[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013157237A1 - 投写用レンズおよび投写型表示装置 - Google Patents

投写用レンズおよび投写型表示装置 Download PDF

Info

Publication number
WO2013157237A1
WO2013157237A1 PCT/JP2013/002512 JP2013002512W WO2013157237A1 WO 2013157237 A1 WO2013157237 A1 WO 2013157237A1 JP 2013002512 W JP2013002512 W JP 2013002512W WO 2013157237 A1 WO2013157237 A1 WO 2013157237A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
projection
group
conditional expression
following conditional
Prior art date
Application number
PCT/JP2013/002512
Other languages
English (en)
French (fr)
Inventor
永原 暁子
永利 由紀子
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201390000407.3U priority Critical patent/CN204178035U/zh
Publication of WO2013157237A1 publication Critical patent/WO2013157237A1/ja
Priority to US14/515,549 priority patent/US9195034B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/16Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/317Convergence or focusing systems

Definitions

  • the present invention relates to a projection lens and a projection display device, for example, a projection lens suitable for enlarging and projecting a light beam having image information from a light valve on a screen, and a projection display device using the projection lens. It is.
  • a projection display device that enlarges and projects an image displayed on a light valve such as a liquid crystal display element or DMD (digital micromirror device: registered trademark) has been used for presentations.
  • a projection lens mounted on this apparatus for example, it has a long back focus in which a color synthesis optical system can be disposed between a light valve and a projection lens, and the angle dependency of the color synthesis optical system is taken into consideration.
  • the reduction side is telecentric, and it has a compact configuration in consideration of installation in an indoor space.
  • Patent Documents 1 to 3 As a compact projection lens having a small number of lens groups, for example, as described in Patent Documents 1 to 3 below, a negative first lens group, a positive second lens group, and a positive third lens are sequentially arranged from the enlargement side.
  • a three-group lens system in which lens groups are arranged is known.
  • Patent Document 4 below describes a projection lens in which a positive first lens group, a stop, and a positive second lens group are arranged.
  • Patent Document 1 has a large F number, large spherical aberration and curvature of field, and a cemented lens is disposed in the vicinity of the stop. There is a possibility that the lens performance is deteriorated due to deterioration or deterioration of the lens.
  • the thing of patent document 2, 4 has a large F number.
  • the F-number described in Patent Document 3 has a small F number, but there is room for improvement in order to sufficiently meet recent demands for both widening the angle and correcting field curvature.
  • the present invention has been made in view of such circumstances, and a projection lens that realizes a small F-number, a wide angle, and good optical performance at the same time while being small in size and telecentric on the reduction side, and such a projection lens.
  • An object of the present invention is to provide a projection display device including a lens.
  • the projection lens according to the present invention includes a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a first lens having a positive refractive power, in order from the magnification side, in order from the magnification side.
  • the zoom lens is substantially composed of three lens groups, and the reduction side is telecentric, and an aspheric plastic lens made of a plastic material and having at least one aspheric surface is disposed on the most enlargement side.
  • the three lens groups are arranged in order from the enlargement side, with a front group having a negative refractive power and a rear group having a positive refractive power arranged with an air gap therebetween.
  • Consists of substantially two lenses composed of a negative single lens and a positive single lens arranged with an air interval shorter than the air interval between the front group and the rear group.
  • the following conditional expression (1 ) A. -0.7 ⁇ fFG3 / f ⁇ 0.7 (1)
  • fFG3 Front focus of the third lens group
  • f Focal length of the entire system when the projection distance is infinite
  • the first lens group of the projection lens according to the present invention may be configured to include substantially three lenses including an aspheric plastic lens and two negative lenses.
  • the second lens group of the projection lens according to the present invention includes, in order from the magnification side, a cemented lens having a positive refractive power formed by cementing two lenses, one of which is a positive lens and the other is a negative lens; It may be configured so as to be substantially composed of three lenses composed of a single lens. At this time, it is preferable that both the cemented lens and the single lens in the second lens group have a biconvex shape.
  • the projection lens according to the present invention is configured to perform focusing by moving at least one of the lenses of the first lens group and the second lens group other than the aspheric plastic lens. May be.
  • the projection display device includes a light source, a light valve that receives light from the light source, and the book described above as a projection lens that projects an optical image by light modulated by the light valve onto a screen.
  • the projection lens of the invention is provided.
  • the “enlargement side” means the projection side (screen side), and the screen side is also referred to as the enlargement side for the sake of convenience when performing reduced projection.
  • the “reduction side” means the original image display area side (light valve side), and the light valve side is also referred to as the reduction side for the sake of convenience when performing reduced projection.
  • substantially consisting of may include optical elements other than lenses having substantially no power, lenses such as a diaphragm and a cover glass, in addition to the lens groups and lenses listed as constituent elements. It is intended to be good.
  • the “lens group” does not necessarily include a plurality of lenses but also includes a single lens.
  • single lens means a single lens that is not joined.
  • the surface shape of the lens and the sign of refractive power are considered in the paraxial region for those including an aspherical surface.
  • the enlargement side and the reduction side are the front side and the back side, respectively.
  • the sign of the front focus of the third lens group in conditional expression (1) is negative or reduced when the enlargement-side focal position of the third lens group is on the enlargement side with respect to the most enlargement side surface of the third lens group.
  • the time when it is on the side is assumed to be positive.
  • Im ⁇ is a so-called image circle diameter, and can be obtained, for example, according to the specifications of the projection lens and the specifications of the apparatus on which the projection lens is mounted.
  • the “ray height” is considered as the absolute value of the height from the optical axis.
  • the projection lens according to the present invention is composed of three negative, positive, and positive lens groups arranged in order from the enlargement side, the reduction side is telecentric, and the configuration of the most enlargement side lens and the third lens group is preferable. Therefore, a small F number, a wide angle, and good optical performance can be realized simultaneously while being small.
  • the projection display device since the projection display device according to the present invention includes the projection lens according to the present invention, the projection display device can be small, have high brightness, and have a widening function. It can have good projection performance that can be accommodated.
  • FIGS. 10A to 10H are diagrams showing aberrations of the projection lens according to Example 1 of the present invention.
  • FIGS. 11A to 11H are graphs showing aberrations of the projection lens according to Example 2 of the present invention.
  • 12A to 12H are diagrams showing aberrations of the projection lens according to Example 3 of the invention.
  • 13A to 13H are diagrams showing aberrations of the projection lens according to Example 4 of the present invention.
  • FIGS. 16A to 16H are aberration diagrams of the projection lens according to Example 7 of the present invention.
  • FIGS. 1 to 7 are cross-sectional views showing a configuration example of a projection lens according to an embodiment of the present invention, which respectively correspond to projection lenses of Examples 1 to 7 to be described later.
  • the basic configuration of the example shown in FIG. 1 to FIG. 7 is the same, and the illustration method of FIG. 1 to FIG. 7 is also the same. Therefore, in the following, with reference to FIG. The lens will be described.
  • FIG. 1 is a cross-sectional view showing the lens configuration of a projection lens according to an embodiment of the present invention, which also shows an on-axis light beam 4 and an off-axis light beam 5 having a maximum field angle.
  • This projection lens is mounted on a projection display device, for example, and can be used as a projection lens for projecting image information displayed on a light valve onto a screen.
  • a projection display device for example, and can be used as a projection lens for projecting image information displayed on a light valve onto a screen.
  • FIG. 1 the left side of the figure is the enlarged side and the right side is the reduced side, and assuming a case where it is mounted on a projection display device, a glass or filter that is used in a color synthesis unit or illumination light separation unit is assumed.
  • the block 2 and the image display surface 1 of the light valve located on the reduction side surface of the glass block 2 are also shown.
  • a light beam given image information on the image display surface 1 is incident on the projection lens via the glass block 2 and is arranged on the left side of the paper surface by the projection lens ( (Not shown).
  • FIG. 1 shows an example in which the position of the reduction side surface of the glass block 2 matches the position of the image display surface 1, the present invention is not necessarily limited to this. Further, FIG. 1 shows only one image display surface 1, but in a projection display device, a light beam from a light source is separated into three primary colors by a color separation optical system, and three light sources for each primary color are used. A light valve may be provided so that a full-color image can be displayed.
  • the projection lens according to the present embodiment is a fixed focus optical system, and in order from the magnification side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a positive lens
  • the third lens group G3 having refractive power and substantially three lens groups.
  • the third lens group G3 further includes a front group G3f having a negative refractive power and a rear group G3r having a positive refractive power, which are arranged in order from the enlargement side with an air gap therebetween.
  • the reduction side of the entire system is configured to be telecentric.
  • the reduction side is telecentric means that the bisector of the upper maximum ray and the lower maximum ray is parallel to the optical axis in the cross section of the light beam condensed at an arbitrary point on the reduction side image plane.
  • This is not limited to the case where the distance is completely telecentric, that is, the case where the bisector is completely parallel to the optical axis, and there is some error (with respect to the optical axis).
  • the case where there is some error is the case where there is a slight inclination with respect to the optical axis
  • the inclination of the bisector with respect to the optical axis is within a range of ⁇ 3 °.
  • a light beam that overlaps the bisector of the off-axis light beam 5 having the maximum field angle is illustrated as a virtual principal light beam 6.
  • This projection lens is advantageous for realizing a telecentric optical system having a long back focus as well as for widening the angle by arranging negative, positive and positive lens groups in order from the magnification side. Become.
  • the third lens group G3 is composed of a negative front group G3f and a positive rear group G3r arranged with an air gap in order from the enlargement side, so that the front group G3f has a curvature of field. It can be corrected satisfactorily, and chromatic aberration can be corrected particularly well in the rear group G3r.
  • the first lens group G1 includes three lenses L1 to L3
  • the second lens group G2 includes three lenses L4 to L6, and the third lens group G3.
  • the front group G3f of the third lens group G3 is composed of two lenses L7 and L8, and the rear group G3r is composed of six lenses L9 to L14.
  • the number of lenses constituting each lens group of the projection lens of the present invention other than the front group G3f is not necessarily limited to the example shown in FIG.
