[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013172141A1 - アンモニアエンジン - Google Patents

アンモニアエンジン Download PDF

Info

Publication number
WO2013172141A1
WO2013172141A1 PCT/JP2013/061312 JP2013061312W WO2013172141A1 WO 2013172141 A1 WO2013172141 A1 WO 2013172141A1 JP 2013061312 W JP2013061312 W JP 2013061312W WO 2013172141 A1 WO2013172141 A1 WO 2013172141A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion chamber
ammonia
gas
cylinder
piston
Prior art date
Application number
PCT/JP2013/061312
Other languages
English (en)
French (fr)
Inventor
政晴 石本
Original Assignee
岩井 好朗
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岩井 好朗 filed Critical 岩井 好朗
Priority to JP2014515545A priority Critical patent/JP6078056B2/ja
Publication of WO2013172141A1 publication Critical patent/WO2013172141A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/02Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/12Engines characterised by precombustion chambers with positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/16Chamber shapes or constructions not specific to sub-groups F02B19/02 - F02B19/10
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/11Thermal or acoustic insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • F02F3/12Pistons  having surface coverings on piston heads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to an ammonia engine using ammonia gas as a fuel.
  • an ammonia engine has attracted attention as an engine using a renewable fuel from the viewpoint of environmental protection such as prevention of global warming.
  • the ammonia engine uses flame retardant ammonia gas as a fuel, it is necessary to devise measures for making the ammonia gas easily burnable.
  • the conventional ammonia engine arranges a plurality of spark plugs in the combustion chamber and generates ignition fire nuclei at a plurality of locations so that ammonia gas is easily burned (for example, Patent Document 1). reference).
  • an ammonia engine of the present invention is an ammonia engine in which ammonia gas is supplied as fuel into a combustion chamber of a cylinder.
  • the ammonia engine is disposed in the combustion chamber and uses the ammonia gas supplied into the combustion chamber.
  • a catalyst member that decomposes into nitrogen gas and hydrogen gas is provided.
  • the ammonia gas supplied into the combustion chamber of the cylinder is decomposed into nitrogen gas and hydrogen gas by coming into contact with the catalyst member. Combining with oxygen inside makes it easy to burn.
  • the volume of the combustion chamber is reduced by the volume of the catalyst member disposed in the combustion chamber and the compression ratio of the ammonia engine is increased, the temperature of the combustion chamber can be raised by the compression heat, and the ammonia gas By increasing the density, ammonia gas in contact with the catalyst member can be increased.
  • the ammonia gas supplied into the combustion chamber can be efficiently decomposed into easily combustible hydrogen gas, so that the combustion efficiency of the ammonia engine can be improved.
  • the catalyst member has a heat storage function for storing heat generated in the combustion chamber.
  • the ammonia gas can be decomposed more efficiently by the heat stored in the catalyst member, the combustion efficiency of the ammonia engine can be further improved.
  • the cylinder includes a cylinder liner formed in a cylindrical shape, a piston provided in the cylinder liner so as to be capable of reciprocating in the axial direction thereof, and an axial end of the cylinder liner disposed between the piston and the piston.
  • the catalyst member has a fixed catalyst portion attached to the cylinder head or the cylinder liner.
  • the reciprocation of the piston is greater than when attached to the piston on the movable side of the cylinder. It is possible to suppress the application of external force such as inertial force due to movement. Therefore, it is possible to prevent the catalyst member from being damaged during the driving of the ammonia engine.
  • the cylinder includes a cylinder liner formed in a cylindrical shape, a piston provided in the cylinder liner so as to be capable of reciprocating in the axial direction thereof, and an axial end of the cylinder liner disposed between the piston and the piston.
  • the catalyst member has a fixed side catalyst portion attached to the cylinder head or the cylinder liner, and the ammonia engine includes the fixed side catalyst. It is preferable to further include a heating device for heating the part. In this case, since the catalyst member has a fixed-side catalyst portion attached to the cylinder head or cylinder liner on the fixed side of the cylinder, the reciprocation of the piston is greater than when attached to the piston on the movable side of the cylinder.
  • the ammonia engine includes a heating device that heats the fixed catalyst portion, the fixed catalyst is heated by the heating device until the fixed catalyst portion can store heat generated in the combustion chamber after the ammonia engine is started. Part can be heated. Thereby, since ammonia gas can be decomposed
  • the ammonia engine further includes an ignition device attached to the cylinder head and having an ignition unit for igniting hydrogen gas decomposed from ammonia gas, and the hydrogen gas is disposed in the vicinity of the ignition unit of the fixed side catalyst unit. It is preferable that a pre-combustion chamber for burning is formed. In this case, hydrogen gas decomposed from ammonia gas in the pre-combustion chamber can be efficiently burned by the ignition unit.
  • At least one of a supply passage for supplying ammonia gas into the combustion chamber and an exhaust passage for discharging exhaust gas after combustion generated in the combustion chamber to the outside is provided in the fixed side catalyst portion. Is preferably formed. In this case, since the number of parts is reduced as compared with the case where the supply passage and / or the discharge passage are provided separately from the stationary catalyst portion, the configuration of the ammonia engine can be simplified.
  • the catalyst member further includes a movable catalyst part attached to an end surface of the piston on the combustion chamber side.
  • the volume of the combustion chamber is further reduced by the volume of the movable side catalyst portion, and the compression ratio of the ammonia engine is further increased, so that the ammonia gas can be decomposed more efficiently.
  • At least one of a supply passage for supplying ammonia gas into the combustion chamber and an exhaust passage for discharging exhaust gas after combustion generated in the combustion chamber to the outside is provided in the fixed side catalyst portion. It is preferable that the movable side catalyst portion is disposed so as to be insertable into the at least one passage by movement of the piston. In this case, since the movable catalyst part is inserted into the supply passage and / or the discharge passage of the fixed catalyst part when the piston moves, it is possible to prevent the two catalyst parts from interfering with each other.
  • the catalyst member is preferably made of nickel.
  • the catalyst member is made of nickel having excellent heat resistance, pressure resistance and vibration resistance, the life of the catalyst member can be extended.
  • the cylinder is preferably insulated.
  • the heat generated in the combustion chamber of the cylinder can be prevented from being released to the outside of the cylinder, so that the combustion efficiency of the ammonia engine can be further improved.
  • the ammonia engine further includes a supply device that supplies a mixed gas obtained by mixing ammonia gas and oxygen gas into the combustion chamber.
  • a supply device that supplies a mixed gas obtained by mixing ammonia gas and oxygen gas into the combustion chamber.
  • the combustion efficiency can be improved.
  • FIG. 1 is a side sectional view of an ammonia engine according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1 showing a fixed side catalyst portion.
  • FIG. 2 is a cross-sectional view taken along the line BB in FIG. 1 showing a movable side catalyst part. It is side sectional drawing of the ammonia engine which shows the state which raised the piston. It is a sectional side view of the ammonia engine which concerns on 2nd Embodiment of this invention.
