[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013146702A1 - 不織布および不織布の製造方法 - Google Patents

不織布および不織布の製造方法 Download PDF

Info

Publication number
WO2013146702A1
WO2013146702A1 PCT/JP2013/058631 JP2013058631W WO2013146702A1 WO 2013146702 A1 WO2013146702 A1 WO 2013146702A1 JP 2013058631 W JP2013058631 W JP 2013058631W WO 2013146702 A1 WO2013146702 A1 WO 2013146702A1
Authority
WO
WIPO (PCT)
Prior art keywords
paper layer
nonwoven fabric
layer
nozzle
steam
Prior art date
Application number
PCT/JP2013/058631
Other languages
English (en)
French (fr)
Inventor
孝義 小西
利夫 平岡
Original Assignee
ユニ・チャーム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニ・チャーム株式会社 filed Critical ユニ・チャーム株式会社
Priority to IN8457DEN2014 priority Critical patent/IN2014DN08457A/en
Priority to EP13769189.5A priority patent/EP2832909B1/en
Priority to AU2013241469A priority patent/AU2013241469B2/en
Priority to US14/388,149 priority patent/US9487894B2/en
Priority to KR1020147030419A priority patent/KR20140144723A/ko
Priority to CN201380017804.6A priority patent/CN104204323B/zh
Publication of WO2013146702A1 publication Critical patent/WO2013146702A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0038Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding involving application of liquid to the layers prior to lamination, e.g. wet laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/20Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of continuous webs only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/16Drying; Softening; Cleaning
    • B32B38/164Drying
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/413Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties containing granules other than absorbent substances
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/492Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet
    • D04H1/495Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet for formation of patterns, e.g. drilling or rearrangement
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/736Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged characterised by the apparatus for arranging fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/22Agents rendering paper porous, absorbent or bulky
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/50Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by form
    • D21H21/52Additives of definite length or shape
    • D21H21/54Additives of definite length or shape being spherical, e.g. microcapsules, beads
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H25/00After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
    • D21H25/04Physical treatment, e.g. heating, irradiating
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/002Tissue paper; Absorbent paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/002Tissue paper; Absorbent paper
    • D21H27/004Tissue paper; Absorbent paper characterised by specific parameters
    • D21H27/005Tissue paper; Absorbent paper characterised by specific parameters relating to physical or mechanical properties, e.g. tensile strength, stretch, softness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B2038/0052Other operations not otherwise provided for
    • B32B2038/0088Expanding, swelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/16Drying; Softening; Cleaning
    • B32B38/164Drying
    • B32B2038/166Removing moisture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/12Pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1007Running or continuous length work
    • Y10T156/1023Surface deformation only [e.g., embossing]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24496Foamed or cellular component
    • Y10T428/24504Component comprises a polymer [e.g., rubber, etc.]