  • the most enlarged lens L1 of the entire projection lens system is made of a plastic material and is configured to be an aspheric plastic lens having at least one aspheric surface. Distortion can be satisfactorily corrected by providing an aspherical surface on the most magnified lens.
  • both surfaces of the lens L1 are aspherical surfaces, and all other surfaces are spherical surfaces.
  • the number of aspheric lenses can be reduced as much as possible by appropriately selecting the surface on which the aspheric surface is applied, and the cost can be suppressed.
  • the first lens group G1 preferably includes a lens L1 that is an aspheric lens and two negative lenses L2 and L3.
  • a lens L1 that is an aspheric lens and two negative lenses L2 and L3.
  • the lens L1 can be a negative meniscus lens having a convex surface on the reduction side in the paraxial region
  • the lens L2 can be a negative meniscus lens having a convex surface on the enlargement side
  • the lens L3 can be a biconcave lens.
  • the second lens group G2 includes, in order from the magnification side, two lenses, one of which is a positive lens and the other of which is a negative lens, and a cemented lens having a positive refractive power and a single lens having a positive refractive power It is preferable to consist of.
  • spherical aberration can be favorably corrected by configuring the second lens group G2 from two sets of elements having positive refractive power.
  • the lateral chromatic aberration can be favorably corrected by the cemented lens of the second lens group G2.
  • both the cemented lens of the second lens group G2 and the positive single lens on the reduction side have a biconvex shape. That is, in the example shown in FIG. 1, it is preferable that the enlargement side surface of the lens L4, the reduction side surface of the lens L5, and the both side surfaces of the lens L6 are all convex. By doing so, each lens surface appropriately shares the positive refractive power necessary for the second lens group G2, and the aberration correction is favorably performed while preventing the lens diameter of the second lens group G2 from becoming too large. It can be carried out.
  • the cemented lens of the second lens group G2 may be a lens in which a negative lens and a positive lens are cemented in order from the magnification side, or may be a lens in which a positive lens and a negative lens are cemented in order from the magnification side. .
  • the front group G3f of the third lens group G3 includes a lens L7 that is a negative single lens and a lens L8 that is a positive single lens in order from the magnification side, as in the example shown in FIG.
  • the air gap da between the lenses L8 is configured to be shorter than the air gap db between the front group G3f and the rear group G3r.
  • the negative single lens and the positive single lens of the front group G3f are a biconcave lens and a biconvex lens, respectively.
  • the rear group G3r of the third lens group G3 includes, for example, a biconvex single lens, a cemented lens of a biconcave lens and a biconvex lens, a cemented lens of a negative meniscus lens having a convex surface facing the biconvex lens and the reduction side, in order from the magnification side. It can consist of a biconvex lens. Configuring the rear group G3r in this way is advantageous for correcting lateral chromatic aberration.
  • An opening 3 made of a mask or the like may be arranged between the second lens group G2 and the third lens group G3 as shown in the example of FIG.
  • the telecentricity on the reduction side can be made favorable. Note that the opening 3 shown in FIG. 1 does not represent the shape or size, but represents the position on the optical axis Z.
  • the projection lens is configured to satisfy the following conditional expression (1). -0.7 ⁇ fFG3 / f ⁇ 0.7 (1)
  • fFG3 Front focus of the third lens group
  • f Focal length of the entire system when the projection distance is infinite
  • the front group G3f is positioned at or near the proper aperture position.
  • the front lens group G3f consisting of negative and positive single lenses arranged with a relatively small air gap is located at such a position where the light rays are concentrated, so that the field curvature is excellent in an optical system having a small F number. Can be corrected.
  • conditional expression (2) If the lower limit of conditional expression (2) is not reached, the refractive power of the first lens group G1 becomes too strong, and it becomes difficult to satisfactorily correct field curvature while ensuring a small F number. Alternatively, in order to satisfactorily correct the curvature of field while securing a small F number, the number of lenses in the first lens group G1 increases, which is contrary to miniaturization and weight reduction.
  • the combined optical system of the second lens group G2 and the third lens group G3 is an afocal system.
  • the projection lens satisfies the conditional expression (2)
  • the combined optical system of the second lens group G2 and the third lens group G3 has a negative refractive power, and the second lens group G2 to the first lens group G1. Since the principal ray 6 of the off-axis light traveling toward the optical axis Z approaches the optical axis Z as shown in FIG.
  • the size of the first lens group G1 in the radial direction can be made compact, and at the same time, the axial light beam 4 also proceeds from the second lens group G2 to the first lens group G1 while being strongly converged, so that the distance between the first lens group G1 and the second lens group G2 can be appropriately reduced, and the overall length becomes too long. Can be prevented.
  • conditional expression (2) If the upper limit of conditional expression (2) is exceeded, it becomes difficult to construct a lens system having a small F-number, a wide angle, and a reasonably long back focus in both the optical axis direction and the radial direction.
  • the projection lens preferably satisfies the following conditional expression (4). 1.0 ⁇ fG2 / fG3 ⁇ 1.4 (4) However, fG2: focal length of the second lens group fG3: focal length of the third lens group
  • the projection lens preferably satisfies the following conditional expression (5). 0.55 ⁇ (Hsm ⁇ Im ⁇ / 2) / Hsj (5)
  • Hsm Maximum ray height Im ⁇ on the most reduction side lens surface
  • Im ⁇ Maximum effective image circle diameter on the reduction side
  • Hsj Maximum ray height of axial ray on the most reduction side lens surface
  • FIG. 8 shows a partially enlarged view from the lens L12 of the configuration example shown in FIG. 1 to the glass block 2, and shows each ray height and the maximum effective image circle radius according to the conditional expression (5).
  • (Hsm ⁇ Im ⁇ / 2) and Hsj roughly correspond to the radius of the off-axis light beam 5 and the radius of the on-axis light beam 4 on the reduction side surface of the lens L14, respectively.
  • conditional expression (5 ′) 0.60 ⁇ (Hsm ⁇ Im ⁇ / 2) / Hsj ⁇ 1.00
  • the projection lens preferably satisfies the following conditional expression (6).
  • Hfm Maximum ray height Im ⁇ at the most enlargement side lens surface: Maximum effective image circle diameter at the reduction side
  • Hfm is the light ray height of the light ray farthest from the optical axis among the light rays contained in the off-axis light beam 5 having the maximum angle of view on the enlargement side surface of the lens L1. If the upper limit of conditional expression (6) is exceeded, the diameter of the lens L1 closest to the enlargement side increases.
  • the projection lens preferably satisfies the following conditional expression (7). -1.5 ⁇ fG1 / f ⁇ -0.7 (7)
  • fG1 focal length of the first lens group
  • f focal length of the entire system when the projection distance is infinite
  • conditional expression (7) If the lower limit of conditional expression (7) is not reached, it is difficult to secure a back focus with an appropriate length. If the upper limit of conditional expression (7) is exceeded, it will be difficult to satisfactorily correct the curvature of field while securing a small F number, or the curvature of field will be favorably corrected while securing a small F number. In this case, the number of lenses in the first lens group G1 increases, which is contrary to miniaturization and weight reduction.
  • the projection lens preferably satisfies the following conditional expression (8). 1.5 ⁇ fG2 / f ⁇ 6.0 (8) However, fG2: focal length of the second lens group f: focal length of the entire system when the projection distance is infinite
  • the refractive power of the first lens group G1 becomes too strong, and it becomes difficult to satisfactorily correct field curvature while ensuring a small F number.
  • the number of lenses in the first lens group G1 increases, which is contrary to miniaturization and weight reduction. If the upper limit of conditional expression (8) is exceeded, the diameter of the lens on the magnification side from the second lens group G2 becomes larger.
  • the projection lens preferably satisfies the following conditional expression (9). fG3f / f ⁇ 3.0 (9) However, fG3f: focal length of the front group of the third lens group f: focal length of the entire system when the projection distance is infinite
  • conditional expression (9 ′) If the lower limit of conditional expression (9 ') is not reached, the overall power balance becomes poor, and it becomes difficult to correct the curvature of field well while securing a small F number.
  • the upper limit of the conditional expression (9 ′) By satisfying the upper limit of the conditional expression (9 ′), it is possible to further suppress an increase in the diameter of the lens on the magnification side from the second lens group G2.
  • the projection lens preferably satisfies the following conditional expression (10). 2.00 ⁇ Bf / f (10) However, Bf: Back focus of the entire system f: Focal length of the entire system when the projection distance is infinity
  • conditional expression (10) If the lower limit of conditional expression (10) is not reached, it is difficult to secure an appropriate space for inserting a glass block or the like as a color synthesizing means such as a beam splitter, a cross dichroic prism, or a TIR prism on the reduction side of the lens system. It becomes.
  • conditional expression (10 ′) is satisfied. 2.40 ⁇ Bf / f ⁇ 4.00 (10 ′)
  • the lower limit of the conditional expression (10 ′) it becomes easier to secure a space than inserting a glass block or the like. If the upper limit of conditional expression (10 ′) is exceeded, the total length becomes too long.
  • the projection lens preferably satisfies the following conditional expression (11). If the conditional expression (11) is not satisfied, an optical system having a small F-number that has recently been desired cannot be realized. In order to realize a smaller F-number optical system, it is more preferable to satisfy the following conditional expression (11 ′). FNo ⁇ 2.00 (11) FNo ⁇ 1.85 (11 ′) However, FNo: F number
  • the projection lens preferably satisfies the following conditional expression (12). If the conditional expression (12) is not satisfied, it becomes impossible to meet the demand for wide-angle applications. In order to make it more suitable for wide-angle use, it is more preferable to satisfy the following conditional expression (12 ′). 70 ° ⁇ 2 ⁇ (12) 75 ° ⁇ 2 ⁇ (12 ') However, 2 ⁇ : Maximum full angle of view
  • the projection lens is configured to perform focusing by moving at least one of the lenses of the first lens group G1 and the second lens group G2 excluding the most magnified lens L1. It is preferable that That is, in the example shown in FIG. 1, it is preferable that focusing is performed by moving at least one of the five lenses L2 to L6. Since the lens L1 having the largest diameter is fixed at the time of focusing, the load on the driving mechanism can be reduced and the entire length of the optical system can be made unchanged even during the focusing.
  • lens used for focusing only the lens of the first lens group G1 or the lens of the second lens group G2 may be used, or both the first lens group G1 and the second lens group G2 may be used.
  • one lens in each lens group or a plurality of lenses may be used.
  • One or a plurality of lenses used for focusing may be selected according to the amount of change in the projection distance. When the fluctuation amount of the projection distance is large, it is preferable to use both the first lens group G1 and the second lens group G2.
  • the distortion is preferably suppressed to about 2% or less, more preferably 0.6% or less.
  • the projection screen can be divided into a plurality of divided screens, and can be satisfactorily used for applications such as divided projection in which an image is simultaneously projected from the projection display device for each divided screen.
  • FIG. 9 is a schematic configuration diagram of a projection display apparatus according to an embodiment of the present invention.
  • a projection display device 100 shown in FIG. 9 includes a projection lens 10 according to an embodiment of the present invention, a light source 20, transmissive display elements 11a to 11c as light valves corresponding to each color light, and color separation.
  • Dichroic mirrors 12 and 13 a cross dichroic prism 14 for color synthesis, condenser lenses 16a to 16c, and total reflection mirrors 18a to 18c for deflecting the optical path.