  • FIG. 6 is a plan view of a fixed side catalyst portion in the ammonia engine of FIG. 5.
  • FIG. 1 is a side sectional view of an ammonia engine according to a first embodiment of the present invention.
  • an ammonia engine 1 of this embodiment includes a cylinder 2 having a combustion chamber 21 therein, a supply device 3 for supplying a mixed gas in which ammonia gas (fuel) and air are mixed into the combustion chamber 21, An ignition device 4 for burning the mixed gas supplied into the combustion chamber 21, a discharge device 5 for discharging the exhaust gas after combustion to the outside from the combustion chamber 21, and a catalyst member 6 disposed in the combustion chamber 21.
  • the cylinder 2 includes a cylindrical cylinder liner 22 supported by the support member 9, a piston 23 provided in the cylinder liner 22 so as to be capable of reciprocating in the vertical direction (axial direction), and an upper end portion of the cylinder liner 22. And a cylinder head 24 disposed at (one axial end).
  • the cylinder head 24 is formed in a bowl shape, for example, and is fixed to the cylinder liner 22 with its opening directed downward.
  • a space surrounded by the inner circumferential surface of the cylinder liner 22, the upper surface of the piston 23, and the inner surface 24 c of the cylinder head 24 is a combustion chamber 21, and the mixed gas supplied into the combustion chamber 21 is The piston 23 is compressed by ascending.
  • the cylinder head 24 is provided with a supply hole 24a for supplying the mixed gas into the combustion chamber 21 and a discharge hole 24b for discharging the exhaust gas to the outside.
  • the support member 9 has a wall surface 9a having a circular cross section on which the outer peripheral surface of the cylinder liner 22 is fitted.
  • a plurality of annular concave grooves 9a1 are formed on the wall surface 9a at predetermined intervals in the axial direction.
  • the annular space surrounded by each concave groove 9a1 and the outer peripheral surface of the cylinder liner 22 is configured as a heat insulating space S1 for suppressing heat generated in the combustion chamber 21 from being released to the outside of the cylinder liner 22.
  • the ignition device 4 is made of, for example, an ignition plug, and is fixed through the thickness of the cylinder head 24 in the center thereof.
  • An ignition unit 4 a that ignites hydrogen gas decomposed from ammonia gas in the mixed gas supplied into the combustion chamber 21 is provided at the lower end of the ignition device 4.
  • the supply device 3 includes a supply valve 3a that opens and closes the supply hole 24a, and the mixed gas is supplied from the supply hole 24a into the combustion chamber 21 by opening the supply valve 3a by a driving unit (not shown). It has become.
  • the discharge device 5 includes a discharge valve 5a that opens and closes the discharge hole 24b, and the exhaust valve 5a is driven to open by driving means (not shown), whereby exhaust gas after combustion in the combustion chamber 21 is discharged from the discharge hole 24b. It has come to be.
  • the ammonia gas contained in the mixed gas comes into contact with the catalyst member 6 in the combustion chamber 21, the ammonia gas (NH 3 ) is converted into nitrogen gas (N 2 ) and hydrogen as shown in the following formula (1). It decomposes into gas (H 2 ). 2NH 3 ⁇ N 2 + 3H 2 (1) The decomposed hydrogen gas is combined with oxygen in the atmosphere in the combustion chamber 21 (oxygen contained in the air in the mixed gas) and burned by a spark generated in the ignition unit 4a of the ignition device 4. Yes.
  • the catalyst member 6 has a heat storage function for storing heat generated in the combustion chamber 21, and the temperature of the mixed gas supplied into the combustion chamber 21 is increased by the stored heat. Yes. Further, the catalyst member 6 is disposed in the combustion chamber 21, and the volume of the combustion chamber 21 is reduced by the volume of the catalyst member 6 to increase the compression ratio of the ammonia engine 1. Thus, since the inside of the combustion chamber 21 is brought into a high temperature and high pressure state by the catalyst member 6, the ammonia gas can be efficiently decomposed.
  • metal members such as cobalt, nickel, chromium, cerium, iron, copper, platinum, titanium, manganese, molybdenum, tungsten, palladium, ruthenium, vanadium, zirconium, bismuth, silicon, for example And alloys thereof (including sintered alloys) or plating. Since the catalyst member 6 of this embodiment is used in a high temperature and high pressure state, it is excellent in heat resistance, pressure resistance and vibration resistance, and nickel plating is used in consideration of cost.
  • the catalyst member 6 is configured by a fixed side catalyst portion 7 attached to the inner surface 24 c of the cylinder head 24 and a movable side catalyst portion 8 attached to the upper surface of the piston 23.
  • the fixed-side catalyst unit 7 is formed in, for example, a flat hemispherical shape, and is entirely housed in the cylinder head 24.
  • the spherical outer peripheral surface 7a of the fixed-side catalyst unit 7 is fixed to the inner surface 24c of the cylinder head 24 via annular first to fourth annular plates 10 to 13.
  • the first annular plate 10 is disposed so as to cover the outside of the opening of a recess 7e (described later) of the fixed-side catalyst unit 7.
  • the second and third annular plates 11 and 12 are arranged so as to cover the outside of the openings of the supply passage 7c (described later) and the discharge passage 7d (described later), respectively.
  • the fourth annular plate 13 is disposed so as to cover the lower end of the outer peripheral surface 7a of the fixed-side catalyst unit 7 over the entire circumference.
  • a supply passage 7 c having a circular cross section for supplying the mixed gas into the combustion chamber 21 at a position facing the supply hole 24 a of the cylinder head 24 is provided in the fixed side catalyst portion 7.
  • the supply passage 7c is formed such that the hole diameter of the supply passage 7c gradually increases from the outer peripheral surface 7a to the inner surface 7h of the fixed side catalyst portion 7, and the supply valve 3a reciprocates in the supply passage 7c. It is supposed to be.
  • the fixed-side catalyst unit 7 has a discharge passage 7d having a circular cross section for discharging the exhaust gas after combustion generated in the combustion chamber 21 to the outside at a position facing the discharge hole 24b of the cylinder head 24. It is formed to penetrate in the direction.
  • the discharge passage 7d is formed such that the hole diameter of the discharge passage 7d gradually increases from the outer peripheral surface 7a to the inner surface 7h of the fixed side catalyst portion 7, and the discharge valve 5a reciprocates in the discharge passage 7d. It is supposed to be.
  • a substantially conical recess 7e is formed around the ignition part 4a at the center of the outer peripheral surface 7a of the fixed-side catalyst part 7.
  • a space surrounded by the recess 7e and the inner surface 24c of the cylinder head 24 is a pre-combustion chamber 7f for burning hydrogen gas decomposed from ammonia gas in the vicinity of the ignition part 4a.
  • a plurality of small holes 7g communicating with the supply passage 7c, the discharge passage 7d, and the combustion chamber 21 below the precombustion chamber 7f are formed in the recess 7e of the fixed side catalyst portion 7 so as to extend radially (also in FIG. 2). reference).
  • FIG. 3 is a cross-sectional view taken along the line BB of FIG.
  • FIG. 4 is a side sectional view of the ammonia engine 1 showing a state where the piston 23 is raised.
  • the movable side catalyst portion 8 includes a disk-shaped substrate portion 8a disposed above the piston 23, and first and second projecting portions 8b and 2b protruding from the upper surface of the substrate portion 8a. It is comprised by the protrusion part 8c.
  • the substrate portion 8a is fixed to the upper surface of the piston 23 (end surface on the combustion chamber 21 side) via an annular fifth annular plate 15, and the upper surface of the piston 23, the lower surface of the substrate portion 8a, and the fifth annular plate.