Definitions

  • the present invention relates to a nonwoven fabric, and more particularly to a nonwoven fabric suitable for use of wipes or absorbent articles. Moreover, this invention relates to the manufacturing method of the said nonwoven fabric.
  • this invention aims at providing the manufacturing method of the nonwoven fabric which is bulky and has high intensity
  • the present invention employs the following configuration in order to solve the above problems. That is, in the method for producing a nonwoven fabric of the present invention, the first papermaking raw material containing fibers and water is supplied onto a belt moving in one direction, and the first paper layer is formed on the belt.
  • the nonwoven fabric of the present invention includes a longitudinal direction, a transverse direction intersecting the longitudinal direction, a thickness direction perpendicular to the longitudinal direction and the transverse direction, and one surface perpendicular to the thickness direction.
  • a second layer comprising expanded thermally expandable particles and fibers is provided on the other surface.
  • FIG. 1 is a diagram for explaining a nonwoven fabric manufacturing apparatus used in a method for manufacturing a nonwoven fabric according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a high-pressure water flow nozzle.
  • FIG. 3 is a diagram illustrating an example of a nozzle hole of a high-pressure water flow nozzle.
  • FIG. 4 is a diagram for explaining the principle that the fibers of the first paper layer are entangled by the high-pressure water flow.
  • FIG. 5 is a schematic cross-sectional view in the width direction of the first paper layer on which the high-pressure water flow is jetted.
  • FIG. 6 is a schematic diagram for explaining the thermally expandable particles contained in the second papermaking raw material.
  • FIG. 7 is a schematic diagram for explaining the second paper layer.
  • FIG. 8 is a schematic cross-sectional view of the third paper layer in the width direction.
  • FIG. 9 is a diagram illustrating an example of a high-pressure steam nozzle.
  • FIG. 10 is a diagram illustrating an example of a nozzle hole of a high-pressure steam nozzle.
  • FIG. 11 is a schematic cross-sectional view in the width direction of the third paper layer onto which high-pressure steam has been jetted.
  • FIG. 1 is a view for explaining a nonwoven fabric manufacturing apparatus 1 used in a nonwoven fabric manufacturing method according to an embodiment of the present invention.
  • the first papermaking raw material is supplied to the raw material supply head 11.
  • the first papermaking raw material supplied to the raw material supply head 11 is supplied from the raw material supply head 11 onto the paper layer forming belt of the paper layer forming conveyor 12, and is deposited on the paper layer forming belt.
  • the paper layer forming belt is preferably a support having air permeability through which steam can pass.
  • a wire mesh, a blanket, etc. can be used as a paper layer forming belt.
  • the first papermaking raw material supplied to the raw material supply head 11 includes fiber and water.
  • the first papermaking raw material is, for example, a fiber suspension in which fibers are dispersed in water.
  • the fibers used for the first papermaking raw material for example, short fibers having a fiber length of 20 mm or less are preferable.
  • Such short fibers include, for example, wood pulp such as soft and hardwood chemical pulp, semi-chemical pulp and mechanical pulp, mercerized pulp and cross-linked pulp obtained by chemically treating these wood pulp, and non-wood fibers such as hemp and cotton.
  • cellulosic fibers such as regenerated fibers such as rayon fibers, and synthetic fibers such as polyethylene fibers, polypropylene fibers, polyester fibers and polyamide fibers.
  • the fibers used for the papermaking raw material are particularly preferably cellulosic fibers such as wood pulp, non-wood pulp, and rayon fiber.
  • the first papermaking raw material deposited on the paper layer forming belt is moderately dehydrated by the suction box 13 to form the first paper layer 31.
  • the first paper layer 31 includes two high-pressure water nozzles 14 disposed on the paper layer forming belt, and two suction boxes disposed at positions facing the high-pressure water nozzle 14 with the paper layer forming belt interposed therebetween. Pass between 13 and 13.
  • the high pressure water flow nozzle 14 injects a high pressure water flow onto the first paper layer 31.
  • the suction box 13 sucks and collects the water sprayed from the high-pressure water flow nozzle 14.
  • a high pressure water flow is jetted from the high pressure water flow nozzle 14 onto the first paper layer 31, and a groove is formed on the surface of the first paper layer 31.
  • the high-pressure water flow nozzle 14 injects a plurality of high-pressure water flows 41 arranged in the width direction (CD) of the first paper layer 31 toward the first paper layer 31.
  • a plurality of groove portions 42 are formed that extend in the width direction (CD) of the first paper layer 31 and extend in the machine direction (MD).
  • the nozzle holes 141 of the high-pressure water flow nozzle 14 are arranged in a line in the width direction (CD) of the paper layer, for example.
  • the hole diameter of the nozzle hole 141 is preferably 90 to 150 ⁇ m. When the hole diameter of the nozzle hole 141 is smaller than 90 ⁇ m, the nozzle may be easily clogged. When the hole diameter of the nozzle hole 141 is larger than 150 ⁇ m, the processing efficiency may be deteriorated.
  • the hole pitch of the nozzle holes 141 (the distance between the centers of the holes adjacent in the width direction (CD)) is preferably 0.5 to 1.0 mm.
  • the hole pitch of the nozzle holes 141 is smaller than 0.5 mm, the pressure resistance of the nozzles is lowered and may be damaged.
  • the hole pitch of the nozzle holes 141 is larger than 1.0 mm, fiber entanglement may become insufficient.
  • the fibers of the first paper layer 31 are entangled with each other, and the strength of the first paper layer 31 is increased.
  • the principle that the fibers of the first paper layer 31 are entangled when the first paper layer 31 receives a high-pressure water flow will be described with reference to FIG. However, this principle does not limit the present invention.
  • the high-pressure water flow nozzle 14 injects the high-pressure water flow 41 onto the first paper layer 31, the high-pressure water flow 41 passes through the first paper layer 31 and the paper layer forming belt 51. As a result, the fibers of the first paper layer 31 are drawn toward the portion 52 where the high-pressure water stream 41 passes through the paper layer forming belt 51. As a result, the fibers of the first paper layer 31 gather toward the portion 52 through which the high-pressure water stream 41 passes through the paper layer forming belt 51, whereby the fibers are entangled.
  • the strength of the first paper layer 31 is increased. As a result, even when high-pressure steam is jetted onto the paper layer in a later step, the paper layer is less likely to be perforated, torn, or blown away. Further, the wet strength of the first paper layer 31 can be increased without adding a paper strength enhancer to the papermaking raw material.
  • FIG. 5 shows a schematic cross-sectional view in the width direction of the first paper layer 31 after passing between the two high-pressure water nozzles 14 and the two suction boxes 13.
  • Grooves 42 are formed on the surface of the first paper layer 31 by the high-pressure water flow.
  • a pattern (not shown) corresponding to the pattern of the paper layer forming belt is formed on the surface opposite to the surface on which the high-pressure water flow is jetted.
  • the first paper layer 31 is transferred to the paper layer transport conveyor 15. Then, the second paper layer 32 is laminated on the first paper layer 31 to form the third paper layer 33.
  • the second paper layer 32 is produced as follows.
  • a second papermaking raw material is supplied into a papermaking tank 16 provided with a rotating net 17.
  • the second papermaking raw material contains water, fibers, and thermally expandable particles.
  • the second papermaking raw material is, for example, a suspension in which fibers and a thermally expandable flower are dispersed in water.
  • short fibers having a fiber length of 20 mm or less are preferable, similar to the fibers used for the first papermaking raw material.
  • Such short fibers include, for example, wood pulp such as soft and hardwood chemical pulp, semi-chemical pulp and mechanical pulp, mercerized pulp and cross-linked pulp obtained by chemically treating these wood pulp, and non-wood fibers such as hemp and cotton.
  • cellulosic fibers such as regenerated fibers such as rayon fibers, and synthetic fibers such as polyethylene fibers, polypropylene fibers, polyester fibers and polyamide fibers.
  • the fibers used for the papermaking raw material are particularly preferably cellulosic fibers such as wood pulp, non-wood pulp, and rayon fiber.
  • FIG. 6 is a schematic diagram for explaining the thermally expandable particles contained in the second papermaking raw material.
  • the thermally expandable particle 60 includes a thermoplastic resin shell 61 and a nucleus 62 in which a low boiling point solvent is enclosed.
  • the thermoplastic resin used for the shell 61 of the thermally expandable particle 60 include copolymers such as vinylidene chloride, acrylonitrile, acrylic acid ester, and methacrylic acid ester.
  • the low boiling point solvent enclosed in the core 62 of the thermally expandable particle 60 include isobutane, pentane, petroleum ether, hexane, a low boiling halogenated hydrocarbon, and methylsilane.
  • the ratio of the thermally expandable particles 60 contained in the second papermaking raw material is preferably 1 to 40 parts by weight, more preferably 3 to 20 parts by weight with respect to 100 parts by weight of the fiber.
  • the paper described later includes a paper layer formed from the second papermaking raw material. The layer may not expand sufficiently.
  • the ratio of the heat-expandable particles 60 contained in the second papermaking raw material is larger than 40 parts by weight with respect to 100 parts by weight of the fiber, the second In some cases, the degree of expansion of a paper layer described later including a paper layer formed from a papermaking raw material does not change.
  • the average particle diameter of the thermally expanded particles 60 before thermal expansion is preferably 5 to 30 ⁇ m, more preferably 8 to 14 ⁇ m.
  • the thermoplastic resin shell 61 is softened and the low boiling point solvent enclosed in the nucleus 62 is vaporized. Thereby, as shown in FIG. 6B, the thermally expandable particles 60 expand into hollow thermally expandable particles 60 'having a larger volume.
  • the volume of the heat-expandable particle 60 ′ after heating the heat-expandable particle 60 is preferably 20 to 125 times, more preferably 50 to 80 times the volume of the heat-expandable particle 60 before expansion. Is double.
  • thermally expandable particles 60 contained in the second papermaking material Matsumoto Microsphere (F-36, F-30D, F-30GS, F-20D, F-50D, F-80D) (Matsumoto Yushi Seiyaku Co., Ltd.) is used as the thermally expandable particles 60 contained in the second papermaking material. )), Expandancel (WU, DU) (made in Sweden, Nihon Philite Co., Ltd.), etc. can be used.
  • the thermally expandable particles that can be used as the thermally expandable particles 60 contained in the second papermaking material are not limited to the above-described thermally expandable particles.
  • the second papermaking raw material is Phyrex RC-104 (manufactured by Meisei Chemical Co., Ltd., a cation-modified acrylic polymer), A fixing agent such as Pyrex M (manufactured by Meisei Chemical Industry Co., Ltd., acrylic copolymer) may also be included. Further, the second papermaking raw material may further contain an anionic, nonionic, cationic or amphoteric yield improver, a sizing agent, and the like.
  • the second paper layer is formed by forming the second papermaking raw material into a sheet.
  • the fiber in which the thermally expandable particles in the second papermaking raw material supplied into the papermaking tank 16 are fixed is sucked into the rotating circular mesh 17 and the second paper layer 32 is drawn. May be formed on the circular mesh 17.
  • the second paper layer 32 will be described with reference to FIG.
  • FIG. 7 is a schematic diagram for explaining the second paper layer 32. As shown in FIG. 7, in the second paper layer 32, the thermally expandable particles 60 are dispersed in the fibers 70.
  • the second paper layer 32 formed on the circular net 17 is transferred to the paper layer transport conveyor 15 and compressed by the first paper layer 31. Accordingly, as shown in FIG. 8, the second paper layer 32 is laminated on the first paper layer 31, and is a third laminated sheet of the first paper layer 31 and the second paper layer 32. A paper layer 33 is formed.
  • FIG. 8 is a schematic cross-sectional view in the width direction (CD) of the third paper layer 33.
  • the third paper layer 33 is transferred to the paper layer conveying conveyor 18 and then transferred to the drying dryer 19.
  • the drying dryer 19 heats and dries the third paper layer 33.
  • a Yankee dryer is used as the drying dryer 19.
  • the drying dryer 19 includes a rotating cylindrical dryer, and the surface of the cylindrical dryer is heated to about 110 ° C. by steam or the like.
  • the drying dryer 19 attaches the third paper layer 33 to the surface of the rotating cylindrical dryer, and dries the third paper layer 33.
  • the dry dryer 19 dries the third paper layer 33 so that the moisture content is preferably 10 to 80%, more preferably 20 to 80%, and still more preferably 20 to 60%.
  • the moisture content is the amount of water contained in the paper layer when the dry mass of the paper layer is 100%.
  • the moisture content of the third paper layer 33 When the moisture content of the third paper layer 33 is smaller than 10%, the hydrogen bonding force between the fibers of the third paper layer 33 becomes strong. In some cases, the expansion of the paper layer 33 is hindered. On the other hand, if the moisture content of the third paper layer 33 is greater than 80%, most of the heat imparted by the high-pressure steam described below is used for the evaporation of moisture, and sufficient heat cannot be imparted to the thermally expandable particles. There is. In addition, the energy required to dry the third paper layer 33 to a predetermined moisture content or less by high-pressure steam described later may become very high.
  • the surface of the third paper layer 33 on which the first paper layer 31 is provided is the surface of the cylindrical dryer of the dry dryer 19. It is preferable to make it adhere to. That is, the heating surface when the third paper layer 33 is heated and dried is preferably the surface on the first paper layer 31 side. Thereby, the heat of the drying dryer 19 passes through the portion of the first paper layer 31 in the third paper layer 33 and reaches the portion of the second paper layer 32 where the thermally expandable particles are present.
  • the portion of the second paper layer 32 in the third paper layer 33 does not become excessively hot, so that when the third paper layer 33 is dried by the drying dryer 19, It can suppress that the part of the 2 paper layer 32 dries too much, or the thermally expansible particle in the part of the 2nd paper layer 32 expands.
  • the portion of the first paper layer 31 in the third paper layer 33 is preferentially dried, the hydrogen bonding between the fibers in the portion of the first paper layer 31 in the third paper layer 33 becomes strong, The strength of the portion of the first paper layer 31 is increased.
  • the third paper layer 33 moves onto the mesh-shaped outer peripheral surface of the cylindrical suction drum 20.
  • high-pressure steam is jetted onto the third paper layer 33 from one steam nozzle 21 disposed above the outer peripheral surface of the suction drum 20.
  • the suction drum 20 has a built-in suction device, and water vapor ejected from the steam nozzle 21 is sucked by the suction device.
  • the heat-expandable particles in the third paper layer 33 are expanded by the heat of the high-pressure steam jetted from the steam nozzle 21, and the bulk of the third paper layer 33 is increased.
  • the surface of the third paper layer 33 that jets high-pressure steam is preferably the surface on which the second paper layer 32 is disposed. Since the high-pressure steam directly hits the heat-expandable particles 60 of the third paper layer 33, a high amount of heat can be instantaneously applied to the heat-expandable particles 60. Thereby, before the 3rd paper layer 33 dries and the hydrogen bond force between the fibers of the 3rd paper layer 33 becomes strong, the thermally expansible particle 60 can be expanded rapidly. In addition, since the fibers in the first paper layer 31 of the third paper layer 33 are less likely to be loosened by the high-pressure steam, the first paper even when the high-pressure steam is jetted onto the third paper layer 33. The strength of the layer 31 can be maintained.
  • the high-pressure steam sprayed from the steam nozzle 21 may be steam composed of 100% water, or steam containing other gas such as air. However, the high-pressure steam sprayed from the steam nozzle 21 is preferably steam composed of 100% water.
  • the temperature of the high-pressure steam is preferably equal to or higher than the temperature at which the shell 61 of the thermally expandable particle 60 is softened and the thermally expandable particle 60 expands.
  • the temperature of the high-pressure steam is preferably a temperature equal to or lower than the temperature at which the heat-expandable particles 60 contract. Therefore, the temperature of the high-pressure steam is appropriately selected depending on the thermally expandable particles 60 used. For example, the temperature of the high-pressure steam is 140 to 190 ° C. Note that the temperature of the high-pressure steam injected from the steam nozzle 21 has a correlation with the vapor pressure of the high-pressure steam described later, so that the temperature of the high-pressure steam can be measured by measuring the vapor pressure of the high-pressure steam.
  • FIG. 21 An example of the steam nozzle 21 arranged above the suction drum 20 is shown in FIG.
  • the steam nozzle 21 injects a plurality of high-pressure steams 81 arranged in the machine direction (MD) and the width direction (CD) of the third paper layer 33 toward the third paper layer 33.
  • MD machine direction
  • CD width direction
  • FIG. 10 is a diagram illustrating an example of the nozzle hole 211 of the steam nozzle 21.
  • the nozzle hole rows of the plurality of nozzle holes 211 arranged in the width direction (CD) are arranged in six rows in the machine direction (MD).