  • the projection lens 10 is schematically illustrated, and an integrator is disposed between the light source 20 and the dichroic mirror 12, but the illustration is omitted in FIG.
  • White light from the light source 20 is decomposed into three colored light beams (G light, B light, and R light) by the dichroic mirrors 12 and 13, and then transmitted through the condenser lenses 16a to 16c, respectively.
  • the light is incident on the mold display elements 11 a to 11 c, optically modulated, and color-combined by the cross dichroic prism 14, and then incident on the projection lens 10.
  • the projection lens 10 projects an optical image of light that is light-modulated by the transmissive display elements 11a to 11c onto a screen (not shown).
  • transmissive display elements 11a to 11c for example, transmissive liquid crystal display elements can be used.
  • FIG. 9 shows an example in which a transmissive display element is used as the light valve, the light valve provided in the projection display device of the present invention is not limited to this, and a reflective liquid crystal display element, DMD, or the like. Other light modulation means may be used.
  • Example 1 The lens configuration diagram and the ray trajectory of the projection lens of Example 1 are as shown in FIG. Since the explanation regarding FIG. 1 has been described above, the duplicate explanation is omitted here.
  • the configuration shown in FIG. 1 is that when the projection distance is infinite.
  • the projection lens of Example 1 includes a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a positive refractive power in order from the magnification side.
  • G3 is arranged in a three-group configuration, and the reduction side is telecentric.
  • a glass block 2 assuming various filters such as an infrared cut filter and a low-pass filter, a color synthesis prism, and the like is disposed, and the light valve is in contact with the reduction side surface of the glass block 2
  • the image display surface 1 is arranged.
  • an opening 3 made of a mask or the like for shielding unnecessary off-axis rays is disposed between the second lens group G2 and the third lens group G3, an opening 3 made of a mask or the like for shielding unnecessary off-axis rays is disposed.
  • the first lens group G1 includes, in order from the magnification side, a lens L1 made of a negative meniscus lens having a convex surface facing the reduction side in the paraxial region, a lens L2 made of a negative meniscus lens having a convex surface facing the magnification side, and a biconcave lens. And a lens L3 made of the same.
  • the second lens group G2 includes, in order from the magnification side, a lens L4 made of a negative meniscus lens having a convex surface facing the magnification side, a lens L5 made of a biconvex lens, and a lens L6 made of a biconvex lens. Yes.
  • the lens L4 and the lens L5 are cemented.
  • the third lens group G3 includes a front group G3f having a negative refractive power and a rear group G3r having a positive refractive power arranged in order from the magnification side.
  • the front group G3f includes, in order from the enlargement side, a lens L7 made of a biconcave lens and a lens L8 made of a biconvex lens.
  • the lens L7 and the lens L8 are arranged with an air gap therebetween.
  • the rear group G3r includes, in order from the magnifying side, a lens L9 made of a biconvex lens, a lens L10 made of a biconcave lens, a lens L11 made of a biconvex lens, a lens L12 made of a biconvex lens, and a negative surface with a convex surface facing the reduction side.
  • a lens L13 made of a meniscus lens and a lens L14 made of a biconvex lens are arranged.
  • the lens L10 and the lens L11 are cemented, and the lens L12 and the lens L13 are cemented.
  • the projection lens of Example 1 has aspherical surfaces on both sides of the lens L1, and all other surfaces are spherical.
  • the lens L1 is made of a plastic material.
  • Tables 1 to 3 show various data of the projection lens of Example 1.
  • the numerical values shown in Tables 1 to 3 are standardized so that the focal length of the entire system is 1 when the projection distance is infinity.
  • the numerical values in each table are rounded to a predetermined digit.
  • Table 1 shows basic lens data of the projection lens of Example 1.
  • the Ri column indicates the radius of curvature of the i-th surface
  • the Di column is on the optical axis Z between the i-th surface and the i + 1-th surface.
  • the sign of the radius of curvature is positive when the surface shape is convex on the enlargement side and negative when the surface shape is convex on the reduction side
  • the basic lens data includes the glass block 2 and the aperture 3.
  • the surfaces with surface numbers 1 and 2 are aspherical surfaces, and these surface numbers are marked with *.
  • the aspheric radius of curvature column shows the numerical value of the paraxial radius of curvature.
  • the projection lens of Example 1 is configured to perform focusing by individually moving a group including the lenses L2 and L3 and a group including the lenses L4 and L5.
  • the distance between the lens L1 and the lens L2, the distance between the lens L3 and the lens L4, and the distance between the lens L5 and the lens L6 are variable surface distances that change during focusing.
  • DD [2], DD [6], and DD [9] are entered in these variable surface interval columns, respectively. That is, when the interval between the i-th surface and the (i + 1) -th surface is a variable surface interval, it is described as DD [Di].
  • Table 2 shows the values of the distances between the variable surfaces when the projection distance of the projection lens of Example 1 is infinite and finite.
  • 123.92 is used as the value of the projection distance when it is finite
  • the focal length of the entire system at this projection distance is 1.002
  • the F-number is 1.70
  • the total angle of view is 84.2 °. is there.
  • the focal length, the F number, and the total angle of view when the projection distance is infinite are shown in Tables 22 and 23 below together with those of other examples.
  • Table 3 shows the aspheric coefficients of the surfaces having surface numbers 1 and 2.
  • the numerical value “E ⁇ n” (n: integer) of the aspheric coefficient in Table 3 means “ ⁇ 10 ⁇ n ”.
  • Zd C ⁇ h 2 / ⁇ 1+ (1-K ⁇ C 2 ⁇ h 2 ) 1/2 ⁇ + ⁇ Am ⁇ h m
  • Zd Depth of aspheric surface (length of perpendicular drawn from a point on the aspherical surface of height h to a plane perpendicular to the optical axis where the aspherical vertex contacts)
  • h Height (distance from the optical axis to the lens surface)
  • C paraxial curvature K
  • 10A to 10D respectively, the spherical aberration, astigmatism, distortion (distortion aberration), and lateral chromatic aberration (chromatic aberration of magnification) of the projection lens of Example 1 when the projection distance is infinite.
  • Each aberration diagram is shown.
  • 10E to 10H respectively, the spherical aberration, astigmatism, distortion (distortion aberration), and chromatic aberration of magnification (chromatic aberration of magnification) of the projection lens of Example 1 when the projection distance is 123.92.
  • Each aberration diagram of) is shown.
  • the aberration diagrams in FIGS. 10A to 10H are obtained when normalization is performed so that the focal length of the entire system is 1 when the projection distance is infinity.
  • the aberration diagrams in FIGS. 10A to 10H are based on the d-line, but in the spherical aberration diagram, the F-line (wavelength wavelength 486.1 nm) and the C-line (wavelength 656.3 nm). ) Also shows aberrations, and the lateral chromatic aberration diagram shows aberrations related to the F-line and C-line.
  • the astigmatism diagram aberrations in the sagittal direction and the tangential direction are indicated by solid lines and broken lines, respectively, and symbols (S) and (T) are written in the description of the line types.
  • Example 2 The lens configuration diagram and the ray trajectory of the projection lens of Example 2 are as shown in FIG.
  • the projection lens of Example 2 has substantially the same configuration as the projection lens of Example 1, and the lens that moves during focusing is also the same.
  • Table 4, Table 5, and Table 6 show basic lens data, variable surface interval, and aspheric coefficient of the projection lens of Example 2, respectively.
  • FIGS. 11A to 11H show aberration diagrams of the projection lens of Example 2, respectively.
  • the projection distance when limited is 123.93
  • the focal length of the entire system at this projection distance is 1.002
  • the F number is 1.70
  • the total angle of view is 84.2 °. is there.
  • Example 3 The lens configuration diagram and the ray trajectory of the projection lens of Example 3 are as shown in FIG.
  • the projection lens of Example 3 has substantially the same configuration as the projection lens of Example 1, and the same is true for a lens that moves during focusing.
  • Tables 7, 8 and 9 show the basic lens data, variable surface interval, and aspheric coefficient of the projection lens of Example 3, respectively.
  • FIGS. 12A to 12H show aberration diagrams of the projection lens of Example 3, respectively.
  • the projection distance when it is finite is 124.13
  • the focal length of the entire system at this projection distance is 1.003
  • the F-number is 1.80
  • the total angle of view is 79.0 °. is there.
  • Example 4 The lens configuration diagram and the ray trajectory of the projection lens of Example 4 are as shown in FIG.
  • the projection lens of Example 4 has substantially the same configuration as the projection lens of Example 1, except that the lens L4 is a biconvex lens and the lens L5 is a negative meniscus lens having a convex surface facing the reduction side. Is different.
  • the lens that moves during focusing in the projection lens of the fourth embodiment is the same as that of the first embodiment.
  • Table 10, Table 11, and Table 12 show basic lens data, variable surface interval, and aspheric coefficient of the projection lens of Example 4, respectively.
  • FIGS. 13A to 13H show aberration diagrams of the projection lens of Example 4.
  • FIG. In the data of Example 4, the projection distance when it is finite is 123.95, the focal length of the entire system at this projection distance is 1.002, the F-number is 1.79, and the total angle of view is 79.0 °. is there.
  • Example 5 The lens configuration diagram and the ray trajectory of the projection lens of Example 5 are shown in FIG.
  • the projection lens of Example 5 has substantially the same configuration as the projection lens of Example 4.
  • the projection lens of Example 5 is configured to perform focusing by individually moving a group consisting of lenses L2 and L3 and a group consisting of lenses L4, L5 and L6.
  • Table 13, Table 14, and Table 15 show the basic lens data, variable surface interval, and aspheric coefficient of the projection lens of Example 5, respectively.
  • FIGS. 14A to 14H show aberration diagrams of the projection lens of Example 5.
  • Example 6 The lens configuration diagram and the ray locus of the projection lens of Example 6 are as shown in FIG.
  • the projection lens of Example 6 has substantially the same configuration as the projection lens of Example 1, and the same is true for a lens that moves during focusing.
  • Table 16, Table 17, and Table 18 show the basic lens data, variable surface interval, and aspheric coefficient of the projection lens of Example 6, respectively.
  • FIGS. 15A to 15H show aberration diagrams of the projection lens of Example 6.
  • Example 7 The lens configuration diagram and the ray trajectory of the projection lens of Example 7 are as shown in FIG.
  • the projection lens of Example 7 has substantially the same configuration as the projection lens of Example 1, and the same is true for a lens that moves during focusing.
  • Table 19, Table 20, and Table 21 show the basic lens data, variable surface interval, and aspheric coefficient of the projection lens of Example 7, respectively.
  • FIGS. 16A to 16H show aberration diagrams of the projection lens of Example 7, respectively.
  • the projection distance when it is finite is 124.13
  • the focal length of the entire system at this projection distance is 1.002
  • the F number is 1.70
  • the total angle of view is 84.2 °. is there.
  • Table 22 shows the corresponding values of the above conditional expressions (1) to (12) of Examples 1 to 7.
  • Table 23 shows various values of Examples 1 to 7.
  • fG3r in Table 23 is the focal length of the rear group G3r.
  • the values shown in Tables 22 and 23 relate to the d-line when the projection distance is infinity.
  • the projection lens of the present invention is not limited to the above examples, and various modifications can be made. It is possible to appropriately change the radius of curvature, surface spacing, refractive index, Abbe number, and aspheric coefficient.
  • the projection display device of the present invention is not limited to the one having the above-described configuration.
  • the light valve used and the optical member used for light beam separation or light beam synthesis are not limited to the above-described configuration, and various It is possible to change the mode.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)