  • the gap surrounded by the plate 15 is configured as a heat insulating space S ⁇ b> 3 for suppressing heat generated in the combustion chamber 21 from being released to the piston 23 side via the movable catalyst portion 8.
  • the cylinder 2 is insulated by the heat insulation space S3 and the heat insulation spaces S1 and S2 described above.
  • the first protrusion 8b is formed, for example, in the shape of a truncated cone, and is inserted into the supply passage 7c in the fixed-side catalyst portion 7 as the piston 23 rises as shown in FIG. .
  • the upper surface of the first protrusion 8b is formed to be inclined with respect to the horizontal plane so as not to interfere with the supply valve 3a when inserted into the supply passage 7c.
  • the second projecting portion 8c is formed, for example, in the shape of a truncated cone, and is inserted into the discharge passage 7d in the fixed-side catalyst portion 7 as the piston 23 rises as shown in FIG. .
  • the upper surface of the second protrusion 8c is formed to be inclined with respect to the horizontal plane so that it does not interfere with the discharge valve 5a when inserted into the discharge passage 7d.
  • the ammonia gas in the mixed gas supplied into the combustion chamber 21 of the cylinder 2 is decomposed into nitrogen gas and hydrogen gas by contacting the catalyst member 6. Therefore, the hydrogen gas after decomposition becomes easy to burn by being combined with oxygen in the atmosphere in the combustion chamber 21. Moreover, since the volume of the combustion chamber 21 is reduced by the volume of the catalyst member 6 disposed in the combustion chamber 21 and the compression ratio of the ammonia engine 1 is increased, the temperature in the combustion chamber 21 is raised by the compression heat. In addition, the ammonia gas in contact with the catalyst member 6 can be increased by increasing the density of the ammonia gas. As a result, the ammonia gas supplied into the combustion chamber 21 can be efficiently decomposed into hydrogen gas that is easily combusted, so that the combustion efficiency and output of the ammonia engine 1 can be improved.
  • the catalyst member 6 has a heat storage function for storing heat generated in the combustion chamber 21, the ammonia gas can be decomposed more efficiently by the heat stored in the catalyst member 6. Thereby, the combustion efficiency of the ammonia engine 1 can be further improved.
  • the catalyst member 6 since the catalyst member 6 has the fixed-side catalyst portion 7 attached to the cylinder head 24 that is the fixed side of the cylinder 2, the piston is compared with the case where it is attached to the piston 23 that is the movable side of the cylinder 2. It is possible to suppress the application of an external force such as an inertial force due to the reciprocating movement of 23. Therefore, it is possible to prevent the catalyst member 6 from being damaged during the driving of the ammonia engine 1.
  • a pre-combustion chamber 7f for burning hydrogen gas decomposed from ammonia gas is formed in the vicinity of the ignition unit 4a of the fixed-side catalyst unit 7, the pre-combustion chamber 7f was decomposed from ammonia gas. Hydrogen gas can be efficiently burned by the ignition unit 4a.
  • the supply passage 7c and the discharge passage 7d are formed in the fixed side catalyst portion 7, the number of parts can be reduced as compared with the case where the supply passage 7c and the discharge passage 7d are provided separately from the fixed side catalyst portion 7. Can be reduced. Thereby, the structure of the ammonia engine 1 can be simplified.
  • the movable side catalyst unit 8 is attached to the end surface (upper surface) of the piston 23 on the combustion chamber 21 side, the volume of the combustion chamber 21 can be further reduced by the volume of the movable side catalyst unit 8. Thereby, since the compression ratio of the ammonia engine 1 can be further increased, the ammonia gas can be decomposed more efficiently. Further, when the piston 23 is raised, the movable side catalyst portion 8 is inserted into the supply passage 7c and the discharge passage 7d of the fixed side catalyst portion 7, so that it is possible to prevent the two catalyst portions 7 and 8 from interfering with each other. .
  • the catalyst member 6 is made of nickel plating excellent in heat resistance, pressure resistance and vibration resistance, the life of the catalyst member 6 can be extended.
  • the cylinder 2 is insulated by the heat insulating spaces S1 to S3, it is possible to suppress the heat generated in the combustion chamber 21 of the cylinder 2 from being released to the outside of the cylinder 2. Thereby, the combustion efficiency of the ammonia engine 1 can be further improved.
  • the ammonia engine 1 includes the supply device 3 that supplies a mixed gas in which ammonia gas and air are mixed into the combustion chamber 21, the hydrogen gas decomposed from the ammonia gas in the combustion chamber 21 is mixed. It can be combined with oxygen gas contained in the air in the gas and burned. Thereby, the combustion efficiency of the ammonia engine 1 can be further improved.
  • FIG. 5 is a side sectional view of the ammonia engine 1 according to the second embodiment of the present invention.
  • FIG. 6 is a plan view of the fixed-side catalyst unit 7 in the ammonia engine 1.
  • the ammonia engine 1 in the present embodiment includes a heating device 16 that heats the stationary catalyst unit 7.
  • the heating device 16 includes, for example, a pair of heating wires 16a formed in a spiral shape.
  • Each heating wire 16a is accommodated in a pair of recesses 7a1 formed in a substantially elliptical shape in plan view on the outer peripheral surface 7a of the fixed-side catalyst unit 7.
  • the shape of the recess 7a1 may be formed in other shapes such as a rectangular shape in plan view in addition to a substantially elliptical shape in plan view.
  • the heating device 16 starts operation immediately before the start of the ammonia engine 1 so as to heat the fixed side catalyst unit 7 immediately before the start of the ammonia engine 1 and during the warm-up operation immediately after the start.
  • the heating device 16 stops its operation when the ammonia engine 1 changes from the warm-up operation to the normal operation and the fixed-side catalyst unit 7 can store heat by the heat generated in the combustion chamber 21.
  • the description is abbreviate
  • the stationary catalyst unit 7 can be heated by the heating device 16 until the stationary catalyst unit 7 can store heat generated in the combustion chamber 21. .
  • the combustion efficiency of the ammonia engine 1 can further be improved.
  • the catalyst member 6 in the above embodiment has a heat storage function, but it is sufficient that it has at least a function as a catalyst for decomposing ammonia gas.
  • the fixed side catalyst portion 7 of the catalyst member 6 is attached to the cylinder head 24, but may be attached to the inner peripheral surface of the cylinder liner 22. In this case, the inner peripheral surface of the cylinder liner 22 can be protected by the catalyst member 6.
  • the catalyst member 6 is constituted by the fixed side catalyst part 7 and the movable side catalyst part 8, it may be constituted by only one catalyst part.
  • the catalyst member 6 is provided as a separate body from the cylinder 2, but may be formed integrally with the cylinder 2.
  • the supply passage 7c and the discharge passage 7d are formed in the fixed-side catalyst unit 7, only one of the passages may be formed.
  • the movable-side catalyst unit 8 only needs to have the first projecting portion 8b or the second projecting portion 8c inserted into one of the passages.
  • the fixed side catalyst portion 7 may be one in which neither the supply passage 7c nor the discharge passage 7d is formed.
  • the supply apparatus 3 is supplying the mixed gas which mixed ammonia gas and air, what is necessary is just to supply the mixed gas which mixed ammonia gas and oxygen gas at least. Moreover, you may make it the supply apparatus 3 supply ammonia gas and air (or oxygen gas) separately.
  • the cylinder 2 is insulated by the heat insulating spaces S1 to S3, but may be insulated by a heat insulating material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Catalysts (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