  • a plurality of high-pressure steam 81 arranged in the width direction (CD) of the third paper layer 33 is arranged in three rows in the machine direction (MD). line up.
  • the number of rows in which the plurality of nozzle holes arranged in the width direction (CD) are arranged in the machine direction (MD) is preferably 4 or more, and is not limited to 6.
  • the diameter of the nozzle hole of the steam nozzle 21 is preferably 100 to 250 ⁇ m. If the hole diameter of the nozzle hole is smaller than 100 ⁇ m, energy may be insufficient and the thermally expandable particles may not be heated sufficiently. On the other hand, if the hole diameter of the steam nozzle 21 is larger than 250 ⁇ m, the energy applied to the third paper layer 33 is too large, and the damage to the third paper layer 33 may become too large.
  • the nozzle hole hole pitch (distance between the centers of nozzle holes adjacent in the width direction (CD)) is preferably 0.5 to 1.0 mm.
  • the hole pitch of the nozzle holes is smaller than 0.5 mm, the pressure resistance of the steam nozzle 21 is lowered, and there is a possibility that breakage occurs.
  • the hole pitch of the nozzle holes is larger than 1.0 mm, an area where the heating is insufficient may occur in the third paper layer 33. As a result, the variation in the bulk of the third paper layer 33 may increase.
  • the vapor pressure of the high-pressure steam sprayed from the steam nozzle 14 is preferably 0.4 to 1.5 MPa.
  • the vapor pressure of the high-pressure steam is lower than 0.4 MPa, the high-temperature steam is not sufficiently applied to the thermally expandable particles 60 in the third paper layer 33, and the thermally expandable particles 60 may not be sufficiently heated. If the vapor pressure of the high-pressure steam is higher than 1.5 MPa, the third paper layer 33 may be pierced, the third paper layer 33 may be broken, or blown off.
  • FIG. 11 is a schematic cross-sectional view in the width direction (CD) of the third paper layer 33 to which high-pressure steam is jetted.
  • the third paper layer 33 includes a longitudinal direction, a transverse direction intersecting the longitudinal direction, a thickness direction perpendicular to the longitudinal direction and the transverse direction, and one surface perpendicular to the thickness direction.
  • a first paper layer 31 having a plurality of grooves 42 extending in the vertical direction and arranged in the horizontal direction, the first paper layer 31 including fibers.
  • a second paper layer 32 provided on one side and containing expanded thermally expandable particles and fibers is provided on the other side.
  • the vertical direction corresponds to the machine direction (MD) (see FIG. 9)
  • the horizontal direction corresponds to the width direction (CD).
  • the third high-pressure steam after the third paper layer 33 is jetted as compared with the second paper layer 32 in the third paper layer 33 before the high-pressure steam is jetted as shown in FIG.
  • the portion of the second paper layer 32 in the paper layer 33 becomes thicker.
  • the portion of the first paper layer 31 is a portion where strength is increased by jetting a high-pressure water flow.
  • the portion of the second paper layer 32 is a portion where the fiber is loosened and the strength is weakened due to expansion of the thermally expandable particles, but the thickness is increased.
  • the strength and bulkiness of the third paper layer 33 can be balanced by forming the strong portion 31 and the weakly strong but bulky portion 32 in the third paper layer 33. it can. That is, this makes it possible to form a paper layer 33 that is bulky and has high strength.
  • the thickness of the second paper layer 32 is preferably at least twice the thickness of the first paper layer 31.
  • first paper layer 31 and the second paper layer 32 can form a bulky and high-strength paper layer.
  • the wipeability of the nonwoven fabric is improved by the very high volume of the third paper layer 33. Moreover, since the space for accumulating the water in a nonwoven fabric increases, the water retention of a nonwoven fabric also improves.
  • the third paper layer 33 is sucked into the suction drum 20 by a suction device built in the suction drum 20.
  • the suction force with which the suction drum 20 sucks the third paper layer 33 is preferably ⁇ 5 to ⁇ 12 kPa. If the suction force of the suction drum 20 is less than -5 kPa, steam may not be sucked and blowing up may occur. Further, when the suction force of the suction drum 20 is larger than ⁇ 12 kPa, there are cases where the fibers fall into the suction.
  • the distance between the tip of the vapor nozzle 21 and the surface of the third paper layer 33 is preferably 1.0 to 10 mm. If the distance between the tip of the steam nozzle 21 and the surface of the third paper layer 33 is less than 1.0 mm, a hole is formed in the third paper layer 33, the third paper layer 33 is torn, May blow away. If the distance between the tip of the steam nozzle 21 and the surface of the third paper layer 33 is greater than 10 mm, the high-pressure steam is dispersed, and heat expandable particles in the third paper layer 33 are heated. The efficiency of imparting may deteriorate.
  • the moisture content of the third paper layer 33 after jetting high-pressure steam is preferably 40% or less, more preferably 30% or less.
  • the moisture content of the third paper layer 33 after jetting high-pressure steam is greater than 40%, it is difficult to reduce the moisture content of the third paper layer 33 to 5% or less by drying with a drying dryer described later. There is. Further, in addition to the drying dryer described later, additional drying is required, and the production efficiency of the nonwoven fabric may be deteriorated.
  • the drying dryer 22 dries the third paper layer 33 sprayed with high-pressure steam until it becomes a non-woven fabric that is a final product.
  • a drying dryer 22 for example, a Yankee dryer is used.
  • the drying dryer 22 attaches the third paper layer 33 to the surface of the cylindrical dryer heated to about 150 ° C. by steam, and dries the third paper layer 33.
  • the third paper layer 33 after passing through the drying dryer 22 needs to be sufficiently dry. Specifically, the moisture content of the third paper layer 33 after passing through the dry dryer 22 is preferably 5% or less. If the moisture content of the third paper layer 33 immediately after the high-pressure steam is jetted is 5% or less, the third paper layer 33 jetted with the high-pressure steam is further dried using the drying dryer 22 or the like. It does not have to be.
  • the dried third paper layer 33 (nonwoven fabric) is wound around the winder 23.
  • this nonwoven fabric By cutting the nonwoven fabric produced as described above into a predetermined size, this nonwoven fabric can be used as a dry wipe. Moreover, this nonwoven fabric can be used as a wet wipe by cutting the nonwoven fabric produced as described above into a predetermined size and impregnating the cut nonwoven fabric with a chemical solution. As described above, since the capacity of the nonwoven fabric is improved by increasing the bulk of the paper layer, the wipes made from this nonwoven fabric can remove stains well. Since the portion of the first paper layer 31 of the nonwoven fabric has high strength, when the object is wiped off by the portion of the first paper layer 31 of the nonwoven fabric, the fibers on the surface of the nonwoven fabric fall off when the object is wiped off. Can be suppressed.
  • the nonwoven fabric produced as mentioned above becomes bulky and the touch of a nonwoven fabric becomes favorable, it is a nonwoven fabric suitable for the wipe for wiping a human body or an animal body. Furthermore, the nonwoven fabric produced as described above is suitable for wet wipes because it can hold a large amount of water due to its high volume.
  • the nonwoven fabric is made into an absorbent article such as a panty liner.
  • an absorbent article such as a panty liner.
  • the apparent thickness of the layer, the apparent thickness of the second paper layer, the thickness after pressing, the wet thickness, the dry tensile strength, the wet tensile strength, the water absorption and the friction fastness were measured as follows. .
  • the basis weight of the first paper layer, the second paper layer, and the third paper layer were measured as follows. First, only the first paper layer was allowed to flow through the line of the nonwoven fabric manufacturing apparatus without forming the second paper layer. Then, a measurement sample having a size of 30 cm ⁇ 30 cm is sampled from the first paper layer dried by the drying dryer 19 and before the high-pressure steam is jetted, and the weight of the sampled measurement sample is measured. The basis weight of the paper layer was calculated.
  • the basis weight of the first paper layer in Examples and Comparative Examples is an average value of 10 measurement samples.
  • the basis weight of the paper layer was calculated.
  • the basis weight of the third paper layer in Examples and Comparative Examples is an average value of 10 measurement samples.
  • the basis weight of the second paper layer was calculated by subtracting the basis weight of the first paper layer from the basis weight of the third paper layer.
  • a sample for measurement having a size of 10 cm ⁇ 10 cm was sampled from the first paper layer used for measuring the basis weight of the first paper layer and dried by the drying dryer 19 before jetting high-pressure steam.
  • a thickness gauge model FS-60DS manufactured by Daiei Chemical Seiki Seisakusho Co., Ltd.
  • Measure the thickness of the sample for measurement under the measurement conditions of 3 gf / cm 2 did.
  • Three thicknesses were measured for one measurement sample, and the average of the three thicknesses was taken as the apparent thickness of the first paper layer.
  • a measurement sample having a size of 10 cm ⁇ 10 cm from the third paper layer used for measuring the basis weight of the third paper layer and dried by the drying dryer 19 and before jetting high-pressure steam is used.
  • Sampling. Using a thickness gauge (model FS-60DS manufactured by Daiei Chemical Seiki Seisakusho Co., Ltd.) equipped with a 15 cm 2 probe, measure the thickness of the sample for measurement under the measurement conditions of 3 gf / cm 2 did. Three thicknesses were measured for one measurement sample, and the average of the three thicknesses was taken as the apparent thickness of the third paper layer. Then, the apparent thickness of the second paper layer was calculated by subtracting the apparent thickness of the first paper layer from the apparent thickness of the third paper layer.
  • a strip-shaped test piece with a width of 25 mm whose longitudinal direction is the machine direction of the paper layer and a strip-shaped test piece with a width of 25 mm whose longitudinal direction is the width direction of the paper layer are cut from the manufactured nonwoven fabric.
  • a sample was prepared. Samples for measurement in the machine direction and width direction were each for three measurements using a tensile tester (manufactured by Shimadzu Corporation, Autograph Model AGS-1kNG) equipped with a load cell with a maximum load capacity of 50N. For the sample, the tensile strength was measured under the conditions of a distance between grips of 100 mm and a tensile speed of 100 mm / min. The average value of the tensile strengths of the three measurement samples of the measurement sample in the machine direction and the width direction was taken as the dry tensile strength in the machine direction and the width direction.
  • the tensile strength was measured under the conditions of a distance between grips of 100 mm and a tensile speed of 100 mm / min.
  • the average value of the tensile strength of each of the three measurement samples of the measurement sample in the machine direction and the width direction was defined as the wet tensile strength in the machine direction and the width direction.
  • the test of friction fastness was carried out by applying a plastic film- and sheet-friction coefficient test method (JIS-K-7125: 1999).
  • a sample for measurement having a size of 300 mm ⁇ 200 mm is sampled from the manufactured nonwoven fabric, and the surface to be measured (the surface on the first paper layer side or the second paper layer) is measured on the table of the friction coefficient measuring device (manufactured by Tester Sangyo Co., Ltd.).
  • the measurement sample was attached so that the side surface was on top. At this time, the measurement sample was arranged so that the moving direction of the sliding piece was the direction of the length of 200 mm of the measurement sample.
  • a cloth adhesive tape No.
  • Example 1 was produced using the nonwoven fabric manufacturing apparatus 1 in one embodiment of the present invention.
  • First papermaking material containing 50% by weight of softwood bleached kraft pulp (NBKP) and 50% by weight of rayon (Corona manufactured by Daiwabo Rayon Co., Ltd.) having a fineness of 1.1 dtex and a fiber length of 8 mm was made.
  • the first papermaking raw material is supplied onto the paper layer forming belt (Nippon Filcon Co., Ltd. OS80) using the raw material head, and the first papermaking raw material is dehydrated using the suction box.
  • a paper layer was formed. At this time, the moisture content of the paper layer of the first paper layer was 80%.
  • the high-pressure water energy of the high-pressure water jet sprayed onto the first paper layer using two high-pressure water nozzles was 0.2846 kW / m 2 .
  • injection flow rate (cubic M / min) 750 ⁇ total orifice opening area (m 2 ) ⁇ injection pressure (kg / cm 2 ) 0.495
  • the distance between the tip of the high-pressure water flow nozzle and the upper surface of the first paper layer was 10 mm. Furthermore, the hole diameter of the nozzle holes of the high-pressure water flow nozzle was 92 ⁇ m, and the hole pitch of the nozzle holes was 0.5 mm.
  • the first paper layer on which the high-pressure water flow was jetted was transferred to the paper layer transport conveyor.
  • the second papermaking raw material is supplied into the papermaking tank, and the fibers in which the thermally expandable particles in the second papermaking raw material are fixed are sucked into the rotating circular net, and the second paper layer is drawn into the circular net. Formed on top. Then, the 2nd paper layer formed on the circular net was laminated
  • the third paper layer After transferring the third paper layer to the other paper layer conveying conveyor, the third paper layer is transferred to a Yankee dryer heated to 110 ° C. so that the moisture content of the third paper layer is 60%. The paper layer was dried.
  • high-pressure steam was sprayed onto the second paper layer side surface of the third paper layer using one steam nozzle.
  • the vapor pressure of the high-pressure steam at this time was 0.7 MPa, and the vapor temperature was 175 ° C.
  • the distance between the tip of the steam nozzle and the surface of the paper layer was 2.0 mm.
  • the nozzle holes of the steam nozzles were arranged in 6 rows in the machine direction (MD). Furthermore, the hole diameter of the nozzle hole of the steam nozzle was 200 ⁇ m, and the hole pitch was 1.0 mm.
  • the suction force with which the suction drum sucked the paper layer was -5.0 kPa.
  • a stainless steel 18 mesh perforated sleeve was used on the outer periphery of the suction drum.
  • the third paper layer was transferred to a Yankee dryer heated to 150 ° C. and dried to a moisture content of 5% or less.
  • the dried paper layer is Example 1.
  • Example 2 was manufactured by the same method as that of Example 1 except that the steam temperature of the high-pressure steam was 140 ° C. and the steam pressure was 0.4 MPa.
  • Example 3 is manufactured by a method similar to the manufacturing method of Example 1 except that the fiber concentration of the first papermaking raw material is adjusted so that the basis weight of the first paper layer is 15 g / m 2. It was.
  • Example 4 is the same method as the production method of Example 1 except that the third paper layer was dried so that the moisture content of the third paper layer before jetting high-pressure steam was 20%. Manufactured by.
  • Comparative Example 1 is the same method as the manufacturing method of Example 1 except that the second paper layer was not formed and the nonwoven fabric was produced only by the first paper layer and high-pressure steam was not jetted. Manufactured by.
  • Comparative Example 2 The comparative example 2 was manufactured by the same method as the manufacturing method of Example 1, except that the first paper layer was not formed and the nonwoven fabric was prepared only by the second paper layer.
  • Comparative Example 3 Comparative Example 3 is that the first paper layer is not formed and the nonwoven fabric is produced only with the second paper layer, the steam temperature of the high-pressure steam is 115 ° C., the steam pressure is 0.2 MPa, the steam nozzle The manufacturing method of Example 1 except that the nozzle holes are arranged in three rows in the machine direction (MD), the diameter of the nozzle holes of the steam nozzle is 300 ⁇ m, and the hole pitch is 2.0 mm Was produced by the same method.
  • MD machine direction
  • the diameter of the nozzle holes of the steam nozzle is 300 ⁇ m
  • the hole pitch is 2.0 mm
  • Table 2 shows the production conditions of the above examples and comparative examples.
  • the moisture content of the paper layer before steam spraying the basis weight of the first paper layer, the basis weight of the second paper layer, the basis weight of the third paper layer, the dry thickness, the density, the first,
  • Table 4 shows the dry tensile strength, wet tensile strength, water absorption and friction fastness of the above Examples and Comparative Examples.
  • Example 2 and Comparative Example 3 By comparing Example 2 and Comparative Example 3, in order to maintain a high bulk even when the nonwoven fabric is in a wet state, The steam pressure is larger than 0.2 MPa, the hole diameter of the nozzle hole of the steam nozzle is smaller than 300 ⁇ m, the hole pitch of the nozzle hole of the steam nozzle is smaller than 2 mm, and plural in the width direction (CD). It was found that the number of rows of nozzle holes arranged in the machine direction (MD) is preferably 4 or more.
  • Example 1 and Comparative Examples 1 and 2 The water absorption amount of Comparative Example 1 indicates the water absorption amount of the first paper layer portion of Example 1, and the water absorption amount of Comparative Example 2 indicates the water absorption amount of the second paper layer portion of Example 1. It can be considered as indicating quantity. Therefore, it was found that the water absorption amount of the second paper layer portion of Example 1 was twice or more the water absorption amount of the first paper layer portion of Example 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Paper (AREA)
  • Laminated Bodies (AREA)