Abstract

投写用レンズにおいて、縮小側がテレセントリックとされ、小型、小さなFナンバー、広角、良好な光学性能を同時に実現する。投写用レンズは、拡大側から順に、負の第1レンズ群(G1)、正の第2レンズ群(G2)、正の第3レンズ群(G3)からなり、縮小側がテレセントリックである。最も拡大側のレンズ(L1)は非球面プラスチックレンズである。第3レンズ群(G3)は拡大側から順に、空気間隔(db)を挟んだ、負の前群(G3f)、正の後群(G3r)からなる。前群(G3f)は拡大側から順に、空気間隔(db)より短い空気間隔(da)を挟んだ、負レンズ、正レンズからなる。第3レンズ群(G3)のフロントフォーカスfFG3と全系の焦点距離fに関する条件式(1):-0.7<fFG3/f<0.7を満足する。

Description

投写用レンズおよび投写型表示装置
 本発明は、投写用レンズおよび投写型表示装置に関し、例えば、ライトバルブからの映像情報を有する光束をスクリーン上に拡大投写するのに好適な投写用レンズおよびこれを用いた投写型表示装置に関するものである。
 従来、プレゼンテーション等の際、液晶表示素子やDMD(デジタル・マイクロミラー・デバイス:登録商標)等のライトバルブに表示した画像を拡大投写する投写型表示装置が用いられている。この装置に搭載される投写用レンズに対する要望としては例えば、ライトバルブと投写レンズとの間に色合成光学系を配置できる長いバックフォーカスを有すること、色合成光学系の角度依存性を考慮して縮小側がテレセントリックであること、室内空間での設置性を考慮してコンパクトな構成であること等が挙げられる。
 また近年では、投写型表示装置から近い位置に大きな画像を投写できるワイド化機能が要求されることから、広角化が要望されている。さらに、より高輝度な投写型表示装置を実現するために、レンズ系に対してもFナンバーが小さいことが求められ、なおかつ最近の高解像のライトバルブに対応可能なように、良好に収差補正がされていることも求められている。
 レンズ群数が少なくコンパクトな投写用レンズとしては、例えば下記特許文献1~3に記載されたような、拡大側から順に、負の第1レンズ群、正の第2レンズ群、正の第3レンズ群が配された3群構成のレンズ系が知られている。また、下記特許文献4には、正の第1レンズ群、絞り、正の第2レンズ群が配されてなる投写レンズが記載されている。
特開2004-233609号公報 特許4624535号公報 特開2009-186790号公報 特開2000-171702号公報
 近年では開発競争の激化とともに、複数の高度な要望を同時に満たす投写用レンズが望まれている。すなわち、小型でありながら、よりFナンバーが小さく、より広角化が図られ、より高性能の投写用レンズが要望されている。
 しかしながら、特許文献1に記載のものは、Fナンバーが大きく、球面収差と像面湾曲も大きい上、絞り付近に接合レンズを配置しているため、近年の高輝度の投写型表示装置では接合剤の変質や劣化によりレンズ性能の低下を招くおそれがある。特許文献2、4に記載のものは、Fナンバーが大きい。特許文献3に記載のものは、Fナンバーは小さいが、広角化と像面湾曲の補正の両方について近年の要望に十分応えるためには改良の余地がある。
 本発明は、このような事情に鑑みなされたものであり、縮小側がテレセントリックとされ、小型でありながら、小さなFナンバー、広角、良好な光学性能を同時に実現する投写用レンズおよびこのような投写用レンズを備えた投写型表示装置を提供することを目的とするものである。
 本発明に係る投写用レンズは、拡大側から順に、拡大側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とから構成される実質的に3つのレンズ群からなり、縮小側がテレセントリックであり、最も拡大側に、プラスチック材質からなり少なくとも1面の非球面を有する非球面プラスチックレンズが配置され、第3レンズ群が、拡大側から順に、空気間隔を挟んで配置された、負の屈折力を有する前群と、正の屈折力を有する後群とからなり、前群が、拡大側から順に、前群と後群の間の空気間隔より短い空気間隔を挟んで配置された、負の単レンズと、正の単レンズとから構成される実質的に2つのレンズからなり、下記条件式(1)を満足することを特徴とするものである。
   -0.7<fFG3/f<0.7 … (1)
ただし、
fFG3:第3レンズ群のフロントフォーカス
f:投写距離が無限遠のときの全系の焦点距離
 本発明に係る投写用レンズにおいては、下記条件式(2)~(12)のうちの1つまたは任意の組合せを満足することが好ましい。
   -0.3<f/fG23<0 … (2)
   da/f<0.4 … (3)
   1.0<fG2/fG3<1.4 … (4)
   0.55<(Hsm-Imφ/2)/Hsj … (5)
   |Hfm/Imφ|<2.0 … (6)
   -1.5<fG1/f<-0.7 … (7)
   1.5<fG2/f<6.0 … (8)
   fG3f/f<-3.0 … (9)
   2.00<Bf/f … (10)
   FNo<2.00 … (11)
   70°<2ω … (12)
ただし、
fG23:第2レンズ群と第3レンズ群との合成焦点距離
da:前群の負の単レンズと正の単レンズの光軸上の空気間隔
fG2:第2レンズ群の焦点距離
fG3:第3レンズ群の焦点距離
Hsm:最も縮小側のレンズ面における最大光線高
Imφ:縮小側における最大有効像円直径
Hsj:最も縮小側のレンズ面における軸上光線の最大光線高
Hfm:最も拡大側のレンズ面における最大光線高
Imφ:縮小側における最大有効像円直径
fG1:第1レンズ群の焦点距離
fG3f:第3レンズ群の前群の焦点距離
Bf:全系のバックフォーカス
FNo:Fナンバー
2ω:最大全画角
 本発明に係る投写用レンズの第1レンズ群は、非球面プラスチックレンズと、2つの負レンズとから構成される実質的に3つのレンズからなるように構成してもよい。
 本発明に係る投写用レンズの第2レンズ群は、拡大側から順に、いずれか一方が正レンズで他方が負レンズの2つのレンズを接合してなる正の屈折力を有する接合レンズと、正の単レンズとから構成される実質的に3つのレンズからなるように構成してもよい。その際に、第2レンズ群の接合レンズおよび単レンズはともに両凸形状であることが好ましい。
 また、本発明に係る投写用レンズにおいては、非球面プラスチックレンズ以外の第1レンズ群のレンズおよび第2レンズ群のレンズのうち、少なくとも1つのレンズを移動させることによりフォーカシングを行うように構成してもよい。
 本発明に係る投写型表示装置は、光源と、この光源からの光が入射するライトバルブと、このライトバルブにより光変調された光による光学像をスクリーン上に投写する投写用レンズとして上述した本発明の投写用レンズとを備えたことを特徴とするものである。
 なお、上記「拡大側」とは、被投写側(スクリーン側)を意味し、縮小投写する場合も、便宜的にスクリーン側を拡大側と称するものとする。一方、上記「縮小側」とは、原画像表示領域側(ライトバルブ側)を意味し、縮小投写する場合も、便宜的にライトバルブ側を縮小側と称するものとする。
 なお、上記「実質的に~からなり」とは、構成要素として挙げたレンズ群やレンズ以外に、実質的にパワーを有さないレンズ、絞りやカバーガラス等のレンズ以外の光学要素を含んでもよいことを意図するものである。
 なお、上記「レンズ群」とは、必ずしも複数のレンズから構成されるものだけでなく、1枚のレンズのみで構成されるものも含むものとする。
 なお、「単レンズ」とは、接合されていない1枚のレンズからなるものを意味する。
 なお、上記レンズの面形状や屈折力の符号は、非球面が含まれているものについては近軸領域で考えるものとする。
 なお、「フロントフォーカス」、「バックフォーカス」を考える際のフロント側、バック側については、拡大側、縮小側それぞれをフロント側、バック側とするものとする。
 なお、条件式(1)の第3レンズ群のフロントフォーカスの符号は、第3レンズ群の拡大側焦点位置が、第3レンズ群の最も拡大側の面より拡大側にあるときを負、縮小側にあるときを正とすることにする。
 なお、上記「Imφ」は、いわゆるイメージサークルの直径であり、例えば、投写用レンズの仕様や、投写用レンズが搭載される装置の仕様によって求めることができる。
 なお、「光線高」は光軸からの高さの絶対値で考えるものとする。
 本発明に係る投写用レンズは、拡大側から順に配置された、負、正、正の3つのレンズ群からなり、縮小側をテレセントリックとし、最も拡大側のレンズおよび第3レンズ群の構成を好適に設定しているため、小型でありながら、小さなFナンバー、広角、良好な光学性能を同時に実現することができる。
 また、本発明に係る投写型表示装置は、本発明の投写用レンズを備えているため、小型かつ高輝度でワイド化機能を有するものとすることができ、最近の高解像のライトバルブに対応可能な良好な投写性能を有することができる。
本発明の実施例1に係る投写用レンズのレンズ構成および光線軌跡を示す断面図 本発明の実施例2に係る投写用レンズのレンズ構成および光線軌跡を示す断面図 本発明の実施例3に係る投写用レンズのレンズ構成および光線軌跡を示す断面図 本発明の実施例4に係る投写用レンズのレンズ構成および光線軌跡を示す断面図 本発明の実施例5に係る投写用レンズのレンズ構成および光線軌跡を示す断面図 本発明の実施例6に係る投写用レンズのレンズ構成および光線軌跡を示す断面図 本発明の実施例7に係る投写用レンズのレンズ構成および光線軌跡を示す断面図 条件式(5)を説明するための部分拡大図 本発明の一実施形態に係る投写型表示装置の概略構成図 図10(A)~図10(H)は本発明の実施例1に係る投写用レンズの各収差図 図11(A)~図11(H)は本発明の実施例2に係る投写用レンズの各収差図 図12(A)~図12(H)は本発明の実施例3に係る投写用レンズの各収差図 図13(A)~図13(H)は本発明の実施例4に係る投写用レンズの各収差図 図14(A)~図14(H)は本発明の実施例5に係る投写用レンズの各収差図 図15(A)~図15(H)は本発明の実施例6に係る投写用レンズの各収差図 図16(A)~図16(H)は本発明の実施例7に係る投写用レンズの各収差図
 以下、本発明の実施形態について図面を参照して詳細に説明する。図1~図7は、本発明の実施形態にかかる投写用レンズの構成例を示す断面図であり、それぞれ後述の実施例1~7の投写用レンズに対応している。図1~図7に示す例の基本的な構成は同様であり、図1~図7の図示方法も同様であるため、以下では、図1を参照しながら本発明の実施形態にかかる投写用レンズについて説明する。
 図1は、本発明の一実施形態に係る投写用レンズのレンズ構成を示す断面図であり、軸上光束4、最大画角の軸外光束5も合わせて示している。
 この投写用レンズは、例えば投写型表示装置に搭載されて、ライトバルブに表示された画像情報をスクリーンへ投写する投写レンズとして使用可能である。図1では、図の左側を拡大側、右側を縮小側とし、投写型表示装置に搭載される場合を想定して、色合成部または照明光分離部に用いられるフィルタやプリズム等を想定したガラスブロック2と、ガラスブロック2の縮小側の面に位置するライトバルブの画像表示面1も合わせて図示している。
 投写型表示装置においては、画像表示面1で画像情報を与えられた光束が、ガラスブロック2を介して、この投写用レンズに入射され、この投写用レンズにより紙面左側方向に配置されるスクリーン(不図示)上に投写される。
 なお、図1では、ガラスブロック2の縮小側の面の位置と画像表示面1の位置とが一致した例を示しているが、必ずしもこれに限定されない。また、図1には、1枚の画像表示面1のみを記載しているが、投写型表示装置において、光源からの光束を色分離光学系により3原色に分離し、各原色用に3つのライトバルブを配設して、フルカラー画像を表示可能とするように構成してもよい。
 本実施形態に係る投写用レンズは、固定焦点光学系であり、拡大側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3との実質的に3つのレンズ群からなる。第3レンズ群G3は、さらに、拡大側から順に、空気間隔を挟んで配置された、負の屈折力を有する前群G3fと、正の屈折力を有する後群G3rとからなる。全系の縮小側はテレセントリックとなるように構成されている。
 なお、「縮小側がテレセントリック」とは、縮小側の像面の任意の点に集光する光束の断面において上側の最大光線と下側の最大光線との二等分角線が光軸と平行に近い状態を指すものであり、完全にテレセントリックな場合、すなわち前記二等分角線が光軸に対して完全に平行な場合に限るものではなく、多少の誤差がある場合(光軸に対して僅かな傾きがある場合)をも含むものを意味する。ここで多少の誤差がある場合(光軸に対して僅かな傾きがある場合)とは、光軸に対する前記二等分角線の傾きが±3°の範囲内の場合である。図1では、最大画角の軸外光束5に関する上記二等分角線と重なる光線を仮想的な主光線6として図示している。
 本投写用レンズは、拡大側から順に、負、正、正のレンズ群を配置することで、広角化に有利になるとともに、長いバックフォーカスを持ったテレセントリックな光学系を実現することに有利となる。
 また、第3レンズ群G3を、拡大側から順に、空気間隔を挟んで配置された、負の前群G3fと、正の後群G3rとから構成することで、前群G3fでは像面湾曲を良好に補正することができ、後群G3rでは特に色収差を良好に補正することができる。
 例えば、図1に示す例では、第1レンズ群G1はレンズL1~L3の3枚のレンズからなり、第2レンズ群G2はレンズL4~L6の3枚のレンズからなり、第3レンズ群G3はL7~L14の8枚のレンズからなると考えることができる。第3レンズ群G3の前群G3fはレンズL7、L8の2枚のレンズからなり、後群G3rはレンズL9~L14の6枚のレンズからなる。ただし、前群G3f以外の本発明の投写用レンズの各レンズ群を構成するレンズの枚数は必ずしも図1に示す例に限定されない。
 本投写用レンズの全系の最も拡大側のレンズL1は、プラスチック材質からなり少なくとも1面の非球面を有する非球面プラスチックレンズとなるように構成される。最も拡大側のレンズに非球面を持たせることで、歪曲収差を良好に補正することができる。全系でレンズ径が最大となりやすい最も拡大側のレンズをプラスチック材質で構成することで、軽量化・低コスト化を図ることができる。
 なお、図1に示す例では、レンズL1の両側の面が非球面であり、その他の面は全て球面である。Fナンバーが小さく広角の光学系を実現するにあたり、このように、非球面を施す面を適切に選択することで、非球面レンズの枚数を極力少なくすることができ、コストを抑制できる。