燃焼効率を向上させることができるアンモニアエンジンを提供することを目的とする。シリンダ(2)の燃焼室(21)内に、燃料として供給されたアンモニアガスを窒素ガスと水素ガスとに分解する触媒部材(6)が配置されている。

Description

アンモニアエンジン
 本発明は、アンモニアガスを燃料とするアンモニアエンジンに関する。
 近年、地球温暖化防止などの環境保全の観点から、再生可能な燃料を用いたエンジンとして、アンモニアエンジンが着目されている。しかし、アンモニアエンジンは、難燃性のアンモニアガスを燃料としているため、アンモニアガスを燃え易くするための工夫が必要になる。このため、従来のアンモニアエンジンは、燃焼室に複数の点火プラグを配置し、点火火災核を複数の箇所で生成することによって、アンモニアガスを容易に燃焼させるようにしている(例えば、特許文献1参照)。
特開2010-159705号公報
 しかしながら、この種のアンモニアエンジンにあっては、燃焼室内に供給されたアンモニアガスの燃焼効率が依然として低いため、未だ実用化されていないのが現状である。
 本発明は、かかる事情に鑑みてなされたものであり、燃焼効率を向上させることができるアンモニアエンジンを提供することを目的とする。
 前記目的を達成するための本発明のアンモニアエンジンは、シリンダの燃焼室内に燃料としてアンモニアガスが供給されるアンモニアエンジンであって、前記燃焼室内に配置され、当該燃焼室内に供給されたアンモニアガスを窒素ガスと水素ガスとに分解する触媒部材を備えていることを特徴とする。
 本発明のアンモニアエンジンによれば、シリンダの燃焼室内に供給されたアンモニアガスは、触媒部材に接触することにより窒素ガスと水素ガスとに分解されるため、分解後の水素ガスは燃焼室内の雰囲気中の酸素と結合することで燃焼し易くなる。しかも、燃焼室内に配置された触媒部材の容積分だけ燃焼室の容積が減少してアンモニアエンジンの圧縮比が高くなるため、その圧縮熱により燃焼室内を昇温させることができるとともに、アンモニアガスが高密度になることで触媒部材に接触するアンモニアガスを増加させることができる。これにより、燃焼室内に供給されたアンモニアガスを燃焼し易い水素ガスに効率的に分解することができるため、アンモニアエンジンの燃焼効率を向上させることができる。
 前記触媒部材は、前記燃焼室内で発生した熱を蓄熱する蓄熱機能を有することが好ましい。
 この場合、触媒部材に蓄熱された熱により、アンモニアガスをさらに効率的に分解することができるため、アンモニアエンジンの燃焼効率をさらに向上させることができる。
 前記シリンダは、筒状に形成されたシリンダライナと、前記シリンダライナ内にその軸方向に往復移動可能に設けられたピストンと、前記シリンダライナの軸方向一端部に配置されて前記ピストンとの間に前記燃焼室を形成しているシリンダヘッドと、を有し、前記触媒部材は、前記シリンダヘッド又は前記シリンダライナに取り付けられた固定側触媒部を有していることが好ましい。
 この場合、触媒部材は、シリンダの固定側となるシリンダヘッド又はシリンダライナに取り付けられた固定側触媒部を有しているため、シリンダの可動側となるピストンに取り付ける場合に比べて、ピストンの往復移動による慣性力等の外力が作用するのを抑制することができる。したがって、アンモニアエンジンの駆動中に触媒部材が破損するのを抑制することができる。
 前記シリンダは、筒状に形成されたシリンダライナと、前記シリンダライナ内にその軸方向に往復移動可能に設けられたピストンと、前記シリンダライナの軸方向一端部に配置されて前記ピストンとの間に前記燃焼室を形成しているシリンダヘッドと、を有し、前記触媒部材は、前記シリンダヘッド又は前記シリンダライナに取り付けられた固定側触媒部を有し、前記アンモニアエンジンは、前記固定側触媒部を加熱する加熱装置をさらに備えていることが好ましい。
 この場合、触媒部材は、シリンダの固定側となるシリンダヘッド又はシリンダライナに取り付けられた固定側触媒部を有しているため、シリンダの可動側となるピストンに取り付ける場合に比べて、ピストンの往復移動による慣性力等の外力が作用するのを抑制することができる。したがって、アンモニアエンジンの駆動中に触媒部材が破損するのを抑制することができる。
 また、アンモニアエンジンは固定側触媒部を加熱する加熱装置を備えているため、アンモニアエンジンの始動後に固定側触媒部が燃焼室内で発生した熱を蓄熱できる状態になるまで、加熱装置により固定側触媒部を加熱することができる。これにより、アンモニアガスをさらに効率的に分解することができるため、アンモニアエンジンの燃焼効率をさらに向上させることができる。
 前記アンモニアエンジンは、前記シリンダヘッドに取り付けられ、アンモニアガスから分解された水素ガスを点火させる点火部を有する点火装置をさらに備え、前記固定側触媒部の前記点火部の近傍には、前記水素ガスを燃焼させるための予燃室が形成されていることが好ましい。
 この場合、予燃室においてアンモニアガスから分解された水素ガスを点火部により効率良く燃焼させることができる。
 前記固定側触媒部には、前記燃焼室内にアンモニアガスを供給するための供給通路、及び前記燃焼室内で発生する燃焼後の排気ガスを外部へ排出するための排出通路のうちの少なくとも一方の通路が形成されていることが好ましい。
 この場合、供給通路及び/又は排出通路を、固定側触媒部と別体として設ける場合に比べて、部品点数が少なくなるため、アンモニアエンジンの構成を簡素化することができる。
 前記触媒部材は、前記ピストンの前記燃焼室側の端面に取り付けられた可動側触媒部をさらに有していることが好ましい。
 この場合、可動側触媒部の容積分だけ燃焼室の容積がさらに減少して、アンモニアエンジンの圧縮比がさらに高くなるため、アンモニアガスをさらに効率的に分解することができる。
 前記固定側触媒部には、前記燃焼室内にアンモニアガスを供給するための供給通路、及び前記燃焼室内で発生する燃焼後の排気ガスを外部へ排出するための排出通路のうちの少なくとも一方の通路が形成され、前記可動側触媒部は、前記ピストンの移動により前記少なくとも一方の通路に挿入可能に配置されていることが好ましい。
 この場合、ピストンが移動したときに可動側触媒部は固定側触媒部の供給通路及び/又は排出通路に挿入されるため、両触媒部が干渉するのを防止することができる。
 前記触媒部材はニッケルからなることが好ましい。
 この場合、触媒部材は、耐熱性、耐圧性及び耐振性に優れたニッケルからなるため、触媒部材の長寿命化を図ることができる。
 前記シリンダは断熱されていることが好ましい。この場合、シリンダの燃焼室内で発生した熱がシリンダの外方へ放出されるのを抑制することができるため、アンモニアエンジンの燃焼効率をさらに向上させることができる。
 前記アンモニアエンジンは、前記燃焼室内にアンモニアガスと酸素ガスとを混合した混合ガスを供給する供給装置をさらに備えていることが好ましい。
 この場合、燃焼室内においてアンモニアガスから分解された水素ガスを、混合ガスに含まれる酸素ガスと結合して燃焼させることができるため、アンモニアエンジンの燃焼効率をさらに向上させることができる。
 本発明のアンモニアエンジンによれば、燃焼効率を向上させることができる。
本発明の第1実施形態に係るアンモニアエンジンの側断面図である。 固定側触媒部を示す図1のA-A矢視断面図である。 可動側触媒部を示す図1のB-B矢視断面図である。 ピストンを上昇させた状態を示すアンモニアエンジンの側断面図である。 本発明の第2実施形態に係るアンモニアエンジンの側断面図である。 図5のアンモニアエンジンにおける固定側触媒部の平面図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1は本発明の第1実施形態に係るアンモニアエンジンの側断面図である。図1において、本実施形態のアンモニアエンジン1は、内部に燃焼室21を有するシリンダ2と、燃焼室21内にアンモニアガス(燃料)と空気とを混合した混合ガスを供給する供給装置3と、燃焼室21内に供給された混合ガスを燃焼させる点火装置4と、燃焼後の排気ガスを燃焼室21から外部へ排出する排出装置5と、燃焼室21内に配置された触媒部材6とを備えている。
 シリンダ2は、支持部材9により支持されている円筒状のシリンダライナ22と、シリンダライナ22内にその上下方向(軸方向)に往復移動可能に設けられたピストン23と、シリンダライナ22の上端部(軸方向一端部)に配置されたシリンダヘッド24とを有している。シリンダヘッド24は、例えば椀状に形成されており、その開口を下方に向けた状態でシリンダライナ22に固定されている。シリンダライナ22の内周面と、ピストン23の上面と、シリンダヘッド24の内面24cとによって囲まれた空間が、燃焼室21とされており、この燃焼室21内に供給された混合ガスは、ピストン23が上昇することにより圧縮される。また、シリンダヘッド24には、混合ガスを燃焼室21内に供給するための供給孔24a、及び前記排気ガスを外部へ排出するための排出孔24bが形成されている。
 支持部材9は、シリンダライナ22の外周面が嵌合される断面円状の壁面9aを有しており、この壁面9aには、環状の凹溝9a1が軸方向に所定間隔をあけて複数形成されている。各凹溝9a1とシリンダライナ22の外周面とによって囲まれた環状空間は、燃焼室21内で発生した熱がシリンダライナ22の外方へ放出されるのを抑制するための断熱空間S1として構成されている。
 点火装置4は、例えば点火プラグからなり、シリンダヘッド24の中心部において、その厚さ方向に貫通して固定されている。点火装置4の下端部には、燃焼室21内に供給された混合ガス中のアンモニアガスから分解された水素ガスを点火させる点火部4aが設けられている。
 供給装置3は、供給孔24aを開閉する供給弁3aを備えており、図示しない駆動手段により供給弁3aを開放駆動することにより、供給孔24aから燃焼室21内に混合ガスが供給されるようになっている。
 排出装置5は、排出孔24bを開閉する排出弁5aを備えており、図示しない駆動手段により排出弁5aを開放駆動することにより、燃焼室21内の燃焼後の排気ガスが排出孔24bから排出されるようになっている。
 触媒部材6は、燃焼室21内において混合ガスに含まれるアンモニアガスが接触することにより、当該アンモニアガス(NH)を、下記式(1)に示すように、窒素ガス(N)と水素ガス(H)とに分解するものである。
 2NH→N+3H  ・・・(1)
 分解後の水素ガスは、点火装置4の点火部4aで発生する火花により、燃焼室21内の雰囲気中の酸素(混合ガス中の空気に含まれる酸素)と結合して燃焼するようになっている。
 ところで、水素ガスは、アンモニアガスを分解すると、前記式(1)に示すように、モル数が2倍になることで、体積が2倍になって体積膨張するため、燃焼室21外でアンモニアガスを分解して、その分解後に体積膨張した水素ガスをすべて燃焼室21内に供給することは困難になる。これに対して、本実施形態では、燃焼室21内でアンモニアガスを分解しているため、燃焼室21内で前記体積膨張した水素ガスは燃焼室21から外部へほとんど排出されることなく、燃焼に使用することができる。このため、本実施形態では、燃焼室21外でアンモニアガスを分解する場合に比べて、分解後の水素ガスを、燃焼室21内に多く取り入れることができ、その分、アンモニアエンジン1の出力を向上させることができる。
 また、アンモニアガスは、通常、高温で水素ガスと窒素ガスとに分解されるが、アンモニアガスを触媒部材6に接触させることにより、その分解温度を効果的に低減することができる。
 触媒部材6は、燃焼室21内で発生した熱を蓄熱する蓄熱機能を有しており、その蓄熱された熱により、燃焼室21内に供給された混合ガスの温度を上昇させるようになっている。さらに、触媒部材6は、燃焼室21内に配置されており、触媒部材6の容積分だけ燃焼室21の容積を減少させ、アンモニアエンジン1の圧縮比を高くしている。このように、燃焼室21内は、触媒部材6によって高温及び高圧の状態となるため、アンモニアガスを効率良く分解することができる。
 なお、本発明における触媒部材6としては、例えば、コバルト、ニッケル、クロム、セリウム、鉄、銅、白金、チタン、マンガン、モリブデン、タングステン、パラジウム、ルテニウム、バナジウム、ジルコニウム、ビスマス、シリコンなどの金属部材、並びにこれらの合金(焼結合金を含む)又はメッキなどが挙げられる。本実施形態の触媒部材6は、高温及び高圧の状態で用いられるため、耐熱性、耐圧性及び耐振性に優れ、かつコスト面を考慮して、ニッケルメッキが用いられている。
 図2は、図1のA-A矢視断面図である。図1及び図2において、触媒部材6は、シリンダヘッド24の内面24cに取り付けられている固定側触媒部7と、ピストン23の上面に取り付けられている可動側触媒部8とによって構成されている。
 固定側触媒部7は、例えば扁平半球状に形成されており、その全体がシリンダヘッド24の内部に収納されている。
 固定側触媒部7の球状の外周面7aは、図1に示すように、円環状の第1~第4環状板10~13を介して、シリンダヘッド24の内面24cに固定されている。第1環状板10は、固定側触媒部7の窪み7e(後述)の開口の外側を覆うように配置されている。第2,第3環状板11,12は、供給通路7c(後述)及び排出通路7d(後述)の開口の外側をそれぞれ覆うように配置されている。第4環状板13は、固定側触媒部7の外周面7aの下端部を全周に亘って覆うように配置されている。固定側触媒部7の外周面7aとシリンダヘッド24の内面24cと第1環状板10と第4環状板13とによって囲まれた空間(第2及び第3環状板11,12の各内側の空間を除く)は、燃焼室21内で発生した熱が、固定側触媒部7を介してシリンダヘッド24の外方へ放出されるのを抑制するための断熱空間S2として構成されている。
 図1及び図2に示すように、固定側触媒部7には、シリンダヘッド24の供給孔24aに対向する位置に、燃焼室21内に混合ガスを供給するための断面円状の供給通路7cが上下方向に貫通して形成されている。供給通路7cは、固定側触媒部7の外周面7aから内面7hに向かうに従って、当該供給通路7cの孔径が漸次拡大するように形成されており、この供給通路7c内において供給弁3aが往復移動するようになっている。
 また、固定側触媒部7には、シリンダヘッド24の排出孔24bに対向する位置に、燃焼室21で発生する燃焼後の排気ガスを外部へ排出するための断面円状の排出通路7dが上下方向に貫通して形成されている。排出通路7dは、固定側触媒部7の外周面7aから内面7hに向かうに従って、当該排出通路7dの孔径が漸次拡大するように形成されており、この排出通路7d内において排出弁5aが往復移動するようになっている。
 図1において、固定側触媒部7の外周面7aの中央部には、点火部4aの周りに略円錐状の窪み7eが形成されている。この窪み7eとシリンダヘッド24の内面24cとによって囲まれた空間は、点火部4aの近傍でアンモニアガスから分解された水素ガスを燃焼させるための予燃室7fとされている。固定側触媒部7の窪み7eには、供給通路7c、排出通路7d及び予燃室7f下方の燃焼室21にそれぞれ連通する複数の小孔7gが放射状に延びて形成されている(図2も参照)。
 以上の構成により、ピストン23が上昇すると(図4参照)、燃焼室21内の混合ガスの一部が、小孔7gに入り込んで圧縮されながら、高温の固定側触媒部7に接触することにより、混合ガス中のアンモニアガスが分解され、その分解後の水素ガスが予燃室7f内に導入される。この状態で、点火部4aにより予燃室7f内の水素ガスを点火すると、予燃室7f内は、水素ガスの燃焼により高圧になることで、その燃焼による炎が、各小孔7gを通過して予燃室7f下方の燃焼室21内へ放射状に勢いよく伝播する。これにより、燃焼室21に存在する未燃の水素ガスを効率良く燃焼させることができる。
 図3は、可動側触媒部8を示す図1のB-B矢視断面図である。また、図4は、ピストン23を上昇させた状態を示すアンモニアエンジン1の側断面図である。図3及び図4において、可動側触媒部8は、ピストン23の上方に配置された円板状の基板部8aと、この基板部8aの上面に突設された第1突出部8b及び第2突出部8cとによって構成されている。
 基板部8aは、ピストン23の上面(燃焼室21側の端面)に円環状の第5環状板15を介して固定されており、ピストン23の上面と、基板部8aの下面と、第5環状板15とによって囲まれた隙間は、燃焼室21内で発生した熱が、可動側触媒部8を介してピストン23側へ放出されるのを抑制するための断熱空間S3として構成されている。この断熱空間S3と、上述の断熱空間S1,S2とによって、シリンダ2は断熱されている。
 第1突出部8bは、例えば截頭円錐体状に形成されており、図4に示すように、ピストン23の上昇により、固定側触媒部7における供給通路7cに挿入されるようになっている。第1突出部8bの上面は、供給通路7cに挿入されたときに供給弁3aと干渉しないように、水平面に対して傾斜して形成されている。
 第2突出部8cは、例えば截頭円錐体状に形成されており、図4に示すように、ピストン23の上昇により、固定側触媒部7における排出通路7dに挿入されるようになっている。第2突出部8cの上面は、排出通路7dに挿入されたときに排出弁5aと干渉しないように、水平面に対して傾斜して形成されている。
 以上、本実施形態のアンモニアエンジン1によれば、シリンダ2の燃焼室21内に供給された混合ガス中のアンモニアガスは、触媒部材6に接触することにより、窒素ガスと水素ガスとに分解されるため、分解後の水素ガスは燃焼室21内の雰囲気中の酸素と結合することで燃焼し易くなる。しかも、燃焼室21内に配置された触媒部材6の容積分だけ燃焼室21の容積が減少して、アンモニアエンジン1の圧縮比が高くなるため、その圧縮熱により燃焼室21内を昇温させることができるとともに、アンモニアガスが高密度になることで触媒部材6に接触するアンモニアガスを増加させることができる。これにより、燃焼室21内に供給されたアンモニアガスを燃焼し易い水素ガスに効率的に分解することができるため、アンモニアエンジン1の燃焼効率及び出力を向上させることができる。
 また、触媒部材6は、燃焼室21内で発生した熱を蓄熱する蓄熱機能を有しているため、触媒部材6に蓄熱された熱により、アンモニアガスをさらに効率的に分解することができる。これにより、アンモニアエンジン1の燃焼効率をさらに向上させることができる。
 また、触媒部材6は、シリンダ2の固定側となるシリンダヘッド24に取り付けられた固定側触媒部7を有しているため、シリンダ2の可動側となるピストン23に取り付ける場合に比べて、ピストン23の往復移動による慣性力等の外力が作用するのを抑制することができる。したがって、アンモニアエンジン1の駆動中に触媒部材6が破損するのを抑制することができる。
 また、固定側触媒部7の点火部4aの近傍に、アンモニアガスから分解された水素ガスを燃焼させるための予燃室7fが形成されているため、予燃室7fにおいてアンモニアガスから分解された水素ガスを点火部4aにより効率良く燃焼させることができる。
 また、固定側触媒部7には、供給通路7c及び排出通路7dが形成されているため、供給通路7c及び排出通路7dを固定側触媒部7と別体として設ける場合に比べて、部品点数を少なくすることができる。これにより、アンモニアエンジン1の構成を簡素化することができる。
 また、ピストン23の燃焼室21側の端面(上面)に可動側触媒部8が取り付けられているため、可動側触媒部8の容積分だけ燃焼室21の容積をさらに減少させることができる。これにより、アンモニアエンジン1の圧縮比をさらに高くすることができるため、アンモニアガスをさらに効率的に分解することができる。また、ピストン23が上昇したときに可動側触媒部8は固定側触媒部7の供給通路7c及び排出通路7dに挿入されるため、両触媒部7,8が干渉するのを防止することができる。
 また、触媒部材6は、耐熱性、耐圧性及び耐振性に優れたニッケルメッキからなるため、触媒部材6の長寿命化を図ることができる。
 シリンダ2は断熱空間S1~S3によって断熱されているため、シリンダ2の燃焼室21内で発生した熱がシリンダ2の外方へ放出されるのを抑制することができる。これにより、アンモニアエンジン1の燃焼効率をさらに向上させることができる。
 また、アンモニアエンジン1は、燃焼室21内にアンモニアガスと空気とを混合した混合ガスを供給する供給装置3を備えているため、燃焼室21内においてアンモニアガスから分解された水素ガスを、混合ガス中の空気に含まれる酸素ガスと結合して燃焼させることができる。これにより、アンモニアエンジン1の燃焼効率をさらに向上させることができる。
 図5は、本発明の第2実施形態に係るアンモニアエンジン1の側断面図である。また、図6は、そのアンモニアエンジン1における固定側触媒部7の平面図である。
 図5及び図6に示すように、本実施形態におけるアンモニアエンジン1は、固定側触媒部7を加熱する加熱装置16を備えている。この加熱装置16は、例えば、渦巻状に形成された一対の電熱線16aを有している。各電熱線16aは、固定側触媒部7の外周面7aにおいて平面視略楕円状に形成された一対の凹部7a1にそれぞれ収容されている。なお、凹部7a1の形状は、平面視略楕円状以外に、平面視矩形状など他の形状に形成されていてもよい。
 加熱装置16は、アンモニアエンジン1の始動直前に作動を開始することで、アンモニアエンジン1の始動直前及び始動直後の暖気運転中に固定側触媒部7を加熱するようになっている。そして、加熱装置16は、アンモニアエンジン1が前記暖気運転から通常運転となり、且つ固定側触媒部7が燃焼室21内で発生した熱により蓄熱できる状態になると、その作動を停止する。なお、本実施形態のその他の構成は、第1実施形態と同様であるため、その説明を省略する。
 以上、本実施形態におけるアンモニアエンジン1によれば、固定側触媒部7が燃焼室21内で発生した熱を蓄熱できる状態になるまで、加熱装置16により固定側触媒部7を加熱することができる。これにより、アンモニアガスをさらに効率的に分解することができるため、アンモニアエンジン1の燃焼効率をさらに向上させることができる。
 上述の実施の形態はすべて例示であって制限的なものではない。本発明の権利範囲は請求の範囲によって規定され、そこに記載された構成と均等の範囲内のすべての変更は本発明の技術的範囲に含まれる。
 例えば、上記実施形態における触媒部材6は、蓄熱機能を有しているが、少なくともアンモニアガスを分解する触媒としての機能を有していればよい。
 また、触媒部材6の固定側触媒部7は、シリンダヘッド24に取り付けられているが、シリンダライナ22の内周面に取り付けられていてもよい。この場合、シリンダライナ22の内周面を触媒部材6によって保護することができる。
 さらに、触媒部材6は、固定側触媒部7と可動側触媒部8とによって構成されているが、一方の触媒部のみによって構成されていてもよい。
 また、触媒部材6は、シリンダ2に対して別体として設けられているが、シリンダ2と一体に形成されていてもよい。
 また、固定側触媒部7には、供給通路7c及び排出通路7dが形成されているが、一方の通路のみが形成されたものであってもよい。この場合、可動側触媒部8は、その一方の通路に挿入される第1突出部8b又は第2突出部8cを有していればよい。また、固定側触媒部7は、供給通路7c及び排出通路7dのいずれも形成されていないものであってもよい。
 また、供給装置3は、アンモニアガスと空気とを混合した混合ガスを供給しているが、少なくともアンモニアガスと酸素ガスとを混合した混合ガスを供給すればよい。また、供給装置3は、アンモニアガスと空気(又は酸素ガス)とを個別に供給するようにしてもよい。
 また、シリンダ2は、断熱空間S1~S3によって断熱されているが、断熱材により断熱されていてもよい。
 1  アンモニアエンジン
 2  シリンダ
 3  供給装置
 4  点火装置
 4a 点火部
 6  触媒部材
 7  固定側触媒部
 7c 供給通路
 7d 排出通路
 7f 予燃室
 8  可動側触媒部
16  加熱装置
21  燃焼室
22  シリンダライナ
23  ピストン
24  シリンダヘッド

Claims (11)

  1.  シリンダの燃焼室内に燃料としてアンモニアガスが供給されるアンモニアエンジンであって、
     前記燃焼室内に配置され、当該燃焼室内に供給されたアンモニアガスを窒素ガスと水素ガスとに分解する触媒部材を備えていることを特徴とするアンモニアエンジン。
  2.  前記触媒部材は、前記燃焼室内で発生した熱を蓄熱する蓄熱機能を有する請求項1に記載のアンモニアエンジン。
  3.  前記シリンダは、筒状に形成されたシリンダライナと、前記シリンダライナ内にその軸方向に往復移動可能に設けられたピストンと、前記シリンダライナの軸方向一端部に配置されて前記ピストンとの間に前記燃焼室を形成しているシリンダヘッドと、を有し、
     前記触媒部材は、前記シリンダヘッド又は前記シリンダライナに取り付けられた固定側触媒部を有している請求項1に記載のアンモニアエンジン。
  4.  前記シリンダは、筒状に形成されたシリンダライナと、前記シリンダライナ内にその軸方向に往復移動可能に設けられたピストンと、前記シリンダライナの軸方向一端部に配置されて前記ピストンとの間に前記燃焼室を形成しているシリンダヘッドと、を有し、
     前記触媒部材は、前記シリンダヘッド又は前記シリンダライナに取り付けられた固定側触媒部を有し、
     前記固定側触媒部を加熱する加熱装置をさらに備えている請求項2に記載のアンモニアエンジン。
  5.  前記シリンダヘッドに取り付けられ、アンモニアガスから分解された水素ガスを点火させる点火部を有する点火装置をさらに備え、
     前記固定側触媒部の前記点火部の近傍には、前記水素ガスを燃焼させるための予燃室が形成されている請求項3又は4に記載のアンモニアエンジン。
  6.  前記固定側触媒部には、前記燃焼室内にアンモニアガスを供給するための供給通路、及び前記燃焼室内で発生する燃焼後の排気ガスを外部へ排出するための排出通路のうちの少なくとも一方の通路が形成されている請求項3~5のいずれか一項に記載のアンモニアエンジン。
  7.  前記触媒部材は、前記ピストンの前記燃焼室側の端面に取り付けられた可動側触媒部をさらに有している請求項3又は4に記載のアンモニアエンジン。
  8.  前記固定側触媒部には、前記燃焼室内にアンモニアガスを供給するための供給通路、及び前記燃焼室内で発生する燃焼後の排気ガスを外部へ排出するための排出通路のうちの少なくとも一方の通路が形成され、
     前記可動側触媒部は、前記ピストンの移動により前記少なくとも一方の通路に挿入可能に配置されている請求項7に記載のアンモニアエンジン。
  9.  前記触媒部材がニッケルからなる請求項1~8のいずれか一項に記載のアンモニアエンジン。
  10.  前記シリンダが断熱されている請求項1~9のいずれか一項に記載のアンモニアエンジン。
  11.  前記燃焼室内にアンモニアガスと酸素ガスとを混合した混合ガスを供給する供給装置をさらに備えている請求項1~10のいずれか一項に記載のアンモニアエンジン。
PCT/JP2013/061312 2012-05-15 2013-04-16 アンモニアエンジン WO2013172141A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014515545A JP6078056B2 (ja) 2012-05-15 2013-04-16 アンモニアエンジン

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-111450 2012-05-15
JP2012111450 2012-05-15

Publications (1)

Publication Number Publication Date
WO2013172141A1 true WO2013172141A1 (ja) 2013-11-21

Family

ID=49583555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061312 WO2013172141A1 (ja) 2012-05-15 2013-04-16 アンモニアエンジン

Country Status (2)

Country Link
JP (1) JP6078056B2 (ja)
WO (1) WO2013172141A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140374660A1 (en) * 2013-06-25 2014-12-25 Massachusetts Institute Of Technology Engine Chemical Reactor With Catalyst
NO20171354A1 (no) * 2017-08-14 2019-02-15 Lars Harald Heggen Nullutslipps fremdriftssystem og generatoranlegg med ammoniakk som brennstoff
JP2021161921A (ja) * 2020-03-31 2021-10-11 国立研究開発法人 海上・港湾・航空技術研究所 アンモニア燃焼方法、アンモニア燃焼エンジン及びそれを搭載した船舶
AT523836B1 (de) * 2020-09-23 2021-12-15 Pankl Racing Systems Ag Verfahren zum Betreiben eines Hubkolbenmotors sowie Hubkolbenmotor
CN114320572A (zh) * 2022-01-13 2022-04-12 天津大学 多燃烧模式氨燃料发动机及其控制方法
CN114439599A (zh) * 2020-11-06 2022-05-06 曼能解决方案(曼能解决方案德国股份公司)分公司 以氨进行操作的压缩点火式内燃发动机以及改装套件
CN115306540A (zh) * 2022-07-27 2022-11-08 清华大学 氢氨内燃机射流燃烧系统及其燃烧控制方法
DE102022107928A1 (de) 2022-04-04 2023-10-05 Green AP GmbH Verbrennungskraftmaschine, insbesondere für ein Kraftfahrzeug

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023156787A1 (en) * 2022-02-18 2023-08-24 Johnson Matthey Public Limited Company Ammonia-burning combustion engine
EP4230853A1 (en) * 2022-02-18 2023-08-23 Johnson Matthey Public Limited Company Ammonia-burning combustion engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05332152A (ja) * 1991-06-25 1993-12-14 Koji Korematsu アンモニア燃焼エンジン
JPH10131814A (ja) * 1996-10-31 1998-05-19 Fuairatsuku Internatl Kk 流体燃料の改質用セラミックス触媒を用いた内燃機関及 びこれを使用した交通輸送用又は発電用手段
JP2006052722A (ja) * 2004-07-14 2006-02-23 Nissan Motor Co Ltd 点火触媒、改質触媒、点火素子及び内燃機関
JP2009097422A (ja) * 2007-10-16 2009-05-07 Toyota Central R&D Labs Inc 内燃機関の燃料改質装置及びエンジンシステム
JP2010069394A (ja) * 2008-09-17 2010-04-02 Toyota Central R&D Labs Inc 薄膜の形成方法及び内燃機関の製造方法
JP2010121509A (ja) * 2008-11-19 2010-06-03 Hitachi Zosen Corp アンモニアエンジンシステム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05332152A (ja) * 1991-06-25 1993-12-14 Koji Korematsu アンモニア燃焼エンジン
JPH10131814A (ja) * 1996-10-31 1998-05-19 Fuairatsuku Internatl Kk 流体燃料の改質用セラミックス触媒を用いた内燃機関及 びこれを使用した交通輸送用又は発電用手段
JP2006052722A (ja) * 2004-07-14 2006-02-23 Nissan Motor Co Ltd 点火触媒、改質触媒、点火素子及び内燃機関
JP2009097422A (ja) * 2007-10-16 2009-05-07 Toyota Central R&D Labs Inc 内燃機関の燃料改質装置及びエンジンシステム
JP2010069394A (ja) * 2008-09-17 2010-04-02 Toyota Central R&D Labs Inc 薄膜の形成方法及び内燃機関の製造方法
JP2010121509A (ja) * 2008-11-19 2010-06-03 Hitachi Zosen Corp アンモニアエンジンシステム

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140374660A1 (en) * 2013-06-25 2014-12-25 Massachusetts Institute Of Technology Engine Chemical Reactor With Catalyst
NO20171354A1 (no) * 2017-08-14 2019-02-15 Lars Harald Heggen Nullutslipps fremdriftssystem og generatoranlegg med ammoniakk som brennstoff
WO2019035718A1 (en) 2017-08-14 2019-02-21 Lars Harald Heggen ZERO EMISSION PROPULSION SYSTEMS AND GENERATOR ASSEMBLIES USING AMMONIA AS COMBUSTIBLE
NO343554B1 (no) * 2017-08-14 2019-04-01 Lars Harald Heggen Nullutslipps fremdriftssystem og generatoranlegg med ammoniakk som brennstoff
US11149662B2 (en) 2017-08-14 2021-10-19 Lars Harald Heggen Zero emission propulsion systems and generator sets using ammonia as fuel
US11542878B2 (en) 2017-08-14 2023-01-03 Lars Harald Heggen Zero emission propulsion systems and generator sets using ammonia as fuel
JP2021161921A (ja) * 2020-03-31 2021-10-11 国立研究開発法人 海上・港湾・航空技術研究所 アンモニア燃焼方法、アンモニア燃焼エンジン及びそれを搭載した船舶
AT523836B1 (de) * 2020-09-23 2021-12-15 Pankl Racing Systems Ag Verfahren zum Betreiben eines Hubkolbenmotors sowie Hubkolbenmotor
AT523836A4 (de) * 2020-09-23 2021-12-15 Pankl Racing Systems Ag Verfahren zum Betreiben eines Hubkolbenmotors sowie Hubkolbenmotor
JP2022075566A (ja) * 2020-11-06 2022-05-18 エムエーエヌ・エナジー・ソリューションズ・フィリアル・アフ・エムエーエヌ・エナジー・ソリューションズ・エスイー・ティスクランド アンモニアで動作する圧縮着火内燃機関及び改造キット
CN114439599A (zh) * 2020-11-06 2022-05-06 曼能解决方案(曼能解决方案德国股份公司)分公司 以氨进行操作的压缩点火式内燃发动机以及改装套件
JP7183369B2 (ja) 2020-11-06 2022-12-05 エムエーエヌ・エナジー・ソリューションズ・フィリアル・アフ・エムエーエヌ・エナジー・ソリューションズ・エスイー・ティスクランド アンモニアで動作する圧縮着火内燃機関及び改造キット
CN114439599B (zh) * 2020-11-06 2023-08-15 曼能解决方案(曼能解决方案德国股份公司)分公司 以氨进行操作的压缩点火式内燃发动机以及改装套件
CN114320572B (zh) * 2022-01-13 2022-12-02 天津大学 多燃烧模式氨燃料发动机及其控制方法
CN114320572A (zh) * 2022-01-13 2022-04-12 天津大学 多燃烧模式氨燃料发动机及其控制方法
DE102022107928A1 (de) 2022-04-04 2023-10-05 Green AP GmbH Verbrennungskraftmaschine, insbesondere für ein Kraftfahrzeug
WO2023194188A1 (de) 2022-04-04 2023-10-12 Green AP GmbH Verbrennungskraftmaschine, insbesondere für ein kraftfahrzeug
DE102022107928B4 (de) 2022-04-04 2023-11-30 Green AP GmbH Verbrennungskraftmaschine, insbesondere für ein Kraftfahrzeug
CN115306540A (zh) * 2022-07-27 2022-11-08 清华大学 氢氨内燃机射流燃烧系统及其燃烧控制方法
CN115306540B (zh) * 2022-07-27 2023-09-19 清华大学 氢氨内燃机射流燃烧系统及其燃烧控制方法

Also Published As

Publication number Publication date
JP6078056B2 (ja) 2017-02-08
JPWO2013172141A1 (ja) 2016-01-12

Similar Documents

Publication Publication Date Title
JP6078056B2 (ja) アンモニアエンジン
JP4380691B2 (ja) 副室式内燃機関
EP1949512B1 (en) Ignition spark plug
JP2009541644A (ja) 内燃機関
FI126301B (fi) Polttomoottorikone
JP2014066245A (ja) 内燃機関の予燃室システム
JP5002566B2 (ja) エンジン及びエンジン用点火プラグ
JP5167108B2 (ja) 点火プラグを備えたガスエンジン
KR20190091332A (ko) 셔틀 전극을 갖는 스파크 플러그
JP5022298B2 (ja) エンジン及びエンジン用点火プラグ
JP5060386B2 (ja) エンジン
JP5543540B2 (ja) エンジン
JP2005214543A (ja) 燃焼装置及び燃料電池に用いられる水素供給装置
KR100925872B1 (ko) 플라즈마 버너장치
US11577683B2 (en) Gas generator
JP2010144516A (ja) ガスエンジンの予燃焼器
US8853925B2 (en) High efficiency spark plug
WO2015093309A1 (ja) ガスエンジン
CN110391592B (zh) 火花塞、发动机、火花塞点火方法和发动机点火方法
KR100684771B1 (ko) 연료 개질장치 및 그 구동 방법
JP5421976B2 (ja) エンジン及びエンジン用点火プラグ
JP2009270542A (ja) エンジン及びエンジン用点火プラグ
JP2007062461A (ja) ガス発生器
WO2024224808A1 (ja) ガスエンジン
KR200193476Y1 (ko) 스파크 플러그 구조체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13790727

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014515545

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13790727

Country of ref document: EP

Kind code of ref document: A1