濁液剤の注射剤の形で非経口的に使用され得る。例えば、薬理学上許容される担体もしくは媒体、具体的には、滅菌水や生理食塩水、植物油、乳化剤、懸濁剤、界面活性剤、安定剤、香味剤、賦形剤、ベヒクル、防腐剤、結合剤等と適宜組み合わせて、一般に認められた製薬実施に要求される単位用量形態で混和することによって製剤化され得る。これら製剤における有効成分量は、指示された範囲の適当な容量が得られるように設定される。
 注射のための無菌組成物は注射用蒸留水のようなベヒクルを用いて通常の製剤実施にしたがって処方され得る。注射用の水溶液としては、例えば生理食塩水、ブドウ糖やその他の補助薬(例えばD-ソルビトール、D-マンノース、D-マンニトール、塩化ナトリウム)を含む等張液が挙げられる。適切な溶解補助剤、例えばアルコール(エタノール等)、ポリアルコール(プロピレングリコール、ポリエチレングリコール等)、非イオン性界面活性剤(ポリソルベート80(TM)、HCO-50等)が併用され得る。
 油性液としてはゴマ油、大豆油が挙げられ、溶解補助剤として安息香酸ベンジル及び/またはベンジルアルコールも併用され得る。また、緩衝剤(例えば、リン酸塩緩衝液及び酢酸ナトリウム緩衝液)、無痛化剤(例えば、塩酸プロカイン)、安定剤(例えば、ベンジルアルコール及びフェノール)、酸化防止剤と配合され得る。調製された注射液は通常、適切なアンプルに充填される。
 本発明の医薬組成物は、好ましくは非経口投与により投与される。例えば、注射剤型、経鼻投与剤型、経肺投与剤型、経皮投与型の組成物が投与される。例えば、静脈内注射、筋肉内注射、腹腔内注射、皮下注射などにより全身または局部的に投与され得る。
 投与方法は、患者の年齢、症状により適宜選択され得る。抗原結合分子を含有する医薬組成物の投与量は、例えば、一回につき体重1 kgあたり0.0001 mgから1000 mgの範囲に設定され得る。または、例えば、患者あたり0.001~100000 mgの投与量が設定され得るが、本発明はこれらの数値に必ずしも制限されるものではない。投与量及び投与方法は、患者の体重、年齢、症状などにより変動するが、当業者であればそれらの条件を考慮し適当な投与量及び投与方法を設定することが可能である。
 なお、本発明に記載するアミノ酸配列に含まれるアミノ酸は翻訳後に修飾(例えば、N末端のグルタミンのピログルタミル化によるピログルタミン酸への修飾は当業者によく知られた修飾である)を受ける場合もあるが、そのようにアミノ酸が翻訳後修飾された場合であっても当然のことながら本発明に記載するアミノ酸配列に含まれる。
 なお本明細書において引用されたすべての先行技術文献は、参照として本明細書に組み入れられる。
 以下本発明を実施例により具体的に説明するが、本発明はこれら実施例に制限されるものではない。
〔実施例1〕標的組織において高濃度で存在する低分子をスイッチとして抗原に結合する抗体のコンセプト
 副作用を回避しつつ薬効を発揮するために、正常組織や血液中において全身的に作用せず、病変部位である癌や炎症部位において作用するような創薬技術が求められている。投与された後に癌細胞に発現している抗原に結合し、正常組織に発現している抗原に結合することが出来ない抗体分子は、正常組織に対する細胞傷害作用による副作用を回避しつつ、癌に対する強力な細胞傷害作用を発揮することが可能である。例えば、前記EGFR-BiTE(非特許文献9)が改変された抗原結合分子であって、正常組織に発現するEGFRには結合せず、癌細胞に発現しているEGFRに結合することができる分子は、副作用を回避しつつ強力な抗腫瘍効果を発揮することが可能である。また、BiTEはCD3を介してT細胞をリクルートし活性化することによって抗腫瘍効果を発揮する(非特許文献8)ため、EGFR-BiTEに対して、癌細胞近傍にいるT細胞に発現しているCD3には結合するが、癌細胞近傍以外にいるT細胞に発現しているCD3に結合しない性質を付与することができれば、そのような性質を付与された改変EGFR-BiTEは、癌においてT細胞を活性化することが可能であり、副作用を回避しつつ強力な抗腫瘍効果を発揮することが可能となる。
 癌に対する抗体医薬に限らず、抗体分子が関節リウマチにおいて炎症が起こっている関節の滑液中でサイトカインに結合しその作用を阻害し、全身的には阻害しなければ、全身的なサイトカインの中和による感染症のリスクの増大を回避しつつ、関節リウマチ等の炎症性疾患・自己免疫疾患に対して高い治療効果を発揮することが可能であると考えられた。
 このように癌組織において抗原に結合し、それ以外の正常組織や血液中では抗原に結合しない抗体は、副作用を回避しつつ薬効を発揮することが可能である。しかしながら、これまでにこのような特性を有する理想的な抗体は報告されていない。そこで、生体内の癌組織において高濃度で存在する低分子をスイッチとして抗原に結合する抗体分子、すなわち、低分子スイッチ抗体(Small molecule switch antibody)は、図1に示すように、低分子が存在しない環境では抗原に結合せず、低分子が高濃度で存在する標的組織では抗原に結合することが可能である。
 このような低分子スイッチ抗体を創製するにあたり、まず癌組織において高濃度に存在し、スイッチとして使用できると考えられる低分子が探索された。その結果、アデノシン(adenosine)、アデノシン3リン酸(adenosine 5'-triphosphate; ATP)、イノシン(inosine)、キヌレニン(kynurenine)、プロスタグランジンE2(prostaglandin E2; PGE2)、コハク酸(succinic acid)、乳酸(lactic acid)がスイッチとして有望であった。これらの低分子はいずれも、癌細胞自体から産生される、あるいは、細胞死した癌細胞から放出される、あるいは、癌組織に浸潤している免疫細胞等から産生されることで、癌組織において高濃度で存在し、正常組織や血液中では癌組織と比較して低濃度で存在している。これらの低分子が図2に示すように抗体と抗原の複合体に挟まれることが出来れば、当該低分子はスイッチ機能を果たすことが出来る。すなわち、低分子が存在しなければ抗体と抗原の相互作用が不十分となり抗体は抗原に結合することができないが、低分子が存在すれば抗体と抗原の間に挟まることによって、抗体は抗原に結合することが可能となる。いい換えれば、低濃度の低分子存在下では抗体と抗原の相互作用が不十分となり抗体は抗原に結合することができないが、高濃度の低分子存在下では抗体と抗原の間に挟まることによって、抗体は抗原に結合することが可能となる。また、このスイッチとなる低分子の結合は可逆的であるため、これらの低分子スイッチによる抗原結合の制御は可逆的である。
 そこで、まず癌細胞の増殖に関与していることが報告されているIL-6(Br. J. Haematol. (2011) 152 (5), 579-92)に対する低分子スイッチ抗体の取得が試みられた。
[実施例2]ファージディスプレイ技術を用いたヒト抗体ライブラリからの低分子存在下においてヒトIL-6に結合する抗体の取得
(2-1)ナイーブヒト抗体ファージディスプレイライブラリの作製
 ヒトPBMCから作成したポリA RNAや、市販されているヒトポリA RNAなどを鋳型として当業者に公知な方法に従い、互いに異なるヒト抗体配列のFabドメインを提示する複数のファージからなるヒト抗体ファージディスプレイライブラリが構築された。
(2-2)ビーズパンニングによるライブラリからの低分子存在下においてヒトIL-6に結合する抗体の取得
 (2-1)で構築されたナイーブヒト抗体ファージディスプレイライブラリから、低分子存在下で抗原に対する結合活性を示す抗体のスクリーニングが行われた。すなわち、ビーズにキャプチャーされた抗原に対して低分子存在下で結合活性を示す抗体を提示しているファージが集められた。低分子非存在の条件でビーズから溶出されたファージ溶出液からファージが回収された。本取得方法では、抗原としてビオチン標識されたヒトIL-6が用いられた。
 構築されたファージディスプレイ用ファージミドを保持した大腸菌から産生されたファージは一般的な方法により精製された。その後TBSで透析処理されたファージライブラリ液が得られた。次に、ファージライブラリ液に終濃度4%となるようにBSAが添加された。磁気ビーズに固定化された抗原を用いたパンニングが実施された。磁気ビーズとして、NeutrAvidin coated beads(Sera-Mag SpeedBeads NeutrAvidin-coated)もしくはStreptavidin coated beads(Dynabeads M-280 Streptavidin)が用いられた。
 癌組織においてスイッチの役割を果たすことができる低分子に依存的な低分子スイッチ抗体を効率的に取得するために、これらの低分子(アデノシン(adenosine)、アデノシン3リン酸(adenosine 5'-triphosphate; ATP)、イノシン(inosine)、キヌレニン(kynurenine)、プロスタグランジンE2(prostaglandin E2; PGE2)、コハク酸(succinic acid)、乳酸(lactic acid))の混合液(以下、SC(small molecule cocktail)と表記される)の存在下で抗原に結合し、SC非存在下では抗原に結合しない抗体を濃縮するパンニングが実施された。
 具体的には、調製されたファージライブラリ液に250 pmolのビオチン標識抗原とともに、各終濃度が1 mMのアデノシン3リン酸ナトリウム塩(ATP-Na)、アデノシン(Adenosine)、イノシン(Inosine)、コハク酸(Succinic acid)、および乳酸(Lactic acid)、終濃度が1μMのプロスタグランジンE2(PGE2)、ならびに終濃度が100μMのキヌレニン(Kynurenine)からなりNaOHによってそのpHが7.4に調製されたSCを、当該ファージライブラリ液と室温にて60分間接触させた。次にファージライブラリ液にBSAでブロッキングされた磁気ビーズが加えられ、抗原とファージとの複合体を磁気ビーズと室温にて15分間結合させた。ビーズはSC/TBS(SCを含むTBS)にて1回洗浄された。その後、1 mg/mLのトリプシン溶液0.5 mLが加えられたビーズは室温で15分懸濁された後、即座に磁気スタンドを用いて分離されたビーズからファージ溶液が回収された。回収されたファージ溶液が、対数増殖期(OD600が0.4-0.7)となった10 mLの大腸菌株ER2738に添加された。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は、225 mm x 225 mmのプレートへ播種された。次に、播種された大腸菌の培養液からファージを回収することによって、ファージライブラリ液が調製された。
 1回目のパンニングでは、低分子存在下で結合可能なファージの回収が行われたが、2回目以降のパンニングでは、SC存在下で抗原に対して結合可能なファージの濃縮が行われた。具体的には、調製したファージライブラリ液に40 pmolのビオチン標識抗原およびSC、NaOHを加えることによって、ファージライブラリを室温で60分間抗原及び低分子と接触させた。BSAでブロッキングされた磁気ビーズが加えられ、抗原とファージとの複合体を磁気ビーズと室温で15分間結合させた。ビーズは1 mLのSC/TBSTとSC/TBSにて洗浄された。その後0.5 mLのTBSが加えられたビーズは室温で懸濁された後、即座に磁気スタンドを用いて分離されたビーズからファージ溶液が回収された。この作業が再度繰り返された後、2回に分けて溶出されたファージ液が混合された。さらに残ったビーズに対して0.5mLのTBSが加えられ、当該ビーズは室温で5分間攪拌された。磁気スタンドを用いて分離されたビーズからファージ溶液が回収された。回収されたファージ溶液に100 mg/mLのトリプシン5μLを加えることによって、Fabを提示しないファージのpIIIタンパク質(ヘルパーファージ由来のpIIIタンパク質)が切断され、Fabを提示しないファージの大腸菌に対する感染能が失われた。トリプシン処理されたファージ溶液から回収されたファージが、対数増殖期(OD600が0.4-0.7)となった10 mLの大腸菌株ER2738に添加された。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は225 mm x 225 mmのプレートへ播種された。2回目のパンニングによって得られた2種類の感染大腸菌はこの時点で等量ずつ混合され、次に、播種された大腸菌の培養液からファージを回収することによってファージライブラリ液が回収された。SC存在下で抗原に対する結合活性を有する抗体を取得するパンニングが3回繰り返された。
(2-3)ネガティブセレクション法を利用したライブラリからの低分子存在下においてヒトIL-6に結合する抗体の取得
 構築されたナイーブヒト抗体ファージディスプレイライブラリから、抗原に対して低分子が存在する条件下で抗原に対する結合活性を示す抗体のスクリーニングが行われた。スクリーニングのために、まずナイーブヒト抗体ファージディスプレイライブラリを、低分子非存在下でビオチン標識抗原-ストレプトアビジンと接触させ、低分子非存在下でも抗原に対して結合活性を有する抗体を提示しているファージが除去された。それに続き、低分子の存在下で同様にパンニングを行うことによって、低分子が存在する条件下で抗原に対して結合活性を有する抗体のスクリーニングが実施された。抗原としてビオチン標識されたIL-6が用いられた。
 構築したファージディスプレイ用ファージミドを保持した大腸菌からファージが産生された。産生されたファージは一般的な方法により精製された後、TBSに対して透析処理されたファージライブラリ液が得られた。次に、ファージライブラリ液に終濃度4%となるようにBSAが添加された。磁気ビーズとして、NeutrAvidin coated beads(Sera-Mag SpeedBeads NeutrAvidin-coated)もしくはStreptavidin coated beads(Dynabeads M-280 Streptavidin)を用い、磁気ビーズに固定化された抗原を用いたパンニングが実施された。
 調製されたファージライブラリ液に250 pmolのビオチン標識抗原とともに、各終濃度 が1 mMのATP-Na、Adenosine、Inosine、Succinic acid、およびLactic acid、終濃度1μMのPGE2、ならびに終濃度100μMのKynurenineからなりNaOHによってそのpHが7.4に調製されたSCを加えることによって、当該ファージライブラリ液と室温にて60分間接触させた。次にファージライブラリ液にBSAでブロッキングされた磁気ビーズが加えられ、抗原とファージとの複合体を磁気ビーズと室温にて15分間結合させた。ビーズはSC/TBSにて1回洗浄された。その後、1 mg/mLのトリプシン溶液0.5 mLが加えられたビーズは室温で15分懸濁された後、即座に磁気スタンドを用いて分離されたビーズからファージ溶液が回収された。回収されたファージ溶液が、対数増殖期(OD600が0.4-0.7)となった10 mLの大腸菌株ER2738に添加された。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は、225 mm x 225 mmのプレートへ播種された。次に、播種された大腸菌の培養液からファージを回収することによって、ファージライブラリ液が調製された。
 1回目のパンニングでは、SC存在下で結合可能なファージの回収が行われたが、2回目以降のパンニングでは、SC存在下で抗原に対して結合可能なファージの濃縮が行われた。 具体的には、BSAでブロッキングされたSera-Mag NeutrAvidin ビーズに250pmolビオチン化抗原を加え、室温で15分間結合させた。TBSで3回洗浄されたビーズに対して、BSAにてブロッキングが行われたファージライブラリ液を加え室温にて1時間結合させた。磁気スタンドを用いてビーズを分離することによって、抗原およびビーズに結合しないファージが回収された。回収されたファージに対して、40 pmolのビオチン標識抗原およびSC、NaOHを加えることによって、ファージライブラリを室温で60分間抗原およびSCに含まれる低分子と接触させた。次に、標識抗原、SCおよびファージライブラリの混合液にBSAでブロッキングされた磁気ビーズを加え、室温で15分間、抗原とファージとの複合体を磁気ビーズと結合させた。ビーズは1 mLのSC/TBSTとSC/TBSにて洗浄された。その後1 mg/mLのTrypsin溶液0.5mLが当該混合液に加えられた。当該混合液は室温で20分間攪拌された後、磁気スタンドを使用して分離されたビーズからファージが回収された。回収されたファージは、対数増殖期(OD600が0.4-0.7)となった10 mLの大腸菌株ER2738に添加された。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は225 mm x 225 mmのプレートへ播種された。SC存在下で抗原に対して結合活性を有する抗体を取得するパンニングが3回繰り返された。
(2-4)ファージELISAによる低分子存在下における結合活性の評価
 上記の方法によって得られた大腸菌のシングルコロニーから、常法(Methods Mol. Biol. (2002) 178, 133-145)に習い、ファージ含有培養上清が回収された。NucleoFast 96(MACHEREY-NAGEL)を用いて、回収された培養上清は限外ろ過された。培養上清各100μLが各ウェルにアプライされたNucleoFast 96を遠心分離(4,500g, 45分間)することによってフロースルーが除去された。100μLのH2Oが各ウェルに加えられた当該NucleoFast 96が、再度遠心分離(4,500g, 30分間遠心)によって洗浄された。最後にTBS 100μLが加えられ、室温で5分間静置された当該NucleoFast 96の各ウェルの上清に含まれるファージ液が回収された。
 TBS、もしくはSC/TBSが加えられた精製ファージが以下の手順でELISAに供された。StreptaWell 96マイクロタイタープレート(Roche)がビオチン標識抗原を含む100μLのTBSにて一晩コートされた。当該プレートの各ウェルをTBSTにて洗浄することによって抗原が除かれた後、当該ウェルが250μLの2%SkimMilk-TBSにて1時間以上ブロッキングされた。2%SkimMilk-TBSを除き、その後、各ウェルに調製された精製ファージが加えられた当該プレートを37℃で1時間静置することによって、ファージを提示する抗体を各ウェルに存在する抗原にSC非存在/存在下において結合させた。TBSTもしくはSC/TBSTにて洗浄された各ウェルに、TBSもしくはSC/TBSによって希釈されたHRP結合抗M13抗体(Amersham Pharmacia Biotech)が添加されたプレートを1時間インキュベートさせた。TBSTもしくはSC/TBSTにて洗浄後、TMB single溶液(ZYMED)が添加された各ウェル中の溶液の発色反応が硫酸の添加により停止された後、450 nmの吸光度によって当該発色が測定された。
 単離された96クローンを用いてファージELISA を行うことによって、低分子カクテル存在下で抗原であるヒトIL-6に対して結合活性を有するクローン「I6NMSC1-3_A11」が得られた。
〔実施例3〕低分子存在下で抗原に結合する抗体の評価
(3-1)ヒトIL-6に結合する抗体の発現と精製
 実施例2ファージELISAで示された、SC存在下で抗原に対する結合活性を有すると判断されたクローンI6NMSC1-3_A11から特異的なプライマー(配列番号:110及び112)を用いて増幅された遺伝子の塩基配列が解析された(重鎖の配列は配列番号:30および軽鎖の配列は配列番号:31で表される)。I6NMSC1-3_A11の可変領域をコードする遺伝子はヒトIgG1/Lambdaの動物発現用プラスミドへ、既知の抗ヒトIL-6抗体CLB8-F1(重鎖は配列番号:32、軽鎖は配列番号:33)、および陰性対照である抗ヒトグリピカン3抗体GC413(重鎖は配列番号:34、軽鎖は配列番号:35)の可変領域をコードする遺伝子はそれぞれヒトIgG1/kappaの動物発現用プラスミドへ挿入された。以下の方法を用いて抗体が発現された。FreeStyle 293 Expression Medium培地(Invitrogen)に1.33 x 106細胞/mLの細胞密度で懸濁されて、6well plateの各ウェルへ3 mLずつ播種されたヒト胎児腎細胞由来FreeStyle 293-F株(Invitrogen)に対して、調製されたプラスミドがリポフェクション法により導入された。CO2インキュベーター(37℃、8%CO2, 90 rpm)で4日間培養された培養上清から、rProtein A SepharoseTM Fast Flow(Amersham Biosciences)を用いて当業者公知の方法で抗体が精製された。分光光度計を用いて、精製された抗体溶液の280 nmでの吸光度が測定された。得られた測定値からPACE法により算出された吸光係数を用いて精製された抗体の濃度が算出された(Protein Science (1995) 4, 2411-2423)。
(3-2)取得された抗体のヒトIL-6に対する結合に必要な低分子の同定
 取得されたI6NMSC1-3_A11(以降、A11と略)と対照のCLB8-F1およびGC413の3種類の抗体が表3に示す9条件下でELISAに供された。また表4に示すBufferにて各低分子が表3に示される濃度で適宜調製された。抗原としてビオチン標識されたヒトIL-6が用いられた。
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
 はじめに、StreptaWell 96マイクロタイタープレート(Roche)がビオチン標識抗原を含む100μLのPBSにて室温で1時間以上コートされた。当該プレートの各ウェルをWash bufferにて洗浄することによってプレートへ結合していない抗原が除かれた後、当該ウェルがBlocking Buffer 250μLにて1時間以上ブロッキングされた。Blocking Bufferが除かれた各ウェルに、表3の終濃度で低分子を含むSample Bufferにて2.5μg/mLに調製された精製IgGの各100μLが加えられた当該プレートを室温で1時間静置することによって、各IgGを各ウェルに存在する抗原に結合させた。表3の終濃度で低分子を含むWash Bufferにて洗浄された後に、同低分子入りSample Bufferによって希釈されたHRP結合抗ヒトIgG抗体(BIOSOURCE)が各ウェルに添加されたプレートが1時間インキュベートされた。各低分子を含むWash Bufferにて洗浄後、TMB single溶液(ZYMED)が添加された各ウェル中の溶液の発色反応が、硫酸の添加により停止された後、450 nmの吸光度によって当該発色が測定された。
 測定された結果を図3に示した。CLB8-F1は低分子の種類及び存在の有無に依らず吸光度が同じであるのに対して、I6NMSC1-3_A11は条件8(全ての低分子カクテル溶液)における吸光度と比較して、条件9(低分子なし)における吸光度は、顕著に低い結果となった。この結果から、I6NMSC1-3_A11は低分子の有無によって抗原との結合が変化する性質を有することがファージ ELISA同様確認された。またI6NMSC1-3_A11は条件7(Kynurenine 100μM存在下)において、条件8と同等の吸光度を示し、その他の条件下では吸光度が顕著に低い結果であったことから、Kynurenine存在下で抗原であるヒトIL-6と結合し、Kynurenine非存在下でIL-6に結合しない抗体であることが示された。
〔実施例4〕表面プラズモン共鳴によるヒトIL6に対する結合のkynurenineの影響の評価
(4-1)ヒトIL-6結合に対するkynurenineのスイッチ機能の評価
 Biacore T200 (GE Healthcare) を用いて、A11とヒトIL-6(鎌倉テクノサイエンス)との抗原抗体反応の相互作用が解析された。アミンカップリング法でprotein A/G(Invitrogen)された適当量固定化されたSensor chip CM5(GE Healthcare)に目的の抗体をキャプチャーさせ、抗原であるIL-6を相互作用させた。ランニングバッファーには10 mmol/L ACES、150 mmol/L NaCl、0.05% (w/v) Tween20、100μmol/L kynurenine、pH7.4、または10 mmol/L ACES、150 mmol/L NaCl、0.05% (w/v) Tween20、pH7.4の2 種類が用いられた。抗原であるIL-6との相互作用は37 ℃で測定され、IL-6の希釈にはランニングバッファーと同じバッファーが使用された。
 ヒトIL-6希釈液とブランクであるランニングバッファーを流速5μL/minで3分間インジェクトして、センサーチップ上にキャプチャーさせたA11にヒトIL-6を相互作用させた。その後、流速5μL/minで3分間ランニングバッファーを流し、ヒトIL-6の抗体からの解離が観察された後、10 mmol/L Glycine-HCl、pH1.5を流速30μL/minで30秒間インジェクトしてセンサーチップが再生された。測定で得られたセンサーグラムから算出されたカイネティクスパラメーターである結合速度定数 ka(1/Ms)、および解離速度定数 kd(1/s)をもとに、A11のヒトIL-6に対する解離定数KD(M)が算出された。各パラメーターの算出には Biacore T200 Evaluation Software(GE Healthcare)が用いられた。
 この測定で取得された100μmol/L kynurenine存在下、または非存在下におけるA11と4μmol/LのヒトIL-6との相互作用のセンサーグラムを図4に示した。図4に示されたように、A11は100μmol/Lのkynurenine存在下ではIL-6に結合するが、kynurenine非存在下ではIL-6に対する結合が観察されなかった。このことから、A11はkynurenineをスイッチとしてIL-6に結合する性質を有することが確認された。また、100μmol/L kynurenine存在下でのA11の解離定数KDは1.0E-6 mol/Lであった。
(4-2)ヒトIL-6結合に対するkynurenine濃度の及ぼす影響の評価
 次に、Biacore T200(GE Healthcare)を用いて、A11とヒトIL-6との抗原抗体反応のkynurenine濃度の影響が評価された。ランニングバッファーとして10 mmol/L ACES、150 mmol/L NaCl、0.05% (w/v) Tween20、pH7.4が用いられ、A11とヒトIL-6との抗原抗体反応が25 ℃で測定された。センサーチップCM5上にアミンカップリングによりA11を固定化し、種々の濃度に調製されたkynurenineを含む10 mmol/L ACES、150 mmol/L NaCl、0.05% (w/v) Tween20、pH7.4で希釈された1μmol/LのIL-6をアナライトとして60秒間相互作用させ、その結合量の変化が観察された。その結果を図5に示した。この結果から、スイッチとなるkynurenine濃度が高いほど、IL-6はA11に対してより多く結合することが明らかとなった。
 次にセンサーチップCM5上に固定化された、A11のkynurenineスイッチ機能の対照であるライブラリ由来のヒトIL-6に結合するH01抗体(重鎖は配列番号:36、軽鎖は配列番号:37)に対するヒトIL-6との抗原抗体反応のkynurenine濃度の影響を評価するため、上記と同様の実験が行われた。その結果を図6に示した。この結果から、ライブラリ由来のコントロールの抗IL-6抗体であるH01はkynurenine濃度が変化しても、IL-6に対する結合は変化しないことが確認された。
 次に、Biacore T200(GE Healthcare)を用いて、A11がIL-6に対して二価で結合した場合の、スイッチであるkynurenineの濃度がその結合に及ぼす影響が評価された。ランニングバッファーには10 mmol/L ACES、150 mmol/L NaCl、0.05% (w/v) Tween20、pH7.4を用いられ、A11とヒトIL-6との抗原抗体反応が25 ℃で測定された。センサーチップCM5上にアミンカップリングによりIL-6を固定化し、種々の濃度に調製されたkynurenineを含む10 mmol/L ACES、150 mmol/L NaCl、0.05% (w/v) Tween20、pH7.4で希釈された0.1μmol/LのA11をアナライトとして60秒間相互作用させ、二価で結合した場合のA11のIL-6に対する結合量の変化が観察された。その結果を図7に示した。この評価系ではIL-6がセンサーチップ上に固定化されているため、A11が二価で結合すると考えられる。このようなA11がIL-6を二価で認識するような評価系においても、kynurenine濃度が高いほどA11のIL-6の結合量が増加することが観察された。この結果から、二価での結合においてもA11がIL-6に対してkynurenineをスイッチとして結合する性質を有することが明らかとなった。
(4-3)抗体のヒトIL-6からの解離に対するkynurenineスイッチの効果
 Biacore T200(GE Healthcare)を用いて、kynurenine存在下でIL-6に対して結合したA11が、kynurenine非存在下でkynurenine濃度依存的に解離するかが評価された。ランニングバッファーとして10 mmol/L ACES、150 mmol/L NaCl、0.05% (w/v) Tween20、pH7.4および10 mmol/L ACES、150 mmol/L NaCl、0.05% (w/v) Tween20、pH7.4、100μmol/L kynurenineが用いられ、25 ℃で測定された。アミンカップリングによりIL-6が固定化されたセンサーチップCM5に100μmol/Lのkynurenineを含む10 mmol/L ACES、150 mmol/L NaCl、0.05% (w/v) Tween20、pH7.4で希釈された0.1μmol/LのA11をアナライトとして60秒間相互作用させた後、各ランニングバッファー条件下におけるIL-6の解離の様子が観察された。各ランニングバッファー条件下での解離の程度を比較するために、100μmol/Lのkynurenine存在下でのIL-6に対するA11の結合量を100として標準化(normalize)された値が比較された。この標準化された後のA11とIL-6との相互作用の様子を示したセンサーグラムを図8に示した。図8の結果から、A11はkynurenine存在下でIL-6と結合した後、kynurenineが存在しなくなると、IL-6を速やかに解離する性質を有することが明らかとなった。すなわち、抗体のヒトIL-6に対する結合に及ぼすkynuerenineによる制御は完全に可逆的であることが確認された。
 これらの結果から、A11は、kynurenineをスイッチとして、kynuerenine存在下でIL-6に結合し、kynurenine非存在下ではIL-6から解離する抗体であることが明らかとなった。また、A11はkynurenine非存在下では全くヒトIL-6に結合活性を示さない完全なON/OFF制御が可能であることが確認され、図2に示すような様態でスイッチ機能を果たしていることが推察された。
(4-4)ヒトIL-6に対するkynurenineの結合性の評価
 Biacore T200(GE Healthcare)を用いて、IL-6(鎌倉テクノサイエンス)とkynurenineの相互作用が解析された。アミンカップリング法でIL-6が約5000 RU固定化されたSensor chip CM5(GE Healthcare)に、800、400、200、100、50、25 nmol/Lのkynurenineを相互作用させた。ランニングバッファーとして10 mmol/L ACES、150 mmol/L NaCl、0.05% (w/v) Tween20、pH7.4を用いられた。前記の相互作用は全て25 ℃で測定された。kynurenineの希釈にはランニングバッファーが使用された。取得されたIL-6とkynurenineの相互作用のセンサーグラムを図9に示した。
 前記の実験ではIL-6が約5000 RU固定化された。IL-6の分子量が約20,000 g/molであり、kynurenineの分子量が約200 g/molであることから、kynurenineは最大で50 RU程度相互作用することが期待された。しかし、今回の測定条件においては、最大濃度である800 nmol/Lのkynurenineを相互作用させても、IL-6との明確な相互作用を観察することはできなかった。
 前記の実施例の結果より、A11、IL-6およびkynurenineを含む複合体の形成におけるkynurenineのKDは数十nMから数nMと推定される。このことからも、仮にkynurenineがIL-6と直接相互作用するのであれば、800 nmol/Lでkynurenineを相互作用させることで明確な相互作用が観察されると考えられる。この結果から、kynurenineはIL-6と直接相互作用するわけではなく、A11と相互作用するか、あるいはA11とIL-6の複合体に対して数十nMで相互作用している可能性が示唆された。
〔実施例5〕ウサギB細胞クローニングによる抗アデノシン抗体の取得
(5-1)アデノシン結合ライブラリ作製のための免疫原のデザイン
 ウサギに免疫する免疫原として、図10に示した2'-Adenosine-PEG-Tetanus toxin p30 helper peptide(2'-Adenosine-PEG-peptide)、および、図11に示した5'-Adenosine-PEG- Tetanus toxin p30 helper peptide(5'-Adenosine-PEG-peptide)が用いられた。Tetanus toxin p30 helper peptideはFNNFTVSFWLRVPKVSASHLE(配列番号:4)のアミノ酸配列からなり、ヘルパーT細胞上に発現するT細胞受容体のエピトープとして同定されたペプチドである(Eur. J. Immunol. (1989) 19, 2237-2242)。抗体産生を活性化することが知られており(J. Immunol. (1992) 149, 717-721)、アデノシンと連結させることでアジュバンドとして作用し、アデノシンに対する抗体産生を亢進させることが期待される。産生される抗体のエピトープがアデノシンとともにTetanus toxin p30 helper peptideを含みにくいよう、アデノシンとTetanus toxin p30 helper peptideの連結にはPEGを介するようデザインされた。アデノシンはATPの代謝物であるが、ATPのリン酸基はアデノシンの5'位水酸基に付加されていることから、アデノシンの5'位水酸基をエピトープとしない抗体はアデノシンに加えATPにも結合する可能性が考えられる。つまり、5'-Adenosine-PEG- Tetanus toxin p30 helper peptideを免疫原として用いることでアデノシンとATPの両方に結合できる抗体が得られやすくなり、2'-Adenosine-PEG-Tetanus toxin p30 helper peptideを免疫原として用いることでアデノシンに結合しATPには結合しない抗体が得られやすくなると想定されることから、アデノシンの2'位または5'位に連結するTetanus toxin p30 helper peptide を含む二種類の免疫原が(5-2)に記載のように作製された。
 加えて、Tetanus toxin p30 helper peptideの代わりにビオチンをコンジュゲートさせた2'-Adenosine-PEG-biotin(図12)および5'-Adenosine-PEG-biotin(図13)が以下のように作製された。これら二種類のAdenosine-PEG-biotinに対する結合を検証することによって、Tetanus toxin p30 helper peptideをエピトープとして含む抗体でないことを判別することが可能となる。
(5-2)アデノシン結合ライブラリ作製のための免疫原の合成
 2'-Adenosine-PEG-peptide(adenosine 2'-PEG-peptide conjugateまたは2'-(PEG-peptide)adenosine)および2'-Adenosine-PEG-biotin(adenosine 2'-PEG-biotin conjugateまたは2'-(PEG- biotin)adenosine)は以下のように合成された。なお、合成された2'-Adenosine-PEG-peptideまたは2'-Adenosine-PEG-biotinは以下の条件で分析または分取された。
 LCMSの分析条件は、下記のとおりである。
Figure JPOXMLDOC01-appb-T000044
 HPLCの分取条件は、下記のとおりである。
Figure JPOXMLDOC01-appb-T000045
(5-2-1)化合物006(Boc-Phe-Asn-Asn-Phe-Thr (tBu)-Val-Ser (tBu)-Phe-Trp (Boc)-Lue-Arg (Pbf)-Val-Pro-Lys (Boc)-Val-Ser (tBu)-Ala-Ser (tBu)-His (Trt)-Leu-Glu (tBu)-OH)の合成
Figure JPOXMLDOC01-appb-C000046
 ペプチド合成機(Multipep RS; Intavis)を用いて、Fmoc法によりペプチド合成が行われた。全てのFmocアミノ酸は渡辺化学工業から購入された。なお、操作の詳細な手順は合成機に付属のマニュアルに従った。
 合成機にC末端のFmoc-Glu(tBu)-OHが結合した2-クロロトリチルレジン(1カラムあたり250 mg、30カラム、11.7 mmol)と、各種Fmocアミノ酸(0.6mol/L)と1-ヒドロキシ-7-アザベンゾトリアゾール(0.375mol/L)のN,N-ジメチルホルムアミド溶液と、ジイソプロピルカルボジイミドのN,N-ジメチルホルムアミド溶液(10%v/v)をセットし、Fmoc脱保護溶液として、5%(wt/v)の尿素を含むピペリジンのN,N-ジメチルホルムアミド溶液(20%v/v)を用いて合成反応が行われた。レジンはN,N-ジメチルホルムアミドで洗浄した後、Fmoc脱保護に次いでFmocアミノ酸の縮合反応を1サイクルとし、このサイクルを繰り返すことでレジン表面上にペプチドを伸長させた。伸長終了後、レジンをトリフルオロエタノールで洗浄し、トリフルオロエタノール/ジクロロメタン(=1/1)を加え、レジンからペプチドの切り出しを行い、化合物006(7.2 g)が粗生成物として得られた。
LCMS(ESI) m/z =1185(M+3H)3+
保持時間:1.24分(分析条件SQDAA05)
(5-2-2)化合物007の合成
Figure JPOXMLDOC01-appb-C000047
 0℃に冷却されたアデノシン(2.00 g、 7.48 mmol)のN,N-ジメチルホルムアミド (40 ml)懸濁液に、60%水素化ナトリウム(0.42 g、10.48 mol)が加えられた反応液が0℃で1時間攪拌された。ブロモ酢酸メチル(0.76 ml、8.01 mmol)が加えられた当該反応液が、室温で5時間攪拌された。酢酸(1ml)およびメタノール(3ml)が加えられた反応混合物が減圧濃縮された。得られた残渣が順相シリカゲルカラムクロマトグラフィー(ジクロロメタン/メタノール)にて精製され、化合物007(0.93 g、37%)が得られた。
LCMS(ESI) m/z = 340 (M+H)+
保持時間:0.27分(分析条件SQDFA05)
(5-2-3)化合物008の合成
Figure JPOXMLDOC01-appb-C000048
 t-ブチルジメチルシリルクロリド(999 mg、6.63 mol)およびイミダゾール(722 mg、10.61 mol)が加えられた化合物007(900 mg、2.65 mmol)のピリジン(8 ml)溶液が、室温で4時間攪拌された。反応混合物から酢酸エチル/水で抽出された有機層が飽和食塩水で洗浄された。無水硫酸ナトリウムで乾燥された有機層が、ろ過後、減圧濃縮された。得られた残渣が順相シリカゲルカラムクロマトグラフィー(ジクロロメタン/メタノール)にて精製され、化合物008(1.17 g、78%)が得られた。
LCMS(ESI)m/z = 568 (M+H)+
保持時間:1.10分(分析条件SQDFA05)
(5-2-4)化合物009の合成
Figure JPOXMLDOC01-appb-C000049
 水(0.17 ml)に溶解させた水酸化リチウム(61 mg、2.55 mol)が加えられた化合物008(290 mg、0.511 mmol)のメタノール(0.34 ml)/テトラヒドロフラン(0.34 ml)溶液が、室温で30分間攪拌された。1M塩酸で中和された反応混合物が、減圧濃縮された。濃縮残渣から酢酸エチル/水で抽出された、有機層が飽和食塩水で洗浄された。無水硫酸ナトリウムで乾燥させた有機層は、ろ過後、減圧濃縮され化合物009(319 mg、90%)が得られた。
LCMS(ESI)m/z = 552(M-H)-
保持時間:0.97分(分析条件SQDFA05)
(5-2-5)化合物010および化合物011の合成
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
 1-ヒドロキシベンゾトリアゾール(75 mg、0.553 mol)および1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(106 mg、0.553 mol)が加えられた化合物009(255mg、0.460 mmol)のN,N-ジメチルホルムアミド (1.5 ml)溶液が、室温で3分間攪拌された。O-(2-アミノエチル)-O'-2-アジドエチル)ノナエチレングリコール(291 mg、0.553 mmol)が加えられた反応液が、室温で3時間攪拌された。減圧濃縮された反応混合物の残渣が逆相シリカゲルカラムクロマトグラフィー(10 mM酢酸アンモニウム水溶液/メタノール)にて精製され、化合物010(177 mg、42%)および011(72 mg、19%)が得られた。
 化合物010
LCMS(ESI)m/z = 1063(M+H)+
保持時間:0.98分(分析条件SQDFA05)
 化合物011
LCMS(ESI)m/z = 949(M+H)+
保持時間:0.67分(分析条件SQDFA05)
(5-2-6)化合物012の合成
Figure JPOXMLDOC01-appb-C000052
 10%パラジウム炭素(34 mg)が加えられた化合物010(170 mg、0.160 mmol)のエタノール(1 ml)溶液が、水素雰囲気下2時間攪拌された。更に10%パラジウム炭素(34 mg)を加え、水素雰囲気下で2時間攪拌し、反応を完結させた。反応液のろ液が減圧濃縮され、化合物012(34 mg、95%)が得られた。
LCMS(ESI)m/z = 1037 (M+H)+
保持時間:0.70分(分析条件SQDFA05)
(5-2-7)化合物013および化合物014の合成 
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
 化合物006(354 mg、0.110 mmol)、1-ヒドロキシベンゾトリアゾール(13 mg、0.100 mol)および1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(19 mg、0.100 mol)が加えられた、化合物012(86 mg、0.083 mmol)のN,N-ジメチルホルムアミド(1.5 ml)溶液が室温で2時間攪拌された。反応混合物のろ液が、表6に記載される分取条件Aにて精製され、化合物013および014の混合物(72 mg)が得られた。
 化合物013
LCMS(ESI)m/z = 1525(M+3H)3+、1144(M+4H)4+
保持時間:1.13分(分析条件SQDAA50)
 化合物014
LCMS(ESI)m/z = 1444(M+3H)3+、1083(M+4H)4+
保持時間:1.02分(分析条件SQDAA50)
(5-2-8)2'-Adenosine-PEG-peptide(adenosine 2'-PEG-peptide conjugateまたは2'-(PEG-peptide)adenosine)(化合物015)の合成
Figure JPOXMLDOC01-appb-C000055
 トリフルオロ酢酸(16 ml)、ジクロロメタン(8 ml)、水(1.3 ml)、およびテトライソプロピルシラン(1.3 ml)が加えられた化合物013および014の混合物(42 mg)が、室温で6時間攪拌された。減圧濃縮された反応混合物の残渣が、表6に記載された分取条件Bにて精製され、化合物015(10 mg)が得られた。
LCMS(ESI)m/z = 1090(M+3H)3+、818(M+4H)4+
保持時間:0.52分(分析条件SQDAA50)
(5-2-9)化合物016の合成
Figure JPOXMLDOC01-appb-C000056
 10%パラジウム炭素(34 mg)が加えられた化合物011(70 mg、0.074 mmol)のエタノール(1ml)溶液が、水素雰囲気下5時間攪拌された。反応液のろ液が減圧濃縮され、化合物016(58 mg、85%)が得られた。
LCMS(ESI)m/z = 923(M+H)+
保持時間:0.50分(分析条件SQDFA05)
(5-2-10)化合物017の合成
Figure JPOXMLDOC01-appb-C000057
 D-ビオチンN-スクシイミジル(24 mg、0.069 mmol)、およびトリエチルアミン(13μl、 0.094 mol)が加えられた化合物016(58 mg、0.063 mmol)のN,N-ジメチルホルムアミド (1 ml)溶液が、室温で2時間攪拌された。更にD-ビオチンN-スクシイミジル(5 mg、0.015 mmol)が加えられた後、室温で1.5時間攪拌させ反応を完結させた。反応混合物が逆相シリカゲルカラムクロマトグラフィー(10 mM酢酸アンモニウム水溶液/メタノール)にて精製され、化合物017(50 mg、69%)が得られた。
LCMS(ESI)m/z = 1149(M+H)+
保持時間:1.04分(分析条件SQDFA05)
(5-2-11)2'-Adenosine-PEG-biotin(adenosine 2'-PEG-biotin conjugateまたは2'-(PEG- biotin)adenosine)(化合物018)の合成
Figure JPOXMLDOC01-appb-C000058
 1Mフッ化テトラ-n-ブチルアンモニウムテトラヒドロフラン溶液(65μl、0.065 mmol)が加えられた化合物017(62 mg、0.054 mmol)のテトラヒドロフラン(2 ml)溶液が、室温で1時間攪拌された。更に1Mフッ化テトラ-n-ブチルアンモニウムテトラヒドロフラン溶液(20μl、0.020 mmol)を加え、室温で1時間攪拌させ反応を完結させた。減圧濃縮された反応液の残渣が逆相シリカゲルカラムクロマトグラフィー(0.1%ギ酸水溶液/0.1%ギ酸アセトニトリル)にて精製され、化合物018(12 mg、21%)が得られた。
LCMS(ESI)m/z = 1035(M+H)+
保持時間:0.71分(分析条件SQDAA05)
 また、5'-Adenosine-PEG-peptideおよび5'-Adenosine-PEG-biotinも同様の反応を用いて合成された。
(5-3)動物によるAdenosine結合抗体作製および抗体のスクリーニング
ウサギが通常の方法によって2'-Adenosine-PEG-peptideおよび/または5'-Adenosine-PEG-peptideで免疫された。autoMACS Pro Separator とFACSAria(BD)を用いたAdenosine-PEG-biotin結合性とウサギIgGの発現を指標に免疫されたウサギの血液から採取された細胞懸濁液から、Adenosine結合活性を有する細胞の候補が選抜された。次に、選抜された細胞の培養上清中に分泌された抗体がスクリーニングされた。スクリーニングとしてAdenosine-PEG-biotinに対する結合活性を有するか否かがELISA法によって評価された。また、AdenosineをAdenosine-PEG-biotin と一緒に1000倍以上加えるとAdenosine-PEG-biotinに対する結合が抑制されるかどうかもELISA法で評価された。Adenosine-PEG-biotinに対する結合活性を有し、Adenosine-PEG-biotinと一緒にAdenosineを加えた場合にAdenosine-PEG-biotinに対する結合が抑制されることを指標にして選抜された細胞からPCR法を用いてH鎖可変領域およびL鎖可変領域が取得された。取得された可変領域を、ヒトIgG1重鎖定常領域、およびヒト軽鎖定常領域と組み合わせて発現させた。
(5-4)Adenosine結合免疫ライブラリ作製のためのB細胞の取得
2'-Adenosine-PEG- Tetanus toxin peptideおよび5'-Adenosine-PEG- Tetanus toxin peptideで免疫されたウサギの脾臓から採取された細胞懸濁液から、autoMACS Pro Separator とFACSAria(BD)を用いてAdenosine-PEG-biotin結合性とウサギIgGまたはIgMの発現を指標に、Adenosine結合活性を有する細胞の候補が選抜された。PBS(-)で洗浄された前記選抜細胞から調製された細胞ペレットが、免疫ライブラリの作製に供された。
〔実施例6〕ウサギB細胞クローニングから得られたクローンの評価
(6-1)ウサギB細胞クローニングから得られたクローンの2'-Adenosine-PEG-Biotinに対する結合活性の評価
 ウサギB細胞クローニング法によって得られたクローンのアデノシンに対する結合活性がSPR法を用いて評価された。Biacore 4000(GE Healthcare)を用いて、上記クローンと2'-Adenosine-PEG-Biotinとの抗原抗体反応が速度論的に解析された。アミンカップリング法で適切な量のprotein A/G(Invitrogen)が固定化されたSensor chip CM5(GE Healthcare)に目的の抗体をキャプチャーさせた。次に、アナライトとして100 nmol/Lの2'-Adenosine-PEG-Biotinを60秒間相互作用させた後、アナライトの解離が60秒間追跡して測定された。ランニングバッファーにはHBS-P+(GE Healthcare)が用いられた。測定は全て25 ℃で実施され、アナライトの希釈にはランニングバッファーが使用された。
 2'-Adenosine-PEG-Biotinを相互作用させた際の結合量を各抗体のキャプチャー量(RU)で割った値(N_binding_100)と、2'-Adenosine-PEG-Biotinの相互作用後に各抗体から2'-Adenosine-PEG-Biotinが解離した60秒後の値を各抗体のキャプチャー量(RU)で割った値(N_stability_100)を指標とすることによって、各抗体の2'-Adenosine-PEG-Biotinに対する結合活性が比較された。ただし、キャプチャー量が1500 RU以下の抗体は、結合が十分に観察できなかったため検討する対象から除かれた。この結果を図14に示した。図14の結果から、B細胞クローニング法によってアデノシンに対して様々なaffinityで結合するクローンが取得されたことが明らかとなった。
(6-2)2'-Adenosine-PEG-Biotin結合クローンのアデノシンおよびATPに対する結合活性の評価およびその配列解析
 2'-Adenosine-PEG-Biotinに対する結合が認められたクローンのアデノシンまたはATPに対する結合がSPR法および競合ELISA法により評価された。
(6-2-1)2'-Adenosine-PEG-Biotin結合クローンのSPR法によるアデノシンまたはATPに対する結合の評価
 Biacore T200(GE Healthcare)を用いて、B cell cloning法によって得られた抗体SMB0002、SMB0089、SMB0104のアデノシン、ATPとの抗原抗体反応の相互作用が解析された。Sensor chip CM5(GE Healthcare)上にアミンカップリング法で適切な量固定化されたprotein A/G(Invitrogen)に、目的の抗体をキャプチャーさせ、抗原であるアデノシン、またはATPを相互作用させた。ランニングバッファーには10 mmol/L ACES、150 mmol/L NaCl、0.05% (w/v) Tween20、pH7.4が用いられた。測定は全て25 ℃で実施され、抗原の希釈にはランニングバッファーが使用された。
 SMB0002、SMB0089、SMB0104については、抗原希釈液とブランクであるランニングバッファーを流速20μL/minで2分間インジェクトし、センサーチップ上にキャプチャーさせた抗体に各抗原を相互作用させた。その後、流速20μL/minで3分間ランニングバッファーを流し、抗原の抗体からの解離が観察された。その後、10 mmol/L Glycine-HCl, pH1.5を流速30μL/minで30秒間インジェクトし、センサーチップが再生された。測定で得られたセンサーグラムから、カイネティクスパラメーターである結合速度定数 ka (1/Ms)、および解離速度定数 kd (1/s) が算出された。これらの定数をもとに解離定数KD (M) が算出された。各パラメーターの算出には Biacore T200 Evaluation Software(GE Healthcare)が用いられた。
 その結果、SMB0002をはじめとして、SMB0089、SMB0104などの複数のクローンがアデノシンとATPの両方に対して結合することが見出された。各クローンをアデノシン 500、125、31.3、7.81 nMおよびATP 5000、1250、313、78.1 nMの濃度で結合を評価した時に観察されたセンサーグラムを図15にまとめた。図15に示すように、SMB0002、SMB0089、SMB0104のアデノシンとATPの両方に対する結合が認められた。SMB0002、SMB0089、SMB0104のアデノシンに対するKDはそれぞれ9.3E-9 、6.9E-9 、4.1E-8 (mol/L)および1.0E-5 (mol/L)であり、SMB0002、SMB0089、SMB0104のATPに対するKDはそれぞれ1.0E-5 、8.8E-7 、1.4E-7 (mol/L)であった。
 同様にして、Biacore 4000(GE Healthcare)を用いて、B cell cloning法によって得られた抗体SMB0171のアデノシン、ATPとの抗原抗体反応の相互作用が解析された。Sensor chip CM5(GE Healthcare)上にアミンカップリング法で適切な量固定化されたprotein A/G(Invitrogen)に、目的の抗体をキャプチャーさせ、抗原であるアデノシン、またはATPを相互作用させた。ランニングバッファーにはHBS-P+ (GE Healthcare)が用いられた。測定は全て25 ℃で実施され、抗原の希釈にはランニングバッファーが使用された。
 SMB0171については、抗原希釈液とブランクであるランニングバッファーを流速10 μL/minで1分間インジェクトし、センサーチップ上にキャプチャーさせた抗体に各抗原を相互作用させた。その後、流速10 μL/minで3分間ランニングバッファーを流し、抗原の抗体からの解離が観察された。その後、10 mmol/L Glycine-HCl, pH1.5を流速30μL/minで30秒間インジェクトし、センサーチップが再生された。測定で得られたセンサーグラムから、カイネティクスパラメーターである結合速度定数 ka (1/Ms)、および解離速度定数 kd (1/s) が算出された。これらの定数をもとに解離定数KD (M) が算出された。各パラメーターの算出には Biacore 4000 Evaluation Software(GE Healthcare)が用いられた。
 その結果、SMB0171ではATPに対して結合することが見出された。各クローンをATP 50、5 μMの濃度で結合を評価した時に観察されたセンサーグラムを図16に示した。図16に示すように、SMB0171のATPに対する結合が認められた。SMB0171のATPに対するKDは5.9E-6 (mol/L)であった。
(6-2-2)2'-Adenosine-PEG-Biotin結合クローンの競合ELISA法によるアデノシンおよびATPへの結合評価
 2'-Adenosine-PEG-Biotinに対する結合が認められた抗体を1μg/mLになるようにPBSで希釈して384 wellのMAXISorp(Nunc)の各ウェルに加え、室温で1時間以上放置しプレートに結合させた。プレートの各ウェル中のPBSで希釈した抗体が除かれた後、1% BSAを含む TBSが加えられた当該プレートは1時間以上放置された。その後、1% BSAを含む TBS pH7.4 を除き、PBSで希釈した50nMの2'-Adenosine-PEG-Biotin、PBSで希釈した50 nMの2'-Adenosine-PEG-Biotinと500μMのAdenosineの混合物、PBSで希釈した50 nMの2'-Adenosine-PEG-Biotinと500μMのATPの混合物、またはPBSのみのいずれかが加えられた当該プレートが室温で1時間放置された。その後、当該プレートの各ウェルが0.05% Tween-20を含むPBS 80μLで3回洗浄された。その後、PBSで20000倍に希釈されたStreptavidine-HRP(Thermo fisher scientific)が各ウェルに加えられたプレートは、室温で1時間以上放置された。0.05% Tween-20を含むPBS 80μLで3回洗浄された当該プレートの各ウェルに、発色基質(ABTS peroxidase substrate)が加えられた。1時間当該プレートがインキュベートされた後に、各ウェル中の溶液の発色がMolecular Device社製SpectraMaxにて405nmの吸光度が測定された。
 その結果、図17に示すようにSMB0002は、アデノシンとATPを過剰量添加することによって、2'-Adenosine-PEG-Biotinに対する結合が阻害されたことから、これらのクローンは2'-Adenosine-PEG-Biotinのみならず、アデノシンとATPの両方に結合する抗体であることが確認された。
(6-2-3)SPR法によるアデノシンおよびATP結合クローンの配列解析
 AdenosineとATPの両方に対して結合が認められたクローンのアミノ酸配列は表7に示すとおりであった。
Figure JPOXMLDOC01-appb-T000059
[実施例7]ファージディスプレイ技術を用いたヒト抗体ライブラリからのアデノシンおよび/またはATPに結合する抗体の取得
(7-1)ナイーブヒト抗体ファージディスプレイライブラリの作製
 ヒトPBMCから作成したポリA RNAや、市販されているヒトポリA RNAなどを鋳型として当業者に公知な方法に従い、互いに異なるヒト抗体配列のFabドメインを提示する複数のファージからなるヒト抗体ファージディスプレイライブラリが構築された。
(7-2)ビーズパンニングによるライブラリからのアデノシンおよび/またはATPに結合する抗体の取得
 (7-1)で構築されたナイーブヒト抗体ファージディスプレイライブラリから、抗原に対する結合活性を示す抗体のスクリーニングが行われた。すなわち、ビーズにキャプチャーされた抗原に対して結合活性を示す抗体を提示しているファージが集められた。抗原としてビオチン化ATP、2'-Adenosine-PEG-Biotin、および5'-Adenosine-PEG-Biotinが用いられた。
 構築されたファージディスプレイ用ファージミドを保持した大腸菌から産生されたファージは一般的な方法により精製された。その後TBSで透析処理されたファージライブラリ液が得られた。次に、ファージライブラリ液に終濃度4%となるようにBSAが添加された。磁気ビーズに固定化された抗原を用いたパンニングが実施された。磁気ビーズとして、NeutrAvidin coated beads(Sera-Mag SpeedBeads NeutrAvidin-coated)もしくはStreptavidin coated beads(Dynabeads M-280 Streptavidin)が用いられた。
 その後、調製されたファージライブラリ液と250 pmolのビオチン化ATP、2'-Adenosine-PEG-Biotin、および5'-Adenosine-PEG-Biotinを加えることによって、当該ファージライブラリ液とアデノシンおよびATPとを室温にて60分間接触させた。次にファージライブラリ液にBSAでブロッキングされた磁気ビーズが加えられ、アデノシンおよび/またはATPとファージとの複合体を磁気ビーズと室温にて15分間結合させた。ビーズはTBSにて1回洗浄された。その後、1 mg/mLのトリプシン溶液0.5 mLが加えられたビーズは室温で15分懸濁された後、即座に磁気スタンドを用いて分離されたビーズからファージ溶液が回収された。回収されたファージ溶液が、対数増殖期(OD600が0.4-0.7)となった10 mLの大腸菌株ER2738に添加された。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は、225 mm x 225 mmのプレートへ播種された。次に、播種された大腸菌の培養液からファージを回収することによって、ファージライブラリ液が調製された。
 2回目のパンニングにおいても、アデノシンおよび/またはATPに対して結合可能なファージの濃縮が行われた。得られたファージライブラリ液に各50 pmolのビオチン化ATP、2'-Adenosine-PEG-Biotin、および5'-Adenosine-PEG-Biotinを加えることによって、当該ファージライブラリ液をアデノシンおよびATPと室温にて60分間接触させた。次にファージライブラリ液にBSAでブロッキングされた磁気ビーズが加えられ、アデノシンおよび/またはATPとファージとの複合体を磁気ビーズと室温にて15分間結合させた。TBSTにて3回、TBSにてビーズは2回洗浄された。その後、1 mg/mLのトリプシン溶液0.5 mLが加えられたビーズは室温で15分懸濁された後、即座に磁気スタンドを用いて分離されたビーズからファージ溶液が回収された。回収されたファージ溶液が、対数増殖期(OD600が0.4-0.7)となった10 mLの大腸菌株ER2738に添加される。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は、225 mm x 225 mmのプレートへ播種された。次に、播種された大腸菌の培養液からファージを回収することによって、ファージライブラリ液が調製された。
 同様の手順でアデノシンおよび/またはATPに対して結合可能な抗体を取得するパンニングが3回繰り返された。4回目のパンニングはTBST、TBS共に5回洗浄が実施された。
(7-3)ファージELISAによるアデノシンおよびATP結合性の評価
 上述の実施例で示されたPanning法により得られた大腸菌のシングルコロニーから、定法(Method Mol. Biol. (2002) 178, 133-145)に倣い、ファージ含有培養上清が回収された。について、NucleoFast 96 (MACHERY-NAGEL)を用いて回収された培養上清が限外濾過された。培養上清各100μLがNucleoFast 96の各ウェルにアプライされ、4,500g, 45分間遠心分離を行いフロースルーが除去された。H2O 100μLを加え、再度4,500g, 30分間遠心分離による洗浄が行われた。その後、TBS 100μLを加え、室温で5分間静置した後、上清に含まれるファージ液が回収された。
 TBSが加えられた精製ファージが以下の手順でELISAに供された。StreptaWell 96マイクロタイタープレート(Roche)がビオチン標識抗原(2'-Adenosine-PEG-biotin、5'-Adenosine-PEG-biotin、およびATP-PEG-biotinを等量ずつ混合)を含む100μLのTBSにて室温で1時間コートされた。当該プレートの各ウェルをTBST(0.1%Tween20を含むTBS)にて洗浄することによって抗原が除かれた後、当該ウェルが1時間以上250μLの2%SkimMilk-TBSにてブロッキングされた。2%SkimMilk-TBSを除き、その後各ウェルに調製された精製ファージが加えられた当該プレートを室温で1時間静置することによって、ファージを提示する抗体を各ウェルに存在する抗原に結合させた。TBSTにて洗浄された各ウェルに、TBSによって希釈されたHRP結合抗M13抗体(Amersham Pharmacia Biotech)が添加されたプレートを1時間インキュベートさせた。TBSTにて洗浄後、TMB single溶液(ZYMED)が添加された各ウェル中の溶液の発色反応が、硫酸の添加により停止された後、450 nmの吸光度によって当該発色が測定された。
 ファージELISA を実施した192クローンの中から、2'-Adenosine-PEG-biotin、5'-Adenosine-PEG-biotin、ATP-PEG-biotinのいずれか、いずれか2つ、もしくは3つ全てに結合能を有する106のクローンが得られた。
 次にこれらのクローンが2'-Adenosine-PEG-biotin, 5'-Adenosine-PEG-biotin, ATP-PEG-biotinのうち、どの抗原に対して結合能を有しているのかを確認する目的で、同精製ファージがTBSで希釈されたのちに以下の手順でELISAに供された。StreptaWell 96マイクロタイタープレート(Roche)がビオチン標識抗原(2'-Adenosine-PEG-biotin, 5'-Adenosine-PEG-biotin, ATP-PEG-biotin)いずれかを含む100μLのTBSにて室温で1時間コートされた。当該プレートの各ウェルをTBSTにて洗浄することによって抗原が除かれた後、当該ウェルが1時間以上250μLの2% SkimMilk-TBSにてブロッキングされた。2% SkimMilk-TBSを除き、その後各ウェルに調製された精製ファージが加えられた当該プレートを室温で1時間静置することによって、ファージを提示する抗体を各ウェルに存在する抗原に結合させた。TBSTにて洗浄された各ウェルに、TBSによって希釈されたHRP結合抗M13抗体(Amersham Pharmacia Biotech)が添加されたプレートを1時間インキュベートさせた。TBSTにて洗浄後、TMB single溶液(ZYMED)が添加された各ウェル中の溶液の発色反応が、硫酸の添加により停止された後、450 nmの吸光度によって当該発色が測定された。ファージELISAの結果が以下の表8に記されている。
Figure JPOXMLDOC01-appb-T000060
 ファージELISAを実施したクローンのうち、抗原二種類以上に結合が確認されたものは1クローンであり、本抗体断片を鋳型として、特異的なプライマーによって増幅された遺伝子の塩基配列解析が行われた。本クローンは5'-Adenosine-PEG-biotin, ATP-PEG-biotinの二者に結合能を有するクローンであり、ATNLSA1-4_D12と命名された。ATNLSA1-4_D12抗体の重鎖可変領域の配列は配列番号:46に、および、軽鎖可変領域の配列は配列番号:47に記載されている。
(7-4)ファージ競合ELISAによるアデノシンもしくはATP結合性の評価
 ファージELISAの結果、5'-Adenosine-PEG-biotinおよびATP-biotinの両者に結合能があると判断されたクローン、ATNLSA1-4_D12(重鎖可変領域配列:46、軽鎖配列:47)は、5'-Adenosine-PEG-biotin, ATP-PEG-biotinの構造上、ビオチンタグもしくはPEG領域を認識している可能性が残っている。そこで、ビオチンタグやPEG認識抗体ではないことを示すため、ATNLSA1-4_D12および、Negative controlとして用意されたIL-6R結合クローンPF1(重鎖配列:48、軽鎖配列:49)を用いてアデノシンもしくはATPで抗原との結合が阻害されるかどうかがファージELISAにて確認された。ATNLSA1-4_D12およびPF1はそれぞれTBSで希釈され、以下の手順でELISAに供された。
 StreptaWell 96マイクロタイタープレート(Roche)がビオチン標識抗原(5'-Adenosine-PEG-biotin, ATP-PEG-biotinの混合)を含む100μLのTBSにて室温で1時間コートされた。当該プレートの各ウェルをTBSTにて洗浄することによって抗原が除かれた後、当該ウェルが1時間以上250μLの2% SkimMilk-TBSにてブロッキングされた。2% SkimMilk-TBSを除き、その後各ウェルに調製された精製ファージが加えられた当該プレートを室温で1時間静置することによって、ファージが提示する抗体を各ウェルに存在する抗原に結合させた。次に抗原なし、ならびに抗原と等量から10,000倍量までのATPの希釈系列を含むTBSが当該ウェルに加えられた。室温で1時間当該プレートを静置することによって、固定化されている抗原とATPが競合させられた。その後、TBSTにて洗浄された各ウェルに、TBSによって希釈されたHRP結合抗M13抗体(Amersham Pharmacia Biotech)が添加されたプレートを1時間インキュベートさせた。TBSTにて洗浄後、TMB single溶液(ZYMED)が添加された各ウェル中の溶液の発色反応が、硫酸の添加により停止された後、450 nmの吸光度によって当該発色が測定された。
 測定された結果を図18に示した。ATNLSA1-4_D12はATP濃度が高くなるにつれ、過剰量のATP存在下で発色値が小さくなっていることが確認され、ATP濃度依存的にATNLSA1-4_D12と抗原との結合が阻害されていることが確認された。また陰性対照として比較実験が行われたPF1はATP濃度に関係なく抗原との結合は確認されていない。このことからATNLSA1-4_D12はATP結合能を有する抗体であり、ビオチンタグやPEGを認識する抗体ではないことが確認された。
(7-5)ATPおよびadenosineに結合する抗体の発現と精製
 実施例7のファージELISAで示された、ATPおよびadenosineに結合活性を有すると判断されたクローンATNLSA1-4_D12から特異的なプライマーを用いて増幅された遺伝子の塩基配列が解析された(重鎖の配列は配列番号:46および軽鎖の配列は配列番号:47で表される)。ATNLSA1-4_D12の可変領域をコードする遺伝子はヒトIgG1/Lambdaの動物発現用プラスミドへ挿入された。以下の方法を用いて抗体が発現された。FreeStyle 293 Expression Medium培地(Invitrogen)に1.33 x 106細胞/mLの細胞密度で懸濁されて、6well plateの各ウェルへ3 mLずつ播種されたヒト胎児腎細胞由来FreeStyle 293-F株(Invitrogen)に対して、調製されたプラスミドがリポフェクション法により導入された。CO2インキュベーター(37℃、8%CO2, 90 rpm)で4日間培養された培養上清から、rProtein A SepharoseTM Fast Flow(Amersham Biosciences)を用いて当業者公知の方法で抗体が精製された。分光光度計を用いて、精製された抗体溶液の280 nmでの吸光度が測定された。得られた測定値からPACE法により算出された吸光係数を用いて精製された抗体の濃度が算出された(Protein Science (1995) 4, 2411-2423)。
(7-6)表面プラズモン共鳴を用いたATP、adenosine結合抗体のATP、adenosine結合の評価
 Biacore T200 (GE Healthcare) を用いて、ATPおよびAdenosine結合活性のあるクローンATNLSA1-4_D12の可変領域がIgGの定常領域に連結されたD12の抗原抗体反応の相互作用が解析された。アミンカップリング法で適切な量のprotein A(Life technologies)が固定化されたSensor chip CM5またはCM4(GE Healthcare)に目的の抗体をキャプチャーさせ、抗原であるATP (Wako)、Adenosine (Wako)、ADP (adenosine diphosphate) (Wako) を相互作用させた。ランニングバッファーには50 mM Tris-HCl (Takara, T903), 500 mM NaCl, 0.01% (w/v) Tween20が用いられた。抗原は流速30μL/minで、30秒間相互作用させ、30秒間解離させた。抗原との相互作用は15°C で測定され、抗原の希釈にはランニングバッファーと同じバッファーが使用された。
 測定で得られたセンサーグラムから算出されたカイネティクスパラメーターである結合速度定数 ka(1/Ms)、および解離速度定数 kd(1/s)をもとに、解離定数KD(M)が算出された。あるいは、衡状態解析法 (Steady state analysis) を用いて、解離定数KD(M)が算出された。各パラメーターの算出には Biacore T200 Evaluation Software(GE Healthcare)が用いられた。
 adenosineに対するKDを算出するために、各濃度のadenosine存在下での結合レスポンスが20μmol/L ADP存在下および非存在下において取得され、また別途20μmol/L ADP存在下での結合レスポンスが取得された。非特異的結合成分と推定される、ADP存在下における各濃度のadenosineに対する結合レスポンスからADP単独存在下でのレスポンスを差し引いた値を、ADP非存在下におけるadenosineに対する結合レスポンスの値から差し引くことで、adenosineに対する特異的結合のレスポンス(R)が取得された。adenosine濃度がX軸に、式2により算出されるRがY軸にプロットされた曲線に対して最小二乗法をOffice Excel2007 (Microsoft) のソルバー機能を用いて適用することによってadenosineに対するKD値が決定された。
(式2)
 R = Rmax× conc /(K+ conc) 
 式2において、concはadenosine濃度(mol/L)を意味し、Rmaxは抗体に対してadenosineが最も結合したときに期待されるレスポンスの値を意味する。実測されたレスポンスの値の抽出には、Scrubber2(BioLogics. Inc)が用いられた。
 この測定で取得されたD12のATPに対するKDは8.5μmol/L、ADPに対するKDは0.25μmol/L、Adenosineに対するKDは1100μmol/であった。このことから、D12は、ATP、ADP、Adenosineに対して結合活性を有し、またAMP(adenosine monophosphate)およびcAMP(cyclinc adenosine monophosphate)に対しても結合活性を有すると考えられた。
〔実施例8〕抗ATP/アデノシン抗体を利用したATP/アデノシンスイッチ抗体取得用のライブラリの設計
 癌組織および炎症性組織においては、アデノシンのみならずATPの濃度も高いことが知られている。そのため、アデノシンまたはATPのいずれかのみをスイッチとして利用する抗体だけでなく、アデノシンおよびATPの両者(本実施例においてATP/アデノシンと記載される)をスイッチとして利用できる抗体(すなわちアデノシンあるいはATPどちらかが高濃度に存在していれば抗原に結合できる抗体)も有用である。実施例7-4に示されたATNLSA1-4_D12はATP/アデノシンに結合する抗体であり、当該抗体は図19に示したようにATP/アデノシンが抗体と標的抗原の間に挟まり、標的抗原と接する抗体可変領域を含むと考えられた。そこで、このように標的抗原と接し得て、ATP/アデノシンへの結合を保持し得る抗体可変領域部分をライブラリ化することで、任意の抗原に対してATP/アデノシンの有無によって任意の抗原に対する結合活性が変化するATP/アデノシンスイッチ抗体を取得できる合成抗体ライブラリが作製できると考えられた
 実施例7-4においてヒト抗体ライブラリより取得されたATP/アデノシン抗体ATNLSA1-4_D12とATPの複合体の結晶構造が解析された。結晶構造解析の結果から、当該抗体が認識するアデノシン(およびATP)の認識様式、および、アデノシン(およびATP)への結合に大きく関与していないと想定される抗体可変領域のアミノ酸残基が同定された。アデノシン(ATP)への結合に主に関与しているアミノ酸残基は重鎖におけるSer52、Ser52a、Arg53、Gly96、Leu100a、Trp100c(Kabatナンバリング)であると同定された。
 ライブラリの設計にあたり、以下の条件のうち少なくとも一つを満たす部位がライブラリ化可能部位として選定された。
条件1)ATPに対する結合に大きく関与していない部位、あるいは、結合に関与していてもATPに対する結合を低下させない天然配列以外のアミノ酸が存在する部位、
条件2)ヒト抗体のレパートリーとしてある程度アミノ酸出現頻度の多様性のある部位、
条件3)Canonical structureの形成に重要でない部位。
 重鎖、軽鎖共に上記の条件を満たす部位であって、ATNLSA1-4_D12の配列に含まれる部位のうち、CDR1およびCDR2の部位に関しては生殖細胞系列での出現頻度が2%以上のアミノ酸に、CDR3の部位に関しては生殖細胞系列での出現頻度が1%以上のアミノ酸に網羅的に置換されて、これらの置換が組み合わされたATNLSA1-4_D12の改変体が複数作製された。
 重鎖の部位のうち改変された部位(表中、「Kabat」と記載されるKabatナンバリングで表される部位)ならびに当該部位における改変前のアミノ酸(表中、「天然配列」と記載されるアミノ酸)および改変後のアミノ酸(表中「改変アミノ酸」と記載されるアミノ酸)は表9に示した。
Figure JPOXMLDOC01-appb-T000061
 軽鎖の部位のうち改変された部位(表中、「Kabat」と記載されるKabatナンバリングで表される部位)ならびに当該部位における改変前のアミノ酸(表中、「天然配列」と記載されるアミノ酸)および改変後のアミノ酸(表中「改変アミノ酸」と記載されるアミノ酸)は表10に示した。
Figure JPOXMLDOC01-appb-T000062
 実施例7-1で示された方法で発現および精製された各改変体のATPおよびアデノシンへの結合が、実施例7-6で示されたBiacoreを用いた測定方法と同様の方法で測定された。測定の結果、各改変体のATPに対するAffinityがKD値として算出された。重鎖の部位としては改変によってATP結合能がATNLSA1-4_D12の1/5 の結合能を下回らないもの(すなわちKD値が42.5μmol/Lより小さいもの)、および軽鎖の部位としてはATNLSA1-4_D12の結合能 を上回るもの(すなわちKD値が8.5μmol/Lより小さいもの)が改変可能部位と判定され、当該部位において置換されたアミノ酸はライブラリ化が可能なアミノ酸(ライブラリにおいて出現させるフレキシブル残基)と判定された。
 各改変体のATP結合能の評価結果から、各部位をライブラリ化することにより、ATPへの結合能は低下することが予想された。そこで、ATPへの結合に関与していると推察される部位の周辺部位が置換され、これらの置換が組み合わされた各種改変体を網羅的に評価することで、ATPへの結合能を増強させる効果が期待される改変を同定することが可能かどうか検証された。このように改変された部位(表中、「Kabat」と記載されるKabatナンバリングで表される部位)ならびに当該部位における改変前のアミノ酸(表中、「天然配列」と記載されるアミノ酸)および改変後のアミノ酸(表中、「改変アミノ酸」と記載されるアミノ酸)は表11に示した。
Figure JPOXMLDOC01-appb-T000063
 実施例7-1で示された方法で発現および精製された各改変体のATPおよびアデノシンへの結合が、実施例7-6で示されたBiacoreを用いた測定方法と同様の方法で測定された。測定の結果、ATPおよびアデノシンへの結合増強が期待される改変はKabatナンバリングで表される56位、100位等の部位(例えばTyr56His、Asn100bLeu等のアミノ酸の改変)であり、当該部位において置換されたアミノ酸もライブラリ化が可能なアミノ酸(ライブラリにおいて出現させるフレキシブル残基)と判定された。
 ATNLSA1-4_D12のCDRの部位において、前記の改変体の解析から選出されたライブラリ化可能アミノ酸(ライブラリにおいて出現するアミノ酸させるフレキシブル残基)および当該アミノ酸に改変前のアミノ酸(すなわち、ATNLSA1-4_D12の天然配列に含まれるアミノ酸)を含むアミノ酸レパートリーと当該レパートリーを含む部位を設計することによって、ATP/アデノシンスイッチ抗体取得用のライブラリが構築された。アミノ酸レパートリーに含まれる各アミノ酸の出現頻度は等しくなるように(例えば、アミノ酸レパートリーが10種類の場合は、各アミノ酸はそれぞれ10%出現するように)ライブラリが構築しされた。
 重鎖におけるアミノ酸レパートリーを含む部位(表中、「Kabat」と記載されるKabatナンバリングで表される部位)ならびに当該部位におけるアミノ酸レパートリーは表12に示した。軽鎖におけるアミノ酸レパートリーを含む部位(表中、「Kabat」と記載されるKabatナンバリングで表される部位)ならびに当該部位におけるアミノ酸レパートリーは表13に示した。
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
 配列解析の結果から、ATNLSA1-4_D12のフレームワークはVH3-21生殖細胞系列由来であると推察された。そこで、抗体の安定性の向上を目的として、ATNLSA1-4_D12のフレームワーク配列をVH3-21ジャームライン配列に戻すためにGln01Glu、Gln05Val、Asp10Gly、Asn30Ser、Leu48Val、Asn58Tyr(数字はKabatナンバリングを表す)の改変がATNLSA1-4_D12のフレームワーク配列に導入された。実施例7-1で示された方法で発現および精製されたATNLSA1-4_D12の改変体のTmがDSCによって測定された。DSCによる測定は当業者公知の方法で実施された。これらの改変が加えられたATNLSA1-4_D12の改変体のTmは74.37℃から81.44℃と大幅に向上し、その構造の安定化が認められた。抗体ライブラリとして安定性が高いフレームワークを用いることも好ましい場合があることから、前記の改変が加えられたフレームワーク配列が、ライブラリのフレームワーク配列として用いられた。ライブラリに用いられたフレームワークは表14に示した。
Figure JPOXMLDOC01-appb-T000066
 こうして設計されたライブラリに含まれる個々の配列を含む遺伝子が合成され(DNA2.0)、これらの個々の遺伝子の集合体(ライブラリ)を鋳型として用いてVHおよびVLをそれぞれ増幅させることが可能なプライマーによって遺伝子ライブラリが増幅された。なお、VL増幅用プライマーの配列は配列番号:102および103に記載され、VH増幅用プライマーの配列は配列番号:104および105にそれぞれ記載されている。増幅されたラショナルデザインヒト抗体重鎖可変領域の遺伝子ライブラリとヒト抗体軽鎖可変領域の遺伝子ライブラリはヒトIgG由来CH1配列およびヒトIgG由来軽鎖定常領域配列の両方を有する適切なファージミドベクターへと導入された。このファージミドベクターをエレクトロポレーションにより大腸菌へと導入することで、ヒト抗体可変領域-定常領域よりなるFabドメインを提示し、アデノシンまたはATPをスイッチとして抗原に結合できる抗体を取得できるようなラショナルデザインライブラリが構築された。このように多様なアデノシンまたはATP結合活性を有するH鎖およびL鎖から構成されたラショナルデザインライブラリは、図19に示したようにアデノシンまたはATPが抗体と抗原の間に挟まり、任意の抗原に対するATP/アデノシンスイッチ抗体を効率よく取得できるヒト抗体が含まれるライブラリとして有用であると考えられた。また、上述のようにATNLSA1-4_D12はアデノシンとATPのみならず、ADPにも結合することから、ATP、ADPおよびアデノシンにその構造が類似するAMPおよびcAMPにも結合活性を有すると予想された。そのため、本ライブラリはATP、ADP、AMP、cAMP、またはアデノシンのうちいずれか一つ以上の低分子の有無によって任意の標的抗原に対する結合活性が変化するスイッチ抗体を取得するのに有用であると考えられた。
〔実施例9〕抗ATP/アデノシン抗体レパートリーを含むアデノシン/ATP/アデノシンスイッチ抗体取得用の免疫ライブラリの構築
 実施例5-4において、MACS及びFACSを用いた選抜によってアデノシン-PEG-ビオチン結合抗体を発現しているB細胞群より回収されたmRNAをテンプレートとして、ウサギ抗体配列からなるFabドメインを提示する複数のウサギ抗体ファージディスプレイライブラリが構築された。構築方法として、Rader(Methods Mol. Biol. (2009) 525, 101-28)が参照された。
 より具体的には、9羽の免疫されたウサギより選抜された600,000細胞の上記B細胞より回収されたmRNAを鋳型とする逆転写反応によってcDNAが調製された。このcDNAを鋳型として表15に記載のプライマーを用いたPCR反応により、重鎖可変領域、および軽鎖可変領域-定常領域配列が適切な条件下でPCRにより増幅された。
Figure JPOXMLDOC01-appb-T000067
 増幅されたウサギ抗体重鎖可変領域の遺伝子ライブラリとウサギ抗体軽鎖可変領域-定常領域の遺伝子ライブラリとの組合せが、ウサギIgG由来CH1配列を有する適切なファージミドベクターへと導入された。このファージミドベクターをエレクトロポレーションにより大腸菌へと導入することで、ウサギ抗体可変領域-定常領域よりなるFabドメインを提示し、アデノシンあるいはATPをスイッチとして抗原に結合できる抗体を取得できるようなウサギ抗体ファージディスプレイライブラリ(以下アデノシン免疫ウサギ抗体ライブラリ)が構築された。このように多様なアデノシン結合性を発揮するH鎖およびL鎖から構成されたアデノシン免疫ライブラリは、図20に示したようにアデノシン(またはATP)が抗体と抗原の間に挟まり、任意の抗原に対してアデノシン/ATPスイッチ抗体を取得できる免疫ライブラリとして有用であると考えられた。   
〔実施例10〕ファージディスプレイ技術を用いた抗体ライブラリからのアデノシン、ATP存在下において抗原に結合する抗体の取得
(10-1)アデノシンおよびATPの混合物を利用したライブラリからの低分子存在下において抗原に結合する抗体の取得
 構築されたアデノシン免疫ウサギ抗体ファージディスプレイライブラリ、ラショナルデザイン抗体ファージディスプレイライブラリから、アデノシン、および/またはATP存在条件下で抗原に対する結合活性を示す抗体が取得された。取得のために、アデノシン、およびATP存在下でビーズにキャプチャーされた抗原に対して結合能を示す抗体を提示しているファージが回収され、その後アデノシン、およびATPの非存在条件下でビーズから溶出された溶出液中にファージが回収された。
 構築されたファージディスプレイ用ファージミドを保持する大腸菌からファージが産生された。ファージ産生が行われた大腸菌の培養液に2.5M NaCl/10%PEGを添加することによって沈殿させたファージの集団をTBSにて希釈することによってファージライブラリ液が得られた。次に、当該ファージライブラリ液に終濃度4%となるようにBSAが添加された。磁気ビーズに固定化された抗原を用いてパンニングが実施された。磁気ビーズとして、NeutrAvidin coated beads(Sera-Mag SpeedBeads NeutrAvidin-coated)もしくはStreptavidin coated beads(Dynabeads M-280 Streptavidin)が用いられた。
 調製されたファージライブラリ液に500 pmolのビオチン標識抗原、ならびに各終濃度 1 mMのATP-Naおよびアデノシンを加えることによって、当該ファージライブラリ液を室温にて60分間抗原及びアデノシン、およびATPと接触させる。当該ファージライブラリ液にBSAでブロッキングされた磁気ビーズが加えられ、抗原とファージとの複合体を磁気ビーズと室温にて15分間結合させた。ビーズはATPおよびアデノシンを溶解したTBSにて1回洗浄された。その後、1 mg/mLのトリプシン0.5 mLが加えられたビーズは室温で15分懸濁された後、即座に磁気スタンドを用いて分離されたビーズからファージ溶液が回収された。回収されたファージ溶液が、対数増殖期(OD600が0.4-0.7)となった10 mLの大腸菌株ER2738に添加された。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は、225 mm x 225 mmのプレートへ播種された。次に、播種された大腸菌の培養液からファージを回収することによって、ファージライブラリ液が調製された。
 1回目のパンニングでは、アデノシンおよびATP存在下で抗原に対して結合可能なファージの回収が行われたが、2回目以降のパンニングでは、アデノシンおよびATP存在下でのみ抗原に対して結合可能なファージの濃縮が行われた。具体的には、調製されたファージライブラリ液に40 pmolのビオチン標識抗原ならびに各終濃度1 mMのアデノシンおよびATPを加えることによって、ファージライブラリを室温で60分間抗原ならびにアデノシンおよびATPと接触させた。BSAでブロッキングされた磁気ビーズが加えられ、抗原とファージとの複合体を磁気ビーズと室温で15分間結合させた。ビーズは1 mLのアデノシンおよびATP を溶解したTBST(以下、(アデノシン+ATP)/TBSTと呼ばれる)とアデノシン、アデノシンおよびATP を溶解するTBS(以下、(アデノシン+ATP)/TBSと呼ばれる)にて洗浄された。その後0.5 mLのTBSが加えられたビーズが室温で懸濁された後、即座に磁気スタンドを用いて分離されたビーズからファージ溶液が回収された。この作業が再度繰り返された後、2回に分けて溶出されたファージ液が混合された。回収されたファージ溶液に100 mg/mLのトリプシン5μLを加えることによって、Fabを提示しないファージのpIIIタンパク質(ヘルパーファージ由来のpIIIタンパク質)が切断され、Fabを提示しないファージの大腸菌に対する感染能が失われた。トリプシン処理されたファージ溶液から回収されるファージが、対数増殖期(OD600が0.4-0.7)となった10 mLの大腸菌株ER2738に添加された。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は225 mm x 225 mmのプレートへ播種された。次に、播種された大腸菌の培養液からファージを回収することによってファージライブラリ液が回収された。アデノシンおよびATP存在下で抗原に対する結合活性を有する抗体を取得するパンニングが3回繰り返された。
(10-2)ネガティブセレクション法を利用した抗体ライブラリからのアデノシン、ATP存在下において抗原に結合する抗体の取得
 アデノシンが免疫されたウサギから構築された抗体ファージディスプレイライブラリ、またはラショナルデザイン抗体ファージディスプレイライブラリから、抗原に対してアデノシンおよび/またはATPが存在する条件下で抗原に対する結合活性を示す抗体のスクリーニングが行われた。スクリーニングのために、まず抗体ファージディスプレイライブラリを、アデノシンおよびATP非存在下でビオチン標識抗原-ストレプトアビジンと接触させ、アデノシンおよびATP非存在下でも抗原に対して結合活性を有する抗体を提示しているファージが除去された。それに続き、アデノシンおよびATPの存在する条件下で同様にパンニングを行うことによって、アデノシンおよびATPが存在する条件下で抗原に対して結合活性を有する抗体のスクリーニングが実施された。
 構築したファージディスプレイ用ファージミドを保持した大腸菌からファージが産生された。ファージ産生が行われた大腸菌の培養液に2.5M NaCl/10%PEGを添加するすることによって沈殿させたファージの集団をTBSにて希釈することによってファージライブラリ液が得られた。次に、ファージライブラリ液に終濃度4%となるようにBSAが添加された。磁気ビーズとして、NeutrAvidin coated beads(Sera-Mag SpeedBeads NeutrAvidin-coated)もしくはStreptavidin coated beads(Dynabeads M-280 Streptavidin)を用い、磁気ビーズに固定化される抗原を用いるパンニングが実施された。
 調製されたファージライブラリ液に250 pmolのビオチン標識抗原とともに、各終濃度が 1 mMのアデノシンおよびATPの混合液を加えることによって、当該ファージライブラリ液と抗原ならびにアデノシンおよびATPとを室温にて60分間接触させた。次にファージライブラリ液にBSAでブロッキングされた磁気ビーズが加えられ、抗原とファージとの複合体を磁気ビーズと室温にて15分間結合させた。ビーズは(アデノシン+ATP) /TBSにて1回洗浄された。その後、1 mg/mLのトリプシン溶液0.5 mLが加えられたビーズは室温で15分懸濁された後、即座に磁気スタンドを用いて分離されたビーズからファージ溶液が回収された。回収されたファージ溶液が、対数増殖期(OD600が0.4-0.7)となった10 mLの大腸菌株ER2738に添加された。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は、225 mm x 225 mmのプレートへ播種された。次に、播種された大腸菌の培養液からファージを回収することによって、ファージライブラリ液が調製された。
 1回目のパンニングでは、アデノシンおよびATP存在下で結合可能なファージの回収が行われるが、2回目以降のパンニングでは、アデノシンおよびATP存在下でのみ抗原に対して結合可能なファージの濃縮が行われた。具体的には、BSAでブロッキングされたSera-Mag NeutrAvidin ビーズに250 pmolビオチン化抗原を加え、室温で15分間結合させた。TBSで3回洗浄されたビーズに対して、BSAにてブロッキングが行われたファージライブラリ液を加え室温にて1時間結合させた。磁気スタンドを用いてビーズを分離することによって、抗原およびビーズに結合しないファージが回収された。回収されたファージに対して、40 pmolのビオチン標識抗原ならびに各終濃度1 mMのアデノシンおよびATPを加えることによって、ファージライブラリを室温で60分間抗原ならびにアデノシンおよびATPと接触させた。次に、当該標識抗原ならびにアデノシンおよびATPとファージライブラリとの混合液にBSAでブロッキングされた磁気ビーズを加え、室温で15分間、抗原とファージとの複合体を磁気ビーズと結合させた。ビーズは1 mLのアデノシン+ATP) /TBSTと(アデノシン+ATP) /TBSにて洗浄された。その後1 mg/mLのTrypsin溶液0.5 mLが当該混合液に加えられた。当該混合液は室温で20分間攪拌された後、磁気スタンドを使用して分離されたビーズからファージが回収された。回収されたファージは、対数増殖期(OD600が0.4-0.7)となった10 mLの大腸菌株ER2738に添加された。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は225 mm x 225 mmのプレートへ播種された。アデノシンおよびATPが存在する条件下で抗原に対する結合活性を有する抗体を取得するパンニングが3回繰り返された。
(10-3)交互パンニング法を利用した抗体ライブラリからのアデノシン、ATP存在下において抗原に結合する抗体の取得
 アデノシンが免疫されたウサギから構築される抗体ファージディスプレイライブラリ、またはラショナルデザイン抗体ファージディスプレイライブラリから、抗原に対してアデノシンおよび/またはATPが存在する条件下で抗原に対する結合活性を示す抗体のスクリーニングが行われる。スクリーニングのために、まず抗体ファージディスプレイライブラリを、非標識抗原が存在する条件下で、ビオチン化アデノシンおよびATP-NeutrAvidinと接触させ、抗原存在下でアデノシンおよび/またはATPに結合する抗体ファージディスプレイライブラリが回収される。次に、当該抗体ファージディスプレイライブラリを、アデノシンおよびATPが存在する条件下でビオチン化抗原-ストレプトアビジンと接触させ、アデノシンおよびATP存在下で抗原に結合する抗体が回収される。このようなパンニングを交互に行うことによって、アデノシンおよびATPが存在する条件下で抗原に対して結合活性を有する抗体のスクリーニングが実施される。
 構築されるファージディスプレイ用ファージミドを保持する大腸菌からファージが産生される。ファージ産生が行われた大腸菌の培養液に2.5M NaCl/10%PEGを添加することによって沈殿させたファージの集団をTBSにて希釈することによってファージライブラリ液が得られる。次に、ファージライブラリ液に終濃度4%となるようにBSAが添加される。磁気ビーズとして、NeutrAvidin coated beads(Sera-Mag SpeedBeads NeutrAvidin-coated)もしくはStreptavidin coated beads(Dynabeads M-280 Streptavidin)を用い、磁気ビーズに固定化される抗原を用いるパンニングが実施される。
 調製されたファージライブラリ液に250 pmolのビオチン化ATP、2'-Adenosine-PEG-Biotin、および5'-Adenosine-PEG-Biotinとともに1000 pmolの非標識抗原を加えることによって、当該ファージライブラリ液と抗原ならびにアデノシンおよびATPとを室温にて60分間接触させる。次にファージライブラリ液にBSAでブロッキングされた磁気ビーズが加えられ、抗原ならびにアデノシンおよび/またはATPとファージとの複合体を磁気ビーズと室温にて15分間結合させる。ビーズは1000 pmolの抗原を含むTBSにて1回洗浄される。その後、1 mg/mLのトリプシン溶液0.5 mLが加えられるビーズは室温で15分懸濁された後、即座に磁気スタンドを用いて分離されるビーズからファージ溶液が回収される。回収されるファージ溶液が、対数増殖期(OD600が0.4-0.7)となった10 mLの大腸菌株ER2738に添加される。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させる。感染させた大腸菌は、225 mm x 225 mmのプレートへ播種される。次に、播種された大腸菌の培養液からファージを回収することによって、ファージライブラリ液が調製される。
 2回目のパンニングでは、アデノシンおよびATPが存在する条件下でビオチン化抗原に対して結合可能なファージの濃縮が行われる。具体的には、調製されるファージライブラリ液に40 pmolのビオチン化抗原ならびに終濃度1 mMのアデノシンおよびATPを加えることによって、当該ファージライブラリ液を抗原ならびにアデノシンおよびATPと室温にて60分間接触させる。次にファージライブラリ液にBSAでブロッキングされた磁気ビーズが加えられ、抗原ならびにアデノシンおよび/またはATPとファージとの複合体を磁気ビーズと室温にて15分間結合させる。終濃度1 mMのアデノシンおよびATPを含むTBSTにて3回、終濃度1 mMのアデノシンおよびATPを含むTBSにてビーズは2回洗浄される。その後、1 mg/mLのトリプシン溶液0.5 mLが加えられるビーズは室温で15分懸濁された後、即座に磁気スタンドを用いて分離されるビーズからファージ溶液が回収される。回収されるファージ溶液が、対数増殖期(OD600が0.4-0.7)となった10 mLの大腸菌株ER2738に添加される。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させる。感染させた大腸菌は、225 mm x 225 mmのプレートへ播種される。次に、播種された大腸菌の培養液からファージを回収することによって、ファージライブラリ液が調製される。
 この後、偶数回目のパンニングにおいては、2回目のパンニングと同じ条件によるパンニングが繰り返し実施される。ただし、4回目以降のパンニングでは(アデノシン+ATP)/TBSTおよび(アデノシン・ATP)/TBSによるビーズの洗浄は共に5回に増やして実施される。
 3回目のパンニングでは、再び抗原の存在下でビオチン化アデノシンおよびATPに対して結合可能なファージの濃縮が行われる。具体的には、調製されるファージライブラリ液に250 pmolのビオチン化ATP、2'-Adenosine-PEG-Biotin、および5'-Adenosine-PEG-Biotinとともに1000 pmolの非標識抗原を加えることによって、当該ファージライブラリ液と抗原ならびにアデノシンおよびATPとを室温にて60分間接触させる。次にファージライブラリ液にBSAでブロッキングされた磁気ビーズが加えられ、抗原ならびにアデノシンおよび/またはATPとファージとの複合体を磁気ビーズと室温にて15分間結合させる。ビーズは1000 pmolの抗原を含むTBSTにて3回、および1000 pmolの抗原を含むTBSにて2回洗浄される。その後、1 mg/mLのトリプシン溶液0.5 mLが加えられるビーズは室温で15分懸濁された後、即座に磁気スタンドを用いて分離されるビーズからファージ溶液が回収される。回収されるファージ溶液が、対数増殖期(OD600が0.4-0.7)となった10 mLの大腸菌株ER2738に添加される。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させる。感染させた大腸菌は、225 mm x 225 mmのプレートへ播種される。次に、播種された大腸菌の培養液からファージを回収することによって、ファージライブラリ液が調製される。
 この後、奇数回目のパンニングにおいては、3回目のパンニングと同じ条件によるパンニングが繰り返し実施される。ただし、抗原を含むTBSTおよび抗原を含むTBSによるビーズの洗浄は、4回目以降のパンニングでは共に5回に増やして実施される。もしくは、3回目以降のパンニングは偶数回目、奇数回目に関わらず以降全て3回目のパンニングと同じ条件によるパンニングが繰り返し実施される。ただし、抗原を含むTBSTおよび抗原を含むTBSによるビーズの洗浄は、4回目以降のパンニングでは共に5回に増やして実施される。
(10-4)ファージELISAによるアデノシンおよび/またはATPの存在下および非存在下における結合活性評価
 上記の方法によって得られた大腸菌のシングルコロニーから、常法(Methods Mol. Biol. (2002) 178, 133-145)に倣い、ファージ含有培養上清が回収された。NucleoFast 96(MACHEREY-NAGEL)を用いて、回収された培養上清が限外ろ過された。培養上清各100μLが各ウェルにアプライされたNucleoFast 96を遠心分離(4,500g、45分間)することによってフロースルーが除去された。100μlのH2Oが各ウェルに加えられた当該NucleoFast 96が、再度遠心分離(4,500g、30分間)によって洗浄された。最後にTBS 100μLが加えられ、室温で5分間静置された当該NucleoFast 96の各ウェルの上清に含まれるファージ液が回収された。
 TBS、または(アデノシン+ATP)/TBSが加えられた精製ファージが以下の手順でELISAに供された。StreptaWell 96マイクロタイタープレート(Roche)がビオチン標識抗原を含む100μLのTBSにて一晩コートされた。当該プレートの各ウェルをTBSTにて洗浄することによって抗原が除かれた後、当該ウェルが250μLの2%SkimMilk-TBSにて1時間以上ブロッキングされた。2%SkimMilk-TBSを除き、その後、各ウェルに調製された精製ファージが加えられた当該プレートを37℃で1時間静置することによって、抗体を提示したファージを各ウェルに存在する抗原にアデノシンおよび/またはATPの非存在下および存在下において結合させた。TBSTまたは(アデノシン+ATP)/TBSTにて洗浄された各ウェルに、TBSまたは(アデノシン+ATP)/TBSによって希釈されたHRP結合抗M13抗体(Amersham Pharmacia Biotech)が添加されたプレートを1時間インキュベートさせた。TBSTまたは(アデノシン+ATP)/TBSTにて洗浄後、TMB single溶液(ZYMED)が添加された各ウェル中の溶液の発色反応が硫酸の添加により停止された後、450 nmの吸光度によって当該発色が測定された。その結果、ヒトIL6、ヒトIL6 Receptor、 HAS(Human Serum Albumin)の三抗原に対して、低分子存在下で結合する抗体が複数確認された。ヒトナイーブ抗体ライブラリからもATP存在下で結合する抗体は取得されているが、それよりも高い効率でヒトIL6、ヒトIL6 Receptor、 HASに対するスイッチ抗体を取得することができた。ファージELISAの結果を表16に示した。
Figure JPOXMLDOC01-appb-T000068
(10-5)アデノシンおよびATPの有無によって抗原に対する結合活性が変化するスイッチ抗体の結合能の評価および配列解析
 (10-4)で示されるファージELISAの結果、アデノシンまたはATPが存在する条件下で抗原に対する結合活性があると判断されたクローンから特異的なプライマー(配列番号:111及び112)を用いて増幅された遺伝子の塩基配列が解析された。解析の結果、抗原human IL6、HSA、 human IL6Rに対して結合する、複数の互いに異なる配列を有する抗体が取得された。human IL6に対する抗体であるI6DL2C1-4_076、HSAに対する抗体であるHSDL3C5-4_015、および、human IL-6Rに対する抗体である6RAD2C1-4_011と6RAD2C1-4_076のアミノ酸配列を表17に示した。   
Figure JPOXMLDOC01-appb-T000069
(10-6)取得された抗体の抗原に対する結合に必要な低分子の同定
 取得されたI6DL2C1-4_076、 HSDL3C5-4_015、6RAD2C1-4_011、6RAD2C1-4_076の各抗体がELISAに供された。低分子としては1mM ATP、アデノシン、及びその混合物が用いられた。抗原としてビオチン標識されたヒトIL6、ヒトIL6R、HSAが用いられた。
 はじめに、StreptaWell 96マイクロタイタープレート(Roche)がビオチン標識抗原を含む100μLのTBSにて室温で1時間以上コートされた。当該プレートの各ウェルをTBSTにて洗浄することによってプレートへ結合していないビオチン標識抗原が除かれた後、当該ウェルが2% Skimmilk/TBS 250μLにて1時間以上ブロッキングされた。2% Skimmilk/TBSが除かれた各ウェルに、抗体を提示したファージ50μLが加えられた当該プレートを室温で1時間静置することによって、各ファージを各ウェルに存在するビオチン標識抗原にATPおよび/またはアデノシンの存在下および非存在下において結合させた。ATPおよび/またはアデノシンを含むTBSTもしくは含まないTBSTにて洗浄された後に、TBSまたは(アデノシンおよび/またはATP)/TBSによって希釈されたHRP結合抗M13抗体(Amersham Pharmacia Biotech)が各ウェルに添加されたプレートが1時間インキュベートされた。各低分子を含むTBST、および含まないTBSTにて洗浄後、TMB single溶液(ZYMED)が添加された各ウェル中の溶液の発色反応が、硫酸の添加により停止された後、450 nmの吸光度によって当該発色が測定された(図25、26、27)。
〔実施例11〕実施例2で取得された抗体のキヌレニン(Kynurenine)以外のアミノ酸代謝物の存在下でのヒトIL-6に対する結合活性
 実施例2-4で取得された低分子存在下でヒトIL-6に結合する抗体I6NMSC1-3_A11は実施例3-2に示されるように、キヌレニン存在下でヒトIL-6に結合する抗体である。キヌレニンはトリプトファン代謝物であり、またキヌレニンはキヌレナーゼによりアントラニル酸に、およびキヌレニン3-ヒドロキシラーゼにより3-ヒドロキシキヌレニンに、キヌレニンアミノトランスフェラーゼによりキヌレン酸に変換される(Stefan Lob et. Al. Nat Rev Cancer. (2009) 9 (6), 445-452)。こうした一連のトリプトファン代謝物等のアミノ酸代謝物が、本発明で使用される癌組織特異的化合物、とくに癌細胞特異的代謝産物の非限定な一態様として好適か否か検証された。
 実施例3-2で示された、キヌレニン存在下で抗原に対する結合活性を有する抗体I6NMSC1-3_A11および、既知の抗ヒトIL-6抗体CLB8-F1、および陰性対照としてGC413は表18に示す7条件下でELISAに供された。また表4に示すBufferにて各アミノ酸およびその代謝物が表18に示される濃度で適宜調製された。抗原としてビオチン標識されたヒトIL-6が用いられた。
Figure JPOXMLDOC01-appb-T000070
 はじめに、StreptaWell 96マイクロタイタープレート(Roche)がビオチン標識抗原を含む100μLのPBSにて室温で1時間以上コートされた。当該プレートの各ウェルをWash bufferにて洗浄することによってプレートへ結合していない抗原が除かれた後、当該ウェルがBlocking Buffer 250μLにて1時間以上ブロッキングされた。Blocking Bufferが除かれた各ウェルに、表18の終濃度で低分子を含むSample Bufferにて2.5μg/mLに調製された精製IgGの各100μLが加えられた当該プレートを室温で1時間静置することによって、各IgGを各ウェルに存在する抗原に結合させた。表18の終濃度でアミノ酸およびアミノ酸代謝物を含むWash Bufferにて洗浄された後に、アミノ酸およびアミノ酸代謝物を含むSample Bufferによって希釈されたHRP結合抗ヒトIgG抗体(BIOSOURCE)が各ウェルに添加されたプレートが1時間インキュベートされた。各アミノ酸およびアミノ酸代謝物を含むWash Bufferにて洗浄後、TMB single溶液(ZYMED)が添加された各ウェル中の溶液の発色反応が、硫酸の添加により停止された後、450 nmの吸光度によって当該発色が測定された。なおBufferrとしては表4に記載された組成を含むBufferが使用された。
 測定された結果を図21に示した。CLB8-F1は低分子の種類及びその有無に依らず吸光度が同じであるのに対して、I6NMSC1-3_A11は条件1(キヌレニン溶液)における吸光度と比較して、条件7(低分子なし)における吸光度は、顕著に低かった。また同様に、条件2(トリプトファン溶液)と条件5(3-ヒドロキシキヌレニン溶液)における吸光度も条件1と同様の高い吸光度を示したことから、I6NMSC1-3_A11はキヌレニンだけでなく、キヌレニンの前駆体であるアミノ酸(トリプトファン)およびキヌレニンの代謝物存在下でも抗原であるヒトIL-6に結合する抗体であることが示された。
 このことから、同様の方法を用いることで、一種類のアミノ酸代謝物のみならず、構造の異なる複数の種類のアミノ酸またはアミノ酸代謝物存在下において目的の抗原に結合する抗体を取得することが可能であると考えられた。
 〔実施例12〕
 ファージディスプレイ技術を用いたヒト抗体ライブラリからの低分子存在下においてヒトIL-6に結合する抗体の取得
(12-1)ビーズパンニングまたはネガティブセレクション法を利用した、ライブラリからの低分子存在下においてヒトIL-6に結合する抗体の取得
 実施例2-1で構築されたナイーブヒト抗体ファージディスプレイライブラリから、2-2および2-3で示された方法と同様の方法によって低分子存在下で抗原に対する結合活性を示す抗体のスクリーニングが行われた。
(12-2)ファージELISAによる低分子存在下における結合活性の評価
 実施例2-4に示された方法と同様の方法によって、得られた大腸菌のシングルコロニーから、ファージ含有培養上清が回収され、精製ファージがELISAに供された。単離された768クローンを用いてファージELISA を行うことによって、低分子カクテル存在下で抗原であるヒトIL-6に対して結合活性を有するクローン「I6NMSC1-3_#03」および「I6NMSC1-3_#17」が新たに得られた。
(12-3)ヒトIL-6に結合する抗体の発現と精製
 ファージELISAで示された、SC存在下で抗原に対する結合活性を有すると判断されたクローンI6NMSC1-3_#03およびI6NMSC1-3_#17から特異的なプライマー(配列番号:110及び112)を用いて増幅された遺伝子の塩基配列が解析された。I6NMSC1-3_#03の重鎖の配列は配列番号:50および軽鎖の配列は配列番号:51であった。また、I6NMSC1-3_#17の重鎖の配列は配列番号:52および軽鎖の配列は配列番号:53であった。I6NMSC1-3_#17の可変領域をコードする遺伝子配列がヒトIgG1/Lambdaの動物発現用プラスミドへ挿入され、I6NMSC1-3_#03、既知の抗ヒトIL-6抗体であるCLB8-F1(重鎖は配列番号:32、軽鎖は配列番号:33でそれぞれ表される)、および陰性対照である抗ヒトグリピカン3抗体GC413(重鎖は配列番号:34、軽鎖は配列番号:35でそれぞれ表される)の可変領域をコードする遺伝子配列はヒトIgG1/Kappaの動物発現用プラスミドへ挿入された。発現した抗体は実施例3記載の方法で精製された。
(12-4)I6NMSC1-3_#03抗体のヒトIL-6に対する結合に必要な低分子の同定
 I6NMSC1-3_#03は、表3に示される9条件下でELISAに供された。また表4に示すBufferにて各低分子が表3に示される濃度で適宜調製された。抗原としてビオチン標識されたヒトIL-6が用いられた。
 はじめに、StreptaWell 96マイクロタイタープレート(Roche)がビオチン標識抗原を含む100μLのPBSにて室温で1時間以上コートされた。当該プレートの各ウェルをWash bufferにて洗浄することによってプレートへ結合していない抗原が除かれた後、当該ウェルがBlocking Buffer 250μLにて1時間以上ブロッキングされた。Blocking Bufferが除かれた各ウェルに、表3の終濃度で低分子を含むSample Bufferにて2.5μg/mLに調製された精製IgGの各100μLが加えられた当該プレートを室温で1時間静置することによって、各IgGを各ウェルに存在する抗原に結合させた。表3の終濃度で低分子を含むWash Bufferにて洗浄された後に、同低分子入りSample Bufferによって希釈されたHRP結合抗ヒトIgG抗体(BIOSOURCE)が各ウェルに添加されたプレートが1時間インキュベートされた。各低分子を含むWash Bufferにて洗浄後、TMB single溶液(ZYMED)が添加された各ウェル中の溶液の発色反応が、硫酸の添加により停止された後、450 nmの吸光度によって当該発色が測定された。なお、Bufferrとしては表4記載の組成を含むBufferが使用された。
 測定された結果を図22に示した。I6NMSC1-3_#03は条件8(全ての低分子カクテル溶液)における吸光度と比較して、条件9(低分子なし)における吸光度は、低い結果となった。この結果から、I6NMSC1-3_#03は低分子の有無によって抗原との結合が変化する性質を有することがファージ ELISA同様確認された。またI6NMSC1-3_#03は条件7(Kynurenine 100uM)において、条件8と同等の吸光度を示し、その他の条件下では吸光度が低い結果であったことから、実施例3に記載したI6NMSC1-3_A11と同様に、Kynurenine存在下で抗原であるヒトIL-6と結合する抗体であることが示された。I6NMSC1-3_#03は、I6NMSC1-3_A11と異なるアミノ酸配列を有しており、このような方法を用いることで、低分子存在下で抗原に結合する抗体を複数種類取得することが可能であることが示された。
(12-5)I6NMSC1-3_#17抗体のヒトIL-6に対する結合に必要な低分子の同定
 取得されたI6NMSC1-3_#17と対照のCLB8-F1および陰性対照であるGC413の3種類の抗体が表3に示される9条件下でELISAに供された。また表4に示すBufferにて各低分子が表3に示される濃度で適宜調製された。抗原としてビオチン標識されたヒトIL-6が用いられた。
 はじめに、StreptaWell 96マイクロタイタープレート(Roche)がビオチン標識抗原を含む100μLのPBSにて室温で1時間以上コートされた。当該プレートの各ウェルをWash bufferにて洗浄することによってプレートへ結合していない抗原が除かれた後、当該ウェルがBlocking Buffer 250μLにて1時間以上ブロッキングされた。Blocking Bufferが除かれた各ウェルに、表3の終濃度で低分子を含むSample Bufferにて0.15μg/mLに調製された精製IgGの各100μLが加えられた当該プレートを室温で1時間静置することによって、各IgGを各ウェルに存在する抗原に結合させた。表3の終濃度で低分子を含むWash Bufferにて洗浄された後に、同低分子入りSample Bufferによって希釈されたHRP結合抗ヒトIgG抗体(BIOSOURCE)が各ウェルに添加されたプレートが1時間インキュベートされた。各低分子を含むWash Bufferにて洗浄後、TMB single溶液(ZYMED)が添加された各ウェル中の溶液の発色反応が、硫酸の添加により停止された後、450 nmの吸光度によって当該発色が測定された。なおBufferrとしては表4記載の組成を含むBufferが使用された。
 測定された結果を図23に示した。CLB8-F1は低分子の種類及び存在の有無に依らず吸光度が同じであるのに対して、I6NMSC1-3_#17は条件8(全ての低分子カクテル溶液)における吸光度と比較して、条件9(低分子なし)における吸光度は、低い結果となった。この結果から、I6NMSC1-3_#17は低分子の有無によって抗原との結合が変化する性質を有することがファージ ELISA同様確認された。またI6NMSC1-3_#17は条件1(ATP-Na 1mM)および条件5(Succinic acid 1mM)において、条件8と同等の吸光度を示し、その他の条件下では吸光度が低い結果であったことから、ATP-NaもしくはSuccinic acidのどちらかが存在する条件下で、抗原であるヒトIL-6と結合する抗体であることが示された。ATPは癌細胞から放出されることが知られているが、succinic acidに関しても癌細胞特異的に細胞内外において蓄積していることが知られている。癌細胞が好気的環境下でも、酸化的リン酸化よりもむしろ解糖系依存的に代謝を行うことはワールブルグ効果として知られているが、乏血性の癌種においては、慢性的な血流不足により解糖も酸化的リン酸化も慢性的に制限され、より劣悪な環境下でエネルギーを得ている。こうした乏血性の癌種は、フマル酸呼吸に依存したエネルギー代謝を行っていることが知られており、その結果としてフマル酸代謝物であるコハク酸(Succinic acid)が蓄積する(Cancer Res. (2009) 69 (11), 4918-4925)。
 このような方法を用いることで、Kynurenine以外の低分子存在下で抗原に結合する抗体を取得することが可能であることが示された。また、ATP-NaとSuccinic acidは複数の負電荷を有するという共通した特徴を有するが、その構造が互いに異なる低分子の各存在下で抗原に結合する抗体を取得することが可能であることが示された。
 〔実施例13〕ファージディスプレイ技術を用いたヒト抗体ライブラリからの低分子存在下においてヒト血清アルブミン(Human Serum Albumin、以下HSAとも呼ばれる)に結合する抗体の取得
(13-1)ビーズパンニングによるライブラリからの低分子存在下においてHSAに結合する抗体の取得
 実施例2で構築されたナイーブヒト抗体ファージディスプレイライブラリから、低分子存在下でHSAに対する結合活性を示す抗体のスクリーニングが行われた。すなわち、ビーズにキャプチャーされたHSAに対して低分子存在下で結合活性を示す抗体を提示しているファージが集められた。低分子非存在の条件でビーズから溶出されたファージ溶出液からファージが回収された。本取得方法では、抗原としてビオチン標識されたHSAが用いられた。
 構築されたファージディスプレイ用ファージミドを保持した大腸菌から産生されたファージは一般的な方法により精製された。その後TBSで透析処理されたファージライブラリ液が得られた。次に、ファージライブラリ液に終濃度3%となるようにスキムミルクが添加された。磁気ビーズに固定化された抗原を用いたパンニングが実施された。磁気ビーズとして、NeutrAvidin coated beads(Sera-Mag SpeedBeads NeutrAvidin-coated)もしくはStreptavidin coated beads(Dynabeads M-280 Streptavidin)が用いられた。
 癌組織においてスイッチの役割を果たすことができる低分子に依存的な低分子スイッチ抗体を効率的に取得するために、これらの低分子(アデノシン(adenosine)、アデノシン3リン酸(adenosine 5'-triphosphate; ATP)、イノシン(inosine)、キヌレニン(kynurenine)、プロスタグランジンE2(prostaglandin E2; PGE2)、コハク酸(succinic acid)、乳酸(lactic acid))の混合液(以下、SC(small molecule cocktail)と表記される)の存在下で抗原に結合し、SC非存在下では抗原に結合しない抗体を濃縮するパンニングが実施された。
 具体的には、調製されたファージライブラリ液に250 pmolのビオチン標識抗原とともに、各終濃度が1 mMのアデノシン3リン酸ナトリウム塩(ATP-Na)、アデノシン(Adenosine)、イノシン(Inosine)、コハク酸(Succinic acid)、および乳酸(Lactic acid)、終濃度が1μMのプロスタグランジンE2(PGE2)、ならびに終濃度が100μMのキヌレニン(Kynurenine)からなりNaOHによってそのpHが7.4に調製されたSCが加えられ室温にて60分間接触させた。次にファージライブラリ液にスキムミルクでブロッキングされた磁気ビーズが加えられ、抗原とファージとの複合体を磁気ビーズと室温にて15分間結合させた。ビーズはSC/TBS(SCを含むTBS)にて1回洗浄された。その後、1 mg/mLのトリプシン溶液0.5 mLが加えられたビーズは室温で15分懸濁された後、即座に磁気スタンドを用いて分離されたビーズからファージ溶液が回収された。回収されたファージ溶液が、対数増殖期(OD600が0.4-0.7)となった10 mLの大腸菌株ER2738に添加された。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は、225 mm x 225 mmのプレートへ播種された。次に、播種された大腸菌の培養液からファージを回収することによって、ファージライブラリ液が調製された。
 1回目のパンニングでは、低分子存在下で結合可能なファージの回収が行われたが、2回目以降のパンニングでは、低分子存在下で抗原に対して結合可能なファージの濃縮が行われた。具体的には、調製したファージライブラリ液に40 pmolのビオチン標識抗原およびSC、NaOHを加えることによって、ファージライブラリを室温で60分間抗原及び低分子と接触させた。スキムミルクでブロッキングされた磁気ビーズが加えられ、抗原とファージとの複合体を磁気ビーズと室温で15分間結合させた。ビーズは1 mLのSC/TBSTとSC/TBSにて洗浄された。その後0.5 mLのTBSが加えられたビーズは室温で懸濁された後、即座に磁気スタンドを用いて分離されたビーズからファージ溶液が回収された。この作業が再度繰り返された後、2回に分けて溶出されたファージ液が混合された。さらに残ったビーズに対して0.5mLのTBSが加えられ、当該ビーズは室温で5分間攪拌された。磁気スタンドを用いて分離されたビーズからファージ溶液が回収された。回収されたファージ溶液に100 mg/mLのトリプシン5μLを加えることによって、Fabを提示しないファージのpIIIタンパク質(ヘルパーファージ由来のpIIIタンパク質)が切断され、Fabを提示しないファージの大腸菌に対する感染能が失われた。トリプシン処理されたファージ溶液から回収されたファージが、対数増殖期(OD600が0.4-0.7)となった10 mLの大腸菌株ER2738に添加された。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は225 mm x 225 mmのプレートへ播種された。2回目のパンニングによって得られた2種類の感染大腸菌はこの時点で等量ずつ混合され、次に、播種された大腸菌の培養液からファージを回収することによってファージライブラリ液が回収された。低分子存在下で抗原に対する結合活性を有する抗体を取得するパンニングが3回繰り返された。
(13-2)ネガティブセレクション法を利用したライブラリからの低分子存在下においてHSAに結合する抗体の取得
 構築されたナイーブヒト抗体ファージディスプレイライブラリから、HSAに対して低分子が存在する条件下でHSAに対する結合活性を示す抗体のスクリーニングが行われた。スクリーニングのために、まずナイーブヒト抗体ファージディスプレイライブラリを、低分子非存在下でビオチン標識抗原-ストレプトアビジンと接触させ、低分子非存在下でもHSAに対して結合活性を有する抗体を提示しているファージが除去された。それに続き、低分子の存在下で同様にパンニングを行うことによって、低分子が存在する条件下でHSAに対して結合活性を有する抗体のスクリーニングが実施された。抗原としてビオチン標識されたHSAが用いられた。
 構築したファージディスプレイ用ファージミドを保持した大腸菌からファージが産生された。産生されたファージは一般的な方法により精製された後、TBSに対して透析処理されたファージライブラリ液が得られた。次に、ファージライブラリ液に終濃度3%となるようにスキムミルクが添加された。磁気ビーズとして、NeutrAvidin coated beads(Sera-Mag SpeedBeads NeutrAvidin-coated)もしくはStreptavidin coated beads(Dynabeads M-280 Streptavidin)を用い、磁気ビーズに固定化されたビオチン標識HSAを用いたパンニングが実施された。
 調製されたファージライブラリ液に250 pmolのビオチン標識HSAとともに、各終濃度 が1 mMのATP-Na、Adenosine、Inosine、Succinic acid、およびLactic acid、終濃度1μMのPGE2、ならびに終濃度100μMのKynurenineからなりNaOHによってそのpHが7.4に調製されたSCを加えることによって、当該ファージライブラリ液と室温にて60分間接触させた。次にファージライブラリ液にスキムミルクでブロッキングされた磁気ビーズが加えられ、ビオチン標識HSAとファージとの複合体を磁気ビーズと室温にて15分間結合させた。ビーズはSC/TBSにて1回洗浄された。その後、1 mg/mLのトリプシン溶液0.5 mLが加えられたビーズは室温で15分懸濁された後、即座に磁気スタンドを用いて分離されたビーズからファージ溶液が回収された。回収されたファージ溶液が、対数増殖期(OD600が0.4-0.7)となった10 mLの大腸菌株ER2738に添加された。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は、225 mm x 225 mmのプレートへ播種された。次に、播種された大腸菌の培養液からファージを回収することによって、ファージライブラリ液が調製された。
 1回目のパンニングでは、低分子存在下で結合可能なファージの回収が行われたが、2回目以降のパンニングでは、低分子存在下でビオチン標識HSAに対して結合可能なファージの濃縮が行われた。具体的には、スキムミルクでブロッキングされたSera-Mag NeutrAvidin ビーズに250pmolビオチン標識HSAを加え、室温で15分間結合させた。TBSで3回洗浄されたビーズに対して、スキムミルクにてブロッキングが行われたファージライブラリ液を加え室温にて1時間結合させた。磁気スタンドを用いてビーズを分離することによって、ビオチン標識HSAおよびビーズに結合しないファージが回収された。回収されたファージに対して、40 pmolのビオチン標識HSAおよびSC、NaOHを加えることによって、ファージライブラリを室温で60分間ビオチン標識HSAおよびSCに含まれる低分子と接触させた。次に、ビオチン標識HSA、SCおよびファージライブラリの混合液にスキムミルクでブロッキングされた磁気ビーズを加え、室温で15分間、ビオチン標識HSAとファージとの複合体を磁気ビーズと結合させた。ビーズは1 mLのSC/TBSTとSC/TBSにて洗浄された。その後1 mg/mLのTrypsin溶液0.5mLが当該混合液に加えられた。当該混合液は室温で20分間攪拌された後、磁気スタンドを使用して分離されたビーズからファージが回収された。回収されたファージは、対数増殖期(OD600が0.4-0.7)となった10 mLの大腸菌株ER2738に添加された。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は225 mm x 225 mmのプレートへ播種された。低分子存在下でビオチン標識HSAに対して結合活性を有する抗体を取得するパンニングが3回繰り返された。
(13-3)ファージELISAによる低分子存在下における結合活性の評価
 上記の方法によって得られた大腸菌のシングルコロニーから、常法(Methods Mol. Biol. (2002) 178, 133-145)に習い、ファージ含有培養上清が回収された。NucleoFast 96(MACHEREY-NAGEL)を用いて、回収された培養上清は限外ろ過された。培養上清各100μLが各ウェルにアプライされたNucleoFast 96を遠心分離(4,500g, 45分間)することによってフロースルーが除去された。100μLのH2Oが各ウェルに加えられた当該NucleoFast 96が、再度遠心分離(4,500g, 30分間遠心)によって洗浄された。最後にTBS 100μLが加えられ、室温で5分間静置された当該NucleoFast 96の各ウェルの上清に含まれるファージ液が回収された。
 TBS、もしくはSC/TBSが加えられた精製ファージが以下の手順でELISAに供された。StreptaWell 96マイクロタイタープレート(Roche)がビオチン標識HSAを含む100μLのTBSにて一晩コートされた。当該プレートの各ウェルをTBSTにて洗浄することによってビオチン標識HSAが除かれた後、当該ウェルが250μLの2%スキムミルク-TBSにて1時間以上ブロッキングされた。2%スキムミルク-TBSを除き、その後、各ウェルに調製された精製ファージが加えられた当該プレートを室温で1時間静置することによって、ファージを提示する抗体を各ウェルに存在するビオチン標識HSAにSC非存在/存在下において結合させた。TBSTもしくはSC/TBSTにて洗浄された各ウェルに、TBSもしくはSC/TBSによって希釈されたHRP結合抗M13抗体(Amersham Pharmacia Biotech)が添加されたプレートを1時間インキュベートさせた。TBSTもしくはSC/TBSTにて洗浄後、TMB single溶液(ZYMED)が添加された各ウェル中の溶液の発色反応が硫酸の添加により停止された後、450 nmの吸光度によって当該発色が測定された。
 単離された782クローンを用いてファージELISA を行うことによって、低分子カクテル存在下で抗原であるHSAに対して結合活性を有するクローンHSNMSC1-4_#22が得られた。
(13-4)HSAに結合する抗体の発現と精製
 (13-3)で記載されたファージELISAで示された、SC存在下でビオチン標識HSAに対する結合活性を有すると判断されたクローンHSNMSC1-4_#22から特異的なプライマー(配列番号:110及び112)を用いて増幅された遺伝子の塩基配列が解析された(重鎖の配列は配列番号:54および軽鎖の配列は配列番号:55で表される)。HSNMSC1-4_#22の可変領域をコードする遺伝子がヒトIgG1/Lambdaの動物発現用プラスミドへ挿入された。また陰性対照である抗ヒトグリピカン3抗体GC413(重鎖は配列番号:34、軽鎖は配列番号:35)の可変領域をコードする遺伝子はヒトIgG1/Kappaの動物発現用プラスミドへ挿入された。発現した抗体は実施例3記載の方法で精製された。
(13-5)取得された抗体のHSAに対する結合に必要な低分子の同定
 取得されたHSNMSC1-4_#22とGC413の2種類の抗体が表3に示す9条件下でELISAに供された。また表19に示すBufferにて各低分子が表3に示される濃度で適宜調製された。抗原としてビオチン標識されたHSAが用いられた。
Figure JPOXMLDOC01-appb-T000071
 はじめに、StreptaWell 96マイクロタイタープレート(Roche)がビオチン標識HSAを含む100μLのPBSにて室温で1時間以上コートされた。当該プレートの各ウェルをWash bufferにて洗浄することによってプレートへ結合していないビオチン標識HSAが除かれた後、当該ウェルがBlocking Buffer 250μLにて1時間以上ブロッキングされた。Blocking Bufferが除かれた各ウェルに、表3の終濃度で低分子を含むSample Bufferにて2.5μg/mLに調製された精製IgGの各100μLが加えられた当該プレートを室温で1時間静置することによって、各IgGを各ウェルに存在するビオチン標識HSAに結合させた。表3の終濃度で低分子を含むWash Bufferにて洗浄された後に、同低分子入りSample Bufferによって希釈されたHRP結合抗ヒトIgG抗体(BIOSOURCE)が各ウェルに添加されたプレートが1時間インキュベートされた。各低分子を含むWash Bufferにて洗浄後、TMB single溶液(ZYMED)が添加された各ウェル中の溶液の発色反応が、硫酸の添加により停止された後、450 nmの吸光度によって当該発色が測定された。なおBufferrとしては表19記載の組成を含むBufferが使用された。
 測定された結果を図24に示した。HSNMSC1-4_#22は条件8(全ての低分子カクテル溶液)における吸光度と比較して、条件9(低分子なし)における吸光度は、顕著に低い結果となった。この結果から、HSNMSC1-4_#22は低分子の有無によって抗原との結合が変化する性質を有することがファージ ELISA同様確認された。またHSNMSC1-4_#22は条件2(Adenosine 1mM)において、条件8と同等の吸光度を示し、その他の条件下では吸光度が顕著に低い結果であったことから、Adenosine存在下で抗原であるHSAと結合する抗体であることが示された。このような方法を用いることで、Kynurenine以外の低分子の存在下で抗原に結合する抗体を取得することが可能であることが示された。
〔実施例14〕ファージディスプレイ技術を用いたヒト抗体ライブラリからの低分子存在下においてヒトIL-6レセプター(hIL-6R)に結合する抗体の取得
(14-1)ビーズパンニングによるナイーブヒト抗体ライブラリからの低分子存在下においてhIL-6Rに結合する抗体の取得
 実施例2で構築されたナイーブヒト抗体ファージディスプレイライブラリから、低分子存在下でhIL-6Rに対する結合活性を示す抗体がスクリーニングされた。すなわち、ビーズにキャプチャーされたhIL-6Rに対して低分子存在下で結合活性を示す抗体を提示しているファージが集められた。低分子非存在の条件でビーズから溶出されたファージ溶出液からファージが回収された。本取得方法では、抗原としてビオチン標識されたhIL-6Rが用いられた。
 構築されたファージディスプレイ用ファージミドを保持した大腸菌から産生されたファージは一般的な方法により精製された。その後TBSで透析処理されたファージライブラリ液が得られた。次に、ファージライブラリ液に終濃度4%となるようにBSAが添加された。磁気ビーズに固定化された抗原を用いたパンニングが実施された。磁気ビーズとして、NeutrAvidin coated beads(Sera-Mag SpeedBeads NeutrAvidin-coated)もしくはStreptavidin coated beads(Dynabeads M-280 Streptavidin)が用いられた。
 癌組織においてスイッチの役割を果たすことができる低分子に依存的な低分子スイッチ抗体を効率的に取得するために、(2-2)に記載されるSCの存在下で抗原に結合し、SC非存在下では抗原に結合しない抗体を濃縮するパンニングが実施された。
 具体的には、調製されたファージライブラリ液に250 pmolのビオチン標識抗原とともに、(2-2)に記載されたように調製されたSCが加えられ室温にて60分間接触させた。次にBSAでブロッキングされた磁気ビーズにファージライブラリ液が加えられ、抗原とファージとの複合体を磁気ビーズと室温にて15分間結合させた。ビーズはSC/TBS(SCを含むTBS)にて1回洗浄された。その後、1 mg/mLのトリプシン溶液0.5 mLが加えられたビーズは室温で15分懸濁された後、即座に磁気スタンドを用いて分離されたビーズからファージ溶液が回収された。回収されたファージ溶液が、対数増殖期(OD600が0.4-0.7)となった10 mLの大腸菌株ER2738に添加された。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は、225 mm x 225 mmのプレートへ播種された。次に、播種された大腸菌の培養液からファージを回収することによって、ファージライブラリ液が調製された。
 Fabを提示しないファージのpIIIタンパク質(ヘルパーファージ由来のpIIIタンパク質)を切断し、Fabを提示しないファージの大腸菌に対する感染能を失わせるために100 mg/mLのトリプシン10μLを加える以外は(2-2)に記載されたパンニングが実施された。
(14-2)ネガティブセレクション法を利用したナイーブヒト抗体ライブラリからの低分子存在下においてhIL-6Rに結合する抗体の取得
 構築されたナイーブヒト抗体ファージディスプレイライブラリから、hIL-6Rに対して低分子が存在する条件下でhIL-6Rに対する結合活性を示す抗体がスクリーニングされた。スクリーニングのために、まずナイーブヒト抗体ファージディスプレイライブラリを、低分子非存在下でビオチン標識抗原-ストレプトアビジンと接触させ、低分子非存在下でもhIL-6Rに対して結合活性を有する抗体を提示しているファージが除去された。それに続き、低分子の存在下で同様にパンニングを行うことによって、低分子が存在する条件下でhIL-6Rに対して結合活性を有する抗体がスクリーニングされた。抗原としてビオチン標識されたhIL-6Rが用いられた。次に、抗原としてビオチン標識hIL-6Rが用いられた(2-3)に記載された方法によって、ファージライブラリ液が調製された。
(14-3)ファージELISAによる低分子存在下における結合活性の評価
 (14-2)で得られた大腸菌のシングルコロニーから、常法(Methods Mol. Biol. (2002) 178, 133-145)に習い、ファージ含有培養上清が回収された。(2-4)に記載された方法で精製された精製ファージが以下の手順でELISAに供された。StreptaWell 96マイクロタイタープレート(Roche)がビオチン標識hIL-6Rを含む100μLのTBSにて一晩コートされた。当該プレートの各ウェルをTBSTにて洗浄することによってビオチン標識hIL-6Rが除かれた後、当該ウェルが250μLの2%スキムミルク-TBSにて1時間以上ブロッキングされた。2%スキムミルク-TBSを除き、その後、各ウェルに調製された精製ファージが加えられた当該プレートを室温で1時間静置することによって、ファージを提示する抗体を各ウェルに存在するビオチン標識hIL-6RにSC非存在/存在下において結合させた。TBSTもしくはSC/TBSTにて洗浄された各ウェルに、TBSもしくはSC/TBSによって希釈されたHRP結合抗M13抗体(Amersham Pharmacia Biotech)が添加されたプレートを1時間インキュベートさせた。TBSTもしくはSC/TBSTにて洗浄後、TMB single溶液(ZYMED)が添加された各ウェル中の溶液の発色反応が硫酸の添加により停止された後、450 nmの吸光度によって当該発色が測定された。
 単離された960クローンを用いてファージELISA を行うことによって、低分子カクテル存在下で抗原であるhIL-6Rに対して結合活性を有するクローン6RNMSC1-2_F02および6RNMSC1-3_G02が得られた。
(14-4)hIL-6Rに結合する抗体の発現と精製
 (14-3)で記載されたファージELISAで示された、SC存在下でビオチン標識hIL-6Rに対する結合活性を有すると判断されたクローン6RNMSC1-2_F02および6RNMSC1-3_G02から特異的なプライマー(配列番号:110及び112)を用いて増幅された遺伝子の塩基配列が解析された(6RNMSC1-2_F02:重鎖の配列は配列番号:86および軽鎖の配列は配列番号:87、6RNMSC1-3_G02:重鎖の配列は配列番号:88および軽鎖の配列は配列番号:89で表される)。6RNMSC1-2_F02、6RNMSC1-3_G02および陰性対照である抗ヒトグリピカン3抗体GC413(重鎖は配列番号:34、軽鎖は配列番号:35)の可変領域をコードする遺伝子はヒトIgG1/Kappaの動物発現用プラスミドへ挿入された。発現した抗体は実施例3記載の方法で精製された。
(14-5)取得された抗体のhIL-6Rに対する結合に必要な低分子の同定
 取得された6RNMSC1-2_F02および6RNMSC1-3_G02とGC413の3種類の抗体が表3に示す9条件下でELISAに供された。また表19に示すBufferにて各低分子が表3に示される濃度で適宜調製された。抗原としてビオチン標識されたhIL-6Rが用いられた。
 はじめに、StreptaWell 96マイクロタイタープレート(Roche)がビオチン標識hIL-6Rを含む100μLのPBSにて室温で1時間以上コートされた。当該プレートの各ウェルをWash bufferにて洗浄することによってプレートへ結合していないビオチン標識hIL-6Rが除かれた後、当該ウェルがBlocking Buffer 250μLにて1時間以上ブロッキングされた。Blocking Bufferが除かれた各ウェルに、表3の終濃度で低分子を含むSample Bufferにて2.5μg/mLに調製された精製IgGの各100μLが加えられた当該プレートを室温で1時間静置することによって、各IgGを各ウェルに存在するビオチン標識hIL-6Rに結合させた。表3の終濃度で低分子を含むWash Bufferにて洗浄された後に、同低分子入りSample Bufferによって希釈されたHRP結合抗ヒトIgG抗体(BIOSOURCE)が各ウェルに添加されたプレートが1時間インキュベートされた。各低分子を含むWash Bufferにて洗浄後、TMB single溶液(ZYMED)が添加された各ウェル中の溶液の発色反応が、硫酸の添加により停止された後、450 nmの吸光度によって当該発色が測定された。なおBufferrとしては表19記載の組成を含むBufferが使用された。
 測定された結果を図28と図29に示した。6RNMSC1-2_F02および6RNMSC1-3_G02が用いられた場合、条件8(全ての低分子カクテル溶液)における吸光度と比較して、条件9(低分子なし)における吸光度は、顕著に低いという結果が得られた。この結果から、6RNMSC1-2_F02および6RNMSC1-3_G02は低分子の有無によって抗原との結合が変化する性質を有することが確認された。また6RNMSC1-2_F02が用いられた場合、条件7(Kynurenine 100uM)において、条件8と同等の吸光度を示し、その他の条件下では吸光度が顕著に低い結果であったことから、6RNMSC1-2_F02はKynurenine存在下で抗原であるhIL-6Rと結合する抗体であることが示された(図28)。また6RNMSC1-3_G02が用いられた場合、条件1(ATP-Na 1mM)において、条件8と同等の吸光度を示し、その他の条件下では吸光度が顕著に低い結果であかったことから、6RNMSC1-3_G02はATP存在下で抗原であるhIL-6Rと結合する抗体であることが示された(図29)。このような方法を用いることで、異なる低分子の存在下で抗原への結合能が変化する抗体を一度に複数取得することが可能であることが示された。
〔実施例15〕6RNMSC1-2_F02抗体のキャラクタライゼーション
(15-1)ELISAによるキヌレニン以外のアミノ酸およびアミノ酸代謝物存在下におけるhIL6Rに対する結合活性の評価
 実施例14で取得された低分子存在下でhIL-6Rに結合する抗体6RNMSC1-2_F02はキヌレニン存在下でhIL-6Rに結合する抗体である。実施例11で記載された一連のトリプトファン代謝物等のアミノ酸代謝物が、本発明で使用される癌組織特異的化合物、とくに癌細胞特異的代謝産物の非限定な一態様として好適か否か検証された。
 実施例14で示された、キヌレニン存在下で抗原に対する結合活性を有する抗体6RNMSC1-2_F02および陰性対照としてGC413は表18に示す7条件下でELISAに供された。また表4に示すBufferにて各アミノ酸およびその代謝物が表18に示される濃度で適宜調製された。抗原としてビオチン標識されたhIL-6Rが用いられた。ELISAは実施例11に記載された方法が用いられた。
 測定された結果を図30に示した。6RNMSC1-2_F02が用いられた場合、条件1(キヌレニン溶液)における吸光度と比較して、条件7(低分子なし)における吸光度は、顕著に低かった。また同様に、条件5(3-ヒドロキシキヌレニン溶液)における吸光度も条件1と同様の高い吸光度を示したことから、6RNMSC1-2_F02はキヌレニンだけでなく、キヌレニンの代謝物存在下でも抗原であるhIL-6Rに結合する抗体であることが示された。また、その他の条件では顕著に低い吸光度であったことから、6RNMSC1-2_F02はキヌレニンの前駆体であるトリプトファンが存在していても、抗原であるhIL-6Rに結合しない抗体であることが示された。癌微小環境においてはトリプトファンを代謝してキヌレニンを産生する酵素であるIDOの発現が上昇していることから、トリプトファン存在下では抗原に結合せず、キヌレニンおよびその代謝物存在下で抗原に結合する抗体であることが、癌微小環境下においてのみ抗原に結合する抗体として重要であると考えられた。また、このことから、同様の方法を用いることで、一種類のアミノ酸代謝物のみならず、構造の異なる複数の種類のアミノ酸代謝物存在下において目的の抗原に結合する抗体を取得することが可能であると考えられた。
(15-2)表面プラズモン共鳴によるヒトIL6レセプターに対する結合のkynurenineの影響の評価
 Biacore T200 (GE Healthcare) を用いて、6RNMSC1-2_F02とヒトIL-6レセプター(IL-6R)との抗原抗体反応の相互作用が解析された。アミンカップリング法でprotein A(Invitrogen)が適当量固定化されたSensor chip CM5(GE Healthcare)に目的の抗体をキャプチャーさせ、抗原であるIL-6Rを相互作用させた。ランニングバッファーには20 mmol/L ACES、150 mmol/L NaCl、0.05% (w/v) Tween20、pH7.4が用いられた。抗原であるIL-6Rとの相互作用は25 ℃で測定され、IL-6Rの希釈にはランニングバッファー、ランニングバッファーに100 μmol/L kynurenineを加えたバッファー、また比較対照のためにランニングバッファーに10 mmol/L ATPを加えたバッファーが使用された。
 IL-6R希釈液とブランクであるランニングバッファーを流速10μL/minで1 分間インジェクトして、センサーチップ上にキャプチャーさせた6RNMSC1-2_F02にIL-6Rを相互作用させた。その後、流速10μL/minで1 分間ランニングバッファーを流し、IL-6Rの抗体からの解離が観察された後、10 mmol/L Glycine-HCl、pH1.5を流速30μL/minで30 秒間インジェクトしてセンサーチップが再生された。測定で得られたセンサーグラムから算出されたカイネティクスパラメーターである結合速度定数 ka(1/Ms)、および解離速度定数 kd(1/s)をもとに、6RNMSC1-2_F02のIL-6Rに対する解離定数KD(M)が算出された。各パラメーターの算出には Biacore T200 Evaluation Software(GE Healthcare)が用いられた。
 この測定で取得された100μmol/L kynurenine存在下、10 mmol/L ATP存在下、または非存在下における6RNMSC1-2_F02と1μmol/LのIL-6Rとの相互作用のセンサーグラムを図31に示した。図31に示されたように、6RNMSC1-2_F02は100μmol/Lのkynurenine存在下ではIL-6Rに結合するが、kynurenine非存在下ではIL-6Rに対する結合が観察されなかった。このことから、6RNMSC1-2_F02はkynurenineをスイッチとしてIL-6Rに結合する性質を有することが確認された。また、100μmol/L kynurenine存在下での6RNMSC1-2_F02の解離定数KDは1.5μmol/Lであった。
(15-3)抗体のIL-6Rからの解離に対するkynurenineスイッチの効果
 Biacore T200(GE Healthcare)を用いて、kynurenine存在下でIL-6Rに対して結合した6RNMSC1-2_F02が、kynurenine存在下でkynurenine濃度依存的に解離するかが評価された。ランニングバッファーとして20 mmol/L ACES、150 mmol/L NaCl、0.05% (w/v) Tween20、pH7.4および20 mmol/L ACES、150 mmol/L NaCl、0.05% (w/v) Tween20、pH7.4、100 μmol/L kynurenineが用いられ、25 ℃で測定された。アミンカップリングによりIL-6Rが固定化されたセンサーチップCM5に100 μmol/Lのkynurenineを含む20 mmol/L ACES、150 mmol/L NaCl、0.05% (w/v) Tween20、pH7.4で希釈された5μg/mLの6RNMSC1-2_F02をアナライトとして180 秒間相互作用させた後、各ランニングバッファー条件下におけるIL-6Rの解離の様子が観察された。各ランニングバッファー条件下での解離の程度を比較するために、100μmol/L kynurenine存在下でのIL-6Rに対する6RNMSC1-2_F02の結合量を100として標準化(normalize)された値が比較された。この標準化された後の6RNMSC1-2_F02とIL-6Rとの相互作用の様子を示したセンサーグラムを図32に示した。図32の結果から、6RNMSC1-2_F02はkynurenine存在下でIL-6Rと結合した後、kynurenineが存在しなくなると、IL-6Rを速やかに解離する性質を有することが明らかとなった。すなわち、抗体のIL-6Rに対する結合に及ぼすkynuerenineによる制御は可逆的であることが確認された。
(15-4)IL-6R結合に対するkynurenine濃度の及ぼす影響の評価
 次に、Biacore T200(GE Healthcare)を用いて、6RNMSC1-2_F02とIL-6Rとの抗原抗体反応におけるkynurenine濃度の影響が評価された。ランニングバッファーとして20 mmol/L ACES、150 mmol/L NaCl、0.05% (w/v) Tween20、pH7.4が用いられ、6RNMSC1-2_F02とヒトIL-6Rとの抗原抗体反応が25 ℃で測定された。センサーチップCM5上にアミンカップリングによりIL-6Rを固定化し、種々の濃度に調製されたkynurenineを含む20 mmol/L ACES、150 mmol/L NaCl、0.05% (w/v) Tween20、pH7.4で希釈された1μg/mLの6RNMSC1-2_F02 をアナライトとして180 秒間相互作用させ、その結合量の変化が観察された。その結果を図33に示した。この結果から、スイッチとなるkynurenine濃度が高いほど、6RNMSC1-2_F02はIL-6Rに対してより多く結合することが明らかとなった。
 また、この評価系ではIL-6Rがセンサーチップ上に固定化されているため、6RNMSC1-2_F02が二価で結合すると考えられる。このような6RNMSC1-2_F02がIL-6Rを二価で認識するような評価系においても、kynurenine濃度が高いほど6RNMSC1-2_F02のIL-6Rの結合量が増加することが観察された。この結果から、二価での結合においても6RNMSC1-2_F02がIL-6Rに対してkynurenineをスイッチとして結合する性質を有することが明らかとなった。
 これらの結果から、6RNMSC1-2_F02は、kynurenineをスイッチとして、kynuerenine存在下でIL-6Rに結合し、kynurenine非存在下ではIL-6Rから解離する抗体であることが明らかとなった。また、6RNMSC1-2_F02はkynurenine非存在下ではIL-6Rに結合活性を示さない完全なON/OFF制御が可能であることが確認され、図2に示すような様態でスイッチ機能を果たしていることが推察された。
(15-5)6RNMSC1-2_F02のADCC活性に対するKynurenineの影響
 実施例14で決定された、6RNMSC1-2_F02の可変領域をコードする遺伝子は、配列番号:90を含む重鎖抗体定常領域と配列番号:91を含む軽鎖kappa定常領域配列を含むヒトIgG1/Kappaの動物発現用プラスミドへ挿入された。(重鎖の配列は配列番号:92で表され、軽鎖の配列は配列番号:93で表される)既知の抗ヒトIL-6R抗体MRAの可変領域をコードする遺伝子も、上記(配列番号:90、および91)の定常領域を有するヒトIgG1/Kappaの動物発現用プラスミドへ各々挿入された。以下の方法を用いて抗体が発現された。FreeStyle 293 Expression Medium培地(Invitrogen)に1.33 x 106細胞/mLの細胞密度で懸濁されて、6well plateの各ウェルへ3 mLずつ播種されたヒト胎児腎細胞由来FreeStyle 293-F株(Invitrogen)に対して、リポフェクション法により調製されたプラスミドが導入された。CO2インキュベーター(37℃、8%CO2, 90 rpm)で4日間培養された培養上清から、rProtein A SepharoseTM Fast Flow(Amersham Biosciences)を用いて当業者公知の方法で抗体が精製された。分光光度計を用いて、精製された抗体溶液の280 nmでの吸光度が測定された。得られた測定値からPACE法により算出された吸光係数を用いて精製された抗体の濃度が算出された(Protein Science (1995) 4, 2411-2423)。
 実施例14で示された、キヌレニン存在下で抗原に対する結合活性を有する抗体6RNMSC1-2_F02はこれまで可溶型のhIL-6Rに対しての結合が評価された。6RNMSC1-2_F02のhIL-6R発現細胞に対するADCC活性を評価するために、まず6RNMSC1-2_F02がhIL-6R発現細胞に発現する膜型hIL-6Rへの結合能も有しているのかどうか評価された。具体的にはBaF/hIL-6R細胞株(WO2012/073992)に対する6RNMSC1-2_F02の結合がFlow cytometerを用いて測定、および解析された。適切な細胞数に調製されたBaF/hIL-6Rは2%FBS in PBSにて氷上で1時間以上ブロッキングされた。ブロッキングされた細胞は遠心分離によって上清が除去され、6RNMSC1-2_F02もしくはコントロール抗体MRA(重鎖の配列は配列番号:92で表され、軽鎖の配列は配列番号:93で表される)が終濃度100μMのKynurenine存在または非存在下の二つの条件にて100μL添加された。この時氷上で30分間抗体を細胞膜上のhIL-6Rと接触させた。細胞と抗体の複合体がKynurenineを含むWash Bufferまたは含まないWash Bufferにて洗浄され、次に同複合体と抗体の定常領域を認識する二次抗体(Beckman Coulter IM1627)をKynurenineの存在下、または非存在下で接触させた。氷上で30分間抗体と反応後、細胞が再度Wash Bufferにて洗浄されたのち、2%FBS in PBSに再懸濁された。調製された細胞に対する6RNMSC1-2_F02の結合がBD FACS cant II Flow Cytometer(BD)にて測定、および解析された。
 測定結果を図34に示した。コントロール抗体であるMRAはKynurenineの存在の有無に関わらず、蛍光発色が認められるのに対し、6RNMSC1-2_F02はKynurenine 100μM存在下で初めて蛍光のシフトがみられ、Kynurenine非存在下では蛍光の発色が認められないことから、6RNMSC1-2_F02はKynurenine存在下では細胞膜上に発現しているhIL-6Rに対して結合能を有する抗体であることが示された。
 通常、天然型抗体は標的細胞上の抗原と抗体のFabが直接結合し、更にエフェクター細胞上のFcγR と抗体のFcが結合することで、エフェクター細胞から標的細胞に対して細胞傷害活性(ADCC活性)が誘導される。そこで、6RNMSC1-2_F02がKynurenine存在下でhIL-6Rに結合することにより、hIL-6Rを発現する細胞に対してADCC活性を発揮されるかが以下の方法に従って検証された。
 6RNMSC1-2_F02のエフェクター作用増強改変体(重鎖の配列は配列番号:94 軽鎖 配列番号:91で表される)が使用された。参考例1の方法に従い、Kynurenineの存在または非存在下におけるhIL-6Rを発現する細胞に対する、異なる濃度の6RNMSC1-2_F02によるADCC活性が測定された。測定された結果を図35に示した。
 測定の結果、hIL-6Rを発現する細胞に対するKynurenine存在下において6RNMSC1-2_F02による抗体濃度依存的なADCC活性が確認された。この結果から、Kynurenineを介した抗原と抗体の結合によって、当該抗体による抗原を発現する細胞に対するADCC活性が誘導されることから、スイッチとなる低分子分子存在下で抗原と結合する抗体が、ADCC活性等の抗腫瘍活性という機能もまたスイッチとなる低分子の有無により制御することが可能であることが明らかとなった。
 また、正常組織中のKynurenine濃度と腫瘍組織中のそれとに濃度差があることから、腫瘍組織中Kynurenine濃度でのみ抗原を発現する腫瘍細胞に対して抗体によるADCC活性が発揮され、正常組織中の濃度ではADCC活性が発揮されない又は減弱されることが望ましい。そこで、参考例2の方法に従い、異なるKynurenine濃度における6RNMSC1-2_F02によるhIL-6Rを発現する細胞に対するADCC活性が測定された。測定の結果を図36に示した。測定の結果、Kynurenine濃度依存的にhIL-6Rを発現する細胞に対する6RNMSC1-2_F02によるADCC活性が確認された。さらに、正常組織中のKynurenine濃度として考えられる4~6μMではADCC活性が約10%なのに対して、腫瘍組織中のKynurenine濃度として考えられる30~40μMではADCC活性が約25%であった。
 これらの結果から、Kynurenine濃度の低い正常組織ではhIL-6Rを発現する細胞に対する6RNMSC1-2_F02によるADCC活性は弱く、濃度の高い腫瘍組織ではhIL-6Rを発現する細胞に対する6RNMSC1-2_F02によるADCC活性はより強かった。以上から、Kynurenineをスイッチとする抗体を投与することによって、標的抗原が発現している腫瘍組織に対する薬効が維持される一方で、標的抗原が発現している正常組織に対する毒性が軽減され得ることが示された。
(15-6)IgG ELISAによる、取得された抗体のマウス血清中におけるhIL-6Rに対する結合活性の評価
 実施例14で取得された低分子存在下でhIL-6Rに結合する抗体6RNMSC1-2_F02はキヌレニン存在下でhIL-6Rに結合する抗体である。これまで6RNMSC1-2_F02はPBSもしくはTBS等のバッファー中で抗原への結合能が評価されたきた。マウス血清中にはアミノ酸をはじめ、未知の低分子が多数存在すると考えられ、それら低分子により、6RNMSC1-2_F02の抗原結合に影響を与える可能性は否定できない。そこで、マウス血清中における6RNMSC1-2_F02の抗原結合能が評価された。
 実施例14で示された、キヌレニン存在下で抗原に対する結合活性を有する抗体6RNMSC1-2_F02および、既知の抗hIL-6R抗体MRAは表20に示される二つの条件下でELISAに供された。抗原としてビオチン標識されたhIL-6Rが用いられた。
Figure JPOXMLDOC01-appb-T000072
 はじめに、StreptaWell 96マイクロタイタープレート(Roche)がビオチン標識抗原を含む100μLのPBSにて室温で1時間以上コートされた。当該プレートの各ウェルをWash bufferにて洗浄することによってプレートへ結合していない抗原が除かれた後、当該ウェルがBlocking Buffer 250μLにて1時間以上ブロッキングされた。Blocking Bufferが除かれた各ウェルに、表20に示される条件2で2.5μg/mLに調製された精製IgGの各100μLが加えられた当該プレートを室温で1時間静置することによって、各IgGを各ウェルに存在する抗原に結合させた。100μMのKynurenineを含むWash Bufferにて洗浄された後に、Kynurenineを含むSample Bufferによって希釈されたHRP結合抗ヒトIgG抗体(BIOSOURCE)が各ウェルに添加されたプレートが1時間インキュベートされた。Kynurenineを含むWash Bufferにて洗浄後、TMB single溶液(ZYMED)が添加された各ウェル中の溶液の発色反応が、硫酸の添加により停止された後、450 nmの吸光度によって当該発色が測定された。
 測定された結果を図37に示した。MRAが用いられた場合、Kynurenineの有無に依らず吸光度が同じであるのに対して、6RNMSC1-2_F02が用いられた場合、表20に示される条件2(キヌレニンが存在するマウス血清)における吸光度と比較して、条件1(キヌレニンが存在しないマウス血清)における吸光度は、顕著に低かった。このことから、6RNMSC1-2_F02はマウス血清中の未知の低分子に影響を受けることなく、キヌレニン存在下で抗原であるhIL-6Rに結合する抗体であることが示された。
〔実施例16〕ファージディスプレイ技術を用いた抗体ライブラリからのアデノシン、ATP非存在下において抗原に結合する抗体の取得
(16-1)アデノシンおよびATPの混合物を利用したライブラリからの低分子存在下において抗原への結合が阻害される抗体の取得
 上述の実施例において、スイッチとなる低分子の存在下で標的抗原に結合する抗体が取得された。本実施例においては、低分子非存在下において標的抗原に結合する抗体の取得が試みられた。
 構築されたラショナルデザイン抗体ファージディスプレイライブラリから、抗原に対してアデノシン、および/またはATP非存在条件下で抗原に対する結合活性を示し、存在下で結合能が減衰する抗体が取得された。取得のために、まず抗体ファージディスプレイライブラリを、ビオチン化アデノシンおよびATP-NeutrAvidinと接触させ、アデノシンおよび/またはATPに結合する抗体ファージディスプレイライブラリが回収された。次に、当該抗体ファージディスプレイライブラリを、アデノシンおよびATP非存在条件下でビオチン化抗原-ストレプトアビジンと接触させ、アデノシンおよびATP非存在下で抗原に結合する抗体が回収された。このようなパンニングを交互に行うことによって、アデノシンおよび/またはATPと、抗原の両者に対して結合活性を有する抗体がスクリーニングされた。このような性質を持つ抗体は、アデノシンおよびATP存在下においては、アデノシンおよび/またはATPの抗体への結合により、抗体の抗原への結合が阻害されることが期待された。
 構築されたファージディスプレイ用ファージミドを保持する大腸菌からファージが産生された。ファージ産生が行われた大腸菌の培養液に2.5M NaCl/10%PEGを添加することによって沈殿させたファージの集団をTBSにて希釈することによってファージライブラリ液が得られた。次に、ファージライブラリ液に終濃度4%となるようにBSAが添加された。磁気ビーズとして、NeutrAvidin coated beads(Sera-Mag SpeedBeads NeutrAvidin-coated)もしくはStreptavidin coated beads(Dynabeads M-280 Streptavidin)を用い、磁気ビーズに固定化された抗原を用いるパンニングが実施された。
 調製されたファージライブラリ液に500 pmolのビオチン化ATP、2'-Adenosine-PEG-Biotin、および5'-Adenosine-PEG-Biotinを加えることによって、当該ファージライブラリ液とアデノシンおよびATPとを室温にて60分間接触させた。次にファージライブラリ液にBSAでブロッキングされた磁気ビーズが加えられ、アデノシンおよび/またはATPとファージとの複合体を磁気ビーズと室温にて15分間結合させた。ビーズはTBSにて1回洗浄された。その後、1 mg/mLのトリプシン溶液0.5 mLが加えられた。
 ビーズは室温で15分懸濁された後、即座に磁気スタンドを用いて分離されたビーズからファージ溶液が回収された。回収されたファージ溶液が、対数増殖期(OD600が0.4-0.7)となった10 mLの大腸菌株ER2738に添加された。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は、225 mm x 225 mmのプレートへ播種された。次に、播種された大腸菌の培養液からファージを回収することによって、ファージライブラリ液が調製された。
 2回目のパンニングでは、アデノシンおよびATP非存在条件下でビオチン化抗原に対して結合可能なファージの濃縮が行われた。具体的には、調製されたファージライブラリ液に250 pmolのビオチン化抗原を加えることによって、当該ファージライブラリ液を抗原と室温にて60分間接触させた。次にファージライブラリ液にBSAでブロッキングされた磁気ビーズが加えられ、抗原とファージとの複合体を磁気ビーズと室温にて15分間結合させた。TBSTにて2回、TBSにてビーズは1回洗浄された。その後、1 mg/mLのトリプシン溶液0.5 mLが加えられたビーズは室温で15分懸濁された後、即座に磁気スタンドを用いて分離されたビーズからファージ溶液が回収された。回収されたファージ溶液が、対数増殖期(OD600が0.4-0.7)となった10 mLの大腸菌株ER2738に添加された。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は、225 mm x 225 mmのプレートへ播種された。次に、播種された大腸菌の培養液からファージを回収することによって、ファージライブラリ液が調製された。
 この後、奇数回目のパンニングにおいては、1回目のパンニングと同じ条件によるパンニングが繰り返し実施された。ただし、TBSTおよびTBSによるビーズの洗浄は、それぞれ3回、2回に増やして実施された。
 この後、偶数回目のパンニングにおいては、2回目のパンニングと同じ条件によるパンニングが繰り返し実施された。ただし、4回目以降のパンニングでは、ビオチン化抗原を40pmolに減らし、TBSTおよびTBSによるビーズの洗浄はそれぞれ3回、2回に増やして実施された。
(16-2)ファージELISAによる低分子存在下における結合活性の評価
 上記の方法によって得られた大腸菌のシングルコロニーから、常法(Methods Mol. Biol. (2002) 178, 133-145)に習い、ファージ含有培養上清が回収された。NucleoFast 96(MACHEREY-NAGEL)を用いて、回収された培養上清は限外ろ過された。培養上清各100μLが各ウェルにアプライされたNucleoFast 96を遠心分離(4,500g, 45分間)することによってフロースルーが除去された。100μLのH2Oが各ウェルに加えられた当該NucleoFast 96が、再度遠心分離(4,500g, 30分間遠心)によって洗浄された。最後にTBS 100μLが加えられ、室温で5分間静置された当該NucleoFast 96の各ウェルの上清に含まれるファージ液が回収された。
 TBS、もしくはATPおよびアデノシン/TBSが加えられた精製ファージが以下の手順でELISAに供された。StreptaWell 96マイクロタイタープレート(Roche)がビオチン標識抗原を含む100μLのTBSにて一晩コートされた。当該プレートの各ウェルをTBSTにて洗浄することによって抗原が除かれた後、当該ウェルが250μLの2%SkimMilk-TBSにて1時間以上ブロッキングされた。2%SkimMilk-TBSを除き、その後、各ウェルに調製された精製ファージが加えられた当該プレートを37℃で1時間静置することによって、ファージを提示する抗体を各ウェルに存在する抗原にアデノシンおよびATP10 mM存在下または非存在下において結合させた。TBSTもしくは10 mM ATPおよびアデノシン/TBSTにて洗浄された各ウェルに、TBSもしくは10 mM ATPおよびアデノシン/TBSによって希釈されたHRP結合抗M13抗体(Amersham Pharmacia Biotech)が添加されたプレートを1時間インキュベートさせた。TBSTもしくは10 mM ATPおよびアデノシン/TBSTにて洗浄後、TMB single溶液(ZYMED)が添加された各ウェル中の溶液の発色反応が硫酸の添加により停止された後、450 nmの吸光度によって当該発色が測定された。
 単離された96クローンを用いてファージELISA を行うことによって、ラショナルデザイン抗体ライブラリより、ATP及びアデノシン非存在下で抗原であるヒトIL-6に対して結合活性を示すクローン「I6RLSA1-6_011」、ATP及びアデノシン非存在下で抗原であるHuman Serum Albumin(HSA)に対して結合活性を示すクローン「HSADSA1-6_020」、及び、ATP及びアデノシン非存在下でヒトIL-6 receptorに対して結合活性を示すクローン「6RRLSA1-6_037」、「6RRLSA1-6_045」が得られた(図38、39、45)。
(16-3)アデノシンおよびATPをスイッチとする抗体の配列解析
 (16-2)で示されたファージELISAの結果、アデノシンまたはATPの非存在条件下で抗原に対する結合活性があると判断されたクローンから特異的なプライマー配列番号:111及び112)を用いて増幅された遺伝子の塩基配列が解析された。解析の結果について以下の表21にアミノ酸配列を示した。
Figure JPOXMLDOC01-appb-T000073
〔実施例17〕多価提示ファージディスプレイ技術を用いた抗体ライブラリからのアデノシン、ATP存在下において抗原に結合する抗体の取得
(17-1)多価提示を利用したライブラリからの低分子存在下において抗原に結合する抗体の取得
 ファージへの抗体の多価提示を利用して、ラショナルデザイン抗体ファージディスプレイライブラリから、抗原に対してアデノシン、および/またはATP存在下において結合活性を示す抗体が取得された。ライブラリからの抗体取得において、低分子存在下と非存在下における抗原への結合能比が大きいほど取得確率が高まる。そこで、低分子存在下において結合能を有する抗体を効率的に回収するために、見かけの結合能の増強を利用したパンニングが実施された。より具体的には、ファージに対して抗体を多価で提示させることにより、アビディティ効果(多価による抗原への結合効果)により見かけの結合能が増強された。まずラショナルデザイン抗体ファージディスプレイライブラリを、アデノシンおよびATP存在下でビオチン化抗原に接触させ、アデノシン及びATP存在下で抗原に結合する抗体ファージディスプレイライブラリが回収された。次に、Rondot(Nat. Biotechnol. (2001) 19, 75-78)に記載された方法を参照して、回収された抗体ファージディスプレイライブラリを感染させた大腸菌に対して、pIIIをコードする遺伝子を欠失させたヘルパーファージを感染させ、すべてのpIIIに抗体が提示されている抗体多価提示ファージディスレプイライブラリが調製された。この抗体多価提示ファージディスプレイライブラリを、アデノシンおよびATP存在条件下でビオチン化抗原-ストレプトアビジンと接触させて回収した後、アデノシン、およびATP非存在条件下でビーズから溶出された溶出液中にファージが回収された。このようなファージ調製及びパンニングを複数回行うことによって、アデノシンおよび/またはATP存在下でのみ抗原に結合活性を有する抗体がスクリーニングされた。
 構築されたファージディスプレイ用ファージミドを保持する大腸菌にヘルパーファージM13KO7を感染させ、30℃で一晩培養することによって、抗体一価提示ファージディスプレイライブラリが産生された。ファージ産生が行われた大腸菌の培養液に2.5 M NaCl/10%PEGを添加することによって沈殿させたファージの集団をTBSにて希釈することによってファージライブラリ液が得られた。次に、ファージライブラリ液に終濃度4%となるようにBSAが添加された。磁気ビーズとして、NeutrAvidin coated beads(Sera-Mag SpeedBeads NeutrAvidin-coated)もしくはStreptavidin coated beads(Dynabeads M-280 Streptavidin)を用い、磁気ビーズに固定化される抗原を用いるパンニングが実施された。
 調製されたファージライブラリ液に抗原として 500 pmolのビオチン標識ヒトIgA-Fc(配列番号:99)、ならびに各終濃度 1 mMのATP-Naおよびアデノシンを加えることによって、当該ファージライブラリ液を室温にて60分間抗原及びアデノシン、およびATPと接触させた。当該ファージライブラリ液にBSAでブロッキングされた磁気ビーズが加えられ、抗原とファージとの複合体を磁気ビーズと室温にて15分間結合させた。ビーズはATPおよびアデノシンを溶解したTBSにて1回洗浄された。その後、1 mg/mLのトリプシン0.5 mLが加えられたビーズは室温で15分懸濁された後、即座に磁気スタンドを用いて分離されたビーズからファージ溶液が回収された。回収されたファージ溶液が、対数増殖期(OD600が0.4-0.7)となった10 mLの大腸菌株ER2738に添加された。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は、225 mm x 225 mmのプレートへ播種された。次に、播種された大腸菌の培養液に対して、ヘルパーファージM13KO7、もしくはM13KO7ΔpIII(ハイパーファージと呼称される)(PROGEN Biotechnik)を感染させ、30℃で一晩培養した上清からファージを回収することによって、それぞれ抗体一価提示ファージライブラリ及び抗体多価提示ファージライブラリ液が調製された。
 1回目のパンニングでは、アデノシンおよびATP存在下で抗原に対して結合可能なファージの回収が行われたが、2回目以降のパンニングでは、アデノシンおよびATP存在下でのみ抗原に対して結合可能なファージの濃縮が行われた。具体的には、調製されたファージライブラリ液に250 pmolのビオチン標識抗原ならびに各終濃度1 mMのアデノシンおよびATPを加えることによって、ファージライブラリを室温で60分間抗原及びアデノシンおよびATPと接触させた。BSAでブロッキングされた磁気ビーズが加えられ、抗原とファージとの複合体を磁気ビーズと室温で15分間結合させた。ビーズは1 mLのアデノシンおよびATP を溶解するTBST(以下、(アデノシン+ATP)/TBSTと呼ばれる)とアデノシンおよびATP を溶解するTBS(以下、(アデノシン+ATP)/TBSと呼ばれる)にて洗浄された。その後0.5 mLのTBSが加えられたビーズが室温で懸濁された後、即座に磁気スタンドを用いて分離されたビーズからファージ溶液が回収された。この作業が再度繰り返された後、2回に分けて溶出されたファージ液が混合された。回収されたファージ溶液に100 mg/mLのトリプシン5μLを加えることによって、Fabを提示しないファージのpIIIタンパク質(ヘルパーファージ由来のpIIIタンパク質)が切断され、Fabを提示しないファージの大腸菌に対する感染能が失われた。トリプシン処理されたファージ溶液から回収されたファージが、対数増殖期(OD600が0.4-0.7)となった10 mLの大腸菌株ER2738に添加された。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は225 mm x 225 mmのプレートへ播種された。次に、播種された大腸菌の培養液から1回目のパンニングと同様にファージを回収することによって、抗体一価提示ファージライブラリ及び抗体多価提示ファージライブラリ液が回収された。アデノシンおよびATP存在下で抗原に対する結合活性を有する抗体を取得するパンニングが3回繰り返された。ただし、3回目以降のパンニングではビオチン化抗原は40 pmol使用された。
(17-2)ファージELISAによるアデノシンおよび/またはATPの存在および非存在下における結合活性評価
 上記の方法によって得られた大腸菌のシングルコロニーから、常法(Methods Mol. Biol. (2002) 178, 133-145)に倣い、ファージ含有培養上清が回収された。NucleoFast 96(MACHEREY-NAGEL)を用いて、回収された培養上清が限外ろ過された。培養上清各100μLが各ウェルにアプライされたNucleoFast 96を遠心分離(4,500g、45分間)することによってフロースルーが除去された。100μlのH2Oが各ウェルに加えられた当該NucleoFast 96が、再度遠心分離(4,500g、30分間)によって洗浄された。最後にTBS 100μLが加えられ、室温で5分間静置された当該NucleoFast 96の各ウェルの上清に含まれるファージ液が回収された。
 TBS、または(アデノシン+ATP)/TBSが加えられた精製ファージが以下の手順でELISAに供された。StreptaWell 96マイクロタイタープレート(Roche)がビオチン標識抗原を含む100μLのTBSにて一晩コートされた。当該プレートの各ウェルをTBSTにて洗浄することによって抗原が除かれた後、当該ウェルが250μLの2%SkimMilk-TBSにて1時間以上ブロッキングされた。2%SkimMilk-TBSを除き、その後、各ウェルに調製された精製ファージが加えられた当該プレートを1時間静置することによって、抗体を提示したファージを各ウェルに存在する抗原にアデノシンおよびATPの非存在および存在下において結合させた。TBSTまたは(アデノシン+ATP)/TBSTにて洗浄された各ウェルに、TBSまたは(アデノシン+ATP)/TBSによって希釈されたHRP結合抗M13抗体(Amersham Pharmacia Biotech)が添加されたプレートを1時間インキュベートさせた。TBSTまたは(アデノシン+ATP)/TBSTにて洗浄後、TMB single溶液(ZYMED)が添加された各ウェル中の溶液の発色反応が硫酸の添加により停止された後、450 nmの吸光度によって当該発色が測定された。その結果、抗体多価提示ファージディスプレイライブラリにおいて、低分子存在下で結合活性を有する抗体がより多く取得された(図40、41)。このことから、抗体多価提示ファージディスプレイ法を用いることで、より効率的に低分子存在下で結合活性を有する抗体が取得可能であることが示唆された。ファージELISAの結果を以下の表22に示した。
Figure JPOXMLDOC01-appb-T000074
(17-3)アデノシンおよびATPをスイッチとする抗体の結合能の評価および配列解析
 (17-2)で示されるファージELISAの結果、アデノシンおよびATPが存在する条件下で抗原に対する結合活性があると判断されたクローンから特異的なプライマー(配列番号:111及び112)を用いて増幅された遺伝子の塩基配列が解析された。その結果、アデノシンおよびATP存在下で抗原に対する結合活性を示すクローン「IADL3C5-4_048(重鎖配列番号:100、軽鎖配列番号:101)」が取得された(図42)。
〔実施例18〕 ライブラリから取得されたATP/アデノシン依存性抗体のキャラクタライゼーション
(18-1)ライブラリから取得されたATP/アデノシン依存性抗体の調製
 実施例10で取得された、ATPもしくはアデノシン存在下でビオチン標識hIL-6R(hI-L6)に対する結合活性を有すると判断されたクローン6RAD2C1-4_001、6RAD2C1-4_005、6RAD2C1-4_011、6RAD2C1-4_026、6RAD2C1-4_030、6RAD2C1-4_042、6RAD2C1-4_076、6RDL3C1-4_085、6RDL3C5-4_011から特異的なプライマーを用いて増幅された遺伝子の塩基配列が解析された(表23)。
Figure JPOXMLDOC01-appb-T000075
 6RAD2C1-4_001、6RAD2C1-4_005、6RAD2C1-4_011、6RAD2C1-4_026、6RAD2C1-4_030、6RAD2C1-4_042、6RAD2C1-4_076、6RDL3C1-4_085、6RDL3C5-4_011の可変領域配列は、配列番号:90を有する重鎖抗体定常領域と配列番号:91を有する軽鎖kappa定常領域配列を有するヒトIgG1/Kappaの動物発現用プラスミドへ挿入された。以下の方法を用いて抗体が発現された。FreeStyle 293 Expression Medium培地(Invitrogen)に1.33 x 106細胞/mLの細胞密度で懸濁されて、6well plateの各ウェルへ3 mLずつ播種されたヒト胎児腎細胞由来FreeStyle 293-F株(Invitrogen)に対して、調製されたプラスミドがリポフェクション法により導入された。CO2インキュベーター(37℃、8%CO2, 90 rpm)で4日間培養された培養上清から、rProtein A SepharoseTM Fast Flow(Amersham Biosciences)を用いて当業者公知の方法で抗体が精製された。分光光度計を用いて、精製された抗体溶液の280 nmでの吸光度が測定された。得られた測定値からPACE法により算出された吸光係数を用いて精製された抗体の濃度が算出された(Protein Science (1995) 4, 2411-2423)。
(18-2)表面プラズモン共鳴によるヒトIL6レセプターに対する結合の各種低分子の影響の評価
 Biacore T200(GE Healthcare)を用いて、ライブラリから取得されたATP/アデノシン依存性抗体9クローン(6RAD2C1-4_001、6RAD2C1-4_005、6RAD2C1-4_011、6RAD2C1-4_026、6RAD2C1-4_030、6RAD2C1-4_042、6RAD2C1-4_076、6RDL3C1-4_085、6RDL3C5-4_011)とIL-6Rとの抗原抗体反応における各種低分子の影響が評価された。ランニングバッファーとして、20 mmol/L ACES、150 mmol/L NaCl、0.05% (w/v) Tween20、pH7.4が用いられ、25 ℃で測定された。センサーチップCM5上にアミンカップリングによりIL-6Rを固定化し、抗体 をアナライトとして120 秒間相互作用させ、その結合量の変化が観察された。抗体の希釈は、ランニングバッファー及びランニングバッファーにATP、ADP、AMP、cAMP、またはアデノシン(ADO)のいずれかがそれぞれ添加されたバッファーが使用され、各低分子の終濃度が1 mM、抗体の終濃度が1μMになるように調製された。また、1 mM ATP条件下では、数段階の抗体の濃度系列を測定し、抗体濃度に対する平衡値のプロットから、各クローンのIL-6Rに対する解離定数KD(mol/L)が算出された。パラメーターの算出には Biacore T200 Evaluation Software(GE Healthcare)が用いられた。1 mM ATP存在下での各クローンの解離定数KDを表24に示した。
Figure JPOXMLDOC01-appb-T000076
 この測定で取得された1 mM の各低分子存在下、または非存在下における各クローンのIL-6Rに対する結合量を図43に示した。図43に示されたように、各クローンは1 mM ATP存在下ではIL-6Rに結合するが、ATP非存在下ではIL-6Rに対する結合が観察されなかった。このことから、ATPをスイッチとしてIL-6Rに結合する性質を有することが確認された。ATP以外の低分子においては、全クローンにおいてADP存在下で結合が観察され、一部のクローンにおいてAMP及びcAMP存在下での結合も観察された。ADO存在下ではIL-6Rへの結合は観察されなかった。
 ラショナルデザインライブラリを用いることにより、ATP、ADP、AMP、cAMPの1つまたはいずれか存在下で標的抗原に結合する抗体を取得することが可能であることが示された。本実施例においては、デザインライブラリの設計の際に参照された抗体であるATNLSA1-4_D12が結合するATPとADO共存下でパニングが行われたが、その結果、ATNLSA1-4_D12がより強く結合するATP存在下で標的抗原に強く結合する抗体が取得され、ATNLSA1-4_D12がATPより弱く結合するADO存在下で標的抗原に強く結合する抗体が取得されなかった 。所望の低分子のみ存在する条件下で抗原とライブラリを接触させて抗原に結合する抗体を単離することで当該低分子のみに依存して抗原に結合する抗体を取得することが可能である。例えばADOのみ存在下でパニングすることによって、本ライブラリからADO存在下で結合する抗体を効率的に取得することが可能であると考えられる。
(18-3)取得された抗体のADCC活性に対するATPの影響
 取得された抗体6RAD2C1-4_030、6RAD2C1-4_011がAdenosine Triphosphate(ATP)存在下でhIL-6Rに結合することにより、hIL-6Rを発現する細胞に対してADCC活性が発揮されるかが以下の方法に従って検証された。本検証には実施例18-1で作製された、6RAD2C1-4_030のエフェクター作用増強改変体(重鎖抗体可変領域:配列番号119、軽鎖抗体可変領域:配列番号120、重鎖抗体定常領域:配列番号90、軽鎖抗体定常領域:配列番号91)、6RAD2C1-4_011のエフェクター作用増強改変体(重鎖抗体可変領域:配列番号82、軽鎖抗体可変領域:配列番号83、重鎖抗体定常領域:配列番号90、軽鎖抗体定常領域:配列番号91)、及び実施例15-5で作成された、既知の抗ヒトIL-6R抗体MRA(重鎖抗体可変領域:配列番号92、軽鎖抗体可変領域:配列番号92、重鎖抗体定常領域:配列番号90、軽鎖抗体定常領域:配列番号91)が使用された。参考例3の方法に従い、ATP存在、または非存在下におけるhIL-6Rを発現する細胞に対する、異なる抗体濃度の6RAD2C1-4_030、6RAD2C1-4_011、MRAによるADCC活性が測定された。測定された結果を図44に示した。
 測定の結果、ATP存在下において6RAD2C1-4_030、6RAD2C1-4_011
による抗体濃度依存的なADCC活性が確認された。この結果から、KynurenineだけでなくATPを介した抗原と抗体の結合によっても当該抗体による抗原を発現する細胞に対するADCC活性が誘導されることから、スイッチとなる低分子分子存在下で抗原と結合する抗体が、ADCC活性等の抗腫瘍活性という機能もまたスイッチとなる低分子により制御することが可能であることが明らかとなった。
 これらの結果から、ATP濃度の低い正常組織ではhIL-6Rを発現する細胞に対するADCC活性が弱く、濃度の高い腫瘍組織ではhIL-6Rを発現する細胞に対するADCC活性を強く誘導すると考えられる。以上から、ATPをスイッチとする抗体を投与することによって、標的抗原が発現している腫瘍組織に対する薬効が維持される一方で、標的抗原が発現している正常組織に対する毒性を軽減され得ることが示唆された。
〔参考例1〕ヒト末梢血単核球をエフェクター細胞として用いた被験抗体のADCC活性
 以下の方法にしたがって、Kynurenine依存的に抗原に結合する抗体による、抗原を発現する細胞に対する異なる抗体濃度でのADCC活性が測定された。ヒト末梢血単核球(以下、ヒトPBMCと指称される。)をエフェクター細胞として用いて各被験抗体によるADCC活性が以下のように測定された。
(1)ヒトPBMC溶液の調製
 1000単位/mlのヘパリン溶液(ノボ・ヘパリン注5千単位、ノボ・ノルディスク)が予め200μl注入された注射器を用い、中外製薬株式会社所属の健常人ボランティア(成人男性)より末梢血50 mlが採取された。PBS(-)を用いて2倍に希釈された後に四等分された当該末梢血が、15 mlのFicoll-Paque PLUSが予め注入されて遠心分離操作が行なわれたLeucosepリンパ球分離管(Greiner bio-one)に加えられた。当該末梢血が分注された後に2150 rpmの速度によって10分間室温にて遠心分離の操作に供された分離管から、単核球画分層が分取された。10%FBSを含むRPMI-1640(nacalai tesque)(以下10%FBS/RPMIと称される。)によって一回洗浄された当該画分層に含まれる細胞が10%FBS/ RPMI中にその細胞密度が1x107 細胞/mlとなるように懸濁された。当該細胞懸濁液がヒトPBMC溶液として以後の実験に供された。
(2)標的細胞の調製
 Ba/F3にヒトIL-6 receptorを強制発現させたBaF/hIL6R(Miharaら(Int. Immunopharmacol. (2005) 5, 1731-40)3x106細胞に0.74MBqのCr-51が加えられた。その後5%炭酸ガスインキュベータ中において37℃で1時間インキュベートされた当該細胞が、10%FBS/RPMIで3回洗浄された後、10%FBS/RPMI中にその細胞密度が2x105 細胞/ mlとなるように懸濁された。当該細胞懸濁液が標的細胞として以後の実験に供された。
(3)Kynurenine溶液の調製
 PBS(-)を用いて5 mMに希釈されたL-Kynurenine(sigma)が、10%FBS/RPMIを用いて400μMの濃度に調製された。当該溶液がKynurenine溶液として以後の試験に供された。
(4)クロム遊離試験(ADCC活性)
 ADCC活性がクロムリリース法を用いた特異的クロム遊離率にて評価された。まず、各濃度(0、0.04、0.4、4、40μg/ml)に調製された抗体溶液が96ウェルU底プレートの各ウェル中に50μlずつ添加された。次に、当該ウェルに(2)で調製された標的細胞が50μlずつ播種された(1x104 細胞/ウェル)。さらに、当該ウェルに(3)で調製されたKynurenine溶液を50μlずつ添加されたプレートが、室温にて15分間静置された。次にその各ウェル中に(1)で調製されたヒトPBMC溶液各50ウェルl(5x105 細胞/ウェル)が加えられ、5%炭酸ガスインキュベータ中において37℃で4時間静置された当該プレートが、遠心分離操作に供された。当該プレートの各ウェル中の100μlの培養上清の放射活性がガンマカウンターを用いて測定された。以下の式に基づいて特異的クロム遊離率が算出された。
クロム遊離率(%)=(A-C)×100/(B-C)
 上式において、Aは各ウェル中の100μlの培養上清の放射活性(cpm)の平均値を表す。また、Bは標的細胞に対して50μlの4% NP-40水溶液(Nonidet P-40、ナカライテスク)および100μlの10% FBS/RPMIが添加されたウェル中の100μlの培養上清の放射活性(cpm)の平均値を表す。さらに、Cは標的細胞に対して150μlの10% FBS/RPMI又は100μlの10% FBS/RPMI 及び50μlのKynurenine溶液が添加されたウェル中の100μlの培養上清の放射活性(cpm)の平均値を表す。試験はduplicateにて実施され、各被験抗体のADCC活性が反映される前記試験における特異的クロム遊離率(%)の平均値が算出された。
〔参考例2〕 ヒト末梢血単核球をエフェクター細胞として用いた各被験抗体のADCC活性
 以下の方法にしたがって、Kynurenine依存的に抗原に結合する抗体による、抗原を発現する細胞に対する異なるKynurenine濃度でのADCC活性が測定された。ヒト末梢血単核球をエフェクター細胞として用いて各被験抗体によるADCC活性が以下のように測定された。なお、ヒトPBMC溶液、および標的細胞は参考例1と同じ方法で調製された。
(1)Kynurenine溶液の調製
 PBS(-)を用いて5 mMに希釈されたL-Kynurenine(sigma)が、10%FBS/RPMIを用いて1200、400、133、44、14.8、4.9μMの濃度に調製された。当該溶液がKynurenine溶液として以後の試験に供された。
(2)クロム遊離試験(ADCC活性)
 ADCC活性がクロムリリース法による特異的クロム遊離率にて評価された。まず、200 μg/mlに調製された抗体溶液が96ウェルU底プレートの各ウェル中に50μlずつ添加された。次に、当該ウェルに前記標的細胞が50μlずつ播種された(1x104 細胞/ウェル)。次に、当該ウェルに(1)で調製された各濃度のKynurenine溶液が50μlずつ添加されたプレートが、室温にて15分間静置された。次に各ウェル中に前記ヒトPBMC溶液各50μl(5x105 細胞/ウェル)が加えられ、5%炭酸ガスインキュベータ中において37℃で4時間静置されたプレートが、遠心分離操作に供された。当該プレートの各ウェル中の100μlの培養上清の放射活性がガンマカウンターを用いて測定された。参考例1に記載された式に基づいて特異的クロム遊離率が求められた。
〔参考例3〕 ヒトNK細胞株NK92をエフェクター細胞として用いた各被験抗体のADCC活性
 以下の方法にしたがって、ATP依存的に抗原に結合する抗体による、抗原を発現する細胞に対する異なる抗体濃度でのADCC活性が測定された。ヒトNK細胞株NK92にヒトFcgRIIIaを強制発現させたNK92-CD16(V)をエフェクター細胞として用いて各被験抗体によるADCC活性が以下のように測定された。
(1)NK92-CD16(V)の調製
 NK92-CD16(V)を10%FBS/ RPMI中にその細胞密度が1x107 細胞/mlとなるように懸濁された。当該細胞懸濁液がNK92-CD16(V)溶液として以後の実験に供された。
(2)標的細胞の調製
 CHOにヒトIL-6 receptorを強制発現させたCHO/hIL6R 3x106細胞に0.74MBqのCr-51が加えられた。その後5%炭酸ガスインキュベータ中において37℃で1時間インキュベートされた当該細胞が、10%FBS/RPMIで3回洗浄された後、10%FBS/RPMI中にその細胞密度が2x105 細胞/ mlとなるように懸濁された。当該細胞懸濁液が標的細胞として以後の実験に供された。
(3)ATP溶液の調製
 10%FBS/RPMIを用いて100 mMに希釈されたATP(sigma)が、4 mMの濃度に調製された。当該溶液がATP溶液として以後の試験に供された。
(4)クロム遊離試験(ADCC活性)
 ADCC活性がクロムリリース法を用いた特異的クロム遊離率にて評価された。まず、各濃度(0、0.04、0.4、4、40μg/ml)に調製された抗体溶液が96ウェルU底プレートの各ウェル中に50μlずつ添加された。次に、当該ウェルに(2)で調製された標的細胞が50μlずつ播種された(1x104 細胞/ウェル)。さらに、当該ウェルに(3)で調製されたATP溶液を50μlずつ添加されたプレートが、室温にて15分間静置された。次にその各ウェル中に(1)で調製されたNK92-CD16(V)溶液各50μl(5x105 細胞/ウェル)が加えられ、5%炭酸ガスインキュベータ中において37℃で4時間静置された当該プレートが、遠心分離操作に供された。当該プレートの各ウェル中の100μlの培養上清の放射活性がガンマカウンターを用いて測定された。参考例1に記載された式に基づいて特異的クロム遊離率が求められた。

Claims (46)

  1.  標的組織特異的な化合物の濃度に応じて抗原に対する結合活性が変化する抗原結合ドメインを含む抗原結合分子。
  2.  標的組織が癌組織である請求項1に記載の抗原結合分子。
  3.  前記癌組織特異的な化合物が、癌細胞特異的代謝産物、癌組織に浸潤している免疫細胞特異的代謝産物、癌組織のストローマ細胞特異的代謝産物である請求項2に記載の抗原結合分子。
  4.  標的組織が炎症性組織である請求項1に記載の抗原結合分子。
  5.  前記炎症組織特異的な化合物が、炎症性組織に浸潤している免疫細胞特異的代謝産物、炎症組織において傷害を受けている正常細胞特異的代謝産物である請求項4に記載の抗原結合分子。
  6.  前記化合物が、プリン環構造を有するヌクレオシド、アミノ酸とその代謝産物、脂質とその代謝産物、または糖代謝の一次代謝産物、ニコチンアミドとその代謝産物から選択される少なくとも一つの化合物である請求項1に記載の抗原結合分子。
  7.  前記化合物が、アデノシン、アデノシン3リン酸、イノシン、アラニン、グルタミン酸、アスパラギン酸、キヌレニン、プロスタグランジンE2、コハク酸、クエン酸、または1-メチルニコチンアミドから選択される少なくとも一つの化合物である請求項6に記載の抗原結合分子。
  8.  抗原が膜型分子である請求項1から7のいずれかに記載の抗原結合分子。
  9.  中和活性を有する抗原結合分子である請求項1から8のいずれかに記載の抗原結合分子。
  10.  細胞傷害活性を有する抗原結合分子である請求項1から9のいずれかに記載の抗原結合分子。
  11.  Fc領域を含む請求項1から10のいずれかに記載の抗原結合分子。
  12.  前記Fc領域が、配列番号:5、6、7、または8に記載の定常領域に含まれるFc領域である請求項11に記載の抗原結合分子。
  13.  前記Fc領域が、天然型ヒトIgGのFc領域のFcγレセプターに対する結合活性よりもFcγレセプターに対する結合活性が高いFcγR結合改変Fc領域を含む請求項11に記載の抗原結合分子。
  14.  前記FcγR結合改変Fc領域のアミノ酸配列のうち、EUナンバリングで表される221位、222位、223位、224位、225位、227位、228位、230位、231位、232位、233位、234位、235位、236位、237位、238位、239位、240位、241位、243位、244位、245位、246位、247位、249位、250位、251位、254位、255位、256位、258位、260位、262位、263位、264位、265位、266位、267位、268位、269位、270位、271位、272位、273位、274位、275位、276位、278位、279位、280位、281位、282位、283位、284位、285位、286位、288位、290位、291位、292位、293位、294位、295位、296位、297位、298位、299位、300位、301位、302位、303位、304位、305位、311位、313位、315位、317位、318位、320位、322位、323位、324位、325位、326位、327位、328位、329位、330位、331位、332位、333位、334位、335位、336位、337位、339位、376位、377位、378位、379位、380位、382位、385位、392位、396位、421位、427位、428位、429位、434位、436位または440位のアミノ酸の群から選択される少なくとも一つ以上のアミノ酸が天然型ヒトIgGのFc領域のアミノ酸と異なるアミノ酸を含む請求項13に記載の抗原結合分子。
  15.  前記FcγR結合改変Fc領域のアミノ酸配列のうち、EUナンバリングで表される;
    221位のアミノ酸がLysまたはTyrのいずれか、
    222位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
    223位のアミノ酸がPhe、Trp、GluまたはLysのいずれか、
    224位のアミノ酸がPhe、Trp、GluまたはTyrのいずれか、
    225位のアミノ酸がGlu、LysまたはTrpのいずれか、
    227位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
    228位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
    230位のアミノ酸がAla、Glu、GlyまたはTyrのいずれか、
    231位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
    232位のアミノ酸がGlu、Gly、LysまたはTyrのいずれか、
    233位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    234位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    235位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    236位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    237位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    238位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    239位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
    240位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
    241位のアミノ酸がAsp、Glu、Leu、Arg、TrpまたはTyrのいずれか、
    243位のアミノ酸がLeu、Glu、Leu、Gln、Arg、TrpまたはTyrのいずれか、
    244位のアミノ酸がHis、
    245位のアミノ酸がAla、
    246位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
    247位のアミノ酸がAla、Phe、Gly、His、Ile、Leu、Met、Thr、ValまたはTyrのいずれか、
    249位のアミノ酸がGlu、His、GlnまたはTyrのいずれか、
    250位のアミノ酸がGluまたはGlnのいずれか、
    251位のアミノ酸がPhe、
    254位のアミノ酸がPhe、MetまたはTyrのいずれか、
    255位のアミノ酸がGlu、LeuまたはTyrのいずれか、
    256位のアミノ酸がAla、MetまたはProのいずれか、
    258位のアミノ酸がAsp、Glu、His、SerまたはTyrのいずれか、
    260位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
    262位のアミノ酸がAla、Glu、Phe、IleまたはThrのいずれか、
    263位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
    264位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
    265位のアミノ酸がAla、Leu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    266位のアミノ酸がAla、Ile、MetまたはThrのいずれか、
    267位のアミノ酸がAsp、Glu、Phe、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
    268位のアミノ酸がAsp、Glu、Phe、Gly、Ile、Lys、Leu、Met、Pro、Gln、Arg、Thr、ValまたはTrpのいずれか、
    269位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    270位のアミノ酸がGlu、Phe、Gly、His、Ile、Leu、Met、Pro、Gln、Arg、Ser、Thr、TrpまたはTyrのいずれか、
    271位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    272位のアミノ酸がAsp、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    273位のアミノ酸がPheまたはIleのいずれか、
    274位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    275位のアミノ酸がLeuまたはTrpのいずれか、
    276位のアミノ酸が、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    278位のアミノ酸がAsp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
    279位のアミノ酸がAla、
    280位のアミノ酸がAla、Gly、His、Lys、Leu、Pro、Gln、TrpまたはTyrのいずれか、
    281位のアミノ酸がAsp、Lys、ProまたはTyrのいずれか、
    282位のアミノ酸がGlu、Gly、Lys、ProまたはTyrのいずれか、
    283位のアミノ酸がAla、Gly、His、Ile、Lys、Leu、Met、Pro、ArgまたはTyrのいずれか、
    284位のアミノ酸がAsp、Glu、Leu、Asn、ThrまたはTyrのいずれか、
    285位のアミノ酸がAsp、Glu、Lys、Gln、TrpまたはTyrのいずれか、
    286位のアミノ酸がGlu、Gly、ProまたはTyrのいずれか、
    288位のアミノ酸がAsn、Asp、GluまたはTyrのいずれか、
    290位のアミノ酸がAsp、Gly、His、Leu、Asn、Ser、Thr、TrpまたはTyrのいずれか、
    291位のアミノ酸がAsp、Glu、Gly、His、Ile、GlnまたはThrのいずれか、
    292位のアミノ酸がAla、Asp、Glu、Pro、ThrまたはTyrのいずれか、
    293位のアミノ酸がPhe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    294位のアミノ酸がPhe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    295位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    296位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、ThrまたはValのいずれか、
    297位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    298位のアミノ酸がAla、Asp、Glu、Phe、His、Ile、Lys、Met、Asn、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
    299位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Val、TrpまたはTyrのいずれか、
    300位のアミノ酸がAla、Asp、Glu、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、ValまたはTrpのいずれか、
    301位のアミノ酸がAsp、Glu、HisまたはTyrのいずれか、
    302位のアミノ酸がIle、
    303位のアミノ酸がAsp、GlyまたはTyrのいずれか、
    304位のアミノ酸がAsp、His、Leu、AsnまたはThrのいずれか、
    305位のアミノ酸がGlu、Ile、ThrまたはTyrのいずれか、
    311位のアミノ酸がAla、Asp、Asn、Thr、ValまたはTyrのいずれか、
    313位のアミノ酸がPhe、
    315位のアミノ酸がLeu、
    317位のアミノ酸がGluまたはGln、
    318位のアミノ酸がHis、Leu、Asn、Pro、Gln、Arg、Thr、ValまたはTyrのいずれか、
    320位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Asn、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
    322位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Pro、Ser、Thr、Val、TrpまたはTyrのいずれか、
    323位のアミノ酸がIle、
    324位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
    325位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    326位のアミノ酸がAla、Asp、Glu、Gly、Ile、Leu、Met、Asn、Pro、Gln、Ser、Thr、Val、TrpまたはTyrのいずれか、
    327位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Thr、Val、TrpまたはTyrのいずれか、
    328位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    329位のアミノ酸がAsp、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    330位のアミノ酸がCys、Glu、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    331位のアミノ酸がAsp、Phe、His、Ile、Leu、Met、Gln、Arg、Thr、Val、TrpまたはTyrのいずれか、
    332位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、TrpまたはTyrのいずれか、
    333位のアミノ酸がAla、Asp、Glu、Phe、Gly、His、Ile、Leu、Met、Pro、Ser、Thr、ValまたはTyrのいずれか、
    334位のアミノ酸がAla、Glu、Phe、Ile、Leu、ProまたはThrのいずれか、
    335位のアミノ酸がAsp、Phe、Gly、His、Ile、Leu、Met、Asn、Pro、Arg、Ser、Val、TrpまたはTyrのいずれか、
    336位のアミノ酸がGlu、LysまたはTyrのいずれか、
    337位のアミノ酸がGlu、HisまたはAsnのいずれか、
    339位のアミノ酸がAsp、Phe、Gly、Ile、Lys、Met、Asn、Gln、Arg、SerまたはThrのいずれか、
    376位のアミノ酸がAlaまたはValのいずれか、
    377位のアミノ酸がGlyまたはLysのいずれか、
    378位のアミノ酸がAsp、
    379位のアミノ酸がAsn、
    380位のアミノ酸がAla、AsnまたはSerのいずれか、
    382位のアミノ酸がAlaまたはIleのいずれか、
    385位のアミノ酸がGlu、
    392位のアミノ酸がThr、
    396位のアミノ酸がLeu、
    421位のアミノ酸がLys、
    427位のアミノ酸がAsn、
    428位のアミノ酸がPheまたはLeuのいずれか、
    429位のアミノ酸がMet、
    434位のアミノ酸がTrp、
    436位のアミノ酸がIle、もしくは
    440位のアミノ酸がGly、His、Ile、LeuまたはTyrのいずれか、
    の群から選択される少なくとも一つ以上のアミノ酸を含む請求項14に記載の抗原結合分子。
  16.  前記Fc領域が、Fc領域のEUナンバリング297位に結合した糖鎖の組成がフコース欠損糖鎖を結合したFc領域の割合が高くなるように、またはバイセクティングN-アセチルグルコサミンが付加したFc領域の割合が高くなるように修飾されたFc領域である請求項11に記載の抗原結合分子。
  17.  前記Fc領域のpH酸性域の条件下でのFcRnに対する結合活性が、配列番号:5、6、7、または8のいずれかで表されるFc領域のFcRnに対する結合活性より増強されているFc領域である、請求項11、または13から16のいずれかに記載の抗原結合分子。
  18.  前記Fc領域が、配列番号:5、6、7、または8に記載の定常領域に含まれるFc領域のアミノ酸配列のうち、EUナンバリングで表される238位、244位、245位、249位、250位、251位、252位、253位、254位、255位、256位、257位、258位、260位、262位、265位、270位、272位、279位、283位、285位、286位、288位、293位、303位、305位、307位、308位、309位、311位、312位、314位、316位、317位、318位、332位、339位、340位、341位、343位、356位、360位、362位、375位、376位、377位、378位、380位、382位、385位、386位、387位、388位、389位、400位、413位、415位、423位、424位、427位、428位、430位、431位、433位、434位、435位、436位、438位、439位、440位、442位または447位の群から選択される少なくとも一つ以上のアミノ酸が置換されているFc領域である請求項17に記載の抗原結合分子。
  19.  前記Fc領域が、配列番号:5、6、7、または8に記載の定常領域に含まれるFc領域のアミノ酸配列のうち、EUナンバリングで表される;
    238位のアミノ酸がLeu、
    244位のアミノ酸がLeu、
    245位のアミノ酸がArg、
    249位のアミノ酸がPro、
    250位のアミノ酸がGlnまたはGluのいずれか、もしくは
    251位のアミノ酸がArg、Asp、Glu、またはLeuのいずれか、
    252位のアミノ酸がPhe、Ser、Thr、またはTyrのいずれか、
    254位のアミノ酸がSerまたはThrのいずれか、
    255位のアミノ酸がArg、Gly、Ile、またはLeuのいずれか、
    256位のアミノ酸がAla、Arg、Asn、Asp、Gln、Glu、Pro、またはThrのいずれか、
    257位のアミノ酸がAla、Ile、Met、Asn、Ser、またはValのいずれか、
    258位のアミノ酸がAsp、
    260位のアミノ酸がSer、
    262位のアミノ酸がLeu、
    270位のアミノ酸がLys、
    272位のアミノ酸がLeu、またはArgのいずれか、
    279位のアミノ酸がAla、Asp、Gly、His、Met、Asn、Gln、Arg、Ser、Thr、Trp、またはTyrのいずれか、
    283位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Asn、Pro、Gln、Arg、Ser、Thr、Trp、またはTyrのいずれか、
    285位のアミノ酸がAsn、
    286位のアミノ酸がPhe、
    288位のアミノ酸がAsn、またはProのいずれか、
    293位のアミノ酸がVal、
    307位のアミノ酸がAla、Glu、Gln、またはMetのいずれか、
    311位のアミノ酸がAla、Glu、Ile、Lys、Leu、Met、Ser 、Val、またはTrpのいずれか、
    309位のアミノ酸がPro、
    312位のアミノ酸がAla、Asp、またはProのいずれか、
    314位のアミノ酸がAlaまたはLeuのいずれか、
    316位のアミノ酸がLys、
    317位のアミノ酸がPro、
    318位のアミノ酸がAsn、またはThrのいずれか、
    332位のアミノ酸がPhe、His、Lys、Leu、Met、Arg、Ser、またはTrpのいずれか、
    339位のアミノ酸がAsn、Thr、またはTrpのいずれか、
    341位のアミノ酸がPro、
    343位のアミノ酸がGlu、His、Lys、Gln、Arg、Thr、またはTyrのいずれか、
    375位のアミノ酸がArg、
    376位のアミノ酸がGly、Ile、Met、Pro、Thr、またはValのいずれか、
    377位のアミノ酸がLys、
    378位のアミノ酸がAsp、Asn、またはValのいずれか、
    380位のアミノ酸がAla、Asn、Ser、またはThrのいずれか
    382位のアミノ酸がPhe、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、Trp、またはTyrのいずれか、
    385位のアミノ酸がAla、Arg、Asp、Gly、His、Lys、Ser、またはThrのいずれか、
    386位のアミノ酸がArg、Asp、Ile、Lys、Met、Pro、Ser、またはThrのいずれか、
    387位のアミノ酸がAla、Arg、His、Pro、Ser、またはThrのいずれか、
    389位のアミノ酸がAsn、Pro、またはSerのいずれか、
    423位のアミノ酸がAsn、
    427位のアミノ酸がAsn、
    428位のアミノ酸がLeu、Met、Phe、Ser、またはThrのいずれか
    430位のアミノ酸がAla、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、またはTyrのいずれか、
    431位のアミノ酸がHis、またはAsnのいずれか、
    433位のアミノ酸がArg、Gln、His、Ile、Lys、Pro、またはSerのいずれか、
    434位のアミノ酸がAla、Gly、His、Phe、Ser、Trp、またはTyrのいずれか、
    436位のアミノ酸がArg、Asn、His、Ile、Leu、Lys、Met、またはThrのいずれか、
    438位のアミノ酸がLys、Leu、Thr、またはTrpのいずれか、
    440位のアミノ酸がLys、もしくは、
    442位のアミノ酸がLys、308位のアミノ酸がIle、Pro、またはThrのいずれか、
    の群から選択される少なくとも一つ以上のアミノ酸である、請求項18に記載の抗原結合分子。
  20.  前記抗原結合ドメインが多重特異性または多重パラトピックな抗原結合ドメインである請求項1から19のいずれかに記載の抗原結合分子。
  21.  前記抗原結合ドメインのうち、少なくとも一つの抗原結合ドメインが結合する抗原が癌細胞の細胞膜に発現する膜型分子、および少なくとも一つの抗原結合ドメインが結合する抗原がエフェクター細胞の細胞膜に発現する膜型分子である請求項20に記載の抗原結合分子。
  22.  前記エフェクター細胞がNK細胞、マクロファージ、またはT細胞である請求項21に記載の抗原結合分子。
  23.  前記エフェクター細胞の細胞膜に発現する膜型分子がTCRを構成するポリペプチド、CD2、CD3、CD28、CD44、CD16、CD32、CD64、またはNKG2Dである請求項21または22に記載の抗原結合分子。
  24.  前記抗原結合ドメインのうち、少なくとも一つの抗原結合ドメインが結合する抗原が癌細胞の細胞膜に発現する膜型分子、および少なくとも一つの抗原結合ドメインが結合する抗原が細胞傷害性物質である請求項20に記載の抗原結合分子。
  25.  前記抗原結合分子が抗体断片である請求項20から24のいずれかに記載の抗原結合分子。
  26.  前記抗原結合分子が抗体である請求項1から24のいずれかに記載の抗原結合分子。
  27.  抗原が可溶型分子である請求項1から7のいずれかに記載の抗原結合分子。
  28.  中和活性を有する抗原結合分子である請求項27に記載の抗原結合分子。
  29.  Fc領域を含む請求項27または28に記載の抗原結合分子。
  30.  前記Fc領域が、配列番号:5、6、7、または8に記載の定常領域に含まれるFc領域である請求項29に記載の抗原結合分子。
  31.  前記Fc領域のpH酸性域の条件下でのFcRnに対する結合活性が、配列番号:5、6、7、または8に記載の定常領域に含まれるFc領域のFcRnに対する結合活性より増強されているFc領域である、請求項29に記載の抗原結合分子。
  32.  前記Fc領域が、配列番号:5、6、7、または8に記載の定常領域に含まれるFc領域のアミノ酸配列のうち、EUナンバリングで表される238位、244位、245位、249位、250位、251位、252位、253位、254位、255位、256位、257位、258位、260位、262位、265位、270位、272位、279位、283位、285位、286位、288位、293位、303位、305位、307位、308位、309位、311位、312位、314位、316位、317位、318位、332位、339位、340位、341位、343位、356位、360位、362位、375位、376位、377位、378位、380位、382位、385位、386位、387位、388位、389位、400位、413位、415位、423位、424位、427位、428位、430位、431位、433位、434位、435位、436位、438位、439位、440位、442位または447位の群から選択される少なくとも一つ以上のアミノ酸が置換されているFc領域である請求項31に記載の抗原結合分子。
  33.  前記Fc領域が、配列番号:5、6、7、または8に記載の定常領域に含まれるFc領域のアミノ酸配列のうち、EUナンバリングで表される;
    238位のアミノ酸がLeu、
    244位のアミノ酸がLeu、
    245位のアミノ酸がArg、
    249位のアミノ酸がPro、
    250位のアミノ酸がGlnまたはGluのいずれか、もしくは
    251位のアミノ酸がArg、Asp、Glu、またはLeuのいずれか、
    252位のアミノ酸がPhe、Ser、Thr、またはTyrのいずれか、
    254位のアミノ酸がSerまたはThrのいずれか、
    255位のアミノ酸がArg、Gly、Ile、またはLeuのいずれか、
    256位のアミノ酸がAla、Arg、Asn、Asp、Gln、Glu、Pro、またはThrのいずれか、
    257位のアミノ酸がAla、Ile、Met、Asn、Ser、またはValのいずれか、
    258位のアミノ酸がAsp、
    260位のアミノ酸がSer、
    262位のアミノ酸がLeu、
    270位のアミノ酸がLys、
    272位のアミノ酸がLeu、またはArgのいずれか、
    279位のアミノ酸がAla、Asp、Gly、His、Met、Asn、Gln、Arg、Ser、Thr、Trp、またはTyrのいずれか、
    283位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Asn、Pro、Gln、Arg、Ser、Thr、Trp、またはTyrのいずれか、
    285位のアミノ酸がAsn、
    286位のアミノ酸がPhe、
    288位のアミノ酸がAsn、またはProのいずれか、
    293位のアミノ酸がVal、
    307位のアミノ酸がAla、Glu、Gln、またはMetのいずれか、
    311位のアミノ酸がAla、Glu、Ile、Lys、Leu、Met、Ser 、Val、またはTrpのいずれか、
    309位のアミノ酸がPro、
    312位のアミノ酸がAla、Asp、またはProのいずれか、
    314位のアミノ酸がAlaまたはLeuのいずれか、
    316位のアミノ酸がLys、
    317位のアミノ酸がPro、
    318位のアミノ酸がAsn、またはThrのいずれか、
    332位のアミノ酸がPhe、His、Lys、Leu、Met、Arg、Ser、またはTrpのいずれか、
    339位のアミノ酸がAsn、Thr、またはTrpのいずれか、
    341位のアミノ酸がPro、
    343位のアミノ酸がGlu、His、Lys、Gln、Arg、Thr、またはTyrのいずれか、
    375位のアミノ酸がArg、
    376位のアミノ酸がGly、Ile、Met、Pro、Thr、またはValのいずれか、
    377位のアミノ酸がLys、
    378位のアミノ酸がAsp、Asn、またはValのいずれか、
    380位のアミノ酸がAla、Asn、Ser、またはThrのいずれか
    382位のアミノ酸がPhe、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、Trp、またはTyrのいずれか、
    385位のアミノ酸がAla、Arg、Asp、Gly、His、Lys、Ser、またはThrのいずれか、
    386位のアミノ酸がArg、Asp、Ile、Lys、Met、Pro、Ser、またはThrのいずれか、
    387位のアミノ酸がAla、Arg、His、Pro、Ser、またはThrのいずれか、
    389位のアミノ酸がAsn、Pro、またはSerのいずれか、
    423位のアミノ酸がAsn、
    427位のアミノ酸がAsn、
    428位のアミノ酸がLeu、Met、Phe、Ser、またはThrのいずれか
    430位のアミノ酸がAla、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Gln、Arg、Ser、Thr、Val、またはTyrのいずれか、
    431位のアミノ酸がHis、またはAsnのいずれか、
    433位のアミノ酸がArg、Gln、His、Ile、Lys、Pro、またはSerのいずれか、
    434位のアミノ酸がAla、Gly、His、Phe、Ser、Trp、またはTyrのいずれか、
    436位のアミノ酸がArg、Asn、His、Ile、Leu、Lys、Met、またはThrのいずれか、
    438位のアミノ酸がLys、Leu、Thr、またはTrpのいずれか、
    440位のアミノ酸がLys、もしくは、
    442位のアミノ酸がLys、308位のアミノ酸がIle、Pro、またはThrのいずれか、
    の群から選択される少なくとも一つ以上のアミノ酸である、請求項32に記載の抗原結合分子。
  34.  前記Fc領域のpH中性域の条件下でのFcRnに対する結合活性が、配列番号:5、6、7、または8に記載の定常領域に含まれるFc領域のFcRnに対する結合活性より増強されているFc領域である、請求項29に記載の抗原結合分子。
  35.  前記Fc領域が、配列番号:5、6、7、または8に記載の定常領域に含まれるFc領域のアミノ酸配列のうち、EUナンバリングで表される237位、248位、250位、252位、254位、255位、256位、257位、258位、265位、286位、289位、297位、298位、303位、305位、307位、308位、309位、311位、312位、314位、315位、317位、332位、334位、360位、376位、380位、382位、384位、385位、386位、387位、389位、424位、428位、433位、434位または436位の群から選択される少なくとも一つ以上のアミノ酸が置換されているFc領域である請求項34に記載の抗原結合分子。
  36.  前記Fc領域が、配列番号:5、6、7、または8のいずれかで表されるFc領域のアミノ酸配列のうち、EUナンバリングで表される;
    237位のアミノ酸がMet、
    248位のアミノ酸がIle、
    250位のアミノ酸がAla、Phe、Ile、Met、Gln、Ser、Val、Trp、またはTyrのいずれか、
    252位のアミノ酸がPhe、Trp、またはTyrのいずれか、
    254位のアミノ酸がThr、
    255位のアミノ酸がGlu、
    256位のアミノ酸がAsp、Asn、Glu、またはGlnのいずれか、
    257位のアミノ酸がAla、Gly、Ile、Leu、Met、Asn、Ser、Thr、またはValのいずれか、
    258位のアミノ酸がHis、
    265位のアミノ酸がAla、
    286位のアミノ酸がAlaまたはGluのいずれか、
    289位のアミノ酸がHis、
    297位のアミノ酸がAla、
    303位のアミノ酸がAla、
    305位のアミノ酸がAla、
    307位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Val、Trp、またはTyrのいずれか、
    308位のアミノ酸がAla、Phe、Ile、Leu、Met、Pro、Gln、またはThrのいずれか、
    309位のアミノ酸がAla、Asp、Glu、Pro、またはArgのいずれか、
    311位のアミノ酸がAla、His、またはIleのいずれか、
    312位のアミノ酸がAlaまたはHisのいずれか、
    314位のアミノ酸がLysまたはArgのいずれか、
    315位のアミノ酸がAla、AspまたはHisのいずれか、
    317位のアミノ酸がAla、
    332位のアミノ酸がVal、
    334位のアミノ酸がLeu、
    360位のアミノ酸がHis、
    376位のアミノ酸がAla、
    380位のアミノ酸がAla、
    382位のアミノ酸がAla、
    384位のアミノ酸がAla、
    385位のアミノ酸がAspまたはHisのいずれか、
    386位のアミノ酸がPro、
    387位のアミノ酸がGlu、
    389位のアミノ酸がAlaまたはSerのいずれか、
    424位のアミノ酸がAla、
    428位のアミノ酸がAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Asn、Pro、Gln、Ser、Thr、Val、Trp、またはTyrのいずれか、
    433位のアミノ酸がLys、
    434位のアミノ酸がAla、Phe、His、Ser、Trp、またはTyrのいずれか、もしくは
    436位のアミノ酸がHis 、Ile、Leu、Phe、Thr、またはVal、
    の群から選択される少なくとも一つ以上のアミノ酸である、請求項35に記載の抗原結合分子。
  37.  前記Fc領域が、活性型Fcγレセプターに対する結合活性よりも抑制型Fcγレセプターに対する結合活性が高いFc領域である、請求項29または31から36のいずれかに記載の抗原結合分子。
  38.  前記抑制型FcγレセプターがヒトFcγRIIbである、請求項37に記載の抗原結合分子。
  39.  前記活性型FcγレセプターがヒトFcγRIa、ヒトFcγRIIa(R)、ヒトFcγRIIa(H)、ヒトFcγRIIIa(V)またはヒトFcγRIIIa(F)である、請求項37または38に記載の抗原結合分子。
  40.  前記Fc領域のEUナンバリングで表される238位または328位のアミノ酸が天然型ヒトIgGのFc領域のアミノ酸と異なるアミノ酸を含む、請求項37から39のいずれかに記載の抗原結合分子。
  41.  前記Fc領域のEUナンバリングで表される238位のアミノ酸がAsp、または328位のアミノ酸がGluである、請求項40に記載の抗原結合分子。
  42.  前記Fc領域のアミノ酸配列のうち、EUナンバリングで表される;
    233位のアミノ酸がAsp、
    234位のアミノ酸がTrp、またはTyrのいずれか、
    237位のアミノ酸がAla、Asp、Glu、Leu、Met、Phe、TrpまたはTyrのいずれか、
    239位のアミノ酸がAsp、
    267位のアミノ酸がAla、GlnまたはValのいずれか、
    268位のアミノ酸がAsn、Asp、またはGluのいずれか、
    271位のアミノ酸がGly、
    326位のアミノ酸がAla、Asn、Asp、Gln、Glu、Leu、Met、SerまたはThrのいずれか、
    330位のアミノ酸がArg、Lys、またはMetのいずれか、
    323位のアミノ酸がIle、Leu、またはMetのいずれか、もしくは
    296位のアミノ酸がAsp、
    の群から選択される少なくとも一つ以上のアミノ酸である、請求項40または41に記載の抗原結合分子。
  43. 前記抗原結合分子が抗体である請求項27から42のいずれかに記載の抗原結合分子。
  44. 標的組織特異的な化合物の濃度に応じて抗原に対する結合活性が変化する抗原結合ドメインを選択することを含む、請求項1から43のいずれかに記載の抗原結合分子の製造方法。
  45. 標的組織特異的な化合物の濃度に応じて抗原に対する結合活性が変化する抗原結合ドメインを選択することを含む、請求項1から43のいずれかに記載の抗原結合分子のスクリーニング方法。
  46. 請求項1から43のいずれかに記載の抗原結合分子を含む医薬組成物。
PCT/JP2013/064975 2012-05-30 2013-05-30 標的組織特異的抗原結合分子 WO2013180200A1 (ja)

Priority Applications (22)

Application Number Priority Date Filing Date Title
EP13797450.7A EP2857420B1 (en) 2012-05-30 2013-05-30 Target-tissue-specific antigen-binding molecule
KR1020247020260A KR20240095484A (ko) 2012-05-30 2013-05-30 표적 조직 특이적 항원 결합 분자
EP20196633.0A EP3795215A1 (en) 2012-05-30 2013-05-30 Target tissue-specific antigen-binding molecule
MX2014014678A MX2014014678A (es) 2012-05-30 2013-05-30 Molecula de union al antigeno especifico para el tejido objetivo.
SG11201407963PA SG11201407963PA (en) 2012-05-30 2013-05-30 Target-tissue-specific antigen-binding molecule
CA2874721A CA2874721A1 (en) 2012-05-30 2013-05-30 Target tissue-specific antigen-binding molecule
CN201711126750.3A CN107964042B (zh) 2012-05-30 2013-05-30 靶组织特异性抗原结合分子
CN201380040397.0A CN104487457B (zh) 2012-05-30 2013-05-30 靶组织特异性抗原结合分子
DK13797450.7T DK2857420T3 (da) 2012-05-30 2013-05-30 Målvævsspecifikt antigenbindende molekyle
AU2013268418A AU2013268418B2 (en) 2012-05-30 2013-05-30 Target-tissue-specific antigen-binding molecule
US14/402,574 US20150166654A1 (en) 2012-05-30 2013-05-30 Target tissue-specific antigen-binding molecule
JP2014518713A JPWO2013180200A1 (ja) 2012-05-30 2013-05-30 標的組織特異的抗原結合分子
KR1020227021187A KR102677704B1 (ko) 2012-05-30 2013-05-30 표적 조직 특이적 항원 결합 분자
KR1020147035750A KR20150016579A (ko) 2012-05-30 2013-05-30 표적 조직 특이적 항원 결합 분자
RU2014154067A RU2743463C2 (ru) 2012-05-30 2013-05-30 Специфичная к ткани-мишени антигенсвязывающая молекула
KR1020207035121A KR102413947B1 (ko) 2012-05-30 2013-05-30 표적 조직 특이적 항원 결합 분자
HK15105750.2A HK1205149A1 (en) 2012-05-30 2015-06-17 Target-tissue-specific antigen-binding molecule
AU2018201358A AU2018201358B2 (en) 2012-05-30 2018-02-26 Target-tissue-specific antigen-binding molecule
US16/539,765 US11673947B2 (en) 2012-05-30 2019-08-13 Target tissue-specific antigen-binding molecule
AU2020203710A AU2020203710B2 (en) 2012-05-30 2020-06-04 Target-tissue-specific antigen-binding molecule
US18/138,888 US20230279099A1 (en) 2012-05-30 2023-04-25 Target tissue-specific antigen-binding molecule
AU2023229507A AU2023229507A1 (en) 2012-05-30 2023-09-12 Target-tissue-specific antigen-binding molecule

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012123781 2012-05-30
JP2012-123781 2012-05-30
JP2012-177311 2012-08-09
JP2012177311 2012-08-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/402,574 A-371-Of-International US20150166654A1 (en) 2012-05-30 2013-05-30 Target tissue-specific antigen-binding molecule
US16/539,765 Division US11673947B2 (en) 2012-05-30 2019-08-13 Target tissue-specific antigen-binding molecule

Publications (1)

Publication Number Publication Date
WO2013180200A1 true WO2013180200A1 (ja) 2013-12-05

Family

ID=49673387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064975 WO2013180200A1 (ja) 2012-05-30 2013-05-30 標的組織特異的抗原結合分子

Country Status (14)

Country Link
US (3) US20150166654A1 (ja)
EP (2) EP2857420B1 (ja)
JP (6) JPWO2013180200A1 (ja)
KR (4) KR20240095484A (ja)
CN (3) CN107964042B (ja)
AU (4) AU2013268418B2 (ja)
CA (1) CA2874721A1 (ja)
DK (1) DK2857420T3 (ja)
HK (3) HK1205149A1 (ja)
MX (2) MX2014014678A (ja)
RU (1) RU2743463C2 (ja)
SG (2) SG10202006507XA (ja)
TW (3) TWI766939B (ja)
WO (1) WO2013180200A1 (ja)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046467A1 (ja) 2013-09-27 2015-04-02 中外製薬株式会社 ポリペプチド異種多量体の製造方法
WO2015068847A1 (ja) 2013-11-11 2015-05-14 中外製薬株式会社 改変された抗体可変領域を含む抗原結合分子
WO2015083764A1 (ja) * 2013-12-04 2015-06-11 中外製薬株式会社 化合物の濃度に応じて抗原結合能の変化する抗原結合分子及びそのライブラリ
US20160039912A1 (en) * 2013-04-02 2016-02-11 Chugai Seiyaku Kabushiki Kaisha Fc REGION VARIANT
WO2016098357A1 (en) 2014-12-19 2016-06-23 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies, polypeptides containing variant fc regions, and methods of use
US10253100B2 (en) 2011-09-30 2019-04-09 Chugai Seiyaku Kabushiki Kaisha Therapeutic antigen-binding molecule with a FcRn-binding domain that promotes antigen clearance
WO2019127215A1 (en) * 2017-12-28 2019-07-04 Nanjing Legend Biotech Co., Ltd. Multispecific chimeric receptors comprising an nkg2d domain and methods of use thereof
WO2019160007A1 (ja) 2018-02-14 2019-08-22 中外製薬株式会社 抗原結合分子および組合せ
WO2020027330A1 (ja) 2018-08-03 2020-02-06 中外製薬株式会社 互いに連結された2つの抗原結合ドメインを含む抗原結合分子
WO2020032230A1 (ja) 2018-08-10 2020-02-13 中外製薬株式会社 抗cd137抗原結合分子およびその使用
US10604561B2 (en) 2016-09-16 2020-03-31 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies, polypeptides containing variant Fc regions, and methods of use
US10618965B2 (en) 2011-02-25 2020-04-14 Chugai Seiyaku Kabushiki Kaisha Method for altering plasma retention and immunogenicity of antigen-binding molecule
US10766960B2 (en) 2012-12-27 2020-09-08 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
WO2020189748A1 (ja) 2019-03-19 2020-09-24 中外製薬株式会社 Mta依存的に抗原に対する結合活性が変化する抗原結合ドメインを含む抗原結合分子及び当該抗原結合ドメイン取得用ライブラリ
WO2020209318A1 (ja) 2019-04-10 2020-10-15 中外製薬株式会社 Fc領域改変抗体の精製方法
WO2020213724A1 (ja) 2019-04-19 2020-10-22 中外製薬株式会社 抗体改変部位認識キメラ受容体
US10919953B2 (en) 2012-08-24 2021-02-16 Chugai Seiyaku Kabushiki Kaisha FcgammaRIIB-specific Fc region variant
WO2021122733A1 (en) 2019-12-18 2021-06-24 F. Hoffmann-La Roche Ag Bispecific anti-ccl2 antibodies
WO2021131021A1 (ja) 2019-12-27 2021-07-01 中外製薬株式会社 抗ctla-4抗体およびその使用
US11053308B2 (en) 2016-08-05 2021-07-06 Chugai Seiyaku Kabushiki Kaisha Method for treating IL-8-related diseases
WO2021162020A1 (ja) 2020-02-12 2021-08-19 中外製薬株式会社 癌の治療に用いるための抗cd137抗原結合分子
US11180548B2 (en) 2015-02-05 2021-11-23 Chugai Seiyaku Kabushiki Kaisha Methods of neutralizing IL-8 biological activity
US11236168B2 (en) 2012-08-24 2022-02-01 Chugai Seiyaku Kabushiki Kaisha Mouse FcγammaRII-specific Fc antibody
WO2022045276A1 (ja) 2020-08-28 2022-03-03 中外製薬株式会社 ヘテロ二量体Fcポリペプチド
US11274151B2 (en) 2020-03-31 2022-03-15 Chugai Seiyaku Kabushiki Kaisha CD3-targeting and DLL3-targeting multispecific antigen-binding molecules and uses thereof
JP2022524074A (ja) * 2019-03-14 2022-04-27 ジェネンテック, インコーポレイテッド 抗HER2 MABと組み合わせたHER2xCD3二重特異性抗体によるがんの処置
US11332533B2 (en) 2007-09-26 2022-05-17 Chugai Seiyaku Kabushiki Kaisha Modified antibody constant region
US11359009B2 (en) 2015-12-25 2022-06-14 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies and methods of use
US11359194B2 (en) 2008-04-11 2022-06-14 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding two or more antigen molecules repeatedly
KR20220137923A (ko) 2020-02-05 2022-10-12 추가이 세이야쿠 가부시키가이샤 재조합 항원 결합 분자를 제조 및/또는 농축하기 위한 방법
WO2022263501A1 (en) 2021-06-18 2022-12-22 F. Hoffmann-La Roche Ag Bispecific anti-ccl2 antibodies
WO2022270612A1 (ja) 2021-06-25 2022-12-29 中外製薬株式会社 抗ctla-4抗体の使用
WO2022270611A1 (ja) 2021-06-25 2022-12-29 中外製薬株式会社 抗ctla-4抗体
US11673947B2 (en) 2012-05-30 2023-06-13 Chugai Seiyaku Kabushiki Kaisha Target tissue-specific antigen-binding molecule
US11820793B2 (en) 2011-11-30 2023-11-21 Chugai Seiyaku Kabushiki Kaisha Drug containing carrier into cell for forming immune complex
US11827699B2 (en) 2011-09-30 2023-11-28 Chugai Seiyaku Kabushiki Kaisha Methods for producing antibodies promoting disappearance of antigens having plurality of biological activities
US11858980B2 (en) 2016-08-02 2024-01-02 Visterra, Inc. Engineered polypeptides and uses thereof
US11891432B2 (en) 2018-03-15 2024-02-06 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies having cross-reactivity to Zika virus and methods of use
US12054544B2 (en) 2017-02-24 2024-08-06 Chugai Seiyaku Kabushiki Kaisha Compositions comprising antigen-binding molecules
US12084513B2 (en) 2017-11-14 2024-09-10 Chugai Seiyaku Kabushiki Kaisha Anti-C1S antibodies and methods of use
RU2829536C2 (ru) * 2018-08-10 2024-10-31 Чугаи Сейяку Кабусики Кайся Анти-cd137 антигенсвязывающие молекулы и их применение

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4342995A3 (en) 2006-03-31 2024-05-15 Chugai Seiyaku Kabushiki Kaisha Methods for controlling blood pharmacokinetics of antibodies
RU2510400C9 (ru) 2007-09-26 2014-07-20 Чугаи Сейяку Кабусики Кайся Способ модификации изоэлектрической точки антитела с помощью аминокислотных замен в cdr
TWI812066B (zh) 2010-11-30 2023-08-11 日商中外製藥股份有限公司 具有鈣依存性的抗原結合能力之抗體
JP6159724B2 (ja) 2011-08-23 2017-07-05 ロシュ グリクアート アーゲー T細胞活性化抗原に対して特異的な二重特異性抗体及び腫瘍抗原および使用方法
KR102239138B1 (ko) 2011-09-30 2021-04-12 추가이 세이야쿠 가부시키가이샤 표적 항원에 대한 면역응답을 유도하는 항원 결합 분자
US11142563B2 (en) 2012-06-14 2021-10-12 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing modified Fc region
JP6444874B2 (ja) * 2012-10-08 2018-12-26 ロシュ グリクアート アーゲー 2つのFabフラグメントを含むFc不含抗体および使用方法
UA124379C2 (uk) 2015-08-11 2021-09-08 Усі Байолоджікс Айрленд Лімітед Нові антитіла проти білка pd-1
EP3481864A1 (en) 2016-07-08 2019-05-15 Staten Biotechnology B.V. Anti-apoc3 antibodies and methods of use thereof
US10377833B2 (en) * 2016-07-22 2019-08-13 Beijing Mabworks Biotech Co., Ltd. Bispecific anti-HER2 antibody
EP3579848B1 (en) 2017-02-08 2024-10-30 Dragonfly Therapeutics, Inc. Multi-specific binding proteins for activation of natural killer cells and therapeutic uses thereof to treat cancer
MX2019009566A (es) * 2017-02-10 2020-01-20 Dragonfly Therapeutics Inc Proteinas de union a bcma, nkg2d y cd16.
CA3054079A1 (en) 2017-02-20 2018-08-23 Dragonfly Therapeutics, Inc. Proteins binding her2, nkg2d and cd16
NZ756323A (en) 2017-02-28 2022-07-01 Seagen Inc Cysteine mutated antibodies for conjugation
EP3601345A1 (en) 2017-03-29 2020-02-05 H. Hoffnabb-La Roche Ag Bispecific antigen binding molecule for a costimulatory tnf receptor
WO2018193427A1 (en) 2017-04-21 2018-10-25 Staten Biotechnology B.V. Anti-apoc3 antibodies and methods of use thereof
BR112019023754A2 (pt) * 2017-05-16 2020-06-09 Synthon Biopharmaceuticals Bv anticorpo anti-sirpalpha ou um fragmento de ligação ao antígeno do mesmo, composição farmacêutica, e, combinação do anticorpo anti-sirpalpha ou da composição farmacêutica.
MX2019014576A (es) * 2017-06-05 2020-07-29 Janssen Biotech Inc Anticuerpos multiespecíficos manipulados genéticamente y otras proteínas multiméricas con mutaciones asimétricas en la región ch2-ch3.
WO2019000223A1 (en) 2017-06-27 2019-01-03 Nanjing Legend Biotech Co., Ltd. ENABLERS OF IMMUNE EFFECTOR CELLS OF CHIMERIC ANTIBODIES AND METHODS OF USE THEREOF
US10538583B2 (en) 2017-10-31 2020-01-21 Staten Biotechnology B.V. Anti-APOC3 antibodies and compositions thereof
EP3704148A1 (en) 2017-10-31 2020-09-09 Staten Biotechnology B.V. Anti-apoc3 antibodies and methods of use thereof
CN112368012B (zh) 2018-02-08 2024-09-10 蜻蜓疗法股份有限公司 靶向nkg2d受体的抗体可变结构域
TWI726426B (zh) * 2018-09-25 2021-05-01 大陸商信達生物製藥(蘇州)有限公司 包含抗ox40抗體的製劑、其製備方法及其用途
CN110082536B (zh) * 2019-04-17 2022-06-10 广州医科大学附属肿瘤医院 一种乳腺癌细胞标志物细胞因子群及其应用

Citations (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0239400A2 (en) 1986-03-27 1987-09-30 Medical Research Council Recombinant antibodies and methods for their production
EP0404097A2 (de) 1989-06-22 1990-12-27 BEHRINGWERKE Aktiengesellschaft Bispezifische und oligospezifische, mono- und oligovalente Rezeptoren, ihre Herstellung und Verwendung
WO1992001047A1 (en) 1990-07-10 1992-01-23 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992003918A1 (en) 1990-08-29 1992-03-19 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1992020791A1 (en) 1990-07-10 1992-11-26 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1993006213A1 (en) 1991-09-23 1993-04-01 Medical Research Council Production of chimeric antibodies - a combinatorial approach
WO1993011236A1 (en) 1991-12-02 1993-06-10 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
WO1993011161A1 (en) 1991-11-25 1993-06-10 Enzon, Inc. Multivalent antigen-binding proteins
WO1993012227A1 (en) 1991-12-17 1993-06-24 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993019172A1 (en) 1992-03-24 1993-09-30 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1994002602A1 (en) 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies
WO1994011523A2 (en) 1992-11-13 1994-05-26 Idec Pharmaceuticals Corporation Fully impaired consensus kozac sequences for mammalian expression
WO1994025585A1 (en) 1993-04-26 1994-11-10 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1995001438A1 (en) 1993-06-30 1995-01-12 Medical Research Council Sbp members with a chemical moiety covalently bound within the binding site; production and selection thereof
WO1995001937A1 (fr) 1993-07-09 1995-01-19 Association Gradient Procede de traitement de residus de combustion et installation de mise en ×uvre dudit procede
WO1995015388A1 (en) 1993-12-03 1995-06-08 Medical Research Council Recombinant binding proteins and peptides
WO1996002576A1 (fr) 1994-07-13 1996-02-01 Chugai Seiyaku Kabushiki Kaisha Anticorps humain reconstitue contre l'interleukine-8 humaine
WO1996027011A1 (en) 1995-03-01 1996-09-06 Genentech, Inc. A method for making heteromultimeric polypeptides
WO1996033735A1 (en) 1995-04-27 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1996034103A1 (en) 1995-04-25 1996-10-31 Vrije Universiteit Brussel Variable fragments of immunoglobulins - use for therapeutic or veterinary purposes
WO1996034096A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1997034631A1 (en) 1996-03-18 1997-09-25 Board Of Regents, The University Of Texas System Immunoglobin-like domains with increased half lives
WO1999023221A2 (en) 1997-10-27 1999-05-14 Unilever Plc Multivalent antigen-binding proteins
WO1999054342A1 (en) 1998-04-20 1999-10-28 Pablo Umana Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity
WO2000042072A2 (en) 1999-01-15 2000-07-20 Genentech, Inc. Polypeptide variants with altered effector function
WO2000061739A1 (en) 1999-04-09 2000-10-19 Kyowa Hakko Kogyo Co., Ltd. Method for controlling the activity of immunologically functional molecule
WO2002020565A2 (en) 2000-09-08 2002-03-14 Universität Zürich Collections of repeat proteins comprising repeat modules
WO2002031140A1 (fr) 2000-10-06 2002-04-18 Kyowa Hakko Kogyo Co., Ltd. Cellules produisant des compositions d'anticorps
WO2002032925A2 (en) 2000-10-16 2002-04-25 Phylos, Inc. Protein scaffolds for antibody mimics and other binding proteins
WO2002060919A2 (en) 2000-12-12 2002-08-08 Medimmune, Inc. Molecules with extended half-lives, compositions and uses thereof
WO2002079255A1 (en) 2001-04-02 2002-10-10 Idec Pharmaceuticals Corporation RECOMBINANT ANTIBODIES COEXPRESSED WITH GnTIII
WO2003000883A1 (en) 2001-06-22 2003-01-03 Chugai Seiyaku Kabushiki Kaisha Cell proliferation inhibitors containing anti-glypican 3 antibody
WO2003029462A1 (en) 2001-09-27 2003-04-10 Pieris Proteolab Ag Muteins of human neutrophil gelatinase-associated lipocalin and related proteins
WO2003104453A1 (ja) 2002-06-05 2003-12-18 中外製薬株式会社 抗体作製方法
WO2003105757A2 (en) 2002-06-12 2003-12-24 Genencor International, Inc. Methods and compositions for milieu-dependent binding of a targeted agent to a target
WO2004022754A1 (ja) 2002-09-04 2004-03-18 Chugai Seiyaku Kabushiki Kaisha MRL/lprマウスを用いた抗体の作製
WO2004029207A2 (en) 2002-09-27 2004-04-08 Xencor Inc. Optimized fc variants and methods for their generation
WO2004044011A2 (en) 2002-11-06 2004-05-27 Avidia Research Institute Combinatorial libraries of monomer domains
WO2004065540A2 (en) 2003-01-22 2004-08-05 Glycart Biotechnology Ag Fusion constructs and use of same to produce antibodies with increased fc receptor binding affinity and effector function
WO2004092219A2 (en) 2003-04-10 2004-10-28 Protein Design Labs, Inc Alteration of fcrn binding affinities or serum half-lives of antibodies by mutagenesis
WO2004099249A2 (en) 2003-05-02 2004-11-18 Xencor, Inc. Optimized fc variants and methods for their generation
WO2005040229A2 (en) 2003-10-24 2005-05-06 Avidia, Inc. Ldl receptor class a and egf domain monomers and multimers
WO2005070963A1 (en) 2004-01-12 2005-08-04 Applied Molecular Evolution, Inc Fc region variants
WO2006006693A1 (ja) 2004-07-09 2006-01-19 Chugai Seiyaku Kabushiki Kaisha 抗グリピカン3抗体
WO2006020114A2 (en) 2004-08-04 2006-02-23 Applied Molecular Evolution, Inc. Variant fc regions
WO2006023403A2 (en) 2004-08-16 2006-03-02 Medimmune, Inc. Eph receptor fc variants with enhanced antibody dependent cell-mediated cytotoxicity activity
WO2006031370A2 (en) 2004-08-19 2006-03-23 Genentech, Inc. Polypeptide variants with altered effector function
WO2006067913A1 (ja) 2004-12-22 2006-06-29 Chugai Seiyaku Kabushiki Kaisha フコーストランスポーターの機能が阻害された細胞を用いた抗体の作製方法
WO2006105338A2 (en) 2005-03-31 2006-10-05 Xencor, Inc. Fc VARIANTS WITH OPTIMIZED PROPERTIES
WO2006106905A1 (ja) 2005-03-31 2006-10-12 Chugai Seiyaku Kabushiki Kaisha 会合制御によるポリペプチド製造方法
WO2006116260A2 (en) 2005-04-26 2006-11-02 Medimmune, Inc. Modulation of antibody effector function by hinge domain engineering
WO2007021841A2 (en) 2005-08-10 2007-02-22 Macrogenics, Inc. Identification and engineering of antibodies with variant fc regions and methods of using same
WO2007024249A2 (en) 2004-11-10 2007-03-01 Macrogenics, Inc. Engineering fc antibody regions to confer effector function
WO2007041635A2 (en) 2005-10-03 2007-04-12 Xencor, Inc. Fc variants with optimized fc receptor binding properties
WO2008016854A2 (en) 2006-08-02 2008-02-07 The Uab Research Foundation Methods and compositions related to soluble monoclonal variable lymphocyte receptors of defined antigen specificity
WO2008081008A1 (en) 2007-01-05 2008-07-10 University Of Zurich Method of providing disease-specific binding molecules and targets
WO2008092117A2 (en) 2007-01-25 2008-07-31 Xencor, Inc. Immunoglobulins with modifications in the fcr binding region
WO2008119353A1 (en) 2007-03-29 2008-10-09 Genmab A/S Bispecific antibodies and methods for production thereof
US20090136485A1 (en) 2007-05-30 2009-05-28 Xencor, Inc. Methods and compositions for inhibiting CD32B expressing cells
WO2009086320A1 (en) 2007-12-26 2009-07-09 Xencor, Inc Fc variants with altered binding to fcrn
WO2009125825A1 (ja) 2008-04-11 2009-10-15 中外製薬株式会社 複数分子の抗原に繰り返し結合する抗原結合分子
WO2009140242A1 (en) 2008-05-13 2009-11-19 Genentech, Inc. Analysis of antibody drug conjugates by bead-based affinity capture and mass spectrometry
WO2010045193A1 (en) 2008-10-14 2010-04-22 Genentech, Inc. Immunoglobulin variants and uses thereof
WO2010081173A2 (en) 2009-01-12 2010-07-15 Cytomx Therapeutics, Llc Modified antibody compositions, methods of making and using thereof
WO2010107109A1 (ja) * 2009-03-19 2010-09-23 中外製薬株式会社 抗体定常領域改変体
WO2011122011A2 (en) * 2010-03-30 2011-10-06 Chugai Seiyaku Kabushiki Kaisha Antibodies with modified affinity to fcrn that promote antigen clearance
WO2012033953A1 (en) 2010-09-08 2012-03-15 Halozyme, Inc. Methods for assessing and identifying or evolving conditionally active therapeutic proteins
WO2012073992A1 (ja) 2010-11-30 2012-06-07 中外製薬株式会社 複数分子の抗原に繰り返し結合する抗原結合分子

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU716154B2 (en) 1995-09-01 2000-02-17 University Of Washington Interactive molecular conjugates
US7183387B1 (en) * 1999-01-15 2007-02-27 Genentech, Inc. Polypeptide variants with altered effector function
EP1254370A1 (en) * 1999-12-28 2002-11-06 Ribonomics, Inc. METHODS FOR ISOLATING AND CHARACTERIZING ENDOGENOUS mRNA-PROTEIN (mRNP) COMPLEXES
WO2003008537A2 (en) 2001-04-06 2003-01-30 Mannkind Corporation Epitope sequences
US8093357B2 (en) 2002-03-01 2012-01-10 Xencor, Inc. Optimized Fc variants and methods for their generation
WO2003074679A2 (en) 2002-03-01 2003-09-12 Xencor Antibody optimization
EP2305710A3 (en) 2002-06-03 2013-05-29 Genentech, Inc. Synthetic antibody phage libraries
ES2897506T3 (es) * 2003-01-09 2022-03-01 Macrogenics Inc Identificación y modificación de anticuerpos con regiones Fc variantes y métodos de utilización de los mismos
US8388955B2 (en) 2003-03-03 2013-03-05 Xencor, Inc. Fc variants
US7288638B2 (en) 2003-10-10 2007-10-30 Bristol-Myers Squibb Company Fully human antibodies against human 4-1BB
WO2005047327A2 (en) 2003-11-12 2005-05-26 Biogen Idec Ma Inc. NEONATAL Fc RECEPTOR (FcRn)-BINDING POLYPEPTIDE VARIANTS, DIMERIC Fc BINDING PROTEINS AND METHODS RELATED THERETO
JP2005292087A (ja) 2004-04-05 2005-10-20 Shionogi & Co Ltd 5’−デオキシ−5’−メチルチオアデノシンに対する抗体
WO2005115452A2 (en) 2004-04-16 2005-12-08 Macrogenics, Inc. Fcϝriib-specific antibodies and methods of use thereof
WO2006053301A2 (en) * 2004-11-12 2006-05-18 Xencor, Inc. Fc variants with altered binding to fcrn
RU2412200C2 (ru) * 2004-11-12 2011-02-20 Ксенкор, Инк. Fc-ВАРИАНТЫ С ИЗМЕНЕННЫМ СВЯЗЫВАНИЕМ С FcRn
JP2009513147A (ja) 2005-10-31 2009-04-02 アメリカ合衆国 ヒト糖タンパクnmbをターゲットにする抗体および免疫毒素
EP1959995A1 (en) * 2005-11-30 2008-08-27 Can-Fite Biopharma Ltd. Therapeutic uses of a3 adenosine receptor antibodies
US8455622B2 (en) 2006-12-01 2013-06-04 Seattle Genetics, Inc. Variant target binding agents and uses thereof
CL2008002153A1 (es) 2007-07-24 2009-06-05 Amgen Inc Anticuerpo aislado o fragmanto de unión de antigeno del mismo que se une al receptor de il-18 (il-18r); molecula de ácido nucleico codificante; celula huesped que la comprende; composición farmaceutica; uso médico para tratar o prevenir una condición asociada con il-18r; método in vitro para inhibir la unión de il-18 al il-18r.
EP2195028A2 (en) * 2007-09-18 2010-06-16 The Jackson Laboratory Antibodies and fc fusion protein modifications with enhanced persistence or pharmacokinetic stability in vivo and methods of use thereof
BRPI0817108B8 (pt) 2007-09-21 2021-05-25 Univ California composição compreendendo uma proteína de fusão, kit compreendendo a referida composição e uso da mesma.
US20090155255A1 (en) 2007-09-27 2009-06-18 Biogen Idec Ma Inc. Cd23 binding molecules and methods of use thereof
EP2331570B1 (en) * 2008-09-10 2014-08-27 Philochem AG Display library for antibody selection
US8647829B2 (en) 2009-02-20 2014-02-11 General Electric Company Switchable affinity binders
KR101979188B1 (ko) 2009-03-09 2019-05-16 바이오아트라, 엘엘씨 미락 단백질
JP5717624B2 (ja) 2009-03-19 2015-05-13 中外製薬株式会社 抗体定常領域改変体
EP2233500A1 (en) 2009-03-20 2010-09-29 LFB Biotechnologies Optimized Fc variants
UY32603A (es) 2009-05-01 2010-12-31 Abbott Lab Inmunoglobulina con dominio variable dual y usos de la misma
US8926976B2 (en) * 2009-09-25 2015-01-06 Xoma Technology Ltd. Modulators
US8568726B2 (en) 2009-10-06 2013-10-29 Medimmune Limited RSV specific binding molecule
JP2011097869A (ja) * 2009-11-05 2011-05-19 Japan Science & Technology Agency 抗ヒトアデノシンA2a受容体モノクローナル抗体
JP2011184418A (ja) * 2010-03-11 2011-09-22 Tokyo Institute Of Technology 親和性可変抗体
SA111320266B1 (ar) 2010-03-11 2015-06-21 رينات نيوروساينس كوربوريشن أجسام مضادة مع ارتباط مولد مضاد يعتمد على الأس الهيدروجيني
JP5480678B2 (ja) * 2010-03-12 2014-04-23 日立マクセル株式会社 磁気テープ装置、データ再生方法
EP2614082B1 (en) 2010-09-09 2018-10-03 Pfizer Inc 4-1bb binding molecules
EP2622074B1 (en) 2010-09-30 2014-11-12 Board Of Trustees Of Northern Illinois University Library-based methods and compositions for introducing molecular switch functionality into protein affinity reagents
US20140093496A1 (en) 2011-02-25 2014-04-03 Chugai Seiyaku Kabushiki Kaisha Fc-gamma-RIIb-SPECIFIC Fc ANTIBODY
MX361713B (es) 2011-09-30 2018-12-14 Chugai Pharmaceutical Co Ltd Molécula de unión al antígeno para promover la eliminación de antígenos.
TW201817745A (zh) 2011-09-30 2018-05-16 日商中外製藥股份有限公司 具有促進抗原清除之FcRn結合域的治療性抗原結合分子
JP6284766B2 (ja) 2011-09-30 2018-02-28 中外製薬株式会社 イオン濃度依存性結合分子ライブラリ
KR102239138B1 (ko) 2011-09-30 2021-04-12 추가이 세이야쿠 가부시키가이샤 표적 항원에 대한 면역응답을 유도하는 항원 결합 분자
BR112014013081A2 (pt) 2011-11-30 2020-10-20 Chugai Seiyaku Kabushiki Kaisha veículo contendo fármaco em célula para formação de um complexo imune
CA2865158C (en) 2012-02-24 2022-11-01 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule for promoting disappearance of antigen via fc.gamma.riib
TWI766939B (zh) 2012-05-30 2022-06-11 日商中外製藥股份有限公司 標的組織專一的抗原結合分子
ES2856272T3 (es) 2012-05-30 2021-09-27 Chugai Pharmaceutical Co Ltd Molécula de unión a antígenos para eliminar antígenos agregados
US11236168B2 (en) 2012-08-24 2022-02-01 Chugai Seiyaku Kabushiki Kaisha Mouse FcγammaRII-specific Fc antibody
MX371442B (es) 2012-08-24 2020-01-30 Chugai Pharmaceutical Co Ltd VARIANTE DE LA REGION FC ESPECIFICA PARA FCyRIIB.
CN113621057A (zh) 2013-04-02 2021-11-09 中外制药株式会社 Fc区变体
KR20240134226A (ko) * 2013-12-04 2024-09-06 추가이 세이야쿠 가부시키가이샤 화합물의 농도에 따라 항원 결합능이 변화되는 항원 결합 분자 및 그의 라이브러리
EP3156072B1 (en) 2014-06-11 2020-08-19 IDAC Theranostics, Inc. Method for reducing side effects of immune checkpoint control agent
TWI779010B (zh) 2014-12-19 2022-10-01 日商中外製藥股份有限公司 抗肌抑素之抗體、含變異Fc區域之多胜肽及使用方法
KR101838645B1 (ko) 2014-12-19 2018-03-14 추가이 세이야쿠 가부시키가이샤 항-c5 항체 및 그의 사용 방법
CN112142844A (zh) 2015-02-05 2020-12-29 中外制药株式会社 包含离子浓度依赖性的抗原结合结构域的抗体,fc区变体,il-8-结合抗体及其应用
CA2975333A1 (en) 2015-04-22 2016-10-27 Curevac Ag Rna containing composition for treatment of tumor diseases
EP3305322A4 (en) 2015-06-05 2018-12-26 Chugai Seiyaku Kabushiki Kaisha Combined use of immune activators
AR105634A1 (es) 2015-09-18 2017-10-25 Chugai Pharmaceutical Co Ltd Anticuerpos que se unen a il 8 y sus usos
CN108601752A (zh) 2015-12-03 2018-09-28 安吉奥斯医药品有限公司 用于治疗mtap缺失型癌症的mat2a抑制剂
AR107078A1 (es) 2015-12-18 2018-03-21 Chugai Pharmaceutical Co Ltd Anticuerpo antimiostatina, polipéptidos que contienen regiones fc variantes así como métodos de uso
SG10202106830VA (en) 2018-08-10 2021-08-30 Chugai Pharmaceutical Co Ltd Anti-cd137 antigen-binding molecule and utilization thereof
EP3943108A4 (en) 2019-03-19 2023-01-04 Chugai Seiyaku Kabushiki Kaisha ANTIGEN-BINDING MOLECULE CONTAINING AN ANTIGEN-BINDING DOMAIN WHOSE ANTIGEN-BINDING ACTIVITY IS ALTERED DEPENDING ON THE MTA, AND BANK FOR OBTAINING SUCH ANTIGEN-BINDING DOMAIN
TW202144395A (zh) 2020-02-12 2021-12-01 日商中外製藥股份有限公司 用於癌症之治療的抗cd137抗原結合分子
US20240002510A2 (en) 2021-06-25 2024-01-04 Chugai Seiyaku Kabushiki Kaisha Anti-ctla-4 antibody and use thereof

Patent Citations (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0239400A2 (en) 1986-03-27 1987-09-30 Medical Research Council Recombinant antibodies and methods for their production
EP0404097A2 (de) 1989-06-22 1990-12-27 BEHRINGWERKE Aktiengesellschaft Bispezifische und oligospezifische, mono- und oligovalente Rezeptoren, ihre Herstellung und Verwendung
WO1992001047A1 (en) 1990-07-10 1992-01-23 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992020791A1 (en) 1990-07-10 1992-11-26 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992003918A1 (en) 1990-08-29 1992-03-19 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993006213A1 (en) 1991-09-23 1993-04-01 Medical Research Council Production of chimeric antibodies - a combinatorial approach
WO1993011161A1 (en) 1991-11-25 1993-06-10 Enzon, Inc. Multivalent antigen-binding proteins
WO1993011236A1 (en) 1991-12-02 1993-06-10 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
WO1993012227A1 (en) 1991-12-17 1993-06-24 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993019172A1 (en) 1992-03-24 1993-09-30 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1994002602A1 (en) 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies
WO1994011523A2 (en) 1992-11-13 1994-05-26 Idec Pharmaceuticals Corporation Fully impaired consensus kozac sequences for mammalian expression
WO1994025585A1 (en) 1993-04-26 1994-11-10 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1995001438A1 (en) 1993-06-30 1995-01-12 Medical Research Council Sbp members with a chemical moiety covalently bound within the binding site; production and selection thereof
WO1995001937A1 (fr) 1993-07-09 1995-01-19 Association Gradient Procede de traitement de residus de combustion et installation de mise en ×uvre dudit procede
WO1995015388A1 (en) 1993-12-03 1995-06-08 Medical Research Council Recombinant binding proteins and peptides
WO1996002576A1 (fr) 1994-07-13 1996-02-01 Chugai Seiyaku Kabushiki Kaisha Anticorps humain reconstitue contre l'interleukine-8 humaine
WO1996027011A1 (en) 1995-03-01 1996-09-06 Genentech, Inc. A method for making heteromultimeric polypeptides
WO1996034103A1 (en) 1995-04-25 1996-10-31 Vrije Universiteit Brussel Variable fragments of immunoglobulins - use for therapeutic or veterinary purposes
WO1996033735A1 (en) 1995-04-27 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1996034096A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1997034631A1 (en) 1996-03-18 1997-09-25 Board Of Regents, The University Of Texas System Immunoglobin-like domains with increased half lives
WO1999023221A2 (en) 1997-10-27 1999-05-14 Unilever Plc Multivalent antigen-binding proteins
WO1999054342A1 (en) 1998-04-20 1999-10-28 Pablo Umana Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity
WO2000042072A2 (en) 1999-01-15 2000-07-20 Genentech, Inc. Polypeptide variants with altered effector function
WO2000061739A1 (en) 1999-04-09 2000-10-19 Kyowa Hakko Kogyo Co., Ltd. Method for controlling the activity of immunologically functional molecule
WO2002020565A2 (en) 2000-09-08 2002-03-14 Universität Zürich Collections of repeat proteins comprising repeat modules
WO2002031140A1 (fr) 2000-10-06 2002-04-18 Kyowa Hakko Kogyo Co., Ltd. Cellules produisant des compositions d'anticorps
WO2002032925A2 (en) 2000-10-16 2002-04-25 Phylos, Inc. Protein scaffolds for antibody mimics and other binding proteins
WO2002060919A2 (en) 2000-12-12 2002-08-08 Medimmune, Inc. Molecules with extended half-lives, compositions and uses thereof
WO2002079255A1 (en) 2001-04-02 2002-10-10 Idec Pharmaceuticals Corporation RECOMBINANT ANTIBODIES COEXPRESSED WITH GnTIII
WO2003000883A1 (en) 2001-06-22 2003-01-03 Chugai Seiyaku Kabushiki Kaisha Cell proliferation inhibitors containing anti-glypican 3 antibody
WO2003029462A1 (en) 2001-09-27 2003-04-10 Pieris Proteolab Ag Muteins of human neutrophil gelatinase-associated lipocalin and related proteins
WO2003104453A1 (ja) 2002-06-05 2003-12-18 中外製薬株式会社 抗体作製方法
WO2003105757A2 (en) 2002-06-12 2003-12-24 Genencor International, Inc. Methods and compositions for milieu-dependent binding of a targeted agent to a target
WO2004022754A1 (ja) 2002-09-04 2004-03-18 Chugai Seiyaku Kabushiki Kaisha MRL/lprマウスを用いた抗体の作製
WO2004029207A2 (en) 2002-09-27 2004-04-08 Xencor Inc. Optimized fc variants and methods for their generation
WO2004044011A2 (en) 2002-11-06 2004-05-27 Avidia Research Institute Combinatorial libraries of monomer domains
WO2004065540A2 (en) 2003-01-22 2004-08-05 Glycart Biotechnology Ag Fusion constructs and use of same to produce antibodies with increased fc receptor binding affinity and effector function
WO2004092219A2 (en) 2003-04-10 2004-10-28 Protein Design Labs, Inc Alteration of fcrn binding affinities or serum half-lives of antibodies by mutagenesis
WO2004099249A2 (en) 2003-05-02 2004-11-18 Xencor, Inc. Optimized fc variants and methods for their generation
WO2005040229A2 (en) 2003-10-24 2005-05-06 Avidia, Inc. Ldl receptor class a and egf domain monomers and multimers
WO2005070963A1 (en) 2004-01-12 2005-08-04 Applied Molecular Evolution, Inc Fc region variants
WO2006006693A1 (ja) 2004-07-09 2006-01-19 Chugai Seiyaku Kabushiki Kaisha 抗グリピカン3抗体
WO2006020114A2 (en) 2004-08-04 2006-02-23 Applied Molecular Evolution, Inc. Variant fc regions
WO2006023403A2 (en) 2004-08-16 2006-03-02 Medimmune, Inc. Eph receptor fc variants with enhanced antibody dependent cell-mediated cytotoxicity activity
WO2006031370A2 (en) 2004-08-19 2006-03-23 Genentech, Inc. Polypeptide variants with altered effector function
WO2007024249A2 (en) 2004-11-10 2007-03-01 Macrogenics, Inc. Engineering fc antibody regions to confer effector function
WO2006067913A1 (ja) 2004-12-22 2006-06-29 Chugai Seiyaku Kabushiki Kaisha フコーストランスポーターの機能が阻害された細胞を用いた抗体の作製方法
WO2006105338A2 (en) 2005-03-31 2006-10-05 Xencor, Inc. Fc VARIANTS WITH OPTIMIZED PROPERTIES
WO2006106905A1 (ja) 2005-03-31 2006-10-12 Chugai Seiyaku Kabushiki Kaisha 会合制御によるポリペプチド製造方法
WO2006116260A2 (en) 2005-04-26 2006-11-02 Medimmune, Inc. Modulation of antibody effector function by hinge domain engineering
WO2007021841A2 (en) 2005-08-10 2007-02-22 Macrogenics, Inc. Identification and engineering of antibodies with variant fc regions and methods of using same
WO2007041635A2 (en) 2005-10-03 2007-04-12 Xencor, Inc. Fc variants with optimized fc receptor binding properties
WO2008016854A2 (en) 2006-08-02 2008-02-07 The Uab Research Foundation Methods and compositions related to soluble monoclonal variable lymphocyte receptors of defined antigen specificity
WO2008081008A1 (en) 2007-01-05 2008-07-10 University Of Zurich Method of providing disease-specific binding molecules and targets
WO2008092117A2 (en) 2007-01-25 2008-07-31 Xencor, Inc. Immunoglobulins with modifications in the fcr binding region
WO2008119353A1 (en) 2007-03-29 2008-10-09 Genmab A/S Bispecific antibodies and methods for production thereof
US20090136485A1 (en) 2007-05-30 2009-05-28 Xencor, Inc. Methods and compositions for inhibiting CD32B expressing cells
WO2009086320A1 (en) 2007-12-26 2009-07-09 Xencor, Inc Fc variants with altered binding to fcrn
WO2009125825A1 (ja) 2008-04-11 2009-10-15 中外製薬株式会社 複数分子の抗原に繰り返し結合する抗原結合分子
WO2009140242A1 (en) 2008-05-13 2009-11-19 Genentech, Inc. Analysis of antibody drug conjugates by bead-based affinity capture and mass spectrometry
WO2010045193A1 (en) 2008-10-14 2010-04-22 Genentech, Inc. Immunoglobulin variants and uses thereof
WO2010081173A2 (en) 2009-01-12 2010-07-15 Cytomx Therapeutics, Llc Modified antibody compositions, methods of making and using thereof
WO2010107109A1 (ja) * 2009-03-19 2010-09-23 中外製薬株式会社 抗体定常領域改変体
WO2011122011A2 (en) * 2010-03-30 2011-10-06 Chugai Seiyaku Kabushiki Kaisha Antibodies with modified affinity to fcrn that promote antigen clearance
WO2012033953A1 (en) 2010-09-08 2012-03-15 Halozyme, Inc. Methods for assessing and identifying or evolving conditionally active therapeutic proteins
WO2012073992A1 (ja) 2010-11-30 2012-06-07 中外製薬株式会社 複数分子の抗原に繰り返し結合する抗原結合分子

Non-Patent Citations (191)

* Cited by examiner, † Cited by third party
Title
"Sequences of Proteins of Immunological Interest", 1987, NATIONAL INSTITUTE OF HEALTH
"Sequences of proteins of immunological interest", NIH PUBLICATION NO. 91-3242
AHRAM ET AL., MOL. CARCINOG., vol. 33, 2002, pages 9 - 15
ALLEY SC; OKELEY NM; SENTER PD.: "Antibody-drug conjugates: targeted drug delivery for cancer", CURR. OPIN. CHEM. BIOL., vol. 14, no. 4, 2010, pages 529 - 537, XP055042125, DOI: doi:10.1016/j.cbpa.2010.06.170
AM. J. RESPIR. CRIT. CARE MED., vol. 181, 2010, pages 928 - 934
AM. J. RESPIR. CRIT. CARE MED., vol. 182, 2010, pages 774 - 783
AM. J. VET. RES., vol. 65, 2004, pages 1269 - 1275
ANAL. BIOCHEM., vol. 162, no. 1, 1987, pages 156 - 159
ANNU. REV. BIOPHYS. BIOMOL. STRUCT., vol. 35, 2006, pages 225 - 249
BAEUERLE PA; KUFER P; BARGOU R.: "BiTE: Teaching antibodies to engage T-cells for cancer therapy", CURR. OPIN. MOL. THER., vol. 11, no. 1, 2009, pages 22 - 30, XP009151509
BARDOT ET AL., BR. J. CANCER, vol. 70, 1994, pages 212 - 218
BERNASCONI ET AL., SCIENCE, vol. 298, 2002, pages 2199 - 2202
BETTER, M.; HORWITZ, A. H., METHODS ENZYMOL., vol. 178, 1989, pages 476 - 496
BETTER; HORWITZ, METHODS IN ENZYMOLOGY, vol. 178, 1989, pages 476 - 496
BIGGE ET AL., ANAL. BIOCHEM., vol. 230, no. 2, 1995, pages 229 - 238
BIOCHEMISTRY, vol. 18, no. 24, 1979, pages 5294 - 5299
BIRD ET AL., TIBTECH, vol. 9, 1991, pages 132 - 137
BIRD, R. E.; WALKER, B. W., TRENDS BIOTECHNOL., vol. 9, 1991, pages 132 - 137
BLAY; HOSKIN, CANCER RES., vol. 57, 1997, pages 2602 - 2605
BOLOGNESI ET AL., CLIN. EXP. IMMUNOL., vol. 89, 1992, pages 341 - 346
BR. J. HAEMATOL., vol. 152, no. 5, 2011, pages 579 - 92
BRENSING-KUPPERS ET AL., GENE, vol. 191, 1997, pages 173 - 181
BRINDLE ET AL., J. MOL. RECOGNIT., vol. 10, 1997, pages 182 - 187
BURMEISTER ET AL., NATURE, vol. 372, 1994, pages 336 - 343
C. EUR. J. IMMUNOL., vol. 6, no. 7, 1976, pages 511 - 519
CANBOLAT ET AL., BREAST CANCER RES. TREAT., vol. 37, 1996, pages 189 - 193
CANCER RES., vol. 53, 1993, pages 851 - 856
CANCER RES., vol. 69, no. 11, 2009, pages 4918 - 4925
CARDOSO ET AL., SCAND. J. IMMUNOL., vol. 51, 2000, pages 337 - 344
CARRENO R. ET AL.: "2E8 binds to the high affinity I-domain in a metal ion-dependent manner: a second generation monoclonal antibody selectively targeting activated LFA-1.", J. BIOL. CHEM., vol. 285, no. 43, 2010, pages 32860 - 32868, XP055159907 *
CASELLAS ET AL., EUR. J. BIOCHEM., vol. 176, 1988, pages 581 - 588
CELL, vol. 8, no. 3, 1976, pages 405 - 415
CHRISTOFK ET AL., NATURE, vol. 452, 2008, pages 230 - 233
CLIN. EXP. RHEUMATOL., vol. 17, 1999, pages 151 - 160
CO ET AL., J. IMMUNOL., vol. 152, 1994, pages 2968 - 2976
CO, M. S. ET AL., J. IMMUNOL., vol. 152, 1994, pages 2968 - 2976
COLIGAN ET AL.: "Current Protocols in Immunology", 1993, article "Immunologic studies in humans (chapter 7)"
CONNOLLY, J. APPL. CRYST., vol. 16, 1983, pages 548 - 558
CONRATH ET AL., J. BIOL. CHEM., vol. 276, no. 10, 2001, pages 7346 - 7350
COX ET AL., NAT. GENETICS, vol. 7, 1994, pages 162 - 168
CUMBER ET AL., J. IMMUNOL. METHODS, vol. 135, 1990, pages 15 - 24
CUR. OPIN. IN BIOTECH., vol. 20, no. 6, 2009, pages 685 - 691
CURR OPIN CHEM BIOL, vol. 14, 2010, pages 529 - 37
CURR. MED. CHEM., vol. 18, 2011, pages 5217 - 23
CURR. MED. CHEM., vol. 18, 2011, pages 5217 - 5223
CURR. OPIN. BIOTECHNOL., vol. 20, no. 6, 2009, pages 685 - 91
CURR. OPIN. IMMUNOL., vol. 20, no. 4, 2008, pages 460 - 470
CURRENT PROTOCOLS IN PROTEIN SCIENCE, May 2001 (2001-05-01)
CURRENT TOPICS IN MICROBIOLOGY AND IMMUNOLOGY, vol. 81, 1978, pages 1 - 7
DANG; SEMENZA, TRENDS BIOCHEM. SCI., vol. 24, 1999, pages 68 - 72
DE BONO JS; TOLCHER AW; FORERO A; VANHOVE GF; TAKIMOTO C; BAUER RJ; HAMMOND LA; PATNAIK A; WHITE ML; SHEN S: "ING-1, a monoclonal antibody targeting Ep-CAM in patients with advanced adenocarcinomas", CLIN. CANCER RES., vol. 10, no. 22, 2004, pages 7555 - 7565
DENKER ET AL., MOD. PATHOL., vol. 19, 2006, pages 1261 - 1269
DENKERT ET AL., CLIN. BREAST CANCER, vol. 4, 2004, pages 428 - 433
DESJARLAIS JR; LAZAR GA; ZHUKOVSKY EA; CHU SY.: "Optimizing engagement of the immune system by anti-tumor antibodies: an engineer's perspective", DRUG DISCOV. TODAY, vol. 12, no. 21-22, 2007, pages 898 - 910, XP022338218, DOI: doi:10.1016/j.drudis.2007.08.009
DHANASEKARAN ET AL., NATURE, vol. 412, 2001, pages 822 - 826
DROGE ET AL., IMMUNOBIOLOGY, vol. 174, 1987, pages 473 - 479
DURAK ET AL., CANCER LETT., vol. 84, 1994, pages 199 - 202
EBERT, K. M., BIO/TECHNOLOGY, vol. 12, no. 7, 1994, pages 699 - 702
ED HARLOW, DAVID LANE: "Antibodies: A Laboratory Manual", 1988, COLD SPRING HARBOR LABORATORY, pages: 359 - 420
EUR. J. CLIN. PHARMACOL., vol. 46, 1994, pages 3 - 7
EUR. J. IMMUNOL., vol. 19, 1989, pages 2237 - 2242
EVA GOTTFRIED; KATRIN PETER; MARINA P. KREUTZ, FROM MOLECULAR TO MODULAR TUMOR THERAPY, vol. 3, no. 2, 2010, pages 111 - 132
FANTIN ET AL., CANCER CELL, vol. 9, 2006, pages 425 - 434
FASEB J., vol. 18, 2004, pages 790 - 804
FASEB J., vol. 22, 2008, pages 2263 - 2272
FLOCKE; MANNHERZ, BIOCHIM. BIOPHYS. ACTA, vol. 1076, 1991, pages 273 - 281
FRUMENTO ET AL., J. EXP. MED., vol. 196, 2002, pages 459 - 468
FULTON ET AL., J. BIOL. CHEM., vol. 261, 1986, pages 5314 - 5319
GATES; SWEELEY, CLIN. CHEM., vol. 24, 1978, pages 1663 - 1673
GEJIMA ET AL., HUMAN ANTIBODIES, vol. 11, 2002, pages 121 - 129
GHEEITE ET AL., J. IMMUNOL. METHODS, vol. 142, 1991, pages 223 - 230
GHETIE, IMMUNOL. TODAY, vol. 18, no. 12, 1997, pages 592 - 598
HEADRICK; WILLIS, BIOCHEM. J., vol. 261, 1989, pages 541 - 550
HEINRICH, BIOCHEM. J., vol. 334, 1998, pages 297 - 314
HOLLIGER ET AL., PROTEIN ENGINEERING, vol. 9, no. 3, 1996, pages 299 - 305
HOLLINGER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 6444 - 6448
HOOD ET AL., MOL. CELL. PROTEOMICS, vol. 4, 2005, pages 1741 - 1753
HUDSON, J. IMMUNOL. METHODS, vol. 231, 1999, pages 177 - 189
HUSTON ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 85, 1988, pages 5879 - 5883
IGAWA T. ET AL.: "Antibody recycling by engineered pH-dependent antigen binding improves the duration of antigen neutralization.", NAT. BIOTECHNOL., vol. 28, no. 11, 2010, pages 1203 - 1207, XP009153598 *
IMMUNITY, vol. 23, 2005, pages 503 - 514
IMMUNOL. REV., vol. 161, 1998, pages 95 - 109
ISHIKAWA ET AL., J. CLIN. EXP. HEMATOPATHOL., vol. 46, no. 2, 2006, pages 55 - 66
J. AM. SOC. NEPHROL., vol. 22, no. 5, 2011, pages 890 - 901
J. CLIN. INVEST., vol. 120, no. 6, 2010, pages 1939 - 1949
J. EXP. MED., vol. 148, no. 1, 1978, pages 313 - 323
J. IMMUNOL. METHODS, vol. 35, no. 1-2, 1980, pages 1 - 21
J. IMMUNOL., vol. 123, no. 4, 1979, pages 1548 - 1550
J. IMMUNOL., vol. 149, 1992, pages 717 - 721
J. IMMUNOL., vol. 176, 2006, pages 4449 - 4458
J. IMMUNOL., vol. 181, 2008, pages 5396 - 5404
J. LAB. CLIN. MED., vol. 122, 1993, pages 518 - 523
J. MOL. MODEL., vol. 1, 1995, pages 46 - 53
JANICE M REICHERT; CLARK J ROSENSWEIG; LAURA B FADEN; MATTHEW C DEWITZ, NAT. BIOTECHNOL., vol. 23, 2005, pages 1073 - 1078
JOURNAL OF IMMUNOLOGY, vol. 182, 2009, pages 7663 - 7671
JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, vol. 36, 2004, pages 877 - 882
JUSZCZAK A; GUPTA A; KARAVITAKI N; MIDDLETON MR; GROSSMAN A.: "IPILIMUMAB - A NOVEL IMMUNOMODULATING THERAPY CAUSING AUTOIMMUNE HYPOPHYSITIS: A CASE REPORT AND REVIEW", EUR. J. ENDOCRINOL., 10 April 2012 (2012-04-10)
KAWASAKI ET AL., EUR. J. IMMUNOL., vol. 31, 2001, pages 1017 - 1028
KAWASAKI ET AL., GENOME RES., vol. 7, 1997, pages 250 - 261
KIM SJ; PARK Y; HONG HJ.: "Antibody engineering for the development of therapeutic antibodies", MOL. CELLS., vol. 20, no. 1, 2005, pages 17 - 29, XP055199890
KOBIE ET AL., J. IMMUNOL., vol. 177, 2006, pages 6780 - 6786
KOHLER; MILSTEIN ET AL., METHODS ENZYMOL., vol. 73, 1981, pages 3 - 46
KONTERMANN R.E.: "Bispecific Antibodies", 2011, SPRINGER-VERLAG
KUNKEL ET AL., PROC. NATL. ACAD. SCI. USA, vol. 82, 1985, pages 488 - 492
LABRIJN ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 110, 2013, pages 5145 - 5150
LAMOYI, E., METHODS ENZYMOL., vol. 121, 1986, pages 652 - 663
LAMOYI, METHODS IN ENZYMOLOGY, vol. 121, 1989, pages 652 - 663
LANGONE ET AL., METHODS IN ENZYMOLOGY, vol. 93, 1983, pages 307 - 308
LAPOINTE ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 101, 2004, pages 811 - 816
LAWTON ET AL., PHARMACOGENOMICS, vol. 9, 2008, pages 383
LEE; RICHARDS, J. MOL. BIOL., vol. 55, 1971, pages 379 - 400
LEWIS GD; FIGARI I; FENDLY B; WONG WL; CARTER P; GORMAN C; SHEPARD HM: "Differential responses of human tumor cell lines to anti-pl85HER2 monoclonal antibodies", CANCER IMMUNOL. IMMUNOTHERAPY, vol. 37, 1993, pages 255 - 263, XP002961547, DOI: doi:10.1007/BF01518520
LOB ET AL., CANCER IMMUNOL. IMMUNOTHER., vol. 58, 2009, pages 153 - 157
LUTTERBUESE R; RAUM T; KISCHEL R; HOFFMANN P; MANGOLD S; RATTEL B; FRIEDRICH M; THOMAS O; LORENCZEWSKI G; RAU D: "T cell-engaging BiTE antibodies specific for EGFR potently eliminate KRAS- and BRAF-mutated colorectal cancer cells", PROC. NATL. ACAD. SCI. U.S.A., vol. 107, no. 28, 2010, pages 12605 - 12610, XP055067703, DOI: doi:10.1073/pnas.1000976107
MATSUDA ET AL., J. EXP. MED., vol. 188, 1998, pages 1973 - 1975
MAZUREK, J. CELL. PHYSIOL., vol. 181, 1999, pages 136 - 146
MAZUREK; EIGENBRODT, ANTICANCER RES., vol. 23, 2003, pages 1149 - 1154
MERCHANT ET AL., NATURE BIOTECHNOLOGY, vol. 16, 1998, pages 677 - 681
MERCHANT, NATURE BIOTECHNOLOGY, vol. 16, 1998, pages 677 - 681
METHOD MOL. BIOL., vol. 178, 2002, pages 133 - 145
METHODS MOL. BIOL., vol. 178, 2002, pages 133 - 145
METHODS MOL. BIOL., vol. 178, 2002, pages 133 145
METHODS MOL. BIOL., vol. 525, 2009, pages 101 - 28
MIHARA ET AL., INT. IMMUNOPHARMACOL., vol. 5, 2005, pages 1731 - 40
MILSTEIN ET AL., NATURE, vol. 305, 1983, pages 537 - 540
MILSTEIN, NATURE, vol. 305, 1983, pages 537 - 540
MORRIS: "Epitope Mapping Protocols in Methods in Molecular Biology", vol. 66, 1996
MULL BERG ET AL., J. IMMUNOL., vol. 152, no. 10, 1994, pages 4958 - 4968
MULLBERG ET AL., J. IMMUNOL., vol. 152, no. 10, 1994, pages 4958 - 4968
MUYLDERMANS, REV. MOL. BIOTECH., vol. 74, 2001, pages 277 - 302
NAM JL; WINTHROP KL; VAN VOLLENHOVEN RF; PAVELKA K; VALESINI G; HENSOR EM; WORTHY G; LANDEWE R; SMOLEN JS; EMERY P: "Current evidence for the management of rheumatoid arthritis with biological disease-modifying antirheumatic drugs: a systematic literature review informing the EULAR recommendations for the management of RA", ANN. RHEUM. DIS., vol. 69, no. 6, 2010, pages 976 - 986
NAT. MED., vol. 13, 2007, pages 851 - 856
NAT. MED., vol. 13, 2007, pages 913 - 919
NAT. MED., vol. 16, 2010, pages 1434 - 1438
NAT. REV. CANCER, vol. 12, no. 11, 2012, pages 782 - 792
NATURE IMMUNOLOGY, vol. 9, 2008, pages 1261 - 1269
NATURE MEDICINE, vol. 2, 1996, pages 350 - 353
NATURE, vol. 276, no. 5685, 1978, pages 269 - 270
NATURE, vol. 277, no. 5692, 1979, pages 131 - 133
NUCLEIC ACIDS RES., vol. 17, no. 8, 1989, pages 2919 - 2932
OPITZ, NATURE, vol. 478, no. 7368, 2011, pages 197 - 203
PACIOS, COMPUT. CHEM., vol. 18, no. 4, 1994, pages 377 - 386
PAVLOU AK; BELSEY MJ.: "The therapeutic antibodies market to 2008", EUR. J. PHARM. BIOPHARM., vol. 59, no. 3, 2005, pages 389 - 396, XP025317626, DOI: doi:10.1016/j.ejpb.2004.11.007
PEROU ET AL., NATURE, vol. 406, 2000, pages 747 - 752
PLOS ONE J., vol. 5, no. 2, 2010, pages E9242
PLUCKTHUN, A.; SKERRA, A., METHODS ENZYMOL., vol. 178, 1989, pages 497 - 515
PLUECKTHUN; SKERRA, METHODS IN ENZYMOLOGY, vol. 178, 1989, pages 476 - 496
PROC. NATL. ACAD. SCI. U.S.A., vol. 100, no. 11, 2003, pages 6353 - 6357
PROC. NATL. ACAD. SCI. U.S.A., vol. 103, no. 11, 2006, pages 4005 - 4010
PROC. NATL. ACAD. SCI. U.S.A., vol. 85, no. 23, 1988, pages 8998 - 9002
PROC. NATL. ACAD. SCI. USA, vol. 103, no. 11, 2006, pages 4005 - 4010
PROC. NATL. ACAD. SCI., vol. 103, no. 35, 2006, pages 13132 - 13137
PROTEIN ENG. DES. SEL., vol. 23, no. 4, 2010, pages 195 - 202
PROTEIN SCIENCE, vol. 4, 1995, pages 2411 - 2423
RAGHAVAN ET AL., IMMUNITY, vol. 1, 1994, pages 303 - 315
RIDGWAY ET AL., PROTEIN ENGINEERING, vol. 9, 1996, pages 617 - 621
RIDGWAY, PROTEIN ENGINEERING, vol. 9, 1996, pages 617 - 62 1
RIECHELMANN H; SAUTER A; GOLZE W; HANFT G; SCHROEN C; HOERMANN K; ERHARDT T; GRONAU S.: "Phase I trial with the CD44v6-targeting immunoconjugate bivatuzumab mertansine in head and neck squamous cell carcinoma", ORAL ONCOL., vol. 44, no. 9, 2008, pages 823 - 829, XP024341160, DOI: doi:10.1016/j.oraloncology.2007.10.009
RONDOT, NAT. BIOTECHNOL., vol. 19, 2001, pages 75 - 78
ROUSSEAUX, J. ET AL., METHODS ENZYMOL., vol. 121, 1986, pages 663 - 669
ROUSSEAUX, METHODS IN ENZYMOLOGY, vol. 121, 1989, pages 663 - 669
SADEJ ET AL., MELANOMA RES., vol. 16, 2006, pages 213 - 222
SAMBROOK, J ET AL.: "Molecular Cloning, 2nd ed.", 1989, COLD SPRING HARBOR LAB. PRESS, pages: 9.47 - 9.58
SATOH M; IIDA S; SHITARA K.: "Non-fucosylated therapeutic antibodies as next-generation therapeutic antibodies", EXPERT OPIN. BIOL. THER., vol. 6, no. 11, 2006, pages 1161 - 1173, XP008078583, DOI: doi:10.1517/14712598.6.11.1161
SCAEFER ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 108, 2011, pages 11187 - 11192
SCHABLE; ZACHAU, BIOL. CHEM. HOPPE SEYLER, vol. 374, 1993, pages 1001 - 1022
SCHENK ET AL., J. CLIN. INVESTIGATION, vol. 108, no. 11, 2001, pages 1687 - 1695
SHENG ET AL., CANCER RES., vol. 58, 1998, pages 362 - 366
SIVAM ET AL., CANCER RES., vol. 47, 1987, pages 3169 - 31173
SIVAM ET AL., CANCER RES., vol. 47, 1987, pages 3169 - 3173
STEFAN LOB, NAT REV CANCER., vol. 9, no. 6, 2009, pages 445 - 452
STIRPE F.; BARBIERI L., FEBS LETTER, vol. 195, 1986, pages 1 - 8
TAKEUCHI T; KAMEDA H.: "The Japanese experience with biologic therapies for rheumatoid arthritis", NAT. REV. RHEUMATOL., vol. 6, no. 11, 2010, pages 644 - 652
TERESA ET AL., MOL. CANCER, vol. 8, 2009, pages 41 - 59
THORPE ET AL., CANCER RES., vol. 47, 1987, pages 5924 - 5931
TOMLINSON, J. MOL. BIOL., vol. 227, 1992, pages 776 - 798
TRINH VA; HWU WJ.: "Ipilimumab in the treatment of melanoma", EXPERT OPIN. BIOL. THER., 14 April 2012 (2012-04-14)
ULANOVSKAYA ET AL., NAT. CHEM. BIOL., vol. 9, no. 5, 2013, pages 300 - 306
UYTTENHOVE ET AL., NAT. MED., vol. 9, 2003, pages 1269 - 127
VANDAMME ET AL., EUR. J. BIOCHEM., vol. 192, no. 3, 1990, pages 767 - 775
VAUPEL ET AL., CANCER RES., vol. 49, 1989, pages 6449 - 6665
VIZAN ET AL., CANCER RES., vol. 65, 2005, pages 5512 - 5515
WAWRZYNCZAK ET AL., BR. J. CANCER, vol. 66, 1992, pages 361 - 366
WAWRZYNCZAK ET AL., CANCER RES., vol. 50, 1990, pages 7519 - 7562
WEINER LM; SURANA R; WANG S.: "Monoclonal antibodies: versatile platforms for cancer immunotherapy", NAT. REV. IMMUNOL., vol. 10, no. 5, 2010, pages 317 - 327, XP055217481, DOI: doi:10.1038/nri2744
WEITZHANDLER ET AL., J. PHARMA. SCIENCES, vol. 83, no. 12, 1994, pages 1670 - 1675
WILLIAMS; WINTER, EUR. J. IMMUNOL., vol. 23, 1993, pages 1456 - 1461
WU ET AL., J. EXP. MED., vol. 132, 1970, pages 211 - 250
YAMADA ET AL., J. NUTR. SCI. VITAMINOL., vol. 56, 2010, pages 83 - 86
YU ET AL., J. IMMUNOL., vol. 190, 2013, pages 3783 - 3797
ZALEVSKY J. ET AL.: "Enhanced antibody half-life improves in vivo activity", NAT. BIOTECHNOL., vol. 28, no. 2, February 2010 (2010-02-01), pages 157 - 159, XP055049187 *

Cited By (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11332533B2 (en) 2007-09-26 2022-05-17 Chugai Seiyaku Kabushiki Kaisha Modified antibody constant region
US11371039B2 (en) 2008-04-11 2022-06-28 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
US11359194B2 (en) 2008-04-11 2022-06-14 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding two or more antigen molecules repeatedly
US10618965B2 (en) 2011-02-25 2020-04-14 Chugai Seiyaku Kabushiki Kaisha Method for altering plasma retention and immunogenicity of antigen-binding molecule
US11718678B2 (en) 2011-02-25 2023-08-08 Chugai Seiyaku Kabushiki Kaisha Method for altering plasma retention and immunogenicity of antigen-binding molecule
US10253100B2 (en) 2011-09-30 2019-04-09 Chugai Seiyaku Kabushiki Kaisha Therapeutic antigen-binding molecule with a FcRn-binding domain that promotes antigen clearance
US11827699B2 (en) 2011-09-30 2023-11-28 Chugai Seiyaku Kabushiki Kaisha Methods for producing antibodies promoting disappearance of antigens having plurality of biological activities
US11820793B2 (en) 2011-11-30 2023-11-21 Chugai Seiyaku Kabushiki Kaisha Drug containing carrier into cell for forming immune complex
US11673947B2 (en) 2012-05-30 2023-06-13 Chugai Seiyaku Kabushiki Kaisha Target tissue-specific antigen-binding molecule
US10919953B2 (en) 2012-08-24 2021-02-16 Chugai Seiyaku Kabushiki Kaisha FcgammaRIIB-specific Fc region variant
US11236168B2 (en) 2012-08-24 2022-02-01 Chugai Seiyaku Kabushiki Kaisha Mouse FcγammaRII-specific Fc antibody
US10766960B2 (en) 2012-12-27 2020-09-08 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
US11267868B2 (en) 2013-04-02 2022-03-08 Chugai Seiyaku Kabushiki Kaisha Fc region variant
US20160039912A1 (en) * 2013-04-02 2016-02-11 Chugai Seiyaku Kabushiki Kaisha Fc REGION VARIANT
WO2015046467A1 (ja) 2013-09-27 2015-04-02 中外製薬株式会社 ポリペプチド異種多量体の製造方法
WO2015068847A1 (ja) 2013-11-11 2015-05-14 中外製薬株式会社 改変された抗体可変領域を含む抗原結合分子
US11912989B2 (en) 2013-12-04 2024-02-27 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecules, the antigen-binding activity of which varies according to the concentration of compounds, and libraries of said molecules
JP7060317B2 (ja) 2013-12-04 2022-04-26 中外製薬株式会社 化合物の濃度に応じて抗原結合能の変化する抗原結合分子及びそのライブラリ
WO2015083764A1 (ja) * 2013-12-04 2015-06-11 中外製薬株式会社 化合物の濃度に応じて抗原結合能の変化する抗原結合分子及びそのライブラリ
US10961530B2 (en) 2013-12-04 2021-03-30 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecules, the antigen-binding activity of which varies according to the concentration of compounds, and libraries of said molecules
EP3763813A1 (en) * 2013-12-04 2021-01-13 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecules, the antigen-binding activity of which varies according to the concentration of compounds, and libraries of said molecules
US10738111B2 (en) 2014-12-19 2020-08-11 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies, polypeptides containing variant Fc regions, and methods of use
WO2016098357A1 (en) 2014-12-19 2016-06-23 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies, polypeptides containing variant fc regions, and methods of use
US11454633B2 (en) 2014-12-19 2022-09-27 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies, polypeptides containing variant Fc regions, and methods of use
US11180548B2 (en) 2015-02-05 2021-11-23 Chugai Seiyaku Kabushiki Kaisha Methods of neutralizing IL-8 biological activity
US11359009B2 (en) 2015-12-25 2022-06-14 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies and methods of use
US11858980B2 (en) 2016-08-02 2024-01-02 Visterra, Inc. Engineered polypeptides and uses thereof
US11053308B2 (en) 2016-08-05 2021-07-06 Chugai Seiyaku Kabushiki Kaisha Method for treating IL-8-related diseases
US11780912B2 (en) 2016-08-05 2023-10-10 Chugai Seiyaku Kabushiki Kaisha Composition for prophylaxis or treatment of IL-8 related diseases
US11780908B2 (en) 2016-09-16 2023-10-10 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies, polypeptides containing variant FC regions, and methods of use
US10844113B2 (en) 2016-09-16 2020-11-24 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies, polypeptides containing variant Fc regions, and methods of use
US10604561B2 (en) 2016-09-16 2020-03-31 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies, polypeptides containing variant Fc regions, and methods of use
US12054544B2 (en) 2017-02-24 2024-08-06 Chugai Seiyaku Kabushiki Kaisha Compositions comprising antigen-binding molecules
US12084513B2 (en) 2017-11-14 2024-09-10 Chugai Seiyaku Kabushiki Kaisha Anti-C1S antibodies and methods of use
WO2019127215A1 (en) * 2017-12-28 2019-07-04 Nanjing Legend Biotech Co., Ltd. Multispecific chimeric receptors comprising an nkg2d domain and methods of use thereof
WO2019160007A1 (ja) 2018-02-14 2019-08-22 中外製薬株式会社 抗原結合分子および組合せ
US11891432B2 (en) 2018-03-15 2024-02-06 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies having cross-reactivity to Zika virus and methods of use
WO2020027330A1 (ja) 2018-08-03 2020-02-06 中外製薬株式会社 互いに連結された2つの抗原結合ドメインを含む抗原結合分子
KR20210040989A (ko) 2018-08-03 2021-04-14 추가이 세이야쿠 가부시키가이샤 서로 연결된 2개의 항원 결합 도메인을 포함하는 항원 결합 분자
KR20200091340A (ko) 2018-08-10 2020-07-30 추가이 세이야쿠 가부시키가이샤 항cd137 항원 결합 분자 및 그의 사용
KR102697702B1 (ko) * 2018-08-10 2024-08-22 추가이 세이야쿠 가부시키가이샤 항cd137 항원 결합 분자 및 그의 사용
TWI852243B (zh) * 2018-08-10 2024-08-11 日商中外製藥股份有限公司 抗cd137抗原結合分子及其使用
JP2020146058A (ja) * 2018-08-10 2020-09-17 中外製薬株式会社 抗cd137抗原結合分子およびその使用
CN112839960B (zh) * 2018-08-10 2024-09-06 中外制药株式会社 抗cd137抗原结合分子及其应用
RU2829536C2 (ru) * 2018-08-10 2024-10-31 Чугаи Сейяку Кабусики Кайся Анти-cd137 антигенсвязывающие молекулы и их применение
KR102259473B1 (ko) 2018-08-10 2021-06-02 추가이 세이야쿠 가부시키가이샤 항cd137 항원 결합 분자 및 그의 사용
JP6718560B1 (ja) * 2018-08-10 2020-07-08 中外製薬株式会社 抗cd137抗原結合分子およびその使用
TWI734166B (zh) * 2018-08-10 2021-07-21 日商中外製藥股份有限公司 抗cd137抗原結合分子及其使用
WO2020032230A1 (ja) 2018-08-10 2020-02-13 中外製薬株式会社 抗cd137抗原結合分子およびその使用
CN112839960A (zh) * 2018-08-10 2021-05-25 中外制药株式会社 抗cd137抗原结合分子及其应用
TWI792392B (zh) * 2018-08-10 2023-02-11 日商中外製藥股份有限公司 抗cd137抗原結合分子及其使用
KR20210065204A (ko) 2018-08-10 2021-06-03 추가이 세이야쿠 가부시키가이샤 항cd137 항원 결합 분자 및 그의 사용
EP3835321A4 (en) * 2018-08-10 2022-11-02 Chugai Seiyaku Kabushiki Kaisha ANTI-CD137 ANTIGEN-BINDING MOLECULE AND USE THEREOF
US20210324099A1 (en) * 2018-08-10 2021-10-21 Chugai Seiyaku Kabushiki Kaisha Anti-cd137 antigen-binding molecule and utilization thereof
JP2022524074A (ja) * 2019-03-14 2022-04-27 ジェネンテック, インコーポレイテッド 抗HER2 MABと組み合わせたHER2xCD3二重特異性抗体によるがんの処置
CN113613676A (zh) * 2019-03-19 2021-11-05 中外制药株式会社 包含对抗原的结合活性因mta而变化的抗原结合结构域的抗原结合分子及用于获得该抗原结合结构域的文库
WO2020189748A1 (ja) 2019-03-19 2020-09-24 中外製薬株式会社 Mta依存的に抗原に対する結合活性が変化する抗原結合ドメインを含む抗原結合分子及び当該抗原結合ドメイン取得用ライブラリ
EP3943108A4 (en) * 2019-03-19 2023-01-04 Chugai Seiyaku Kabushiki Kaisha ANTIGEN-BINDING MOLECULE CONTAINING AN ANTIGEN-BINDING DOMAIN WHOSE ANTIGEN-BINDING ACTIVITY IS ALTERED DEPENDING ON THE MTA, AND BANK FOR OBTAINING SUCH ANTIGEN-BINDING DOMAIN
WO2020209318A1 (ja) 2019-04-10 2020-10-15 中外製薬株式会社 Fc領域改変抗体の精製方法
KR20220004087A (ko) 2019-04-19 2022-01-11 추가이 세이야쿠 가부시키가이샤 항체 개변 부위 인식 키메라 수용체
WO2020213724A1 (ja) 2019-04-19 2020-10-22 中外製薬株式会社 抗体改変部位認識キメラ受容体
US11739142B2 (en) 2019-12-18 2023-08-29 Hoffmann-La Roche Inc. Bispecific anti-CCL2 antibodies
US12103967B2 (en) 2019-12-18 2024-10-01 Hoffmann-La Roche Inc. Bispecific anti-CCL2 antibodies
WO2021122733A1 (en) 2019-12-18 2021-06-24 F. Hoffmann-La Roche Ag Bispecific anti-ccl2 antibodies
KR20220119433A (ko) 2019-12-27 2022-08-29 추가이 세이야쿠 가부시키가이샤 항ctla-4 항체 및 그의 사용
JP7373588B2 (ja) 2019-12-27 2023-11-02 中外製薬株式会社 抗ctla-4抗体およびその使用
WO2021131021A1 (ja) 2019-12-27 2021-07-01 中外製薬株式会社 抗ctla-4抗体およびその使用
JPWO2021131021A1 (ja) * 2019-12-27 2021-07-01
KR20240035914A (ko) 2019-12-27 2024-03-18 추가이 세이야쿠 가부시키가이샤 항ctla-4 항체 및 그의 사용
KR20220137923A (ko) 2020-02-05 2022-10-12 추가이 세이야쿠 가부시키가이샤 재조합 항원 결합 분자를 제조 및/또는 농축하기 위한 방법
KR20220140539A (ko) 2020-02-12 2022-10-18 추가이 세이야쿠 가부시키가이샤 암의 치료에 이용하기 위한 항cd137 항원 결합 분자
WO2021162020A1 (ja) 2020-02-12 2021-08-19 中外製薬株式会社 癌の治療に用いるための抗cd137抗原結合分子
US11718672B2 (en) 2020-03-31 2023-08-08 Chugai Seiyaki Kabushiki Kaisha CD137- and DLL3-targeting multispecific antigen-binding molecules
US11274151B2 (en) 2020-03-31 2022-03-15 Chugai Seiyaku Kabushiki Kaisha CD3-targeting and DLL3-targeting multispecific antigen-binding molecules and uses thereof
WO2022045276A1 (ja) 2020-08-28 2022-03-03 中外製薬株式会社 ヘテロ二量体Fcポリペプチド
WO2022263501A1 (en) 2021-06-18 2022-12-22 F. Hoffmann-La Roche Ag Bispecific anti-ccl2 antibodies
KR20240024213A (ko) 2021-06-25 2024-02-23 추가이 세이야쿠 가부시키가이샤 항ctla-4 항체
KR20240024255A (ko) 2021-06-25 2024-02-23 추가이 세이야쿠 가부시키가이샤 항ctla-4 항체의 사용
WO2022270612A1 (ja) 2021-06-25 2022-12-29 中外製薬株式会社 抗ctla-4抗体の使用
WO2022270611A1 (ja) 2021-06-25 2022-12-29 中外製薬株式会社 抗ctla-4抗体

Also Published As

Publication number Publication date
EP3795215A1 (en) 2021-03-24
KR20150016579A (ko) 2015-02-12
CN107964042B (zh) 2022-04-19
HK1205149A1 (en) 2015-12-11
RU2014154067A (ru) 2016-07-20
TW201400503A (zh) 2014-01-01
EP2857420A4 (en) 2015-12-30
JP6284517B2 (ja) 2018-02-28
AU2013268418B2 (en) 2017-12-07
CN104487457B (zh) 2018-01-26
MX2014014678A (es) 2015-02-10
JP2021181480A (ja) 2021-11-25
TW201817747A (zh) 2018-05-16
JP2018076374A (ja) 2018-05-17
TW202028252A (zh) 2020-08-01
TWI766939B (zh) 2022-06-11
CN107964042A (zh) 2018-04-27
AU2013268418A1 (en) 2014-11-27
MX2021007663A (es) 2021-08-11
SG10202006507XA (en) 2020-08-28
KR102413947B1 (ko) 2022-06-27
US20230279099A1 (en) 2023-09-07
AU2020203710A1 (en) 2020-06-25
TWI617578B (zh) 2018-03-11
TWI797443B (zh) 2023-04-01
AU2018201358A1 (en) 2018-03-15
KR102677704B1 (ko) 2024-06-21
CA2874721A1 (en) 2013-12-05
JP7285891B2 (ja) 2023-06-02
KR20240095484A (ko) 2024-06-25
AU2023229507A1 (en) 2023-09-28
US11673947B2 (en) 2023-06-13
KR20220092644A (ko) 2022-07-01
KR20200140404A (ko) 2020-12-15
RU2743463C2 (ru) 2021-02-18
JP2016106080A (ja) 2016-06-16
US20190359704A1 (en) 2019-11-28
HK1249530A1 (zh) 2018-11-02
DK2857420T3 (da) 2020-11-23
HK1245300A1 (zh) 2018-08-24
EP2857420A1 (en) 2015-04-08
JP2020040975A (ja) 2020-03-19
AU2018201358B2 (en) 2020-03-19
JP6663941B2 (ja) 2020-03-13
JP6931034B2 (ja) 2021-09-01
SG11201407963PA (en) 2015-01-29
US20150166654A1 (en) 2015-06-18
JPWO2013180200A1 (ja) 2016-01-21
JP2023113713A (ja) 2023-08-16
CN104487457A (zh) 2015-04-01
AU2020203710B2 (en) 2023-07-06
EP2857420B1 (en) 2020-09-23
CN107759686A (zh) 2018-03-06

Similar Documents

Publication Publication Date Title
JP7285891B2 (ja) 標的組織特異的抗原結合分子
JP7488843B2 (ja) 化合物の濃度に応じて抗原結合能の変化する抗原結合分子及びそのライブラリ
TWI853985B (zh) 因應化合物濃度使抗原結合能力變化的抗原結合分子及其資料庫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797450

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014518713

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14402574

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2874721

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2013268418

Country of ref document: AU

Date of ref document: 20130530

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/014678

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013797450

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147035750

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014154067

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014029756

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014029756

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141128