 第1レンズ群G1は、図1に示す例のように、非球面レンズであるレンズL1と、2枚の負のレンズL2、L3とからなることが好ましい。第1レンズ群G1をこのようにすることで、少ないレンズ枚数で構成でき、コスト的に有利となる。
 例えば、レンズL1は近軸領域で縮小側に凸面を向けた負メニスカスレンズ、レンズL2は拡大側に凸面を向けた負メニスカスレンズ、レンズL3は両凹レンズとすることができる。レンズL1を非球面レンズとして、かつレンズL1~L3をこのような形状とすることで、少ないレンズ枚数で第1レンズ群G1に必要な負の屈折力を確保しながら、Fナンバーが小さく広角の光学系を実現することに有利となる。
 第2レンズ群G2は、拡大側から順に、いずれか一方が正レンズで他方が負レンズの2つのレンズが接合されて、正の屈折力を有する接合レンズと、正の屈折力を有する単レンズとからなることが好ましい。すなわち、第2レンズ群G2を2組の正の屈折力を有する要素から構成することで、球面収差を良好に補正することができる。また、第2レンズ群G2の接合レンズにより、倍率色収差を良好に補正することができる。
 さらに、第2レンズ群G2の上記接合レンズと、その縮小側の正の単レンズは、ともに両凸形状であることが好ましい。すなわち、図1に示す例では、レンズL4の拡大側の面、レンズL5の縮小側の面、レンズL6の両側の面が全て凸形状であることが好ましい。このようにすることで、第2レンズ群G2に必要な正の屈折力を各レンズ面が適度に分担し、第2レンズ群G2のレンズ径が大きくなりすぎないようにしながら良好に収差補正を行うことができる。
 なお、第2レンズ群G2の上記接合レンズは、拡大側から順に、負レンズ、正レンズが接合されたものでもよく、あるいは、拡大側から順に、正レンズ、負レンズが接合されたものでもよい。
 第3レンズ群G3の前群G3fは、図1に示す例のように、拡大側から順に、負の単レンズであるレンズL7と、正の単レンズであるレンズL8とからなり、レンズL7とレンズL8の間の空気間隔daが、前群G3fと後群G3rの間の空気間隔dbより短くなるように構成される。前群G3fをこのような構成とすることで、像面湾曲が良好に補正されたFナンバーが小さな光学系を実現することができる。
 前群G3fに関する上記効果をより高いものとするためには、前群G3fの負の単レンズと正の単レンズはそれぞれ、両凹レンズ、両凸レンズであることが好ましい。
 第3レンズ群G3の後群G3rは例えば、拡大側から順に、両凸形状の単レンズ、両凹レンズと両凸レンズの接合レンズ、両凸レンズと縮小側に凸面を向けた負メニスカスレンズの接合レンズ、両凸レンズから構成することができる。後群G3rをこのように構成することで倍率色収差の補正に有利となる。
 第2レンズ群G2と第3レンズ群G3の間には図1に示す例のように、マスク等からなる開口3を配置してもよく、この開口3により不要な軸外光線を遮光して、縮小側におけるテレセントリック性を良好なものとすることができる。なお、図1に示す開口3は、形状や大きさを表すものではなく、光軸Z上の位置を示すものである。
 また、本投写用レンズは、下記条件式(1)を満足するように構成されている。
   -0.7<fFG3/f<0.7 … (1)
ただし、
fFG3:第3レンズ群のフロントフォーカス
f:投写距離が無限遠のときの全系の焦点距離
 上述した仮想的な主光線6と光軸Zの交点の位置を仮想的な絞り位置と考えたとき、縮小側がテレセントリックな本投写用レンズが条件式(1)を満足することで、この仮想的な絞り位置またはその近傍に前群G3fが位置することになる。光線が密集するこのような位置に、比較的小さな空気間隔を挟んで配置された負、正の単レンズからなる前群G3fが位置することで、Fナンバーが小さな光学系において像面湾曲を良好に補正することができる。
 また、仮に光線が密集する位置に接合レンズが配置されていると、投写用レンズが高出力の光源と併用されたときに強力な光によって接合剤が著しく変質、劣化し、レンズ性能の低下を招くおそれがあるが、前群G3fを単レンズのみから構成し条件式(1)を満足するように構成することで、このような問題の発生を回避することができる。
 Fナンバーが小さな光学系において像面湾曲をより良好に補正するためには、下記条件式(1’)を満足することがより好ましい。
   -0.5<fFG3/f<0.5 … (1’)
 また、本投写用レンズにおいては、下記条件式(2)を満足することが好ましい。
   -0.3<f/fG23<0 … (2)
ただし、
f:投写距離が無限遠のときの全系の焦点距離
fG23:第2レンズ群と第3レンズ群との合成焦点距離
 条件式(2)の下限以下になると、第1レンズ群G1の屈折力が強くなりすぎて、小さなFナンバーを確保しながら像面湾曲を良好に補正することが困難となる。あるいは、小さなFナンバーを確保しながら像面湾曲を良好に補正するには、第1レンズ群G1のレンズ枚数が増大し、小型化・軽量化に反する。
 なお、条件式(2)の対応値であるf/fG23が0になるとき、第2レンズ群G2と第3レンズ群G3との合成光学系はアフォーカル系となる。本投写用レンズが条件式(2)を満足する場合、第2レンズ群G2と第3レンズ群G3との合成光学系は負の屈折力を持ち、第2レンズ群G2から第1レンズ群G1へ進行する軸外光の主光線6は、図1に示すように光軸Zへ近づくため、特に第1レンズ群G1の径方向の大きさをコンパクトにすることができると同時に、軸上光束4も強く収束されながら第2レンズ群G2から第1レンズ群G1に進行するため、第1レンズ群G1と第2レンズ群G2の間隔を適度に狭くすることができ、全長が長くなりすぎるのを防ぐことができる。
 条件式(2)の上限以上になると、Fナンバーが小さく広角で適度に長いバックフォーカスを有するレンズ系を光軸方向、径方向ともにコンパクトに構成することが困難になる。
 上記事情から、小型化・軽量化を図りながら像面湾曲をより良好に補正するためには、下記条件式(2’)を満足することがより好ましい。
   -0.2<f/fG23<0 … (2’)
 また、本投写用レンズにおいては、下記条件式(3)を満足することが好ましい。
   da/f<0.4 … (3)
ただし、
da:前群の負レンズと正レンズとの光軸上の空気間隔
f:投写距離が無限遠のときの全系の焦点距離
 条件式(3)の上限以上になると、前群G3fを構成するレンズL7とレンズL8の空気間隔が広くなり過ぎてしまい、像面湾曲を良好に補正することが困難となる。
 上記事情から、像面湾曲をより良好に補正するためには、下記条件式(3’)を満足することがより好ましい。
   da/f<0.3 … (3’)
 また、本投写用レンズは、下記条件式(4)を満足することが好ましい。
   1.0<fG2/fG3<1.4 … (4)
ただし、
fG2:第2レンズ群の焦点距離
fG3:第3レンズ群の焦点距離
 条件式(4)の下限以下になると、レンズ系の全長が大きくなりすぎる。条件式(4)の上限以上になると、第2レンズ群G2より拡大側のレンズの径が大きくなる。
 上記事情から、レンズ径のより小型化のためには、下記条件式(4’)を満足することがより好ましい。
   1.0<fG2/fG3<1.2 … (4’)
 また、本投写用レンズは、下記条件式(5)を満足することが好ましい。
   0.55<(Hsm-Imφ/2)/Hsj … (5)
ただし、
Hsm:最も縮小側のレンズ面における最大光線高
Imφ:縮小側における最大有効像円直径
Hsj:最も縮小側のレンズ面における軸上光線の最大光線高
 図8に、図1に示す構成例のレンズL12からガラスブロック2までの部分拡大図を示し、条件式(5)に係る各光線高、最大有効像円半径を示す。図8からわかるように、(Hsm-Imφ/2)とHsjはそれぞれ、レンズL14の縮小側の面における軸外光束5の半径、軸上光束4の半径に概略的に対応する。条件式(5)を満足することで実用上必要な周辺光量を確保することができる。
 さらに、下記条件式(5’)を満足することが好ましい。
   0.60<(Hsm-Imφ/2)/Hsj<1.00 … (5’)
 条件式(5’)の下限を満足することでより望ましい周辺光量を確保することができる。条件式(5’)の上限以上になると、テレセントリック性が悪化する。
 また、本投写用レンズは、下記条件式(6)を満足することが好ましい。
   |Hfm/Imφ|<2.0 … (6)
ただし、
Hfm:最も拡大側のレンズ面における最大光線高
Imφ:縮小側における最大有効像円直径
 Hfmは図1に示すように、レンズL1の拡大側の面における、最大画角の軸外光束5に含まれる光線のうち最も光軸から離れた光線の光線高である。条件式(6)の上限以上になると、最も拡大側のレンズL1の径が大きくなる。
 上記事情から、レンズ径のより小型化のためには、下記条件式(6’)を満足することがより好ましい。
   |Hfm/Imφ|<1.8 … (6’)
 また、本投写用レンズは、下記条件式(7)を満足することが好ましい。
   -1.5<fG1/f<-0.7 … (7)
ただし、
fG1:第1レンズ群の焦点距離
f:投写距離が無限遠のときの全系の焦点距離
 条件式(7)の下限以下になると、適度な長さのバックフォーカスを確保することが困難になる。条件式(7)の上限以上になると、小さなFナンバーを確保しながら像面湾曲を良好に補正することが困難となるか、あるいは、小さなFナンバーを確保しながら像面湾曲を良好に補正するには、第1レンズ群G1のレンズ枚数が増大し、小型化・軽量化に反する。
 上記事情から、バックフォーカスの確保をより容易にし、小型化・軽量化を図りながら像面湾曲をより良好に補正するためには、下記条件式(7’)を満足することがより好ましい。
   -1.3<fG1/f<-1.0 … (7’)
 また、本投写用レンズは、下記条件式(8)を満足することが好ましい。
   1.5<fG2/f<6.0 … (8)
ただし、
fG2:第2レンズ群の焦点距離
f:投写距離が無限遠のときの全系の焦点距離
 条件式(8)の下限以下になると、第1レンズ群G1の屈折力が強くなりすぎて、小さなFナンバーを確保しながら像面湾曲を良好に補正することが困難となる。あるいは、小さなFナンバーを確保しながら像面湾曲を良好に補正するには、第1レンズ群G1のレンズ枚数が増大し、小型化・軽量化に反する。条件式(8)の上限以上になると、第2レンズ群G2より拡大側のレンズの径が大きくなる。
 上記事情から、小型化・軽量化を図りながら像面湾曲をより良好に補正するためには、下記条件式(8’)を満足することがより好ましい。
   2.3<fG2/f<4.5 … (8’)
 また、本投写用レンズは、下記条件式(9)を満足することが好ましい。
   fG3f/f<-3.0 … (9)
ただし、
fG3f:第3レンズ群の前群の焦点距離
f:投写距離が無限遠のときの全系の焦点距離
 条件式(9)の上限以上になると、第2レンズ群G2より拡大側のレンズの径が大きくなる。
 さらに、下記条件式(9’)を満足することが好ましい。
   -20.0<fG3f/f<-5.0 … (9’)
 条件式(9’)の下限以下になると、全体のパワーバランスが悪くなり、小さなFナンバーを確保しながら像面湾曲を良好に補正することが困難となる。条件式(9’)の上限を満足することで、第2レンズ群G2より拡大側のレンズの大径化をより抑制できる。
 また、本投写用レンズは、下記条件式(10)を満足することが好ましい。
   2.00<Bf/f … (10)
ただし、
Bf:全系のバックフォーカス
f:投写距離が無限遠のときの全系の焦点距離
 条件式(10)の下限以下になると、レンズ系の縮小側に、ビームスプリッタや、クロスダイクロイックプリズム、TIRプリズム等の色合成手段としてのガラスブロック等を挿入する適切なスペースを確保することが困難となる。
 さらに、下記条件式(10’)を満足することが好ましい。
   2.40<Bf/f<4.00 … (10’)
 条件式(10’)の下限を満たすことで、ガラスブロック等を挿入するよりスペースを確保することがより容易となる。条件式(10’)の上限以上になると、全長が長くなりすぎる。
 また、本投写用レンズは、下記条件式(11)を満足することが好ましい。条件式(11)を満足しない場合には、近年要望される小さなFナンバーの光学系を実現することができない。より小さなFナンバーの光学系の実現のためには、下記条件式(11’)を満足することがより好ましい。
   FNo<2.00 … (11)
   FNo<1.85 … (11’)
ただし、
FNo:Fナンバー
 また、本投写用レンズは、下記条件式(12)を満足することが好ましい。条件式(12)を満足しない場合には、広角用途の要望に対応することができなくなる。広角用途により好適なものとするためには、下記条件式(12’)を満足することがより好ましい。
  70°<2ω … (12)
  75°<2ω … (12’)
ただし、
2ω:最大全画角
 また、本投写用レンズは、最も拡大側のレンズL1を除く第1レンズ群G1のレンズおよび第2レンズ群G2のレンズのうち、少なくとも1枚のレンズを移動させることによりフォーカシングを行うように構成されていることが好ましい。すなわち、図1に示す例では、レンズL2~L6の5枚のレンズのうち、少なくとも1枚のレンズを移動させることによりフォーカシングを行うように構成されていることが好ましい。フォーカシング時に最も径が大きなレンズL1が固定されていることで、駆動機構の負荷を軽減できるとともに、フォーカシング時でも光学系の全長を不変にすることができる。
 フォーカシング時に移動するレンズが複数ある場合は、一体的に移動させてもよく、個別に移動させてもよい。フォーカシングに用いるレンズとしては、第1レンズ群G1のレンズのみでもよく、第2レンズ群G2のレンズのみでもよく、第1レンズ群G1と第2レンズ群G2両方のレンズを用いてもよい。また、各レンズ群の中の1枚のレンズでもよく、複数のレンズでもよい。フォーカシングに用いる1つあるいは複数のレンズは、投影距離の変動量に応じて選択してもよい。投影距離の変動量が大きい場合は、第1レンズ群G1と第2レンズ群G2両方のレンズを用いることが好ましい。
 フォーカシング時に第1レンズ群G1に含まれるレンズの少なくとも一部を光軸方向に移動させることで、ディストーションの変動をより効果的に抑制することができる。フォーカシング時に第2レンズ群G2に含まれるレンズの少なくとも一部を光軸方向に移動させることで、像面位置の変動をより効果的に抑制することができる。フォーカシング時に第1レンズ群G1および第2レンズ群G2のレンズを光軸方向に移動させることで、ディストーションと像面湾曲の変動を効果的に抑制することができる。
 また、本発明の目的とする投写用レンズとしては、ディストーション(歪曲収差)が約2%以下に抑えられていることが好ましく、0.6%以下に抑えられていることがより好ましい。ディストーションが0.6%以下の場合は、投写画面を複数に分割して分割画面ごとに投写型表示装置から同時に画像を投写する分割投写のような用途にも良好に使用可能となる。
 なお、上述した好ましい構成は、投写用レンズに要望される事項に応じて適宜選択的に採用することが好ましい。
 次に、本発明に係る投写型表示装置の実施形態について、図9を用いて説明する。図9は本発明の一実施形態に係る投写型表示装置の概略構成図である。
 図9に示す投写型表示装置100は、本発明の実施形態にかかる投写用レンズ10と、光源20と、各色光に対応したライトバルブとしての透過型表示素子11a~11cと、色分解のためのダイクロイックミラー12、13と、色合成のためのクロスダイクロイックプリズム14と、コンデンサレンズ16a~16cと、光路を偏向するための全反射ミラー18a~18cとを有する。なお、図9では、投写用レンズ10は概略的に図示しており、光源20とダイクロイックミラー12の間にはインテグレータが配されているが、図9ではその図示を省略している。
 光源20からの白色光は、ダイクロイックミラー12、13で3つの色光光束(G光、B光、R光)に分解された後、それぞれコンデンサレンズ16a~16cを経て各色光光束にそれぞれ対応する透過型表示素子11a~11cに入射して光変調され、クロスダイクロイックプリズム14により色合成された後、投写用レンズ10に入射する。投写用レンズ10は、透過型表示素子11a~11cにより光変調された光による光学像を不図示のスクリーン上に投写する。
 透過型表示素子11a~11cとしては、例えば透過型液晶表示素子等を用いることができる。なお、図9ではライトバルブとして透過型表示素子を用いた例を示したが、本発明の投写型表示装置が備えるライトバルブは、これに限られるものではなく、反射型液晶表示素子あるいはDMD等の他の光変調手段を用いてもよい。
 次に、本発明の投写用レンズの具体的な実施例について説明する。
 <実施例1>
 実施例1の投写用レンズのレンズ構成図および光線軌跡は図1に示したものである。図1に関する説明は上述しているためここでは重複説明を省略する。図1に示す構成は、投写距離が無限遠のときのものである。
 実施例1の投写用レンズは、拡大側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とが配列されてなる3群構成であり、縮小側がテレセントリックとされている。第3レンズ群G3の縮小側には、赤外線カットフィルタやローパスフィルタ等の各種フィルタや色合成プリズム等を想定したガラスブロック2が配置され、ガラスブロック2の縮小側の面に接するようにライトバルブの画像表示面1が配置されている。第2レンズ群G2と第3レンズ群G3の間には、不要な軸外光線を遮光するためのマスク等からなる開口3が配置されている。
 第1レンズ群G1は、拡大側から順に、近軸領域で縮小側に凸面を向けた負メニスカスレンズよりなるレンズL1と、拡大側に凸面を向けた負メニスカスレンズよりなるレンズL2と、両凹レンズよりなるレンズL3とが配列されて構成されている。
 第2レンズ群G2は、拡大側から順に、拡大側に凸面を向けた負メニスカスレンズよりなるレンズL4と、両凸レンズよりなるレンズL5と、両凸レンズよりなるレンズL6とが配列されて構成されている。レンズL4とレンズL5は接合されている。
 第3レンズ群G3は、拡大側から順に、負の屈折力を有する前群G3fと、正の屈折力を有する後群G3rとが配列されて構成されている。前群G3fは、拡大側から順に、両凹レンズよりなるレンズL7と、両凸レンズよりなるレンズL8とが配列されて構成されている。レンズL7とレンズL8とは空気間隔を挟んで配置されている。
 後群G3rは、拡大側から順に、両凸レンズよりなるレンズL9と、両凹レンズよりなるレンズL10と、両凸レンズよりなるレンズL11と、両凸レンズよりなるレンズL12と、縮小側に凸面を向けた負メニスカスレンズよりなるレンズL13と、両凸レンズよりなるレンズL14とが配列されて構成されている。レンズL10とレンズL11は接合されており、レンズL12とレンズL13は接合されている。
 実施例1の投写用レンズは、レンズL1の両側の面が非球面であり、その他の面は全て球面である。また、レンズL1はプラスチック材質からなる。
 表1~表3に実施例1の投写用レンズの各種データを示す。表1~表3に示す数値は、投写距離が無限遠のときの全系の焦点距離が1となるように規格化されたものである。また、各表の数値は所定の桁でまるめたものである。
 表1に、実施例1の投写用レンズの基本レンズデータを示す。基本レンズデータのSiの欄には最も拡大側の構成要素の拡大側の面を1番目として縮小側に向かうに従い順次増加するように構成要素の面に面番号を付したときのi番目(i=1、2、3、…)の面番号を示し、Riの欄にはi番目の面の曲率半径を示し、Diの欄にはi番目の面とi+1番目の面との光軸Z上の面間隔を示し、Ndjの欄には最も拡大側の構成要素を1番目として縮小側に向かうに従い順次増加するj番目(j=1、2、3、…)の構成要素のd線(波長587.6nm)に関する屈折率を示し、νdjの欄にはj番目の構成要素のd線に関するアッベ数を示す。
 ただし、曲率半径の符号は、面形状が拡大側に凸の場合を正、縮小側に凸の場合を負としており、基本レンズデータにはガラスブロック2と開口3も含めて示している。また、面番号が1、2の面は非球面であり、これらの面番号には*印が付いている。非球面の曲率半径の欄には近軸の曲率半径の数値を示している。
 実施例1の投写用レンズでは、レンズL2、L3からなる組とレンズL4、L5からなる組を個別に移動させてフォーカシングを行うように構成されている。レンズL1とレンズL2の間隔、レンズL3とレンズL4の間隔、レンズL5とレンズL6の間隔は、フォーカシング時に変化する可変面間隔である。これら可変面間隔の欄にはそれぞれDD[2]、DD[6]、DD[9]と記入している。すなわち、i番目の面とi+1番目の面との間隔が可変面間隔の場合は、DD[Di]となるように記載している。
 表2に、実施例1の投写用レンズの投写距離が無限遠、有限のときそれぞれにおける、上記各可変面間隔の値を示す。ここでは、有限のときの投写距離の値として123.92を用いており、この投写距離における全系の焦点距離は1.002、Fナンバーは1.70、全画角は84.2°である。投写距離が無限遠のときの焦点距離、Fナンバー、全画角は後掲の表22、表23に他の実施例のものと合わせて示す。
 表3に、面番号が1、2の面の非球面係数を示す。表3の非球面係数の数値の「E-n」(n:整数)は「×10-n」を意味する。非球面係数は、下式で表される非球面式における各係数K、Am(m=3、4、5、…)の値である。
 Zd=C・h/{1+(1-K・C・h1/2}+ΣAm・h
ただし、
Zd:非球面深さ(高さhの非球面上の点から、非球面頂点が接する光軸に垂直な平面に
   下ろした垂線の長さ)
h:高さ(光軸からのレンズ面までの距離)
C:近軸曲率
K、Am:非球面係数(m=3、4、5、…)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 図10(A)~図10(D)にそれぞれ、投写距離が無限遠のときの実施例1の投写用レンズの球面収差、非点収差、ディストーション(歪曲収差)、倍率色収差(倍率の色収差)の各収差図を示す。図10(E)~図10(H)にそれぞれ、投写距離が123.92のときの実施例1の投写用レンズの球面収差、非点収差、ディストーション(歪曲収差)、倍率色収差(倍率の色収差)の各収差図を示す。図10(A)~図10(H)の各収差図は、投写距離が無限遠のときの全系の焦点距離が1となるように規格化されたときのものである。
 図10(A)~図10(H)の各収差図は、d線を基準としたものであるが、球面収差図では、F線(波長波長486.1nm)、C線(波長656.3nm)に関する収差も示しており、倍率色収差図では、F線、C線に関する収差を示している。また、非点収差図ではサジタル方向、タンジェンシャル方向それぞれに関する収差を実線、破線で示しており、線種の説明にそれぞれ(S)、(T)という記号を記入して示している。球面収差図の縦軸上方に記載のFNo.はFナンバー、その他の収差図の縦軸上方に記載のωは半画角を意味する。
 上記の実施例1の説明で述べた各種データの記号、意味、記載方法、投写距離が無限遠のときの全系の焦点距離が1となるように規格化されたときのものである点等は、特に断りがない限り以下の実施例2~7のものについても同様である。ただし、投写距離の有限のときのその値は実施例ごとに異なっており、その値は実施例1のものと同様に、各実施例の可変面間隔の表と収差図に記載している。
 <実施例2>
 実施例2の投写用レンズのレンズ構成図および光線軌跡は図2に示したものである。実施例2の投写用レンズは、実施例1の投写用レンズと略同様の構成とされており、フォーカシング時に移動するレンズも同様である。表4、表5、表6にそれぞれ、実施例2の投写用レンズの基本レンズデータ、可変面間隔、非球面係数を示す。図11(A)~図11(H)にそれぞれ、実施例2の投写用レンズの各収差図を示す。実施例2のデータでは、有限のときの投写距離を123.93としており、この投写距離における全系の焦点距離は1.002、Fナンバーは1.70、全画角は84.2°である。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 <実施例3>
 実施例3の投写用レンズのレンズ構成図および光線軌跡は図3に示したものである。実施例3の投写用レンズは、実施例1の投写用レンズと略同様の構成とされており、フォーカシング時に移動するレンズも同様である。表7、表8、表9にそれぞれ、実施例3の投写用レンズの基本レンズデータ、可変面間隔、非球面係数を示す。図12(A)~図12(H)にそれぞれ、実施例3の投写用レンズの各収差図を示す。実施例3のデータでは、有限のときの投写距離を124.13としており、この投写距離における全系の焦点距離は1.003、Fナンバーは1.80、全画角は79.0°である。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 <実施例4>
 実施例4の投写用レンズのレンズ構成図および光線軌跡は図4に示したものである。実施例4の投写用レンズは、実施例1の投写用レンズと略同様の構成とされているが、レンズL4が両凸レンズよりなる点およびレンズL5が縮小側に凸面を向けた負メニスカスレンズよりなる点において相違している。実施例4の投写用レンズにおけるフォーカシング時に移動するレンズは実施例1のものと同様である。表10、表11、表12にそれぞれ、実施例4の投写用レンズの基本レンズデータ、可変面間隔、非球面係数を示す。図13(A)~図13(H)にそれぞれ、実施例4の投写用レンズの各収差図を示す。実施例4のデータでは、有限のときの投写距離を123.95としており、この投写距離における全系の焦点距離は1.002、Fナンバーは1.79、全画角は79.0°である。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 <実施例5>
 実施例5の投写用レンズのレンズ構成図および光線軌跡は図5に示したものである。実施例5の投写用レンズは、実施例4の投写用レンズと略同様の構成とされている。実施例5の投写用レンズでは、レンズL2、L3からなる組とレンズL4、L5、L6からなる組を個別に移動させてフォーカシングを行うように構成されている。表13、表14、表15にそれぞれ、実施例5の投写用レンズの基本レンズデータ、可変面間隔、非球面係数を示す。図14(A)~図14(H)にそれぞれ、実施例5の投写用レンズの各収差図を示す。実施例5のデータでは、有限のときの投写距離を123.19としており、この投写距離における全系の焦点距離は0.995、Fナンバーは1.80、全画角は79.0°である。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 <実施例6>
 実施例6の投写用レンズのレンズ構成図および光線軌跡は図6に示したものである。実施例6の投写用レンズは、実施例1の投写用レンズと略同様の構成とされており、フォーカシング時に移動するレンズも同様である。表16、表17、表18にそれぞれ、実施例6の投写用レンズの基本レンズデータ、可変面間隔、非球面係数を示す。図15(A)~図15(H)にそれぞれ、実施例6の投写用レンズの各収差図を示す。実施例6のデータでは、有限のときの投写距離を124.06としており、この投写距離における全系の焦点距離は1.002、Fナンバーは1.69、全画角は84.0°である。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 <実施例7>
 実施例7の投写用レンズのレンズ構成図および光線軌跡は図7に示したものである。実施例7の投写用レンズは、実施例1の投写用レンズと略同様の構成とされており、フォーカシング時に移動するレンズも同様である。表19、表20、表21にそれぞれ、実施例7の投写用レンズの基本レンズデータ、可変面間隔、非球面係数を示す。図16(A)~図16(H)にそれぞれ、実施例7の投写用レンズの各収差図を示す。実施例7のデータでは、有限のときの投写距離を124.13としており、この投写距離における全系の焦点距離は1.002、Fナンバーは1.70、全画角は84.2°である。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 表22に、上記実施例1~7の上記各条件式(1)~(12)の対応値を示す。また、表23に、上記実施例1~7の各種値を示す。ただし、表23のfG3rは後群G3rの焦点距離である。表22、表23に示す値は投写距離が無限遠のときのd線に関するものである。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
 以上、実施形態および実施例を挙げて本発明を説明したが、本発明の投写用レンズとしては、上記実施例のものに限られるものではなく種々の態様の変更が可能であり、例えば各レンズの曲率半径、面間隔、屈折率、アッベ数、非球面係数を適宜変更することが可能である。
 また、本発明の投写型表示装置は、上記構成のものに限られるものではなく、例えば、用いられるライトバルブや、光束分離または光束合成に用いられる光学部材は、上記構成に限定されず、種々の態様の変更が可能である。

Claims (29)

  1.  拡大側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とから構成される実質的に3つのレンズ群からなり、
     縮小側がテレセントリックであり、
     最も拡大側に、プラスチック材質からなり少なくとも1面の非球面を有する非球面プラスチックレンズが配置され、
     前記第3レンズ群が、拡大側から順に、空気間隔を挟んで配置された、負の屈折力を有する前群と、正の屈折力を有する後群とからなり、
     前記前群が、拡大側から順に、前記前群と前記後群の間の空気間隔より短い空気間隔を挟んで配置された、負の単レンズと、正の単レンズとから構成される実質的に2つのレンズからなり、
     下記条件式(1)を満足することを特徴とする投写用レンズ。
       -0.7<fFG3/f<0.7 … (1)
    ただし、
    fFG3:前記第3レンズ群のフロントフォーカス
    f:投写距離が無限遠のときの全系の焦点距離
  2.  下記条件式(2)を満足することを特徴とする請求項1記載の投写用レンズ。
       -0.3<f/fG23<0 … (2)
    ただし、
    fG23:前記第2レンズ群と前記第3レンズ群との合成焦点距離
  3.  下記条件式(3)を満足することを特徴とする請求項1または2記載の投写用レンズ。
       da/f<0.4 … (3)
    ただし、
    da:前記前群の前記負の単レンズと前記正の単レンズの光軸上の空気間隔
  4.  下記条件式(4)を満足することを特徴とする請求項1から3のいずれか1項記載の投写用レンズ。
       1.0<fG2/fG3<1.4 … (4)
    ただし、
    fG2:前記第2レンズ群の焦点距離
    fG3:前記第3レンズ群の焦点距離
  5.  下記条件式(5)を満足することを特徴とする請求項1から4のいずれか1項記載の投写用レンズ。
       0.55<(Hsm-Imφ/2)/Hsj … (5)
    ただし、
    Hsm:最も縮小側のレンズ面における最大光線高
    Imφ:縮小側における最大有効像円直径
    Hsj:最も縮小側のレンズ面における軸上光線の最大光線高
  6.  下記条件式(6)を満足することを特徴とする請求項1から5のいずれか1項記載の投写用レンズ。
       |Hfm/Imφ|<2.0 … (6)
    ただし、
    Hfm:最も拡大側のレンズ面における最大光線高
    Imφ:縮小側における最大有効像円直径
  7.  下記条件式(7)を満足することを特徴とする請求項1から6のいずれか1項記載の投写用レンズ。
       -1.5<fG1/f<-0.7 … (7)
    ただし、
    fG1:前記第1レンズ群の焦点距離
  8.  前記第1レンズ群が、前記非球面プラスチックレンズと、2つの負レンズとから構成される実質的に3つのレンズからなることを特徴とする請求項1から7のいずれか1項記載の投写用レンズ。
  9.  下記条件式(8)を満足することを特徴とする請求項1から8のいずれか1項記載の投写用レンズ。
       1.5<fG2/f<6.0 … (8)
    ただし、
    fG2:前記第2レンズ群の焦点距離
  10.  前記第2レンズ群が、拡大側から順に、いずれか一方が正レンズで他方が負レンズの2つのレンズを接合してなる正の屈折力を有する接合レンズと、正の単レンズとから構成される実質的に3つのレンズからなることを特徴とする請求項1から9のいずれか1項記載の投写用レンズ。
  11.  前記第2レンズ群の前記接合レンズおよび前記単レンズはともに両凸形状であることを特徴とする請求項10記載の投写用レンズ。
  12.  下記条件式(9)を満足することを特徴とする請求項1から11のいずれか1項記載の投写用レンズ。
       fG3f/f<-3.0 … (9)
    ただし、
    fG3f:前記第3レンズ群の前記前群の焦点距離
  13.  前記非球面プラスチックレンズ以外の前記第1レンズ群のレンズおよび前記第2レンズ群のレンズのうち、少なくとも1つのレンズを移動させることによりフォーカシングを行うように構成されていることを特徴とする請求項1から12のいずれか1項記載の投写用レンズ。
  14.  下記条件式(10)を満足することを特徴とする請求項1から13のいずれか1項記載の投写用レンズ。
       2.00<Bf/f … (10)
    ただし、
    Bf:全系のバックフォーカス
  15.  下記条件式(11)を満足することを特徴とする請求項1から14のいずれか1項記載の投写用レンズ。
       FNo<2.00 … (11)
    ただし、
    FNo:Fナンバー
  16.  下記条件式(12)を満足することを特徴とする請求項1から15のいずれか1項記載の投写用レンズ。
       70°<2ω … (12)
    ただし、
    2ω:最大全画角
  17.  下記条件式(1’)を満足することを特徴とする請求項1から16のいずれか1項記載の投写用レンズ。
       -0.5<fFG3/f<0.5 … (1’)
  18.  下記条件式(2’)を満足することを特徴とする請求項1から17のいずれか1項記載の投写用レンズ。
       -0.2<f/fG23<0 … (2’)
    ただし、
    fG23:前記第2レンズ群と前記第3レンズ群との合成焦点距離
  19.  下記条件式(3’)を満足することを特徴とする請求項1から18のいずれか1項記載の投写用レンズ。
       da/f<0.3 … (3’)
    ただし、
    da:前記前群の前記負の単レンズと前記正の単レンズの光軸上の空気間隔
  20.  下記条件式(4’)を満足することを特徴とする請求項1から19のいずれか1項記載の投写用レンズ。
       1.0<fG2/fG3<1.2 … (4’)
    ただし、
    fG2:前記第2レンズ群の焦点距離
    fG3:前記第3レンズ群の焦点距離
  21.  下記条件式(5’)を満足することを特徴とする請求項1から20のいずれか1項記載の投写用レンズ。
       0.60<(Hsm-Imφ/2)/Hsj<1.00 … (5’)
    ただし、
    Hsm:最も縮小側のレンズ面における最大光線高
    Imφ:縮小側における最大有効像円直径
    Hsj:最も縮小側のレンズ面における軸上光線の最大光線高
  22.  下記条件式(6’)を満足することを特徴とする請求項1から21のいずれか1項記載の投写用レンズ。
       |Hfm/Imφ|<1.8 … (6’)
    ただし、
    Hfm:最も拡大側のレンズ面における最大光線高
    Imφ:縮小側における最大有効像円直径
  23.  下記条件式(7’)を満足することを特徴とする請求項1から22のいずれか1項記載の投写用レンズ。
       -1.3<fG1/f<-1.0 … (7’)
    ただし、
    fG1:前記第1レンズ群の焦点距離
  24.  下記条件式(8’)を満足することを特徴とする請求項1から23のいずれか1項記載の投写用レンズ。
       2.3<fG2/f<4.5 … (8’)
    ただし、
    fG2:前記第2レンズ群の焦点距離
  25.  下記条件式(9’)を満足することを特徴とする請求項1から24のいずれか1項記載の投写用レンズ。
       -20.0<fG3f/f<-5.0 … (9’)
    ただし、
    fG3f:前記第3レンズ群の前記前群の焦点距離
  26.  下記条件式(10’)を満足することを特徴とする請求項1から25のいずれか1項記載の投写用レンズ。
       2.40<Bf/f<4.00 … (10’)
    ただし、
    Bf:全系のバックフォーカス
  27.  下記条件式(11’)を満足することを特徴とする請求項1から26のいずれか1項記載の投写用レンズ。
       FNo<1.85 … (11’)
    ただし、
    FNo:Fナンバー
  28.  下記条件式(12’)を満足することを特徴とする請求項1から27のいずれか1項記載の投写用レンズ。
      75°<2ω … (12’)
    ただし、
    2ω:最大全画角
  29.  光源と、該光源からの光が入射するライトバルブと、該ライトバルブにより光変調された光による光学像をスクリーン上に投写する投写用レンズとしての請求項1から28のいずれか1項記載の投写用レンズとを備えたことを特徴とする投写型表示装置。
     
PCT/JP2013/002512 2012-04-18 2013-04-12 投写用レンズおよび投写型表示装置 WO2013157237A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201390000407.3U CN204178035U (zh) 2012-04-18 2013-04-12 投影用透镜和投影型显示装置
US14/515,549 US9195034B2 (en) 2012-04-18 2014-10-16 Lens for projection and projection-type display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-094480 2012-04-18
JP2012094480 2012-04-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/515,549 Continuation US9195034B2 (en) 2012-04-18 2014-10-16 Lens for projection and projection-type display apparatus

Publications (1)

Publication Number Publication Date
WO2013157237A1 true WO2013157237A1 (ja) 2013-10-24

Family

ID=49383209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002512 WO2013157237A1 (ja) 2012-04-18 2013-04-12 投写用レンズおよび投写型表示装置

Country Status (3)

Country Link
US (1) US9195034B2 (ja)
CN (1) CN204178035U (ja)
WO (1) WO2013157237A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6040105B2 (ja) * 2013-06-17 2016-12-07 富士フイルム株式会社 撮像レンズおよび撮像装置
JP5930101B1 (ja) * 2015-06-12 2016-06-08 セイコーエプソン株式会社 投射光学系及びプロジェクター
JP6570477B2 (ja) * 2016-05-25 2019-09-04 富士フイルム株式会社 結像光学系、投写型表示装置、および撮像装置
JP6595405B2 (ja) * 2016-05-25 2019-10-23 富士フイルム株式会社 結像光学系、投写型表示装置、および、撮像装置
KR102439910B1 (ko) * 2017-07-10 2022-09-05 삼성전기주식회사 촬상 광학계
TWI672553B (zh) * 2017-07-31 2019-09-21 大立光電股份有限公司 投影鏡頭系統、投影裝置、感測模組及電子裝置
CN108535836B (zh) * 2017-09-07 2024-03-19 安徽仁和光电科技有限公司 一种全高清投影镜头
CN110346895B (zh) * 2018-04-02 2021-07-23 中强光电股份有限公司 定焦镜头
CN108303788B (zh) * 2018-04-04 2024-07-02 中山联合光电科技股份有限公司 一种折射式超短焦投影光学系统
CN210323733U (zh) * 2019-09-11 2020-04-14 中强光电股份有限公司 投影镜头及投影装置
TWI814018B (zh) * 2021-06-18 2023-09-01 揚明光學股份有限公司 定焦投影鏡頭

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326755A (ja) * 1998-03-20 1999-11-26 Fuji Photo Optical Co Ltd レトロフォーカス型レンズ
JP2000111797A (ja) * 1998-10-02 2000-04-21 Canon Inc ズームレンズ及びそれを用いた投影装置
JP2003066329A (ja) * 2001-08-29 2003-03-05 Sony Corp 投射レンズ、及び映像表示装置
JP2005084456A (ja) * 2003-09-10 2005-03-31 Canon Inc コンパクトなレトロフォーカスレンズ
JP2006047948A (ja) * 2004-06-29 2006-02-16 Konica Minolta Opto Inc 投影光学系およびそれを備えた投影装置
JP2006215501A (ja) * 2005-02-07 2006-08-17 Fujinon Corp 投写レンズおよびこれを用いた投写型表示装置
JP2008003615A (ja) * 2006-06-22 2008-01-10 Bci Finanz Ag ディジタル投影用の固定焦点距離の投影対物レンズ
JP2009069540A (ja) * 2007-09-13 2009-04-02 Fujinon Corp 投写型ズームレンズおよび投写型表示装置
JP2009104048A (ja) * 2007-10-25 2009-05-14 Fujinon Corp 投写レンズおよびこれを用いた投写型表示装置
JP2010217452A (ja) * 2009-03-16 2010-09-30 Fujifilm Corp 投写レンズおよびこれを用いた投写型表示装置
JP2011053663A (ja) * 2009-08-04 2011-03-17 Konica Minolta Opto Inc 光学系及びそれを備えた画像投影装置及び撮像装置
JP2011221089A (ja) * 2010-04-05 2011-11-04 Fujifilm Corp 投写用広角レンズおよび投写型表示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812326B2 (ja) * 1986-09-01 1996-02-07 ミノルタ株式会社 逆望遠型広角レンズ
US6285509B1 (en) 1997-12-25 2001-09-04 Canon Kabushiki Kaisha Zoom lens and display apparatus having the same
JP2000171702A (ja) 1998-12-04 2000-06-23 Sony Corp 投射レンズ
JP3579627B2 (ja) * 2000-02-16 2004-10-20 ペンタックス株式会社 広角レンズ系
JP4624535B2 (ja) 2000-09-28 2011-02-02 富士フイルム株式会社 広角投映レンズおよびこれを用いた投写型画像表示装置
JP4366086B2 (ja) 2003-01-30 2009-11-18 日東光学株式会社 投写用レンズシステムおよびプロジェクタ装置
JP2009186790A (ja) 2008-02-07 2009-08-20 Fujinon Corp 投写レンズおよびこれを用いた投写型表示装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326755A (ja) * 1998-03-20 1999-11-26 Fuji Photo Optical Co Ltd レトロフォーカス型レンズ
JP2000111797A (ja) * 1998-10-02 2000-04-21 Canon Inc ズームレンズ及びそれを用いた投影装置
JP2003066329A (ja) * 2001-08-29 2003-03-05 Sony Corp 投射レンズ、及び映像表示装置
JP2005084456A (ja) * 2003-09-10 2005-03-31 Canon Inc コンパクトなレトロフォーカスレンズ
JP2006047948A (ja) * 2004-06-29 2006-02-16 Konica Minolta Opto Inc 投影光学系およびそれを備えた投影装置
JP2006215501A (ja) * 2005-02-07 2006-08-17 Fujinon Corp 投写レンズおよびこれを用いた投写型表示装置
JP2008003615A (ja) * 2006-06-22 2008-01-10 Bci Finanz Ag ディジタル投影用の固定焦点距離の投影対物レンズ
JP2009069540A (ja) * 2007-09-13 2009-04-02 Fujinon Corp 投写型ズームレンズおよび投写型表示装置
JP2009104048A (ja) * 2007-10-25 2009-05-14 Fujinon Corp 投写レンズおよびこれを用いた投写型表示装置
JP2010217452A (ja) * 2009-03-16 2010-09-30 Fujifilm Corp 投写レンズおよびこれを用いた投写型表示装置
JP2011053663A (ja) * 2009-08-04 2011-03-17 Konica Minolta Opto Inc 光学系及びそれを備えた画像投影装置及び撮像装置
JP2011221089A (ja) * 2010-04-05 2011-11-04 Fujifilm Corp 投写用広角レンズおよび投写型表示装置

Also Published As

Publication number Publication date
US20150036228A1 (en) 2015-02-05
CN204178035U (zh) 2015-02-25
US9195034B2 (en) 2015-11-24

Similar Documents

Publication Publication Date Title
JP5766889B2 (ja) 投写用ズームレンズおよび投写型表示装置
JP5766798B2 (ja) 投写用変倍光学系および投写型表示装置
WO2013157237A1 (ja) 投写用レンズおよび投写型表示装置
JP5603301B2 (ja) 投写用変倍光学系および投写型表示装置
JP5599954B2 (ja) 投写用ズームレンズおよび投写型表示装置
WO2013061535A1 (ja) 投写用ズームレンズおよび投写型表示装置
CN204065540U (zh) 投影用光学系统和投影型显示装置
CN203870320U (zh) 投影用变焦透镜和投影型显示装置
WO2014076924A1 (ja) 投写用ズームレンズおよび投写型表示装置
JP2016050989A (ja) 投写用ズームレンズおよび投写型表示装置
JP2019035873A (ja) 投写用光学系及び投写型表示装置
CN104285174B (zh) 投影用变倍光学系统和投影型显示装置
CN203799102U (zh) 投影用变焦透镜和投影型显示装置
JP2016050990A (ja) 投写用ズームレンズおよび投写型表示装置
WO2012160786A1 (ja) 投写用変倍光学系および投写型表示装置
CN204903852U (zh) 投影用变焦透镜以及投影型显示装置
JP5777182B2 (ja) 投写用変倍光学系および投写型表示装置
JP2013007881A (ja) 投写用変倍光学系および投写型表示装置
CN206532030U (zh) 投影用变焦透镜及投影型显示装置
JP2016061948A (ja) 投写用ズームレンズおよび投写型表示装置
JP5642903B2 (ja) 投写用ズームレンズおよび投写型表示装置
JP5611901B2 (ja) 投写用変倍光学系および投写型表示装置
JP5727669B2 (ja) 投写用ズームレンズおよび投写型表示装置
WO2018150981A1 (ja) 投写用ズームレンズおよび投写型表示装置
JP2014206612A (ja) 投写用レンズおよび投写型表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201390000407.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778999

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13778999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP