[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013175856A1 - スラリー、研磨液セット、研磨液、基体の研磨方法及び基体 - Google Patents

スラリー、研磨液セット、研磨液、基体の研磨方法及び基体 Download PDF

Info

Publication number
WO2013175856A1
WO2013175856A1 PCT/JP2013/058782 JP2013058782W WO2013175856A1 WO 2013175856 A1 WO2013175856 A1 WO 2013175856A1 JP 2013058782 W JP2013058782 W JP 2013058782W WO 2013175856 A1 WO2013175856 A1 WO 2013175856A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
liquid
polished
mass
content
Prior art date
Application number
PCT/JP2013/058782
Other languages
English (en)
French (fr)
Inventor
友洋 岩野
久貴 南
利明 阿久津
耕司 藤崎
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2014516705A priority Critical patent/JP5943073B2/ja
Priority to SG11201407029XA priority patent/SG11201407029XA/en
Priority to KR1020147034838A priority patent/KR102034331B1/ko
Priority to CN201380026857.4A priority patent/CN104334675B/zh
Priority to US14/401,283 priority patent/US9932497B2/en
Publication of WO2013175856A1 publication Critical patent/WO2013175856A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step

Definitions

  • the present invention relates to a slurry, a polishing liquid set, a polishing liquid, a method for polishing a substrate, and a substrate.
  • the present invention relates to a slurry, a polishing liquid set, a polishing liquid, a method for polishing a substrate, and a substrate used in a semiconductor element manufacturing process.
  • CMP Chemical Mechanical Polishing
  • STI shallow trench isolation
  • an insulating material such as silicon oxide formed by a method such as a CVD (chemical vapor deposition) method or a spin coating method is planarized by CMP.
  • a silica-based polishing liquid containing silica particles such as colloidal silica and fumed silica is used as abrasive grains.
  • the silica-based polishing liquid is produced by growing abrasive grains by a method such as thermal decomposition of silicon tetrachloride and adjusting pH.
  • a silica-based polishing liquid has a technical problem that the polishing rate is low.
  • STI is used for element isolation in the integrated circuit.
  • CMP is used to remove excess portions of insulating material deposited on the substrate.
  • a stopper (polishing stop layer) having a low polishing rate is formed under the insulating material.
  • the stopper material (constituting material) is made of silicon nitride, polysilicon, or the like, and has a high polishing selectivity ratio of the insulating material to the stopper material (polishing speed ratio: polishing speed of the insulating material / polishing speed of the stopper material). desirable.
  • Conventional silica-based polishing liquids have a polishing selectivity ratio of an insulating material to a stopper material as small as about 3 and tend not to have practical characteristics for STI.
  • polishing liquids using tetravalent metal element hydroxide particles have been studied (for example, see Patent Document 2 below).
  • a method for producing hydroxide particles of a tetravalent metal element has also been studied (for example, see Patent Document 3 below).
  • JP-A-10-106994 International Publication No. 02/067309 JP 2006-249129 A JP 2002-241739 A Japanese Patent Application Laid-Open No. 08-022970
  • the polishing speed may decrease in exchange for the effect of adding the additive, and both the polishing speed and other polishing characteristics are compatible. There is a problem that is difficult.
  • the storage stability of conventional polishing liquids may be low.
  • the polishing characteristics change with time and are greatly reduced (the stability of the polishing characteristics is low).
  • a typical polishing characteristic is a polishing rate, and there is a problem that the polishing rate decreases with time (the stability of the polishing rate is low).
  • abrasive grains may aggregate or precipitate during storage, which may adversely affect polishing characteristics (low dispersion stability).
  • the present invention is intended to solve the above-mentioned problems, and it is possible to polish the material to be polished at an excellent polishing rate while maintaining the additive effect of the additive, and to improve the storage stability.
  • An object is to provide a slurry capable of obtaining a possible polishing liquid.
  • the present invention provides a polishing liquid set and a polishing liquid capable of polishing a material to be polished at an excellent polishing rate while maintaining the effect of addition of an additive and improving storage stability.
  • the purpose is to provide.
  • a further object of the present invention is to provide a substrate polishing method using the slurry, the polishing liquid set or the polishing liquid, and a substrate obtained thereby.
  • the present inventor has specified light absorption (absorbance) for light of a specific wavelength in an aqueous dispersion containing a specific amount of abrasive grains.
  • abrasive grains that give a liquid phase with a high non-volatile content when an aqueous dispersion containing a specific amount of abrasive grains is centrifuged under specific conditions, the material to be polished can be obtained at an excellent polishing rate. It has been found that it can be polished and can achieve high storage stability.
  • the material to be polished can be polished at an excellent polishing rate while maintaining the additive effect of the additive, and the storage stability is high. We found that sex can be achieved.
  • the slurry according to the present invention is a slurry containing abrasive grains and water
  • the abrasive grains include a hydroxide of a tetravalent metal element
  • the content of the abrasive grains is 1.0 mass. %
  • the material to be polished when a polishing liquid obtained by adding an additive to the slurry is used, the material to be polished can be polished at an excellent polishing rate while maintaining the additive addition effect. At the same time, storage stability can be improved. In this case, as a polishing liquid having excellent storage stability, a polishing liquid having particularly excellent dispersion stability and excellent polishing rate stability can be obtained. Further, when the slurry according to the present invention is used for polishing without adding an additive, the material to be polished can be polished at an excellent polishing rate and the storage stability can be improved. In this case, the slurry having excellent storage stability can be a slurry having excellent dispersion stability and excellent polishing rate stability. Furthermore, according to the slurry according to the present invention, it is possible to suppress the generation of polishing flaws on the surface to be polished, because the abrasive grains contain a hydroxide of a tetravalent metal element.
  • the present inventor when the abrasive grains can increase the light transmittance for light having a wavelength of 500 nm, it has been found that it is possible to polish the material to be polished at an excellent polishing rate and to achieve higher storage stability. That is, in the slurry according to the present invention, the abrasive grains give a light transmittance of 50% / cm or more for light having a wavelength of 500 nm in an aqueous dispersion in which the content of the abrasive grains is adjusted to 1.0 mass%. It is preferable that the light transmittance is 95% / cm or more.
  • the present inventor is further excellent when the abrasive grains can increase the absorbance to light having a wavelength of 290 nm. It has been found that it is possible to polish the material to be polished at a high polishing rate and to achieve higher storage stability. That is, in the slurry according to the present invention, the abrasive grains give an absorbance of 1.000 or more with respect to light having a wavelength of 290 nm in an aqueous dispersion in which the content of the abrasive grains is adjusted to 0.0065 mass% (65 ppm). It is preferable that “Ppm” means mass ppm, that is, “parts per million mass”.
  • the abrasive grains give an absorbance of 0.010 or less with respect to light having a wavelength of 450 to 600 nm in an aqueous dispersion in which the content of the abrasive grains is adjusted to 0.0065% by mass.
  • the material to be polished can be polished at a further excellent polishing rate and storage stability can be improved.
  • the tetravalent metal element hydroxide is preferably obtained by reacting a tetravalent metal element salt with an alkali source.
  • particles having an extremely small particle diameter can be obtained as abrasive grains, so that the effect of reducing polishing flaws can be further improved.
  • the tetravalent metal element is preferably tetravalent cerium.
  • fine particles having high chemical activity are obtained as abrasive grains, and therefore the material to be polished can be polished at a further excellent polishing rate.
  • the present inventor also provides a polishing liquid containing an additive in addition to the constituents of the slurry, wherein the abrasive having a high non-volatile content in the liquid phase after centrifugation has a specific range of absorbance to light having a wavelength of 400 nm. It has been found that the use of grains can suppress a reduction in the polishing rate of the material to be polished with the addition of the additive.
  • the constituents of the polishing liquid are divided into the first liquid and the second liquid so that the first liquid and the second liquid are mixed to become the polishing liquid.
  • the first liquid is the slurry
  • the second liquid contains the additive and water.
  • the additive is preferably at least one selected from the group consisting of a vinyl alcohol polymer and a derivative of the vinyl alcohol polymer.
  • the adhesion of the abrasive grains to the surface to be polished is suppressed, so that the dispersibility of the abrasive grains is improved and the stability of the polishing liquid is further improved. be able to.
  • the cleanability of the surface to be polished can be improved.
  • the polishing rate ratio of the insulating material to the stopper material (the polishing rate of the insulating material / the polishing rate of the stopper material) can be improved.
  • the content of the additive is preferably 0.01% by mass or more based on the total mass of the polishing liquid. In this case, the addition effect of the additive can be significantly obtained and the storage stability can be improved.
  • the polishing liquid according to the present invention is a polishing liquid containing abrasive grains, an additive, and water, the abrasive grains include a hydroxide of a tetravalent metal element, and the content of the abrasive grains is 1
  • an aqueous dispersion adjusted to 0.0% by mass an absorbance of 1.00 or more and less than 1.50 is given to light having a wavelength of 400 nm, and the content of the abrasive grains is adjusted to 1.0% by mass.
  • aqueous dispersion is centrifuged at a centrifugal acceleration of 1.59 ⁇ 10 5 G for 50 minutes, a liquid phase having a nonvolatile content of 300 ppm or more is given.
  • the material to be polished can be polished at an excellent polishing rate while maintaining the additive effect of the additive, and the storage stability can be improved.
  • the polishing liquid excellent in storage stability can be a polishing liquid excellent in dispersion stability and polishing rate stability.
  • the occurrence of polishing flaws on the surface to be polished can also be suppressed when the abrasive grains contain a hydroxide of a tetravalent metal element.
  • the abrasive grains provide a light transmittance of 50% / cm or more for light having a wavelength of 500 nm in an aqueous dispersion in which the content of the abrasive grains is adjusted to 1.0 mass%. It is preferable that the light transmittance is 95% / cm or more. In these cases, the material to be polished can be polished at a further excellent polishing rate, and storage stability can be further improved.
  • the abrasive grains give an absorbance of 1.000 or more to light having a wavelength of 290 nm in an aqueous dispersion in which the content of the abrasive grains is adjusted to 0.0065 mass% (65 ppm).
  • the material to be polished can be polished at a further excellent polishing rate, and the storage stability can be further improved.
  • the abrasive grains give an absorbance of 0.010 or less with respect to light having a wavelength of 450 to 600 nm in an aqueous dispersion in which the content of the abrasive grains is adjusted to 0.0065% by mass. It is preferable. In this case, the material to be polished can be polished at a further excellent polishing rate and storage stability can be improved.
  • the hydroxide of a tetravalent metal element is preferably obtained by reacting a salt of a tetravalent metal element with an alkali source.
  • particles having an extremely small particle diameter can be obtained as abrasive grains, so that the effect of reducing polishing flaws can be further improved.
  • the tetravalent metal element is preferably tetravalent cerium.
  • fine particles having high chemical activity are obtained as abrasive grains, and therefore the material to be polished can be polished at a further excellent polishing rate.
  • the additive is preferably at least one selected from the group consisting of a vinyl alcohol polymer and a derivative of the vinyl alcohol polymer.
  • the additive covers the surface of the abrasive grains, so that the adhesion of the abrasive grains to the surface to be polished is suppressed, so that the dispersibility of the abrasive grains is improved and the stability of the polishing liquid is further improved. be able to.
  • the cleanability of the surface to be polished can be improved.
  • the polishing rate ratio of the insulating material to the stopper material (the polishing rate of the insulating material / the polishing rate of the stopper material) can be improved.
  • the content of the additive is preferably 0.01% by mass or more based on the total mass of the polishing liquid. In this case, the addition effect of the additive can be significantly obtained and the storage stability can be improved.
  • the present invention also provides a method for polishing a substrate using the slurry, the polishing liquid set, or the polishing liquid. According to these polishing methods, it is possible to polish the material to be polished at an excellent polishing rate and improve the storage stability. According to these polishing methods, it is possible to suppress the generation of polishing flaws and to obtain a substrate having excellent flatness.
  • the first embodiment of the polishing method according to the present invention relates to a polishing method using the slurry. That is, in the polishing method according to the first embodiment, the slurry is disposed between the polishing pad and the material to be polished, the step of disposing the material to be polished on the substrate having the material to be polished on the surface so as to face the polishing pad. And polishing at least a part of the material to be polished.
  • the second and third embodiments of the polishing method according to the present invention relate to a polishing method using the polishing liquid set. According to such a polishing method, problems such as agglomeration of abrasive grains and change in polishing characteristics, which are a concern when the additive is mixed and stored for a long time, can also be avoided.
  • the polishing method according to the second embodiment includes a step of disposing the material to be polished of a substrate having a material to be polished on the surface so as to face the polishing pad, and the first liquid and the second liquid in the polishing liquid set. And a step of polishing the at least part of the material to be polished by supplying the polishing liquid between the polishing pad and the material to be polished.
  • the polishing method according to the third embodiment includes a step of disposing a material to be polished on a surface having a material to be polished so as to face a polishing pad, and a first liquid and a second liquid in the polishing liquid set. Respectively, between the polishing pad and the material to be polished, and polishing at least a part of the material to be polished.
  • a fourth embodiment of a polishing method according to the present invention relates to a polishing method using the polishing liquid. That is, the polishing method according to the fourth embodiment includes a step of disposing the material to be polished of a substrate having a material to be polished on the surface so as to face the polishing pad, and the polishing between the polishing pad and the material to be polished. And supplying a liquid to polish at least a part of the material to be polished.
  • the material to be polished preferably contains silicon oxide. Further, it is preferable that irregularities are formed on the surface of the material to be polished. According to these polishing methods, the features of the slurry, the polishing liquid set and the polishing liquid can be fully utilized.
  • the substrate according to the present invention is polished by the above polishing method.
  • the slurry according to the present invention it is possible to obtain a polishing liquid capable of polishing a material to be polished at an excellent polishing rate while maintaining the effect of adding an additive and improving storage stability. be able to. Further, according to the slurry according to the present invention, the material to be polished can be polished at an excellent polishing rate, and storage stability can be improved. According to the polishing liquid set and the polishing liquid according to the present invention, the material to be polished can be polished at an excellent polishing rate while maintaining the additive effect of the additive, and the storage stability can be improved.
  • the polishing method according to the present invention is excellent in throughput because the material to be polished can be polished at an excellent polishing rate, and satisfies desired characteristics (for example, flatness and selectivity) when an additive is used. be able to.
  • desired characteristics for example, flatness and selectivity
  • the storage stability for example, even when the slurry is stored at 60 ° C. for 3 days (72 hours), polished using a polishing liquid set or polishing liquid, the polishing rate before storage As a reference, the rate of change of the polishing rate can be reduced (for example, kept within 5.0%).
  • the application of the slurry, the polishing liquid set and the polishing liquid to the flattening process of the substrate surface in the semiconductor element manufacturing process is provided.
  • the application of the slurry, the polishing liquid set and the polishing liquid to the planarization process of the shallow trench isolation insulating material, the premetal insulating material, the interlayer insulating material, and the like is provided.
  • slurry and “polishing liquid” are compositions that come into contact with a material to be polished during polishing, and contain at least water and abrasive grains.
  • aqueous dispersion in which the content of abrasive grains is adjusted to a predetermined amount means a liquid containing a predetermined amount of abrasive grains and water.
  • the abrasive grains contain a hydroxide of a tetravalent metal element, and the absorbance is 1 with respect to light having a wavelength of 400 nm in an aqueous dispersion in which the content of the abrasive grains is adjusted to 1.0 mass%.
  • an aqueous dispersion that gives 0.000 or more and less than 1.50 and has the abrasive grain content adjusted to 1.0 mass% is centrifuged at a centrifugal acceleration of 1.59 ⁇ 10 5 G for 50 minutes.
  • a supernatant liquid (liquid phase) having a nonvolatile content of 300 ppm or more.
  • the inventor can polish the material to be polished at an excellent polishing rate by using abrasive grains that satisfy the above-described conditions regarding the absorbance with respect to light having a wavelength of 400 nm and the non-volatile content in the supernatant after centrifugation. At the same time, it was found that the storage stability can be improved.
  • the present inventor has obtained the following findings. That is, as a result of intensive studies on a slurry using abrasive grains containing a hydroxide of a tetravalent metal element, the present inventor can increase the absorbance to light of a specific wavelength in an aqueous dispersion containing a specific amount of abrasive grains. It has been found that the use of possible abrasive grains makes it easy to adjust the polishing rate of the material to be polished, and in addition to light with a wavelength of 400 nm in an aqueous dispersion in which the content of abrasive grains is adjusted to 1.0 mass%.
  • the material to be polished can be polished at a particularly excellent polishing rate by using abrasive grains that give an absorbance of 1.50 or more. Further, the present inventor has found that the polishing liquid and the slurry satisfying the above conditions are slightly yellowish visually, and the polishing rate is improved as the yellowness of the polishing liquid and the slurry is deeper.
  • the present inventor further examined abrasive grains containing a hydroxide of a tetravalent metal element from the viewpoint of achieving both high polishing rate and storage stability, and as described above, the content of abrasive grains
  • the inventors have come up with the idea of using abrasive grains that give an absorbance of 1.00 or more and less than 1.50 to light having a wavelength of 400 nm in an aqueous dispersion adjusted to 1.0 mass%.
  • the polishing liquid according to this embodiment contains at least abrasive grains, additives, and water.
  • abrasive grains for abrasive sands.
  • additives for abrasive sands.
  • water for sands.
  • the abrasive grains are characterized by containing a hydroxide of a tetravalent metal element.
  • the “tetravalent metal element hydroxide” is a compound containing a tetravalent metal (M 4+ ) and at least one hydroxide ion (OH ⁇ ).
  • the hydroxide of the tetravalent metal element may contain an anion other than the hydroxide ion (for example, nitrate ion NO 3 ⁇ , sulfate ion SO 4 2 ⁇ ).
  • a hydroxide of a tetravalent metal element may contain an anion (for example, nitrate ion NO 3 ⁇ , sulfate ion SO 4 2 ⁇ ) bonded to the tetravalent metal element.
  • an anion for example, nitrate ion NO 3 ⁇ , sulfate ion SO 4 2 ⁇
  • the tetravalent metal element is preferably at least one selected from the group consisting of rare earth elements and zirconium.
  • the tetravalent metal element is preferably a rare earth element from the viewpoint of further improving the polishing rate.
  • the rare earth element capable of taking tetravalence include lanthanoids such as cerium, praseodymium, and terbium. Among them, cerium (tetravalent cerium) is preferable from the viewpoint of easy availability and excellent polishing rate.
  • a rare earth element hydroxide and a zirconium hydroxide may be used in combination, or two or more kinds of rare earth element hydroxides may be selected and used.
  • abrasive grains can be used in combination as long as the characteristics of the abrasive grains containing a tetravalent metal element hydroxide are not impaired.
  • abrasive grains such as silica, alumina, and zirconia can be used.
  • the content of the tetravalent metal element hydroxide in the abrasive grains is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 70% by mass or more, and more preferably 80% by mass or more based on the total mass of the abrasive grains. Is particularly preferable, 90% by mass or more is very preferable, 95% by mass or more is very preferable, 98% by mass or more is more preferable, and 99% by mass or more is still more preferable. It is particularly preferable that the abrasive grains are substantially composed of a hydroxide of a tetravalent metal element (substantially 100% by mass of the abrasive grains are hydroxide particles of a tetravalent metal element).
  • the content of tetravalent cerium hydroxide in the abrasive grains is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 70% by mass or more, and more preferably 80% by mass or more based on the total mass of the abrasive grains. Particularly preferable is 90% by mass or more, extremely preferable is 95% by mass or more, still more preferable is 98% by mass or more, and further more preferable is 99% by mass or more.
  • the abrasive grains are substantially composed of tetravalent cerium hydroxide in that the chemical activity is high and the polishing rate is further improved (substantially 100% by mass of the abrasive grains are tetravalent cerium hydroxide particles). It is particularly preferred.
  • the hydroxide of the tetravalent metal element has a great influence on the polishing characteristics. Therefore, by adjusting the content of the hydroxide of the tetravalent metal element, the chemical interaction between the abrasive grains and the surface to be polished can be improved, and the polishing rate can be further improved. That is, the content of the hydroxide of the tetravalent metal element is preferably 0.01% by mass or more based on the total mass of the polishing liquid in that the function of the hydroxide of the tetravalent metal element can be sufficiently expressed. 0.03 mass% or more is more preferable, and 0.05 mass% or more is still more preferable.
  • the content of the hydroxide of the tetravalent metal element makes it easy to avoid agglomeration of the abrasive grains, improves the chemical interaction with the surface to be polished, and makes effective use of the characteristics of the abrasive grains. Is preferably 8% by mass or less, more preferably 5% by mass or less, still more preferably 3% by mass or less, particularly preferably 1% by mass or less, and most preferably 0.5% by mass or less. .3% by mass or less is very preferable.
  • the lower limit of the content of the abrasive grains is not particularly limited, but is preferably 0.01% by mass or more based on the total mass of the polishing liquid in that a desired polishing rate is easily obtained. 0.03 mass% or more is more preferable, and 0.05 mass% or more is still more preferable.
  • the upper limit of the content of the abrasive grains is not particularly limited, but it becomes easy to avoid agglomeration of the abrasive grains, and the abrasive grains can effectively act on the surface to be polished so that polishing can proceed smoothly.
  • the total amount of the polishing liquid it is preferably 10% by mass or less, more preferably 5% by mass or less, further preferably 3% by mass or less, particularly preferably 1% by mass or less, and extremely preferably 0.5% by mass or less, A content of 0.3% by mass or less is very preferable.
  • the polishing rate can be further improved by increasing the specific surface area of the abrasive grains in contact with the surface to be polished.
  • the mechanical action is suppressed and polishing scratches can be further reduced.
  • the upper limit of the average particle diameter is preferably 200 nm or less, more preferably 150 nm or less, still more preferably 100 nm or less, particularly preferably 80 nm or less, in that a further excellent polishing rate can be obtained and polishing scratches can be further reduced. 60 nm or less is very preferable, and 40 nm or less is very preferable.
  • the lower limit of the average particle diameter is preferably 1 nm or more, more preferably 2 nm or more, and still more preferably 3 nm or more in that a further excellent polishing rate can be obtained and polishing scratches can be further reduced.
  • the average particle diameter of the abrasive grains can be measured by a photon correlation method, and specifically, for example, it can be measured by Malvern apparatus name: Zetasizer 3000HS, Beckman Coulter apparatus name: N5, or the like.
  • the measurement method using N5 specifically includes, for example, preparing an aqueous dispersion in which the content of abrasive grains is adjusted to 0.2% by mass, and adding this aqueous dispersion to a 1 cm square cell with about 4 mL (L is “L” is shown (the same applies hereinafter), and a cell is installed in the apparatus.
  • a value obtained by adjusting the refractive index of the dispersion medium to 1.33 and the viscosity to 0.887 mPa ⁇ s and performing the measurement at 25 ° C. can be adopted as the average particle diameter of the abrasive grains.
  • the abrasive grains are considered to contain large particles having a particle size that can be measured with a particle size distribution meter and fine particles having a particle size that cannot be measured with a particle size distribution meter.
  • an aqueous dispersion in which such abrasive grains are dispersed in water is centrifuged by applying a sufficient centrifugal force, the aqueous dispersion is mainly subjected to solid-liquid separation into a sediment and a supernatant (liquid phase), It is considered that large particles settle as sediment and fine particles float in the supernatant.
  • the present inventor has a non-volatile content when an aqueous dispersion containing a sufficient amount of abrasive grains is centrifuged under specific conditions (conditions capable of acting a centrifugal force capable of suitably separating large particles and fine particles). It was found that the material to be polished can be polished at an excellent polishing rate by using abrasive grains that give a high supernatant liquid. That is, in this embodiment, the abrasive has a non-volatile content of 300 ppm when an aqueous dispersion in which the content of the abrasive is adjusted to 1.0 mass% is centrifuged for 50 minutes at a centrifugal acceleration of 1.59 ⁇ 10 5 G. The above supernatant liquid is given.
  • the present inventor considers the reason why the effect of improving the polishing rate can be obtained when the non-volatile content in the supernatant after centrifugation is high.
  • the slurry and polishing liquid containing abrasive grains are centrifuged at a centrifugal acceleration of 1.59 ⁇ 10 5 G for 50 minutes, almost all of the abrasive grains settle.
  • the slurry and the polishing liquid according to the present embodiment contain a large number of fine particles that do not settle even when the centrifugal separation is performed under the above conditions because the particle diameter of the contained abrasive grains is sufficiently small.
  • the lower limit of the non-volatile content of the supernatant liquid when the aqueous dispersion whose abrasive grain content is adjusted to 1.0% by mass is centrifuged is preferably 400 ppm or more in terms of obtaining a further excellent polishing rate. 500 ppm or more is more preferable, 600 ppm or more is further preferable, 700 ppm or more is particularly preferable, and 750 ppm or more is extremely preferable.
  • the upper limit of the non-volatile content of the supernatant is, for example, 10,000 ppm (1.0% by mass).
  • an angle rotor in which a tube is arranged at a predetermined angle, and a swing rotor in which the tube angle is variable and the tube is horizontal or almost horizontal during centrifugation are used. be able to.
  • FIG. 1 is a schematic cross-sectional view showing an example of an angle rotor.
  • the angle rotor 1 is bilaterally symmetric about the rotation axis A1, and in FIG. 1, only one side (left side in the figure) is shown, and the other side (right side in the figure) is omitted.
  • A2 is a tube angle
  • Rmin is a minimum radius from the rotation axis A1 to the tube
  • Rmax is a maximum radius from the rotation axis A1 to the tube
  • R av is an average radius from the rotation axis A1 to the tube, and is obtained as “(R min + R max ) / 2”.
  • centrifugal acceleration [unit: G] can be obtained from the following formula (1).
  • Centrifugal acceleration [G] 1118 ⁇ R ⁇ N 2 ⁇ 10 ⁇ 8 (1)
  • R represents the radius of rotation (cm)
  • the rotation speed N is set so that the centrifugal acceleration becomes 1.59 ⁇ 10 5 G. Centrifuge.
  • the minimum radius R min , the maximum radius R max , and the average radius R av are obtained from the tube state during the centrifugation, and the conditions are set. .
  • the abrasive grains can be separated into large particles and fine particles using, for example, an ultracentrifuge 70P-72 manufactured by Hitachi Koki Co., Ltd. as an angle rotor.
  • the centrifugation of the aqueous dispersion using 70P-72 can be performed, for example, as follows. First, an aqueous dispersion in which the content of abrasive grains is adjusted to 1.0 mass% is prepared, and this is filled into a centrifuge tube (tube), and then the centrifuge tube is installed in the rotor. Then, after rotating for 50 minutes at a rotational speed of 50000 rpm, the centrifuge tube is taken out of the rotor, and the supernatant liquid in the centrifuge tube is collected.
  • the non-volatile content of the supernatant can be calculated by measuring the mass of the collected supernatant and the mass of the residue after drying the supernatant.
  • the polishing rate can be improved by using an abrasive that gives an absorbance of 1.00 or more and less than 1.50 with respect to light having a wavelength of 400 nm in an aqueous dispersion in which the content of the abrasive is adjusted to 1.0 mass%.
  • Storage stability can be improved.
  • the tetravalent metal (M 4+ ), 1 to 3 hydroxide ions (OH ⁇ ), and 1 to 3 anions (X c- ) containing M (OH) a X b (wherein a + b ⁇ c 4) is considered to be produced as part of the abrasive grains.
  • the electron-withdrawing anion (X c ⁇ ) acts to improve the reactivity of hydroxide ions, and the amount of M (OH) a X b increases.
  • polishing rate is improved along with this.
  • grains containing M (OH) a Xb absorb the light of wavelength 400nm, since the abundance of M (OH) a Xb increases and the light absorbency with respect to the light of wavelength 400nm becomes high, polishing rate Is thought to improve.
  • abrasive grains containing a tetravalent metal element hydroxide may contain not only M (OH) a Xb but also M (OH) 4 , MO 2 and the like.
  • examples of the anion (X c ⁇ ) include NO 3 ⁇ , SO 4 2 ⁇ and the like.
  • the abrasive grains contain M (OH) a Xb after the abrasive grains are thoroughly washed with pure water and then the FT-IR ATR method (Fourier transform Infrared Spectrometer Attenuated Total Reflection method, Fourier transform infrared spectrophotometer This can be confirmed by a method of detecting a peak corresponding to an anion (X c ⁇ ) by a total reflection measurement method. The presence of anions (X c ⁇ ) can also be confirmed by XPS (X-ray Photoelectron Spectroscopy, X-ray photoelectron spectroscopy).
  • the absorption peak at a wavelength of 400 nm of M (OH) a X b (for example, M (OH) 3 X) is much smaller than the absorption peak at a wavelength of 290 nm described later.
  • the present inventor examined the magnitude of the absorbance using an aqueous dispersion having an abrasive content of 1.0% by mass, which has a relatively large abrasive content and is easily detected with a large absorbance. It has been found that when an abrasive that gives an absorbance of 1.00 or more and less than 1.50 with respect to light having a wavelength of 400 nm is used in an aqueous dispersion, the polishing rate is improved and the storage stability is excellent.
  • the light absorbency with respect to the light of wavelength 400nm as mentioned above originates in an abrasive grain, it replaces with the abrasive grain which gives the light absorbency 1.00 or more and less than 1.50 with respect to the light of wavelength 400nm, and has wavelength 400nm.
  • a polishing liquid containing a substance that gives an absorbance of 1.00 or more and less than 1.50 to light for example, a yellow pigment component
  • the material to be polished is polished at an excellent polishing rate while maintaining storage stability. Needless to say, you can't.
  • the lower limit of the absorbance with respect to light having a wavelength of 400 nm is 1.00 or more, but is preferably 1.05 or more, more preferably 1.10 or more, from the viewpoint of achieving both excellent polishing rate and storage stability. .15 or more is more preferable, 1.20 or more is particularly preferable, and 1.25 or more is very preferable.
  • the upper limit of the absorbance with respect to light having a wavelength of 400 nm is less than 1.50 from the viewpoint of suppressing a decrease in storage stability (for example, stability of polishing rate when stored at 60 ° C. for 72 hours).
  • the present inventor further improved the polishing rate when the abrasive gives an absorbance of 1.000 or more to light having a wavelength of 290 nm in an aqueous dispersion in which the content of the abrasive is adjusted to 0.0065% by mass. And found that the material to be polished can be polished.
  • polishing rate improvement effect can be obtained by using abrasive grains that give an absorbance of 1.000 or more with respect to light having a wavelength of 290 nm in an aqueous dispersion in which the content of abrasive grains is adjusted to 0.0065 mass% is not always clear.
  • the present inventor thinks as follows. That is, a particle containing M (OH) a X b (for example, M (OH) 3 X) generated according to the production conditions of a tetravalent metal element hydroxide has an absorption peak near the wavelength of 290 nm. For example, particles made of Ce 4+ (OH ⁇ ) 3 NO 3 ⁇ have an absorption peak at a wavelength of 290 nm.
  • the polishing rate is improved as the abundance of M (OH) a Xb increases and the absorbance to light having a wavelength of 290 nm increases.
  • the structural stability of the particles is calculated, a result is obtained that the structural stability of the particles decreases as the abundance of X increases. From these facts, it is considered that the polishing rate can be further improved by adjusting the abundance of the particles containing X using the absorbance for light having a wavelength of 290 nm as well as the absorbance for light having a wavelength of 400 nm as an index.
  • the absorbance with respect to light having a wavelength near 290 nm tends to be detected as it exceeds the measurement limit.
  • the present inventors examined the magnitude of absorbance using an aqueous dispersion having an abrasive content of 0.0065% by mass with a relatively small abrasive content and a low absorbance that is easily detected. It has been found that when an abrasive that gives an absorbance of 1.000 or more with respect to light having a wavelength of 290 nm is used in the aqueous dispersion, the effect of improving the polishing rate is excellent.
  • the present inventor has found that the higher the absorbance of abrasive grains with respect to light near a wavelength of 290 nm, the higher the absorbance of the abrasive grains is, apart from light near a wavelength of 400 nm, where the light-absorbing material tends to exhibit a yellow color. It has been found that the yellowness of the polishing liquid and the slurry using the abrasive grains is increased, and the polishing rate is improved as the yellowness of the polishing liquid and the slurry is increased.
  • the lower limit of the absorbance with respect to light having a wavelength of 290 nm is preferably 1.000 or more, more preferably 1.050 or more, still more preferably 1.100 or more, from the viewpoint of polishing the material to be polished at a further excellent polishing rate. 130 or more is particularly preferable, 1.150 or more is very preferable, and 1.180 or more is very preferable.
  • the upper limit of absorbance for light having a wavelength of 290 nm is not particularly limited, but is preferably 10.000 or less, more preferably 5.000 or less, and still more preferably 3.000 or less.
  • Tetravalent metal element hydroxides (for example, M (OH) a X b ) tend not to absorb light with a wavelength of 450 nm or more, particularly 450 to 600 nm. Therefore, from the viewpoint of polishing the material to be polished at a further excellent polishing rate by suppressing the adverse effect on polishing due to the inclusion of impurities, the abrasive grains have a content of 0.0065% by mass.
  • the aqueous dispersion adjusted to (65 ppm) preferably gives an absorbance of 0.010 or less for light having a wavelength of 450 to 600 nm.
  • the absorbance with respect to all light in the wavelength range of 450 to 600 nm does not exceed 0.010 in the aqueous dispersion in which the content of the abrasive grains is adjusted to 0.0065% by mass.
  • the upper limit of the absorbance with respect to light having a wavelength of 450 to 600 nm is more preferably 0.005 or less, and further preferably 0.001 or less.
  • the lower limit of the absorbance with respect to light having a wavelength of 450 to 600 nm is preferably 0.
  • the absorbance in the aqueous dispersion can be measured using, for example, a spectrophotometer (device name: U3310) manufactured by Hitachi, Ltd. Specifically, for example, an aqueous dispersion in which the content of abrasive grains is adjusted to 1.0 mass% or 0.0065 mass% is prepared as a measurement sample. About 4 mL of this measurement sample is put into a 1 cm square cell, and the cell is set in the apparatus. Next, the absorbance is measured in the wavelength range of 200 to 600 nm, and the absorbance is judged from the obtained chart.
  • a spectrophotometer device name: U3310
  • the absorbance is 1.000 or more when the absorbance for light having a wavelength of 290 nm is measured after being diluted excessively so that the content of the abrasive is less than 0.0065% by mass, the content of the abrasive is Even when the amount is 0.0065% by mass, the absorbance may be screened on the assumption that the absorbance is 1.000 or more. If the absorbance is 0.010 or less when the absorbance with respect to light having a wavelength of 450 to 600 nm is measured by diluting so that the abrasive content is more than 0.0065% by mass, Even when the amount is 0.0065% by mass, the absorbance may be screened on the assumption that the absorbance is 0.010 or less.
  • the polishing liquid according to this embodiment preferably has high transparency to visible light (transparent or nearly transparent by visual observation).
  • the abrasive contained in the polishing liquid according to the present embodiment has a light transmittance of 50% with respect to light having a wavelength of 500 nm in an aqueous dispersion in which the content of the abrasive is adjusted to 1.0 mass%. / Cm or more is preferable.
  • the lower limit of the light transmittance is more preferably 60% / cm or more, further preferably 70% / cm or more, particularly preferably 80% / cm or more, extremely preferably 90% / cm or more, 95% / Cm or more is very preferable, 98% / cm or more is even more preferable, and 99% / cm or more is still more preferable.
  • the upper limit of the light transmittance is 100% / cm.
  • the abrasive grains present in the aqueous dispersion are particles having a large particle diameter (hereinafter referred to as “coarse particles”). It is thought that there are relatively many.
  • an additive for example, polyvinyl alcohol (PVA)
  • PVA polyvinyl alcohol
  • the number of abrasive grains acting on the surface to be polished per unit area (the number of effective abrasive grains) is reduced, and the specific surface area of the abrasive grains in contact with the surface to be polished is reduced. Conceivable.
  • the abrasive grains present in the aqueous dispersion are considered to be in a state where there are few “coarse particles”. It is done. As shown in FIG. 3, when the amount of coarse particles is small, there are few coarse particles that become the core of aggregation even when an additive (for example, polyvinyl alcohol) is added to the polishing liquid. Aggregation between grains is suppressed or the size of the aggregated particles is smaller than that of the aggregated particles shown in FIG.
  • an additive for example, polyvinyl alcohol
  • the number of abrasive grains (number of effective abrasive grains) acting on the surface to be polished per unit area is maintained, and the specific surface area of the abrasive grains in contact with the surface to be polished is maintained. It is considered to be.
  • the light transmittance is a transmittance for light having a wavelength of 500 nm.
  • the light transmittance is measured with a spectrophotometer. Specifically, for example, it is measured with a spectrophotometer U3310 (device name) manufactured by Hitachi, Ltd.
  • an aqueous dispersion in which the content of abrasive grains is adjusted to 1.0% by mass is prepared as a measurement sample. About 4 mL of this measurement sample is put into a 1 cm square cell, and the cell is set in the apparatus to perform measurement.
  • the content of the abrasive grains is 50% / cm or more in an aqueous dispersion having a content of greater than 1.0% by mass
  • the light transmittance is also obtained when this is diluted to 1.0% by mass. Is apparently 50% / cm or more. Therefore, the light transmittance can be screened by a simple method by using an aqueous dispersion having an abrasive content greater than 1.0% by mass.
  • the absorbance and light transmittance that the abrasive grains give in the aqueous dispersion and the non-volatile content in the supernatant are preferably excellent in stability.
  • the absorbance and light transmittance in the aqueous dispersion after the aqueous dispersion is held at 60 ° C. for 3 days (72 hours), the absorbance with respect to light having a wavelength of 400 nm may be 1.00 or more and less than 1.50.
  • the absorbance for light with a wavelength of 290 nm is preferably 1.000 or more, the absorbance for light with a wavelength of 450 to 600 nm is preferably 0.010 or less, and the light transmittance for light with a wavelength of 500 nm is 50% / It is preferable that it is cm or more.
  • the non-volatile content in the supernatant the non-volatile content in the supernatant obtained from the aqueous dispersion after being held at 60 ° C. for 3 days (72 hours) is preferably 300 ppm or more. Further preferred ranges of these absorbance, light transmittance and nonvolatile content are the same as those described above for the abrasive grains.
  • the absorbance and light transmittance that the abrasive grains contained in the polishing liquid give in the aqueous dispersion are obtained by removing the solid components other than the abrasive grains and the liquid components other than water, and then the aqueous dispersion having a predetermined abrasive grain content. It can be prepared and measured using the aqueous dispersion.
  • the solid component or the liquid component may be removed by centrifugation using a centrifugal machine that can apply a gravitational acceleration of several thousand G or less, Centrifugal methods such as ultracentrifugation using a centrifuge; chromatography methods such as distribution chromatography, adsorption chromatography, gel permeation chromatography, ion exchange chromatography; natural filtration, vacuum filtration, pressure filtration, ultrafiltration Filtration methods such as distillation; distillation methods such as vacuum distillation and atmospheric distillation can be used, and these may be combined as appropriate.
  • Centrifugal methods such as ultracentrifugation using a centrifuge
  • chromatography methods such as distribution chromatography, adsorption chromatography, gel permeation chromatography, ion exchange chromatography
  • natural filtration, vacuum filtration, pressure filtration, ultrafiltration Filtration methods such as distillation
  • distillation methods such as vacuum distillation and atmospheric distillation can be used, and these may be combined as appropriate.
  • a chromatography method, a filtration method and the like can be mentioned, and among them, gel permeation chromatography and ultrafiltration are preferable.
  • the abrasive grains contained in the polishing liquid can pass through the filter by setting appropriate conditions.
  • examples thereof include a chromatography method, a filtration method, and a distillation method, and gel permeation chromatography, ultrafiltration, and vacuum distillation are preferable.
  • abrasive grains When other types of abrasive grains are included, examples thereof include filtration methods and centrifugal separation methods. In the case of filtration, in the filtrate, in the liquid phase in the case of centrifugation, abrasive grains containing a hydroxide of a tetravalent metal element. Is included more.
  • the abrasive grain components can be fractionated and / or other components can be fractionated under the following conditions.
  • Sample solution 100 ⁇ L of polishing liquid Detector: UV-VIS detector manufactured by Hitachi, Ltd., trade name “L-4200”, wavelength: 400 nm Integrator: Hitachi, Ltd. GPC integrator, product name “D-2500” Pump: Hitachi, Ltd., trade name “L-7100” Column: Hitachi Chemical Co., Ltd. water-based HPLC packed column, trade name “GL-W550S” Eluent: Deionized water Measurement temperature: 23 ° C Flow rate: 1 mL / min (pressure is about 40-50 kg / cm 2 ) Measurement time: 60 minutes
  • a deaeration device it is preferable to deaerate the eluent using a deaeration device before performing chromatography.
  • the deaerator cannot be used, it is preferable to deaerate the eluent in advance with ultrasonic waves or the like.
  • the abrasive components contained in the polishing liquid it may not be possible to separate the abrasive components even under the above conditions.In that case, by optimizing the sample solution amount, column type, eluent type, measurement temperature, flow rate, etc. Can be separated. Further, by adjusting the pH of the polishing liquid, there is a possibility that the distillation time of the components contained in the polishing liquid can be adjusted and separated from the abrasive grains. When there are insoluble components in the polishing liquid, it is preferable to remove the insoluble components by filtration, centrifugation, or the like, if necessary.
  • a hydroxide of a tetravalent metal element can be produced by reacting a salt of a tetravalent metal element (metal salt) with an alkali source (base).
  • a salt of a tetravalent metal element metal salt
  • base alkali source
  • the hydroxide of a tetravalent metal element can be obtained by mixing a salt of a tetravalent metal element and an alkali solution (an alkali source solution, such as an aqueous alkali solution).
  • the hydroxide of a tetravalent metal element can be obtained by mixing a metal salt solution (for example, an aqueous metal salt solution) containing a salt of a tetravalent metal element and an alkali solution.
  • a metal salt solution for example, an aqueous metal salt solution
  • the means for stirring the mixed solution is not limited, and may be a rod, plate, or the like rotating around the rotation axis.
  • a method of stirring a mixed solution using a propeller-like stirring bar or a stirring blade A method of stirring a mixed solution by rotating a stirring bar with a rotating magnetic field using a magnetic stirrer that transmits power from outside the container; The method of stirring a liquid mixture with the pump installed outside the tank; The method of stirring a liquid mixture by pressurizing outside air and blowing in the tank vigorously etc. are mentioned.
  • a salt of a tetravalent metal element when the metal is represented as M, M (NO 3 ) 4 , M (SO 4 ) 2 , M (NH 4 ) 2 (NO 3 ) 6 , M (NH 4 ) 4 (SO 4 ) 4 etc. are mentioned.
  • the absorbance with respect to light with a wavelength of 400 nm, the absorbance with respect to light with a wavelength of 290 nm, and the light transmittance with respect to light with a wavelength of 500 nm a method for producing a hydroxide of a tetravalent metal element Therefore, it is preferable to make it more “gradual”.
  • “slow” means that the increase in pH when the pH of the reaction system increases as the reaction proceeds is moderated (slowed).
  • the absorbance for light with a wavelength of 400 nm, the absorbance for light with a wavelength of 290 nm, and the light transmittance for light with a wavelength of 500 nm the hydroxide of a tetravalent metal element It is preferable to make the manufacturing method more “violent”.
  • “violently” means that the increase in pH when the pH of the reaction system increases as the reaction progresses is increased (accelerated).
  • the alkali source of the alkali liquid is not particularly limited, and examples thereof include organic bases and inorganic bases.
  • Organic bases include nitrogen-containing organic bases such as guanidine, triethylamine and chitosan; nitrogen-containing heterocyclic organic bases such as pyridine, piperidine, pyrrolidine and imidazole; ammonium carbonate, ammonium hydrogen carbonate, tetramethylammonium hydroxide, tetraethylammonium hydroxide And ammonium salts such as tetramethylammonium chloride and tetraethylammonium chloride.
  • inorganic bases include inorganic salts of alkali metals such as ammonia, lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, and potassium hydrogen carbonate.
  • alkali metals such as ammonia, lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, and potassium hydrogen carbonate.
  • An alkali source can be used individually by 1 type or in combination of 2 or more types.
  • an alkali source exhibiting weak basicity As the alkali source, nitrogen-containing heterocyclic organic bases are preferable, pyridine, piperidine, pyrrolidine, and imidazole are more preferable, pyridine and imidazole are further preferable, and imidazole is particularly preferable.
  • the non-volatile content of the supernatant liquid By controlling the raw material concentrations in the metal salt solution and the alkali solution, the non-volatile content of the supernatant liquid, the absorbance with respect to light with a wavelength of 400 nm, the absorbance with respect to light with a wavelength of 290 nm, and the light transmittance with respect to light with a wavelength of 500 nm can be changed. It can. Specifically, increasing the metal salt concentration of the metal salt solution tends to increase the non-volatile content of the supernatant, and reducing the alkali concentration (base concentration, alkali source concentration) of the alkali solution. The non-volatile content of the supernatant tends to increase.
  • Increasing the metal salt concentration of the metal salt solution tends to increase the absorbance, and decreasing the alkali concentration of the alkaline solution tends to increase the absorbance.
  • Increasing the metal salt concentration tends to increase the light transmittance, and decreasing the alkali concentration tends to increase the light transmittance.
  • the upper limit of the metal salt concentration in the metal salt solution is preferably 1.000 mol / L or less on the basis of the entire metal salt solution, in that it is easy to achieve both excellent polishing rate and excellent abrasive stability. More preferable is 500 mol / L or less, still more preferable is 0.300 mol / L or less, and particularly preferable is 0.200 mol / L or less.
  • the lower limit of the metal salt concentration can suppress the rapid reaction (can moderate the rise in pH), absorbs light with a wavelength of 400 nm, absorbs light with a wavelength of 290 nm, and transmits light with a wavelength of 500 nm. In terms of increasing the rate, it is preferably 0.010 mol / L or more, more preferably 0.020 mol / L or more, and further preferably 0.030 mol / L or more, based on the entire metal salt solution.
  • the upper limit of the alkali concentration in the alkali solution is preferably 15.0 mol / L or less, more preferably 12.0 mol / L or less, and more preferably 10.0 mol based on the whole alkali solution in terms of suppressing the rapid reaction. / L or less is more preferable, and 5.0 mol / L or less is particularly preferable.
  • the lower limit of the alkali concentration is not particularly limited, but from the viewpoint of productivity, 0.001 mol / L or more is preferable based on the entire alkali solution.
  • the alkali concentration in the alkali solution is preferably adjusted as appropriate depending on the alkali source selected.
  • the upper limit of the alkali concentration is 0.10 mol / L or less based on the whole of the alkali solution in terms of suppressing a rapid reaction. Is preferable, 0.05 mol / L or less is more preferable, and 0.01 mol / L or less is still more preferable.
  • the lower limit of the alkali concentration is not particularly limited, but is 0.001 mol / L or more based on the total amount of the alkali solution in terms of suppressing the use amount of the solution used for obtaining a predetermined amount of tetravalent metal element hydroxide. preferable.
  • the upper limit of the alkali concentration is 1.0 mol / L or less on the basis of the entire alkali solution in terms of suppressing a rapid reaction. Is preferably 0.50 mol / L or less, more preferably 0.10 mol / L or less.
  • the lower limit of the alkali concentration is not particularly limited, but is 0.01 mol / L or more based on the total amount of the alkali solution in terms of suppressing the amount of the solution used for obtaining a predetermined amount of tetravalent metal element hydroxide. preferable.
  • the upper limit of the alkali concentration is preferably 15.0 mol / L or less on the basis of the entire alkali solution, in order to suppress rapid reaction. 10.0 mol / L or less is more preferable, and 5.0 mol / L or less is still more preferable.
  • the lower limit of the alkali concentration is not particularly limited, but is 0.10 mol / L or more based on the total amount of the alkali solution in terms of suppressing the amount of the solution used for obtaining a predetermined amount of the tetravalent metal element hydroxide. preferable.
  • alkali source examples include 1,8-diazabicyclo [5.4.0] undec-7-ene (pKa: 25) and the like as the alkali source in which the pKa of the conjugate acid of the alkali source is 20 or more.
  • Examples of the alkali source in which the pKa of the conjugate acid of the alkali source is 12 or more and less than 20 include potassium hydroxide (pKa: 16), sodium hydroxide (pKa: 13) and the like.
  • Examples of the alkali source in which the pKa of the conjugate acid of the alkali source is less than 12 include ammonia (pKa: 9) and imidazole (pKa: 7).
  • the pKa value of the conjugate acid of the alkali source used is not particularly limited as long as the alkali concentration is appropriately adjusted, but the pKa of the conjugate acid of the alkali source is preferably less than 20, preferably less than 12. Is more preferably less than 10, and particularly preferably less than 8.
  • the non-volatile content of the supernatant liquid By controlling the mixing rate of the metal salt solution and the alkali solution, the non-volatile content of the supernatant liquid, the absorbance with respect to light with a wavelength of 400 nm, the absorbance with respect to light with a wavelength of 290 nm, and the light transmittance with respect to light with a wavelength of 500 nm can be changed. it can.
  • the non-volatile content, the absorbance, and the light transmittance are increased by making the increase in pH gentle (slow). More specifically, the non-volatile content of the supernatant tends to increase by slowing the mixing speed, and the non-volatile content of the supernatant tends to decrease by increasing the mixing speed.
  • the absorbance tends to increase by slowing the mixing speed, and the absorbance tends to decrease by increasing the mixing speed.
  • the mixing speed By reducing the mixing speed, the light transmittance with respect to light having a wavelength of 500 nm tends to increase, and by increasing the mixing speed, the light transmittance tends to decrease.
  • the upper limit of the mixing speed is preferably 5.00 ⁇ 10 ⁇ 3 m 3 / min (5 L / min) or less from the viewpoint of further suppressing the rapid progress of the reaction and further suppressing local reaction bias. 1.00 ⁇ 10 ⁇ 3 m 3 / min (1 L / min) or less, more preferably 5.00 ⁇ 10 ⁇ 4 m 3 / min (500 mL / min) or less, and 1.00 ⁇ 10 ⁇ 4. m 3 / min (100 mL / min) or less is particularly preferable.
  • the lower limit of the mixing speed is not particularly limited, but is preferably 1.00 ⁇ 10 ⁇ 7 m 3 / min (0.1 mL / min) or more from the viewpoint of productivity.
  • the lower limit of the stirring speed can further suppress the deviation of the response in the local, and, from the viewpoint of excellent mixing efficiency, preferably 30min -1 or more, more preferably 50min -1 or more, 80min -1 or more is more preferable.
  • the upper limit of the stirring speed is not particularly limited and needs to be adjusted as appropriate depending on the size and shape of the stirring blade, but is preferably 1000 min ⁇ 1 or less from the viewpoint of suppressing liquid splashing.
  • the non-volatile content of the supernatant tends to increase by lowering the liquid temperature
  • the non-volatile content of the supernatant tends to decrease by increasing the liquid temperature.
  • the absorbance tends to increase by lowering the liquid temperature
  • the absorbance tends to decrease by increasing the liquid temperature.
  • Lowering the liquid temperature tends to increase the light transmittance, and increasing the liquid temperature tends to lower the light transmittance.
  • the liquid temperature is, for example, the temperature in the mixed liquid which can be read by installing a thermometer in the mixed liquid, and is preferably 30 to 100 ° C.
  • the upper limit of the liquid temperature is preferably 100 ° C. or less, more preferably 60 ° C. or less, still more preferably 55 ° C. or less, particularly preferably 50 ° C. or less, and particularly preferably 45 ° C. or less in that rapid reaction can be suppressed. preferable.
  • the lower limit of the liquid temperature is preferably 30 ° C. or higher, and preferably 35 ° C. or higher, in that the reaction can easily proceed and a polishing liquid excellent in storage stability (particularly excellent in polishing rate stability) can be obtained. Is more preferable.
  • the tetravalent metal element hydroxide produced as described above may contain impurities, but the impurities may be removed.
  • a method for removing impurities is not particularly limited, and examples thereof include methods such as centrifugation, filter press, and ultrafiltration. Thereby, the absorbance with respect to light having a wavelength of 450 to 600 nm can be adjusted.
  • the polishing liquid according to this embodiment can obtain a particularly excellent polishing rate with respect to an insulating material (for example, silicon oxide), and thus is particularly suitable for use in polishing a substrate having an insulating material.
  • an insulating material for example, silicon oxide
  • the polishing rate and the polishing characteristics other than the polishing rate can be made highly compatible by appropriately selecting the additive.
  • the additive examples include a dispersant that increases the dispersibility of abrasive grains, a polishing rate improver that improves the polishing rate, a flattening agent (a flattening agent that reduces irregularities on the polished surface after polishing, and a substrate after polishing.
  • a dispersant that increases the dispersibility of abrasive grains
  • a polishing rate improver that improves the polishing rate
  • a flattening agent a flattening agent that reduces irregularities on the polished surface after polishing
  • Known additives such as a global planarizing agent for improving global planarity) and a selective ratio improver for improving the polishing selectivity of an insulating material with respect to a stopper material such as silicon nitride or polysilicon can be used without particular limitation. .
  • Examples of the dispersant include vinyl alcohol polymer and derivatives thereof, betaine, lauryl betaine, lauryl dimethylamine oxide and the like.
  • Examples of the polishing rate improver include ⁇ -alanine betaine and stearyl betaine.
  • Examples of the flattening agent that reduces the unevenness of the surface to be polished include ammonium lauryl sulfate, polyoxyethylene alkyl ether sulfate triethanolamine, and the like.
  • Examples of the global flattening agent include polyvinyl pyrrolidone and polyacrolein.
  • Examples of the selectivity improver include polyethyleneimine, polyallylamine, and chitosan. These can be used alone or in combination of two or more.
  • the polishing liquid according to this embodiment preferably contains at least one selected from the group consisting of vinyl alcohol polymers and derivatives thereof as an additive.
  • the additive coats the surface of the abrasive grains, the adhesion of the abrasive grains to the surface to be polished is suppressed, so that the dispersibility of the abrasive grains is improved and the stability of the abrasive grains is further improved. be able to.
  • the cleanability of the surface to be polished can be improved.
  • vinyl alcohol which is a monomer of polyvinyl alcohol, tends not to exist as a stable compound by itself.
  • polyvinyl alcohol is generally obtained by polymerizing a vinyl carboxylate monomer such as a vinyl acetate monomer to obtain vinyl polycarboxylate and then saponifying (hydrolyzing) it. Therefore, for example, a vinyl alcohol polymer obtained using a vinyl acetate monomer as a raw material has —OCOCH 3 and hydrolyzed —OH as functional groups in the molecule, and becomes —OH. Ratio is defined as the degree of saponification. That is, a vinyl alcohol polymer whose saponification degree is not 100% has a structure substantially like a copolymer of vinyl acetate and vinyl alcohol.
  • the vinyl alcohol polymer is a portion derived from a vinyl carboxylate monomer by copolymerizing a vinyl carboxylate monomer such as vinyl acetate monomer and other vinyl group-containing monomers (for example, ethylene, propylene, styrene, vinyl chloride). All or a part of the saponified product may be saponified.
  • a vinyl carboxylate monomer such as vinyl acetate monomer and other vinyl group-containing monomers (for example, ethylene, propylene, styrene, vinyl chloride). All or a part of the saponified product may be saponified.
  • these are generically defined as “vinyl alcohol polymer”, and “vinyl alcohol polymer” is ideally a polymer having the following structural formula. (Where n represents a positive integer)
  • “Derivatives” of vinyl alcohol polymers include derivatives of vinyl alcohol homopolymers (ie, polymers having a saponification degree of 100%), and vinyl alcohol monomers and other vinyl group-containing monomers (eg, ethylene, propylene, styrene, Vinyl chloride) as a copolymer derivative.
  • Examples of the vinyl alcohol polymer derivatives include those obtained by substituting some of the hydroxyl groups of the polymer with amino groups, carboxyl groups, ester groups, and the like, and those obtained by modifying some of the hydroxyl groups of the polymer.
  • Examples of such derivatives include reactive polyvinyl alcohol (for example, GOHSEIMER (registered trademark) Z manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), and cationized polyvinyl alcohol (for example, GOHSEIMER manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
  • the vinyl alcohol polymer and its derivative function as an abrasive dispersing agent, and have the effect of further improving the stability of the polishing liquid.
  • the hydroxyl group of the vinyl alcohol polymer and its derivatives interacts with abrasive grains containing tetravalent metal element hydroxides, thereby suppressing the aggregation of abrasive grains and suppressing changes in the grain size of the abrasive grains in the polishing liquid.
  • the stability can be further improved.
  • Vinyl alcohol polymer and its derivatives are used in combination with abrasive grains containing tetravalent metal element hydroxide, and polishing selection of insulating material (eg silicon oxide) against stopper material (eg silicon nitride, polysilicon)
  • insulating material eg silicon oxide
  • stopper material eg silicon nitride, polysilicon
  • the ratio polishing rate of insulating material / polishing rate of stopper material
  • the vinyl alcohol polymer and derivatives thereof can improve the flatness of the polished surface after polishing, and can also prevent adhesion of abrasive grains to the polished surface (improvement of cleaning properties).
  • the saponification degree of the vinyl alcohol polymer and its derivatives is preferably 95 mol% or less in that the polishing selectivity of the insulating material to the stopper material can be further increased.
  • the upper limit of the degree of saponification is more preferably 90 mol% or less, still more preferably 88 mol% or less, particularly preferably 85 mol% or less, extremely preferably 83 mol% or less, and very preferably 80 mol% or less.
  • the lower limit of the saponification degree is not particularly limited, but is preferably 50 mol% or more, more preferably 60 mol% or more, and still more preferably 70 mol% or more from the viewpoint of excellent solubility in water.
  • the saponification degree of a vinyl alcohol polymer and its derivative can be measured based on JIS K 6726 (polyvinyl alcohol test method).
  • the upper limit of the average degree of polymerization (weight average molecular weight) of the vinyl alcohol polymer and derivatives thereof is not particularly limited, but is preferably 3000 or less, more preferably 2000 or less, from the viewpoint of further suppressing a decrease in the polishing rate of the material to be polished. 1000 or less is more preferable.
  • the lower limit of the average polymerization degree is preferably 50 or more, more preferably 100 or more, and further preferably 150 or more.
  • the average degree of polymerization of the vinyl alcohol polymer and its derivatives can be measured according to JIS K 6726 (polyvinyl alcohol test method).
  • the vinyl alcohol polymer and its derivatives for the purpose of adjusting the polishing selectivity of the insulating material relative to the stopper material and the flatness of the substrate after polishing, a plurality of polymers having different saponification degrees or average polymerization degrees are used. You may use it in combination.
  • the saponification degree of at least one vinyl alcohol polymer and its derivative is preferably 95 mol% or less, and from the viewpoint of further improving the polishing selectivity, the average calculated from the respective saponification degree and blending ratio More preferably, the saponification degree is 95 mol% or less.
  • the preferable range of the degree of saponification is the same as that described above.
  • the content of the additive is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, more preferably 0.08% by mass based on the total mass of the polishing liquid from the viewpoint of more effectively obtaining the effect of the additive. % Or more is more preferable, and 0.1% by mass or more is particularly preferable.
  • the content of the additive is preferably 10% by mass or less, more preferably 5.0% by mass or less, and more preferably 3.0% by mass based on the total mass of the polishing liquid from the viewpoint of further suppressing the decrease in the polishing rate of the material to be polished. The following is more preferable, and 1.0% by mass or less is particularly preferable.
  • water Although there is no restriction
  • the water content is not particularly limited, and may be the remainder of the polishing liquid excluding the content of other components.
  • the method for dispersing the abrasive grains in water is not particularly limited, and specific examples include a dispersion method by stirring; a dispersion method by a homogenizer, an ultrasonic disperser, a wet ball mill, or the like.
  • the pH of the polishing liquid (25 ° C.) is preferably 2.0 to 9.0 from the viewpoint that a further excellent polishing rate can be obtained. This is presumably because the surface potential of the abrasive grains becomes good with respect to the surface potential of the surface to be polished, and the abrasive grains easily act on the surface to be polished.
  • the lower limit of the pH is preferably 2.0 or more, more preferably 3.0 or more, and even more preferably 4.0 or more, in that the pH of the polishing liquid is stabilized and problems such as aggregation of abrasive grains are less likely to occur.
  • the upper limit of the pH is preferably 9.0 or less, more preferably 8.0 or less, and even more preferably 7.5 or less in that the dispersibility of the abrasive grains is excellent and a further excellent polishing rate is obtained.
  • the pH of the polishing liquid can be measured with a pH meter (for example, model number PH81 manufactured by Yokogawa Electric Corporation).
  • a pH meter for example, model number PH81 manufactured by Yokogawa Electric Corporation.
  • two-point calibration was performed using a standard buffer solution (phthalate pH buffer solution: pH 4.01 (25 ° C.), neutral phosphate pH buffer solution: pH 6.86 (25 ° C.)). Thereafter, the value after the electrode is put into the polishing liquid and stabilized after 2 minutes or more is adopted.
  • a conventionally known pH adjusting agent can be used without particular limitation.
  • the pH adjuster include inorganic acids such as phosphoric acid, sulfuric acid, and nitric acid; formic acid, acetic acid, propionic acid, maleic acid, phthalic acid, citric acid, succinic acid, malonic acid, glutaric acid, and adipic acid.
  • Organic acids such as carboxylic acids such as fumaric acid, lactic acid and benzoic acid; amines such as ethylenediamine, toluidine, piperazine, histidine, aniline, 2-aminopyridine, 3-aminopyridine, picolinic acid, morpholine, piperidine and hydroxylamine
  • nitrogen-containing heterocyclic compounds such as pyridine, imidazole, triazole, pyrazole, benzimidazole, and benzotriazole.
  • the pH adjuster may be contained in a slurry (including a slurry precursor, a slurry storage solution, and the like), an additive solution, and the like described later.
  • the pH stabilizer refers to an additive for adjusting to a predetermined pH, and a buffer component is preferable.
  • the buffer component is preferably a compound having a pKa within ⁇ 1.5 with respect to a predetermined pH, and more preferably a compound having a pKa within ⁇ 1.0.
  • Examples of such compounds include amino acids such as glycine, arginine, lysine, asparagine, aspartic acid, and glutamic acid; a mixture of the carboxylic acid and the base; a salt of the carboxylic acid, and the like.
  • the slurry according to this embodiment may be used as it is for polishing, or may be used as a slurry in a so-called two-component type polishing liquid in which the constituents of the polishing liquid are divided into a slurry and an additive liquid.
  • the polishing liquid and the slurry differ in the presence or absence of an additive, and the polishing liquid can be obtained by adding the additive to the slurry.
  • the slurry according to this embodiment contains at least abrasive grains similar to the polishing liquid according to this embodiment, and water.
  • the abrasive grains are characterized by containing a hydroxide of a tetravalent metal element, and the preferred range and measuring method of the average secondary particle diameter of the abrasive grains are used in the polishing liquid according to this embodiment. It is the same as the abrasive grain to be used.
  • the abrasive grains give an absorbance of 1.00 or more and less than 1.50 to light with a wavelength of 400 nm in an aqueous dispersion in which the content of the abrasive grains is adjusted to 1.0 mass%. And a supernatant of a non-volatile content of 300 ppm or more when the aqueous dispersion in which the content of the abrasive grains is adjusted to 1.0% by mass is centrifuged at a centrifugal acceleration of 1.59 ⁇ 10 5 G for 50 minutes. Liquid phase).
  • the abrasive grains preferably give an absorbance of 1.000 or more for light having a wavelength of 290 nm in an aqueous dispersion in which the content of the abrasive grains is adjusted to 0.0065% by mass.
  • the abrasive grains preferably give an absorbance of 0.010 or less for light having a wavelength of 450 to 600 nm in an aqueous dispersion in which the content of the abrasive grains is adjusted to 0.0065% by mass. It is preferable that the abrasive grains provide a light transmittance of 50% / cm or more for light having a wavelength of 500 nm in an aqueous dispersion in which the content of the abrasive grains is adjusted to 1.0 mass%.
  • the preferred ranges of the absorbance, light transmittance, and non-volatile content of the supernatant and the measuring method are also the same as those of the abrasive grains used in the polishing liquid according to this embodiment.
  • the hydroxide of the tetravalent metal element has a great influence on the polishing characteristics. Therefore, by adjusting the content of the hydroxide of the tetravalent metal element, the chemical interaction between the abrasive grains and the surface to be polished can be improved, and the polishing rate can be further improved. That is, the content of the hydroxide of the tetravalent metal element is preferably 0.01% by mass or more based on the total mass of the slurry in that the function of the hydroxide of the tetravalent metal element can be sufficiently expressed. 0.03 mass% or more is more preferable, and 0.05 mass% or more is still more preferable.
  • the content of the tetravalent metal element hydroxide makes it easy to avoid agglomeration of the abrasive grains, improves the chemical interaction with the surface to be polished, and improves the characteristics of the abrasive grains (for example, improving the polishing rate). 8 mass% or less, more preferably 5 mass% or less, still more preferably 3 mass% or less, particularly preferably 1 mass% or less, and 0.7 mass% based on the total mass of the slurry. % Or less is very preferable, and 0.5% by mass or less is very preferable.
  • the lower limit of the content of abrasive grains is preferably 0.01% by mass or more, and 0.03% by mass or more based on the total mass of the slurry, in that a desired polishing rate is easily obtained. More preferably, 0.05 mass% or more is still more preferable.
  • the upper limit of the content of the abrasive grains is not particularly limited, but is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total mass of the slurry, in that it is easy to avoid agglomeration of the abrasive grains. Less than 1% by mass is more preferable, 1% by mass or less is particularly preferable, 0.7% by mass or less is very preferable, and 0.5% by mass or less is very preferable.
  • the pH (25 ° C.) of the slurry according to the present embodiment is such that the surface potential of the abrasive grains with respect to the surface potential of the surface to be polished becomes good, and the abrasive grains easily act on the surface to be polished.
  • the lower limit of the pH is preferably 2.0 or more, more preferably 2.2 or more, and even more preferably 2.5 or more, in that the pH of the slurry is stabilized and problems such as agglomeration of abrasive grains are less likely to occur.
  • the upper limit of the pH is preferably 9.0 or less, more preferably 8.0 or less, still more preferably 7.0 or less, and 6.5 in that the abrasive dispersibility is excellent and a further excellent polishing rate is obtained.
  • the following is particularly preferable, and 6.0 or less is very preferable.
  • the pH of the slurry can be measured by the same method as the pH of the polishing liquid according to this embodiment.
  • the constituents of the polishing liquid are the slurry and the additive liquid so that the slurry (first liquid) and the additive liquid (second liquid) are mixed to become the polishing liquid. It is stored separately.
  • the slurry the slurry according to this embodiment can be used.
  • the additive solution a solution in which the additive is dissolved in water (a solution containing the additive and water) can be used.
  • the polishing liquid set is used as a polishing liquid by mixing the slurry and the additive liquid during polishing. Thus, it can be set as the polishing liquid which is further excellent in storage stability by storing the constituent of polishing liquid in at least two liquids.
  • the constituent components may be divided into three or more liquids.
  • the same additive as described in the polishing solution can be used.
  • the content of the additive in the additive liquid is 0.01 mass on the basis of the total mass of the additive liquid from the viewpoint of suppressing an excessive decrease in the polishing rate when the additive liquid and the slurry are mixed to prepare a polishing liquid. % Or more is preferable, and 0.02 mass% or more is more preferable.
  • the content of the additive in the additive solution is 20% by mass or less based on the total mass of the additive solution from the viewpoint of suppressing an excessive decrease in the polishing rate when the additive solution and the slurry are mixed to prepare a polishing solution. Is preferred.
  • the water in the additive solution is not particularly limited, but deionized water, ultrapure water or the like is preferable.
  • the water content is not particularly limited, and may be the remainder excluding the content of other components.
  • the substrate polishing method using the polishing liquid, slurry or polishing liquid set, and the substrate obtained thereby will be described.
  • the polishing method according to this embodiment is a polishing method using a one-liquid type polishing liquid when the polishing liquid or slurry is used, and a two-liquid type polishing liquid or three liquids or more when using the polishing liquid set. This is a polishing method using this type of polishing liquid.
  • a substrate having a material to be polished on its surface is polished.
  • the material to be polished may be polished using a stopper formed under the material to be polished.
  • the substrate polishing method according to the present embodiment includes, for example, at least a preparation process, a substrate arrangement process, and a polishing process.
  • a substrate having a material to be polished on the surface is prepared.
  • the substrate placement step the substrate is placed so that the material to be polished is placed facing the polishing pad.
  • the polishing step at least a part of the material to be polished is removed using a polishing liquid, a slurry, or a polishing liquid set.
  • the shape of the material to be polished which is an object to be polished, is not particularly limited, but is, for example, a film shape (film to be polished).
  • Examples of materials to be polished include inorganic insulating materials such as silicon oxide; organic insulating materials such as organosilicate glass and wholly aromatic ring-based low-k materials; and stopper materials such as silicon nitride and polysilicon. Materials and organic insulating materials are preferable, and inorganic insulating materials are more preferable.
  • the silicon oxide film can be obtained by a low pressure CVD method, a plasma CVD method, or the like.
  • the silicon oxide film may be doped with an element such as phosphorus or boron. It is preferable that the surface of the material to be polished (surface to be polished) has irregularities. In the substrate polishing method according to this embodiment, the uneven surface of the material to be polished is preferentially polished, and a substrate with a flattened surface can be obtained.
  • the polishing step at least a part of the material to be polished is polished by supplying the polishing liquid or slurry between the material to be polished on the substrate and the polishing pad on the polishing surface plate.
  • a polishing liquid or slurry is supplied between the polishing pad and the material to be polished, and the base and the polishing surface plate are moved relatively to each other. A part is polished.
  • the polishing liquid and the slurry may be directly supplied onto the polishing pad as a composition having a desired water content.
  • the polishing liquid and slurry according to the present embodiment are used by diluting the liquid component by, for example, twice or more (mass basis) with a liquid medium such as water from the viewpoint of suppressing costs related to storage, transportation, storage, and the like. It can be stored as a stock solution for polishing liquid or a stock solution for slurry.
  • a liquid medium such as water from the viewpoint of suppressing costs related to storage, transportation, storage, and the like. It can be stored as a stock solution for polishing liquid or a stock solution for slurry.
  • Each of the storage liquids may be diluted with a liquid medium immediately before polishing, or may be diluted on the polishing pad by supplying the storage liquid and the liquid medium onto the polishing pad.
  • the lower limit of the dilution ratio (mass basis) of the stock solution is preferably 2 times or more, more preferably 3 times or more, and more preferably 5 times or more because the higher the magnification, the higher the cost-saving effect on storage, transportation, storage, etc. Further preferred is 10 times or more.
  • the upper limit of the dilution rate is not particularly limited, but the higher the magnification, the greater the amount of components contained in the stock solution (the higher the concentration), and the lower the stability during storage. Preferably, 200 times or less is more preferable, 100 times or less is more preferable, and 50 times or less is particularly preferable. The same applies to the polishing liquid in which the constituent components are divided into three or more liquids.
  • the content of abrasive grains is not particularly limited, but is preferably 20% by mass or less, and preferably 15% by mass or less, based on the total mass of the storage liquid, in that it is easy to avoid agglomeration of abrasive grains. More preferably, 10% by mass or less is further preferable, and 5% by mass or less is particularly preferable.
  • the content of the abrasive grains is preferably 0.02% by mass or more, more preferably 0.1% by mass or more, based on the total mass of the storage liquid, from the viewpoint of suppressing costs related to storage, transportation, storage, and the like. More preferably, it is more preferably at least 1% by mass.
  • the substrate polishing method according to the present embodiment may have a polishing liquid preparation step of obtaining a polishing liquid by mixing the slurry and the additive liquid before the polishing step.
  • the material to be polished is polished using the polishing liquid obtained in the polishing liquid preparation process.
  • the slurry and the additive liquid may be fed through separate pipes, and these pipes may be joined just before the supply pipe outlet to obtain a polishing liquid.
  • the polishing liquid may be directly supplied onto the polishing pad as a polishing liquid having a desired water content, or may be diluted on the polishing pad after being supplied onto the polishing pad as a storage liquid having a low water content.
  • the slurry and the additive liquid are supplied between the polishing pad and the material to be polished, respectively, and the slurry and the additive liquid are mixed, and the slurry is added by the polishing liquid obtained. At least a part of the polishing material may be polished.
  • the slurry and the additive liquid can be supplied onto the polishing pad by separate liquid feeding systems.
  • the slurry and / or additive liquid may be directly supplied onto the polishing pad as a liquid having a desired water content, or may be diluted on the polishing pad after being supplied onto the polishing pad as a storage liquid having a low water content. .
  • a polishing apparatus used in the polishing method according to the present embodiment for example, a holder for holding a substrate having a material to be polished, a motor whose rotation speed can be changed, and the like can be attached and a polishing pad can be attached.
  • polishing pad For example, a general nonwoven fabric, a polyurethane foam, and a porous fluororesin can be used. It is preferable that the polishing pad is grooved so as to collect a polishing liquid or the like.
  • the polishing conditions are not particularly limited, but from the viewpoint of suppressing the substrate from popping out, the rotation speed of the polishing platen is preferably a low rotation of 200 min ⁇ 1 (rpm) or less.
  • the pressure (working load) applied to the substrate is preferably 100 kPa or less from the viewpoint of further suppressing the occurrence of polishing scratches.
  • the substrate after polishing is preferably washed thoroughly under running water, and then water droplets adhering to the substrate are removed by a spin dryer or the like and then dried.
  • Examples 1 to 9 A [L] water was put in a container, and an aqueous solution of cerium ammonium nitrate having a concentration of 50% by mass (general formula Ce (NH 4 ) 2 (NO 3 ) 6 , formula weight 548.2 g / mol, manufactured by Nippon Chemical Industry Co., Ltd., Product name 50% CAN solution) was added and mixed with B [L]. Thereafter, the liquid temperature was adjusted to C [° C.] to obtain an aqueous metal salt solution.
  • the metal salt concentration of the metal salt aqueous solution is as shown in Table 1.
  • the container containing the metal salt aqueous solution was placed in a water tank filled with water.
  • the water temperature of the water tank was adjusted to the temperature indicated by C [° C.] in Table 1 using an external circulation device COOLNICS circulator (manufactured by Tokyo Rika Kikai Co., Ltd. (EYELA), product name cooling thermopump CTP101).
  • COOLNICS circulator manufactured by Tokyo Rika Kikai Co., Ltd. (EYELA), product name cooling thermopump CTP101
  • the alkali solution was mixed in the container at the mixing speed G [m 3 / min].
  • a slurry precursor 1 containing abrasive grains containing tetravalent cerium hydroxide was obtained.
  • the pH of the slurry precursor 1 is as shown in Table 1 as “end pH”.
  • the metal salt aqueous solution was agitated using a three-blade pitch paddle having a total blade length of 5 cm.
  • the obtained slurry precursor 1 was ultrafiltered while circulating using a hollow filter having a molecular weight cut off of 50000, and the ionic content was removed until the electrical conductivity was 50 mS / m or less, whereby the slurry precursor was obtained. 2 was obtained.
  • the ultrafiltration was performed using a liquid level sensor while adding water so that the water level of the tank containing the slurry precursor 1 was kept constant.
  • the nonvolatile content of the slurry precursor 2 (the content of abrasive grains containing tetravalent cerium hydroxide) was calculated.
  • the non-volatile content was less than 1.0% by mass at this stage, it was further concentrated to an extent exceeding 1.1% by performing ultrafiltration.
  • Example 10 The slurry precursor 1 obtained by the same method as in Example 3 was subjected to ultrafiltration while circulating using a hollow filter having a molecular weight cut off of 50000 to remove ions until the conductivity reached 50 mS / m or less. Then, a slurry precursor 2 was obtained by adding a 1.0 mass% imidazole aqueous solution until the pH reached 5.0. The ultrafiltration and the calculation of the nonvolatile content of the slurry precursor 2 (the content of abrasive grains containing tetravalent cerium hydroxide) were performed in the same manner as in Examples 1 to 9.
  • the container containing the metal salt aqueous solution was placed in a water tank filled with water.
  • the water temperature of the water tank was adjusted to the temperature indicated by C [° C.] in Table 1 using an external circulation device COOLNICS circulator (manufactured by Tokyo Rika Kikai Co., Ltd. (EYELA), product name cooling thermopump CTP101).
  • COOLNICS circulator manufactured by Tokyo Rika Kikai Co., Ltd. (EYELA), product name cooling thermopump CTP101
  • the alkali solution was mixed in the container at the mixing speed G [m 3 / min].
  • a slurry precursor 1 containing abrasive grains containing tetravalent cerium hydroxide was obtained.
  • the pH of the slurry precursor 1 is as shown in Table 1 as “end pH”.
  • the metal salt aqueous solution was agitated using a three-blade pitch paddle having a blade part length of 5 cm.
  • the slurry precursor 1 was centrifuged at 3000 G, and solid-liquid separation was performed by decantation to remove the liquid. An appropriate amount of water was added to the obtained filtrate and the mixture was stirred well, and then solid-liquid separation was further performed three times by centrifugation and decantation.
  • the abrasive grains contained in the slurry precursor 2 contain at least a part of particles having nitrate ions bonded to the cerium element.
  • the abrasive grains contained cerium hydroxide since at least a part of the particles having hydroxide ions bonded to the cerium element was contained, it was confirmed that the abrasive grains contained cerium hydroxide. From these results, it was confirmed that the hydroxide of cerium contains hydroxide ions bonded to the cerium element.
  • a measurement sample (aqueous dispersion).
  • About 4 mL of the measurement sample was placed in a 1 cm square cell, and the cell was placed in a spectrophotometer (device name: U3310) manufactured by Hitachi, Ltd.
  • Absorbance was measured in the wavelength range of 200 to 600 nm, and the absorbance with respect to light with a wavelength of 400 nm and the light transmittance with respect to light with a wavelength of 500 nm were measured. The results are shown in Table 2.
  • a measurement sample (aqueous dispersion).
  • a measurement sample is filled in a centrifuge tube (tube) attached to an ultracentrifuge (device name: 70P-72) manufactured by Hitachi Koki Co., Ltd., and is rotated at 50000 (rev / min) using the ultracentrifuge. Centrifuge for 50 minutes.
  • the tube angle was 26 °
  • the minimum radius R min was 3.53 cm
  • the maximum radius R max was 7.83 cm
  • the average radius R av was 5.68 cm.
  • the absorbance, light transmittance and nonvolatile content were measured in the same manner. did.
  • the absorbance for light with a wavelength of 400 nm is 1.00 or more and less than 1.50
  • the absorbance for light with a wavelength of 290 nm is 1.000 or more
  • the absorbance for light with a wavelength of 450 to 600 nm is 0.010 or less
  • the wavelength is 500 nm.
  • the light transmittance with respect to light was 50% / cm or more
  • the nonvolatile content was 300 ppm or more.
  • An additive liquid 1 containing 5% by mass of polyvinyl alcohol and X% by mass of imidazole was prepared as an additive.
  • 150 g of water was added to 100 g of additive liquid 1 to obtain additive liquid 2.
  • Slurry 1 abrasive grain content: 0.2 mass%, polyvinyl alcohol content: 1.0 mass% was obtained by mixing Slurry 1 and additive liquid 2 at 1: 1 (mass ratio).
  • the X mass% was determined so that the pH of the polishing liquid was 6.0.
  • the saponification degree of polyvinyl alcohol in the polyvinyl alcohol aqueous solution was 80 mol%, and the average polymerization degree was 300.
  • the slurry 2 (slurry obtained from the slurry storage solution stored at 60 ° C./72 hours) and the additive solution 2 were mixed to obtain a polishing solution 2.
  • the change in film thickness before and after polishing was measured using an optical interference type film thickness measuring device to determine the polishing rate. Further, the ratio of the difference between the polishing rate of the polishing solution 1 and the polishing rate of the polishing solution 2 with respect to the polishing rate of the polishing solution 1 (difference in polishing rate / polishing rate of the polishing solution 1 ⁇ 100) was calculated as the rate of change in polishing rate. .
  • the results are shown in Table 3.
  • the polishing liquids of the examples are transparent in appearance even after storage at 60 ° C./72 hours, and the rate of change in the polishing rate is small.
  • the polished insulating film surface was washed for 1 minute with a PVA brush rotated at a rotation speed of 60 min -1 while supplying water, and then dried.
  • the surface of the insulating film was observed using Tencor Surfscan 6220, the number of polishing flaws of 0.2 ⁇ m or more on the insulating film surface was about 5 to 20 (pieces / wafer) in Examples 1 to 10, which is sufficient. It was suppressed.
  • the polishing rate of the polysilicon film (stopper film) and the polishing selectivity of the silicon oxide film (insulating film) with respect to the polysilicon film were determined. That is, a ⁇ 200 mm silicon wafer on which a polysilicon film was formed was set on a holder to which a suction pad for attaching a substrate in a polishing apparatus was attached. A holder was placed on a surface plate with a porous urethane resin pad attached so that the polysilicon film faces the pad.
  • polishing liquid 1 obtained in Example 1 While supplying the polishing liquid 1 obtained in Example 1 onto the pad at a supply rate of 200 mL / min, the substrate was pressed against the pad with a polishing load of 20 kPa. At this time, polishing was performed by rotating the platen at 78 min ⁇ 1 and the holder at 98 min ⁇ 1 for 1 minute. The polished wafer was thoroughly washed with pure water and dried. Next, the change in film thickness before and after polishing was measured using an optical interference type film thickness measuring apparatus to determine the polishing rate of the polysilicon film, and it was 4 nm / min. The polishing selectivity ratio of the silicon oxide film to the polysilicon film (silicon oxide film polishing rate / polysilicon film polishing rate) was 70.
  • the polishing rate of the silicon oxide film, the polishing rate of the polysilicon film, and the polishing selectivity of the silicon oxide film to the polysilicon film were determined. That is, the additive liquid 1 and the additive liquid 2 were prepared in the same manner as described above except that 5% by mass of polyvinyl alcohol was not contained and the same mass% of water was added, and mixed with the slurry 1 used in Example 1.
  • a polishing liquid 1X was prepared. Using this polishing liquid 1X, the polishing rate of the silicon oxide film, the polishing rate of the polysilicon film, and the polishing rate ratio of the silicon oxide film to the polysilicon film were determined in the same manner as described above. The polishing rate was 280 nm / min, the polishing rate of the polysilicon film was 80 nm / min, and the polishing selection ratio was 3.
  • the polishing liquid 1 of Example 1 was improved in polishing selectivity as compared with the polishing liquid 1X not containing polyvinyl alcohol as an additive, while the polishing rate of the insulating film was hardly changed. . That is, it was found that the polishing liquid 1 of Example 1 can polish the film to be polished at an excellent polishing rate while maintaining the additive effect of the additive.
  • SYMBOLS 1 Angle rotor, A1 ... Rotating shaft, A2 ... Tube angle, Rmin ... Minimum radius, Rmax ... Maximum radius, Rav ... Average radius

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

 砥粒と添加剤と水とを含有する研磨液であって、砥粒が、4価金属元素の水酸化物を含み、且つ、該砥粒の含有量を1.0質量%に調整した水分散液において波長400nmの光に対して吸光度1.00以上1.50未満を与えるものであり、且つ、前記砥粒の含有量を1.0質量%に調整した水分散液を遠心加速度1.59×10Gで50分遠心分離したときに不揮発分含量300ppm以上の液相を与えるものである、研磨液。

Description

スラリー、研磨液セット、研磨液、基体の研磨方法及び基体
 本発明は、スラリー、研磨液セット、研磨液、基体の研磨方法及び基体に関する。特に、本発明は、半導体素子の製造工程に用いられるスラリー、研磨液セット、研磨液、基体の研磨方法及び基体に関する。
 近年の半導体素子の製造工程では、高密度化及び微細化のための加工技術の重要性が更に増している。その加工技術の一つであるCMP(ケミカル・メカニカル・ポリッシング:化学機械研磨)技術は、半導体素子の製造工程において、シャロートレンチ分離(Shallow Trench Isolation。以下、場合により「STI」という)の形成、プリメタル絶縁材料又は層間絶縁材料の平坦化、プラグ又は埋め込み金属配線の形成に必須の技術となっている。
 従来、半導体素子の製造工程において、CVD(ケミカル・ベーパー・デポジション:化学気相成長)法又は回転塗布法等の方法で形成される酸化ケイ素等の絶縁材料をCMPによって平坦化する。このCMPでは、一般的に、砥粒としてコロイダルシリカ、フュームドシリカ等のシリカ粒子を含むシリカ系研磨液が用いられている。シリカ系研磨液は、四塩化ケイ素を熱分解する等の方法で砥粒を粒成長させ、pH調整を行って製造される。しかしながら、このようなシリカ系研磨液は、研磨速度が低いという技術課題がある。
 ところで、デザインルール0.25μm以降の世代では、集積回路内の素子分離にSTIが用いられている。STI形成では、基体上に堆積した絶縁材料の余分な部分を除くためにCMPが使用される。そして、CMPにおいて研磨を停止させるために、研磨速度の遅いストッパ(研磨停止層)が絶縁材料の下に形成される。ストッパ材料(ストッパの構成材料)には窒化ケイ素、ポリシリコン等が使用され、ストッパ材料に対する絶縁材料の研磨選択比(研磨速度比:絶縁材料の研磨速度/ストッパ材料の研磨速度)が大きいことが望ましい。従来のシリカ系研磨液は、ストッパ材料に対する絶縁材料の研磨選択比が3程度と小さく、STI用としては実用に耐える特性を有していない傾向がある。
 また、近年、酸化セリウム系研磨液として、高純度の酸化セリウム粒子を用いた半導体用研磨液が使用されている(例えば、下記特許文献1参照)。
 ところで、近年、半導体素子の製造工程では更なる配線の微細化を達成することが求められており、研磨時に発生する研磨傷が問題となっている。すなわち、従来の酸化セリウム系研磨液を用いて研磨を行った際に、微小な研磨傷が発生しても、この研磨傷の大きさが従来の配線幅より小さいものであれば問題にならなかったが、更なる配線の微細化を達成しようとする場合には問題となってしまう。
 この問題に対し、前記のような酸化セリウム系研磨液においては、酸化セリウム粒子の平均粒子径を小さくする試みがなされている。しかしながら、平均粒子径を小さくすると、機械的作用が低下するため研磨速度が低下してしまう問題がある。このように酸化セリウム粒子の平均粒子径を制御することで研磨速度及び研磨傷の両立を図ろうとしても、研磨速度を維持しつつ、研磨傷に対する近年の厳しい要求を達成するのは困難極まりない。
 これに対し、4価金属元素の水酸化物の粒子を用いた研磨液が検討されている(例えば、下記特許文献2参照)。さらに、4価金属元素の水酸化物の粒子の製造方法についても検討されている(例えば、下記特許文献3参照)。これらの技術は、4価金属元素の水酸化物の粒子が有する化学的作用を活かしつつ機械的作用を極力小さくすることによって、粒子による研磨傷を低減しようとするものである。
 また、研磨傷を低減すること以外にも、凹凸を有する基体を平坦に研磨することが求められている。前記STIを例に取ると、ストッパ材料(例えば窒化ケイ素、ポリシリコン)の研磨速度に対して、被研磨材料である絶縁材料(例えば酸化ケイ素)の研磨選択比を向上させることが要求されている。これらを解決するために、様々な添加剤を研磨液に添加することが検討されてきている。例えば、研磨液に添加剤を添加することによって、配線密度の異なる配線を同一面内に有する基体における研磨選択比を向上させる技術が知られている(例えば、下記特許文献4参照)。また、研磨速度を制御し、グローバルな平坦性を向上させるために、酸化セリウム系研磨液に添加剤を加えることが知られている(例えば、下記特許文献5参照)。
特開平10-106994号公報 国際公開第02/067309号 特開2006-249129号公報 特開2002-241739号公報 特開平08-022970号公報
 しかしながら、特許文献2及び3に記載の技術では、研磨傷が低減する一方で、研磨速度が充分高いとはいえなかった。研磨速度は製造プロセスの効率に影響するため、より高い研磨速度を有する研磨液が求められている。
 また、従来の研磨液では、研磨液が添加剤を含有すると、添加剤の添加効果が得られるのと引き換えに研磨速度が低下してしまうことがあり、研磨速度と他の研磨特性との両立が難しいという課題がある。
 さらに、従来の研磨液では、保管安定性が低い場合がある。例えば、研磨特性が経時的に変化して大幅に低下する(研磨特性の安定性が低い)という課題がある。前記研磨特性のうち代表的なものとして研磨速度があり、経時的に研磨速度が低下する(研磨速度の安定性が低い)という課題がある。また、保管中に砥粒が凝集したり沈殿したりして、研磨特性に悪影響を与える(分散安定性が低い)場合もある。
 本発明は、前記課題を解決しようとするものであり、添加剤の添加効果を維持しつつ優れた研磨速度で被研磨材料を研磨することが可能であると共に、保管安定性を向上させることが可能な研磨液を得ることができるスラリーを提供することを目的とする。
 また、本発明は、添加剤の添加効果を維持しつつ優れた研磨速度で被研磨材料を研磨することが可能であると共に、保管安定性を向上させることが可能な研磨液セット及び研磨液を提供することを目的とする。
 さらに、本発明は、前記スラリー、前記研磨液セット又は前記研磨液を用いた基体の研磨方法、及びこれにより得られる基体を提供することを目的とする。
 本発明者は、4価金属元素の水酸化物を含む砥粒を用いたスラリーについて鋭意検討した結果、砥粒を特定量含有する水分散液において特定波長の光に対する光吸収(吸光度)が特定範囲にあると共に、砥粒を特定量含有する水分散液を特定の条件で遠心分離したときに不揮発分含量の高い液相を与える砥粒を用いることにより、優れた研磨速度で被研磨材料を研磨可能であり、且つ、高い保管安定性を達成可能であることを見出した。また、このようなスラリーに添加剤を加えて得られる研磨液を用いた場合に、添加剤の添加効果を維持しつつ優れた研磨速度で被研磨材料を研磨可能であり、且つ、高い保管安定性を達成可能であることを見出した。
 すなわち、本発明に係るスラリーは、砥粒と水とを含有するスラリーであって、砥粒が、4価金属元素の水酸化物を含み、且つ、該砥粒の含有量を1.0質量%に調整した水分散液において波長400nmの光に対して吸光度1.00以上1.50未満を与えるものであり、且つ、前記砥粒の含有量を1.0質量%に調整した水分散液を遠心加速度1.59×10Gで50分遠心分離したときに不揮発分含量300ppm以上の液相を与えるものである。
 本発明に係るスラリーによれば、該スラリーに添加剤を加えて得られる研磨液を用いた場合に、添加剤の添加効果を維持しつつ優れた研磨速度で被研磨材料を研磨することができると共に、保管安定性を向上させることができる。この場合、保管安定性に優れる研磨液として、特に、分散安定性に優れ且つ研磨速度の安定性にも優れた研磨液を得ることができる。また、添加剤を加えることなく本発明に係るスラリーを研磨に用いた場合に、優れた研磨速度で被研磨材料を研磨することができると共に保管安定性を向上させることもできる。この場合、保管安定性に優れるスラリーとして、特に、分散安定性に優れ且つ研磨速度の安定性にも優れたスラリーとすることができる。さらに、本発明に係るスラリーによれば、砥粒が4価金属元素の水酸化物を含むことにより、被研磨面における研磨傷の発生を抑制することもできる。
 本発明者は、4価金属元素の水酸化物を含む砥粒を用いたスラリーについて更に鋭意検討した結果、前記砥粒が波長500nmの光に対する光透過率を高めることが可能である場合に、更に優れた研磨速度で被研磨材料を研磨することが可能であると共に、更に高い保管安定性を達成可能であることを見出した。すなわち、本発明に係るスラリーにおいて、砥粒は、該砥粒の含有量を1.0質量%に調整した水分散液において波長500nmの光に対して光透過率50%/cm以上を与えるものであることが好ましく、光透過率95%/cm以上を与えるものであることがより好ましい。
 本発明者は、4価金属元素の水酸化物を含む砥粒を用いたスラリーについて更に鋭意検討した結果、前記砥粒が波長290nmの光に対する吸光度を高めることが可能である場合に、更に優れた研磨速度で被研磨材料を研磨することが可能であると共に、更に高い保管安定性を達成可能であることを見出した。すなわち、本発明に係るスラリーにおいて、砥粒は、該砥粒の含有量を0.0065質量%(65ppm)に調整した水分散液において波長290nmの光に対して吸光度1.000以上を与えるものであることが好ましい。なお、「ppm」は、質量ppm、すなわち「parts per million mass」を意味するものとする。
 本発明に係るスラリーにおいて、砥粒は、該砥粒の含有量を0.0065質量%に調整した水分散液において波長450~600nmの光に対して吸光度0.010以下を与えるものであることが好ましい。この場合、更に優れた研磨速度で被研磨材料を研磨することができると共に保管安定性を向上させることができる。
 4価金属元素の水酸化物は、4価金属元素の塩とアルカリ源とを反応させて得られるものであることが好ましい。この場合、粒子径が極めて細かい粒子を砥粒として得ることができるため、研磨傷の低減効果を更に向上させることができる。
 4価金属元素は、4価セリウムであることが好ましい。この場合、化学的活性の高い微粒子が砥粒として得られるため、更に優れた研磨速度で被研磨材料を研磨することができる。
 また、本発明者は、前記スラリーの構成成分に加えて添加剤を含有する研磨液において、波長400nmの光に対する吸光度が特定範囲にあると共に遠心分離後の液相における不揮発分含量が高い前記砥粒を用いることにより、添加剤の添加に伴い被研磨材料の研磨速度が低下することを抑制できることを見出した。
 すなわち、本発明に係る研磨液セットは、第一の液と第二の液とを混合して研磨液となるように該研磨液の構成成分が第一の液と第二の液とに分けて保存され、第一の液が前記スラリーであり、第二の液が添加剤と水とを含む。本発明に係る研磨液セットによれば、添加剤の添加効果を維持しつつ優れた研磨速度で被研磨材料を研磨することができると共に、保管安定性を向上させることができる。本発明に係る研磨液セットによれば、研磨傷の発生を抑制することもできる。
 添加剤は、ビニルアルコール重合体及び当該ビニルアルコール重合体の誘導体からなる群より選択される少なくとも一種であることが好ましい。この場合、添加剤が砥粒表面を被覆することで、被研磨面に砥粒が付着することが抑制されることから、砥粒の分散性が向上し、研磨液の安定性を更に向上させることができる。また、被研磨面の洗浄性を向上させることもできる。さらに、ストッパ材料の研磨速度を抑制することにより、ストッパ材料に対する絶縁材料の研磨速度比(絶縁材料の研磨速度/ストッパ材料の研磨速度)を向上させることができる。
 添加剤の含有量は、研磨液全質量基準で0.01質量%以上であることが好ましい。この場合、添加剤の添加効果を有意に得ることができると共に保管安定性を向上させることができる。
 本発明に係る研磨液は、砥粒と添加剤と水とを含有する研磨液であって、砥粒が、4価金属元素の水酸化物を含み、且つ、該砥粒の含有量を1.0質量%に調整した水分散液において波長400nmの光に対して吸光度1.00以上1.50未満を与えるものであり、且つ、前記砥粒の含有量を1.0質量%に調整した水分散液を遠心加速度1.59×10Gで50分遠心分離したときに不揮発分含量300ppm以上の液相を与えるものである。本発明に係る研磨液によれば、添加剤の添加効果を維持しつつ優れた研磨速度で被研磨材料を研磨することができると共に、保管安定性を向上させることができる。この場合、保管安定性に優れる研磨液として、特に、分散安定性に優れ且つ研磨速度の安定性にも優れた研磨液とすることができる。本発明に係る研磨液では、砥粒が4価金属元素の水酸化物を含むことにより、被研磨面における研磨傷の発生を抑制することもできる。
 本発明に係る研磨液において、砥粒は、該砥粒の含有量を1.0質量%に調整した水分散液において波長500nmの光に対して光透過率50%/cm以上を与えるものであることが好ましく、光透過率95%/cm以上を与えるものであることがより好ましい。これらの場合、更に優れた研磨速度で被研磨材料を研磨することができると共に保管安定性を更に向上させることができる。
 本発明に係る研磨液において、砥粒は、該砥粒の含有量を0.0065質量%(65ppm)に調整した水分散液において波長290nmの光に対して吸光度1.000以上を与えるものであることが好ましい。この場合、更に優れた研磨速度で被研磨材料を研磨することができると共に保管安定性を更に向上させることができる。
 本発明に係る研磨液において、砥粒は、該砥粒の含有量を0.0065質量%に調整した水分散液において波長450~600nmの光に対して吸光度0.010以下を与えるものであることが好ましい。この場合、更に優れた研磨速度で被研磨材料を研磨することができると共に保管安定性を向上させることができる。
 本発明に係る研磨液において、4価金属元素の水酸化物は、4価金属元素の塩とアルカリ源とを反応させて得られるものであることが好ましい。この場合、粒子径が極めて細かい粒子を砥粒として得ることができるため、研磨傷の低減効果を更に向上させることができる。
 本発明に係る研磨液において、4価金属元素は、4価セリウムであることが好ましい。この場合、化学的活性の高い微粒子が砥粒として得られるため、更に優れた研磨速度で被研磨材料を研磨することができる。
 本発明に係る研磨液において、添加剤は、ビニルアルコール重合体及び当該ビニルアルコール重合体の誘導体からなる群より選択される少なくとも一種であることが好ましい。この場合、添加剤が砥粒表面を被覆することで、被研磨面に砥粒が付着することが抑制されることから、砥粒の分散性が向上し、研磨液の安定性を更に向上させることができる。また、被研磨面の洗浄性を向上させることもできる。さらに、ストッパ材料の研磨速度を抑制することにより、ストッパ材料に対する絶縁材料の研磨速度比(絶縁材料の研磨速度/ストッパ材料の研磨速度)を向上させることができる。
 本発明に係る研磨液において、添加剤の含有量は、研磨液全質量基準で0.01質量%以上であることが好ましい。この場合、添加剤の添加効果を有意に得ることができると共に保管安定性を向上させることができる。
 また、本発明は、前記スラリー、前記研磨液セット又は前記研磨液を用いた基体の研磨方法を提供する。これらの研磨方法によれば、優れた研磨速度で被研磨材料を研磨することができると共に保管安定性を向上させることができる。これらの研磨方法によれば、研磨傷の発生を抑制することができると共に、平坦性に優れた基体を得ることもできる。
 本発明に係る研磨方法の第一実施形態は、前記スラリーを用いる研磨方法に関する。すなわち、第一実施形態に係る研磨方法は、表面に被研磨材料を有する基体の該被研磨材料を研磨パッドに対向するように配置する工程と、研磨パッドと被研磨材料との間に前記スラリーを供給して、被研磨材料の少なくとも一部を研磨する工程と、を有する。
 本発明に係る研磨方法の第二及び第三実施形態は、前記研磨液セットを用いる研磨方法に関する。このような研磨方法によれば、添加剤を混合した後に長時間保存される場合に懸念される、砥粒の凝集、研磨特性の変化等の問題を回避することもできる。
 すなわち、第二実施形態に係る研磨方法は、表面に被研磨材料を有する基体の該被研磨材料を研磨パッドに対向するように配置する工程と、前記研磨液セットにおける第一の液と第二の液とを混合して研磨液を得る工程と、研磨パッドと被研磨材料との間に研磨液を供給して、被研磨材料の少なくとも一部を研磨する工程と、を有する。第三実施形態に係る研磨方法は、表面に被研磨材料を有する基体の該被研磨材料を研磨パッドに対向するように配置する工程と、前記研磨液セットにおける第一の液と第二の液とをそれぞれ研磨パッドと被研磨材料との間に供給して、被研磨材料の少なくとも一部を研磨する工程と、を有する。
 本発明に係る研磨方法の第四実施形態は、前記研磨液を用いる研磨方法に関する。すなわち、第四実施形態に係る研磨方法は、表面に被研磨材料を有する基体の該被研磨材料を研磨パッドに対向するように配置する工程と、研磨パッドと被研磨材料との間に前記研磨液を供給して、被研磨材料の少なくとも一部を研磨する工程と、を有する。
 被研磨材料は、酸化ケイ素を含むことが好ましい。また、被研磨材料の表面に凹凸が形成されていることが好ましい。これらの研磨方法によれば、スラリー、研磨液セット及び研磨液の特長を充分に活かすことができる。
 本発明に係る基体は、前記研磨方法により研磨されたものである。
 本発明に係るスラリーによれば、添加剤の添加効果を維持しつつ優れた研磨速度で被研磨材料を研磨することが可能であると共に、保管安定性を向上させることが可能な研磨液を得ることができる。また、本発明に係るスラリーによれば、優れた研磨速度で被研磨材料を研磨することができると共に保管安定性を向上させることもできる。本発明に係る研磨液セット及び研磨液によれば、添加剤の添加効果を維持しつつ優れた研磨速度で被研磨材料を研磨することができると共に、保管安定性を向上させることができる。また、本発明に係る研磨方法は、優れた研磨速度で被研磨材料を研磨することができるためスループットに優れると共に、添加剤を用いる場合には所望の特性(例えば平坦性、選択性)を満たすことができる。なお、前記保管安定性に関して、本発明によれば、例えば60℃で3日間(72時間)保管したスラリー、研磨液セット又は研磨液を用いて研磨した場合であっても、保管前の研磨速度を基準として研磨速度の変化率を小さくする(例えば5.0%以内に留める)ことができる。
 また、本発明によれば、半導体素子の製造工程における基体表面の平坦化工程への前記スラリー、研磨液セット及び研磨液の応用が提供される。特に、本発明によれば、シャロートレンチ分離絶縁材料、プリメタル絶縁材料、層間絶縁材料等の平坦化工程への前記スラリー、研磨液セット及び研磨液の応用が提供される。
アングルロータの一例を示す模式断面図である。 添加剤を添加した際に砥粒が凝集する様子を示す模式図である。 添加剤を添加した際に砥粒が凝集する様子を示す模式図である。
 以下、本発明の実施形態について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。本明細書において、「スラリー」及び「研磨液」とは、研磨時に被研磨材料に触れる組成物であり、水及び砥粒を少なくとも含んでいる。また、砥粒の含有量を所定量に調整した「水分散液」とは、所定量の砥粒と水とを含む液を意味する。
 本実施形態において、砥粒は、4価金属元素の水酸化物を含み、且つ、該砥粒の含有量を1.0質量%に調整した水分散液において波長400nmの光に対して吸光度1.00以上1.50未満を与えるものであり、且つ、前記砥粒の含有量を1.0質量%に調整した水分散液を遠心加速度1.59×10Gで50分遠心分離したときに不揮発分含量300ppm以上の上澄み液(液相)を与えるものである。本発明者は、波長400nmの光に対する吸光度、及び、遠心分離後の上澄み液における不揮発分含量に関する前記条件を満たす砥粒を用いることにより、優れた研磨速度で被研磨材料を研磨することができると共に保管安定性を向上させることができることを見出した。
 なお、これらの知見を見出すに先立って、本発明者は以下の知見を得ている。すなわち、本発明者は、4価金属元素の水酸化物を含む砥粒を用いたスラリーについて鋭意検討した結果、砥粒を特定量含有する水分散液において特定波長の光に対する吸光度を高めることが可能な砥粒を用いることにより、被研磨材料の研磨速度を調整しやすくなることを見出し、更に、砥粒の含有量を1.0質量%に調整した水分散液において波長400nmの光に対して吸光度1.50以上を与える砥粒を用いることにより、特に優れた研磨速度で被研磨材料を研磨することができることを見出した。また、本発明者は、前記条件を満たす研磨液及びスラリーが目視で若干黄色味を帯びており、研磨液及びスラリーの黄色味が濃くなるほど研磨速度が向上することを見出した。
 これに対し、本発明者は、研磨速度と保管安定性とを高度に両立する観点で、4価金属元素の水酸化物を含む砥粒について更に検討し、前記のとおり、砥粒の含有量を1.0質量%に調整した水分散液において波長400nmの光に対して吸光度1.00以上1.50未満を与える砥粒を用いることに着想するに至った。
<研磨液>
 本実施形態に係る研磨液は、砥粒と添加剤と水とを少なくとも含有する。以下、各構成成分について説明する。
(砥粒)
 砥粒は、4価金属元素の水酸化物を含むことを特徴とする。「4価金属元素の水酸化物」は、4価の金属(M4+)と、少なくとも一つの水酸化物イオン(OH)とを含む化合物である。4価金属元素の水酸化物は、水酸化物イオン以外の陰イオン(例えば硝酸イオンNO 、硫酸イオンSO 2-)を含んでいてもよい。例えば、4価金属元素の水酸化物は、4価金属元素に結合した陰イオン(例えば硝酸イオンNO 、硫酸イオンSO 2-)を含んでいてもよい。
 4価金属元素は、希土類元素及びジルコニウムからなる群より選択される少なくとも一種が好ましい。4価金属元素としては、研磨速度を更に向上させる観点から、希土類元素が好ましい。4価を取りうる希土類元素としては、セリウム、プラセオジム、テルビウム等のランタノイドなどが挙げられ、中でも、入手が容易であり且つ研磨速度に更に優れる観点から、セリウム(4価セリウム)が好ましい。希土類元素の水酸化物とジルコニウムの水酸化物とを併用してもよく、希土類元素の水酸化物から二種以上を選択して使用することもできる。
 本実施形態に係る研磨液は、4価金属元素の水酸化物を含む砥粒の特性を損なわない範囲で他の種類の砥粒を併用することができる。具体的には、シリカ、アルミナ、ジルコニア等の砥粒を使用することができる。
 砥粒中における4価金属元素の水酸化物の含有量は、砥粒全質量基準で50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上が更に好ましく、80質量%以上が特に好ましく、90質量%以上が極めて好ましく、95質量%以上が非常に好ましく、98質量%以上がより一層好ましく、99質量%以上が更に好ましい。砥粒は、実質的に4価金属元素の水酸化物からなる(砥粒の実質的に100質量%が4価金属元素の水酸化物の粒子である)ことが特に好ましい。
 砥粒中における4価セリウムの水酸化物の含有量は、砥粒全質量基準で50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上が更に好ましく、80質量%以上が特に好ましく、90質量%以上が極めて好ましく、95質量%以上が非常に好ましく、98質量%以上がより一層好ましく、99質量%以上が更に好ましい。砥粒は、化学的活性が高く研磨速度に更に優れる点で、実質的に4価セリウムの水酸化物からなる(砥粒の実質的に100質量%が4価セリウムの水酸化物の粒子である)ことが特に好ましい。
 本実施形態に係る研磨液の構成成分中において、4価金属元素の水酸化物は研磨特性に与える影響が大きいものと考えられる。そのため、4価金属元素の水酸化物の含有量を調整することにより、砥粒と被研磨面との化学的な相互作用が向上し、研磨速度を更に向上させることができる。すなわち、4価金属元素の水酸化物の含有量は、4価金属元素の水酸化物の機能を充分に発現しやすくなる点で、研磨液全質量基準で0.01質量%以上が好ましく、0.03質量%以上がより好ましく、0.05質量%以上が更に好ましい。4価金属元素の水酸化物の含有量は、砥粒の凝集を避けることが容易になると共に、被研磨面との化学的な相互作用が良好となり、砥粒の特性を有効に活用できる点で、研磨液全質量基準で8質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下が更に好ましく、1質量%以下が特に好ましく、0.5質量%以下が極めて好ましく、0.3質量%以下が非常に好ましい。
 本実施形態に係る研磨液において、砥粒の含有量の下限は、特に制限はないが、所望の研磨速度が得られやすくなる点で、研磨液全質量基準で0.01質量%以上が好ましく、0.03質量%以上がより好ましく、0.05質量%以上が更に好ましい。砥粒の含有量の上限は、特に制限はないが、砥粒の凝集を避けることが容易になると共に、砥粒が効果的に被研磨面に作用して研磨をスムーズに進行させることができる点で、研磨液全質量基準で10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下が更に好ましく、1質量%以下が特に好ましく、0.5質量%以下が極めて好ましく、0.3質量%以下が非常に好ましい。
 砥粒の平均二次粒子径(以下、特に断らない限り「平均粒子径」という)がある程度小さい場合、被研磨面に接する砥粒の比表面積が増大することにより研磨速度を更に向上させることができると共に、機械的作用が抑えられて研磨傷を更に低減できる。そのため、平均粒子径の上限は、更に優れた研磨速度が得られると共に研磨傷を更に低減できる点で、200nm以下が好ましく、150nm以下がより好ましく、100nm以下が更に好ましく、80nm以下が特に好ましく、60nm以下が極めて好ましく、40nm以下が非常に好ましい。平均粒子径の下限は、更に優れた研磨速度が得られると共に研磨傷を更に低減できる点で、1nm以上が好ましく、2nm以上がより好ましく、3nm以上が更に好ましい。
 砥粒の平均粒子径は、光子相関法で測定でき、具体的には例えば、マルバーン社製の装置名:ゼータサイザー3000HS、ベックマンコールター社製の装置名:N5等で測定できる。N5を用いた測定方法は、具体的には例えば、砥粒の含有量を0.2質量%に調整した水分散液を調製し、この水分散液を1cm角のセルに約4mL(Lは「リットル」を示す。以下同じ)入れ、装置内にセルを設置する。分散媒の屈折率を1.33、粘度を0.887mPa・sに調整し、25℃において測定を行うことで得られる値を砥粒の平均粒子径として採用することができる。
[不揮発分含量]
 前記砥粒は、粒度分布計で測定し得る粒子径を有する大粒子と、粒度分布計で測定し得ない粒子径を有する微細粒子とを含有していると考えられる。このような砥粒を水に分散させた水分散液を充分な遠心力を作用させて遠心分離した場合、水分散液は沈降物と上澄み液(液相)とに主に固液分離し、大粒子は沈降物として沈降し、微細粒子は上澄み液中に浮遊するものと考えられる。
 本発明者は、充分量の砥粒を含有する水分散液を特定の条件(大粒子と微細粒子とを好適に分離可能な遠心力を作用し得る条件)で遠心分離したときに不揮発分含量の高い上澄み液を与える砥粒を用いることにより、優れた研磨速度で被研磨材料を研磨することができることを見出した。すなわち、本実施形態において砥粒は、該砥粒の含有量を1.0質量%に調整した水分散液を遠心加速度1.59×10Gで50分遠心分離したときに不揮発分含量300ppm以上の上澄み液を与えるものである。
 遠心分離後の上澄み液に含まれる不揮発分含量が高いと研磨速度の向上効果が得られる理由について、本発明者は次のように考えている。砥粒を含むスラリー及び研磨液は、一般的に、遠心加速度1.59×10Gで50分遠心分離した場合には、ほとんど全ての砥粒が沈降する。しかしながら、本実施形態に係るスラリー及び研磨液は、含まれる砥粒の粒子径が充分に小さいため、前記条件で遠心分離を行っても沈降しない微細粒子が多く含まれる。すなわち、不揮発分含量が増加するに伴い砥粒中の微細粒子の割合が増加し、被研磨面に接する砥粒の表面積が増大するものと考えられる。これにより、化学的作用による研磨の進行が促進され、研磨速度が向上すると考えられる。
 砥粒の含有量が1.0質量%に調整された水分散液を遠心分離した際の、上澄み液の不揮発分含量の下限は、更に優れた研磨速度が得られる点で、400ppm以上が好ましく、500ppm以上がより好ましく、600ppm以上が更に好ましく、700ppm以上が特に好ましく、750ppm以上が極めて好ましい。上澄み液の不揮発分含量の上限は、例えば10000ppm(1.0質量%)である。
 前記遠心分離を行う装置としては、チューブが所定の角度で配置されてなるアングルロータ、及び、チューブの角度が可変であり遠心分離中にチューブが水平又はほぼ水平になるスイングロータのいずれも使用することができる。
 図1は、アングルロータの一例を示す模式断面図である。アングルロータ1は、回転軸A1を中心として左右対称であり、図1では、その一方側(図中左側)のみを図示し、他方側(図中右側)を省略している。図1において、A2はチューブ角であり、Rminは回転軸A1からチューブまでの最小半径であり、Rmaxは回転軸A1からチューブまでの最大半径である。Ravは回転軸A1からチューブまでの平均半径であり、「(Rmin+Rmax)/2」として求められる。
 このような遠心分離装置において、遠心加速度[単位:G]は下記式(1)から求めることができる。
 遠心加速度[G]=1118×R×N×10-8  ・・・(1)
(式中、Rは回転半径(cm)を示し、Nは1分間当たりの回転数(rpm=回転/分)を示す。)
 本実施形態においては、式(1)中の回転半径Rとして図1中の平均半径Ravの値を用いて、遠心加速度が1.59×10Gとなるように回転数Nを設定して遠心分離を行う。なお、図1のようなアングルロータに代えてスイングロータを使用する場合は、遠心分離中のチューブの状態から最小半径Rmin、最大半径Rmax、平均半径Ravをそれぞれ求めて条件を設定する。
 前記砥粒は、例えば、アングルロータとして株式会社日立工機製の超遠心分離機70P-72を用いて、砥粒を大粒子と微細粒子とに分離できる。70P-72を用いた水分散液の遠心分離は、具体的には例えば、以下のようにして行うことができる。ます、砥粒の含有量を1.0質量%に調整した水分散液を調製し、これを遠沈管(チューブ)に充填した後に遠沈管をローターに設置する。そして、回転数50000回転/分で50分間回転させた後、ローターから遠沈管を取出し、遠沈管内の上澄み液を採取する。上澄み液の不揮発分含量は、採取した上澄み液の質量と、上澄み液を乾燥した後の残留分の質量とを量ることにより算出することができる。
[吸光度]
 砥粒の含有量を1.0質量%に調整した水分散液において波長400nmの光に対する吸光度1.00以上1.50未満を与える砥粒を用いることにより、研磨速度を向上させることができると共に、保管安定性を向上させることができる。この理由は必ずしも明らかではないが、本発明者は次のように考えている。すなわち、4価金属元素の水酸化物の製造条件等に応じて、4価の金属(M4+)、1~3個の水酸化物イオン(OH)及び1~3個の陰イオン(Xc-)からなるM(OH)(式中、a+b×c=4である)を含む粒子が砥粒の一部として生成するものと考えられる(なお、このような粒子も「4価金属元素の水酸化物を含む砥粒」である)。M(OH)では、電子吸引性の陰イオン(Xc-)が作用して水酸化物イオンの反応性が向上しており、M(OH)の存在量が増加するに伴い研磨速度が向上するものと考えられる。そして、M(OH)を含む粒子が波長400nmの光を吸光するため、M(OH)の存在量が増加して波長400nmの光に対する吸光度が高くなるに伴い、研磨速度が向上するものと考えられる。
 4価金属元素の水酸化物を含む砥粒は、M(OH)だけでなく、M(OH)、MO等も含み得ると考えられる。陰イオン(Xc-)としては、NO 、SO 2-等が挙げられる。
 なお、砥粒がM(OH)を含むことは、砥粒を純水でよく洗浄した後にFT-IR ATR法(Fourier transform Infra Red Spectrometer Attenuated Total Reflection法、フーリエ変換赤外分光光度計全反射測定法)で陰イオン(Xc-)に該当するピークを検出する方法により確認できる。XPS法(X-ray Photoelectron Spectroscopy、X線光電子分光法)により、陰イオン(Xc-)の存在を確認することもできる。
 一方で、M(OH)(例えばM(OH)X)等の4価金属元素の水酸化物を含む粒子の構造安定性を計算すると、Xの存在量が増加するに伴い粒子の構造安定性が低下する結果が得られている。これらのことから、波長400nmの光に対する吸光度を指標として、Xを含む前記粒子の存在量を調整することで、高い研磨速度及び高い保管安定性の双方を達成できると考えられる。
 ここで、M(OH)(例えばM(OH)X)の波長400nmの吸収ピークは、後述する波長290nmの吸収ピークよりもはるかに小さいことが確認されている。これに対し、本発明者は、砥粒含有量が比較的多く、吸光度が大きく検出されやすい砥粒含有量1.0質量%の水分散液を用いて吸光度の大きさを検討した結果、当該水分散液において波長400nmの光に対する吸光度1.00以上1.50未満を与える砥粒を用いる場合に、研磨速度の向上効果と保管安定性に優れることを見出した。なお、前記の通り波長400nmの光に対する吸光度は砥粒に由来するものと考えられるため、波長400nmの光に対して吸光度1.00以上1.50未満を与える砥粒に代えて、波長400nmの光に対して1.00以上1.50未満の吸光度を与える物質(例えば黄色を呈する色素成分)を含む研磨液では、保管安定性を維持しつつ優れた研磨速度で被研磨材料を研磨することができないことはいうまでもない。
 波長400nmの光に対する吸光度の下限は1.00以上であるが、更に優れた研磨速度と保管安定性との両立を図る観点で、1.05以上が好ましく、1.10以上がより好ましく、1.15以上が更に好ましく、1.20以上が特に好ましく、1.25以上が極めて好ましい。波長400nmの光に対する吸光度の上限は、保管安定性(例えば、60℃で72時間保管した際の研磨速度の安定性)が低下することを抑制する観点から、1.50未満である。
 本発明者は、前記砥粒が、砥粒の含有量を0.0065質量%に調整した水分散液において波長290nmの光に対して吸光度1.000以上を与える場合に、更に優れた研磨速度で被研磨材料を研磨することができることを見出した。
 砥粒の含有量を0.0065質量%に調整した水分散液において波長290nmの光に対する吸光度1.000以上を与える砥粒を用いることにより、研磨速度の向上効果が得られる理由は必ずしも明らかではないが、本発明者は次のように考えている。すなわち、4価金属元素の水酸化物の製造条件等に応じて生成するM(OH)(例えばM(OH)X)を含む粒子は、計算上、波長290nm付近に吸収のピークを有し、例えばCe4+(OHNO からなる粒子は波長290nmに吸収のピークを有する。そのため、M(OH)の存在量が増加して波長290nmの光に対する吸光度が高くなるに伴い、研磨速度が向上するものと考えられる。一方で、粒子の構造安定性を計算すると、Xの存在量が増加するに伴い粒子の構造安定性が低下する結果が得られている。これらのことから、波長400nmの光に対する吸光度と共に波長290nmの光に対する吸光度を指標として、Xを含む前記粒子の存在量を調整することで、研磨速度を更に向上させることができると考えられる。
 ここで、波長290nm付近の光に対する吸光度は、測定限界を超えるほど大きく検出される傾向がある。これに対し、本発明者は、砥粒の含有量が比較的少なく、吸光度が小さく検出されやすい砥粒含有量0.0065質量%の水分散液を用いて吸光度の大きさを検討した結果、当該水分散液において波長290nmの光に対する吸光度1.000以上を与える砥粒を用いる場合に、研磨速度の向上効果に優れることを見出した。また、本発明者は、吸光物質に吸収されると当該吸光物質が黄色を呈する傾向のある波長400nm付近の光とは別に、波長290nm付近の光に対する砥粒の吸光度が高いほど、このような砥粒を用いた研磨液及びスラリーの黄色味が濃くなることを見出し、研磨液及びスラリーの黄色味が濃くなるほど研磨速度が向上することを見出した。そして、本発明者は、砥粒含有量0.0065質量%の水分散液における波長290nmの光に対する吸光度と、砥粒含有量1.0質量%の水分散液における波長400nmの光に対する吸光度とが相関することを見出した。
 波長290nmの光に対する吸光度の下限は、更に優れた研磨速度で被研磨材料を研磨する観点で、1.000以上が好ましく、1.050以上がより好ましく、1.100以上が更に好ましく、1.130以上が特に好ましく、1.150以上が極めて好ましく、1.180以上が非常に好ましい。波長290nmの光に対する吸光度の上限は、特に制限はないが、10.000以下が好ましく、5.000以下がより好ましく、3.000以下が更に好ましい。
 4価金属元素の水酸化物(例えばM(OH))は、波長450nm以上、特に波長450~600nmの光に対して吸光を有していない傾向がある。従って、不純物を含むことにより研磨に対して悪影響が生じることを抑制して更に優れた研磨速度で被研磨材料を研磨する観点で、砥粒は、該砥粒の含有量を0.0065質量%(65ppm)に調整した水分散液において波長450~600nmの光に対して吸光度0.010以下を与えるものであることが好ましい。すなわち、砥粒の含有量を0.0065質量%に調整した水分散液において波長450~600nmの範囲における全ての光に対する吸光度が0.010を超えないことが好ましい。波長450~600nmの光に対する吸光度の上限は、0.005以下がより好ましく、0.001以下が更に好ましい。波長450~600nmの光に対する吸光度の下限は、0が好ましい。
 水分散液における吸光度は、例えば、株式会社日立製作所製の分光光度計(装置名:U3310)を用いて測定できる。具体的には例えば、砥粒の含有量を1.0質量%又は0.0065質量%に調整した水分散液を測定サンプルとして調製する。この測定サンプルを1cm角のセルに約4mL入れ、装置内にセルを設置する。次に、波長200~600nmの範囲で吸光度測定を行い、得られたチャートから吸光度を判断する。
 砥粒の含有量が0.0065質量%より少なくなるよう過度に希釈して波長290nmの光に対する吸光度を測定した場合に、吸光度が1.000以上を示すようであれば、砥粒の含有量を0.0065質量%とした場合にも吸光度が1.000以上であるとして吸光度をスクリーニングしてもよい。砥粒の含有量が0.0065質量%より多くなるように希釈して波長450~600nmの光に対する吸光度を測定した場合に、吸光度が0.010以下を示すようであれば、砥粒の含有量を0.0065質量%とした場合にも吸光度が0.010以下であるとして吸光度をスクリーニングしてもよい。
[光透過率]
 本実施形態に係る研磨液は、可視光に対する透明度が高い(目視で透明又は透明に近い)ことが好ましい。具体的には、本実施形態に係る研磨液に含まれる砥粒は、該砥粒の含有量を1.0質量%に調整した水分散液において波長500nmの光に対して光透過率50%/cm以上を与えるものであることが好ましい。これにより、添加剤の添加に起因する研磨速度の低下を更に抑制することができるため、研磨速度を維持しつつ他の特性を得ることが容易になる。この観点で、前記光透過率の下限は、60%/cm以上がより好ましく、70%/cm以上が更に好ましく、80%/cm以上が特に好ましく、90%/cm以上が極めて好ましく、95%/cm以上が非常に好ましく、98%/cm以上がより一層好ましく、99%/cm以上が更に好ましい。光透過率の上限は100%/cmである。
 このように砥粒の光透過率を調整することで研磨速度の低下を抑制することが可能な理由は詳しくは分かっていないが、本発明者は以下のように考えている。4価金属元素(セリウム等)の水酸化物を含む砥粒がもつ砥粒としての作用は、機械的作用よりも化学的作用の方が支配的になると考えられる。そのため、砥粒の大きさよりも砥粒の数の方が、より研磨速度に寄与すると考えられる。
 砥粒の含有量を1.0質量%に調整した水分散液において光透過率が低い場合、その水分散液に存在する砥粒は、粒子径の大きい粒子(以下「粗大粒子」という。)が相対的に多く存在すると考えられる。このような砥粒を含む研磨液に添加剤(例えばポリビニルアルコール(PVA))を添加すると、図2に示すように、粗大粒子を核として他の粒子が凝集する。その結果として、単位面積当たりの被研磨面に作用する砥粒数(有効砥粒数)が減少し、被研磨面に接する砥粒の比表面積が減少するため、研磨速度の低下が引き起こされると考えられる。
 一方、砥粒の含有量を1.0質量%に調整した水分散液において光透過率が高い場合、その水分散液に存在する砥粒は、前記「粗大粒子」が少ない状態であると考えられる。このように粗大粒子の存在量が少ない場合は、図3に示すように、研磨液に添加剤(例えばポリビニルアルコール)を添加しても、凝集の核になるような粗大粒子が少ないため、砥粒同士の凝集が抑えられるか、又は、凝集粒子の大きさが図2に示す凝集粒子と比べて小さくなる。その結果として、単位面積当たりの被研磨面に作用する砥粒数(有効砥粒数)が維持され、被研磨面に接する砥粒の比表面積が維持されるため、研磨速度の低下が生じ難くなると考えられる。
 本発明者の検討では、一般的な粒径測定装置において測定される粒子径が同じ研磨液であっても、目視で透明である(光透過率の高い)もの、及び、目視で濁っている(光透過率の低い)ものがありえることがわかった。このことから、前記のような作用を起こしうる粗大粒子は、一般的な粒径測定装置で検知できないほどのごくわずかの量でも、研磨速度の低下に寄与すると考えられる。
 また、粗大粒子を減らすためにろ過を複数回繰り返しても、添加剤により研磨速度が低下する現象はさほど改善せず、前記吸光度に起因する研磨速度の向上効果が充分に発揮されない場合があることがわかった。そこで、本発明者は、砥粒の製造方法を工夫する等して、水分散液において光透過率の高い砥粒を使用することによって前記問題を解決できることを見出した。
 前記光透過率は、波長500nmの光に対する透過率である。前記光透過率は、分光光度計で測定されるものであり、具体的には例えば、株式会社日立製作所製の分光光度計U3310(装置名)で測定される。
 より具体的な測定方法としては、砥粒の含有量を1.0質量%に調整した水分散液を測定サンプルとして調製する。この測定サンプルを1cm角のセルに約4mL入れ、装置内にセルをセットし測定を行う。なお、砥粒の含有量が1.0質量%より大きい水分散液において50%/cm以上の光透過率を有する場合は、これを希釈して1.0質量%とした場合も光透過率は50%/cm以上となることが明らかである。そのため、砥粒の含有量が1.0質量%より大きい水分散液を用いることにより、簡便な方法で光透過率をスクリーニングすることができる。
 砥粒が水分散液において与える前記吸光度及び光透過率、並びに、上澄み液における不揮発分含量は、安定性に優れることが好ましい。例えば、水分散液における吸光度及び光透過率に関し、水分散液を60℃で3日間(72時間)保持した後において、波長400nmの光に対する吸光度は1.00以上1.50未満であることが好ましく、波長290nmの光に対する吸光度は1.000以上であることが好ましく、波長450~600nmの光に対する吸光度は0.010以下であることが好ましく、波長500nmの光に対する光透過率は50%/cm以上であることが好ましい。また、例えば、上澄み液における不揮発分含量に関し、60℃で3日間(72時間)保持した後の水分散液から得られる上澄み液において、不揮発分含量は300ppm以上であることが好ましい。これらの吸光度、光透過率及び不揮発分含量の更なる好ましい範囲は、砥粒について上述した範囲と同様である。
 研磨液に含まれる砥粒が水分散液において与える吸光度及び光透過率は、砥粒以外の固体成分、及び、水以外の液体成分を除去した後、所定の砥粒含有量の水分散液を調製し、当該水分散液を用いて測定することができる。固体成分又は液体成分の除去には、研磨液に含まれる成分によっても異なるが、数千G以下の重力加速度をかけられる遠心機を用いた遠心分離、数万G以上の重力加速度をかけられる超遠心機を用いた超遠心分離等の遠心分離法;分配クロマトグラフィー、吸着クロマトグラフィー、ゲル浸透クロマトグラフィー、イオン交換クロマトグラフィー等のクロマトグラフィー法;自然ろ過、減圧ろ過、加圧ろ過、限外ろ過等のろ過法;減圧蒸留、常圧蒸留等の蒸留法などを用いることができ、これらを適宜組み合わせてもよい。
 例えば、重量平均分子量が数万以上(例えば5万以上)の化合物を含む場合は、クロマトグラフィー法、ろ過法等が挙げられ、中でも、ゲル浸透クロマトグラフィー及び限外ろ過が好ましい。ろ過法を用いる場合、研磨液に含まれる砥粒は、適切な条件の設定により、フィルタを通過させることができる。重量平均分子量が数万以下(例えば5万未満)の化合物を含む場合は、クロマトグラフィー法、ろ過法、蒸留法等が挙げられ、ゲル浸透クロマトグラフィー、限外ろ過及び減圧蒸留が好ましい。他の種類の砥粒が含まれる場合、ろ過法、遠心分離法等が挙げられ、ろ過の場合はろ液に、遠心分離の場合は液相に、4価金属元素の水酸化物を含む砥粒がより多く含まれる。
 クロマトグラフィー法で砥粒を分離する方法としては、例えば、下記条件によって、砥粒成分を分取する、及び/又は、他成分を分取することができる。
 試料溶液:研磨液100μL
 検出器:株式会社日立製作所製UV-VISディテクター、商品名「L-4200」、波長:400nm
 インテグレータ:株式会社日立製作所製GPCインテグレータ、商品名「D-2500」
 ポンプ:株式会社日立製作所製、商品名「L-7100」
 カラム:日立化成株式会社製水系HPLC用充填カラム、商品名「GL-W550S」
 溶離液:脱イオン水
 測定温度:23℃
 流速:1mL/分(圧力は40~50kg/cm程度)
 測定時間:60分
 なお、クロマトグラフィーを行う前に、脱気装置を用いて溶離液の脱気処理を行うことが好ましい。脱気装置を使用できない場合は、溶離液を事前に超音波等で脱気処理することが好ましい。
 研磨液に含まれる成分によっては、上記条件でも砥粒成分を分取できない可能性があるが、その場合、試料溶液量、カラム種類、溶離液種類、測定温度、流速等を最適化することで分離することができる。また、研磨液のpHを調整することで、研磨液に含まれる成分の留出時間を調整し、砥粒と分離できる可能性がある。研磨液に不溶成分がある場合、必要に応じ、ろ過、遠心分離等で不溶成分を除去することが好ましい。
[砥粒の作製方法]
 4価金属元素の水酸化物は、4価金属元素の塩(金属塩)と、アルカリ源(塩基)とを反応させることにより作製可能である。これにより、粒子径が極めて細かい粒子を得ることができ、研磨傷の低減効果に更に優れた研磨液を得ることができる。このような手法は、例えば、特許文献3に開示されている。4価金属元素の水酸化物は、4価金属元素の塩とアルカリ液(アルカリ源の溶液。例えばアルカリ水溶液)とを混合することにより得ることができる。また、4価金属元素の水酸化物は、4価金属元素の塩を含む金属塩溶液(例えば金属塩水溶液)とアルカリ液とを混合することにより得ることができる。なお、4価金属元素の塩及びアルカリ源の少なくとも一方を液体状態で反応系に供給する場合、混合液を撹拌する手段は限定されるものではなく、回転軸回りに回転する棒状、板状又はプロペラ状の撹拌子又は撹拌羽根を用いて混合液を撹拌する方法;容器の外部から動力を伝達するマグネチックスターラーを用いて、回転する磁界で撹拌子を回転させて混合液を撹拌する方法;槽外に設置したポンプで混合液を撹拌する方法;外気を加圧して槽内に勢いよく吹き込むことで混合液を撹拌する方法等が挙げられる。4価金属元素の塩としては、金属をMとして示すと、M(NO、M(SO、M(NH(NO、M(NH(SO等が挙げられる。
 上澄み液の不揮発分含量、吸光度及び光透過率を調整する手段としては、4価金属元素の水酸化物の製造方法の最適化等が挙げられる。波長400nmの光に対する吸光度及び波長290nmの光に対する吸光度を変化させる方法としては、アルカリ液中のアルカリ源の選択、金属塩溶液とアルカリ液とにおける原料濃度の調整、金属塩溶液とアルカリ液との混合速度の調整、4価金属元素の塩とアルカリ源とを混合して得られる混合液の液温の調整等が挙げられる。波長500nmの光に対する光透過率を変化させる方法としては、金属塩溶液とアルカリ液とにおける原料濃度の調整、金属塩溶液とアルカリ液との混合速度の調整、混合するときの撹拌速度の調整、混合液の液温の調整等が挙げられる。上澄み液の不揮発分含量の調整手段としては、金属塩溶液とアルカリ液とにおける原料濃度の調整、混合液の液温の調整、金属塩溶液とアルカリ液との混合速度の調整、混合するときの撹拌速度の調整等が挙げられる。
 上澄み液の不揮発分含量、波長400nmの光に対する吸光度、波長290nmの光に対する吸光度、及び、波長500nmの光に対する光透過率を高くするためには、4価金属元素の水酸化物の製造方法を、より「緩やか」にすることが好ましい。ここで、「緩やか」とは、反応が進行するにしたがって反応系のpHが上昇するときのpHの上昇を穏やかにする(遅くする)ことを意味する。逆に、上澄み液の不揮発分含量、波長400nmの光に対する吸光度、波長290nmの光に対する吸光度、及び、波長500nmの光に対する光透過率を低くするためには、4価金属元素の水酸化物の製造方法を、より「激しく」することが好ましい。ここで、「激しく」とは、反応が進行するにしたがって反応系のpHが上昇するときのpHの上昇を激しくする(速くする)ことを意味する。上澄み液の不揮発分含量、吸光度及び光透過率の値を所定範囲にするためには、前記傾向を参考にして、4価金属元素の水酸化物の製造方法を最適化することが好ましい。以下、上澄み液の不揮発分含量、吸光度及び光透過率の制御方法について更に詳しく説明する。
{アルカリ源}
 アルカリ液のアルカリ源としては、特に制限はないが、有機塩基、無機塩基等が挙げられる。有機塩基としては、グアニジン、トリエチルアミン、キトサン等の含窒素有機塩基;ピリジン、ピペリジン、ピロリジン、イミダゾール等の含窒素複素環有機塩基;炭酸アンモニウム、炭酸水素アンモニウム、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、塩化テトラメチルアンモニウム、塩化テトラエチルアンモニウム等のアンモニウム塩などが挙げられる。無機塩基としては、アンモニア、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属の無機塩などが挙げられる。アルカリ源は、一種類を単独で又は二種類以上を組み合わせて使用することができる。
 波長400nmの光に対する吸光度及び波長290nmの光に対する吸光度を高くするためには、アルカリ源として、弱い塩基性を示すアルカリ源を使用することが好ましい。アルカリ源の中でも、含窒素複素環有機塩基が好ましく、ピリジン、ピペリジン、ピロリジン、イミダゾールがより好ましく、ピリジン及びイミダゾールが更に好ましく、イミダゾールが特に好ましい。
{濃度}
 金属塩溶液とアルカリ液とにおける原料濃度の制御により、上澄み液の不揮発分含量、波長400nmの光に対する吸光度、波長290nmの光に対する吸光度、及び、波長500nmの光に対する光透過率を変化させることができる。具体的には、金属塩溶液の金属塩濃度を濃くすることで上澄み液の不揮発分含量が高くなる傾向があり、アルカリ液のアルカリ濃度(塩基の濃度、アルカリ源の濃度)を薄くすることで上澄み液の不揮発分含量が高くなる傾向がある。金属塩溶液の金属塩濃度を濃くすることで吸光度が高くなる傾向があり、アルカリ液のアルカリ濃度を薄くすることで吸光度が高くなる傾向がある。金属塩濃度を濃くすることで光透過率が高くなる傾向があり、アルカリ濃度を薄くすることで光透過率が高くなる傾向がある。
 金属塩溶液における金属塩濃度の上限は、優れた研磨速度と優れた砥粒の安定性とを両立しやすくなる点で、金属塩溶液の全体を基準として1.000mol/L以下が好ましく、0.500mol/L以下がより好ましく、0.300mol/L以下が更に好ましく、0.200mol/L以下が特に好ましい。金属塩濃度の下限は、急激に反応が起こることを抑制できる(pHの上昇を穏やかにできる)と共に、波長400nmの光に対する吸光度、波長290nmの光に対する吸光度、及び、波長500nmの光に対する光透過率が高くなる点で、金属塩溶液の全体を基準として0.010mol/L以上が好ましく、0.020mol/L以上がより好ましく、0.030mol/L以上が更に好ましい。
 アルカリ液におけるアルカリ濃度の上限は、急激に反応が起こることを抑制する点で、アルカリ液の全体を基準として15.0mol/L以下が好ましく、12.0mol/L以下がより好ましく、10.0mol/L以下が更に好ましく、5.0mol/L以下が特に好ましい。アルカリ濃度の下限は特に制限されないが、生産性の観点から、アルカリ液の全体を基準として0.001mol/L以上が好ましい。
 アルカリ液におけるアルカリ濃度は、選択されるアルカリ源により適宜調整されることが好ましい。例えば、アルカリ源の共役酸のpKaが20以上であるアルカリ源の場合、アルカリ濃度の上限は、急激に反応が起こることを抑制する点で、アルカリ液の全体を基準として0.10mol/L以下が好ましく、0.05mol/L以下がより好ましく、0.01mol/L以下が更に好ましい。アルカリ濃度の下限は特に限定されないが、所定量の4価金属元素の水酸化物を得るために用いる溶液の使用量を抑制する点で、アルカリ液の全体を基準として0.001mol/L以上が好ましい。
 アルカリ源の共役酸のpKaが12以上20未満であるアルカリ源の場合、アルカリ濃度の上限は、急激に反応が起こることを抑制する点で、アルカリ液の全体を基準として1.0mol/L以下が好ましく、0.50mol/L以下がより好ましく、0.10mol/L以下が更に好ましい。アルカリ濃度の下限は特に限定されないが、所定量の4価金属元素の水酸化物を得るために用いる溶液の使用量を抑制する点で、アルカリ液の全体を基準として0.01mol/L以上が好ましい。
 アルカリ源の共役酸のpKaが12未満であるアルカリ源の場合、アルカリ濃度の上限は、急激に反応が起こることを抑制する点で、アルカリ液の全体を基準として15.0mol/L以下が好ましく、10.0mol/L以下がより好ましく、5.0mol/L以下が更に好ましい。アルカリ濃度の下限は特に限定されないが、所定量の4価金属元素の水酸化物を得るために用いる溶液の使用量を抑制する点で、アルカリ液の全体を基準として0.10mol/L以上が好ましい。
 具体的なアルカリ源について、アルカリ源の共役酸のpKaが20以上であるアルカリ源としては、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(pKa:25)等が挙げられる。アルカリ源の共役酸のpKaが12以上20未満であるアルカリ源としては、水酸化カリウム(pKa:16)、水酸化ナトリウム(pKa:13)等が挙げられる。アルカリ源の共役酸のpKaが12未満であるアルカリ源としては、アンモニア(pKa:9)、イミダゾール(pKa:7)等が挙げられる。使用するアルカリ源の共役酸のpKa値は、アルカリ濃度が適切に調整される限り、特に限定されるものではないが、アルカリ源の共役酸のpKaは、20未満であることが好ましく、12未満であることがより好ましく、10未満であることが更に好ましく、8未満であることが特に好ましい。
{混合速度}
 金属塩溶液とアルカリ液との混合速度の制御により、上澄み液の不揮発分含量、波長400nmの光に対する吸光度、波長290nmの光に対する吸光度、及び、波長500nmの光に対する光透過率を変化させることができる。傾向としては、pHの上昇が穏やかになる(遅くなる)ようにすることで前記不揮発分含量、吸光度及び光透過率がそれぞれ高くなる。より具体的には、混合速度を遅くすることで上澄み液の不揮発分含量が高くなる傾向があり、混合速度を速くすることで上澄み液の不揮発分含量が低くなる傾向がある。混合速度を遅くすることで吸光度が高くなる傾向があり、混合速度を速くすることで吸光度が低くなる傾向がある。混合速度を遅くすることで波長500nmの光に対する光透過率が高くなる傾向があり、混合速度を速くすることで光透過率が低くなる傾向がある。
 混合速度の上限は、急激に反応が進行することを更に抑制できると共に、局所における反応の偏りを更に抑制する観点から、5.00×10-3/min(5L/min)以下が好ましく、1.00×10-3/min(1L/min)以下がより好ましく、5.00×10-4/min(500mL/min)以下が更に好ましく、1.00×10-4/min(100mL/min)以下が特に好ましい。混合速度の下限は、特に制限されないが、生産性の観点から、1.00×10-7/min(0.1mL/min)以上が好ましい。
{撹拌速度}
 金属塩溶液とアルカリ液とを混合するときの撹拌速度の制御により、上澄み液の不揮発分含量、波長500nmの光に対する光透過率を変化させることができる。具体的には、撹拌速度を速くすることで上澄み液の不揮発分含量が高くなる傾向があり、撹拌速度を遅くすることで上澄み液の不揮発分含量が低くなる傾向がある。撹拌速度を速くすることで光透過率が高くなる傾向があり、撹拌速度を遅くすることで光透過率が低くなる傾向がある。
 撹拌速度の下限は、局所における反応の偏りを更に抑制でき、且つ、混合効率に優れる観点から、30min-1以上が好ましく、50min-1以上がより好ましく、80min-1以上が更に好ましい。撹拌速度の上限は、特に制限されず、また、撹拌羽根の大きさ、形状により適宜調整を要するが、液はねを抑制する観点から、1000min-1以下が好ましい。
{液温(合成温度)}
 4価金属元素の塩とアルカリ源とを混合して得られる混合液の液温の制御により、上澄み液の不揮発分含量、波長400nmの光に対する吸光度、波長290nmの光に対する吸光度、及び、波長500nmの光に対する光透過率を変化させることが可能であり、所望の研磨速度と保管安定性を達成可能な砥粒を得ることができる。具体的には、液温を低くすることで上澄み液の不揮発分含量が高くなる傾向があり、液温を高くすることで上澄み液の不揮発分含量が低くなる傾向がある。液温を低くすることで吸光度が高くなる傾向があり、液温を高くすることで吸光度が低くなる傾向がある。液温を低くすることで光透過率が高くなる傾向があり、液温を高くすることで光透過率が低くなる傾向がある。
 液温は、例えば混合液に温度計を設置して読み取れる混合液内の温度であり、30~100℃であることが好ましい。液温の上限は、急激な反応を抑制することができる点で、100℃以下が好ましく、60℃以下がより好ましく、55℃以下が更に好ましく、50℃以下が特に好ましく、45℃以下が極めて好ましい。液温の下限は、反応を容易に進行させ、保管安定性に優れた(特に、研磨速度の安定性に優れた)研磨液を得ることができる点で、30℃以上が好ましく、35℃以上がより好ましい。
 前記により作製された4価金属元素の水酸化物は、不純物を含むことがあるが、当該不純物を除去してもよい。不純物を除去する方法は、特に限定されないが、遠心分離、フィルタープレス、限外ろ過等の方法などが挙げられる。これにより、波長450~600nmの光に対する吸光度を調整することができる。
(添加剤)
 本実施形態に係る研磨液は、絶縁材料(例えば酸化ケイ素)に対して特に優れた研磨速度を得ることができるため、絶縁材料を有する基体を研磨する用途に特に適している。本実施形態に係る研磨液によれば、添加剤を適宜選択することにより、研磨速度と、研磨速度以外の研磨特性とを高度に両立させることができる。
 添加剤としては、例えば、砥粒の分散性を高める分散剤、研磨速度を向上させる研磨速度向上剤、平坦化剤(研磨後の被研磨面の凹凸を減らす平坦化剤、研磨後の基体のグローバル平坦性を向上させるグローバル平坦化剤)、窒化ケイ素又はポリシリコン等のストッパ材料に対する絶縁材料の研磨選択比を向上させる選択比向上剤などの公知の添加剤を特に制限なく使用することができる。
 分散剤としては、ビニルアルコール重合体及びその誘導体、ベタイン、ラウリルベタイン、ラウリルジメチルアミンオキサイド等が挙げられる。研磨速度向上剤としては、β―アラニンベタイン、ステアリルベタイン等が挙げられる。被研磨面の凹凸を減らす平坦化剤としては、ラウリル硫酸アンモニウム、ポリオキシエチレンアルキルエーテル硫酸トリエタノールアミン等が挙げられる。グローバル平坦化剤としては、ポリビニルピロリドン、ポリアクロレイン等が挙げられる。選択比向上剤としては、ポリエチレンイミン、ポリアリルアミン、キトサン等が挙げられる。これらは一種類を単独で又は二種類以上を組み合わせて使用することができる。
 本実施形態に係る研磨液は、添加剤として、ビニルアルコール重合体及びその誘導体からなる群より選択される少なくとも一種を含むことが好ましい。この場合、添加剤が砥粒表面を被覆することで、被研磨面に砥粒が付着することが抑制されることから、砥粒の分散性が向上し、砥粒の安定性を更に向上させることができる。また、被研磨面の洗浄性を向上させることもできる。しかしながら、一般に、ポリビニルアルコールのモノマーであるビニルアルコールは単体では安定な化合物として存在しない傾向がある。そのため、ポリビニルアルコールは、一般的に、酢酸ビニルモノマー等のカルボン酸ビニルモノマーを重合してポリカルボン酸ビニルを得た後、これをケン化(加水分解)して得られている。従って、例えば、原料として酢酸ビニルモノマーを使用して得られたビニルアルコール重合体は、-OCOCHと、加水分解された-OHとを分子中に官能基として有しており、-OHとなっている割合がケン化度として定義される。つまり、ケン化度が100%ではないビニルアルコール重合体は、実質的に酢酸ビニルとビニルアルコールとの共重合体のような構造を有している。また、ビニルアルコール重合体は、酢酸ビニルモノマー等のカルボン酸ビニルモノマーと、その他のビニル基含有モノマー(例えばエチレン、プロピレン、スチレン、塩化ビニル)とを共重合させ、カルボン酸ビニルモノマーに由来する部分の全部又は一部をケン化したものであってもよい。本明細書では、これらを総称して「ビニルアルコール重合体」と定義するが、「ビニルアルコール重合体」とは、理想的には下記構造式を有する重合体である。
Figure JPOXMLDOC01-appb-C000001
(式中、nは正の整数を表す)
 ビニルアルコール重合体の「誘導体」は、ビニルアルコールの単独重合体(すなわちケン化度100%の重合体)の誘導体、及び、ビニルアルコールモノマーと他のビニル基含有モノマー(例えばエチレン、プロピレン、スチレン、塩化ビニル)との共重合体の誘導体を含むものとして定義される。
 ビニルアルコール重合体の誘導体としては、重合体の一部の水酸基をアミノ基、カルボキシル基、エステル基等で置換したもの、重合体の一部の水酸基を変性したもの等が挙げられる。このような誘導体としては、反応型ポリビニルアルコール(例えば、日本合成化学工業株式会社製、ゴーセファイマー(登録商標)Z)、カチオン化ポリビニルアルコール(例えば、日本合成化学工業株式会社製、ゴーセファイマー(登録商標)K)、アニオン化ポリビニルアルコール(例えば、日本合成化学工業株式会社製、ゴーセラン(登録商標)L、ゴーセナール(登録商標)T)、親水基変性ポリビニルアルコール(例えば、日本合成化学工業株式会社製、エコマティ)等が挙げられる。
 ビニルアルコール重合体及びその誘導体は、前記のとおり、砥粒の分散剤として機能し、研磨液の安定性を更に向上させる効果がある。ビニルアルコール重合体及びその誘導体の水酸基が、4価金属元素の水酸化物を含む砥粒と相互作用することにより、砥粒の凝集を抑制し、研磨液における砥粒の粒径変化を抑制して安定性を更に向上できるものと考えられる。
 ビニルアルコール重合体及びその誘導体は、4価金属元素の水酸化物を含む砥粒と組み合わせて使用することで、ストッパ材料(例えば窒化ケイ素、ポリシリコン)に対する絶縁材料(例えば酸化ケイ素)の研磨選択比(絶縁材料の研磨速度/ストッパ材料の研磨速度)を高くすることもできる。さらに、ビニルアルコール重合体及びその誘導体は、研磨後の被研磨面の平坦性を向上させることができると共に、被研磨面への砥粒の付着を防止(洗浄性の向上)することもできる。
 ビニルアルコール重合体及びその誘導体のケン化度は、ストッパ材料に対する絶縁材料の研磨選択比が更に高められる点で、95mol%以下が好ましい。同様の観点から、ケン化度の上限は、90mol%以下がより好ましく、88mol%以下が更に好ましく、85mol%以下が特に好ましく、83mol%以下が極めて好ましく、80mol%以下が非常に好ましい。
 ケン化度の下限に特に制限はないが、水への溶解性に優れる観点から、50mol%以上が好ましく、60mol%以上がより好ましく、70mol%以上が更に好ましい。なお、ビニルアルコール重合体及びその誘導体のケン化度は、JIS K 6726(ポリビニルアルコール試験方法)に準拠して測定することができる。
 ビニルアルコール重合体及びその誘導体の平均重合度(重量平均分子量)の上限は、特に制限はないが、被研磨材料の研磨速度の低下を更に抑制する観点から、3000以下が好ましく、2000以下がより好ましく、1000以下が更に好ましい。
 ストッパ材料に対する絶縁材料の研磨選択比が更に高められる観点から、平均重合度の下限は、50以上が好ましく、100以上がより好ましく、150以上が更に好ましい。なお、ビニルアルコール重合体及びその誘導体の平均重合度は、JIS K 6726(ポリビニルアルコール試験方法)に準拠して測定することができる。
 ビニルアルコール重合体及びその誘導体としては、ストッパ材料に対する絶縁材料の研磨選択比、及び、研磨後の基体の平坦性を調整する目的で、ケン化度又は平均重合度等が異なる複数の重合体を組み合わせて用いてもよい。この場合、少なくとも1種のビニルアルコール重合体及びその誘導体のケン化度が95mol%以下であることが好ましく、研磨選択比を更に向上させる観点から、それぞれのケン化度及び配合比から算出した平均のケン化度が95mol%以下であることがより好ましい。これらのケン化度の好ましい範囲については、前記した範囲と同様である。
 添加剤の含有量は、添加剤の効果がより効果的に得られる観点から、研磨液全質量基準で0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.08質量%以上が更に好ましく、0.1質量%以上が特に好ましい。添加剤の含有量は、被研磨材料の研磨速度の低下を更に抑制する観点から、研磨液全質量基準で10質量%以下が好ましく、5.0質量%以下がより好ましく、3.0質量%以下が更に好ましく、1.0質量%以下が特に好ましい。
(水)
 本実施形態に係る研磨液における水は、特に制限はないが、脱イオン水、超純水等が好ましい。水の含有量は、他の構成成分の含有量を除いた研磨液の残部でよく、特に限定されない。
 砥粒を水に分散させる方法としては、特に制限はないが、具体的には例えば、撹拌による分散方法;ホモジナイザー、超音波分散機又は湿式ボールミル等による分散方法が挙げられる。
[研磨液の特性]
 研磨液のpH(25℃)は、更に優れた研磨速度が得られる点で、2.0~9.0が好ましい。これは、被研磨面の表面電位に対する砥粒の表面電位が良好となり、砥粒が被研磨面に対して作用しやすくなるためと考えられる。研磨液のpHが安定して、砥粒の凝集等の問題が生じにくくなる点で、pHの下限は、2.0以上が好ましく、3.0以上がより好ましく、4.0以上が更に好ましい。砥粒の分散性に優れ、更に優れた研磨速度が得られる点で、pHの上限は、9.0以下が好ましく、8.0以下がより好ましく、7.5以下が更に好ましい。
 研磨液のpHは、pHメータ(例えば、横河電機株式会社製の型番PH81)で測定することができる。pHとしては、例えば、標準緩衝液(フタル酸塩pH緩衝液:pH4.01(25℃)、中性リン酸塩pH緩衝液:pH6.86(25℃))を用いて、2点校正した後、電極を研磨液に入れて、2分以上経過して安定した後の値を採用する。
 研磨液のpHの調整には、従来公知のpH調整剤を特に制限なく使用することができる。pH調整剤としては、具体的には例えば、リン酸、硫酸、硝酸等の無機酸;ギ酸、酢酸、プロピオン酸、マレイン酸、フタル酸、クエン酸、コハク酸、マロン酸、グルタル酸、アジピン酸、フマル酸、乳酸、安息香酸等のカルボン酸などの有機酸;エチレンジアミン、トルイジン、ピペラジン、ヒスチジン、アニリン、2-アミノピリジン、3-アミノピリジン、ピコリン酸、モルホリン、ピペリジン、ヒドロキシルアミン等のアミン類;ピリジン、イミダゾール、トリアゾール、ピラゾール、ベンゾイミダゾール、ベンゾトリアゾール等の含窒素複素環化合物が挙げられる。なお、pH調整剤は、後述するスラリー(スラリー前駆体、スラリー用貯蔵液等を含む)、添加液などに含まれていてもよい。
 pH安定化剤とは、所定のpHに調整するための添加剤を指し、緩衝成分が好ましい。緩衝成分は、所定のpHに対してpKaが±1.5以内である化合物が好ましく、pKaが±1.0以内である化合物がより好ましい。このような化合物としては、グリシン、アルギニン、リシン、アスパラギン、アスパラギン酸、グルタミン酸等のアミノ酸;前記カルボン酸と塩基との混合物;前記カルボン酸の塩などが挙げられる。
<スラリー>
 本実施形態に係るスラリーは、該スラリーをそのまま研磨に用いてもよく、研磨液の構成成分をスラリーと添加液とに分けた、いわゆる二液タイプの研磨液におけるスラリーとして用いてもよい。本実施形態において、研磨液とスラリーとは添加剤の有無の点で異なり、スラリーに添加剤を添加することで研磨液が得られる。
 本実施形態に係るスラリーは、本実施形態に係る研磨液と同様の砥粒、及び水を少なくとも含有する。例えば、砥粒は、4価金属元素の水酸化物を含むことを特徴とするものであり、砥粒の平均二次粒子径の好ましい範囲及び測定方法は、本実施形態に係る研磨液において用いられる砥粒と同様である。
 本実施形態に係るスラリーにおいて、砥粒は、該砥粒の含有量を1.0質量%に調整した水分散液において波長400nmの光に対して吸光度1.00以上1.50未満を与えるものであり、且つ、前記砥粒の含有量を1.0質量%に調整した水分散液を遠心加速度1.59×10Gで50分遠心分離したときに不揮発分含量300ppm以上の上澄み液(液相)を与えるものである。砥粒は、該砥粒の含有量を0.0065質量%に調整した水分散液において波長290nmの光に対して吸光度1.000以上を与えるものであることが好ましい。砥粒は、該砥粒の含有量を0.0065質量%に調整した水分散液において波長450~600nmの光に対して吸光度0.010以下を与えるものであることが好ましい。砥粒は、該砥粒の含有量を1.0質量%に調整した水分散液において波長500nmの光に対する光透過率50%/cm以上を与えるものであることが好ましい。これらの吸光度、光透過率及び上澄み液の不揮発分含量の好ましい範囲及び測定方法についても本実施形態に係る研磨液において用いられる砥粒と同様である。
 本実施形態に係るスラリーの構成成分中において、4価金属元素の水酸化物は研磨特性に与える影響が大きいものと考えられる。そのため、4価金属元素の水酸化物の含有量を調整することにより、砥粒と被研磨面との化学的な相互作用が向上し、研磨速度を更に向上させることができる。すなわち、4価金属元素の水酸化物の含有量は、4価金属元素の水酸化物の機能を充分に発現しやすくなる点で、スラリー全質量基準で0.01質量%以上が好ましく、0.03質量%以上がより好ましく、0.05質量%以上が更に好ましい。4価金属元素の水酸化物の含有量は、砥粒の凝集を避けることが容易になると共に、被研磨面との化学的な相互作用が良好となり、砥粒の特性(例えば研磨速度の向上作用)を有効に活用できる点で、スラリー全質量基準で8質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下が更に好ましく、1質量%以下が特に好ましく、0.7質量%以下が極めて好ましく、0.5質量%以下が非常に好ましい。
 本実施形態に係るスラリーにおいて、砥粒の含有量の下限は、所望の研磨速度が得られやすくなる点で、スラリー全質量基準で0.01質量%以上が好ましく、0.03質量%以上がより好ましく、0.05質量%以上が更に好ましい。砥粒の含有量の上限は、特に制限はないが、砥粒の凝集を避けることが容易になる点で、スラリー全質量基準で10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下が更に好ましく、1質量%以下が特に好ましく、0.7質量%以下が極めて好ましく、0.5質量%以下が非常に好ましい。
 本実施形態に係るスラリーのpH(25℃)は、被研磨面の表面電位に対する砥粒の表面電位が良好となり、砥粒が被研磨面に対して作用しやすくなるため、更に優れた研磨速度が得られる点で、2.0~9.0が好ましい。スラリーのpHが安定して、砥粒の凝集等の問題が生じにくくなる点で、pHの下限は、2.0以上が好ましく、2.2以上がより好ましく、2.5以上が更に好ましい。砥粒の分散性に優れ、更に優れた研磨速度が得られる点で、pHの上限は、9.0以下が好ましく、8.0以下がより好ましく、7.0以下が更に好ましく、6.5以下が特に好ましく、6.0以下が極めて好ましい。スラリーのpHは、本実施形態に係る研磨液のpHと同様の方法で測定することができる。
<研磨液セット>
 本実施形態に係る研磨液セットでは、スラリー(第一の液)と添加液(第二の液)とを混合して研磨液となるように、該研磨液の構成成分がスラリーと添加液とに分けて保存される。スラリーとしては、本実施形態に係るスラリーを用いることができる。添加液としては、添加剤を水に溶解させた液(添加剤と水とを含む液)を用いることができる。研磨液セットは、研磨時にスラリーと添加液とを混合することにより研磨液として使用される。このように、研磨液の構成成分を少なくとも二つの液に分けて保存することで、保存安定性に更に優れる研磨液とすることができる。なお、本実施形態に係る研磨液セットでは、三液以上に構成成分を分けてもよい。
 添加液に含まれる添加剤としては、前記研磨液において説明したものと同様の添加剤を用いることができる。添加液における添加剤の含有量は、添加液とスラリーとを混合して研磨液を調製したときに研磨速度が過度に低下することを抑制する観点から、添加液全質量基準で0.01質量%以上が好ましく、0.02質量%以上がより好ましい。添加液における添加剤の含有量は、添加液とスラリーとを混合して研磨液を調製したときに研磨速度が過度に低下することを抑制する観点から、添加液全質量基準で20質量%以下が好ましい。
 添加液における水としては、特に制限はないが、脱イオン水、超純水等が好ましい。水の含有量は、他の構成成分の含有量を除いた残部でよく、特に限定されない。
<基体の研磨方法及び基体>
 前記研磨液、スラリー又は研磨液セットを用いた基体の研磨方法、及び、これにより得られる基体について説明する。本実施形態に係る研磨方法は、前記研磨液又はスラリーを用いる場合、一液タイプの研磨液を用いた研磨方法であり、前記研磨液セットを用いる場合、二液タイプの研磨液又は三液以上のタイプの研磨液を用いた研磨方法である。
 本実施形態に係る基体の研磨方法では、表面に被研磨材料を有する基体(例えば半導体基板等の基板)を研磨する。本実施形態に係る基体の研磨方法では、被研磨材料の下に形成されたストッパを用いて被研磨材料を研磨してもよい。本実施形態に係る基体の研磨方法は、例えば、準備工程と基体配置工程と研磨工程とを少なくとも有している。準備工程では、表面に被研磨材料を有する基体を用意する。基体配置工程では、被研磨材料が研磨パッドに対向して配置されるように基体を配置する。研磨工程では、研磨液、スラリー又は研磨液セットを用いて、被研磨材料の少なくとも一部を除去する。研磨対象である被研磨材料の形状は特に限定されないが、例えば膜状(被研磨材料膜)である。
 被研磨材料としては、酸化ケイ素等の無機絶縁材料;オルガノシリケートグラス、全芳香環系Low-k材料等の有機絶縁材料;窒化ケイ素、ポリシリコン等のストッパ材料などが挙げられ、中でも、無機絶縁材料及び有機絶縁材料が好ましく、無機絶縁材料がより好ましい。酸化ケイ素の膜は、低圧CVD法、プラズマCVD法等により得ることができる。酸化ケイ素の膜には、リン、ホウ素等の元素がドープされていてもよい。被研磨材料の表面(被研磨面)は凹凸が形成されていることが好ましい。本実施形態に係る基体の研磨方法では、被研磨材料の凹凸の凸部が優先的に研磨されて、表面が平坦化された基体を得ることができる。
 一液タイプの研磨液又はスラリーを用いる場合、研磨工程では、基体の被研磨材料と研磨定盤の研磨パッドとの間に研磨液又はスラリーを供給して、被研磨材料の少なくとも一部を研磨する。例えば、被研磨材料を研磨パッドに押圧した状態で、研磨パッドと被研磨材料との間に研磨液又はスラリーを供給して、基体と研磨定盤とを相対的に動かして被研磨材料の少なくとも一部を研磨する。このとき、研磨液及びスラリーは、所望の水分量の組成物としてそのまま研磨パッド上に供給されてもよい。
 本実施形態に係る研磨液及びスラリーは、貯蔵、運搬、保管等に係るコストを抑制する観点で、水等の液状媒体で液体成分を例えば2倍以上(質量基準)に希釈して使用される研磨液用貯蔵液又はスラリー用貯蔵液として保管することができる。前記各貯蔵液は、研磨の直前に液状媒体で希釈されてもよく、研磨パッド上に貯蔵液と液状媒体とを供給して研磨パッド上で希釈されてもよい。
 貯蔵液の希釈倍率(質量基準)の下限は、倍率が高いほど貯蔵、運搬、保管等に係るコストの抑制効果が高いため、2倍以上が好ましく、3倍以上がより好ましく、5倍以上が更に好ましく、10倍以上が特に好ましい。希釈倍率の上限としては特に制限はないが、倍率が高いほど貯蔵液に含まれる成分の量が多く(濃度が高く)なり、保管中の安定性が低下する傾向があるため、500倍以下が好ましく、200倍以下がより好ましく、100倍以下が更に好ましく、50倍以下が特に好ましい。なお、三液以上に構成成分を分けた研磨液についても同様である。
 前記貯蔵液において、砥粒の含有量は、特に制限はないが、砥粒の凝集を避けることが容易になる点で、貯蔵液全質量基準で20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下が更に好ましく、5質量%以下が特に好ましい。砥粒の含有量は、貯蔵、運搬、保管等に係るコストを抑制する観点で、貯蔵液全質量基準で0.02質量%以上が好ましく、0.1質量%以上がより好ましく、0.5質量%以上が更に好ましく、1質量%以上が特に好ましい。
 二液タイプの研磨液を用いる場合、本実施形態に係る基体の研磨方法は、研磨工程の前にスラリーと添加液とを混合して研磨液を得る研磨液調製工程を有していてもよい。この場合、研磨工程では、研磨液調製工程において得られた研磨液を用いて被研磨材料を研磨する。このような研磨方法では、研磨液調製工程において、スラリーと添加液とを別々の配管で送液し、これらの配管を供給配管出口の直前で合流させて研磨液を得てもよい。研磨液は、所望の水分量の研磨液としてそのまま研磨パッド上に供給されてもよく、水分量の少ない貯蔵液として研磨パッド上に供給された後に研磨パッド上で希釈されてもよい。なお、三液以上に構成成分を分けた研磨液についても同様である。
 二液タイプの研磨液を用いる場合、研磨工程において、スラリーと添加液とをそれぞれ研磨パッドと被研磨材料との間に供給して、スラリーと添加液とが混合されて得られる研磨液により被研磨材料の少なくとも一部を研磨してもよい。このような研磨方法では、スラリーと添加液とを別々の送液システムで研磨パッド上へ供給することができる。スラリー及び/又は添加液は、所望の水分量の液としてそのまま研磨パッド上に供給されてもよく、水分量の少ない貯蔵液として研磨パッド上に供給された後に研磨パッド上で希釈されてもよい。なお、三液以上に構成成分を分けた研磨液についても同様である。
 本実施形態に係る研磨方法において使用する研磨装置としては、例えば、被研磨材料を有する基体を保持するためのホルダーと、回転数が変更可能なモータ等が取り付けてあり且つ研磨パッドを貼り付け可能である研磨定盤とを有する、一般的な研磨装置を使用することができる。研磨装置としては、例えば、株式会社荏原製作所製の研磨装置(型番:EPO-111)、Applied Materials社製の研磨装置(商品名:Mirra3400、Reflexion研磨機)が挙げられる。
 研磨パッドとしては、特に制限はなく、例えば、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂を使用することができる。研磨パッドには、研磨液等が溜まるような溝加工が施されていることが好ましい。
 研磨条件としては、特に制限はないが、基体が飛び出すことを抑制する見地から、研磨定盤の回転速度は200min-1(rpm)以下の低回転が好ましい。基体にかける圧力(加工荷重)は、研磨傷が発生することを更に抑制する見地から、100kPa以下が好ましい。研磨している間、研磨パッドの表面には、研磨液又はスラリー等をポンプ等で連続的に供給することが好ましい。この供給量に制限はないが、研磨パッドの表面が常に研磨液又はスラリー等で覆われていることが好ましい。研磨終了後の基体は、流水中でよく洗浄後、基体に付着した水滴をスピンドライヤ等によって払い落としてから乾燥させることが好ましい。
 以下、本発明に関して実施例を挙げて具体的に説明するが、本発明はこれらに限定されるものではない。
(4価金属元素の水酸化物を含む砥粒の作製)
 下記の手順に従って、4価金属元素の水酸化物を含む砥粒を作製した。なお、下記説明中A~Gで示される値は、表1にそれぞれ示される値である。
<実施例1~9>
 A[L]の水を容器に入れ、濃度50質量%の硝酸セリウムアンモニウム水溶液(一般式Ce(NH(NO、式量548.2g/mol、日本化学産業株式会社製、製品名50%CAN液)をB[L]加えて混合した。その後、液温をC[℃]に調整して金属塩水溶液を得た。金属塩水溶液の金属塩濃度は表1に示すとおりである。
 次に、表1に示されるアルカリ種を水に溶解させて濃度D[mol/L]の水溶液をE[L]用意した後に、液温を温度C[℃]に調整してアルカリ液を得た。
 前記金属塩水溶液の入った容器を、水を張った水槽に入れた。外部循環装置クールニクスサーキュレータ(東京理化器械株式会社(EYELA)製、製品名クーリングサーモポンプ CTP101)を用いて、表1中C[℃]で示される温度に水槽の水温を調整した。水温をC[℃]に保持しつつ、表1中F[min-1]で示される撹拌速度で金属塩水溶液を撹拌しながら、前記アルカリ液を混合速度G[m/min]で容器内に加え、4価セリウムの水酸化物を含む砥粒を含有するスラリー前駆体1を得た。スラリー前駆体1のpHは、表1に「終了pH」として示すとおりである。なお、各実施例においては、羽根部全長5cmの3枚羽根ピッチパドルを用いて金属塩水溶液を撹拌した。
 得られたスラリー前駆体1を、分画分子量50000の中空子フィルタを用いて循環させながら限外ろ過して、導電率が50mS/m以下になるまでイオン分を除去することにより、スラリー前駆体2を得た。なお、前記限外ろ過は、液面センサを用いて、スラリー前駆体1の入ったタンクの水位を一定にするように水を添加しながら行った。得られたスラリー前駆体2を適量とり、乾燥前後の質量を量ることにより、スラリー前駆体2の不揮発分含量(4価セリウムの水酸化物を含む砥粒の含量)を算出した。なお、この段階で不揮発分含量が1.0質量%未満であった場合には、限外ろ過を更に行うことにより、1.1質量%を超える程度に濃縮した。
<実施例10>
 実施例3と同じ方法で得られたスラリー前駆体1を、分画分子量50000の中空子フィルタを用いて循環させながら限外ろ過して、導電率が50mS/m以下になるまでイオン分を除去した後、1.0質量%のイミダゾール水溶液をpHが5.0になるまで加えることで、スラリー前駆体2を得た。限外ろ過、及びスラリー前駆体2の不揮発分含量(4価セリウムの水酸化物を含む砥粒の含量)の算出は実施例1~9と同様に行った。
<比較例1~4>
 A[L]の水を容器に入れ、濃度50質量%の硝酸セリウムアンモニウム水溶液(一般式Ce(NH(NO、式量548.2g/mol、日本化学産業株式会社製、製品名50%CAN液)をB[L]加えて混合した。その後、液温をC[℃]に調整して金属塩水溶液を得た。金属塩水溶液の金属塩濃度は表1に示すとおりである。
 次に、表1に示されるアルカリ種を水に溶解させて濃度D[mol/L]の水溶液をE[L]用意した後に、液温を温度C[℃]に調整してアルカリ液を得た。
 前記金属塩水溶液の入った容器を、水を張った水槽に入れた。外部循環装置クールニクスサーキュレータ(東京理化器械株式会社(EYELA)製、製品名クーリングサーモポンプ CTP101)を用いて、表1中C[℃]で示される温度に水槽の水温を調整した。水温をC[℃]に保持しつつ、表1中F[min-1]で示される撹拌速度で金属塩水溶液を撹拌しながら、前記アルカリ液を混合速度G[m/min]で容器内に加え、4価セリウムの水酸化物を含む砥粒を含有するスラリー前駆体1を得た。スラリー前駆体1のpHは、表1に「終了pH」として示すとおりである。なお、各比較例においては、羽根部全長5cmの3枚羽根ピッチパドルを用いて金属塩水溶液を撹拌した。
 スラリー前駆体1を3000Gで遠心分離し、デカンテーションにより固液分離を施して液体を除去した。得られた濾物に適量の水を加えてよく撹拌した後に遠心分離及びデカンテーションにより固液分離を施す作業を更に3回行った。
 得られた濾物に新たに水を加えて液量を1.0Lに調整した後、超音波分散処理を180分間行ってスラリー前駆体2を得た。得られたスラリー前駆体2を適量とり、乾燥前後の質量を量ることにより、スラリー前駆体2の不揮発分含量(4価セリウムの水酸化物を含む砥粒の含量)を算出した。
Figure JPOXMLDOC01-appb-T000002
(砥粒の構造分析)
 スラリー前駆体2を適量採取し、真空乾燥して砥粒を単離した。純水で充分に洗浄して得られた試料について、FT-IR ATR法による測定を行ったところ、水酸化物イオンに基づくピークの他に、硝酸イオン(NO )に基づくピークが観測された。また、同試料について、窒素に対するXPS(N-XPS)測定を行ったところ、NH に基づくピークは観測されず、硝酸イオンに基づくピークが観測された。これらの結果より、スラリー前駆体2に含まれる砥粒は、セリウム元素に結合した硝酸イオンを有する粒子を少なくとも一部含有することが確認された。また、セリウム元素に結合した水酸化物イオンを有する粒子を少なくとも一部含有することから、砥粒がセリウムの水酸化物を含有することが確認された。これらの結果より、セリウムの水酸化物が、セリウム元素に結合した水酸化物イオンを含むことが確認された。
(吸光度及び光透過率の測定)
 スラリー前駆体2を適量採取し、砥粒含有量が0.0065質量%(65ppm)となるように水で希釈して測定サンプル(水分散液)を得た。測定サンプルを1cm角のセルに約4mL入れ、株式会社日立製作所製の分光光度計(装置名:U3310)内にセルを設置した。波長200~600nmの範囲で吸光度測定を行い、波長290nmの光に対する吸光度と、波長450~600nmの光に対する吸光度とを測定した。結果を表2に示す。
 スラリー前駆体2を適量採取し、砥粒含有量が1.0質量%となるように水で希釈して測定サンプル(水分散液)を得た。測定サンプルを1cm角のセルに約4mL入れ、株式会社日立製作所製の分光光度計(装置名:U3310)内にセルを設置した。波長200~600nmの範囲で吸光度測定を行い、波長400nmの光に対する吸光度と、波長500nmの光に対する光透過率とを測定した。結果を表2に示す。
(平均二次粒子径の測定)
 スラリー前駆体2を適量採取し、砥粒含有量が0.2質量%となるように水で希釈して測定サンプル(水分散液)を得た。測定サンプルを1cm角のセルに約4mL入れ、ベックマンコールター社製の装置名:N5内にセルを設置した。分散媒の屈折率を1.33、粘度を0.887mPa・sに調整して、25℃において測定を行い、表示された平均粒子径値を平均二次粒子径とした。結果を表2に示す。
(遠心分離後の上澄み液の不揮発分含量の測定)
 スラリー前駆体2を適量採取し、砥粒含有量が1.0質量%となるように水で希釈して測定サンプル(水分散液)を得た。測定サンプルを株式会社日立工機製の超遠心分離機(装置名:70P-72)に付属の遠沈管(チューブ)に充填し、前記超遠心分離機を用いて回転数50000(回転/分)で50分間遠心分離した。前記超遠心分離機において、チューブ角は26°、最小半径Rminは3.53cm、最大半径Rmaxは7.83cm、平均半径Ravは5.68cmであった。平均半径Ravから計算される遠心加速度は、158756G=1.59×10Gであった。
 遠心分離後のチューブから上澄み液を5.0gとり、アルミシャーレに入れて150℃1時間乾燥させた。乾燥前後の質量を量ることにより、上澄み液に含まれる不揮発分含量(4価セリウムの水酸化物を含む砥粒の含量)を算出した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 実施例1~10における吸光度、光透過率及び不揮発分含量の測定に用いた測定サンプルと同様の測定サンプルを60℃/72時間保管した後に、同様に吸光度、光透過率及び不揮発分含量を測定した。波長400nmの光に対する吸光度は1.00以上1.50未満であり、波長290nmの光に対する吸光度は1.000以上であり、波長450~600nmの光に対する吸光度は0.010以下であり、波長500nmの光に対する光透過率は50%/cm以上であり、不揮発分含量は300ppm以上であった。
(スラリー用貯蔵液の外観評価)
 スラリー前駆体2に水を加え、砥粒含有量を1.0質量%に調整してスラリー用貯蔵液1を得た。また、スラリー用貯蔵液1とは別に、スラリー用貯蔵液1を60℃/72時間保管してスラリー用貯蔵液2を作製した。スラリー用貯蔵液1、2の外観の観察結果を表3に示す。
(スラリー用貯蔵液のpH測定)
 スラリー用貯蔵液1及びスラリー用貯蔵液2のpH(25℃)を横河電機株式会社製の型番PH81を用いて測定した。結果を表3に示す。
(スラリーの作製)
 スラリー用貯蔵液1及び2各100gに純水を150g添加して、砥粒含有量0.4質量%のスラリー1及び2を得た。
(研磨液の作製)
 添加剤として5質量%のポリビニルアルコールと、X質量%のイミダゾールとを含む添加液1を準備した。100gの添加液1に水を150g加えて添加液2を得た。スラリー1と添加液2とを1:1(質量比)で混合することにより研磨液1(砥粒含有量:0.2質量%、ポリビニルアルコール含有量:1.0質量%)を得た。ここで、前記X質量%は、研磨液のpHが6.0となるように決定した。なお、ポリビニルアルコール水溶液中のポリビニルアルコールのケン化度は80mol%であり、平均重合度は300であった。
 同様にして、スラリー2(60℃/72時間保管したスラリー用貯蔵液から得られるスラリー)と添加液2とを混合して研磨液2を得た。
(絶縁膜の研磨)
 研磨装置における基体取り付け用の吸着パッドを貼り付けたホルダーに、絶縁膜として酸化ケイ素膜が形成されたφ200mmシリコンウエハをセットした。多孔質ウレタン樹脂製パッドを貼り付けた定盤上に、絶縁膜がパッドに対向するようにホルダーを載せた。前記で得られた研磨液を、供給量200mL/minでパッド上に供給しながら、研磨荷重20kPaで基体をパッドに押し当てた。このとき定盤を78min-1、ホルダーを98min-1で1分間回転させ研磨を行った。研磨後のウエハを純水でよく洗浄し乾燥させた。研磨液1、2のそれぞれについて、光干渉式膜厚測定装置を用いて研磨前後の膜厚変化を測定して研磨速度を求めた。また、研磨液1の研磨速度に対する研磨液1の研磨速度と研磨液2の研磨速度との差の割合(研磨速度の差/研磨液1の研磨速度×100)を研磨速度変化率として算出した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
 表3から明らかなように、実施例の研磨液は、60℃/72時間保管後でも外観が透明であり、研磨速度の変化率も小さい。
 なお、研磨後の絶縁膜表面を、水を供給しながら回転数60min-1で回転させたPVAブラシで1分洗浄した後に乾燥させた。テンコール製サーフスキャン6220を用いて絶縁膜表面を観測したところ、絶縁膜表面における0.2μm以上の研磨傷の個数は、実施例1~10では5~20(個/ウエハ)程度であり、充分抑制されていた。
(ストッパ膜の研磨及び研磨速度比)
 実施例1で得られた研磨液1についてポリシリコン膜(ストッパ膜)の研磨速度と、ポリシリコン膜に対する酸化ケイ素膜(絶縁膜)の研磨選択比とを求めた。
 すなわち、研磨装置における基体取り付け用の吸着パッドを貼り付けたホルダーに、ポリシリコン膜が形成されたφ200mmシリコンウエハをセットした。多孔質ウレタン樹脂製パッドを貼り付けた定盤上に、ポリシリコン膜がパッドに対向するようにホルダーを載せた。実施例1で得られた研磨液1を、供給量200mL/minでパッド上に供給しながら、研磨荷重20kPaで基体をパッドに押し当てた。このとき定盤を78min-1、ホルダーを98min-1で1分間回転させ研磨を行った。研磨後のウエハを純水でよく洗浄し乾燥させた。次いで、光干渉式膜厚測定装置を用いて研磨前後の膜厚変化を測定してポリシリコン膜の研磨速度を求めたところ4nm/minであった。ポリシリコン膜に対する酸化ケイ素膜の研磨選択比(酸化ケイ素膜の研磨速度/ポリシリコン膜の研磨速度)は、70であった。
(添加剤の効果及び研磨速度への影響)
 ポリビニルアルコールを含まない研磨液について、酸化ケイ素膜の研磨速度及びポリシリコン膜の研磨速度と、ポリシリコン膜に対する酸化ケイ素膜の研磨選択比とを求めた。
 すなわち、5質量%のポリビニルアルコールを含まず、同質量%の水を加えた以外は上記と同様にして添加液1及び添加液2を作製し、実施例1で用いたスラリー1と混合して、研磨液1Xを作製した。この研磨液1Xを用いて、上記と同様にして、酸化ケイ素膜の研磨速度、ポリシリコン膜の研磨速度、及び、ポリシリコン膜に対する酸化ケイ素膜の研磨速度比を求めたところ、酸化ケイ素膜の研磨速度は280nm/minであり、ポリシリコン膜の研磨速度は80nm/minであり、研磨選択比は3であった。
 この結果から、実施例1の研磨液1は、添加剤としてのポリビニルアルコールを含まない研磨液1Xと比較して、研磨選択比が向上する一方で、絶縁膜の研磨速度はほとんど変化しなかった。すなわち、実施例1の研磨液1は、添加剤の添加効果を維持しつつ優れた研磨速度で被研磨膜を研磨することが可能であることがわかった。
 1…アングルロータ、A1…回転軸、A2…チューブ角、Rmin…最小半径、Rmax…最大半径、Rav…平均半径。

Claims (26)

  1.  砥粒と水とを含有するスラリーであって、
     前記砥粒が、4価金属元素の水酸化物を含み、且つ、該砥粒の含有量を1.0質量%に調整した水分散液において波長400nmの光に対して吸光度1.00以上1.50未満を与えるものであり、且つ、前記砥粒の含有量を1.0質量%に調整した水分散液を遠心加速度1.59×10Gで50分遠心分離したときに不揮発分含量300ppm以上の液相を与えるものである、スラリー。
  2.  前記砥粒が、該砥粒の含有量を1.0質量%に調整した水分散液において波長500nmの光に対して光透過率50%/cm以上を与えるものである、請求項1に記載のスラリー。
  3.  前記砥粒が、該砥粒の含有量を1.0質量%に調整した水分散液において波長500nmの光に対して光透過率95%/cm以上を与えるものである、請求項1又は2に記載のスラリー。
  4.  前記砥粒が、該砥粒の含有量を0.0065質量%に調整した水分散液において波長290nmの光に対して吸光度1.000以上を与えるものである、請求項1~3のいずれか一項に記載のスラリー。
  5.  前記砥粒が、該砥粒の含有量を0.0065質量%に調整した水分散液において波長450~600nmの光に対して吸光度0.010以下を与えるものである、請求項1~4のいずれか一項に記載のスラリー。
  6.  前記4価金属元素の水酸化物が、4価金属元素の塩とアルカリ源とを反応させて得られるものである、請求項1~5のいずれか一項に記載のスラリー。
  7.  前記4価金属元素が4価セリウムである、請求項1~6のいずれか一項に記載のスラリー。
  8.  第一の液と第二の液とを混合して研磨液となるように該研磨液の構成成分が前記第一の液と前記第二の液とに分けて保存され、前記第一の液が請求項1~7のいずれか一項に記載のスラリーであり、前記第二の液が添加剤と水とを含む、研磨液セット。
  9.  前記添加剤が、ビニルアルコール重合体及び当該ビニルアルコール重合体の誘導体からなる群より選択される少なくとも一種である、請求項8に記載の研磨液セット。
  10.  前記添加剤の含有量が研磨液全質量基準で0.01質量%以上である、請求項8又は9に記載の研磨液セット。
  11.  砥粒と添加剤と水とを含有する研磨液であって、
     前記砥粒が、4価金属元素の水酸化物を含み、且つ、該砥粒の含有量を1.0質量%に調整した水分散液において波長400nmの光に対して吸光度1.00以上1.50未満を与えるものであり、且つ、前記砥粒の含有量を1.0質量%に調整した水分散液を遠心加速度1.59×10Gで50分遠心分離したときに不揮発分含量300ppm以上の液相を与えるものである、研磨液。
  12.  前記砥粒が、該砥粒の含有量を1.0質量%に調整した水分散液において波長500nmの光に対して光透過率50%/cm以上を与えるものである、請求項11に記載の研磨液。
  13.  前記砥粒が、該砥粒の含有量を1.0質量%に調整した水分散液において波長500nmの光に対して光透過率95%/cm以上を与えるものである、請求項11又は12に記載の研磨液。
  14.  前記砥粒が、該砥粒の含有量を0.0065質量%に調整した水分散液において波長290nmの光に対して吸光度1.000以上を与えるものである、請求項11~13のいずれか一項に記載の研磨液。
  15.  前記砥粒が、該砥粒の含有量を0.0065質量%に調整した水分散液において波長450~600nmの光に対して吸光度0.010以下を与えるものである、請求項11~14のいずれか一項に記載の研磨液。
  16.  前記4価金属元素の水酸化物が、4価金属元素の塩とアルカリ源とを反応させて得られるものである、請求項11~15のいずれか一項に記載の研磨液。
  17.  前記4価金属元素が4価セリウムである、請求項11~16のいずれか一項に記載の研磨液。
  18.  前記添加剤が、ビニルアルコール重合体及び当該ビニルアルコール重合体の誘導体からなる群より選択される少なくとも一種である、請求項11~17のいずれか一項に記載の研磨液。
  19.  前記添加剤の含有量が研磨液全質量基準で0.01質量%以上である、請求項11~18のいずれか一項に記載の研磨液。
  20.  表面に被研磨材料を有する基体の該被研磨材料を研磨パッドに対向するように配置する工程と、
     前記研磨パッドと前記被研磨材料との間に請求項1~7のいずれか一項に記載のスラリーを供給して、前記被研磨材料の少なくとも一部を研磨する工程と、を有する、基体の研磨方法。
  21.  表面に被研磨材料を有する基体の該被研磨材料を研磨パッドに対向するように配置する工程と、
     請求項8~10のいずれか一項に記載の研磨液セットにおける前記第一の液と前記第二の液とを混合して前記研磨液を得る工程と、
     前記研磨パッドと前記被研磨材料との間に前記研磨液を供給して、前記被研磨材料の少なくとも一部を研磨する工程と、を有する、基体の研磨方法。
  22.  表面に被研磨材料を有する基体の該被研磨材料を研磨パッドに対向するように配置する工程と、
     請求項8~10のいずれか一項に記載の研磨液セットにおける前記第一の液と前記第二の液とをそれぞれ前記研磨パッドと前記被研磨材料との間に供給して、前記被研磨材料の少なくとも一部を研磨する工程と、を有する、基体の研磨方法。
  23.  表面に被研磨材料を有する基体の該被研磨材料を研磨パッドに対向するように配置する工程と、
     前記研磨パッドと前記被研磨材料との間に請求項11~19のいずれか一項に記載の研磨液を供給して、前記被研磨材料の少なくとも一部を研磨する工程と、を有する、基体の研磨方法。
  24.  前記被研磨材料が酸化ケイ素を含む、請求項20~23のいずれか一項に記載の研磨方法。
  25.  前記被研磨材料の表面に凹凸が形成されている、請求項20~24のいずれか一項に記載の研磨方法。
  26.  請求項20~25のいずれか一項に記載の研磨方法により研磨された、基体。
PCT/JP2013/058782 2012-05-22 2013-03-26 スラリー、研磨液セット、研磨液、基体の研磨方法及び基体 WO2013175856A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014516705A JP5943073B2 (ja) 2012-05-22 2013-03-26 スラリー、研磨液セット、研磨液及び基体の研磨方法
SG11201407029XA SG11201407029XA (en) 2012-05-22 2013-03-26 Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
KR1020147034838A KR102034331B1 (ko) 2012-05-22 2013-03-26 슬러리, 연마액 세트, 연마액, 기체의 연마 방법 및 기체
CN201380026857.4A CN104334675B (zh) 2012-05-22 2013-03-26 悬浮液、研磨液套剂、研磨液、基体的研磨方法及基体
US14/401,283 US9932497B2 (en) 2012-05-22 2013-03-26 Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012116859 2012-05-22
JP2012-116859 2012-05-22

Publications (1)

Publication Number Publication Date
WO2013175856A1 true WO2013175856A1 (ja) 2013-11-28

Family

ID=49623560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058782 WO2013175856A1 (ja) 2012-05-22 2013-03-26 スラリー、研磨液セット、研磨液、基体の研磨方法及び基体

Country Status (7)

Country Link
US (1) US9932497B2 (ja)
JP (1) JP5943073B2 (ja)
KR (1) KR102034331B1 (ja)
CN (1) CN104334675B (ja)
SG (1) SG11201407029XA (ja)
TW (1) TWI576400B (ja)
WO (1) WO2013175856A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107474799B (zh) 2010-03-12 2020-12-29 昭和电工材料株式会社 悬浮液、研磨液套剂、研磨液以及使用它们的基板的研磨方法
KR20130129400A (ko) 2010-11-22 2013-11-28 히타치가세이가부시끼가이샤 슬러리, 연마액 세트, 연마액, 기판의 연마 방법 및 기판
US9988573B2 (en) * 2010-11-22 2018-06-05 Hitachi Chemical Company, Ltd. Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
CN107617968A (zh) * 2012-02-21 2018-01-23 日立化成株式会社 研磨剂、研磨剂组和基体的研磨方法
WO2013175859A1 (ja) 2012-05-22 2013-11-28 日立化成株式会社 スラリー、研磨液セット、研磨液、基体の研磨方法及び基体
WO2013175854A1 (ja) 2012-05-22 2013-11-28 日立化成株式会社 スラリー、研磨液セット、研磨液、基体の研磨方法及び基体
SG11201407916RA (en) * 2012-05-25 2015-03-30 Nissan Chemical Ind Ltd Polishing solution composition for wafers
SG11201600902WA (en) * 2013-09-10 2016-03-30 Hitachi Chemical Co Ltd Slurry, polishing-liquid set, polishing liquid, method for polishing substrate, and substrate
JP2018012821A (ja) * 2016-07-22 2018-01-25 スピードファム株式会社 研削液
KR101823083B1 (ko) * 2016-09-07 2018-01-30 주식회사 케이씨텍 표면개질된 콜로이달 세리아 연마입자, 그의 제조방법 및 그를 포함하는 연마 슬러리 조성물
KR102278257B1 (ko) 2017-03-27 2021-07-15 쇼와덴코머티리얼즈가부시끼가이샤 슬러리 및 연마 방법
WO2018179061A1 (ja) 2017-03-27 2018-10-04 日立化成株式会社 研磨液、研磨液セット及び研磨方法
WO2020021680A1 (ja) 2018-07-26 2020-01-30 日立化成株式会社 スラリ及び研磨方法
CN111819263A (zh) * 2018-03-22 2020-10-23 日立化成株式会社 研磨液、研磨液套剂和研磨方法
US20220033680A1 (en) * 2018-09-25 2022-02-03 Showa Denko Materials Co., Ltd. Slurry and polishing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002067309A1 (fr) * 2001-02-20 2002-08-29 Hitachi Chemical Co., Ltd. Pate a polir et procede de polissage d'un substrat
WO2011111421A1 (ja) * 2010-03-12 2011-09-15 日立化成工業株式会社 スラリ、研磨液セット、研磨液及びこれらを用いた基板の研磨方法
WO2012070542A1 (ja) * 2010-11-22 2012-05-31 日立化成工業株式会社 スラリー、研磨液セット、研磨液、基板の研磨方法及び基板

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3123452A (en) 1964-03-03 Glass polish and process of polishing
US3097083A (en) 1959-07-02 1963-07-09 American Potash & Chem Corp Polishing composition and process of forming same
BR9104844A (pt) 1991-11-06 1993-05-11 Solvay Processo para a extracao seletiva de cerio de uma solucao aquosa de elementos de terras raras
FR2684662B1 (fr) 1991-12-09 1994-05-06 Rhone Poulenc Chimie Composition a base d'oxyde cerique, preparation et utilisation.
FR2714370B1 (fr) 1993-12-24 1996-03-08 Rhone Poulenc Chimie Précurseur d'une composition et composition à base d'un oxyde mixte de cérium et de zirconium, procédé de préparation et utilisation.
JP3278532B2 (ja) 1994-07-08 2002-04-30 株式会社東芝 半導体装置の製造方法
WO1997029510A1 (fr) 1996-02-07 1997-08-14 Hitachi Chemical Company, Ltd. Abrasif d'oxyde de cerium, microplaquette semi-conductrice, dispositif semi-conducteur, procede pour les produire et procede pour polir les substrats
JPH09270402A (ja) 1996-03-29 1997-10-14 Hitachi Chem Co Ltd 酸化セリウム研磨剤及び基板の製造法
AU4323197A (en) 1996-09-30 1998-04-24 Hitachi Chemical Company, Ltd. Cerium oxide abrasive and method of abrading substrates
JPH10154672A (ja) * 1996-09-30 1998-06-09 Hitachi Chem Co Ltd 酸化セリウム研磨剤及び基板の研磨法
US5759917A (en) * 1996-12-30 1998-06-02 Cabot Corporation Composition for oxide CMP
JPH10106994A (ja) 1997-01-28 1998-04-24 Hitachi Chem Co Ltd 酸化セリウム研磨剤及び基板の研磨法
DE69841885D1 (de) 1997-03-03 2010-10-21 Nissan Chemical Ind Ltd Verfahren zur herstellung von kompositsolen, überzugkomposition und optischem element
JP3992402B2 (ja) 1999-05-25 2007-10-17 株式会社コーセー 金属酸化物固溶酸化セリウムからなる紫外線遮断剤並びにそれを配合した樹脂組成物及び化粧料
TW593674B (en) 1999-09-14 2004-06-21 Jsr Corp Cleaning agent for semiconductor parts and method for cleaning semiconductor parts
JP2002241739A (ja) * 2001-02-20 2002-08-28 Hitachi Chem Co Ltd 研磨剤及び基板の研磨方法
JP4231632B2 (ja) 2001-04-27 2009-03-04 花王株式会社 研磨液組成物
JPWO2003038883A1 (ja) 2001-10-31 2005-02-24 日立化成工業株式会社 研磨液及び研磨方法
JP3782771B2 (ja) 2002-11-06 2006-06-07 ユシロ化学工業株式会社 研磨用砥粒及び研磨剤の製造方法
US7300601B2 (en) 2002-12-10 2007-11-27 Advanced Technology Materials, Inc. Passivative chemical mechanical polishing composition for copper film planarization
AU2003296130A1 (en) 2002-12-31 2004-07-29 Hanyang Hak Won Co., Ltd. Slurry composition for chemical mechanical polishing, method for planarization of surface of semiconductor element using the same, and method for controlling selection ratio of slurry composition
CN100373556C (zh) 2003-05-28 2008-03-05 日立化成工业株式会社 研磨剂及研磨方法
US20050028450A1 (en) 2003-08-07 2005-02-10 Wen-Qing Xu CMP slurry
JP4913409B2 (ja) 2003-09-12 2012-04-11 日立化成工業株式会社 セリウム塩、その製造方法、酸化セリウム及びセリウム系研磨剤
JP5013671B2 (ja) 2004-12-28 2012-08-29 日揮触媒化成株式会社 金属酸化物ゾルの製造方法および金属酸化物ゾル
JP2006249129A (ja) * 2005-03-08 2006-09-21 Hitachi Chem Co Ltd 研磨剤の製造方法及び研磨剤
US20060278614A1 (en) 2005-06-08 2006-12-14 Cabot Microelectronics Corporation Polishing composition and method for defect improvement by reduced particle stiction on copper surface
US7803203B2 (en) 2005-09-26 2010-09-28 Cabot Microelectronics Corporation Compositions and methods for CMP of semiconductor materials
KR20070041330A (ko) 2005-10-14 2007-04-18 가오가부시끼가이샤 반도체 기판용 연마액 조성물
CN101395097B (zh) 2006-04-14 2011-05-18 昭和电工株式会社 玻璃基板的加工方法以及玻璃基板加工用漂洗剂组合物
SG136886A1 (en) 2006-04-28 2007-11-29 Asahi Glass Co Ltd Method for producing glass substrate for magnetic disk, and magnetic disk
FR2906800B1 (fr) 2006-10-09 2008-11-28 Rhodia Recherches & Tech Suspension liquide et poudre de particules d'oxyde de cerium, procedes de preparation de celles-ci et utilisation dans le polissage
CN101611476B (zh) 2007-02-27 2015-11-25 日立化成株式会社 金属用研磨液以及研磨方法
JP5281758B2 (ja) * 2007-05-24 2013-09-04 ユシロ化学工業株式会社 研磨用組成物
JP4294710B2 (ja) 2007-09-13 2009-07-15 三井金属鉱業株式会社 酸化セリウム及びその製造方法
JP5444625B2 (ja) 2008-03-05 2014-03-19 日立化成株式会社 Cmp研磨液、基板の研磨方法及び電子部品
KR101186003B1 (ko) 2008-04-23 2012-09-26 히다치 가세고교 가부시끼가이샤 연마제 및 이 연마제를 이용한 기판의 연마방법
JP5287174B2 (ja) * 2008-04-30 2013-09-11 日立化成株式会社 研磨剤及び研磨方法
US8383003B2 (en) 2008-06-20 2013-02-26 Nexplanar Corporation Polishing systems
JP5403957B2 (ja) 2008-07-01 2014-01-29 花王株式会社 研磨液組成物
US20100107509A1 (en) 2008-11-04 2010-05-06 Guiselin Olivier L Coated abrasive article for polishing or lapping applications and system and method for producing the same.
JP5499556B2 (ja) 2008-11-11 2014-05-21 日立化成株式会社 スラリ及び研磨液セット並びにこれらから得られるcmp研磨液を用いた基板の研磨方法及び基板
JP2010153782A (ja) 2008-11-20 2010-07-08 Hitachi Chem Co Ltd 基板の研磨方法
JP2010153781A (ja) 2008-11-20 2010-07-08 Hitachi Chem Co Ltd 基板の研磨方法
CN103342986B (zh) 2008-12-11 2015-01-07 日立化成株式会社 Cmp用研磨液以及使用该研磨液的研磨方法
JP5355099B2 (ja) 2009-01-08 2013-11-27 ニッタ・ハース株式会社 研磨組成物
CN102473622B (zh) * 2009-10-22 2013-10-16 日立化成株式会社 研磨剂、浓缩一液式研磨剂、二液式研磨剂以及基板研磨方法
JP2011142284A (ja) 2009-12-10 2011-07-21 Hitachi Chem Co Ltd Cmp研磨液、基板の研磨方法及び電子部品
JP5648567B2 (ja) 2010-05-07 2015-01-07 日立化成株式会社 Cmp用研磨液及びこれを用いた研磨方法
US9988573B2 (en) 2010-11-22 2018-06-05 Hitachi Chemical Company, Ltd. Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
TWI593791B (zh) * 2011-01-25 2017-08-01 日立化成股份有限公司 Cmp研磨液及其製造方法、複合粒子的製造方法以及基體的研磨方法
CN102408836A (zh) 2011-10-20 2012-04-11 天津理工大学 一种用于氧化钛薄膜化学机械平坦化的纳米抛光液及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002067309A1 (fr) * 2001-02-20 2002-08-29 Hitachi Chemical Co., Ltd. Pate a polir et procede de polissage d'un substrat
WO2011111421A1 (ja) * 2010-03-12 2011-09-15 日立化成工業株式会社 スラリ、研磨液セット、研磨液及びこれらを用いた基板の研磨方法
WO2012070542A1 (ja) * 2010-11-22 2012-05-31 日立化成工業株式会社 スラリー、研磨液セット、研磨液、基板の研磨方法及び基板

Also Published As

Publication number Publication date
TW201402733A (zh) 2014-01-16
TWI576400B (zh) 2017-04-01
KR102034331B1 (ko) 2019-10-18
CN104334675A (zh) 2015-02-04
US9932497B2 (en) 2018-04-03
SG11201407029XA (en) 2014-12-30
US20150140904A1 (en) 2015-05-21
JPWO2013175856A1 (ja) 2016-01-12
CN104334675B (zh) 2016-10-26
JP5943073B2 (ja) 2016-06-29
KR20150014961A (ko) 2015-02-09

Similar Documents

Publication Publication Date Title
JP5943073B2 (ja) スラリー、研磨液セット、研磨液及び基体の研磨方法
JP5626358B2 (ja) スラリー、研磨液セット、研磨液、及び、基板の研磨方法
JP5943072B2 (ja) スラリー、研磨液セット、研磨液及び基体の研磨方法
JP6060970B2 (ja) スラリー、研磨液セット、研磨液及び基体の研磨方法
JP6428625B2 (ja) スラリー、研磨液セット、研磨液、及び、基体の研磨方法
JP5943074B2 (ja) スラリー、研磨液セット、研磨液及び基体の研磨方法
JP2014099581A (ja) スラリー、研磨液セット、研磨液、基体の研磨方法及び基体
JP5987905B2 (ja) 砥粒の製造方法、スラリーの製造方法及び研磨液の製造方法
JP5987904B2 (ja) 砥粒の製造方法、スラリーの製造方法及び研磨液の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794606

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014516705

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14401283

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147034838

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13794606

Country of ref document: EP

Kind code of ref document: A1