Abstract

嵩高であり強度が高い、熱膨張性粒子を含む不織布およびその不織布の製造方法を提供する。本発明の不織布の製造方法は、繊維と水とを含んだ第1の抄紙原料を、ベルト上に供給してベルト上に第1の紙層を形成する工程(12)と、第1の紙層に高圧水流を噴射し、機械方向に延びる溝部を表面に形成する工程(13,14)と、繊維と熱膨張性粒子と水とを含んだ第2の抄紙原料をシート化して第2の紙層を形成する工程(16,17)と、第1の紙層と第2の紙層とを積層して第3の紙層を形成する工程(15,17)と、第3の紙層を乾燥する工程(19)と、第3の紙層に高圧水蒸気を噴射して、熱膨張性粒子を膨張させる工程(20,21)とを含む。本発明の不織布は、縦方向に延在し、横方向に並ぶ複数の溝部を有し、繊維を含む第1の層を一方の面に備え、膨張した熱膨張性粒子と繊維とを含む第2の層を他方の面に備える。

Description

不織布および不織布の製造方法
 本発明は、不織布に関し、とくにワイプスの使用、または吸収性物品の使用に好適な不織布に関する。また、本発明は、上記不織布の製造方法に関する。
 パルプ繊維層に均一に分散保持した発泡体粒子を含む湿式抄紙シートをドライヤで乾燥するときに発泡体粒子を発泡させることによって作製された嵩高な抄紙が従来技術として知られている(たとえば、特許文献1~3)。
特開平5-339898号公報 特開平10-88495号公報 特開2000-34695号公報
 特許文献1~3に記載されている従来の抄紙の製造方法で作製した不織布をワイプス、吸収性物品の表面材などに使用する場合、不織布の強度をさらに高くする必要がある場合がある。そこで、本発明は、熱膨張性粒子を含む不織布において、嵩高であり強度が高い不織布およびその不織布の製造方法を提供することを目的とする。
 本発明は、上記課題を解決するため、以下の構成を採用した。
 すなわち、本発明の不織布の製造方法は、繊維と水とを含んだ第1の抄紙原料を、一方向に移動するベルト上に供給して、該ベルト上に第1の紙層を形成する工程と、第1の紙層に高圧水流を噴射し、機械方向に延びる溝部を第1の紙層の表面に形成する工程と、繊維と熱膨張性粒子と水とを含んだ第2の抄紙原料をシート化して第2の紙層を形成する工程と、第1の紙層と第2の紙層とを積層して第3の紙層を形成する工程と、第3の紙層を乾燥する工程と、蒸気ノズルから、第3の紙層に高圧水蒸気を噴射することによって、熱膨張性粒子を膨張させる工程とを含む。
 また、本発明の不織布は、縦方向と、縦方向に交差する横方向と、縦方向および横方向に対して垂直をなす厚さ方向と、厚さ方向に対して垂直をなす一方の面と、一方の面に対して厚さ方向に対向する他方の面とを有し、縦方向に延在し、横方向に並ぶ複数の溝部を有し、繊維を含む第1の層を一方の面に備え、膨張した熱膨張性粒子と繊維とを含む第2の層を他方の面に備える。
 本発明によれば、嵩高であり強度が高い、熱膨張性粒子を含む不織布を得ることができる。
図1は、本発明の一実施形態における不織布の製造方法に使用する不織布製造装置を説明するための図である。 図2は高圧水流ノズルの一例を示す図である。 図3は高圧水流ノズルのノズル穴の一例を示す図である。 図4は、高圧水流によって第1の紙層の繊維同士が交絡する原理を説明するための図である。 図5は、高圧水流が噴射された第1の紙層の幅方向の断面概略図である。 図6は、第2の抄紙原料に含まれる熱膨張性粒子を説明するための概略図である。 図7は、第2の紙層を説明するための概略図である。 図8は、第3の紙層の幅方向の断面概略図である。 図9は高圧水蒸気ノズルの一例を示す図である。 図10は高圧水蒸気ノズルのノズル穴の一例を示す図である。 図11は、高圧水蒸気が噴射された第3の紙層の幅方向の断面概略図である。
 以下、図を参照して本発明の一実施形態の不織布の製造方法を説明する。図1は、本発明の一実施形態における不織布の製造方法に使用する不織布製造装置1を説明するための図である。
 第1の抄紙原料が原料供給ヘッド11に供給される。原料供給ヘッド11に供給された第1の抄紙原料は、原料供給ヘッド11から紙層形成コンベア12の紙層形成ベルト上に供給され、紙層形成ベルト上に堆積する。紙層形成ベルトは、蒸気が通過可能な通気性を有する支持体であることが好ましい。たとえば、ワイヤーメッシュ、毛布などを紙層形成ベルトとして使用できる。
 原料供給ヘッド11に供給される第1の抄紙原料は繊維と水とを含む。第1の抄紙原料は、たとえば水中に繊維を分散させた繊維懸濁液である。第1の抄紙原料に用いる繊維として、たとえば繊維長20mm以下の短繊維が好ましい。このような短繊維には、たとえば針葉樹や広葉樹の化学パルプ、半化学パルプおよび機械パルプなどの木材パルプ、これら木材パルプを化学処理したマーセル化パルプおよび架橋パルプ、麻や綿などの非木材系繊維ならびにレーヨン繊維などの再生繊維のようなセルロース系繊維、ならびにポリエチレン繊維、ポリプロピレン繊維、ポリエステル繊維およびポリアミド繊維のような合成繊維などが挙げられる。抄紙原料に用いる繊維は、とくに木材パルプ、非木材パルプ、レーヨン繊維などのセルロース系繊維が好ましい。
 紙層形成ベルト上に堆積した第1の抄紙原料は吸引ボックス13により適度に脱水され、第1の紙層31が形成する。第1の紙層31は、紙層形成ベルト上に配置された2台の高圧水流ノズル14と、紙層形成ベルトを挟んで高圧水流ノズル14に対向する位置に配置された2台の吸引ボックス13との間を通過する。高圧水流ノズル14は第1の紙層31に高圧水流を噴射する。吸引ボックス13は高圧水流ノズル14から噴射された水を吸引して回収する。高圧水流ノズル14から高圧水流が第1の紙層31に噴射され、第1の紙層31の表面に溝部が形成される。
 高圧水流ノズル14の一例を図2に示す。高圧水流ノズル14は、第1の紙層31の幅方向(CD)に並んだ複数の高圧水流41を第1の紙層31に向けて噴射する。その結果、第1の紙層31の表面には、第1の紙層31の幅方向(CD)に並び、機械方向(MD)に延びる複数の溝部42が形成される。
 高圧水流ノズル14のノズル穴の一例を図3に示す。高圧水流ノズル14のノズル穴141は、たとえば、紙層の幅方向(CD)に一列に並んで配置される。ノズル穴141の穴径は、好ましくは90~150μmである。ノズル穴141の穴径が90μmよりも小さいと、ノズルが詰まりやすくなる場合がある。ノズル穴141の穴径が150μmよりも大きいと、処理効率が悪くなる場合がある。
 ノズル穴141の穴ピッチ(幅方向(CD)に隣接する穴の中心間の距離)は、好ましくは0.5~1.0mmである。ノズル穴141の穴ピッチが0.5mmよりも小さいと、ノズルの耐圧が低下し、破損する場合がある。また、ノズル穴141の穴ピッチが1.0mmよりも大きいと、繊維交絡が不十分となる場合がある。
 第1の紙層31が高圧水流を受けると、図2に示すように第1の紙層31に溝部42が形成される。また、第1の紙層31が高圧水流を受けると、第1の紙層31の繊維同士が交絡し、第1の紙層31の強度が高くなる。第1の紙層31が高圧水流を受けると、第1の紙層31の繊維同士が交絡する原理を、図4を参照して説明する。しかし、この原理は本発明を限定するものではない。
 図4に示すように、高圧水流ノズル14が高圧水流41を第1の紙層31に噴射すると、高圧水流41は、第1の紙層31および紙層形成ベルト51を通過する。これにより第1の紙層31の繊維は、高圧水流41が紙層形成ベルト51を通過する部分52に向かって引き込まれることになる。その結果、第1の紙層31の繊維が、高圧水流41が紙層形成ベルト51を通過する部分52に向かって集まり、これにより繊維同士が交絡することになる。
 第1の紙層31の繊維同士が交絡することにより第1の紙層31の強度は高くなる。これにより、後の工程で、高圧水蒸気を紙層に噴射しても、紙層に穴が開いたり、紙層が破れたり、および吹き飛んだりすることが少なくなる。また、抄紙原料に紙力増強剤を添加しなくても第1の紙層31の湿潤強度を増加させることができる。
 2台の高圧水流ノズル14と、2台の吸引ボックス13との間を通過した後の第1の紙層31の幅方向の断面の概略図を図5に示す。高圧水流によって第1の紙層31の表面に溝部42が形成される。高圧水流が噴射された面の反対側の面には、紙層形成ベルトのパターンに対応するパターン(不図示)が形成される。
 その後、図1に示すように、第1の紙層31は紙層搬送コンベア15に転写される。そして、第1の紙層31に、第2の紙層32が積層され、第3の紙層33が形成する。
 第2の紙層32は、以下のようにして作製される。回転する円網17が設けられている抄造槽16の中に、第2の抄紙原料を供給する。第2の抄紙原料は、水と繊維と熱膨張性粒子とを含む。第2の抄紙原料は、たとえば繊維および熱膨張性流子を水中に分散させた懸濁液である。
 抄造槽16に供給される第2の抄紙原料に用いる繊維として、第1の抄紙原料に用いる繊維と同様に、たとえば繊維長20mm以下の短繊維が好ましい。このような短繊維には、たとえば針葉樹や広葉樹の化学パルプ、半化学パルプおよび機械パルプなどの木材パルプ、これら木材パルプを化学処理したマーセル化パルプおよび架橋パルプ、麻や綿などの非木材系繊維ならびにレーヨン繊維などの再生繊維のようなセルロース系繊維、ならびにポリエチレン繊維、ポリプロピレン繊維、ポリエステル繊維およびポリアミド繊維のような合成繊維などが挙げられる。抄紙原料に用いる繊維は、とくに木材パルプ、非木材パルプ、レーヨン繊維などのセルロース系繊維が好ましい。
 次に、第2の抄紙原料に含まれる熱膨張性粒子について説明する。図6は、第2の抄紙原料に含まれる熱膨張性粒子を説明するための概略図である。図6(a)に示すように、熱膨張性粒子60は、熱可塑性樹脂の殻61と、低沸点溶剤が封入されている核62とからなる。熱膨張性粒子60の殻61に用いられる熱可塑性樹脂には、塩化ビニリデン、アクリロニトリル、アクリル酸エステル、メタクリル酸エステルなどの共重合体などがある。熱膨張性粒子60の核62に封入される低沸点溶剤には、イソブタン、ペンタン、石油エーテル、ヘキサン、低沸点ハロゲン化炭化水素、メチルシランなどがある。
 第2の抄紙原料に含まれる熱膨張性粒子60の割合は、100重量部の繊維に対して、好ましくは1~40重量部であり、さらに好ましくは3~20重量部である。第2の抄紙原料に含まれる熱膨張性粒子60の割合が、100重量部の繊維に対して、1重量部よりも小さいと、第2の抄紙原料から形成された紙層を含む後述の紙層が充分に膨張しない場合がある。また、第2の抄紙原料に含まれる熱膨張性粒子60の割合が、100重量部の繊維に対して、40重量部よりも大きくしても、40重量部の場合に比べて、第2の抄紙原料から形成された紙層を含む後述の紙層の膨張の程度が変わらない場合がある。
 熱膨張粒子60の熱膨張前の平均粒径は、好ましくは5~30μmであり、より好ましくは8~14μmである。熱膨張性粒子60を加熱すると、熱可塑性樹脂の殻61は軟化するとともに核62封入されている低沸点溶剤が気化する。これにより、図6(b)に示すように、熱膨張性粒子60は、体積がより大きな中空の熱膨張性粒子60’へと膨張する。熱膨張性粒子60を加熱した後の熱膨張性粒子60’の体積は、膨張する前の熱膨張性粒子60の体積に比べて、好ましくは20~125倍であり、より好ましくは50~80倍である。第2の抄紙原料に含まれる熱膨張性粒子60として、マツモトマイクロスフェアー(F-36,F-30D,F-30GS,F-20D,F-50D,F-80D)(松本油脂製薬(株)製)、エクスパンセル(WU,DU)(スウェーデン製、販売元日本フィライト(株))などを使用することができる。しかし、第2の抄紙原料に含まれる熱膨張性粒子60として、使用できる熱膨張性粒子は、上述の熱膨張性粒子に限定されない。
 第2の抄紙原料に含まれる繊維に対する熱膨張粒子の定着をよくするために、第2の抄紙原料は、ファイレックスRC-104(明成化学工業(株)製、カチオン変性アクリル系重合体)、ファイレックスM(明成化学工業(株)製、アクリル系共重合体)などの定着剤を含んでもよい。また、第2の抄紙原料は、アニオン性、ノニオン性、カチオン性あるいは両性の歩留まり向上剤、サイズ剤などをさらに含んでもよい。
 第2の抄紙原料をシート化することによって第2の紙層を形成する。たとえば、図1に示すように、抄造槽16の中に供給された第2の抄紙原料における熱膨張性粒子が定着した繊維を、回転する円網17に吸引させて、第2の紙層32を円網17上に形成してもよい。図7を参照して第2の紙層32を説明する。図7は、第2の紙層32を説明するための概略図である。図7に示すように、第2の紙層32では、繊維70の中に熱膨張性粒子60が分散している。
 円網17上に形成した第2の紙層32は、紙層搬送コンベア15に転写され第1の紙層31で圧縮される。これにより、図8に示すように、第2の紙層32は、第1の紙層31に積層され、第1の紙層31と第2の紙層32との積層シートである第3の紙層33が形成する。図8は、第3の紙層33の幅方向(CD)の断面概略図である。
 図1に示すように、第3の紙層33は紙層搬送コンベア18に転写され、その後、乾燥ドライヤ19に転写される。
 乾燥ドライヤ19は、第3の紙層33を加熱して乾燥する。乾燥ドライヤ19には、たとえば、ヤンキードライヤが用いられる。乾燥ドライヤ19は、回転する円筒状ドライヤを含み、円筒状ドライヤの表面は蒸気などにより約110℃に加熱される。乾燥ドライヤ19は、回転する円筒状ドライヤの表面に第3の紙層33を付着させて、第3の紙層33を乾燥する。
 乾燥ドライヤ19は、好ましくは10~80%、より好ましくは20~80%、さらに好ましくは20~60%の水分率になるように第3の紙層33を乾燥する。ここで、水分率とは、紙層の乾燥質量を100%としたときの紙層に含有している水の量である。
 第3の紙層33の水分率が10%よりも小さいと、第3の紙層33の繊維間の水素結合力が強くなり、この繊維間の強い水素結合によって後述の高圧水蒸気による第3の紙層33の膨張が妨げられる場合がある。一方、第3の紙層33の水分率が80%よりも大きいと、後述の高圧水蒸気により付与される熱の多くが水分の蒸発に使用され、熱膨張性粒子に十分な熱が付与できない場合がある。また、後述の高圧水蒸気によって第3の紙層33を所定の水分率以下に乾燥させるために必要なエネルギーが非常に高くなる場合がある。
 乾燥ドライヤ19の円筒状ドライヤの表面に第3の紙層33を付着させるとき、第3の紙層33の第1の紙層31が設けられている面を乾燥ドライヤ19の円筒状ドライヤの表面に付着させることが好ましい。すなわち、第3の紙層33を加熱して乾燥するときの加熱面は、第1の紙層31側の面であることが好ましい。これにより、乾燥ドライヤ19の熱は、第3の紙層33における第1の紙層31の部分を通過して、熱膨張性粒子が存在する第2の紙層32の部分に到達する。したがって、第3の紙層33における第2の紙層32の部分は過度に熱くならないので、乾燥ドライヤ19によって第3の紙層33が乾燥しているときに、第3の紙層33の第2の紙層32の部分が過度に乾燥したり、第2の紙層32の部分の中の熱膨張性粒子が膨張したりすることを抑制できる。また、第3の紙層33における第1の紙層31の部分が優先的に乾燥するため、第3の紙層33における第1の紙層31の部分の繊維同士の水素結合が強くなり、第1の紙層31の部分の強度が高くなる。
 次に、図1に示すように、第3の紙層33は、円筒状のサクションドラム20のメッシュ状の外周面上に移動する。このとき、サクションドラム20の外周面の上方に配置された1台の蒸気ノズル21から高圧水蒸気が第3の紙層33に噴射される。サクションドラム20は吸引装置を内蔵しており、蒸気ノズル21から噴射された水蒸気は吸引装置によって吸引される。蒸気ノズル21から噴射された高圧水蒸気の熱によって、第3の紙層33中の熱膨張性粒子は膨張し、第3の紙層33の嵩は高くなる。
 高圧水蒸気を噴射する第3の紙層33の面は、第2の紙層32が配置されている面であることが好ましい。高圧水蒸気が第3の紙層33の熱膨張性粒子60に直接当たるため、熱膨張性粒子60に高い熱量を瞬間的に付与することができる。これにより、第3の紙層33が乾燥して第3の紙層33の繊維間の水素結合力が強くなる前に、熱膨張性粒子60を速く膨張させることができる。また、第3の紙層33の第1の紙層31の部分の繊維は、高圧水蒸気によってほぐされることが少なくなるので、高圧水蒸気を第3の紙層33に噴射しても第1の紙層31の部分の強度を維持できる。
 蒸気ノズル21から噴射される高圧水蒸気は、100%の水からなる水蒸気でもよいし、空気などの他の気体を含んだ水蒸気でもよい。しかし、蒸気ノズル21から噴射される高圧水蒸気は、100%の水からなる水蒸気であることが好ましい。
 高圧水蒸気の温度は、好ましくは、熱膨張性粒子60の殻61が軟化して熱膨張性粒子60が膨張する温度以上の温度である。また、熱膨張性粒子60は、所定温度以上になると収縮するので、高圧水蒸気の温度は、好ましくは、熱膨張性粒子60が収縮する温度以下の温度である。したがって、高圧水蒸気の温度は、使用される熱膨張性粒子60によって、適宜選択される。たとえば、高圧水蒸気の温度は、140~190℃である。なお、蒸気ノズル21から噴射される高圧水蒸気の温度は、後述の高圧水蒸気の蒸気圧力と相関関係があるので、高圧水蒸気の蒸気圧力を測定することによって高圧水蒸気の温度を測定できる。
 サクションドラム20の上方に配置された蒸気ノズル21の一例を図9に示す。蒸気ノズル21は、機械方向(MD)および第3の紙層33の幅方向(CD)に並んだ複数の高圧水蒸気81を第3の紙層33に向けて噴射する。その結果、第3の紙層33は膨張して、第3の紙層33の嵩は高くなる。
 図10は、蒸気ノズル21のノズル穴211の一例を示す図である。図10に示す蒸気ノズル21のように、幅方向(CD)に並んだ複数のノズル穴211のノズル穴列が、機械方向(MD)に6列に並ぶ。図9では、高圧水蒸気81を見やすくするために、第3の紙層33の幅方向(CD)に並んだ複数の高圧水蒸気81を、機械方向(MD)に3列並べたが、実際は6列並ぶ。なお、幅方向(CD)に並んだ複数のノズル穴が、機械方向(MD)に並ぶ列の数は、好ましくは4以上であり、6に限定されない。幅方向(CD)に並んだ複数のノズル穴を、機械方向(MD)に4列以上並べて配置することによって、第3の紙層33の機械方向(MD)の移動速度が速い場合であっても、熱膨張性粒子が膨張するのに十分な熱量を、高圧水蒸気によって第3の紙層33に付与することができる。これにより、不織布の生産効率を高めることができる。複数の高圧水蒸気ノズルを機械方向(MD)に並べて配置することによって、幅方向(CD)に並んだ複数のノズル穴を、機械方向(MD)に4列以上並べて配置するようにしてもよい。
 蒸気ノズル21のノズル穴の穴径は、好ましくは100~250μmである。ノズル穴の穴径が100μmよりも小さいと、エネルギーが不足し、熱膨張性粒子を十分に加熱できない場合がある。また、蒸気ノズル21の穴径が250μmよりも大きいと、第3の紙層33に付与されるエネルギーが大き過ぎてしまい、第3の紙層33のダメージが大きくなり過ぎる場合がある。
 ノズル穴の穴ピッチ(幅方向(CD)に隣接するノズル穴の中心間の距離)は、好ましくは0.5~1.0mmである。ノズル穴の穴ピッチが0.5mmよりも小さいと、蒸気ノズル21の耐圧が低下し、破損が生じる恐れがある。また、ノズル穴の穴ピッチが1.0mmよりも大きいと、加熱が不十分である領域が第3の紙層33に生じる場合がある。これにより、第3の紙層33に嵩のばらつきが大きくなる場合がある。
 蒸気ノズル14から噴射される高圧水蒸気の蒸気圧力は、好ましくは0.4~1.5MPaである。高圧水蒸気の蒸気圧力が0.4MPaよりも小さいと、第3の紙層33中の熱膨張性粒子60に高圧水蒸気が十分当たらず、熱膨張性粒子60が十分に加熱されない場合がある。また、高圧水蒸気の蒸気圧力が1.5MPaよりも大きいと、第3の紙層33に穴が開いたり、第3の紙層33が破れたり、および吹き飛んだりする場合がある。
 図11は、高圧水蒸気が噴射された第3の紙層33の幅方向(CD)の断面概略図である。第3の紙層33は、縦方向と、縦方向に交差する横方向と、縦方向および横方向に対して垂直をなす厚さ方向と、厚さ方向に対して垂直をなす一方の面と、一方の面に対して厚さ方向に対向する他方の面とを有し、縦方向に延在し、横方向に並ぶ複数の溝部42を有し、繊維を含む第1の紙層31を一方の面に備え、膨張した熱膨張性粒子と繊維とを含む第2の紙層32を他方の面に備える。ここで、縦方向は機械方向(MD)(図9参照)に対応し、横方向は幅方向(CD)に対応する。
 高圧水蒸気によって熱膨張性粒子が膨張したため、図8に示す高圧水蒸気を噴射する前の第3の紙層33における第2の紙層32の部分に比べて、高圧水蒸気を噴射した後の第3の紙層33における第2の紙層32の部分は厚くなる。これにより、図8に示す高圧水蒸気を噴射する前の第3の紙層33に比べて、高圧水蒸気を噴射した後の第3の紙層33の嵩を30%以上高くすることができる。
 また、第3の紙層33のうち、第1の紙層31の部分は高圧水流が噴射され強度が強くなっている部分である。一方、第2の紙層32の部分は、熱膨張性粒子が膨張することによって繊維がほぐれ強度が弱くなっているものの、厚さが大きくなっている部分である。このように、第3の紙層33に強度の強い部分31と強度は弱いが嵩は高い部分32とを形成すことによって、第3の紙層33において強度と嵩高とのバランスをとることができる。すなわち、これにより、嵩高であり、強度が高い紙層33を形成することができる。このためには、第2の紙層32の部分の厚さは第1の紙層31の部分の厚さの2倍以上であることが好ましい。
 なお、第1の紙層31と第2の紙層32との間に、1以上の他の層を設けてもよい。この場合も第1の紙層31の部分と第2の紙層32の部分とによって、嵩高であり、強度が高い紙層を形成することができる。
 不織布の嵩が高くなると、不織布を使用して対象物を拭いたときの不織布の汚れを捕捉する能力が高くなる。したがって、第3の紙層33の非常に高くなった嵩により、不織布の拭き取り性は改善される。また、不織布における水を蓄積するための空間が増えるため、不織布の保水性も向上する。
 サクションドラム20に内蔵された吸引装置により、第3の紙層33はサクションドラム20に吸引される。サクションドラム20が第3の紙層33を吸引する吸引力は、好ましくは-5~-12kPaである。サクションドラム20の吸引力が-5kPaよりも小さいと蒸気を吸いきれず吹き上がりが生ずる場合がある。また、サクションドラム20の吸引力が-12kPaよりも大きいとサクション内への繊維脱落が多くなる場合がある。
 蒸気ノズル21の先端と第3の紙層33の表面との間の距離は、好ましくは1.0~10mmである。蒸気ノズル21の先端と第3の紙層33の表面との間の距離が1.0mmよりも小さいと、第3の紙層33に穴が開いたり、第3の紙層33が破れたり、吹き飛んだりする場合がある。また、蒸気ノズル21の先端と第3の紙層33の表面との間の距離が10mmよりも大きいと、高圧水蒸気が分散してしまい、第3の紙層33中の熱膨張性粒子に熱を付与する能率が悪くなる場合がある。
 高圧水蒸気を噴射した後の第3の紙層33の水分率は、好ましくは40%以下であり、さらに好ましくは30%以下である。高圧水蒸気を噴射した後の第3の紙層33の水分率が40%よりも大きいと、後述の乾燥ドライヤによる乾燥によって第3の紙層33の水分率を5%以下にすることが難しい場合がある。また、後述の乾燥ドライヤの他に、さらに追加の乾燥が必要になり、不織布の製造効率が悪くなる場合がある。
 その後、図1に示すように、乾燥ドライヤ22に転写される。乾燥ドライヤ22は、高圧水蒸気を噴射した第3の紙層33を、最終製造物である不織布になるまで乾燥する。乾燥ドライヤ22には、たとえば、ヤンキードライヤが用いられる。乾燥ドライヤ22は、蒸気により約150℃に加熱された円筒状ドライヤの表面に第3の紙層33を付着させて、第3の紙層33を乾燥する。
 乾燥ドライヤ22を通過した後の第3の紙層33は十分に乾燥していることが必要である。具体的には、乾燥ドライヤ22を通過した後の第3の紙層33の水分率は、好ましくは5%以下である。なお、高圧水蒸気を噴射した直後の第3の紙層33の水分率が5%以下である場合、高圧水蒸気を噴射した第3の紙層33を、乾燥ドライヤ22などを使用してさらに乾燥しなくてもよい。
 乾燥した第3の紙層33(不織布)は、巻き取り機23に巻き取られる。
 以上のように作製した不織布を所定寸法に裁断することによって、この不織布を乾燥ワイプスとして使用することができる。また、以上のように作製した不織布を所定寸法に裁断し、裁断した不織布に薬液を含浸させることによって、この不織布を湿潤ワイプスとして使用することができる。上述したように紙層の嵩が高くなることによって不織布の汚れを捕捉する能力が向上するので、この不織布から作製されたワイプスは、汚れをよく落とすことができる。不織布の第1の紙層31の部分は強度が高いため、不織布の第1の紙層31の部分で対象物を拭き取ることによって、対象物を拭き取ったときに不織布の表面の繊維が脱落することを抑制できる。また、以上のように作製した不織布は、嵩が高いことにより、不織布の肌触りが良好になるので、人間や動物の体を拭くためのワイプスに好適な不織布である。さらに、以上のように作製した不織布は、嵩が高いことにより、多くの水を保持できるので、湿式のワイプスに好適である。
 また、以上のように作製した不織布の第1の紙層の部分をトップシートとして使用し、第2の紙層の部分を吸収体として使用することによって、その不織布をパンティライナなどの吸収性物品に使用することができる。その不織布を吸収性物品に使用することによって、とくに薄型の吸収性物品を作製することができる。
 以上の説明はあくまで一例であり、発明は、上記の実施形態に何ら限定されるものではない。
 以下に、実施例に基づいて本発明をより詳細に説明する。しかし、本発明はこれらの実施例によって限定されるものではない。
 実施例および比較例において、蒸気吹付け前紙層水分率、第1の紙層の目付、第2の紙層の目付、第3の紙層の目付、乾燥厚さ、密度、第1の紙層の見かけ厚さ、第2の紙層の見かけ厚さ、加圧後厚さ、湿潤厚さ、乾燥引張強度、湿潤引張強度、水吸収量および摩擦堅牢度を、以下のようにして測定した。
(蒸気吹付け前紙層水分率)
 乾燥ドライヤ19で乾燥した紙層から30cm×30cmのサイズのサンプル片をサンプリングし、そのサンプル片の重量(W1)を測定した。その後、サンプル片を105℃の恒温槽に1時間静置し乾燥させたのち、重量(D1)を測定した。蒸気吹付け前紙層水分率は、N=10での測定値の平均値である。
  蒸気吹付け前紙層水分率=(W1-D1)/W1×100(%)
(第1の紙層、第2の紙層および第3の紙層の目付)
 第1の紙層の目付、第2の紙層の目付および第3の紙層の目付は以下のようにして測定した。まず、第2の紙層を形成しないで第1の紙層のみを不織布製造装置のラインに流した。そして、乾燥ドライヤ19で乾燥した、高圧水蒸気を噴射する前の第1の紙層から30cm×30cmのサイズの測定用試料をサンプリングし、サンプリングした測定用試料の重量を測定することにより、第1の紙層の目付を算出した。実施例および比較例における第1の紙層の目付は10個の測定用試料の平均値である。次に、第1の紙層および第2の紙層を形成して、第3の紙層を不織布製造装置のラインに流した。そして、乾燥ドライヤ19で乾燥した、高圧水蒸気を噴射する前の第3の紙層から30cm×30cmのサイズの測定用試料をサンプリングし、サンプリングした測定用試料の重量を測定することにより、第3の紙層の目付を算出した。実施例および比較例における第3の紙層の目付は10個の測定用試料の平均値である。第2の紙層の目付は、第3の紙層の目付から第1の紙層の目付を引き算することによって算出した。
(乾燥厚さ)
 製造した不織布から10cm×10cmのサイズの測定用試料をサンプリングした。15cm2の測定子を備えた厚み計((株)大栄化学精器製作所製 型式FS-60DS)を使用して、3gf/cm2の測定荷重の測定条件で、測定用試料の厚さを測定した。1つの測定用試料について3ヶ所の厚さを測定し、3ヶ所の厚さの平均値を乾燥厚さとした。
(密度)
 製造した不織布から10cm×10cmのサイズの測定用試料をサンプリングした。測定用試料の重量を測定し、上記乾燥厚さから不織布の密度を算出した。
(第1の紙層および第2の紙層の見かけ厚さ)
 上述の第1の紙層の目付を測定するために使用した、乾燥ドライヤ19で乾燥した、高圧水蒸気を噴射する前の第1の紙層から10cm×10cmのサイズの測定用試料をサンプリングした。15cm2の測定子を備えた厚み計((株)大栄化学精器製作所製 型式FS-60DS)を使用して、3gf/cm2の測定荷重の測定条件で、測定用試料の厚さを測定した。1つの測定用試料について3ヶ所の厚さを測定し、3ヶ所の厚さの平均値を第1の紙層の見かけ厚さとした。次に、上述の第3の紙層の目付を測定するために使用した、乾燥ドライヤ19で乾燥した、高圧水蒸気を噴射する前の第3の紙層から10cm×10cmのサイズの測定用試料をサンプリングした。15cm2の測定子を備えた厚み計((株)大栄化学精器製作所製 型式FS-60DS)を使用して、3gf/cm2の測定荷重の測定条件で、測定用試料の厚さを測定した。1つの測定用試料について3ヶ所の厚さを測定し、3ヶ所の厚さの平均値を第3の紙層の見かけ厚さとした。そして、第3の紙層の見かけ厚さから第1の紙層の見かけ厚さを引き算することによって第2の紙層の見かけ厚さを算出した。
(加圧後の乾燥厚さ)
 製造した不織布から10cm×10cmのサイズの測定用試料をサンプリングした。サンプリングした測定用試料の上に10cmm×10cmの底面を有する1kgの重量の重りを3分間載せ、測定用試料を3分間加圧した。測定用試料から重りを取り除いた後、3分間放置した。そして、15cm2の測定子を備えた厚み計((株)大栄化学精器製作所製 型式FS-60DS)を使用して、3gf/cm2の測定荷重の測定条件で、加圧後の測定用試料の厚さを測定した。1つの測定用試料について3ヶ所の厚さを測定し、3ヶ所の厚さの平均値を加圧後の乾燥厚さとした。
(湿潤厚さ)
 製造した不織布から10cm×10cmのサイズの測定用試料をサンプリングした。測定用試料の質量の4倍の水を測定用試料に含浸させた(含水倍率、400%)。水を含浸した測定用試料を10分間放置した後、15cm2の測定子を備えた厚み計((株)大栄化学精器製作所製 型式FS-60DS)を使用して、3gf/cm2の測定荷重の測定条件で、測定用試料の厚さを測定した。1つの測定用試料について3ヶ所の厚さを測定し、3ヶ所の厚さの平均値を湿潤厚さとした。
(乾燥引張強度)
 製造した不織布から、長手方向が紙層の機械方向である25mm幅の短冊状の試験片と、長手方向が紙層の幅方向である25mm幅の短冊状の試験片とを切り取って、測定用試料を作製した。機械方向および幅方向の測定用試料を、最大荷重容量が50Nであるロードセルを備えた引張試験機(島津製作所(株)製、オートグラフ 型式AGS-1kNG)を使用して、それぞれ3つの測定用試料について、100mmのつかみ間距離、100mm/分の引張速度の条件で引張強度を測定した。機械方向および幅方向の測定用試料のそれぞれ3つの測定用試料の引張強度の平均値を機械方向および幅方向の乾燥引張強度とした。
(湿潤引張強度)
 製造した不織布から長手方向が紙層の機械方向である25mm幅の短冊状の試験片と、長手方向が紙層の幅方向である25mm幅の短冊状の試験片とを切り取って、測定用試料を作製し、測定用試料の質量の2.5倍の水を測定用試料に含浸させた(含水倍率、250%)。そして、機械方向および幅方向の測定用試料を、最大荷重容量が50Nであるロードセルを備えた引張試験機(島津製作所(株)製、オートグラフ 型式AGS-1kNG)を使用して、それぞれ3つの測定用試料について、100mmのつかみ間距離、100mm/分の引張速度の条件で引張強度を測定した。機械方向および幅方向の測定用試料のそれぞれ3つの測定用試料の引張強度の平均値を機械方向および幅方向の湿潤引張強度とした。
(水吸収量)
 製造した不織布から10cm×10cmのサイズの測定用試料をサンプリングした。測定用試料の質量を測定した後、測定用試料を蒸留水の中に1分間浸漬した。次に、網(80メッシュ)の上に1分間放置した後、その測定用試料の質量を測定した。蒸留水に浸漬した後の測定用試料の質量から蒸留水に浸漬する前の測定用試料の質量を引き算した値を、不織布1m2当たりの値に換算した。この換算した値が水吸収量となる。
(摩擦堅牢度)
 摩擦堅牢度の試験は、プラスチックフィルム-およびシート-摩擦係数試験方法(JIS-K-7125:1999)を応用して実施した。製造した不織布から300mm×200mmのサイズの測定用試料をサンプリングし、摩擦係数測定装置(テスター産業株式会社製)のテーブルに、測定する面(第1の紙層側の面または第2の紙層側の面)が上になるように測定用試料を取り付けた。このとき、滑り片の移動方向が、測定用試料の200mmの長さの方向がなるように測定用試料を配置した。滑り板における測定用試料に接する面に布粘着テープ(No.123(商品名をご記入ください)、ニチバン(株)社製)を取り付けた。そして、30回/分の摩擦往復速度および200g荷重の条件で、測定用試料の表面に破れが発生するまで摩擦係数測定を行った。この測定用試料の表面に破れが発生するまで行った摩擦係数測定の回数が摩擦堅牢度になる。
 以下、実施例および比較例の作製方法について説明する。
(実施例1)
 本発明の一実施形態における不織布製造装置1を使用して実施例1を作製した。50重量%の針葉樹晒クラフトパルプ(NBKP)と、繊度が1.1dtexであり、繊維長が8mmである50重量%のレーヨン(ダイワボウレーヨン(株)製、コロナ)とを含む第1の抄紙原料を作製した。そして、原料ヘッドを使用して紙層形成ベルト(日本フィルコン(株)製 OS80)上に第1の抄紙原料を供給し、吸引ボックスを使用して第1の抄紙原料を脱水して第1の紙層を形成した。このときの第1の紙層の紙層水分率は80%であった。その後、2台の高圧水流ノズルを使用して高圧水流を第1の紙層に噴射した。2台の高圧水流ノズルを使用して第1の紙層に噴射した高圧水流の高圧水流エネルギーは0.2846kW/m2であった。ここで、高圧水流エネルギーは下記の式から算出される。
エネルギー量(kW/m2)=1.63×噴射圧力(kg/cm2)×噴射流量(m3/分)/処理速度(M/分)/60
ここで、噴射流量(立方M/分)=750×オリフィス開孔総面積(m2)×噴射圧力(kg/cm2)0.495
 また、高圧水流ノズルの先端と第1の紙層の上面との間の距離は10mmであった。さらに、高圧水流ノズルのノズル穴の穴径は92μmであり、ノズル穴の穴ピッチは0.5mmであった。
 その後、高圧水流が噴射された第1の紙層を紙層搬送コンベアに転写した。
 37重量%の針葉樹晒クラフトパルプ(NBKP)と、37重量%の広葉樹晒クラフトパルプ(LBKP)と、20重量%の熱膨張性粒子(マツモトマイクロスフィアー、松本油脂製薬(株)製、粒径5~15μm、熱膨張開始温度75~85℃)と、3.0重量%の熱膨張性粒子定着剤(ファイレックスRC-104、明成化学工業(株)製、カチオン変性アクリル系共重合体)と、3.0重量%の熱膨張性粒子定着剤(ファイレックスM、明成化学工業(株)製、アクリル系共重合体)とを含む第2の抄紙原料を作製した。そして、第2の抄紙原料を抄造槽の中に供給し、第2の抄紙原料中の熱膨張性粒子が定着した繊維を、回転する円網に吸引させて、第2の紙層を円網上に形成した。その後、円網上に形成した第2の紙層を、上述の紙層搬送コンベアに転写した第1の紙層に積層して第3の紙層を作製した。
 他の1台の紙層搬送コンベアに第3の紙層を転写した後、110℃に加熱したヤンキードライヤに転写して、第3の紙層の水分率が60%になるように第3の紙層を乾燥した。
 次に、1台の蒸気ノズルを使用して高圧水蒸気を第3の紙層における第2の紙層側の面に噴射した。このときの高圧水蒸気の蒸気圧力は0.7MPaであり、蒸気温度は175℃であった。また、蒸気ノズルの先端と紙層の表面との間の距離は2.0mmであった。蒸気ノズルのノズル穴は、機械方向(MD)に6列に並べた。さらに、蒸気ノズルのノズル穴の穴径は200μmであり、穴ピッチは1.0mmであった。また、サクションドラムが紙層を吸引する吸引力は、-5.0kPaであった。サクションドラムの外周にはステンレス製の18メッシュ開孔スリーブを使用した。
 そして、150℃に加熱したヤンキードライヤに第3の紙層を転写し、5%以下の水分量に乾燥した。乾燥した紙層が実施例1となる。
(実施例2)
 実施例2は、高圧水蒸気の蒸気温度を140℃にして蒸気圧力を0.4MPaにした点を除いて、実施例1の製造方法と同様な方法によって製造された。
(実施例3)
 実施例3は、第1の紙層の目付が15g/m2になるように第1の抄紙原料の繊維濃度を調整した点を除いて、実施例1の製造方法と同様な方法によって製造された。
(実施例4)
 実施例4は、高圧水蒸気を噴射する前の第3の紙層の水分率が20%になるように第3の紙層を乾燥した点を除いて、実施例1の製造方法と同様な方法によって製造された。
(比較例1)
 比較例1は、第2の紙層を形成せず、第1の紙層のみで不織布を作製した点および高圧水蒸気を噴射しなかった点を除いて、実施例1の製造方法と同様な方法によって製造された。
(比較例2)
 比較例2は、第1の紙層を形成せず、第2の紙層のみで不織布を作製した点を除いて、実施例1の製造方法と同様な方法によって製造された。
(比較例3)
 比較例3は、第1の紙層を形成せず、第2の紙層のみで不織布を作製した点、高圧水蒸気の蒸気温度を115℃にして蒸気圧力を0.2MPaにした点、蒸気ノズルのノズル穴を機械方向(MD)に3列に並べた点、蒸気ノズルのノズル穴の穴径を300μmにした点および穴ピッチを2.0mmにした点を除いて、実施例1の製造方法と同様な方法によって製造された。
 以上の実施例および比較例の原料を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 以上の実施例および比較例の製造条件を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 以上の実施例および比較例の、蒸気吹付け前紙層水分率、第1の紙層の目付、第2の紙層の目付、第3の紙層の目付、乾燥厚さ、密度、第1の紙層の見かけ厚さ、第2の紙層の見かけ厚さ、加圧後厚さ、乾燥厚さに対する加圧後厚さの割合、湿潤厚さおよび乾燥厚さに対する湿潤厚さの割合を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 以上の実施例および比較例の、乾燥引張強度、湿潤引張強度、水吸収量および摩擦堅牢度を表4に示す。
Figure JPOXMLDOC01-appb-T000004
(1)実施例1~4と比較例1との比較
 実施例1~4の乾燥厚さは、すべて0.82mm以上であった。一方、比較例1の乾燥厚さは0.23mmであった。比較例1の目付は、20g/m2であり、実施例1~4の2分の1程度であるので、実施例1~4と目付を合わせるために、比較例1の厚さを2倍にしても比較例1の厚さは0.46mmである。これより、熱膨張性粒子を含む第2の紙層を設けることによって不織布の嵩を非常に高くできることがわかった。また、比較例1の水吸収量は実施例1~4の水吸収量に比べて非常に小さい。これより、熱膨張性粒子を含む第2の紙層を設けることによって不織布の水吸収量を非常に大きくできることがわかった。
(2)実施例1~4と比較例2および3との比較
 実施例1~4の乾燥引張強度および湿潤引張強度に比べて比較例2および3の乾燥引張強度および湿潤引張強度は、非常に低い。これより、第1の紙層を設けることによって、熱膨張性粒子を含む不織布の強度が非常に高くなることがわかった。また、実施例1~4の第1の紙層側の面の摩擦堅牢度に比べて比較例2および3の摩擦堅牢度は、非常に低い。これより、第1の紙層を設けることによって、熱膨張性粒子を含む不織布の摩擦堅牢度が非常に高くなることがわかった。
(3)実施例2と比較例3との比較
 実施例2と比較例3とを比較することによって、不織布が湿潤状態になっても高い嵩を維持できるようにするためには、高圧水蒸気の蒸気圧力が0.2MPaよりも大きいこと、蒸気ノズルのノズル穴の穴径が300μmよりも小さいこと、蒸気ノズルのノズル穴の穴ピッチが2mmよりも小さいことおよび幅方向(CD)に並んだ複数のノズル穴の機械方向(MD)に並ぶ列の数は4以上であることが好ましいことがわかった。
(4)実施例1~4
 実施例1~4から、第1の紙層側の面における摩擦堅牢度は、第2の紙層側の面における摩擦堅牢度の2倍以上あることがわかった。
(5)実施例1ならびに比較例1および比較例2
 比較例1の水吸収量は、実施例1の第1の紙層の部分の水吸収量を示し、比較例2の水吸収量は、実施例1の第2の紙層の部分の水吸収量を示していると見なすことができる。したがって、実施例1の第2の紙層の部分の水吸収量は、実施例1の第1の紙層の部分の水吸収量の2倍以上であることがわかった。
 1  不織布製造装置
 11  原料供給ヘッド
 12  紙層形成コンベア
 13  吸引ボックス
 14  高圧水流ノズル
 15,18  紙層搬送コンベア
 16  抄造槽
 17  円網
 19,22  乾燥ドライヤ
 20  サクションドラム
 21  蒸気ノズル
 23  巻き取り機
 31  第1の紙層
 32  第2の紙層
 33  第3の紙層
 41  高圧水流
 42  溝部
 51  紙層形成ベルト
 60,60’  熱膨張性粒子
 61  殻
 62  核
 70  繊維
 81  高圧水蒸気

Claims (12)

  1.  繊維と水とを含んだ第1の抄紙原料を、一方向に移動するベルト上に供給して、該ベルト上に第1の紙層を形成する工程と、
     前記第1の紙層に高圧水流を噴射し、機械方向に延びる溝部を前記第1の紙層の表面に形成する工程と、
     繊維と熱膨張性粒子と水とを含んだ第2の抄紙原料をシート化して第2の紙層を形成する工程と、
     前記第1の紙層と前記第2の紙層とを積層して第3の紙層を形成する工程と、
     前記第3の紙層を乾燥する工程と、
     蒸気ノズルから、前記第3の紙層に高圧水蒸気を噴射することによって、前記熱膨張性粒子を膨張させる工程とを含む不織布の製造方法。
  2.  前記熱膨張性粒子を膨張させる工程は、前記蒸気ノズルから、前記第3の紙層の前記第2の紙層側の面に高圧水蒸気を噴射する、請求項1に記載の不織布の製造方法。
  3.  前記第3の紙層を乾燥する工程は、前記第3の紙層の前記第1の紙層側の面を加熱することによって前記第3の紙層を乾燥する、請求項1または2に記載の不織布の製造方法。
  4.  前記第3の紙層を乾燥する工程は、前記第3の紙層の水分率が10~80%になるように前記第3の紙層を乾燥する、請求項1~3のいずれか1項に記載の不織布の製造方法。
  5.  前記蒸気ノズルのノズル穴のノズルピッチは0.5~1.0mmである、請求項1~4のいずれか1項に記載の不織布の製造方法。
  6.  前記蒸気ノズルのノズル穴の穴径は100~250μmである、請求項1~5のいずれか1項に記載の不織布の製造方法。
  7.  前記高圧水蒸気の蒸気圧力が0.4~1.5MPaである、請求項1~6のいずれか1項に記載の不織布の製造方法。
  8.  前記蒸気ノズルは、幅方向に並んでいるノズル穴のノズル穴列を機械方向に4列以上備える、請求項1~7のいずれか1項に記載の不織布の製造方法。
  9.  縦方向と、該縦方向に交差する横方向と、該縦方向および該横方向に対して垂直をなす厚さ方向と、該厚さ方向に対して垂直をなす一方の面と、該一方の面に対して該厚さ方向に対向する他方の面とを有し、
     前記縦方向に延在し、前記横方向に並ぶ複数の溝部を有し、繊維を含む第1の層を前記一方の面に備え、
     膨張した熱膨張性粒子と繊維とを含む第2の層を前記他方の面に備える不織布。
  10.  前記第2の層の厚さは、前記第1の層の厚さの2倍以上である、請求項9に記載の不織布。
  11.  前記第1の層の摩擦堅牢度は、前記第2の層の摩擦堅牢度の2倍以上である、請求項9または10に記載の不織布。
  12.  前記第2の層の水吸収量は、前記第1の層の水吸収量の2倍以上である、請求項9~11のいずれか1項に記載の不織布。
PCT/JP2013/058631 2012-03-30 2013-03-25 不織布および不織布の製造方法 WO2013146702A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
IN8457DEN2014 IN2014DN08457A (ja) 2012-03-30 2013-03-25
EP13769189.5A EP2832909B1 (en) 2012-03-30 2013-03-25 Nonwoven fabric and production method for nonwoven fabric
AU2013241469A AU2013241469B2 (en) 2012-03-30 2013-03-25 Nonwoven fabric and production method for nonwoven fabric
US14/388,149 US9487894B2 (en) 2012-03-30 2013-03-25 Nonwoven fabric having a grooved surface and heat-expanded particles and production method for the nonwoven fabric
KR1020147030419A KR20140144723A (ko) 2012-03-30 2013-03-25 부직포 및 부직포의 제조방법
CN201380017804.6A CN104204323B (zh) 2012-03-30 2013-03-25 无纺织物及无纺织物的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-079877 2012-03-30
JP2012079877A JP5752078B2 (ja) 2012-03-30 2012-03-30 不織布および不織布の製造方法

Publications (1)

Publication Number Publication Date
WO2013146702A1 true WO2013146702A1 (ja) 2013-10-03

Family

ID=49259953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058631 WO2013146702A1 (ja) 2012-03-30 2013-03-25 不織布および不織布の製造方法

Country Status (9)

Country Link
US (1) US9487894B2 (ja)
EP (1) EP2832909B1 (ja)
JP (1) JP5752078B2 (ja)
KR (1) KR20140144723A (ja)
CN (1) CN104204323B (ja)
AU (1) AU2013241469B2 (ja)
IN (1) IN2014DN08457A (ja)
TW (1) TWI564450B (ja)
WO (1) WO2013146702A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117450A (ja) * 2013-12-19 2015-06-25 ユニ・チャーム株式会社 不織布及び不織布の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5901129B2 (ja) * 2011-03-28 2016-04-06 ユニ・チャーム株式会社 不織布の製造方法
JP5752078B2 (ja) * 2012-03-30 2015-07-22 ユニ・チャーム株式会社 不織布および不織布の製造方法
WO2016085467A1 (en) * 2014-11-25 2016-06-02 Kimberly-Clark Worldwide, Inc. Coform nonwoven web containing expandable beads
JP6305330B2 (ja) * 2014-12-25 2018-04-04 ユニ・チャーム株式会社 不織布及び不織布の製造方法
US10974440B2 (en) * 2016-08-12 2021-04-13 Conrad Sun Adaption of magnetic particles within a resin substrate of a textile article
JP7522758B2 (ja) * 2019-03-19 2024-07-25 ピアナ ノンウォーヴンズ エルエルシー 自己膨張式板材成形
KR102566341B1 (ko) * 2021-07-16 2023-08-11 주식회사 대성메디칼 롤 전사방식이 적용된 부직포 제조라인
KR102406420B1 (ko) * 2021-07-22 2022-06-14 주식회사 게일메딕스 의료용 멸균지 제조장치 및 제조방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339898A (en) 1976-09-24 1978-04-12 Nec Corp Production of laser mirror
JPH1088495A (ja) 1997-05-01 1998-04-07 Oji Paper Co Ltd 発泡体粒子混抄紙
JP2000034695A (ja) 1991-10-31 2000-02-02 Oji Paper Co Ltd 発泡体粒子混抄紙
JP2003003397A (ja) * 2001-06-22 2003-01-08 Komei Seishi Kk 2層発泡紙およびその製造方法
JP2003003398A (ja) * 2001-06-22 2003-01-08 Oji Paper Co Ltd 低密度紙
JP2009235627A (ja) * 2008-03-27 2009-10-15 Uni Charm Corp 熱膨張性粒子含有嵩高紙及びその製造方法
JP2009287152A (ja) * 2008-05-30 2009-12-10 Uni Charm Corp 凹凸模様を有する嵩高紙及びその製造方法
JP2011208297A (ja) * 2010-03-29 2011-10-20 Unicharm Corp 不織布シート

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4756945A (en) * 1985-01-18 1988-07-12 Backer Rod Manufacturing And Supply Company Heat expandable fireproof and flame retardant construction product
JP2689787B2 (ja) 1991-10-31 1997-12-10 王子製紙株式会社 発泡体粒子を含有する紙の製造方法
US6919111B2 (en) * 1997-02-26 2005-07-19 Fort James Corporation Coated paperboards and paperboard containers having improved tactile and bulk insulation properties
US6207020B1 (en) * 1998-05-12 2001-03-27 International Paper Company Method for conditioning paper and paperboard webs
JP3640564B2 (ja) * 1999-03-23 2005-04-20 ユニ・チャーム株式会社 繊維長の異なる再生セルロース繊維を含有した水解性不織布およびその製造方法
JP3594835B2 (ja) * 1999-04-20 2004-12-02 ユニ・チャーム株式会社 水解性の清浄用物品及びその製造方法
JP3640591B2 (ja) * 1999-10-06 2005-04-20 ユニ・チャーム株式会社 表面摩擦に対する強度が高い水解性繊維シートの製造方法
ATE381588T1 (de) * 2000-03-27 2008-01-15 Japan Composite Co Ltd Mehrschichtmaterial mit niedriger wärmeausdehnung
JP3703711B2 (ja) * 2000-11-27 2005-10-05 ユニ・チャーム株式会社 不織布の製造方法および製造装置
JP3938290B2 (ja) * 2001-05-16 2007-06-27 ユニ・チャーム株式会社 水解性シートおよびその製造方法
JP3792147B2 (ja) * 2001-10-15 2006-07-05 ユニ・チャーム株式会社 水解性シートおよびその製造方法
JP3792146B2 (ja) * 2001-10-15 2006-07-05 ユニ・チャーム株式会社 水解性シートおよびその製造方法
GB0128692D0 (en) * 2001-11-30 2002-01-23 B & H Res Ltd Formation of sheet material using hydroentanglement
JP4850257B2 (ja) * 2002-10-08 2012-01-11 三菱化学エンジニアリング株式会社 加圧水蒸気噴出ノズルを用いた不織布の製造装置
CN2832892Y (zh) 2005-11-03 2006-11-01 珠海经济特区红塔仁恒纸业有限公司 涂布白卡纸
ES2556939T3 (es) 2006-02-10 2016-01-21 Akzo Nobel N.V. Microesferas
CN101438005B (zh) * 2006-05-05 2014-04-16 国际纸业公司 具有膨胀聚合物微球的纸板材料
JP5123511B2 (ja) * 2006-06-23 2013-01-23 ユニ・チャーム株式会社 不織布
JP5269485B2 (ja) * 2008-05-30 2013-08-21 ユニ・チャーム株式会社 凹凸模様を有する嵩高紙及びその製造方法
JP5346221B2 (ja) * 2009-02-06 2013-11-20 ユニ・チャーム株式会社 水解性不織布
JP4590483B1 (ja) 2009-08-07 2010-12-01 中川産業株式会社 車両内装用熱膨張性基材の製造方法及びそれを用いた車両内装用基材の製造方法
JP5683346B2 (ja) * 2011-03-25 2015-03-11 ユニ・チャーム株式会社 不織布の製造方法
JP5901129B2 (ja) * 2011-03-28 2016-04-06 ユニ・チャーム株式会社 不織布の製造方法
JP5777474B2 (ja) * 2011-09-29 2015-09-09 ユニ・チャーム株式会社 ウェットワイプスおよびその製造方法
JP5787700B2 (ja) * 2011-09-30 2015-09-30 ユニ・チャーム株式会社 不織布の製造方法
JP5836835B2 (ja) * 2012-02-21 2015-12-24 ユニ・チャーム株式会社 不織布および不織布の製造方法
JP5752077B2 (ja) * 2012-03-30 2015-07-22 ユニ・チャーム株式会社 不織布および不織布の製造方法
JP5752078B2 (ja) * 2012-03-30 2015-07-22 ユニ・チャーム株式会社 不織布および不織布の製造方法
JP5755173B2 (ja) * 2012-03-30 2015-07-29 ユニ・チャーム株式会社 不織布および不織布の製造方法
JP5858859B2 (ja) * 2012-04-20 2016-02-10 ユニ・チャーム株式会社 吸収体用の不織布および吸収性物品

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339898A (en) 1976-09-24 1978-04-12 Nec Corp Production of laser mirror
JP2000034695A (ja) 1991-10-31 2000-02-02 Oji Paper Co Ltd 発泡体粒子混抄紙
JPH1088495A (ja) 1997-05-01 1998-04-07 Oji Paper Co Ltd 発泡体粒子混抄紙
JP2003003397A (ja) * 2001-06-22 2003-01-08 Komei Seishi Kk 2層発泡紙およびその製造方法
JP2003003398A (ja) * 2001-06-22 2003-01-08 Oji Paper Co Ltd 低密度紙
JP2009235627A (ja) * 2008-03-27 2009-10-15 Uni Charm Corp 熱膨張性粒子含有嵩高紙及びその製造方法
JP2009287152A (ja) * 2008-05-30 2009-12-10 Uni Charm Corp 凹凸模様を有する嵩高紙及びその製造方法
JP2011208297A (ja) * 2010-03-29 2011-10-20 Unicharm Corp 不織布シート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2832909A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117450A (ja) * 2013-12-19 2015-06-25 ユニ・チャーム株式会社 不織布及び不織布の製造方法
WO2015093124A1 (ja) * 2013-12-19 2015-06-25 ユニ・チャーム株式会社 不織布及び不織布の製造方法

Also Published As

Publication number Publication date
US9487894B2 (en) 2016-11-08
JP2013209767A (ja) 2013-10-10
TW201402908A (zh) 2014-01-16
CN104204323A (zh) 2014-12-10
TWI564450B (zh) 2017-01-01
JP5752078B2 (ja) 2015-07-22
KR20140144723A (ko) 2014-12-19
EP2832909A1 (en) 2015-02-04
EP2832909A4 (en) 2015-09-23
IN2014DN08457A (ja) 2015-05-08
EP2832909B1 (en) 2016-06-08
US20150030811A1 (en) 2015-01-29
CN104204323B (zh) 2016-08-24
AU2013241469B2 (en) 2016-11-24
AU2013241469A1 (en) 2014-10-02

Similar Documents

Publication Publication Date Title
JP5752078B2 (ja) 不織布および不織布の製造方法
JP5901129B2 (ja) 不織布の製造方法
JP2017153890A (ja) ウェットワイプス用不織布及びその製造方法
TWI633228B (zh) Non-woven fabric and non-woven fabric manufacturing method
JP5683346B2 (ja) 不織布の製造方法
TWI544889B (zh) Wet wipes and methods for their manufacture
JP5787700B2 (ja) 不織布の製造方法
JP5836835B2 (ja) 不織布および不織布の製造方法
TWI567259B (zh) Manufacture of nonwovens and nonwovens
JP6016769B2 (ja) 不織布及び不織布の製造方法
TWI597400B (zh) Non-woven and non-woven manufacturing methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769189

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013769189

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201405464

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 14388149

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013241469

Country of ref document: AU

Date of ref document: 20130325

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147030419

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE